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Abstract. Anticipating the advent of large quantum computers, NIST
started a worldwide competition in 2016 aiming to define the next cryp-
tographic standards. HQC is one of these post-quantum schemes still in
contention, with four others already in the process of being standard-
ized. In 2022, Guo et al. introduced a timing attack that exploited an
inconsistency in HQC rejection sampling function to recover its secret
key in 866,000 calls to an oracle. The authors of HQC updated its speci-
fication by applying an algorithm to sample vectors in constant time. A
masked implementation of this function was then proposed for BIKE but
it is not directly applicable to HQC. In this paper we propose a masked
specification-compliant version of HQC vector sampling function which
relies, to our knowledge, on the first masked implementation of the Bar-
rett reduction.
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1 Introduction

Post-Quantum Cryptography (PQC) came of interest when NIST launched its
competition, anticipating that the current public-key cryptosystems might be
broken by quantum computers by the 2030 horizon. In 2023, the competition has
reached an important milestone, with the publication of draft standards [9] of 4
selected algorithms, out of 69 initially submitted. An extra 4th round is taking
place and it should select at most 2 additional winners for standardization among
the remaining 3 algorithms [23]. NIST also posted a call for additional digital
signature proposals [23], aiming to standardize extra short signature schemes
that would ideally not rely on the problems of structured lattices.

In the meantime regarding the quantum threat, progresses are still ongoing
on both technology and algorithms. As an instance, Oded Regev published in
2023 an algorithm able to factor an n-bits integer using O(n3/2) quantum gates
instead of Shor’s original O(n2) [24]. The same year, IBM presented its 1000+
qbits quantum computer and aims to reach 4000+ qbits by the year 2025 [27].

HQC [21] is one of the schemes participating in the 4th round of the com-
petition. It’s a code-based Key-Encapsulation Mechanism (KEM), used to share



securely a symmetric key between 2 parties. Its security relies on the difficulty
of decoding a random linear code and is proved to be Indistinguishable un-
der Adaptive Chosen Cipher Attack (IND-CCA2). The quasi-cyclic structure of
HQC allows it to benefit from reduced public key and ciphertext sizes. Its fast
key generation and decapsulation make it “one of the two best candidates of the
4th round” [1].

The capacity to develop side-channel resistant and efficient implementations
of the algorithm is an explicit and non-negligible criterion for selection [2]. Side-
Channel Attacks (SCA) have been first introduced by Kocher in 1996 [19]. They
take advantage of a physical leakage (power consumption, execution time, . . . )
emanating from a device running an implementation of a cryptographic algo-
rithm. These leaks are intrinsic to the realisation of the cryptographic algorithm
and depend directly on an operation carried out during the computation. If
the leak is found to be correlated to the manipulation of parts of a secret, an
attacker could exploit it to recover the secret part by part thus breaking the
security of the algorithm without needing to break the underlying mathematical
hard problem. This security evaluation of the scheme in the “real world” setup
also raises questions about performance. Indeed, making the algorithm resistant
to SCA may involve adding countermeasures that hinder its performance, thus
changing its competitiveness. HQC has already been thoroughly vetted against
SCA, either against Timing Attack [22, 28, 17] or Template Attack [15, 16, 3].

In [17], the execution time of the rejection sampling function of HQC is ex-
ploited to recover its secret key. The authors proposed to patch this vulnerability
with a countermeasure designed by Nicolas Sendrier to sample vectors in con-
stant time [26], a solution that was applied by the HQC team in their following
specification of the scheme. Moreover, in early 2024 Demange and Rossi provided
the first high-order masked implementation of a code-based algorithm [12]: a fully
masked implementation of BIKE in which a masked version of Sendrier’s coun-
termeasure is presented. Although the new masked vector sampling function is
well suited for BIKE, it is not directly applicable to HQC as it does not respect
its specification.

Contributions. This paper presents a masked specification-compliant vector
generation function for HQC that relies on the first masked Barrett reduction
to our knowledge. We also give a theoretical security proof backed by a prac-
tical evaluation of the implementation of our solution on a STM32 board. The
practical evaluation part of this study also raises a warning about the secure
implementation proposed by Demange and Rossi, showing that compilation op-
timizations should be handled carefully.

Organization. The remaining of this paper is organized as follows. Section 2
gives a preliminary description of HQC, masking and what motivated our ap-
proach. In Section 3, we introduce our proposition to adapt BIKE secure im-
plementation to HQC, by proposing a masked version of the vector sampling



suited to HQC, along with its security proof. Section 4 summarizes the experi-
mental results we obtained when evaluating practically our implementation on
an STM32 device. Finally, Section 5 concludes the paper.

2 Background

2.1 HQC

HQC is a post-quantum scheme based on the theory of quasi-cyclic codes, where
the secret key is generated independently from the code so the security reduction
is independent from the decoding algorithm used for decryption. Our work refers
to the specification of February 2024.

The authors use the Hofheinz-Hövelmanns-Kiltz transformation (a variant
of the Fujisaki-Okamoto transformation that can handle decryption failures) to
turn the IND-CPA secure PKE into an IND-CCA2 KEM.

HQC.PKE The Public Key Encryption (PKE) version of HQC consists of three
algorithms. k represents the length of the shared key (128, 256 or 512 bits), it
is a parameter set at initialization. Algorithm 1 generates the public key pk and
the secret key sk given a seed R. The weights ω are parameters that depend on
the value of k. Algorithm 2 encrypts a message m using pk and a seed θ. The
term mG corresponds to the encoding of the message m by the concatenated
code C using its generator matrix G. Finally, Algorithm 3 details how to decrypt
the ciphertext c knowing sk. The secret key consists of x,y and σ although only
y is needed for decryption.

Algorithm 1
HQC.KeyGen

Input: R
Output: sk, pk

h = Sample(R)
x = Sample(R, ω)
y = Sample(R, ω)
σ = rand(Fk

2)
sk = (x,y, σ)
pk = (h, s = x+ h · y)

Algorithm 2
HQC.Encrypt

Input: pk,m, θ
Output: c = (u,v)

r1 = Sample(θ, ωr)
r2 = Sample(θ, ωr)
e = Sample(θ, ωe)
u = r1 + h · r2
v = mG+ s · r2 + e

Algorithm 3
HQC.Decrypt

Input: sk, c
Output: m

m = C.Decode(v − u · y)

HQC.KEM The KEM version of HQC relies on 3 hash functions (G,H,K) and
consists of 2 algorithms. The sender executes Algorithm 4 to generate a random
symmetric key K and exchange it in the form of a ciphertext. The receiver
applies Algorithm 5 to retrieve the symmetric key.



Algorithm 4 HQC.Encaps

Input: pk
Output: K, c, salt

m = rand(Fk
2)

salt = rand(F128
2 )

θ = G(m∥pk∥salt)
c = HQC.Encrypt(pk,m, θ)
K = K(m, c)

Algorithm 5 HQC.Decaps

Input: sk, c, salt
Output: K

m′ = HQC.Decrypt(sk, c)
θ′ = G(m′∥pk∥salt)
c′ = HQC.Encrypt(pk,m′, θ′)
if m′ =⊥ ∨ c ̸= c′ then

K = K(σ, c)
else

K = K(m, c)
end if

2.2 Guo et al. Timing Attack

HQC June 2021 specification suffered from a timing flaw in its encryption func-
tion. Indeed, HQC encryption relies on the sampling of 3 random vectors with
fixed weights. For the sampling of each vector, a call was made to the function
seedexpander in order to generate bytes of randomness that would determine
the support of the vector. In most cases there was no collision between the in-
dexes drawn and the algorithm called seedexpander only 3 times, once for each
vector. However, if at least one collision occurred, a second call to seedexpander
was made.

This difference in the number of calls is noticeable in timing and the authors
used this distinguisher to perform a Timing Attack and recover the secret key
in ≈ 8.7× 105 decapsulations [17].

2.3 Sendrier’s countermeasure

In 2021, Nicolas Sendrier proposed an algorithm to sample vectors in constant
time in order to patch vulnerabilities in both BIKE’s and HQC rejection sam-
pling functions. The idea is to always ask for the same amount of pseudo ran-
domness. In the event of a collision between two indices, the index that was
drawn is replaced by the number of the current index of the loop iteration (see
Algorithm 6). This is made possible by the introduction of a small bias that has
no significant impact on the distribution [26].

In Algorithm 6, compare is a constant-time function that returns 0xF· · ·F if
the two input values are equal and 0x0· · · 0 otherwise. Following recommenda-
tions of Guo et al., the HQC team explicitly added this countermeasure in their
2023 update of the scheme.

In 2024, Demange and Rossi proposed a fully masked and provably secure
implementation of BIKE [12] featuring a masked version of Sendrier’s algorithm.



Algorithm 6 Sendrier’s constant time vector sampling

Input: s, seed, n
Output: support[0], . . . , support[s− 1]
1: prng ← prng init(seed)
2: for i = 0 to s− 1 do
3: support[i]← i+ rand(prng, n− i) ▷ support[i] ∈ [i, n[
4: end for
5: for i = s− 1 downto 0 do
6: found← 0 ▷ collision flag
7: for j = i+ 1 to s− 1 do
8: found← found ∨ compare(support[i], support[j])
9: end for
10: support[i]← (i ∧ found)⊕ (support[i] ∧ ¬found)
11: end for
12: return support[0], . . . , support[s− 1]

2.4 Masking the vector sampling

Masking The principle of masking is to add random values to any sensitive
variable in the algorithm. A common masking scheme is the Boolean masking [8,
14] where any sensitive variable x is split into d+ 1 boolean shares such that:

x = x0 ⊕ . . .⊕ xd

d is called the masking order. During the computation, the shares are processed
in such a way that any combination of d intermediate variables is independent of
any sensitive variable, ensuring that the leakage observed by an attacker with ac-
cess to up to d intermediate variables is independent of any secret. The algorithm
is said d-probing secure.

Security proof To prove the security of an algorithm, the easiest way is to
prove the security property of individual functions that make it up, referred to
as “gadgets”. To achieve overall security one can follow a property outlined in [6,
Proposition 4]:

“An algorithm P is t-NI provided all its gadgets are t-NI, and all masked vari-
ables are used at most once as argument of a gadget call other than refresh”.
“t-NI” is a concept also developed in [6]:

Definition 1. A gadget is t-non-interfering (t-NI) iff any set of at most t ob-
servations can be perfectly simulated from at most t shares of each input.

Remark 1. t-NI implies t-probing secure.

Remark 2. Any linear operation in F2 (the binary finite field) is a t-NI gadget,
as long as it is applied share-wise.

Remark 3. Masked values manipulated by a linear gadget don’t have to be re-
freshed afterwards.



The “refresh” function was introduced in [10] to increase the overall random-
ness of an algorithm by re-randomizing the values of the shares encoding a secret
variable. Informally, Proposition 4 states that a masked value has to be refreshed
after a non-linear manipulation before being used in another gadget.

Masked implementation We give a description of Demange et al. version
of Sendrier’s algorithm, referred to as “SecFisherYates” in Algorithm 7. The
gadgets are detailed in the appendix of [12] . The authors have proved the t-NI re-
sistance of their gadgets, and they provided a C implementation on GitHub [20].
In the following, JxK denotes the array containing the boolean shares of the
masked value x.
All binary secure operations for which it makes sense come in two flavours:
secop(JAK, JBK) (both operands masked), secop(JAK, B) (left operand masked,
right operand unmasked).

Algorithm 7 Demange et al. masked SecFisherYates

Input: s ∈ N, n ∈ N
Output: JrK ∈ Zs

n a randomly generated vector without repeated values
1: for i = s− 1 downto 0 do
2: JriK← secrand(n− i)
3: JiK← refresh(i) ▷ Boolean sharing of i
4: JriK← sec+(JriK, i)
5: for j = i+ 1 to s− 1 do
6: JrjK← refresh(JrjK)
7: JbK← sec=(JriK, JrjK)
8: JriK← refresh(JriK)
9: JiK← refresh(JiK)
10: JriK← secif (JiK, JriK, JbK)
11: end for
12: end for
13: return JrK

3 Proposed countermeasure

BIKE and HQC differ on the way they draw a random number in an interval Zn.
Given a p bits random number a, BIKE multiplies it by n then shifts the result p
bits to the right (Algorithm 8, Line 4), whereas HQC returns the remainder of a
modulo n (Algorithm 9, Line 3). This difference means that the SecFisherYates
algorithm cannot be directly transposed to an HQC implementation, as it would
not follow its specification. We have to design a side-channel resistant function
that computes the remainder of a boolean masked value a modulo a public value
n. One particular constraint is that we don’t want to use the division or mod-
ulo instructions to fulfil this task. Firstly, because on some architectures they



have a variable execution time that depends on the numerator. In our case, a
variation in execution time may translate to a leak because the numerator is a
secret variable in the vector sampling. Secondly because they are not directly
applicable to Boolean masked data. We have chosen to solve this problem by de-
signing a masked Barrett reduction. Non-masked Barrett reduction was actually
implemented in September 2023 in the PQClean version of HQC before being
added to the latest HQC specification in February 2024.

Algorithm 8 BIKE’s vector sampling

Input: seed, len, wt
Output: wlist, a list of wt distinct elements of {0, . . . , len− 1}.
1: wlist← () ▷ empty list
2: s0, . . . , swt−1 ← SHAKE256-Stream(seed, 32 · wt)

▷ parse as a sequence of wt non negative 32-bits integers
3: for i = wt− 1 downto 0 do
4: pos← i+ ⌊(wt− i)si/2

32⌋
5: wlist← wlist, (pos ∈ wlist) ? i : pos
6: end for
7: return wlist

Algorithm 9 HQC vector sampling

Input: n,w, seed
Output: w distinct elements of {0, . . . , n}
1: prng ← prng init(seed)
2: for i = w − 1 downto 0 do
3: l← i+ (rand(prng) mod (n− i))
4: pos[i]← (l ∈ {pos[j], i < j < t) ? i : l
5: end for
6: return pos[0], . . . , pos[w − 1]

3.1 Barrett reduction

The Barrett reduction [5] is a constant-time procedure to efficiently compute the
remainder of an integer division. To compute the remainder of x mod n one can
use:

r = x− ⌊x/n⌋ × n

In order not to use the division operation, Barrett’s idea was to approximate
the quotient by finding an integer m such that:

m

2p
≈ 1

n



We usually take: m = ⌊ 2p

n ⌋.

Remark 4. In our case, p = 32, because the function rand of HQC (Algorithm 9,
Line 3) outputs pseudo-random 32-bits unsigned integers.

Since the quotient m
2p is only guaranteed to be less or equal to 1

n , a final subtrac-
tion is sometimes required. The main advantage of this technique is that it relies
on a variable m that can be pre-computed, and efficient operations (dividing by
2p comes down to a shift p bits to the right, which is virtually free).

Algorithm 10 Barrett reduction

Input: a, n, p and m s.t. m = ⌊ 2
p

n
⌋

Output: r = a mod n
1: q ← (a×m)≫ p
2: r ← a− q × n
3: if r ≥ n then
4: r ← r − n
5: end if
6: return r

3.2 Masked implementation

In this section we describe the algorithm that we designed to achieve the masked
implementation of the Barrett reduction. Thanks to the gadgets introduced
in [12] we have an implementation with no mask conversion (which are known
to be demanding in terms of computation time), that works with any degree of
masking. It is constant-time by design and provably secure.

New gadgets We developed a new gadget, sec−(JaK, JbK), that computes the
subtraction JaK − JbK of 2 masked values, and a partly masked variant of the
secure equality: sec=(JaK, b), which computes the equality of a masked value JaK
and a public value b (presented in Annex)

Algorithm To keep the constant-time property, we are forced to always perform
the conditional subtraction at the end. We start by subtracting n from the
computed value “a qn” (= a− q × n), and store the result in A (Line 8). There
are 2 possibilities: either A is negative and a qn is the correct result or A is
positive and the correct result. To evaluate the sign of A we shift it by 31 bits
to the right and store the result in z; if A is negative then z is equal to 1, else A
is positive and z is equal to 0.

Theorem 1. The masked Barrett reduction Algorithm 11 is t-NI secure



Algorithm 11 Masked Barrett reduction

Input: JaK,m, n
Output: JrK = JaK mod n
1: JqK← sec×(JaK,m)
2: JqK← JqK≫ 32 ▷ Shift on each share
3: JqnK← sec×(JqK, n)
4: JaK← refresh(JaK)
5: Ja qnK← sec−(JaK, JqnK)
6: Ja qnK← Ja qnK&(232 − 1) ▷ (a− q × n) mod 232

7: minus n← 232 − n
8: JAK← sec+(Ja qnK,minus n) ▷ conditional final subtraction
9: JzK← JAK≫ 31
10: JAK← JAK&(232 − 1)
11: JtK← sec=(JzK, 1)
12: Ja qnK← refresh(Ja qnK)
13: JrK← secif (Ja qnK, JAK, JtK) ▷ JtK ? Ja qnK : JAK
14: return JrK

Proof. m and n are public values, we do not need to mask them. Since it operates
on each share individually, the shift operation (Lines 2, 9) is t-NI. The same
reasoning applies to the AND operation (Lines 6, 10). Algorithm 11 uses t-NI
gadgets, and the only masked variables that are used twice without modification
are a (Lines 1, 5) and a qn (Lines 8, 13). They are both refreshed (Lines 4, 12)
before their re-use. We don’t have to refresh A before using it on Line 13 because
it is only manipulated by linear operations (Lines 9, 10).

4 Experimental setup and results

To conduct our experiments we used the STM32 Nucleo-F439ZI development
board which is equipped with an ARM Cortex-M4 core running at 180 MHz.
We selected the pqm4 [18] implementation of HQC. We retrieved the code of
the gadgets from Github [20] and implemented our solution. After setting the
masking order to one, we ran 10,000 executions of our masked Barrett reduction,
once with fixed inputs and once with random ones; and recorded the resulting
electro-magnetic traces. For comparison purposes, we ran this first experiment
while fixing the masks to zero (virtually unmasking the secret value). Using
a Test Vector Leakage Assessment (TVLA) [7] we confront these two sets of
traces and obtain Figure 1. The numerous peaks well above and below the ±4.5
threshold [25] (dotted red lines) inform us of the presence of leaks. We then ran
a second experiment, this time relying on the integrated True Random Num-
ber Generator (TRNG) of the board to produce the random masks required for
the computation. This time, there are no visible peaks (Figure 2) which is ex-
pected from a first order leakage analysis of a first order masking. Hence, the
absence of leaks in the second experiment gives us better confidence concerning
the soundness of our solution.



Fig. 1. TVLA of the masked Barrett re-
duction with masks set to zero.

Fig. 2. TVLA of the masked Barrett re-
duction.

Remark 5. A formal security proof on the pseudo or source code is not a complete
guarantee. Due to all optimizations performed by the compilation tool chain
and even by the hardware, executing the corresponding compiled software on
a real hardware CPU can leak secret data, even when the abstract algorithm
was proved t-NI secure. Further analyses on the assembly code, on the linked
and loaded binary or even on the actual execution by the processor are needed
before one can conclude that the masking provides the expected security level,
as demonstrated for instance in [11].

Our results were obtained with the compilation flag -Og and all caches ON.
While testing another configuration, we found out that compiling with the -O3

flag introduced leaks (see Figure 3 in Annex). As we explain in Annex these
leaks are due to a different mapping of the various shares on the physical CPU
registers.

4.1 Performances

In this section we discuss the performance of our solution. We implemented some
32-bit variants of the gadgets to best fit our STM32 Nucleo-144 target board
before running a benchmark. The following results were all obtained using the
compilation flag -Og

Table 1. Comparison of the number of cycles needed to sample a random vector of
weight w = 75 (ARM Cortex-M4 @180 MHz, caches ON).

Algorithm Execution time (cycles) Overhead

HQC 747,500 −
Our solution (order 1) 17,650,000 2361%
Our solution (order 2) 36,625,000 4899%
BIKE 746,500 −
Masked BIKE (order 1) 11,606,000 1554%

Our solution is 52% more computationally intensive compared to the one
proposed for BIKE. This is due to the fact that BIKE specification only requires
a masked multiplication and a shift. In comparison, following HQC specification



requires to execute the entire masked Barrett reduction (Algorithm 11). Since, in
an unmasked implementation, the vector sampling phase represents only 0.14%
of the total cycles required for a decapsulation, we think that the impact of our
solution on a masked version should be limited while providing the key advantage
of preserving the HQC specification.

5 Conclusion

This paper proposes a first masked version of HQC vector sampling, which has
never been proposed to our knowledge. To bridge this gap, we based our work
on Demange et al. SecFisherYates, and we have introduced some new gadgets,
mainly the masked Barrett reduction, which was not publicly available so far. It
is now trivial to adapt SecFisherYates to HQC, one has to replace Line 2 in
Algorithm 7 with our masked Barrett reduction to get a masked vector sampling
function for HQC.

Moreover, one main advantage is that it does not require any mask conver-
sion and works for any order of masking. The security assessment of our modular
Barrett reduction is two-fold: we provide a security proof for our new gadgets,
and we have performed a practical side-channel evaluation of its implementation
on an STM32 device, that shows the absence of remaining leakages in this spe-
cific setting. This practical evaluation has raised some warnings about compiler
options when using our and Demange et al. gadgets, since some leakage appears
with aggressive compiler optimization settings. It reminds the importance of
validating practical implementations against attacks.

This work covers the vector sampling, by providing a publicly available C
implementation. Vector sampling is only a part of HQC algorithm. Even if side-
channel resistant implementations of some other parts of HQC have been studied
in [15], building a full HQC masked implementation is still let as future work.
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Annex

Algorithm 12 sec−(JaK, JbK) (secure minus)

Input: JaK, JbK
Output: JrK = JaK− JbK
1: JnbK← JbK
2: JnbK0 ← ¬JnbK0 ▷ NOT of the first share
3: JmbK← sec+(JnbK, 1) ▷ −b = (¬b) + 1
4: JrK← sec+(JaK, JmbK)
5: return JrK

Theorem 2. The masked subtraction Algorithm 12 is t-NI.

Proof. The only gadget manipulating the data is sec+, which is t-NI, and the
negation only manipulates the first share.

Algorithm 13 sec=(JxK, y) (masked vs. unmasked secure equality)

Input: JxK, y
Output: JrK = 0 iff JxK = y, 1 otherwise
1: JrK← JxK⊕ y
2: for i = n

2
to 1 step − i

2
do

3: JaK← left half(JrK)
4: JbK← right half(JrK)
5: JaK0 ← ¬JaK0 ▷ NOT of the first share
6: JbK0 ← ¬JbK0
7: JrK← sec&(JaK, JbK)
8: JrK0 ← ¬JrK0
9: end for
10: return JrK

Theorem 3. The partly masked equality Algorithm 13 is t-NI

Proof. The only gadget manipulating the data is sec& which is t-NI. Moreover,
the negation (Lines 5, 6) only manipulates the first share, it is not able to leak
anything (since the values are updated at each loop turn).

Example of leak introduced by the compiler optimizations When testing
our solution with the more aggressive -O3 compilation option we discovered that
the compiler decided to reuse the same register for two shares as can be seen on
Listing 1.1. Since we use a first order masking, the transition between the two
states of the register induces a XOR between the two values, which unmasks the
secret as illustrated by Figure 3.



Fig. 3. TVLA of the masked Barrett reduction compiled with -O3

1 <boolean_sec_and >:

2 push {r3 , r4 , r5, r6, r7, lr}

3 mov r5 , r1 ;store address of y in r5

4 ldrd r1 , r3 , [r0] ;r1 = x[0], r3 = x[1]

5 mov r4 , r2

6 ldr r2 , [r5 , #0] ;r2 = y[0]

7 ands r1 , r2 ;r1 = x[0] & y[0]

8 ldr r2 , [r5 , #4] ;r2 = y[1]

9 ...

Listing 1.1. Abstract of the assembly code of sec& for -O3

On Line 6, the value of y[0] is loaded in r2 then on Line 8 the value of
y[1] is loaded in r2. Physically, for the register to switch from the value y[0]

to y[1] there is an implicit XOR between the two values. As y = y[0]⊕ y[1], for
all 0-bits of y there is no transition (that is, no consumed energy) between the
corresponding bits of y[0] and y[1], while for all 1-bits of y there is a transition
from 0 to 1 or from 1 to 0, that consumes energy.

This involuntarily exposes the secret y and advocates for further analyses on
the assembly code, on the linked and loaded binary or even on the actual exe-
cution by the processor as proposed for instance by [13]. Increasing the masking
order, as suggested by [4], is another option but it is costly.
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