
A New CRT-based Fully Homomorphic
Encryption

Anil Kumar Pradhan

Vaultree Ltd.

Abstract. We have proposed a novel FHE scheme that uniquely en-
codes the plaintext with noise in a way that slows down the increasing
noise from overflowing and corrupting the plaintext. This allows users
to perform computations on encrypted data smoothly. The scheme is
constructed using the Chinese Remainder Theorem (CRT), supporting a
predefined number of modular operations on encrypted plaintext without
the need for bootstrapping.
Although FHE recently became popular after Gentry’s work [10] [11]
and various developments have occurred in the last decade, the idea of
"Fully Homomorphic Encryption (FHE)" scheme was first introduced in
the 1970s by Rivest [13]. The Chinese Remainder Theorem is one of the
most suitable tools for developing a FHE Scheme because it forms a ring
homomorphism Zp1 × Zp2 × . . . × Zpk

∼= Zp1p2...pk . Various attempts
have been made to develop a FHE using CRT, but most of them were
unsuccessful, mainly due to the chosen plaintext attack (CPA) [5].
The proposed scheme overcomes the chosen plaintext attack. The scheme
also adds random errors to the message during encryption. However,
these errors are added in such a way that, when homomorphic opera-
tions are performed over encrypted data, the increasing values of errors
never overwrite the values of the messages, as happens in LWE-based
homomorphic schemes. Therefore, one can perform a predefined number
of homomorphic operations (both addition and multiplication) without
worrying about the increasing values of errors.

Keywords: Fully Homomorphic Encryption (FHE), Chinese Reminder Theo-
rem, Chosen Plaintext Attack

1 Introduction

Fully Homomorphic Encryption (FHE) is a transformative cryptographic paradigm
that enables computations on encrypted data without requiring decryption. In-
troduced by in 1970’s by Rivest [13] and first secure scheme was proposed Craig
Gentry in 2009 [10] [11], and later improved in [3] [2] [4] [7] [14] [9], FHE has
opened new avenues for secure data processing, allowing operations to be per-
formed on ciphertexts while maintaining the confidentiality of the underlying
plaintexts. This capability is particularly valuable in scenarios where data pri-
vacy is paramount, such as in cloud computing, medical data processing, and
financial transactions.



FHE schemes can execute a wide range of operations on encrypted data,
including both arithmetic (addition and multiplication) and logical operations,
making them Turing complete. This means that any computable function can,
in theory, be evaluated on encrypted data without revealing the data itself. The
potential applications of FHE are vast, encompassing secure voting systems,
privacy-preserving data analysis, and encrypted search functionalities, among
others.

One of the critical challenges addressed by FHE is the need to maintain
data privacy while enabling the functionality of modern data analytics and ma-
chine learning. Traditional encryption schemes secure data at rest and in transit
but require decryption for processing, exposing sensitive information to poten-
tial breaches. FHE, on the other hand, keeps data encrypted throughout the
processing life-cycle, thus significantly enhancing security and privacy.

Despite its promising features, the practical deployment of FHE has been
historically hindered by performance issues, particularly the high computational
overhead associated with homomorphic operations. Early FHE schemes required
bootstrapping [8] [6] [12]—a process to refresh ciphertexts to manage noise
growth during computations—which was computationally expensive and imprac-
tical for real-world applications [1].

The concept of utilizing the Chinese Remainder Theorem (CRT) for con-
structing a fully homomorphic encryption (FHE) scheme was first introduced
as a “privacy homomorphism” in 1978 by Rivest, Adleman, and Dertouzos [13].
The fundamental idea was to define an encryption function that allows compu-
tations on encrypted data without needing to decrypt it. The approach begins
with enabling basic binary operations, such as addition and multiplication, over
encrypted data. Since any function can be approximated by a polynomial, sup-
porting addition and multiplication on encrypted data implies the potential to
compute any function on the data.

The privacy homomorphism designed by Rivest, Adleman, and Dertouzos
operates as follows:

– Key Generation: The user selects two large prime numbers, p and q, and
computes the public parameter n = pq.

– Plaintext and Ciphertext Spaces: The plaintext space is defined as Zn, and
the ciphertext space is defined as Zp × Zq.

Encryption:

m ∈ Zn −→ (m mod p,m mod q) = (c1, c2)

Decryption:

The plaintext m is recovered from (c1, c2) using the Chinese Remainder Theorem.

However, it was later demonstrated that this privacy homomorphism is vul-
nerable to known plaintext attacks [5]. The attack exploits the fact that if
Enc(m) = (c1, c2), then:

c1 = m mod p ⇒ m = pk + c1 ⇒ p|(m− c1)

2



Since p|n, we have:
p| gcd(m− c1, n)

Similarly, q| gcd(m − c2, n). Given that n = pq, the greatest common divisor
gcd(m − ci, n) for i = 1, 2 can be either p or q. Consequently, an attacker can
recover the secret keys from a known set of plaintext and ciphertext values.

This vulnerability highlighted the need for more secure methods of construct-
ing fully homomorphic encryption schemes, leading to the exploration and de-
velopment of more robust approaches in the following decades.

Our Contribution: The main idea of the scheme is to enable efficient com-
putation on encrypted data by uniquely encoding the plaintext with noise in a
way that prevents noise from increasing to the point of overflowing and corrupt-
ing the plaintext. This innovative approach allows users to perform computations
on encrypted data smoothly without the common problem of noise accumula-
tion degrading the data integrity. The techniques used in scheme ensure that
the noise introduced during encryption does not interfere with the accuracy and
reliability of the computations performed on the encrypted data.

This paper aims to provide a comprehensive overview of the proposed Fully
Homomorphic Encryption, discussing its foundational principles, security anal-
ysis, speed, performance, and practical applications. We will also explore the
implementation and benchmarking of the proposed scheme.

We reduce the security of the proposed scheme to lattice-based cryptography,
meaning it is as secure as any other lattice-based cryptographic scheme. Specifi-
cally, we demonstrate that if a method exists to break the proposed scheme, the
same method can be used to break the known hard problem, LWE and RLWE
problem. Therefore, our proposed FHE scheme is as secure as any cryptographic
scheme based on the LWE problem, which is recognized as being quantum-safe.

The rest of the section is organized as follows: we begin with an introduction
to the preliminaries, followed by the definition of essential notations and pa-
rameters. Next, we describe the proposed fully homomorphic encryption (FHE)
algorithm in detail. Following this, we provide a proof of the algorithm’s cor-
rectness and conduct a thorough security analysis. Additionally, we present a
performance analysis and benchmarking results.

2 Preliminary

In this section, we provide an overview of the basic concepts that underpin
our Fully Homomorphic Encryption (FHE) scheme, focusing on the Chinese
Remainder Theorem (CRT). These concepts are fundamental to understanding
the security and functionality of our encryption scheme.

2.1 Chinese Remainder Theorem (CRT)

The Chinese Remainder Theorem is a key mathematical tool used in number
theory and cryptography. It provides a way to solve systems of simultaneous
congruences with pairwise co-prime modulo.

3



Let n1, n2, . . . , nk be pairwise coprime integers (i.e., gcd(ni, nj) = 1 for i ̸= j).
For any given integers a1, a2, . . . , ak, there exists an integer x that simultaneously
satisfies the system of congruences:

x ≡ a1 mod n1

x ≡ a2 mod n2

...

x ≡ ak mod nk

Moreover, the solution x is unique modulo N = n1n2 · · ·nk.
The CRT is useful in cryptographic applications because it allows computa-

tions to be performed independently in smaller, modular arithmetic spaces and
then recombined to form the final result. This can lead to efficiencies in both
computation and storage.

Definition 1 (CRT Function). For pairwise coprime integers p1, . . . , pk, we
define the CRT function CRT(p1,...,pk) for inputs (m1, . . . ,mk) as a number in
Zp1

× · · · ×Zpk
which is congruent to mi modulo pi for all i ∈ {1, . . . , k}, where

p =
∏k

i=1 pi.
Formally, we have:

CRT(p1,...,pk)(m1, . . . ,mk) ≡
k∑

i=1

mip̂i(p̂
−1
i mod pi) mod p,

where

p̂i =
p

pi
=

k∏
j=1
j ̸=i

pj

2.2 NTT Representation

Polynomial Representation In the context of Fully Homomorphic Encryp-
tion (FHE) schemes like BFV, data is often represented as polynomials. A poly-
nomial in the ring R = Z[X]/(Xn + 1) can be written as:

a(X) = a0 + a1X + a2X
2 + · · ·+ an−1X

n−1

where each ai is a coefficient in Z. Operations such as addition and multipli-
cation of these polynomials are performed modulo Xn + 1. This representation
aligns directly with the algebraic structures used in FHE schemes.

For instance, in the BFV scheme:

– The plaintext modulus is denoted by t.
– The ciphertext modulus is denoted by q.

4



– Rt = Zt[X]/(Xn + 1) and Rq = Zq[X]/(Xn + 1) are the polynomial rings
with coefficients in Zt and Zq, respectively.

In polynomial representation, addition and multiplication operations are straight-
forward but can be computationally expensive for large polynomials due to the
convolution involved in polynomial multiplication.

NTT Representation The Number Theoretic Transform (NTT) is a discrete
Fourier transform (DFT) performed over finite fields. It transforms a polynomial
from its coefficient representation into a point-value representation, significantly
speeding up polynomial multiplication.

Transform Process
Given a polynomial a(X) in R, the NTT of a(X) is:

A = NTT(a)

This transformation maps the polynomial to an array of its values at spe-
cific points, known as roots of unity, in a finite field. The inverse NTT (INTT)
transforms it back to the coefficient representation:

a = INTT(A)

Advantages of NTT

– Efficiency in Multiplication: Multiplying two polynomials in coefficient form
requires a convolution operation, which is computationally expensive (O(n2)).
In NTT representation, multiplication becomes pointwise and linear in com-
plexity (O(n)), followed by an inverse transform, making the overall com-
plexity O(n log n).

– Scalability: NTT-based multiplication handles large polynomials efficiently,
crucial for FHE schemes that operate over high-degree polynomials to achieve
security.

Steps in NTT-Based Polynomial Multiplication

– Forward Transform: Apply NTT to both polynomials, a and b, obtaining A
and B.

– Pointwise Multiplication: Multiply the transformed polynomials pointwise,
C = A⊙B.

– Inverse Transform: Apply the inverse NTT to C to obtain the resulting
polynomial in coefficient form.

In the context of the BFV scheme [4]:

– Encryption involves transforming the plaintext polynomial to NTT form,
performing the encryption operation, and transforming the resulting cipher-
text polynomial back to coefficient form if necessary.

5



– Homomorphic multiplication benefits significantly from NTT, as it reduces
the complexity of polynomial multiplication.

In summary, while polynomial representation is simpler and more intuitive, NTT
representation is preferred in practical homomorphic encryption implementa-
tions due to its substantial efficiency benefits in polynomial multiplication, which
are essential for the performance of schemes like BFV.

2.3 Terminologies

The notation commonly employed includes Z for the set of integers and Zq for
the ring of integers modulo q. The plaintext modulus is denoted by t, while the
ciphertext modulus is denoted by q. The degree of the cyclotomic polynomial,
usually a power of 2, is represented by n. The polynomial ring R is defined
as Z[X]/(Xn + 1), and Rq is the corresponding ring with coefficients in Zq.
Within this scheme, s represents the secret key polynomial, e denotes an error
polynomial with small coefficients, and a and b are components of the public
key. Ciphertexts are typically represented as a vector c = (c0, c1). The security
of the scheme is grounded in the hardness of the Learning With Errors (LWE)
problem and its variant, the Ring Learning With Errors (RLWE) problem. The
RLWE problem involves finding a secret polynomial s given a polynomial a and
a noisy polynomial b, where the noise polynomial e has small coefficients. The
difficulty of solving this problem without the secret key underpins the security
guarantees of the scheme, making it a robust choice for applications requiring
secure computation on encrypted data.

2.4 Hard Problems

1. Learning With Errors (LWE) Problem: Given a matrix A and a vector
b = As + e where s is a secret vector and e is a small error vector, the
task is to find s. The hardness of this problem is the foundation of many
cryptographic schemes.

2. Ring Learning With Errors (RLWE) Problem: A variant of the LWE
problem where the operations are performed in a polynomial ring. Given a
polynomial a ∈ Rq and a polynomial b = a · s + e mod q where s and e
have small coefficients, the task is to find s. The RLWE problem is believed
to be hard and forms the security basis of the scheme.

BFV Scheme
The BFV scheme (Brakerski/Fan-Vercauteren) is an FHE scheme based on

the RLWE problem. It allows for both addition and multiplication operations
on ciphertexts, supporting computations on encrypted data.

The difficulty of solving the RLWE problem ensures that the scheme is se-
cure against various cryptographic attacks. The noise e added during encryption
makes it hard to recover the plaintext without the secret key.

6



By leveraging these hard problems and mathematical structures, the scheme
achieves secure and efficient fully homomorphic encryption, enabling computa-
tions on encrypted data while preserving confidentiality. In the context of FHE,
the CRT is used to manage modular arithmetic operations efficiently, allow-
ing homomorphic operations to be performed on encrypted data. The RLWE
problem provides a hard computational foundation that ensures the security of
the encryption scheme. Together, these concepts enable the construction of a
FHE scheme that is both secure and practical for performing large amount of
computations on encrypted data.

3 Construction

In this section, we outline the construction of our Fully Homomorphic Encryp-
tion (FHE) scheme, focusing on its key components: key generation, encryption,
homomorphic operations, and decryption. Our construction builds on the prin-
ciples of lattice-based cryptography, incorporating enhancements to achieve im-
proved performance and security. First we describe the required parameters for
the scheme along with their sizes, then the actual construction of the scheme
and finally we prove the correctness of the scheme.

3.1 The Construction

In this section we describe the construction of the proposed fully homomor-
phic encryption scheme. The scheme has 4 major components Key Generation,
Encryption, Decryption, and Homomorphic Operations e.g. Addition and Mul-
tiplication.

The scheme consists of the following algorithms:

– Generate Public Parameters:
• Based on the security parameter λ select the following public parameters

∗ n: Dimension,
∗ q: Ciphertext Modulus,
∗ χ: Noise Distribution as per the standard of the RLWE Problem.

• Additionally we define the plaintext space p1 and noise space p2. The
values of p1 and p2 are selected such that p1p2 < q. The detailed analysis
of the relation between p1, p2 and q is described in the later sections.

PP = (n, q, χ, p1, p2)

• For simplicity we use the following additional notations
∆1 = p2[p

−1
2 ]p1

, ∆2 = p1[p
−1
1 ]p2

CRTp1,p2
(x, y) = ∆1x+∆2y mod p1p2

– Key Generation:
• Input: Security parameter λ, Public Parameters PP
• Output: Public key pk, secret key sk, and evaluation key evk.

7



• Steps:
∗ Sample s ∈ R2 uniformly.
∗ Sample a ∈ Rq uniformly.
∗ Sample e = e0 + e1x + ..., en−1x

n−1 from the noise distribution χ
with small coefficients bounded by p2.

∗ Apply the CRT function to the noise polynomial as follows

ϵ = CRTp1,p2(0, e0)+CRTp1,p2(0, e1)x+ ...+CRTp1,p2(0, en−1)x
n−1

∗ Compute b = (a · s+ ϵ) mod q.
∗ Set pk = (b,−a) and sk = s.

pk = (a.s+

n−1∑
i=0

CRTp1,p2(0, ei)x
i,−a)

– Generate Relinearization Keys:
• The relinearization keys (aka evaluation key:) rlk are needed for homo-

morphic multiplication.
• Create Auxiliary Keys:

∗ Choose a base w and let l = ⌊logw q⌋

– Steps
• For each i ∈ {0, . . . , l}:

∗ Choose a random polynomial ri1 ∈ Rq.
∗ Sample noise ei = ei,0 + ei,1x+ ..., ei,n−1x

n−1 from the noise distri-
bution χ and compute

ϵi = CRTp1,p2(0, ei,0)+CRTp1,p2(0, ei,1)x+...+CRTp1,p2(0, ei,n−1)x
n−1

∗ Compute the relinearization key component:

ri0 = ri1 · s+ ϵi + wi · s2 mod q

– Set relinearization key as follows:

rlk = {(ri0 ,−ri1) | i = 0, . . . , l}

– Encryption:
• Input: Public key pk, Plain-text Vector (m0, ...,mn−1) ∈ Zn

p1
.

• Output: Ciphertext c = (c0, c1) ∈ R2
q .

• Steps:
∗ Encode plaintext (m0, ...,mn−1) into a polynomial in Rp1 as follows:

m = m0 +m1x+ ...+mn−1x
n−1 ∈ Rp1

∗ Apply the CRT function to the coefficients as follows:

m∗ = CRTp1,p2(m0, 0)+CRTp1,p2(m1, 0)x+...+CRTp1,p2(mn−1, 0)x
n−1

8



∗ Sample random noise polynomials e′ = e′0+e′1x+...+e′n−1x
n−1, e′′ =

e′′0 + e′′1x + ... + e′′n−1x
n−1 with small coefficients and polynomial u

with binary coefficients. The compute the following:

ϵ′ = CRTp1,p2(0, e
′
0)+CRTp1,p2(0, e

′
1)x+...+CRTp1,p2(0, e

′
n−1)x

n−1 = ∆2e
′ mod p1p2

ϵ′′ = CRTp1,p2
(0, e′′0)+CRTp1,p2

(0, e′′1)x+...+CRTp1,p2
(0, e′′n−1)x

n−1 = ∆2e
′′ mod p1p2

∗ Compute c0 = pk0 · u+ ϵ′ +m∗ mod q.
∗ Compute c1 = pk1 · u+ ϵ′′ mod q.
∗ Set Ciphertext c = (c0, c1).

c = (c0, c1)

– Decryption:
• Input: Secret key sk, ciphertext c = (c0, c1) ∈ R2

q .
• Output: Plaintext m ∈ Rp1

.
• Steps:

∗ Compute m = (c0 + c1 · s mod q) mod p1.

Homomorphic Operations

– Homomorphic Addition:
• Input: Ciphertexts c1 = (c1,0, c1,1), c2 = (c2,0, c2,1) ∈ R2

q .
• Output: Ciphertext csum ∈ R2

q .
• Steps:

∗ Compute csum = (c0,1 + c0,2 mod q, c1,1 + c1,2 mod q).

– Homomorphic Multiplication:
• Input: Ciphertexts c1, c2 ∈ R2

q , evaluation key evk.
• Output: Ciphertext cmult ∈ R2

q .

Steps: Homomorphic multiplication in the scheme involves multiplying two
ciphertexts and then relinearizing the result. The steps are as follows:

Input Ciphertexts: Let c1 = (c1,0, c1,1) and c2 = (c2,0, c2,1) be two ciphertexts
that encrypt plaintexts m1 and m2, respectively.

ci,0+ci,1s = m∗
i = CRTp1,p2

(mi0 , ei0)+CRTp1,p2
(mi1 , ei1)x+...+CRTp1,p2

(min−1
, ein−1

)xn−1

Then the product of the encoded plaintext will be

m∗
1.m

∗
2 = (c1,0 + c1,1s)(c2,0 + c2,1s)

= c1,0 · c2,0 + (c1,0 · c2,1 + c1,1 · c2,0)s+ (c1,1 · c2,1)s2

This results in a ciphertext of degree 2:

c∗mult = (c0, c1, c2)

9



where:
c0 = c1,0 · c2,0
c1 = c1,0 · c2,1 + c1,1 · c2,0
c2 = c1,1 · c2,1

This ciphertext encrypts the product of the encoded plaintexts

m∗
1.m

∗
2 = c0 + c1s+ c2s

2

Relinearization is a step in the scheme that converts a higher-degree cipher-
text (resulting from homomorphic multiplication) back to a form that can be
handled like an original ciphertext. Here are the mathematical steps to apply
relinearization and compute a new ciphertext of degree 1.

Decompose c2 in base w:

c2 =

l∑
i=0

c2,iw
i

where c2,i ∈ Rq are the base-w digits of c2.
Use the relinearization keys to reduce the degree of the ciphertext:

cmult = (c0 +

l∑
i=0

ri0 · c2,i, c1 +
l∑

i=0

ri1 · c2,i)

Output Ciphertext: The relinearized ciphertext cmult = (c′0, c
′
1) now encrypts

the product m∗
1 ·m∗

2 and has the same form as an original ciphertext.
These steps ensure that the homomorphic multiplication and relinearization

process in the scheme maintains the ciphertext structure, allowing for further
homomorphic operations while controlling the growth of ciphertext size and
complexity.

3.2 Batch Encoding

Batching is a powerful technique in Fully Homomorphic Encryption (FHE) that
allows multiple plaintexts to be encrypted and processed simultaneously within
a single ciphertext. This approach significantly enhances the efficiency of homo-
morphic computations, making FHE more practical for real-world applications.
The concept of batching leverages the structure of certain algebraic objects, such
as rings and polynomials, to pack multiple messages into one.

Mathematical Foundation The current form of the ciphertext:

c0+c1s = m∗ = CRTp1,p2(m0, e0)+CRTp1,p2(m1, e1)x+...+CRTp1,p2(mn−1, en−1)x
n−1

We rewrite it to express the plaintext and noise separately as follows

10



CRTp1,p2
(m0, e0) + CRTp1,p2

(m1, e1)x+ ...+ CRTp1,p2
(mn−1, en−1)x

n−1

=

n−1∑
i=0

CRTp1,p2(mi, 0)x
i +

n−1∑
i=0

CRTp1,p2(0, ei)x
i

=

n−1∑
i=0

p2[p
−1
2 ]p1mix

i +

n−1∑
i=0

p1[p
−1
1 ]p2eix

i

= (p2[p
−1
2 ]p1)

n−1∑
i=0

mix
i + (p1[p

−1
1 ]p2)

n−1∑
i=0

eix
i

= ∆1m+∆2e

Let c1 = (c1,0, c1,1) and c2 = (c2,0, c2,1) be two ciphertexts that encrypt plain-
texts µ1 and µ2, respectively.

cj,0+cj,1s = m∗
i = CRTp1,p2

(mj,0, ej,0)+CRTp1,p2
(mj,1, ej,1)x+...+CRTp1,p2

(mj,n−1, ej,n−1)x
n−1

Now when two ciphertexts are multiplied the corresponding polynomials
∑n−1

i=0 m1,ix
i

and
∑n−1

i=0 m2,ix
i were multiplied.

Dec(cmult, sk) = m∗
1.m

∗
2 = (

n−1∑
i=0

m1,ix
i)(

n−1∑
i=0

m2,ix
i)

This does not gives use the coordinate-wise multiplication of the two vectors i.e.

(m1,0,m1,1, ...,m1,n−1)∗(m2,0,m2,1, ...,m2,n−1) → (m1,0m2,0,m1,1m2,1, ...,m1,n−1m2,n−1)

This can be achieved using the concept of NTT as follows:

INTT (m1,0,m1,1, ...,m1,n−1) = µ1 = µ1,0 + µ1,1x+ ...+ µ1,n−1x
n−1

INTT (m2,0,m2,1, ...,m2,n−1) = µ2 = µ2,0 + µ2,1x+ ...+ µ2,n−1x
n−1

µ1.µ2 = INTT (m1,0,m1,1, ...,m1,n−1) ∗ INTT (m2,0,m2,1, ...,m2,n−1)

= INTT (m1,0 ×m2,0,m1,1 ×m2,1, ...,m1,n−1 ×m2,n−1)

In order to achieve this instead of directly putting plaintext values in coeffi-
cient, we need to compute the INTT of the plaintext vector and get a polynomial
and we encrypt the new polynomial.

11



Encoding To batch multiple plaintext messages m = (m0,m1, . . . ,mn−1), each
mi ∈ Zp1

, into a single polynomial, we perform the following steps:

– Compute the Inverse NTT of the plaintext as

µ = INTT (m) = µ0 + µ1x+ . . .+ µn−1x
n−1

The INTT () function is performed in the space Zp1
so that the result µ ∈

Zp1
[X].

– Then the new polynomial is encoded into the following polynomial.

µ∗ = CRTp1,p2
(µ0, 0) + CRTp1,p2

(µ1, 0)x+ ...+ CRTp1,p2
(µn−1, 0)x

n−1

Decoding To decode the batched ciphertext back into individual plaintexts:

– Apply mod p1 to separate plaintext and noise.

µ∗ mod p1

= CRTp1,p2
(µ0, e0)+CRTp1,p2

(µ1, e1)x+...+CRTp1,p2
(µn−1, en−1)x

n−1 mod p1

= µ0 + µ1x+ . . .+ µn−1x
n−1 = µ

– Use the NTT function to transform the polynomial in Zp1
[X] back into a

tuple of elements in Zp1
.

NTT (µ) = m = (m0,m1, ...,mn−1)

– Extract the individual plaintext messages from the resulting polynomial.

Homomorphic Operations on Batches The primary advantage of batching
is that homomorphic operations on the ciphertexts can be performed in parallel
on the individual plaintexts. For instance:

Addition:

– Given two batched ciphertexts c1 and c2 encoding plaintexts m1 = (m1,1,m1,2, . . . ,m1,k)
and m2 = (m2,1,m2,2, . . . ,m2,k), respectively, their homomorphic addi-
tion results in a ciphertext encoding m1 + m2 = (m1,1 + m2,1,m1,2 +
m2,2, . . . ,m1,k +m2,k).

Multiplication:

– Similarly, homomorphic multiplication of two batched ciphertexts results in
a ciphertext encoding the product of the corresponding plaintexts:

m1 ×m2 = (m1,1 ×m2,1,m1,2 ×m2,2, . . . ,m1,k ×m2,k)

Advantages of Batching

12



1. Efficiency: Batching significantly reduces the number of ciphertexts that need
to be managed and the number of homomorphic operations that need to be
performed. This reduction leads to substantial improvements in computa-
tional efficiency and memory usage.

2. Parallelism: The ability to process multiple plaintexts simultaneously lever-
ages parallel computation resources, further accelerating the performance of
homomorphic operations.

3. Amortization: The computational overhead associated with encryption, de-
cryption, and homomorphic operations is amortized over multiple plaintexts,
making each operation more cost-effective.

Practical Considerations

1. Parameter Selection: Choosing appropriate parameters for n and q is crucial
to balance the trade-off between security, noise growth, and the number of
batched plaintexts.

2. Noise Management: While batching helps in managing computational re-
sources, the noise growth must still be carefully monitored to ensure the
correctness of decryption after multiple homomorphic operations.

3. Application Suitability: Batching is particularly useful in applications requir-
ing parallel processing of multiple data items, such as in machine learning
on encrypted data, database operations, and encrypted search.

Batching in FHE schemes offers a powerful means to enhance the efficiency
of homomorphic computations by leveraging the parallelism in polynomial rings.
By packing multiple plaintexts into a single ciphertext, batching allows for sig-
nificant improvements in computational and memory efficiency, making FHE
more practical for a wider range of applications.

3.3 Correctness

In this section we prove the correctness of encryption scheme. First we prove the
correctness of the encryption scheme in the following theorem. Later we prove
the correctness of the homomorphic operations over encrypted data.

Theorem 1. For any message m and secret key sk, the decryption of the en-
cryption of m using sk recovers the original message:

Dec(Enc(m, sk), sk) = m

Proof. The ciphertext c is computed from the plaintext m and the secret key
sk.

The encryption process involves the following steps:

Enc(m, sk) = c = (c0, c1)

Note that
c0 = pk0 · u+ ϵ′ +m∗ mod q

13



= (a.s+∆2e) · u+∆2e
′ +m∗ mod q

= (a.u).s+∆2(e.u+ e′) +m∗ mod q

c1 = pk1 · u+ ϵ′′ = −a.u+∆2e
′′

[c0 + c1s]q = ∆2(e.u+ e′ + e′′s) +∆1m = ∆2e
∗ +∆1m

= CRTp1,p2
(m0, e

∗
0) + CRTp1,p2

(m1, e
∗
1)x+ ...+ CRTp1,p2

(mn−1, e
∗
n−1)x

n−1

Here,
e∗ = (e.u+ e′ + e′′s)

To decrypt c, we apply the decryption function:

Dec(c, sk) = (c0 + c1 · s mod q) mod p1

= CRTp1,p2(m0, e
∗
0)+CRTp1,p2(m1, e

∗
1)x+...+CRTp1,p2(mn−1, e

∗
n−1)x

n−1 mod p1

= m

Therefore, we conclude:

Dec(Enc(m, sk), sk) = m

This proof demonstrates that the encryption and decryption functions are cor-
rect and consistent, ensuring that decrypting an encrypted message recovers the
original message without loss or alteration.

3.4 LWE Variant

This scheme also accommodates a LWE variant. The structure of the scheme is
outlined as follows

– Public Parameters:
• Choose pairwise relatively primes: p1, p2, q
• Ciphertext Modulus: q, Plaintext Modulus: p1, Noise Modulus: p2

– Key Generation:
• Secret key s ∈ Zn

q

– Encryption:
• Plaintext m ∈ Zp1

• Choose mask a ∈ Zn
q , and small error e′ ∈ Zq.

• Compute ciphertext:

c = ([a · s+ CRT (m, e)]q,−a)

– Decryption:
• Ciphertext c = (c0, c1)

• Decrypted plaintext

m = c0 + ⟨c1, s⟩ mod q mod p1

14



4 Security Analysis

To establish the security of the RLWE-based Fully Homomorphic Encryption
(FHE) scheme, it is crucial to demonstrate that breaking the scheme is as dif-
ficult as solving the underlying RLWE problem. This involves proving that any
adversary capable of compromising the scheme can be utilized to solve the RLWE
problem, which is believed to be computationally hard. The primary objective
is to prove semantic security and the chosen plaintext attack (CPA) model,
emphasizing the indistinguishability of ciphertexts.

Ring Learning With Errors (RLWE) Problem
The security of our scheme is based on the Ring Learning With Errors

(RLWE) assumption. It can be stated as follows:

– Given a ring Rq = Zq[X]/(Xn + 1), a secret polynomial s ∈ Rq, and a
small error polynomial ϵ ∈ Rq, the RLWE problem is to distinguish the
distribution (as+ e,−a) from the uniform distribution over Rq ×Rq, where
a ∈ Rq is chosen uniformly at random.

The RLWE problem is considered hard based on worst-case hardness assump-
tions of certain lattice problems, making it computationally infeasible to solve
for sufficiently large parameters.

Semantic security ensures that an adversary cannot distinguish between en-
cryptions of any two chosen plaintexts with a non-negligible advantage. The
semantic security proof for the RLWE-based FHE scheme involves a reduction
from breaking the scheme to solving the RLWE problem.

4.1 Reduction to RLWE

The ciphertext from the proposed scheme has the following form:

Enc(m, sk) = c = (c0, c1)

[c0 + c1s]q = ∆2e
∗ +∆1m

c = (c0, c1) = (a · s+∆2e
∗ +∆1m,−a)

Thus, solving (a · s + ∆2e
∗ + ∆1m,−a) is equivalent to solving a RLWE

problem (a·s+e,−a). If there exists an adversary A that can break the semantic
security of the scheme i.e. it can solve (a · s+∆2e

∗ +∆1m,−a) then the same
adversary can solve any RLWE sample (a · s+ e,−a).

Detailed Proof
To rigorously establish the reduction, we need to show that the simulation

is indistinguishable from a real execution of the scheme. This involves demon-
strating that:

– The public key pk = (b,−a) generated using the RLWE instance is indis-
tinguishable from a valid public key in the scheme.

– The challenge ciphertext c generated using the RLWE instance is indistin-
guishable from a valid ciphertext in the scheme.

15



Public Key Indistinguishability:

– In a real public key pk = (as+ ϵ,−a), the polynomial b follows the RLWE
distribution.

– By the RLWE assumption, the polynomial b in the RLWE instance (a,b)
is computationally indistinguishable from a polynomial following the RLWE
distribution.

Ciphertext Indistinguishability:

– In a real ciphertext c = (c0, c1), the polynomials c0 and c1 are computed as
c0 = pk0 · u+ ϵ′ +m∗ mod q and c1 = pk1 · u+ ϵ′′ mod q.

– Using the RLWE instance (a,b), the challenge ciphertext c is constructed
in the same way, ensuring its indistinguishability from a real ciphertext.

– If the adversary A can distinguish the challenge ciphertexts with a non-
negligible advantage, it implies a non-negligible advantage in distinguishing
the RLWE sample from uniform, thus solving the RLWE problem.

– Since the RLWE problem is assumed to be hard, the adversary A cannot
have a non-negligible advantage in distinguishing ciphertexts, proving that
the FHE scheme is semantically secure under CPA.

This completes the security proof for the RLWE-based FHE scheme, demon-
strating that breaking the scheme is as hard as solving the RLWE problem.

The security of the proposed cryptographic scheme is based on the hardness of
the Ring Learning With Errors (RLWE) problem, similar to many lattice-based
cryptographic constructions. This section provides a detailed security analysis
of the scheme, focusing on the core components that contribute to its security:
the RLWE problem, noise growth, and the impact of homomorphic operations.

4.2 Reduction to BGV

The security of the proposed cryptographic scheme can be further understood by
considering a reduction to the Brakerski-Gentry-Vaikuntanathan (BGV) scheme.
This section formally describes the process and implications of such a reduction.

Objective:

– Demonstrate that an attack method X for the proposed FHE scheme can
be leveraged to compromise the BGV scheme.

Reduction Proof Model:

– Assume there exists an attack method X that compromises the proposed
FHE scheme.

– The same method X can be adapted to attack the BGV scheme as follows:
• Convert the BGV ciphertext to a ciphertext of the proposed FHE scheme.
• Apply the method X to the converted ciphertext to recover the secret

key or plaintext.

16



Formal Conversion Process
Consider the proposed scheme with public parameters PP = (n, q, χ, p1, p2).

The ciphertext in this scheme is represented as:

c = (c0, c1) = ([a · s+∆2e
∗ +∆1m]q,−a)

To illustrate the encryption of zero:

E(0) = ([a · s+∆2e
∗]q,−a)

Given the relationship p1[p
−1
1 ]p2

= 1 mod p2, there exists an integer k such
that p1[p

−1
1 ]p2

= kp2 + 1. Let t = kp2 + 1, thus: ∆2e
∗ = te∗. Consequently, the

ciphertext can be rewritten as:

E(0) = ([a · s+ te]q,−a)

This demonstrates that any ciphertext from the proposed scheme can be
converted into a ciphertext from the BGV scheme with the same set of public
parameters (n, q, χ), albeit with a different plaintext space defined by t.

Conversely, consider a BGV ciphertext with public parameters (n, q, χ) and
plaintext space t:

E(0) = ([a · s+ te]q,−a)

We can determine p1 and p2 such that t = kp2 + 1 = p1[p
−1
1 ]p2

, leading to:

E(0) = ([a · s+ te]q,−a) = ([a · s+ p1[p
−1
1 ]p2(e)]q,−a)

= ([a · s+ CRTp1,p2
(0, e1) + CRTp1,p2

(0, e2)x+ ...CRTp1,p2
(0, en)x

n−1]q,−a)

= ([a · s+∆2e
∗]q,−a)

Thus, this results in a ciphertext of the proposed FHE scheme with the same
public parameters.

In summary, the objective of this reduction is to demonstrate that an attack
method X on the proposed FHE scheme can be employed to compromise the
BGV scheme. The reduction proof model entails converting BGV ciphertexts to
those of the proposed FHE scheme and applying the attack method X. Through
this formal conversion process, we establish that any attack on the proposed
scheme can be translated into an attack on the BGV scheme, thereby reinforcing
the security of the proposed FHE scheme by leveraging the well-established
security properties of the BGV scheme.

4.3 Parameter Selection and Security Levels

The security of our scheme relies on choosing appropriate parameters (n, q, p1, p2)
such that the underlying RLWE problem is hard to solve. The parameters must
be selected to balance between security and efficiency:

17



– Degree n: The degree of the cyclotomic polynomial, typically chosen as a
power of 2 for efficiency in polynomial arithmetic.

– Ciphertext modulus q: A large integer modulus that affects both the security
level and the noise growth in ciphertexts.

– Plaintext and Noise moduli p1, p2: Smaller moduli that determine the plain-
text space and noise space respectively.

For a given security level λ, these parameters must satisfy certain constraints
to ensure that the RLWE problem remains hard, even for powerful adversaries.

4.4 Practical Considerations

In practical implementations, security considerations must account for poten-
tial side-channel attacks and implementation-specific vulnerabilities. Robust pa-
rameter selection and efficient noise management are crucial for ensuring both
security and performance.

– Side-Channel Attacks: Implementation techniques such as constant-time al-
gorithms and masking can help mitigate side-channel threats.

– Parameter Tuning: Ensuring that parameters are chosen to balance effi-
ciency, correctness, and security according to the desired application and
threat model.

The security of our scheme fundamentally relies on the hardness of the RLWE
problem and careful management of noise growth in ciphertexts. By selecting
appropriate parameters and employing techniques to control noise, our scheme
provides a robust framework for fully homomorphic encryption with strong secu-
rity guarantees. The formal security proofs and reductions to the RLWE problem
underpin the confidence in the scheme’s resilience against adversarial attacks.

5 Performance Analysis

In this section, we analyze the performance of our Fully Homomorphic Encryp-
tion (FHE) scheme based on various cryptographic operations. The performance
metrics were obtained using a MacBook Pro M1 Max with 64 GB of RAM, with-
out any special hardware or command set optimizations. The results presented
here are for reference only and may vary depending on the hardware configura-
tion.

5.1 Overview of Performance Metrics

The performance of the proposed FHE scheme was evaluated across several types
of operations, including encryption, decryption, and basic arithmetic operations
(addition, subtraction, and multiplication) on multiple size of plaintext data. We
provide the average time taken for 1 million operations and the average number
of operations performed per minute.

18



Operation Type Encryption Decryption Addition Subtraction Multiplication
Time 19 sec 18 sec 0.9 sec 0.74 sec 81 sec

Table 1. Time per Million

Time per Million Operations
The table below shows the average time (in seconds) required to perform 1

million operations for different data types and operations:
Operations per Minute
The table below shows the number of operations performed per minute for

different data types and operations:

Operation Type Encryption Decryption Addition Subtraction Multiplication
Time 3,157,895 3,333,333 66,666,667 81,081,081 740,741

Table 2. Operations per Minute

Analysis

– Encryption and Decryption: The average time for 1 million encryptions is 19
seconds, while decryption takes approximately 18 seconds. This translates
to around 3,157,895 encryptions and 3,333,333 decryptions per minute for
integer data types.

– Arithmetic Operations: Addition and subtraction are significantly faster
than multiplication. The system can perform up to 66,666,667 additions
and 81,081,081 subtractions per minute, but only 740,741 multiplications.

Our performance analysis demonstrates that the proposed scheme is capable
of handling a high volume of cryptographic operations efficiently, particularly for
basic arithmetic operations. The scheme performs best with additions and sub-
tractions, while multiplications is more computationally intensive. The results
highlight the feasibility of using FHE for practical applications, although actual
performance may vary based on specific hardware and ongoing optimizations.

6 Conclusion

In this paper, we have introduced a novel Fully Homomorphic Encryption (FHE)
scheme that leverages the Chinese Remainder Theorem (CRT) to address the
critical issue of noise accumulation in homomorphic computations. By uniquely
encoding the plaintext with noise, the proposed scheme effectively prevents the
noise from growing to the point where it corrupts the plaintext, thereby facilitat-
ing smooth computations on encrypted data without the need for bootstrapping.

19



This advancement is significant, as it allows for a predefined number of modular
operations on encrypted data, enhancing both efficiency and practicality.

The evolution of FHE has been marked by notable milestones since its con-
ceptual inception by Rivest in the 1970s and its formal realization by Gentry in
the late 2000s. While numerous efforts have been made to develop FHE schemes
using CRT, these have often fallen short due to vulnerabilities such as chosen
plaintext attacks (CPA). Our proposed scheme addresses these vulnerabilities
by incorporating random errors into the encryption process in a controlled man-
ner. These errors are designed such that, during homomorphic operations, their
growth does not interfere with the integrity of the plaintext, unlike in traditional
LWE-based schemes.

The key contributions of the proposed scheme can be summarized as follows:

– Noise Management: By encoding the plaintext with noise in a novel way, we
ensure that the noise does not overflow and corrupt the plaintext, enabling
reliable homomorphic computations.

– CRT Utilization: We harness the power of the Chinese Remainder Theorem
to construct a robust FHE scheme that supports a set number of modular
operations without necessitating bootstrapping.

– Security Enhancement: the proposed scheme is resilient to chosen plain-
text attacks, thereby improving the security profile compared to previous
attempts utilizing CRT.

This research represents a significant step forward in the development of
efficient and secure FHE schemes. By overcoming the traditional limitations as-
sociated with noise management and CPA vulnerabilities, the proposed scheme
opens up new possibilities for practical applications of FHE in fields such as se-
cure data processing, privacy-preserving computations, and encrypted machine
learning. Future work will focus on further optimizing the performance and ex-
panding the range of supported operations to enhance the scheme’s applicability
in diverse real-world scenarios.

References

1. Ahmad Al Badawi and Yuriy Polyakov. Demystifying bootstrapping in fully ho-
momorphic encryption. 2023.

2. Z. Brakerski. Fully homomorphic encryption without modulus switching from
classical gapsvp. Advances in Cryptology – CRYPTO 2012, 7417:868–886, 2012.

3. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-
lwe and security for key dependent messages. Advances in Cryptology – CRYPTO
2011, 6841:505–524, 2011.

4. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-
lwe and security for key dependent messages. P. Rogaway, editor, Advances in
Cryptology – CRYPTO 2011, 6841:505–524, 2011.

5. Ernest F. Brickell and Yacov Yacobi. On privacy homomorphisms. 1987.
6. Hao Chen and Kyoohyung Han. Homomorphic lower digits removal and improved

FHE bootstrapping. 2018.

20



7. J. H. Cheon, J.-S. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi, and A. Yun.
Batch fully homomorphic encryption over the integers. To Appear at Eurocrypt
2013.

8. Robin Geelen and Frederik Vercauteren. Bootstrapping for BGV and BFV revis-
ited. 2022.

9. C. Gentry, S. Halevi, and N. Smart. Fully homomorphic encryption with polylog
overhead. Advances in Cryptology – EUROCRYPT 2012, 7237:465–482, 2012.

10. Craig Gentry. Fully homomorphic encryption using ideal lattices. volume 9, pages
169–178, 05 2009.

11. Craig Gentry. Toward basing fully homomorphic encryption on worst-case hard-
ness. pages 116–137, 08 2010.

12. Shai Halevi and Victor Shoup. Bootstrapping for HElib. 2014.
13. Ronald L. Rivest and Michael L. Dertouzos. On data banks and privacy homo-

morphisms. 1978.
14. M. v. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic en-

cryption over the integers. Advances in Cryptology – EUROCRYPT 2010, 6110:24–
43, 2010.

21


	A New CRT-based Fully Homomorphic Encryption

