
Post-Quantum Ready Key Agreement for Aviation
Marcel Tiepelt1 , Christian Martin1 and Nils Maeurer2

1 Karlsruhe Institute of Technology, KASTEL, Karlsruhe, Germany
2 Airbus, Airbus Defence and Space, Taufkirchen, Germany

Abstract. Transitioning from classically to quantum secure key agreement protocols
may require to exchange fundamental components, for example, exchanging Diffie-
Hellman-like key exchange with a key encapsulation mechanism (KEM). Accordingly,
the corresponding security proof can no longer rely on the Diffie-Hellman assumption,
thus invalidating some security guarantees. As a consequence, the security properties
have to be re-proven under a corresponding security notion.
We initiate the study of the LDACS key agreement protocol (Edition 01.01.00 from
25.04.2023), which is soon-to-be-standardized by the International Civil Aviation
Organization. The protocol’s cipher suite features Diffie-Hellman as well as a KEM-
based key agreement protocol to provide post-quantum security. While the former
results in an instantiation of an ISO key agreement inheriting all security properties,
the security achieved by the latter is ambiguous.
We formalize the computational security using the systematic notions of de Saint
Guilhem, Fischlin and Warinshi (CSF ’20), and prove the exact security that the
KEM-based variant achieves in this model; primarily entity authentication, key secrecy
and key authentication. To further strengthen our “pen-and-paper” findings, we
model the protocol and its security guarantees using Tamarin, providing an automated
proof of the security against a Dolev-Yao attacker.
Keywords: authenticated key exchange · post-quantum key exchange · formal
verification · LDACS

1 Introduction
Post-Quantum Cryptography The progress in quantum technology makes a potential
threat of large scale universal quantum computers to cryptography undeniable. To enable
secure communication in the future, quantum secure alternatives to Diffie-Hellman-like key
exchanges, that do not rely on the hardness of the discrete logarithm problem, have been
proposed. The most prominent of such alternatives are the post-quantum schemes that
are currently undergoing standardization as part of the National Institute for Standards
and Technology (NIST) post-quantum competition [fST22]. These schemes are based on
key encapsulation mechanisms (KEMs), meaning that they cannot readily be combined
with existing protocols that build on a Diffie-Hellman-like key exchange structure, thus
invalidating security guarantees. On the other side, any protocol that achieves security
based on a generic notion for key encapsulation mechanisms could be instantiated with
any of the NIST post-quantum schemes, providing a quantum-secure protocol.

This work was supported by funding from the topic Methods for Engineering Secure Systems of the
Helmholtz Association (HGF) and by KASTEL Security Research Labs. This version of the contribution
has been accepted for publication, after peer review but is not the Version of Record and does not reflect
post-acceptance improvements, or any corrections. The Version of Record of this contribution is published
in Communications in Cryptology, Volume 1, Issue 1, available online at: https://cic.iacr.org/p/1/1/17.

E-mail: marcel.tiepelt@kit.edu (Marcel Tiepelt), christian.martin@kit.edu (Christian Martin),
nils.maeurer@airbus.com (Nils Maeurer)

This work is licensed under a “CC BY 4.0” license.
Date of this document: 2024-07-04.

https://orcid.org/0000-0002-3389-208X
https://orcid.org/0009-0004-4332-1194
https://orcid.org/0000-0003-1324-7574
https://cic.iacr.org/p/1/1/17
mailto:marcel.tiepelt@kit.edu
mailto:christian.martin@kit.edu
mailto:nils.maeurer@airbus.com
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Post-Quantum Ready Key Agreement for Aviation

Authenticated Key Exchange Authenticated key exchange enables two or more parties
to secretly agree on a key, additionally assuring the parties that they are interacting with
their intended peer. Common frameworks to prove the security of key agreement protocols
are BR- [BFWW11] or SK-security [CK02], with adversaries that have the capabilities to
send or modify any messages during protocol execution. Additionally, adversaries may
either learn the initial state of a party (weak corruption), or even learn intermediate states
during execution of the protocol (strong corruption). We review common protocols and
their security that relate to this manuscript. A broader overview can be found in [BMS20].

The Station to Station (STS) protocol [WVOW92] combines a Diffie-Hellman (DH)
key exchange with a public-key infrastructure signature scheme. At first, the initiator
sends a public DH value to a responder, who generates their own DH values, computes the
secret key, and responds with their own DH value and a signature on both values. The
responder encrypts their return message with the shared key. In the last pass, the initiator
sends their own signature on the DH public values encrypted under the shared key. A
variant of the STS protocol removes the encryption of the signatures and either adds a
message authentication code (MAC) on the public DH values, or includes the identity
of the intended partner into the signature. This construction allows to achieve security
against weak corruption.

The ISO/ IEC 11770-3 protocols, specifically ISO KAM-7 [co21, §11.7] pick up at this
latter construction, but add an identifier for the intended partner to the signature and an
additional message authentication code to the message flow, lifting the protocol to provide
security against strong corruption.

Finally, the Internet Key Exchange (IKEv2) [KHN+14a], which is implemented in IPsec
and virtually all IP-based secure communications (e.g. VPNs), follows the SIGn-and-MAc
(SIGMA) approach [Kra03]. The SIGMA approach combines the public-key-infrastructure-
based signature, the message authentication code and the encryption of the two using the
shared key, and was proven secure against strong corruption.

The above protocols have been, originally, proven secure under the Decisional Diffie-
Hellman assumption [CK02, Cre11], thus are based on only classically secure components.
A first formal analysis of IKEv2 assuming a post-quantum secure variant of DH was
conducted by [GGCG+21], in which case the original proof would carry over, except under
the post-quantum DH assumption. An alternative approach was taken by [FKMS20], who
show that IKEv2 is “post-quantum secure” if pre-shared keys are used to negotiate new
key material. Further, [BBF+19] provide a detailed analysis of hybrid combiners using DH
values and KEMs, along with a fine-grained analysis of adversarial power. They provide
a multi-stage BR security proof for an independent authenticated key exchange based
on key encapsulation mechanism from a SIGMA approach. Further, [Pei14] sketched the
proof of a variant of SIGMA, which exchanged the Diffie-Hellman key exchange for a key
encapsulation mechanism.

Aviation Protocols Current Air Traffic Management suffers from a lack of digitalization,
for example analogue voice communications, and insufficient cybersecurity measures in
aeronautical datalinks and applications. In Europe, these challenges are investigated within
the Single European Sky Air traffic management Research joint undertaking [JU)23b]. As
a result, a new long-range terrestrial Air-Ground communication protocol was proposed,
which must include measures to “[Provide] a secure channel [...] to ensure authentication
and integrity of [...] message exchange” [Aer21, Int21]. Currently, the L-band Digital
Aeronautical Communications System (LDACS) [JU23a] is under standardization by the
International Civil Aviation Organization [Int21], which provides a framework for air-
ground communication between civilian aircraft and ground stations. A placement of
LDACS in such communication networks is depicted in Figure 1.

At the heart of the LDACS security architecture lies a mutually authenticated key

Marcel Tiepelt, Christian Martin, Nils Maeurer 3

Ground network

Communications around
airports: AeroMACS [PF14]

Ground network

Satellite-based communications:
SatCOM [EUR23]

Air-air communications:
LDACS A/A

Air-ground communications:
LDACS A/G [JU23a]

Figure 1: Placement of LDACS (solid, blue lines) in commercial aviation communication
networks. AeroMACS is a short-range system to operate around airports. SatCOM allows
aircraft to receive navigational support data.

exchange, instantiating either an ISO key agreement protocol [co21] with DH, or an similar
protocol where the DH component is exchanged for a key encapsulation mechanism. This
is motivated by the understanding, that the public key exchange schemes undergoing
standardization as part of the NIST post-quantum competition [fST22] are all KEMs.

After successful key agreement, the resulting key material will be used to secure LDACS
control-plane and user-plane data. Examples of user-plane data include applications such
as the Controller-Pilot Data Link Communications, Automatic Dependent Surveillance-
Contract or Ground-Based Augmentation System. The first is used for communications
of clearances, route-changes, speed or radio frequency assignments and other mission
critical data. The second application allows the automatic surveillance of the airspace
and informs air traffic controllers about the position, levels and headings of aircraft. The
third enables fully automatic landings, without the need of a human intervention [JU23a].
Since the landing is naturally a dangerous phase of any flight the lack of a human in the
loop as a control instance requires a substantial amount of trust in these data. To the
best of our knowledge previous investigations of the LDACS MAKE protocol (for example
[MGG+21, MGS21, MGC22]) rely on heuristic arguments and do not provide security
proofs or a formal analysis of the security guarantees in the computational and symbolic
model.

1.1 Contribution

In this work we bridge the gap between classically and quantum secure authenticated
key agreement by when using any (post-quantum) IND-CPA secure key encapsulation
mechanism. Our main contribution is the analysis of the LDACS key agreement protocol
in Edition 01.01.00 with Template Edition 02.00.05 from 25.04.2023 [JU23a, §C.8.2],
which supports to deploys a key encapsulation mechanism instead of a Diffie-Hellman key
exchange. We additionally report on the security of an alternative version of the LDACS
protocol, which is detailed in Appendix A2, and which was not part of the published
version [TMM24]. We provide a simplified and idealized variant of the real-world protocol
in Section 3.1, which we then prove to be secure in a computational, game-based model
[BFWW11, dSGFW19], by proving Theorem 1 in Section 4. Additionally, we provide an
automated Tamarin proof in the symbolic model, the results of which are outlined in
Section 5 assuming a Dolev-Yao attacker.

Theorem 1. Let kem be an IND-CPA secure key encapsulation mechanism except with
advantage εkem and correctness 1− λkem, let sig be an EUF-CMA secure signature scheme
except with advantage εsig, and prf be an εprf secure pseudo-random function. Let n be
a bound on the number of parties and l a bound on the total number of sessions and κ a
security parameter. Then the LDACS MAKE protocol (cf. Figure 3) provides (almost) full
explicit entity authentication and (almost) full explicit key authentication, which implicitly
includes BR-secrecy. Any quantum polynomial time bounded adversary has advantage of

4 Post-Quantum Ready Key Agreement for Aviation

falsifying the notions of at most

4nεsig +
4l2

22κ
+ 5lλkem + 2l2 ·

(
4(εkem + εprf)

1
l2 − 2(εkem + εprf)− nεsig

+ 2(εkem + εprf)

)
+

2

2κ
.

We provide a complete proof of Theorem 1, with modularized security notions and
explicit reductions, giving the precise security loss. The protocol achieves security against
polynomially bounded quantum adversaries if the respective instantiations are quantum
secure, i.e., if the KEM and the signatures are instantiated with post-quantum secure
schemes, and the prf is secure with appropriate key length. Independently, we provide
a model of the LDACS protocol in Tamarin, achieving security when assuming the
cryptographic components to be perfect. The results of the latter confirm our findings
for the computational proof of the LDACS protocol. We include the source code of the
symbolic proof and a Dockerfile along with this manuscript to reproduce our results.

1.2 Technical Outline
We consider the setting of two parties each with a unique id, an initiator “ground station”
GS and a responder “air station” AS , engaging in a key agreement scheme. Every party has
access to a public-key infrastructure, i.e., a long-term private signing key for an EUF-CMA
secure signature scheme sig as well as a respective verification key to check signatures of
an intended communication partner. Further, the parties have agreed on a cipher suite
determining an IND-CPA secure key encapsulation mechanism kem, an EUF-CMA secure
message authentication code mac, and a pseudo-random function prf .

The party GS initiates the protocol by generating a fresh KEM key pair and sending
the public key pkkem to AS . AS runs an encapsulation algorithm on pkkem resulting in
a key k and a ciphertext. A MAC key and a session key are derived from k using the
pseudo-random function prf . Then the AS generates a MAC tag and a signature of
the ciphertext, the unique id of GS and pkkem using the MAC key and their long-term
signature key. Finally, the AS sends the ciphertext, the signature and the tag to GS . GS
verifies the signature, decapsulates the ciphertext, derives the MAC key and a session key
and verifies the MAC tag. If the MAC and signature verifications succeed, GS constructs
their own signature and MAC tag of the ciphertext, the id of AS and the KEM public
key, send both to AS and accepts the session key. AS accepts their session key if the tag
and the signature verify correctly. The above protocol resembles a simplification of the
LDACS MAKE protocol as detailed in Section 3.1.

BRSecrecy

Match

afKeyConf

iEntAuth

fEntConf

afEntConf

Explicit Proofs (cf. Section 4.1)

iKeyAuth∧

KMSoundness∧

fExEntAuth∧

afExEntAuth∧

fExKeyAuth∧

afExKeyAuth∧

Corollaries (cf. Section 4.2)

(cf. Theorem 1)

Figure 2: Overview of computational proof structure, showing how the explicit proofs
of the security notions (as defined in Section 2.2) and the consequential security notions
are related. The latter notions are implied by the logical conjunction of corresponding
preceding notions.

Marcel Tiepelt, Christian Martin, Nils Maeurer 5

The security of the simplified key agreement protocol is captured in the Match-security
model [BPR00]. We adopt the predicate-based framework of [dSGFW19] to model security
goals and notions. Particularly, we prove all individual notions required to assemble
Theorem 1 in Section 4, achieving the following properties:

Entity Authentication. The notion of (Almost) Full Explicit Entity Authentication
captures the promise that each party is assured that they interact with their intended
peer, and that their peer is aware of the identity of the party. Entity authentication
holds due to the EUF-CMA security of the signature scheme sig.

Key Authentication. (Almost) Full Explicit Key Authentication gives the parties as-
surance that their intended peer and only their intended peer knows the secret key,
which holds due to the EUF-CMA security of sig, the IND-CPA security of kem and
the pseudo-randomness of prf . This notion implies BR-secrecy with forward secrecy
against weak corruption.

We provide a complete set of explicit proofs to various security notions of [dSGFW19]
as outlined in Figure 2. The proof of BR-secrecy, which is implicitly used to assemble
Theorem 1, partially follows the SK-security proof of the SIGMA protocol [Kra03, CK02],
with the suggestions of [Pei14] for exchanging the DH values for a key encapsulation
mechanism in the SIGMA protocol. The adaptions are marked accordingly.

Further, we provide an implementation of mutual authentication, key confirmation and
secrecy corresponding to the protocol, which are proven symbolic model, the implementation
of which is outlined in Section 2.3, and the results of which are detailed in Section 5. The
automated proof supports the findings of the computational proof. We have made our
Tamarin source code for the symbolic proof available at https://github.com/mtiepelt/
ldacs-make-symbolic-tamarin.
Remark 1. The message authentication code used in the LDACS protocol has no impact
on the security loss in Theorem 1. This is not surprising, since the KEM-based LDACS
protocol features a signature similar to ISO-type protocols, which are known [Kra03,
§4] to achieve security with DH-based instantiations by including the identities into the
signatures. This is also in line with the main goal of LDACS to provide security against
attackers that only corrupt the long-term keys.

2 Preliminaries
Let κ denote the security parameter and x $←− X uniformly random sampling x from
distribution X. We denote x.y the (individual) y associated with x, and P [z] as the
probability that event z occurs. Whenever we talk about an adversary A, we assume that
they are polynomially bounded.

2.1 Cryptographic Constructions
This section formally defines the various cryptographic components and their associated
security notions used within the paper.

Definition 1 (Key Encapsulation Mechanism (KEM)). A key encapsulation mechanism
kem is a tuple (Gen,Encaps,Decaps) of probabilistic polynomial-time (PPT) algorithms:
Gen generates a secret key sk ∈ SK and a public key pk ∈ PK, (pk, sk) ← Gen(1κ),
Encaps generates a key k ∈ K and a ciphertext c ∈ C as (k, c)← Encaps(pk), and Decaps
decapsulates the ciphertext to a shared secret, {k′,⊥} ← Decaps(sk, c), returning either
a key or an error symbol ⊥. The KEM is λkem correct, if k′ is equal to k with a probability
of at least 1− λkem.

https://github.com/mtiepelt/ldacs-make-symbolic-tamarin
https://github.com/mtiepelt/ldacs-make-symbolic-tamarin

6 Post-Quantum Ready Key Agreement for Aviation

A common security notion for key encapsulation mechanism is indistinguishability
(of the key) under a chosen plaintext attack (IND-CPA). In the game-based security a
challenger samples a bit b∗ and a key pair (pk∗, sk∗), creates an encapsulation ciphertext c∗,
and passes to the adversary pk∗, c∗ and k∗, which is either the key from the encapsulation,
or a random key, depending on b∗. The KEM is then εkem secure, if the advantage
of distinguishing the two cases for any polynomially bounded adversary is bounded by
εkem ≤ negl(κ), i.e.,

AdvIND-CPA
kem (A, κ) := P [b∗ = b′|b′ ← A(1κ,pk∗, c∗, k∗)] ≤ εkem .

Definition 2 (Signature Scheme (sig)). A signature scheme sig is a tuple (Gen,Sign,Vfy)
of PPT algorithms: (vk, sk)← Gen(1κ) samples a verification key vk ∈ VK and a signature
key sk ∈ SK. σ ← Sign(sk,m) uses sk to generate a signature σ ∈ S for some message
m ∈M. b← Vfy(vk,m, σ) uses vk to check whether σ is a valid signature for the message
m and outputs the result as a bit b ∈ {0, 1}.

Similarly, in an existential unforgeability under chosen message attack (EUF-CMA)
game, a challenger generates a signing key sk∗ and verification key vk∗ and provides the
adversary with the verification key and a signing oracle. The signature scheme is then
εsig ≤ negl(κ) EUF-CMA secure, if no polynomially bounded adversary can generate a
signature, that was not previously queried to the Sign oracle, such that the verification
algorithm outputs 1, i.e.,

AdvEUF-CMA
sig (A, κ) := P

[
1← Vfy(vk∗,m′, σ′)|(m′, σ′)← ASign(sk∗,·)(1κ, vk∗)

]
≤ εsig .

m′ not queried to Sign(sk∗, ·)

Pseudo-Random Function (prf) Pseudo-random functions are defined over a security
game, where the adversary can query an oracle with an input x ∈ X . The oracle returns
either prf(k∗, x) ∈ Y for a uniformly random but fixed string k∗, or they return rf(x) for
a uniformly random but fixed function rf ∈ YX . The choice of output is depending on a
uniformly random but fixed challenge bit. A function prf is then pseudo-random up to
εprf ≤ negl(κ), if no polynomially bounded adversary can efficiently distinguish the two
cases, i.e.,

AdvPRF
prf (A, κ) :=

∣∣∣P [
1← Aprf(k∗,·)(1κ)

∣∣∣k∗ $←− K
]
−P

[
1← Arf(·)(1κ)

∣∣∣rf $←− YX
]∣∣∣ ≤ εprf .

One-Way Functions (owf) An efficiently computable function owf : X → Y is called
one-way, if for every polynomially bounded adversary and for every κ ∈ N, the adversary
cannot find a pre-image to a given, random image except with advantage εowf ≤ negl(κ):

AdvOWF
owf (A, κ) := P [owf(x∗) = owf(x′) | x′ ← A(1κ, owf(x∗)), x∗ ← X] ≤ εowf

2.2 Computational Security Model

We consider game-based security for authenticated key exchange [BFWW11] as formalized
by [dSGFW19], which features precise notation using predicates with explicit security
properties. A short version of [dSGFW19] was published as [DFW20]. However, we refer
to the full version as we believe this to be more accessible. We closely follow [dSGFW19,
Sec. 2] to describe the model and its parameters.

Marcel Tiepelt, Christian Martin, Nils Maeurer 7

Setup: Identities and Protocol Executions The security model is defined over a
set I ⊂ N of parties. Each party has a unique party identifier i, j ∈ I. The total number
of parties, n = |I|, is fixed a priori. Later, we will use either GS as an identifier to
indicate that a party is a ground station or AS indicating an air station, depending on
the corresponding security notion achieved for a specific entity. The set of authenticating
parties is S. Since we only consider the case of mutual authentication for all parties, we
have S = I. We work in the pre-specified peer model, which means, that each party is
aware of their own identifier, and also knows their intended partner’s unique identifier,
which is also called the pid.

These parties engage in a protocol Π = (KG,ΠC), defined by an initial key generation
KG as well an algorithm ΠC corresponding to the locally executed procedure of each
party. Each individual execution of a protocol by an entity i ∈ I is called a local session,
associated with a local session identifier ` = (i, j, k) where k denotes that this is the k-th
session between party i and party j. The total number l of local sessions is bound a priori,
such that k ≤ l.

Game States and Bookkeeping The security of a protocol Π is defined via an experi-
ment called a game, where the adversary engages in protocol executions and adaptively
interacts with or corrupts parties. [dSGFW19] introduce five lists to track the individual
states of protocol executions and the game.

1. The list SST of protocol-related session states stores for each local session ` = (i, j, k)
a signature key pair (vksig

i , sksig
i) of party i as well as their intended partner’s

verification key vksig
j . Further, it stores the session identifier, key and two variables,

sid,K, kcid, ecid ∈ {0, 1}∗ ∪ ⊥, all of which are initialized to ⊥, and are set as soon
as the local session accepts. The latter two are set during a session and then remain
invariant for the remainder of the session. The kcid’s purpose is to unambiguously
determine the value of the session key before the session accepts while the ecid
determines the value of the session identifier. The model features a key confirmation
flag kconf ∈ {none, almost, full}, denoting which form of confirmation should be
achieved. For GS the flag is set to “almost”, and for the AS to “full”.

2. The list LST of game-related local session states corresponds to how the adversary in-
teracts with the sessions throughout the game. For each session, it stores whether the
owner and peer of a session are honest or corrupted, δownr, δpeer ∈ {honest, corrupt},
and similarly the state of a session δsess ∈ {fresh, revealed}. Parties and sessions are
honest and fresh by default, and may change their state depending on the adversary’s
interaction.

3. The list corresponding to the game execution state EST contains information,
{(i, vksig

i , sksig
i , δi)}i, denoting which parties have been corrupted (independently

of sessions).

4. LSID is the list of valid local sessions identifiers.

5. The list MST holds information related to specific security notions.

Experiment and Adversarial Interaction Security is defined via an experiment where
an adversary interacts with a game. In the setting of quantum-secure communication the
adversary A is a quantum polynomial-time algorithm which interacts through classical
queries with the game. The set of all queries is Q = {Send,Reveal,Corrupt}. On
input Send(`,m), the game processes ΠC on m on behalf of local session `, and returns
the result to the adversary. On input Reveal(`), the game sets `.δsess to revealed, and
returns `.K to the adversary. On input Corrupt(i), the entity i is marked as corrupt in

8 Post-Quantum Ready Key Agreement for Aviation

variable δi. Then, for any session owned by that entity (i, ·, ·), and any session where it is
listed as a peer (·, i, ·), the entity is marked as corrupt, i.e., the game sets δownr = corrupt
(respectively for δpeer). Finally, the secret signing key sksig

i is returned to the adversary.
The game returns responses to the adversary according to an algorithm χ, which

evaluates a query q ∈ Q and the game state. [dSGFW19] further allow the adversary to
submit invalid queries, determined by a predicate Valid, for which χ is not executed. We
note that such queries are not relevant in our setting. The state of each game G comprises
the five lists from the previous paragraph.

The experiment then consists of three phases: In a first phase of the experiment, key
pairs for all entities are generated and variables initialized as previously defined. In the
second phase, the adversary may interact with the sessions and parties by submitting
queries q to the game, which are processed by χ. In the last phase, after the adversary
send all their queries and terminated, the game evaluates a predicate on the state b ←
P(SST,LST,EST,LSID,MST) and outputs the bit b ∈ {0, 1}. The adversary wins the
game, if b = 0.

With this setup, a security notion is fully defined by a predicate P. A protocol achieves
a security property if for all polynomial-time adversaries A the predicate P evaluates to 1
except with negligible probability, i.e.,

AdvG
A,Π,I,S = P

[
ExpG

A,Π,I,S(1
κ) = 0

]
≤ negl(κ) , (1)

where ExpG
A,Π,I,S corresponds to running the game G with protocol Π, parties I and

authenticating parties S against the adversary A. We note that for the remaining paper
we only write “adversary” instead of “polynomial-time adversary” for simplification, and
security holds against quantum polynomial-time adversaries if the respective components
are post-quantum secure.

2.2.1 Predicates

We recall the definitions of the various security properties and the predicates introduced
by [dSGFW19] with the simplifications relevant to this paper. Note that all predicates are
quantified over the list of valid local session identifiers, i.e., ∀` ∈ LSID. The predicates
SameKey, SameKCID, SameECID and Partnered are defined to enable the readability
of the subsequent predicates:

Definition 3 (SameKey). cf. [dSGFW19, Def 2.3]. SameKey(`, `′)⇔ `.K = `′.K 6= ⊥
for distinct sessions `, `′. Remark: The definitions for SameKCID and SameECID are
analogous.

Definition 4 (Partnered). cf. [dSGFW19, Def 2.1]. Partnered(`, `′) ⇔ ` 6= `′ and
`.sid = `′.sid 6= ⊥.

The Match property promises, intuitively, that two parties engaging with the same
session identifier also derive the same key K and kcid, and that the latter guarantees the
computation of identical keys. Additionally, the property promises that each local session
is partnered with at most one other local session.

Definition 5 (Match predicate). cf. [dSGFW19, Def 2.3].

Match⇔ ∀`, `′, `′′ : (Partnered(`, `′) ∧ `.K 6= ⊥ 6= `′.K) =⇒ SameKey(`, `′)
∧ (Partnered(`, `′) ∧ `.kcid 6= ⊥ 6= `′.kcid) =⇒ SameKCID(`, `′)

∧ (Partnered(`, `′) ∧ Partnered(`, `′′)) =⇒ `′ = `′′

∧ (SameKCID(`, `′) ∧ `.K 6= ⊥ 6= `′.K) =⇒ SameKey(`, `′)

Marcel Tiepelt, Christian Martin, Nils Maeurer 9

Entity and Key Authentication Implicit entity authentication holds, if any party is
guaranteed that for each of its sessions, only its intended partner has a matching sid.

Definition 6 (Implicit Entity Authentication). cf. [dSGFW19, Def 3.1].

iEntAuth⇔ ∀` that accept : (∀`′ : Partnered(`, `′) : `′.id = `.pid)

Entity confirmation improves this by providing assurance that there exists another
session with the same sid (“full”), or the same ecid (“almost full”), where for the latter
matching ecids eventually result in the same sid if the respective session terminates
successfully.

Definition 7 (Full Entity Confirmation). cf. [dSGFW19, §9.1]

fEntConf⇔ ∀` that accept ∧ `.δpeer = honest : ∃`′ : Partnered(`, `′)

Definition 8 (Almost-Full Entity Confirmation). as suggested in [dSGFW19, §9.1].

afEntConf⇔ ∀ ` that accept ∧ `.δpeer = honest : ∃`′ : (SameECID(`, `′) ∧
(`′.sid 6= ⊥ =⇒ Partnered(`, `′)))

“Almost” full key confirmation promises, that parties engaging with an honest peer
have assurance, that their peer derives the same key. We note that “full” key confirmation
is implied by another, stronger predicates later on, and thus not explicitly defined.

Definition 9 (Almost-Full Key Confirmation). cf. [dSGFW19, Def 3.4]

afKeyConf⇔ ∀` that accept ∧ `.δpeer = honest :
∃`′ : SameKCID(`, `′) ∧ ((`′.K 6= ⊥)⇒ SameKey(`, `′))

The following four primary security notions of [dSGFW19] are the main terms in
our Theorem 1. (Almost) Full explicit entity authentication promises that for honest,
authenticating parties only the intended partner has a matching sid and there exists at
least one such session with matching sid (respectively ecid for “almost”).

Definition 10 (Full Explicit Entity Authentication). cf. [dSGFW19, §9.1]

fexEntAuth⇔ ∀` that accept : (∀`′ : Partnered(`, `′) : `′.id = `.pid)
∧ (`.δpeer = honest =⇒ ∃`′ : Partnered(`, `′))

Definition 11 (Almost-Full Explicit Entity Authentication). cf. [dSGFW19, §9.1]

afexEntAuth⇔ ∀` that accept : (∀`′ : Partnered(`, `′) : `′.id = `.pid)
∧(`.δpeer = honest =⇒ ∃`′ : SameECID(`, `′)

∧(`′.sid 6= ⊥ =⇒ Partnered(`, `′)))

Similarly, (almost) full explicit key authentication promises that only the intended
partner has sessions with matching key and that at least one such session with matching
key exists (respectively kcid).

Definition 12 (Full Explicit Key Authentication). cf. [dSGFW19, Def 3.5]

fexKeyAuth⇔ ∀` that accept : (∀`′ : SameKey(`, `′) : `′.id = `.pid)
∧ (`.δpeer = honest =⇒ ∃`′ such that SameKey(`, `′))

Definition 13 (Almost-Full Explicit Key Authentication). cf. [dSGFW19, Def 3.6]

afexKeyAuth⇔ ∀` that accept : (∀`′ : SameKey(`, `′) : `′.id = `.pid)
∧(`.δpeer = honest =⇒ ∃`′ : SameKCID(`, `′) ∧ (`′.K 6= ⊥ =⇒ SameKey(`, `′)))

10 Post-Quantum Ready Key Agreement for Aviation

Secrecy To define BRSec, [dSGFW19, §5] provide a modified game GBRSec, where the
adversary’s goal is to distinguish a real and a random session key. The modified game state
includes EST, SST, LST. The state MST includes two additional bits and a challenge
session. The bit btest holds whether the adversary is provided with a real key from a session,
or whether they are provided with a random key. The bit bguess will hold the adversary’s
guess. The challenge session `test will correspond to the adversary’s choice of which session
to test. To set these states, the game provides two additional queries to the adversary. On
input Test(`), the game sets the test session `test ← ` and returns K = `.K if btest = 1,
or a random key K from the key space if btest = 0. On input Guess(b), the bit bguess ← b
is updated. Additionally, the game restricts the adversary to submit only a single Test
query. The the BRSec predicate evaluates to the bit bguess as in Definition 14:

Definition 14 (BR-Secrecy). [dSGFW19, Def 5.1, 5.2] The BRSec predicate is defined
as follows:

if MST.`test 6= ⊥ ∧ `.δownr = `.δpeer = honest ∧ `.δsess = fresh
∧ ∀`′ ∈ LST : Partnered(`, `′)⇒ `′.δsess = fresh

then BRSec← MST.bguess

else BRSec← 0

Let Gbtest=b
BRSec denote the BR-secrecy game during which btest has the value b. Due to the

distinguishing nature of the BR-secrecy game, the adversarial advantage is defined as

AdvGBRSec
A,Π,I,I(1

κ) :=

∣∣∣∣P [
ExpG

btest=0

BRSec
A,Π,I,I (1

κ) = 1

]
− P

[
ExpG

btest=1

BRSec
A,Π,I,I (1

κ) = 1

]∣∣∣∣ .
Remark 2. In [dSGFW19, Def 5.2], the BRSec predicate has value ⊥ in some cases. Since
the adversarial advantage does not distinguish whether BRSec has the value 0 or ⊥, we
omit this detail.

2.3 Symbolic Security Model
The symbolic proof model establishes the correctness and security of a cryptographic
protocol without making assumptions about the computational limitations of an adversary.
The adversary is modeled as a Dolev-Yao attacker [NS78, DY83], who can send, receive or
alter messages in interactive protocols, and who has access to cryptographic primitives
as perfect black-boxes. The messages sent over the network are inputs to these black-
boxes and the adversary is restricted to use only these. A protocol is formalized using
correspondence assertions of the form “If event x is executed, then event y is executed”.
An automated symbolic prover, such as Tamarin [MSCB13], can check whether a protocol
fulfills security goals by (exhaustively) exploring the possible options for parties (called
agents) assuming the various roles in the protocol.

In Tamarin [MSCB13], security is formalized over a system state as an initially empty
multi-set of predicates called facts. Rules define how the state can transition to a new set,
adding ore removing facts from the system state. Each rule is associated with a premise
and a conclusion. A rule can only be applied, if all facts of the premise are present in
the system state. If the rule is applied, then the system state is updated according to the
facts in the conclusion. Additionally, rules may features action facts, which record the
application of the rule by appending all action facts to a trace.

With these rules the algorithmic behaviors of a protocol can be modeled by defining
rules mimicking the interaction of the agents. Similarly, adversarial powers can be modeled
via action facts, for example, a rule may feature an action fact representing that a long-term
secret is available to the adversary and that the corresponding party is corrupted.

Marcel Tiepelt, Christian Martin, Nils Maeurer 11

Security properties on the other hand are modeled via traces of action facts. These
are denoted lemmas. This means, a property is modeled by a giving a formula which is
evaluated on the traces. Then a security property can be modeled either with an existential
(“exists”) or an universal (“all”) quantification, indicating that the formula has to evaluate
to True either for any one trace, or for all traces. Usually, security properties are required
to hold for all traces.

Protocol and Adversarial Rules The Tamarin manual [Tea23] already provides
built-in code for signing and hashing, Celi et al. [CHSW22a, §3.2.1] provide a Tamarin
instantiation of a KEM, which satisfies Definition 1. The protocol described in Section 2.3
is modeled via rules and facts, allowing each party corresponding to a unique identifier to
register a long-term key, and then to engage with any other party in a protocol session.

To model the adversary additional rules are added that allow to reveal the long-term
key, a KEM key or a session key: The rule “Reveal_ltk” has as premises a long-term key
associated with an agent X, an action fact that marks the agent as corrupted via the fact
“CorruptedLtk(X)”, and which adds the long-term key in question as a conclusion fact to
the state. Analogously, “Reveal_kem” and “Leak_session” allow to reveal the secret key
output by Encaps, Decaps, or the session key. As such, the adversary in the symbolic
model is slightly stronger than in the computational model, as they are allowed to have
the KEM key leaked (in the computational model, only long-term key via a Corrupt query
and session keys via Reveal queries (or Test queries, in the BRSec predicate)).

Security Properties In the following we describe the lemmas associated with the
security properties relevant to this work, where agent A and B correspond to the ground-
and air stations:

mutual_authentication_A/B The property is modeled via Lowes [Low97] bi-directional
full-agreement property as outlined in the Tamarin manual [Tea23], combined with a
unique element exchanged between agent A and B. Full agreement is the combination
of injective agreement, i.e., stating that if agent A accepts with agent B, then they
can be sure B also accepted with A, except if either of long-term keys was revealed
(resulting in corruption of the agent as an action fact). The uniqueness property is
modeled via the session_ uniqueness_A/B lemma (modeled as in [GGCG+21]), i.e.,
the guarantee that different sessions have different keys. When both lemmas hold,
mutual authentication is achieved via full-agreement. Hence, the mutual_authentica-
tion_A/B lemma can be regarded as a combination of Definitions 6 to 8.

secrecy Secrecy corresponds to BR-secrecy, promising that when a session key x is assigned
a “secret” property at time i, then either the adversary does not know x, or x has
been revealed, or a corresponding agent was marked as corrupted via an action fact.
Similarly, secrecy_pfs guarantees, that the adversary does not know x, except if the
agent was corrupted at a time j prior to i, i.e., j < i.

key_consistency_A/B Key consistency [GGCG+21, §A.6.4] corresponds to key confir-
mation, such that for all sessions with agents A and B with keys keyA and keyB
respectively, the following holds: When agent A accepts keyA at time i in session iA,
and agent B accepts with keyB at time j in the same session, then keyA and keyB
must be same, except if one of the agents was corrupted. This corresponds to key
confirmation in the computational model.

The models of session uniqueness and key confirmation are based on the implementation
from Donenfeld et al. [DM17].

12 Post-Quantum Ready Key Agreement for Aviation

3 LDACS
In this section, we provide a simplified protocol resembling the LDACS MAKE. The LDACS
MAKE protocol in Edition 01.01.00 with Template Edition 02.00.05 from 25.04.2023 [JU23a,
§C.8.2] features two individual definitions that either use a Diffie-Hellman key exchange,
or a KEM based key exchange. The first instantiates the standardized Key Agreement
Mechanism 7 (KAM-7) [co21, §11.7], and inherits all security properties. As such, we do not
provide any further analysis of this instantiation. The latter substitutes the Diffie-Hellman
key exchange for a construction using a key encapsulation mechanism, and thus does not
instantiate ISO KAM-7, as this requires to be instantiated with a commutative function F :
The session key is computed as k = F (ri, F (rj , g)) = F (rjF (ri, g)) [co21, §10.2], where ri
is a random value provided by one party, and rj by the other party. The variant with the
key encapsulation, however, computes the session key from k, c← Encaps(pki

kem, rj) and
k ← Decaps(c), and thus does strictly not instantiate ISO KAM-7. As a consequence,
the KEM-based protocol does not inherit the security properties of the ISO KAM-7. An
examination of the security objectives [oI23, JU23a], which are in understanding of the
official security requirements for aeronautical communications set by the International Civil
Aviation Organization (ICAO) [Aer21, Int21], is provided in this context. In Section 3.2
we compare our results to other authenticated key agreements.

3.1 Key Agreement Protocol
The LDACS MAKE protocol is split into two phases: In the cell entry stage, the two
parties ground station GS and air station AS exchange miscellaneous information over an
insecure channel with no attempt to achieve any security. At the end of the cell entry, both
parties are aware of an intended partner associated by an identifier idGS and idAS, as well
as a cipher suite used in the instantiation of the subsequent stage. Additionally, the AS
may send a flag signaling that they do not have the GSs signature public key vksig

GS, which
may then be sent (in plain) by GS . We note that no security must hold for this initial
phase, and this is not modeled in the protocol. Instead, we assume the intended entity
identifiers idGS, idAS and respective signature keys from the public key infrastructure
to be an input to the respective party. In the second stage, the two parties engage in a
mutual authenticated key agreement protocol to exchange a secret that is used to derive
multiple keys. This second stage is the 3-round MAKE protocol between two parties, the
KEM-variant of which is the focus our analysis.

The protocol described in Figure 3 is a simplifications of the second stage from
Section 3.1: Both parties take as input a unique identifier pid for an intended partner, their
own unique identifier id, the public key vksig

pid of the intended partner, as well as the secret
signing key sksig

id , the latter two of which are provided by the public key infrastructure.
After completing the protocol, if the parties accept, then they have a session key K and
assurance that only their intended partner has knowledge of this key. The desired security
properties are discussed below, the achieved security notions along with the respective proof
in Section 4. We prove the computational security of these notions in the game-based model
[BFWW11, DFW20] for authenticated key exchange, and verify the security properties in
the symbolic model using the Tamarin prover.

Simplifications The LDACS MAKE protocol in the specification [JU23a, §C.8.2] details
the instantiation of the key derivation as well as identifier strings constructed from constant
values that result in multiple individual session keys, which are not relevant to security. In
order to de-clutter the specification and provide a clear view of the protocol in question,
we simplified the specification. In this paragraph we make these simplifications explicit
and provide assumptions and justifications required for security of the protocol:

Marcel Tiepelt, Christian Martin, Nils Maeurer 13

sidGS := (idGS, idAS,pkkem, c)

pidGS := idAS

sidAS := (idGS, idAS,pkkem, c)

pidAS := idGS

GS(sksig
GS, idAS, vksig

AS) AS(sksig
AS, idGS, vksig

GS)

(pkkem, skkem)← Genkem pkkem
(k, c)← Encaps(pkkem)

set kcid
ecid kmac ← prf(k, (H(idGS, idAS), 1))

m← (c, idGS)

τ ←Mac(kmac, (m,pkkem))

σ ← Sign(sksig
AS, (m,pkkem))

m, τ, σ

set kcid
ecid

Vfy(vksig
AS, (m,pkkem), σ)

k′ ← Decaps(skkem,m.c)

kmac ← prf(k′, (H(idGS, idAS), 1))

MacVfy(kmac, (m,pkkem), τ)

m′ ← (pkkem,m.c, idAS)

τ ′ ←Mac(kmac,m
′)

σ′ ← Sign(sksig
GS,m

′)
idAS, τ

′, σ′

set K
m′ ← (pkkem, c, idAS)

Vfy(vksig
GS,m

′, σ′)

MacVfy(kmac,m
′, τ ′)

set K

KGS := prf(k′, (H(idGS, idAS), 0)) KAS := prf(k, (H(idGS, idAS), 0))

Figure 3: Simplified key agreement protocol between the ground station GS and the air
station AS. We denote this protocol LDACS MAKE. If any of the verification Vfy or
MacVfy fail, the respective party aborts. The dotted lines with the blue identifiers are
relevant for the computational proof in Section 4.

(1) The ground and air station are uniquely identified by idGS = (UAGS,SACGS) and
idAS = (UAAS,SACAS) respectively.

(2) If idGS, idAS are unique identifiers, then so is H(idGS, idAS).

(3) Security achieved for the session key KX also holds for multiple keys, i.e., “DCH
session key”, “Voice session key”, “DCCH session key” and “Key encryption key”.

(4) The composition of HKDF and HMACHash is a pseudo random function.

(5) Authentication Centers (AuC) are treated as if they were GSs.

Simplification (1) is purely cosmetic. Simplification (2) is justified because SHA256, H,
is believed to be a collision resistant hash function [fST15]. Simplification (3) is justified
because all keys are derived in the same manner, by computing prf(k,H(idGS, idAS))
with constant strings as additional inputs. Simplification (4) is justified, because HMAC
instantiated with SHA256 is a pseudo-random function as shown by [Bel06]. This assumes
that HKDF is instantiated accordingly. For Simplification (5), the specification mentions
the possibility for GS to verify the AS certificates by communicating with an Authentication

14 Post-Quantum Ready Key Agreement for Aviation

Center (AuC) over a secure channel [JU23a, §C.8.2] (see the “dashed” box). Since the
communication with the AuC is considered secure we ignore this special case, and simply
assume that the ground station can verify the correctness of the AS certificate locally. To
the best of our knowledge our simplifications do not invalidate any security guarantees for
the protocol as in the specification, since we only merge redundant components.

Security Goals Aeronautical standards are split in two parts: First, the ICAO Standards
And Recommended Practices (SARPs) define requirements of the technology; second, the
specification described the technical realization of these requirements. As such, LDACS
security goals are described in the SARPs [oI23], with the LDACS specification [JU23a]
detailing the protocols and other security measures.

LDACS SARPs [oI23] set requirements for providing integrity protection [oI23, §13.8.2]
and confidentiality [oI23, §13.8.4] of messages in transit, as well as mutual authentication
[oI23, §13.8.5] between ground and air stations. These basic requirements were extended
upon in the LDACS specification, i.e., that the key agreement fulfills mutual authentication
and key establishment [JU23a, §C.8.2], as well as key confirmation [JU23a, §C.2, table 96]
without specifying details. Further, the requirements ask for a “capability to prevent the
propagation of intrusions within the LDACS access networks” [oI23, §13.8.8], which may
be interpreted as forward secrecy, such that leakage of long-term keys does not invalidate
security properties of other, honest parties.

3.2 Comparison with other KEM-based Key Agreements
SIGMA-style Authentication The simplified protocol in Figure 3 is similar to the
protocol suggested by [Pei14, §6.2], with adjustments to the messages used to generate the
signature and the tag. [Pei14, Thm 6.1] states, that their protocol is secure in the CK02
model but no complete proof is provided. Indeed, our proof of BR-secrecy partially follows
the sketch they outlined, and we mark this in Section 4 where appropriate.

[BBF+19] present a compiler for hybrid authenticated key exchange, combining multiple
KEMs and a SIGMA-style authentication scheme [BBF+19, Fig. 13]. Particularly, their
scheme exchanges a KEM public key and ciphertext, which is subsequently authenticated
along with a randomly sampled string (a nonce) along with the party identifiers. The
authors show that their AKE construction provides BR-Match security and BR key secrecy
in the BR93 model if the KEM is IND-CPA secure and if the signature scheme and the
MAC are EUF-CMA secure, thus providing security against quantum adversaries, if the
underlying components are quantum secure. In contrast, the protocol used in LDACS as
well as our abstraction in Figure 3 uses ISO-style authentication and no nonces.

Comparison to Key Exchange in IKEv2 The minimal key exchange component
[KHN+14b, Section 1.2] of the Internet Key Exchange Version 2 [KHN+14a] consists of an
initialization step IKE_SA_INIT and an authentication step IKE_AUTH, corresponding
to the first three messages exchanged between the parties. Similarly to our setting, IKEv2
builds on an existing public key infrastructure and assumes that both parties can validate
respective signatures. In the first step, the two parties perform a DH key agreement along
with exchanging a randomly chosen nonce for each party. Using the shared secret and the
two nonces they derive several keys [KHN+14a, Section 2.14] such as a session key and
an additional key used for further authentication. In the second step, IKE_AUTH, each
party sends an authenticated encryption with associated data (AEAD) of its own id and
of a signature. The signature contains the message the party sent in the IKE_SA_INIT
exchange, the nonce of the other party and the output of a PRF with the id of the party
as input [KHN+14a, Section 2.15]. The AEAD and the PRF use some of the keys derived
after IKE_SA_INIT.

Marcel Tiepelt, Christian Martin, Nils Maeurer 15

The main differences between the key agreement of IKEv2 and the simplified protocol
Figure 3 are that IKEv2 uses DH specifically and makes use of additional nonces. Further,
they use an AEAD for the IKE_AUTH messages, and the signatures contain neither the
id nor the DH exponential of the respective other party. They use a PRF instead of a
MAC, the PRF output is contained in the signature and the PRF does not take the id
of the other party as input. We briefly review the changes in the proof required to be
applicable to IKEv2 in Appendix A1.2. Finally, IKEv2 [KHN+14a, §2.12] allows the reuse
of DH exponents. Since the KEM’s pk and c in the LDACS protocol also function as
nonces (i.e., for each session they are chosen freshly uniformly at random and are unique
except with negligible probability), it is essential that they are not reused, which is in line
the LDACS specification.

4 Computational Proof
In this section we present the computational proof of security for the key agreement
protocol described in Section 3. Specifically, we prove correctness of Implicit Entity
Authentication (cf. Theorem 3) and BR secrecy (cf. Theorem 7) for both parties, Full
entity confirmation (cf. Theorem 4) for the air station AS , and Almost Full Entity
Confirmation (cf. Theorem 5) and Almost Full Key confirmation (cf. Theorem 6) for
the ground station GS . From this, additional properties can be inferred, as detailed in
Section 4.2.

4.1 Explicit Proofs and Reductions
We start by proving Lemma 1 which will be used throughout the subsequent proof. For all
of the proof we set kcid = sid = ecid = (idGS, idAS,pkkem, c). For the remaining section
we note that the key output space of the kem and the key input space of the prf are
identical. The same holds for the key space of the mac and the co-domain of the prf , i.e.,

Kkem = Kprf

Yprf = Kmac .

Lemma 1. Let A be an adversary interacting with the LDACS MAKE protocol. Let sig
be an εsig secure signature scheme and n the number of parties participating in the protocol.
Then the probability that an adversary can forge a signature of a party P that was not
corrupted (cf. Definition 21) is bounded by

P [Sig-Forge] ≤ n · εsig .

Proof. For an adversary forging a signature we can construct a trivial reduction that first
guesses the impersonated party, and then uses the forgery to win the EUF-CMA game,
thus the lemma only depends on the security of the signature scheme. A full proof is given
in Appendix A1, which loosely corresponds to part of [CK02, Lemma 7].

Theorem 2 (Match Security, cf. Definition 5). Let kem be λkem correct and l the number of
local sessions. Any adversary’s advantage to falsify the Match predicate in LDACS MAKE
is bounded by

∀ adversaries A : AdvGMatch
A,Π,I,I(1

κ) ≤ l2

22κ
+ lλkem .

Proof. Recall that the kcid and session identifier are identical, kcid = sid, thus if `, `′ are
partnered and the kcid is set, then they also Match. Since `.kcid := (idGS, idAS,pkkem, c),
they have the same view of the ciphertext c and the public key pkkem, and thus the keys
Match, except with probability λkem, the latter of which can occur on every session in

16 Post-Quantum Ready Key Agreement for Aviation

question. Second, if the sessions `′, `′′ both share the same view of the sid with session
`, then `′ = `′′ except if there is a collision in both the public key and ciphertext, which
happens with probability at most 1/22κ for each pair of instances.

Theorem 3 (Implicit Entity Authentication, cf. Definition 6). Any adversary’s advantage
of falsifying the iEntAuth predicate is zero:

∀ adversaries A : AdvGiEntAuth
A,Π,I,I (1

κ) = 0

Proof. This is trivially fulfilled due to Matching sid := (idGS, idAS,pkkem, c).

Theorem 4 (Full Entity Confirmation, cf. Definition 7). Let sig be an εsig secure signature
scheme. Any adversary’s advantage of falsifying the fEntConf predicate for the air
station AS is bounded by

∀ adversaries A : AdvGfEntConf
A,Π,I,I (1κ) ≤ nεsig

Proof. Let `AS be a session with peer `GS. Then `AS accepts after they received a signature
σ ← Sign(sksig

GS, (idAS, c, pkkem)) such that Vfy(vksig
GS, (idAS, c, pkkem), σ) evaluates to 1.

For an honest peer `AS.pid = `GS.id it holds that `GS.sid := (`GS.id, `AS.id,pkkem, c),
which is the same view of sid that `AS has, and thus they are partnered. For the successful
verification we can construct a reduction to the EUF-CMA security of the signature analog
to that of Lemma 1, such that the advantage is bounded by nεsig.

Remark: This does not hold for GS, since GS accepts after sending the last message,
and AS may not have received the message yet, thus not set their sid yet.

Theorem 5 (Almost-Full Entity Confirmation, cf. Definition 8). Let sig be an εsig secure
signature scheme. The afEntConf predicate is fulfilled for the ground station GS if sig
is a secure signature scheme:

∀ adversaries A : AdvGafEntConf
A,Π,I,I (1κ) ≤ nεsig

Proof. The proof is the same as for Theorem 4 with the argument over the ecid instead of
the sid. A GS accepts only, if they receive a signature σ ← Sign(sksig

AS, (c,GS.sid,pkkem
GS))

such that Vfy(pksig
AS, σ) evaluates to 1. This means, that if the signature was generated

by an honest AS , then AS.ecid := (AS.id,GS′.id, c, pkkem,AS), which is the same as that
of the GS . Since the ecid=sid, if the AS .sid is ever 6= ⊥, then they have the same sid and
are thus partnered. If the signature was not generated by an honest AS , we can construct
a reduction to the EUF-CMA security of the signature analog to that of Lemma 1, such
that the advantage is bounded by P [Sig-Forge] ≤ n · εsig.

Theorem 6 (Almost-Full Key Confirmation, cf. Definition 9). Let sig be an εsig secure
signature scheme, and kem λkem correct. The afKeyConf predicate is fulfilled for the
ground station GS, if sig is a secure signature scheme:

∀ adversaries A : AdvGafKeyConf
A,Π,I,I (1κ) ≤ nεsig + lλkem

Proof. The proof is the same as for Theorem 4, but with kcid instead of sid. Additionally,
afKeyConf requires `, `′ to have the same key, which is the case if the kcids Match,
except if the kem fails to decapsulate correctly.

Theorem 7 (BR-Secrecy, cf. Definition 14). The BRSec predicate is fulfilled for both
parties, if kem, prf and sig are secure, i.e., εkem, εprf, εsig ≤ negl(κ):

∀ adversaries A : AdvGBRSec
A,Π,I,I(1

κ) ≤ 4(εkem + εprf)
1
l2 − 2(εkem + εprf)− nεsig

+ 2(εkem + εprf)

Marcel Tiepelt, Christian Martin, Nils Maeurer 17

Proof. The proof of BR-secrecy for the LDACS MAKE protocol shows that the probability
of an adversary to distinguish the experiment GBRSec outputting a real or random key is
negligible. In this section we sketch the proof, a full proof can be found in Appendix A1.1.

We follow the proof of SK-security for the basic SIGMA protocol [CK02], which defines
five hybrids via five variants of a simulator Ŝ. Each of the Ŝ variants guesses the test
session and its partner in order to modify the generation of the session and mac keys
for these two local sessions. If Ŝ guesses incorrectly or the adversary manipulates the
communication between the two local sessions, then the simulator aborts. The first of
the hybrids (“REAL”) corresponds to the GBRSec game with real Test output, unless
the associated simulator Ŝreal aborts. In the second, denoted “RPRF”, the shared secret
is exchanged for randomness which is used to compute the session and mac key. In the
third game, “ALLR”, both the session and the mac key are exchanged for randomness.
The fourth game, “HYBR”, reverses the change for the mac key, to be generated from
a random secret again. Finally, in the last game “RAND”, the mac key is reversed to
be generated from the exchanged secret, and only the session key is set to a random
value. Figure 4 shows how the five hybrids correspond to the individual lemmata to show
indistinguishability of real and random outputs of the Test query in GBRSec.

regular
execution REAL RPRF ALLR HYBR RAND regular

execution

Theorem 7, BR-Secrecy
real test output random test outputc

≈

Lemma 2 Lemma 3 Lemma 4 Lemma 5

Lemma 1

Lemma 7

Lemma 6

Lemma 8

Lemma 9 Lemma 10

Figure 4: Overview of the lemmas in our proof of BR-Secrecy for the LDACS MAKE
protocol. The five middle columns resemble the hybrid games according to the proof of
SK-security in [CK02].

We define four different events which may occur during GBRSec or one of the hybrids:
An Abort event happens when the Ŝ simulator aborts, i.e., it guessed the test session or
its partner incorrectly or the adversary manipulated the communication between the two
local sessions. An Affirm event happens when the adversary sets bguess to 1. Since the
adversary acts as a distinguisher, we can express the indistinguishability of the hybrids via
a negligible difference in the probabilities of the Affirm event. A Guess event happens
when the Ŝ simulator guesses correctly. A Sig-Forge event happens when the adversary
successfully forges a signature from one of the protocol parties.

As a first step, our proof constructs Lemmas 2 to 5, which show that the probabilities
of the four events only differ by a negligible amount between the different variants of the
Ŝ simulator (cf. Appendix A1.1.3). Since we get Ŝrprf from Ŝreal and Ŝhybr from Ŝrand
by replacing the shared secret of the two guessed local sessions with a random value, and
since in our case, the shared secret is a kem key, we can use the IND-CPA property of the
kem to show the negligible difference between these simulators. We get Ŝallr from Ŝrprf
or from Ŝhybr by replacing the outputs of the prf with random values for the two guessed
local sessions. Therefore, the negligible difference between these simulators follows from
the prf property.

Subsequently, we make a connection between the hybrid games and the GBRSec game.
For this purpose, we first define Lemmas 6 to 8. Lemma 6 states that an Abort and a
Guess event cannot coincide under an Ŝreal simulator. Recall that a Guess event implies

18 Post-Quantum Ready Key Agreement for Aviation

that the simulator guesses the test session and its partner correctly. This especially means
that a local session exists which will eventually become the partner of the test session,
unless it aborts. In our case, that local session has the same ecid as the test session. The
ecid of a local session is composed of the identities of the two parties involved in the current
protocol session as well as the public key and the ciphertext for the kem, which also are
all the values and identities that the adversary could have manipulated via the exchanged
messages. Thus, in case of a Guess event, the simulator guesses the test session and its
partner correctly and the adversary does not manipulate the communication between the
two, i.e. the simulator will not abort.

Lemma 7 shows that each local session which accepts and has an uncorrupted intended
partner has the same ecid as some other local session. To ensure identical ecids, either of
the two exchanged signatures is sufficient since it covers the public key and the ciphertext
for the kem as well as the identity of the party which receives the signature. The identity of
the signer is implicitly associated to the verification key. The lemma is useful for Lemma 8,
which establishes a noticeable lower bound for a Guess event. The probability of correctly
guessing two specific local sessions is trivially noticeable in the size of the set of all local
sessions. However, the test session may not even have a partner, so we also need to use
Lemma 7 to limit the probability for this case.

Now we are able to show in Lemmas 9 and 10 that the “REAL” hybrid given a Guess
event is equivalent to GBRSec with real Test output and that the “RAND” hybrid given a
Guess event is equivalent to GBRSec with random Test output, except for a negligible
probability. The reasoning is that, by Lemma 6, a Guess event prevents the simulator
from aborting. If the simulator does not abort, then all local sessions behave consistently
and thus the adversary cannot distinguish between the simulation of the hybrids and
GBRSec. Finally, we combine all game hops in Lemmas 2 to 5, 9 and 10 to prove the
BR-secrecy of the LDACS MAKE protocol. Although we now only consider the hybrids
under the precondition that a Guess event happens, the game hops of Lemmas 2 to 5 are
still valid since Lemma 8 proved the probability of a Guess event to be noticeable.

4.2 Consequential Security Properties
Following the work of De Saint Guilhem et al. [dSGFW19], the Theorems 2 to 7 also
imply the following security notions:
Corollary 1 (Full Explicit Entity Authentication, cf. Definition 10). The fexEntAuth
predicate is fulfilled for the air station AS if sig is a secure signature scheme:

∀ adversaries A : AdvGfexEntAuth
A,Π,I,I (1κ) ≤ n · εsig

This follows from iEntAuth ∧ fEntConf⇔ fexEntAuth [dSGFW19, Prop. 9.3.]
and from Theorems 3 and 4.
Corollary 2 (Almost-Full Explicit Entity Authentication, cf. Definition 11). The afex-
EntAuth predicate is fulfilled for the ground station GS if sig is a secure signature
scheme:

∀ adversaries A : AdvGafexEntAuth
A,Π,I,I (1κ) ≤ n · εsig

This follows from iEntAuth ∧ afEntConf⇔ afexEntAuth, which can be proven
in an analogous way to [dSGFW19, Thm. 3.1.], and from Theorems 3 and 5.
Corollary 3 (Key-Match Soundness). The KMSoundness predicate is fulfilled for both
parties if kem, prf and sig are secure:

∀ adversaries A : AdvGKMSoundness
A,Π,I,I (1κ)

≤ l2 ·
(

4(εkem + εprf)
1
l2 − 2(εkem + εprf)− nεsig

+ 2(εkem + εprf)

)
+

(
l2

22κ
+ lλkem

)
+

1

2κ

Marcel Tiepelt, Christian Martin, Nils Maeurer 19

This follows from Theorems 2 and 7 and from [dSGFW19, Theorem 5.1.], which states
that, with session key space KΠ, the following holds:

∀ adversaries A ∃ adversaries B1,B2 :

AdvGKMSoundness
A,Π,I,I (1κ) ≤ l2 ·AdvGBRSec

B2,Π,I,I(1
κ) + AdvGMatch

B1,Π,I,I(1
κ) +

1

|KΠ|
.

Corollary 4 (Implicit Key Authentication). The iKeyAuth predicate is fulfilled for both
parties if kem, prf and sig are secure:

∀ adversariesA : AdvGiKeyAuth
A,Π,I,I (1κ)

≤ l2 ·
(

4(εkem + εprf)
1
l2 − 2(εkem + εprf)− nεsig

+ 2(εkem + εprf)

)
+ 2 ·

(
l2

22κ
+ lλkem

)
+

1

2κ

This follows from iKeyAuth⇐ iEntAuth ∧Match ∧KMSoundness [dSGFW19,
Prop. 9.2.] and from Theorems 2 and 3 and Corollary 3.

Corollary 5 (Full Explicit Key Authentication, cf. Definition 12). The fexKeyAuth
predicate is fulfilled for the air station AS if kem, prf and sig are secure:

∀ adversariesA : AdvGfexKeyAuth
A,Π,I,I (1κ)

≤ l2
(

4(εkem + εprf)
1
l2 − 2(εkem + εprf)− nεsig

+ 2(εkem + εprf)

)
+ 2

(
l2

22κ
+ lλkem

)
+

1

2κ
+ nεsig

This follows from fexKeyAuth ⇐ fexEntAuth ∧ Match ∧ KMSoundness
[dSGFW19, Prop. 9.2.] and from Theorem 2 and Corollaries 1 and 3.

Corollary 6 (Almost-Full Explicit Key Authentication, cf. Definition 13). The
afexKeyAuth predicate is fulfilled for the ground station GS if kem, prf and sig are
secure:

∀ adversariesA : AdvGafexKeyAuth
A,Π,I,I (1κ)

≤ l2
(

4(εkem + εprf)
1
l2 − 2(εkem + εprf)− nεsig

+ 2(εkem + εprf)

)
+

2l2

22κ
+ 3lλkem +

1

2κ
+ nεsig

This follows from iKeyAuth ∧ afKeyConf ⇔ afexKeyAuth [dSGFW19, Thm.
3.1.] and from Theorem 6 and Corollary 4.

5 Symbolic Proof
In this section we review the automated proof from the Tamarin implementation
of the LDACS MAKE protocol as described in Section 3. We have made our
Tamarin source code for the symbolic proof available at https://github.com/mtiepelt/
ldacs-make-symbolic-tamarin.

5.1 Transition Model
Figure 5 outlines the flow of the Tamarin code relative to the description of the protocol
in Figure 3 as a set of states, rules and protocol messages for each of the agents. Recall
that agent A corresponds to the ground station GS and agent B to the air station AS .

The states of the agents are “S_A_i” for i ∈ Z for agent A and “S_B_i” for agent B
respectively. The rules, corresponding to the transition between the states of the individual
agents (here A) within the protocol, are “init_A”, “A_1”, “A_2”, etc., as well as the

https://github.com/mtiepelt/ldacs-make-symbolic-tamarin
https://github.com/mtiepelt/ldacs-make-symbolic-tamarin

20 Post-Quantum Ready Key Agreement for Aviation

Figure 5: Tamarin rules, states, cryptographic messages and operations for the KEM
variant of the protocol. This figure was inspired by [CHSW22b, Fig. 2].

queries accessible to the adversary, for example “Reveal_ltk”. Additionally, Figure 5 shows
the Protocol messages implied by the rules, as well as the cryptographic messages applied
in Figure 3. It may be noted that in the symbolic model the parties first exchange the
identifier of the intended partner in plain before engaging in the protocol (in comparison
to taking the respective identifier as an input in Figure 3).

Our Tamarin code comprises four implementations of the protocol: First, the expected
protocol Figure 3 with the key encapsulation mechanism. Second, the protocol but
excluding the generation, transmission and verification of MACs, to verify that all lemmas
can be achieved without using the MAC. The third and fourth variant correspond to the
protocol using DH instead of a KEM, thus resembling the original KAM-7 [co21, §11.7]
for completeness.

For each variant, Tamarin exhaustively explores the possible actions of the agents and
the adversary to check if the lemmas mutual_authentication_A/B, session_uniqueness,
secrecy, secrecy_pfs and key_consistency_A/B as described in Section 2.3 are fulfilled.
Additionally, the model includes a lemma session_exists and two_sessions_exist, with the
first lemma showing the possibility for the Tamarin model to terminate and the second
even enhancing the attacker’s abilities by allowing them to reuse cryptographic primitives
from the previous protocol run.

5.2 Results
Table 1 shows the results of verifying the lemmas with Tamarin: the “Scope[-traces]”
correspond to either the existence of a sequence of traces (“Exists”), or the exhaustive
search over all (“All”) possible combinations of traces that achieve the conditions required
to fulfill the lemma. The “Steps” indicate the number of rules (see Figure 5) that had to
be explored to validate the result.

Table 1 shows that both lemmas, session_exists and two_sessions_exist, have a trace,
guaranteeing the completion of a protocol run and that the lemmas hold even if the
adversary re-uses values from previous runs. Further, for all combinations of setups (i.e.,
with Diffie-Hellman or KEM, with or without MAC) the lemmas are satisfied, thus the
protocol fulfills the security claims in the symbolic model. Particularly, the lemmas hold
even in the setting with the HMAC removed from the protocol, thus the automated proof
confirms the findings of Section 4, verifying that the message authentication code is not

Marcel Tiepelt, Christian Martin, Nils Maeurer 21

Table 1: Tamarin results for LDACS security notions. Modeled in-/excluding a MAC and
using DHKE/KEM as key exchange.

Lemma Scope #Steps w HMAC #Steps w/o HMAC
[-traces] DH KEM DH KEM

session_exists Exists 24 4 25 4 23 4 23 4
two_sessions_exist Exists 46 4 48 4 44 4 44 4

mutual_authentica-
tion_A/B

All 50 4 54 4 50 4 54 4

session_uniqueness_A/B All 32 4 32 4 32 4 32 4

secrecy All 32 4 28 4 24 4 26 4
secrecy_pfs All 32 4 28 4 24 4 26 4

key_consistency All 16 4 16 4 16 4 16 4

required to provide security for LDACS MAKE in the setting of weak corruption.

6 Bibliography

References
[Aer21] Aeronautical Radio, Incorporated (ARINC). Internet Protocol Suite (IPS)

for Aeronautical Safety Services Part 1 Airborne IPS System Technical Re-
quirements. https://standards.globalspec.com/std/14391274/858p1,
accessed July 31, 2022, 06 2021.

[BBF+19] Nina Bindel, Jacqueline Brendel, Marc Fischlin, Brian Goncalves, and
Douglas Stebila. Hybrid key encapsulation mechanisms and authenti-
cated key exchange. In Jintai Ding and Rainer Steinwandt, editors, Post-
Quantum Cryptography - 10th International Conference, PQCrypto 2019,
pages 206–226, Chongqing, China, May 8–10, 2019. Springer, Heidelberg,
Germany. doi:10.1007/978-3-030-25510-7_12.

[Bel06] Mihir Bellare. New proofs for NMAC and HMAC: Security without
collision-resistance. In Cynthia Dwork, editor, Advances in Cryptology –
CRYPTO 2006, volume 4117 of Lecture Notes in Computer Science, pages
602–619, Santa Barbara, CA, USA, August 20–24, 2006. Springer, Heidelberg,
Germany. doi:10.1007/11818175_36.

[BFWW11] Christina Brzuska, Marc Fischlin, Bogdan Warinschi, and Stephen C.
Williams. Composability of Bellare-Rogaway key exchange protocols. In
Yan Chen, George Danezis, and Vitaly Shmatikov, editors, ACM CCS
2011: 18th Conference on Computer and Communications Security, pages
51–62, Chicago, Illinois, USA, October 17–21, 2011. ACM Press. doi:
10.1145/2046707.2046716.

[BMS20] Colin Boyd, Anish Mathuria, and Douglas Stebila. Protocols for Authenti-
cation and Key Establishment, Second Edition. Information Security and
Cryptography. Springer, 2020. doi:10.1007/978-3-662-58146-9.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key
exchange secure against dictionary attacks. In Bart Preneel, editor, Advances

https://standards.globalspec.com/std/14391274/858p1
https://doi.org/10.1007/978-3-030-25510-7_12
https://doi.org/10.1007/11818175_36
https://doi.org/10.1145/2046707.2046716
https://doi.org/10.1145/2046707.2046716
https://doi.org/10.1007/978-3-662-58146-9

22 Post-Quantum Ready Key Agreement for Aviation

in Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes in Com-
puter Science, pages 139–155, Bruges, Belgium, May 14–18, 2000. Springer,
Heidelberg, Germany. doi:10.1007/3-540-45539-6_11.

[CHSW22a] Sofía Celi, Jonathan Hoyland, Douglas Stebila, and Thom Wiggers. A Tale of
Two Models: Formal Verification of KEMTLS via Tamarin. In Vijayalakshmi
Atluri, Roberto Di Pietro, Christian D. Jensen, and Weizhi Meng, editors,
Computer Security – ESORICS 2022, pages 63–83, Cham, 2022. Springer
Nature Switzerland. doi:10.1007/978-3-031-17143-7_4.

[CHSW22b] Sofía Celi, Jonathan Hoyland, Douglas Stebila, and Thom Wiggers. A tale of
two models: formal verification of KEMTLS via tamarin. Cryptology ePrint
Archive, Report 2022/1111, 2022. https://eprint.iacr.org/2022/1111.

[CK02] Ran Canetti and Hugo Krawczyk. Security analysis of IKE’s signature-
based key-exchange protocol. In Moti Yung, editor, Advances in Cryp-
tology – CRYPTO 2002, volume 2442 of Lecture Notes in Computer
Science, pages 143–161, Santa Barbara, CA, USA, August 18–22, 2002.
Springer, Heidelberg, Germany. https://eprint.iacr.org/2002/120/.
doi:10.1007/3-540-45708-9_10.

[co21] ISO copyright office. ISO/IEC 11779-3, 2021. URL: https://www.iso.org/
standard/82709.html.

[Cre11] Cas J. F. Cremers. Key exchange in IPsec revisited: Formal analysis
of IKEv1 and IKEv2. In Vijay Atluri and Claudia Díaz, editors, ES-
ORICS 2011: 16th European Symposium on Research in Computer Se-
curity, volume 6879 of Lecture Notes in Computer Science, pages 315–334,
Leuven, Belgium, September 12–14, 2011. Springer, Heidelberg, Germany.
doi:10.1007/978-3-642-23822-2_18.

[DFW20] Cyprien Delpech de Saint Guilhem, Marc Fischlin, and Bogdan Warinschi.
Authentication in key-exchange: Definitions, relations and composition. In
Limin Jia and Ralf Küsters, editors, CSF 2020: IEEE 33rd Computer Security
Foundations Symposium, pages 288–303, Boston, MA, USA, June 22–26, 2020.
IEEE Computer Society Press. doi:10.1109/CSF49147.2020.00028.

[DM17] Jason A Donenfeld and Kevin Milner. Formal verification of the WireGuard
protocol. Technical Report, Tech. Rep., 2017. URL: https://www.wireguard.
com/papers/wireguard-formal-verification.pdf.

[dSGFW19] Cyprien Delpech de Saint Guilhem, Marc Fischlin, and Bogdan Warin-
schi. Authentication in Key-Exchange: Definitions, Relations and Composi-
tion. Cryptology ePrint Archive, Paper 2019/1203, 2019. https://eprint.
iacr.org/2019/1203. URL: https://eprint.iacr.org/2019/1203, doi:
10.1109/CSF49147.2020.00028.

[DY83] D. Dolev and A. Yao. On the Security of Public Key Protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983. doi:10.1109/
TIT.1983.1056650.

[EUR23] EUROCONTROL. SatCOM, 2023. URL: https://www.eurocontrol.int/
system/satellite-communications-datalink.

[FKMS20] S. Fluhrer, P. Kampanakis, D. McGrew, and V. Smyslov. Mixing Preshared
Keys in the Internet Key Exchange Protocol Version 2 (IKEv2) for Post-
quantum Security. RFC 8784 (Proposed Standard), June 2020. URL: https:
//www.rfc-editor.org/rfc/rfc8784.txt, doi:10.17487/RFC8784.

https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/978-3-031-17143-7_4
https://eprint.iacr.org/2022/1111
https://eprint.iacr.org/2002/120/
https://doi.org/10.1007/3-540-45708-9_10
https://www.iso.org/standard/82709.html
https://www.iso.org/standard/82709.html
https://doi.org/10.1007/978-3-642-23822-2_18
https://doi.org/10.1109/CSF49147.2020.00028
https://www.wireguard.com/papers/wireguard-formal-verification.pdf
https://www.wireguard.com/papers/wireguard-formal-verification.pdf
https://eprint.iacr.org/2019/1203
https://eprint.iacr.org/2019/1203
https://eprint.iacr.org/2019/1203
https://doi.org/10.1109/CSF49147.2020.00028
https://doi.org/10.1109/CSF49147.2020.00028
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1109/TIT.1983.1056650
https://www.eurocontrol.int/system/satellite-communications-datalink
https://www.eurocontrol.int/system/satellite-communications-datalink
https://www.rfc-editor.org/rfc/rfc8784.txt
https://www.rfc-editor.org/rfc/rfc8784.txt
https://doi.org/10.17487/RFC8784

Marcel Tiepelt, Christian Martin, Nils Maeurer 23

[fST15] National Institute for Standards and Technology. Secure Hash Standard.
FIPS 180-4, 2015. URL: https://csrc.nist.gov/pubs/fips/180-4/upd1/
final.

[fST22] National Institute for Standards and Technology. Post Quan-
tum Cryptography, 2022. URL: https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022.

[GGCG+21] Stefan-Lukas Gazdag, Sophia Grundner-Culemann, Tobias Guggemos, Tobias
Heider, and Daniel Loebenberger. A Formal Analysis of IKEv2’s Post-
Quantum Extension. In Proceedings of the 37th Annual Computer Security
Applications Conference, ACSAC ’21, page 91–105, New York, NY, USA, 2021.
Association for Computing Machinery. doi:10.1145/3485832.3485885.

[Int21] International Civil Aviation Organization (ICAO). ICAO - ANNEX 10
VOL III AMD 91 Aeronautical Telecommunications Volume III - Commu-
nications Systems (Part I - Digital Data Communication Systems; Part
II - Voice Communication Systems) . https://standards.globalspec.
com/std/14383365/ANNEX%2010%20VOL%20III%20AMD%2091, accessed July
31, 2022, 03 2021.

[JU23a] SESAR JU. LDACS A/G Specification, Edition 01.01.00, Template
Edition 02.00.05, Edition date 25.04.2023. Technical report, SESAR
JU, 2023. Earlier version can be found here https://www.ldacs.
com/wp-content/uploads/2023/03/SESAR2020_PJ14-W2-60_TRL6_
D3_1_230_3rd_LDACS_AG_Specification_v1.0.0.pdf. URL: https:
//www.ldacs.com/publications-and-links/#post-Specifications.

[JU)23b] Single European Sky ATM Research Joint Undertaking (SESAR 3 JU). Single
European Sky ATM Research, 2023. [Online; accessed 29 December 2023].
URL: https://www.sesarju.eu/.

[KHN+14a] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, and T. Kivinen. Internet Key
Exchange Protocol Version 2. https://datatracker.ietf.org/doc/html/
rfc7296, accessed Oct 01, 2023, 2014. Additional authors: Microsoft, VPN
Consortium, Check Point, Independent, INSIDE SECURE. doi:10.17487/
RFC7296.

[KHN+14b] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, and T. Kivinen. Minimal
Internet Key Exchange Protocol Version 2. https://www.rfc-editor.org/
rfc/rfc7815, accessed Oct 01, 2023, 2014. Additional authors: Microsoft,
VPN Consortium, Check Point, Independent, INSIDE SECURE. doi:10.
17487/RFC7815.

[Kra03] Hugo Krawczyk. SIGMA: the ’sign-and-mac’ approach to authenticated diffie-
hellman and its use in the ike-protocols. In Dan Boneh, editor, Advances
in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings,
volume 2729 of Lecture Notes in Computer Science, pages 400–425. Springer,
2003. doi:10.1007/978-3-540-45146-4_24.

[Low97] G. Lowe. A Hierarchy of Authentication Specifications. In Proceedings 10th
Computer Security Foundations Workshop, pages 31–43, Rockport, MA, USA,
1997. doi:10.1109/CSFW.1997.596782.

https://csrc.nist.gov/pubs/fips/180-4/upd1/final
https://csrc.nist.gov/pubs/fips/180-4/upd1/final
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1145/3485832.3485885
https://standards.globalspec.com/std/14383365/ANNEX%2010%20VOL%20III%20AMD%2091
https://standards.globalspec.com/std/14383365/ANNEX%2010%20VOL%20III%20AMD%2091
https://www.ldacs.com/wp-content/uploads/2023/03/SESAR2020_PJ14-W2-60_TRL6_D3_1_230_3rd_LDACS_AG_Specification_v1.0.0.pdf
https://www.ldacs.com/wp-content/uploads/2023/03/SESAR2020_PJ14-W2-60_TRL6_D3_1_230_3rd_LDACS_AG_Specification_v1.0.0.pdf
https://www.ldacs.com/wp-content/uploads/2023/03/SESAR2020_PJ14-W2-60_TRL6_D3_1_230_3rd_LDACS_AG_Specification_v1.0.0.pdf
https://www.ldacs.com/publications-and-links/#post-Specifications
https://www.ldacs.com/publications-and-links/#post-Specifications
https://www.sesarju.eu/
https://datatracker.ietf.org/doc/html/rfc7296
https://datatracker.ietf.org/doc/html/rfc7296
https://doi.org/10.17487/RFC7296
https://doi.org/10.17487/RFC7296
https://www.rfc-editor.org/rfc/rfc7815
https://www.rfc-editor.org/rfc/rfc7815
https://doi.org/10.17487/RFC7815
https://doi.org/10.17487/RFC7815
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1109/CSFW.1997.596782

24 Post-Quantum Ready Key Agreement for Aviation

[MGC22] Nils Mäurer and Sophia Grundner-Culemann. Formal verification of the
ldacs make protocol. crypto day matters 34, 2022. doi:10.18420/
cdm-2022-34-24.

[MGG+21] Nils Mäurer, Thomas Gräupl, Christoph Gentsch, Tobias Guggemos, Mar-
cel Tiepelt, Corinna Schmitt, and Gabi Dreo Rodosek. A secure cell-
attachment procedure of ldacs. In 2021 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW), pages 113–122, 2021.
doi:10.1109/EuroSPW54576.2021.00019.

[MGS21] Nils Mäurer, Thomas Gräupl, and Corinna Schmitt. Cybersecurity for the
l-band digital aeronautical communications system (ldacs). Technical report,
German Aerospace Center, 06 2021. doi:10.1049/SBRA545E_ch4.

[MSCB13] S. Meier, B. Schmidt, C. Cremers, and D. Basin. The TAMARIN Prover
For The Symbolic Analysis Of Security Protocols. In 25th International
Conference on Computer Aided Verification (CAV), pages 696–701, Saint
Petersburg, Russia, 2013. doi:10.1007/978-3-642-39799-8_48.

[NS78] Roger M. Needham and Michael D. Schroeder. Using Encryption for Authen-
tication in Large Networks of Computers. Commun. ACM, 21(12):993–999,
dec 1978. doi:10.1145/359657.359659.

[oI23] International Civil Aviation organization (ICAO). CHAPTER 13
L-Band Digital Aeronautical Communications System (LDACS). Tech-
nical report, International Civil Aviation organization (ICAO), 2023.
URL: https://www.ldacs.com/wp-content/uploads/2023/03/WP06.
AppA-DCIWG-6-LDACS_SARPs.pdf.

[Pei14] Chris Peikert. Lattice cryptography for the internet. In Michele Mosca, editor,
Post-Quantum Cryptography - 6th International Workshop, PQCrypto 2014,
pages 197–219, Waterloo, Ontario, Canada, October 1–3, 2014. Springer,
Heidelberg, Germany. doi:10.1007/978-3-319-11659-4_12.

[Pei15] Chris Peikert. A decade of lattice cryptography. Cryptology ePrint Archive,
Report 2015/939, 2015. https://eprint.iacr.org/2015/939.

[PF14] Monica Paolini and Senza Fili. Enabling the Next Generation in Air
Traffic Management with AeroMACS. https://files.wimaxforum.
org/Document/Download/AeroMACS-Delivering_Next_Generation_
Communications_to_the_Airport_Surface, 2014.

[Tea23] The Tamarin Team. Tamarin-Prover Manual, 2023. [Online; accessed 29 De-
cember 2023]. URL: https://tamarin-prover.com/manual/master/tex/
tamarin-manual.pdf.

[TMM24] Marcel Tiepelt, Christian Martin, and Nils Maeurer. Post-quantum ready
key agreement for aviation. IACR Communications in Cryptology, 1(1), 2024.
doi:10.62056/aebn2isfg.

[WVOW92] Diffie Whitfield, Paul C. Van Oorshot, and Michael J. Wiener. Authentication
and authenticated key exchanges. Designs, Codes and Cryptography, 1992.
doi:10.1007/BF00124891.

https://doi.org/10.18420/cdm-2022-34-24
https://doi.org/10.18420/cdm-2022-34-24
https://doi.org/10.1109/EuroSPW54576.2021.00019
https://doi.org/10.1049/SBRA545E_ch4
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1145/359657.359659
https://www.ldacs.com/wp-content/uploads/2023/03/WP06.AppA-DCIWG-6-LDACS_SARPs.pdf
https://www.ldacs.com/wp-content/uploads/2023/03/WP06.AppA-DCIWG-6-LDACS_SARPs.pdf
https://doi.org/10.1007/978-3-319-11659-4_12
https://eprint.iacr.org/2015/939
https://files.wimaxforum.org/Document/Download/AeroMACS-Delivering_Next_Generation_Communications_to_the_Airport_Surface
https://files.wimaxforum.org/Document/Download/AeroMACS-Delivering_Next_Generation_Communications_to_the_Airport_Surface
https://files.wimaxforum.org/Document/Download/AeroMACS-Delivering_Next_Generation_Communications_to_the_Airport_Surface
https://tamarin-prover.com/manual/master/tex/tamarin-manual.pdf
https://tamarin-prover.com/manual/master/tex/tamarin-manual.pdf
https://doi.org/10.62056/aebn2isfg
https://doi.org/10.1007/BF00124891

Marcel Tiepelt, Christian Martin, Nils Maeurer 25

Supplementary Material
A1 Computational Security of LDACS MAKE
Proof of Lemma 1, i.e., P [Sig-Forge] ≤ n · εsig

Proof. Let I be a set of protocol parties, LSID a set of local sessions and A an adversary
that successfully forges one of the signatures in a run of the LDACS MAKE protocol with
a non-negligible probability. Then we can construct an equally bounded adversary Bsig
from A which wins the EUF-CMA security game for sig with a non-negligible probability:

The EUF-CMA challenger provides a verification key vk∗ ∈ VKsig for Bsig and grants
Bsig access to a signing oracle OSign(·). Bsig then samples a party identifier idP

$←− I. It
simulates a regular execution of the LDACS MAKE protocol with adversary A, except
that the verification key of P is vk∗ and P produces signatures via OSign(·). If at any
point A forges a signature σ′ ∈ Ssig by P of a value x′ ∈Msig such that the conditions of
a Sig-Forge event are satisfied, then Bsig returns (x′, σ′) to the EUF-CMA challenger. If
A terminates without successfully forging a signature by P , then Bsig aborts by returning
⊥.

The view of A under Bsig is identical to its view in a regular interaction with the
LDACS MAKE protocol with n parties. If A successfully forges a signature for some party,
then the probability that Bsig guesses the party correctly is 1/n. In that case, Bsig returns
a valid forgery. This means

1

n
· P [Sig-Forge] ≤ AdvEUF-CMA

sig (Bsig, κ) ≤ εsig (2)

and consequently,

P [Sig-Forge] ≤ n · εsig. (3)

A1.1 Full Proof of BR-Secrecy
A1.1.1 Simulators

In order to prove BR-secrecy, we need a set of simulators which simulate modified versions
of the LDACS MAKE protocol. The proof will contain multiple game hops between
different simulators. The first simulator is S, which simulates the LDACS MAKE protocol
with no visible modifications.

Definition 15 (Simulator S). The simulator S has the following parameters: a set I of
protocol parties, a set LSID of local sessions of parties from I, the security parameter
κ and an adversary A. We define n := |I| and l := |LSID|. At the beginning of its run,
S samples `GS, `AS

$←− LSID. S then simulates a run of the BR-secrecy game with the
LDACS MAKE protocol against adversary A. Whenever A sends a query, S updates the
state of the parties and answers the query in accordance with the definition of the query
in the model. When the simulation terminates, S terminates with output bguess.

Remark 3. Sampling `GS and `AS is only necessary to make sure that a Guess event (cf.
Definition 19) is defined under S.

Table 3 shows where the security loss of Theorem 1 originates from in the proof.
The other type of simulator is Ŝ, which has five different variants. We will use Ŝ in the

proof of implicit key authentication.

26 Post-Quantum Ready Key Agreement for Aviation

Table 2: Relation between our proof of BR-secrecy and the proof of SK-security for the
basic SIGMA protocol [CK02].

Our lemmas SK-security proof [CK02] Modifications / Comment
Lemma 1 Additional lemma
Lemma 2 Part of [CK02, Lem. 15] More events, DDH kem (cf. [Pei15]).
Lemma 3 Part of [CK02, Lem. 15] More events.
Lemma 4 Part of [CK02, Lem. 15] More events.
Lemma 5 [CK02, Lem. 8 and 10] More events, DDH kem (cf. [Pei15]).
Lemma 6 [CK02, Lem. 7] Explicitly presume Guess
Lemma 7 [CK02, Lem. 11] SameECID instead of Matching sessions.
Lemma 8 [CK02, Lem. 9] Restated for LDACS MAKE.
Lemma 9 [CK02, Lem. 14] Restated for LDACS MAKE.
Lemma 10 [CK02, Lem. 13] Restated for LDACS MAKE.

Table 3: Derivation of security loss of Theorem 1.

Security Notion
fexKeyAuth (Definition 12) ⇐ fexEntAuth ∧Match ∧KMSoundness (Corollary 5)

afexKeyAuth (Definition 13) ⇔ iKeyAuth ∧ afKeyConf (Corollary 6)
fexEntAuth (Definition 10) ⇔ iEntAuth ∧ fEntConf (Corollary 1)

afexEntAuth (Definition 11) ⇔ iEntAuth ∧ afEntConf (Corollary 2)
Match (Definition 5) Theorem 2

KMSoundness ⇐ BRSec ∧Match (Corollary 3)
iKeyAuth ⇐ iEntAuth ∧Match ∧KMSoundness (Corollary 4)

afKeyConf Theorem 6
iEntAuth Theorem 3
fEntConf Theorem 4

afEntConf Theorem 5

Definition 16 (Simulator Ŝ). Like S, Ŝ runs on parameters I, LSID, κ and A. At
the beginning of its run, Ŝ samples `GS, `AS

$←− LSID, (pkkem, skkem)← Genkem(1κ) and
(k, c) ← Encaps(pk). It also generates the keys K and kmac as soon as the necessary
values for generating them are known. How K and kmac are generated depends on the
variant of Ŝ. If at any point during its execution an Abort event as in Definition 18
occurs, Ŝ terminates with output 0. Like S, Ŝ simulates a run of the BR-secrecy game
against adversary A. If A performs a query on local sessions which do not include `GS or
`AS, Ŝ updates the state of the respective parties and answers the query in accordance with
the definition of the query in the model. For `GS and `AS, Ŝ acts the same except that the
values pkkem, c, K and kmac are replaced by their counterparts sampled by Ŝ. Additionally,
the Test query output for `GS and `AS is always K. If the simulation terminates, then Ŝ
terminates with output bguess.

Definition 17 (Ŝ Variants). The Ŝ simulator has five variants (corresponding to [CK02,
§4.3.2]), which calculate the keys K and kmac for `GS and `AS in multiple ways. Let k
be the encapsulated key generated by Ŝ and let h := H(idGS, idAS). The five variants

Marcel Tiepelt, Christian Martin, Nils Maeurer 27

calculate K and kmac in the following ways:

Ŝreal : K := prf(k, (h, 0)), kmac := prf(k, (h, 1))
Ŝrprf : K := prf(k′, (h, 0)), kmac := prf(k′, (h, 1)), k′ $←− Kprf

Ŝallr : K $←− Yprf, kmac
$←− Yprf

Ŝhybr : K $←− Yprf, kmac := prf(k′, (h, 1)), k′ $←− Kprf

Ŝrand : K $←− Yprf, kmac := prf(k, (h, 1))

A1.1.2 Events

During an execution of the LDACS MAKE protocol or one of the simulators, different
events may occur. We will define specific events (extending the work of [CK02, §4.3.2])
which will be important in order to prove the security properties. All of these events can
be efficiently detected in an execution of each of the simulators defined above. The first
type of events defines when an Ŝ simulator aborts its execution.

Definition 18 (Abort Event). An Abort event happens in a run of Ŝ if and only if one
of the following conditions is satisfied:

• A terminates before having activated `GS and `AS.

• `GS is not an initiator.

• `AS is not a responder.

• `AS receives a message before `GS sent its start message.

• `AS receives a value of pkkem different to the respective value sent by `GS.

• `GS receives the response message before `AS was activated.

• `GS receives a value of c different to the respective value sent by `AS.

• A performs more than one Test queries.

• A terminates without performing a Test query.

• `test /∈ {`GS, `AS}.

• `test.δownr = corrupt or `test.δpeer = corrupt.

• `test aborts.

• `GS.pid 6= `AS.id.

• `AS.pid 6= `GS.id.

Guess events define when an Ŝ simulator guesses the test session and its potential
partner session correctly.

Definition 19 (Guess Event). A Guess event happens in a run of S or Ŝ if and only if A
has activated both `GS and `AS, `GS is an initiator, `AS is a responder, `GS.ecid = `AS.ecid,
A performs exactly one Test query and `test ∈ {`GS, `AS}.

The second type of events is used to measure the distribution of A’s guess bguess and
how it changes between different simulators.

Definition 20 (Affirm Event). An Affirm event happens in a run of Ŝ if and only if
the Ŝ simulator outputs 1.

28 Post-Quantum Ready Key Agreement for Aviation

Sig-Forge events cover the cases in which the adversary forges a signature which is
exchanged in the protocol. This means that if a Sig-Forge event does not happen, then
the signatures successfully protect the integrity of the signed values.

Definition 21 (Sig-Forge Event). A Sig-Forge event happens in a regular execution
of the LDACS MAKE protocol against adversary A or in a run of Ŝ if and only if a party
P , a value x′ ∈ Msig and a signature σ′ ∈ Ssig exist such that A sends σ′ to some local
session, Vfy(vksig

P , x′, σ′) = 1 and neither was P corrupted nor did P sign x′ before A
uses σ′.

In order to work with arbitrary subsets of the events we just defined, we create a set of
these events.

Definition 22 (Event Set). We define the event set E := {Abort,Affirm,Guess,
Sig-Forge}. If an event X ∈ E or all events of a subset of events E ⊆ E happen under
an Ŝ variant ŜVAR, we denote this as an XVAR event or an EVAR event, respectively.

A1.1.3 Lemmas

We start the proof with Lemmas 2 to 5, which we will use to deduce probabilities of events
under certain Ŝ variants from the probabilities of the same events under other Ŝ variants.

Lemma 2. Similar to [CK02, Lem. 7] with kem instead of DDH as suggested by [Pei14]

∀ adversaries A ∀E ⊆ E : |P [Ereal]− P [Erprf] | ≤ εkem

Proof. If we assume that a set I of protocol parties, a set LSID of local sessions and an
adversary A exist such that the conjunction of all events in E has different probabilities
to occur in Ŝreal and in Ŝrprf, then we can construct an IND-CPA adversary D1 for kem
from A:

At the start, D1 receives pk∗ ∈ PKkem, c∗ ∈ Ckem and k∗ ∈ Kkem from the IND-
CPA challenger. D1 then simulates Ŝreal with arguments I, LSID, κ and A with the
modification that for `GS and `AS, the values pkkem, c and k are replaced by pk∗, c∗

and k∗, respectively. If all events in E happen in the modified Ŝreal simulator, then D1

terminates with output 1. If the modified Ŝreal simulator terminates without all events in
E happening, then D1 terminates with output 0. A cannot notice inconsistencies if `GS
and `AS have differing views of the values of pkkem and c, since in this case, the modified
Ŝreal simulator aborts. If k∗ is a real encapsulated key, then the view of A under D1 is
identical to its view under Ŝreal. If k∗ is a random key, then the view of A under D1 is
identical to its view under Ŝrprf. This means

|P [Ereal]− P [Erprf] | ≤ AdvIND-CPA
kem (D1, κ) ≤ εkem (4)

Lemma 3. Similar to [CK02, Lem. 15]

∀ adversaries A ∀E ⊆ E : |P [Erprf]− P [Eallr] | ≤ εprf

Proof. If we assume that a set I of protocol parties, a set LSID of local sessions and an
adversary A exist such that the conjunction of all events in E has different probabilities to
occur in Ŝrprf and in Ŝallr, then we can construct a PRF adversary D2 for prf(·, ·) from
A:

At the start, the prf challenger grants D2 access to an oracle Oprf/rf(·) which implements
prf(k∗, ·) for a uniformly sampled key k∗ ∈ Kprf or which implements a random function
rf : Xprf → Yprf. D2 then simulates a modified version of Ŝrprf which uses Oprf/rf(·) instead

Marcel Tiepelt, Christian Martin, Nils Maeurer 29

of prf(k′, ·). This means that `GS and `AS use session key K := Oprf/rf(H(idGS, idAS), 0)
and MAC key kmac := Oprf/rf(H(idGS, idAS), 1). If all events in E happen in the modified
Ŝrprf simulator, then D2 terminates with output 1. If the modified Ŝrprf simulator
terminates without all events in E happening, then D2 terminates with output 0. If
Oprf/rf(·) = prf(k∗, ·), then the view of A under D2 is identical to its view under Ŝrprf. If
Oprf/rf(·) implements rf(·), then the view of A under D2 is identical to the view under
Ŝallr. This means

|P [Erprf]− P [Eallr] | ≤ AdvPRF
prf (D2, κ) ≤ εprf. (5)

Lemma 4. Similar to [CK02, Lem. 15]

∀ adversaries A ∀E ⊆ E : |P [Eallr]− P [Ehybr] | ≤ εprf

Proof. If we assume that a set I of protocol parties, a set LSID of local sessions and an
adversary A exist such that the conjunction of all events in E has different probabilities
to occur in Ŝallr and in Ŝhybr, then we can construct a PRF adversary D3 for prf from
A, similar to how we constructed D2 in the proof of Lemma 3. The difference is that D3

uses Ŝhybr instead of Ŝrprf. This means effectively that the only difference between D3

and D2 is that D3 uniformly and independently samples K instead of generating it via
Oprf/rf(H(idGS, idAS), 0). Accordingly, if Oprf/rf(·) = prf(k∗, ·), then the view of A under
D3 is identical to the view under Ŝhybr instead of Ŝrprf. The inequality we can deduce for
this lemma is the following:

|P [Eallr]− P [Ehybr] | ≤ AdvPRF
prf (D3, κ) ≤ εprf (6)

Lemma 5. Similar to [CK02, Lem. 8,15] with kem instead of DDH as suggested by
[Pei14]

∀ adversaries A ∀E ⊆ E : |P [Ehybr]− P [Erand] | ≤ εkem

Proof. If we assume that a set I of protocol parties, a set LSID of local sessions and an
adversary A exist such that the conjunction of all events in E has different probabilities
to occur in Ŝhybr and in Ŝrand, then we can construct an IND-CPA adversary D4 for
kem from A, similar to how we constructed D1 in the proof of Lemma 2. The difference
is that D4 uses Ŝrand instead of Ŝreal. This means effectively that the only difference
between D4 and D1 is that D4 samples K independently instead of generating it via
prf(k∗, (H(idGS, idAS), 0)). Accordingly, depending on whether k∗ is real or random, the
view of A under D4 is identical to the view under Ŝrand or Ŝhybr instead of Ŝreal or Ŝrprf,
respectively. The inequality we can deduce for this lemma is the following:

|P [Ehybr]− P [Erand] | ≤ AdvIND-CPA
kem (D4, κ) ≤ εkem (7)

With the next lemma, we show that Ŝreal only aborts with a negligible probability if a
Guess event happens. We need this because when comparing a regular execution of the
LDACS MAKE protocol with Ŝ, we rely on Ŝ not aborting under certain circumstances.

Lemma 6. Similar to [CK02, Lem. 7]

∀ adversaries A : P [Abortreal ∧Guessreal] = 0

30 Post-Quantum Ready Key Agreement for Aviation

Proof. Consider a run of Ŝreal. Assume that a Guess event happens. By the definition of
a Guess event (cf. Definition 19), A has activated `GS and `AS, `GS is an initiator, `AS a
responder, `GS.ecid = `AS.ecid, A performs exactly one Test query and `test ∈ {`GS, `AS}.
Consider a fixed point in time before which an Abort event has not happened. Ŝreal
behaves identically to a regular interaction with the LDACS MAKE protocol where the
response to the Test query is the real session key. We can assume without loss of
generality that after the next adversary query, `test.δownr = `test.δpeer = honest∧ `test.δsess
= fresh ∧ (∀`′ ∈ LSID, `′.sid = `test.sid : `′.δsess = fresh) ∧ (`test accepts) will still hold,
since otherwise A would lose the BR-secrecy game in a regular interaction with the
LDACS MAKE protocol. Since `GS.ecid = `AS.ecid, it must be the case that either
`GS.sid = `AS.sid or only `test accepts and the other local session does not. In both cases,
A neither reveals `GS nor `AS. That both `GS and `AS have the same ECID also means
that they have the same view of the values of idGS, idAS, pkkem and c.

The above points mean that, if a Guess event has already happened, the next adversary
query cannot trigger an Abort event. On the other hand, when an Abort event happens,
Ŝreal aborts its execution, meaning that a Guess event cannot happen after an Abort
event. Thus, both an Abort and a Guess event cannot happen in the same execution of
Ŝreal.

Lemma 7. Similar to [CK02, Lem. 11]

∀ adversaries A ∀` ∈ LSID ∃`′ ∈ LSID :

(` accepts ∧ `.δpeer = honest⇒ P [¬SameECID(`, `′)] ≤ n · εsig)

Proof. Let ` ∈ LSID be any local session with `.accept = true and `.δpeer = honest. Since
` accepts, it has received a valid signature of pkkem, c and `.id by its intended partner. If
the intended partner did not create the signature, then A forged it. By Lemma 1, the
probability for this event is at most n · εsig. If the intended partner created the signature,
then a local session `′ ∈ LSID exists which has the same view of the values of idGS, idAS,
pkkem and c. In this case, `′.ecid = `.ecid. In total, the probability that no local session
`′ ∈ LSID exists with the same ECID is at most n · εsig.

In the following lemma, we establish a noticeable lower bound for the probability of
a Guess event. Because of this, we know that negligible probabilities do not become
non-negligible when we introduce the condition that a Guess event occurred.

Lemma 8. Similar to [CK02, Lem. 9]

∀ adversaries A : P [Guessreal] ≥
1

l2
− nεsig

Proof. We assume without loss of generality that in a regular interaction with the
LDACS MAKE protocol, A chooses exactly one test session `test and that A does not
corrupt `test or its intended partner before `test accepts. This also applies to a simulation of
A under simulator S. By Lemma 7, a local session `′ ∈ LSID exists with `′.ecid = `test.ecid
with a probability of at least 1− nεsig. If such a local session exists, then the probability
that under simulator S, `GS is an initiator, `AS is a responder and `test ∈ {`GS, `AS}, is at
least 1/l2. In total, the probability of a Guess event under S is at least

1

l2
− nεsig.

Let Ŝ′
real be a simulator that exactly acts like Ŝreal except that it never aborts. Since A

has to choose `test before it knows the response to the Test query, A’s choice of `test has
the same distribution under S and under Ŝ′

real. Therefore, a Guess event has the same

Marcel Tiepelt, Christian Martin, Nils Maeurer 31

probability under S and under Ŝ′
real. By Lemma 6 it is not possible that both an Abort

event and a Guess event happen under Ŝreal. This also means that the probabilities of a
Guess event under Ŝ′

real and under Ŝreal are identical. We can now deduce:

P [Guessreal]

= P
[
Guess under Ŝ′

real

]
(8)

= P [Guess under S] (9)

≥ 1

l2
− nεsig (10)

With the last two lemmas, we show the connection between Ŝ and a regular execution
of the LDACS MAKE protocol. The first of the two lemmas states that Ŝreal with a
Guess event is indistinguishable from a regular interaction with a real session key as a
response to the Test query.

Lemma 9. Similar to [CK02, Lem. 14]

∀ adversaries A : |Preal(A)− P [Affirmreal|Guessreal] | = 0

Proof. By Lemmas 6 and 8, we know that

P [Abortreal ∧Guessreal] = 0

P [Guessreal] ≥ 1

l2
− nεsig.

The view of A under Ŝreal given a Guess event is the same as in a regular interaction
with the LDACS MAKE protocol with real Test query output unless an Abort event
happens. This means that

|Preal(A)− P [Affirmreal|Guessreal] |
≤ P [Abortreal|Guessreal] (11)

=
P [Abortreal ∧Guessreal]

P [Guessreal]
(12)

≤ 0
1
l2 − nεsig

(13)

= 0. (14)

The view of A under Ŝreal given a Guess event is the same as in a regular interaction
with the LDACS MAKE protocol with real Test query output unless an Abort event
happens. This means that since P [Abortreal|Guessreal] is equal to 0, so is the difference
between Preal(A) and P [Affirmreal|Guessreal].

The last lemma states that Ŝrand with a Guess event is indistinguishable from a regular
interaction with a random value as a response to the Test query.

Lemma 10. Similar to [CK02, Lem. 13] The following holds true:

∀ adversaries A :

|Prand(A)− P [Affirmrand|Guessrand] | ≤
2(εkem + εprf)

1
l2 − 2(εkem + εprf)− nεsig

. (15)

32 Post-Quantum Ready Key Agreement for Aviation

Proof. Analogous to Lemma 9, using Lemmas 2 to 5 to argue that

P [Abortrand ∧Guessrand] ≤ 2(εkem + εprf) (16)

P [Guessrand] ≥ 1

l2
− 2(εkem + εprf)− nεsig (17)

follows from

P [Abortreal ∧Guessreal] = 0

P [Guessreal] ≥ 1

l2
− nεsig.

Finalizing the Proof of BR-Secrecy, Theorem 7 Finally, we combine all lem-
mas to show that in a regular execution of the LDACS MAKE, the key of a session is
indistinguishable from an independently sampled random value.

Proof. By Lemmas 2 to 5,

|P [Affirmreal ∧Guessreal]− P [Affirmrand ∧Guessrand] | ≤ 2(εkem + εprf)

|P [Guessreal]− P [Guessrand] | ≤ 2(εkem + εprf).

By Lemma 8,

P [Guessreal] ≥
1

l2
− nεsig.

By Lemma 9,

|Preal(A)− P [Affirmreal|Guessreal] | = 0.

By Lemma 10,

|Prand(A)− P [Affirmrand|Guessrand] | ≤
2(εkem + 2εprf)

1
l2 − 2(εkem + εprf)− nεsig

.

Let

ν := |Preal(A)− P [Affirmreal|Guessreal] |
+ |Prand(A)− P [Affirmrand|Guessrand] |.

Marcel Tiepelt, Christian Martin, Nils Maeurer 33

We can now deduce:

|Preal(A)− Prand(A)|
=

∣∣P [Affirmreal|Guessreal]− P [Affirmrand|Guessrand]

+ (Preal(A)− P [Affirmreal|Guessreal])

− (Prand(A)− P [Affirmrand|Guessrand])
∣∣ (18)

≤ |P [Affirmreal|Guessreal]− P [Affirmrand|Guessrand] |+ ν (19)

=

∣∣∣∣P [Affirmreal ∧Guessreal]

P [Guessreal]
− P [Affirmrand ∧Guessrand]

P [Guessrand]

∣∣∣∣+ ν (20)

= P [Guessreal]
−1 ·

∣∣∣∣P [Affirmreal ∧Guessreal]

− P [Guessreal]

P [Guessrand]
· P [Affirmrand ∧Guessrand]

∣∣∣∣+ ν (21)

= P [Guessreal]
−1 ·

∣∣∣∣P [Affirmreal ∧Guessreal]

−
(
1 +

P [Guessreal]− P [Guessrand]

P [Guessrand]

)
· P [Affirmrand ∧Guessrand]

∣∣∣∣+ ν (22)

≤ P [Guessreal]
−1 · |P [Affirmreal ∧Guessreal]− P [Affirmrand ∧Guessrand] |

+
|P [Guessreal]− P [Guessrand] |

P [Guessrand]
· P [Affirmrand ∧Guessrand] + ν (23)

≤ P [Guessreal]
−1 · |P [Affirmreal ∧Guessreal]− P [Affirmrand ∧Guessrand] |

+ |P [Guessreal]− P [Guessrand] |+ ν (24)

≤ 1
1
l2 − nεsig

· 2(εkem + εprf)

+ 2(εkem + εprf) +

(
0 +

2(εkem + εprf)
1
l2 − 2(εkem + εprf)− nεsig

)
(25)

≤ 4(εkem + εprf)
1
l2 − 2(εkem + εprf)− nεsig

+ 2(εkem + εprf) (26)

A1.2 Application of proof to IKEv2
If we want to prove the same properties for IKEv2 as we do for the LDACS protocol in
Section 4, none of the differences outlined in Section 3.2 affect the proof except for the
fact that the parties in IKEv2 do not sign the ID or the DH exponential of the respective
other party. To account for the differences, we can choose the ECIDs and SIDs for IKEv2
to contain the two nonces, but not the IDs of the two parties. Since the IDs of the
protocol parties are not part of the SIDs, implicit entity authentication (Definition 6) is no
longer trivially fulfilled. Instead, it can be argued that for each local session, the received
signature confirms that the received nonce was chosen by the intended partner while the
probability that the own nonce was coincidentally chosen by another party is negligible.

The proof of almost-full key confirmation (Definition 9) is also affected since the
signatures do not sign the DH exponential of the respective other party. A single signature
therefore does not contain enough explicit information to unambiguously specify the session
key. However, the IKE_AUTH messages use keys derived in the same manner as the
session key, so one can argue that the probability of successfully forging an IKE_AUTH
message without knowing the session key is negligible.

34 Post-Quantum Ready Key Agreement for Aviation

When proving BR-secrecy for IKEv2 as in Theorem 7, the simulator Ŝ should not
have the two abort conditions `GS.pid 6= `AS.id and `AS.pid 6= `GS.id, since the protocol
cannot guarantee that neither of the two conditions occur during the BR-secrecy game. Ŝ
should have an abort condition `test.pid /∈ {`GS.id, `AS.id} instead of the two conditions
previously mentioned. While this makes an abort of Ŝ easier to avoid, the modification
of ECID still makes it possible that an Abort and a Guess event coincide. Lemma 6
therefore should use the signatures to at least show that the probability for this coincidence
is negligible.

Marcel Tiepelt, Christian Martin, Nils Maeurer 35

A2 Alternative LDACS MAKE Protocol
Figure 6 shows an alternative LDACS MAKE protocol, where the two parties additionally
use nonces NAS and NGS to derive their mac keys as well as the session keys KGS,KAS.
The alternative protocol achieves the same security as outlined in Theorem 8, which is
almost identical to Theorem 1, except that the mac is now required to prove security.
The reason for this is, informally, that the shared key is derived from the nonces, but
the air station AS only provides a signature on their own nonce (and vice versa). As
such, the ground station GS has no assurance that the AS derives the same key, as they
cannot verify, that the AS has knowledge of the nonce NGS. Since both nonces are used
to generate the mac key via the prf , verifying the message authentication key provides the
required assurance, and thus the same security guarantees apply.

sidGS := (idGS, idAS,pkkem, c)

pidGS := idAS

sidAS := (idGS, idAS,pkkem, c)

pidAS := idGS

GS(sksig
GS, idAS, vksig

AS) AS(sksig
AS, idGS, vksig

GS)

NGS
$←− {0, 1}κ

(pkkem, skkem)← Genkem pkkem, NGS

(k, c)← Encaps(pkkem)

set kcid
ecid

NAS
$←− {0, 1}κ

kmac ← prf(k, (idGS, idAS, NAS, NGS, 1))

m← (c,pkkem, idGS, NAS)

τ ←Mac(kmac,m))

σ ← Sign(sksig
AS,m))

c,NAS, τ, σ

set kcid
ecid k′ ← Decaps(skkem, c)

kmac ← prf(k′, (idGS, idAS, NAS, NGS, 1))

m′ ← (c,pkkem, idGS, NAS)

Vfy(vksig
AS,m

′, σ)

MacVfy(kmac,m
′, τ)

m′′ ← (c,pkkem, idAS, NGS)

τ ′ ←Mac(kmac,m
′′)

σ′ ← Sign(sksig
GS,m

′′)
idAS, τ

′, σ′

set K
m′′′ ← (c,pkkem, idAS, NGS)

Vfy(vksig
GS,m

′′′, σ′)

MacVfy(kmac,m
′′′, τ ′)

set K

KGS := prf(k′, (idGS, idAS, NAS, NGS, 0)) KAS := prf(k, (idGS, idAS, NAS, NGS, 0))

Figure 6: Simplified, alternative key agreement protocol between the ground station GS
and the air station AS. If any of the verification Vfy or MacVfy fail, the respective
party aborts. The dotted lines with the blue identifiers are relevant for the computational
proof in Section 4. Note that this alternative protocol version (compared to the one
presented in Figure 3) is currently under investigation by the German Aerospace Center.
The modification are highlighted in orange shade.

36 Post-Quantum Ready Key Agreement for Aviation

Theorem 8 (Informal). Let kem be an IND-CPA secure key encapsulation mechanism,
let sig be an EUF-CMA secure signature scheme, let prf be an εprf secure pseudo-random
function and let mac be an sEUF-CMA secure message authentication code. Then the
alternative LDACS MAKE protocol (cf. Figure 6) provides (almost) full explicit entity
authentication and (almost) full explicit key authentication, which implicitly includes
BR-secrecy.

Proof Sketch.(Informal)
Define sid = kcid = ecid = (idGS, idAS,pkkem, c,NGS, NAS), then the proofs for the prop-
erties using Match and iEntAuth predicate carry over with no other modifications. The
proofs showing security relative to the BRSec, fEntConf, afEntConf and afKeyConf
predicate require adaption to match the modification in the alternative LDACS MAKE
protocol. More specifically, the proof now uses a reduction to the sEUF-CMA security
of the mac. Correspondingly, the deduction of fKeyConf from the Match, iEntAuth
predicate as well as from the fEntConf and BRSec remain unchanged, if the security
relative to the latter holds.

(Almost) Full entity confirmation and almost-full key confirmation We define
three new simulators which are similar to Ŝreal, Ŝrprf and Ŝallr, respectively, except that
they are not tailored to the BR-secrecy game, meaning that neither do they modify the
behavior of the Test query nor do they have any abort conditions that depend on the
adversary’s usage of the Test query. Additionally, the new simulator which is similar to
Ŝallr, replaces prf with a random function instead of sampling the keys directly. Note
that this modification still results in random mac keys kmac. Therefore, we can use the
sEUF-CMA security of mac to argue that the adversary is unable to forge a mac tag unless
it knows the mac key. However, we the adversary does not know the random function, they
have only negligible chance of guesses the correct key for the two special local sessions.

Remember that the input to the prf computing the mac key consists of the ecid, the
secret from the key encapsulation mechanism k as well as the kem ciphertext. Therefore,
if one of the two special local sessions successfully validates a mac tag and the kem values
have not been manipulated, then both have the same ecid. One can show via a set of
game hops using the three simulators that this also applies to a regular execution of the
protocol.

Finally, we also consider the signatures which assure the respective receiving party of the
authenticity of the kem values as long as the sending party is not corrupted. The resulting
guaranteed authenticity of the entire ecid, and therefore also guaranteed authenticity of
the sid and the kcid, can now serve as a proof for full entity confirmation, almost-full
entity confirmation and almost-full key confirmation.

BR-Secrecy The above procedure can also be utilized to show that a variant of Lemma 7
of the BR-secrecy proof holds, except with slightly modified bound on the adversarial
advantage. The only remaining modifications of the BR-secrecy proof are that the simulator
Ŝ generates the keys for the two guessed local sessions in the same way as the alternative
LDACS MAKE protocol and that Ŝ also aborts if any of the nonces exchanged between
the two get manipulated. Note that the definition of the ecids can be modified to avoid the
additional abort condition in case the ecids of the two guessed local sessions are identical.
Otherwise, the proof does not require modification.

	Introduction
	Contribution
	Technical Outline

	Preliminaries
	Cryptographic Constructions
	Computational Security Model
	Symbolic Security Model

	LDACS
	Key Agreement Protocol
	Comparison with other KEM-based Key Agreements

	Computational Proof
	Explicit Proofs and Reductions
	Consequential Security Properties

	Symbolic Proof
	Transition Model
	Results

	Bibliography
	References
	Computational Security of LDACS MAKE
	Full Proof of BR-Secrecy
	Application of proof to IKEv2

	Alternative LDACS MAKE Protocol

