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Abstract

Lattice cryptography has many exciting applications, from homomorphic encryption to
zero knowledge proofs. We explore the algebra of cyclotomic polynomials underlying many
practical lattice cryptography constructions, and we explore algorithms for multiplying cyclo-
tomic polynomials on a GPU.
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1 Introduction
We herein present a series of six sections dedicated to describing the algebra behind cyclotomic
polynomials as well as algorithms for multiplying cyclotomic polynomials on a GPU. Our moti-
vation is lattice cryptography, though we do not discuss any cryptographic topics. The first four
sections focus purely on algebra, the last two sections each explore GPU algorithms. Our only
novel theorem is Theorem 13, all others folklore. The sections may be summarized as follows.

1. Section 2 introduces notation for algebra to be reused across the first four sections. Cyclo-
tomic extensions, a natural source for studying cyclotomic polynomials, is studied by first
discussing such extension in general, and then narrowing study to such extensions of the
field of rational numbers and then finite fields. Theorems in this first section relate to when
cyclotomic polynomials are irreducible over these base fields, and also to the Galois groups
of these extensions.

2. Section 3 is dedicated to covering two crucial concepts to be utilized in subsequent sections.
The first concept is representing the reducibility of cyclotomic polynomials over finite fields,
and while we will ultimately only be concerned with prime fields, analysis in this section
applies to non-prime fields as well. The second concept is the Chinese remainder theorem,
presented in the form of quotient rings. Lastly we combine the two concepts to show how
the quotient ring of a finite field modulo a cyclotomic polynomial splits into a direct product
of smaller quotient rings.

3. Section 4 explores the algebraic number theory behind our ring of interest, which may be
written as Zp[X]/Φn(X) where p is a prime and Φn is the n’th cyclotomic polynomial. This
ring may also be phrased as the ring of integers Z[X]/Φn(X) of the number field extension
Q[X]/Φn(X) modulo the prime ideal (p) of the ring of integers Z of the number field Q.
The ring phrased as such will be our item of study. First we’ll present such rings for more
general number field extensions, second we’ll narrow focus to Galois extensions, and lastly
we’ll narrow focus to the said extension (Q[X]/Φn(X))/Q.

4. Section 5 is focused on representing our ring of interest in a convenient form for efficient
algorithmic implementation. Using the results of Section 4 we are able to represent the ring
Zp[X]/Φn(X) by recursively decomposing it into components until they become irreducible.
Conveniently indexing the components is the core topic of the section, and we provide three
solutions. The first solution indexes the components using quotient groups in terms of a
certain class of subgroup of Z×

n . The second solution indexes components via analogous
subgroups of the Galois group. The third solution proves the subgroups of interest in the
previous two solutions have generators, yielding simpler indexing schemes we will use in
our algorithms.

5. Section 6 explores how one may architect a GPU algorithm for applying the Chinese remain-
der theorem to decompose a cyclotomic polynomial into its irreducible components. We do
not yet concern in this section with multiplying the irreducible components by those of an-
other polynomial. We perform decomposition in three steps. First we read the coefficient
values from global memory into thread registers. Second we perform Chinese remainder
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theorem decomposition within threads, meaning only values within the same thread interact.
Third we complete decomposition across threads, meaning only values in different threads
interact.

6. Section 7 improves and extends the initial GPU algorithm from Section 6. We apply the
Chinese remainder theorem to decompose a cyclotomic polynomial into irreducible compo-
nents, but compared to the initial algorithm we increase the amount of decomposition that
occurs within threads, and decrease the amount that occurs across threads. We discuss ar-
ranging the resulting irreducible components in a layout suitable for multiplication with the
irreducibles of another polynomial. Finally we turn to the multiplication of irreducible com-
ponents. We end up performing multiplication of each irreducible component entirely within
a single thread. Doing so limits the size of the irreducible components we can multiply, but
simplifies our options for multiplication. For our motivational purposes the irreducible com-
ponents are small enough to pose no issue. We explore schoolbook multiplication, minimal
time Karatsuba multiplication, and minimal space Karatsuba multiplication.

2 Cyclotomic extensions
We introduce cyclotomic extensions and examine the special cases of extending Q and Fq, the
two most common base fields for such extensions. We also introduce cyclotomic polynomials and
explore some basic properties relevant to cyclotomic extensions. Two general sources used but not
cited elsewhere are [Mor96] and [Con].

• Let ϕ denote Euler’s totient function, that is ϕ(n) counts the numbers between 1 and n that
are coprime with n.

• Let ordn(x) denote the order of element x ∈ (Z/nZ)× in the multiplicative group (Z/nZ)×.

• Let the notation (a, b) for a, b ∈ Z denote the greatest common divisor of a and b, that is
gcd(a, b).

For positive integer n, the n’th complex roots of unity are the roots of the polynomial Xn − 1
over C, namely ζk = e2πi(k/n) for 1 ≤ k ≤ n which form a cyclic group of order n. The primitive
n’th complex roots of unity are those ζk for which (k, n) = 1, of which there are ϕ(n) by definition
of ϕ.

We may extend the notion of complex roots of unity to roots of unity over any field in which
Xn − 1 has n distinct roots. These roots are the n’th roots of unity denoted µn = {ζk}k∈[n]. They
form a cyclic subgroup of the field’s multiplicative group with generators any roots of Xn − 1 not
roots of Xm − 1 for any m < n. If ζ ∈ µn is a generator, then ζk ∈ µn has order n/(n, k) and is
therefore also a generator precisely when k and n are coprime. There are ϕ(n) generators of µn by
definition of ϕ. We call these generators the primitive n’th roots of unity.

2.1 Extensions in general
After presenting the definition of cyclotomic extensions we immediately show such extensions are
Galois. The Galois groups of n’th cyclotomic extensions are then shown isomorphic to subgroups
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of (Z/nZ)×. At this point we introduce cyclotomic polynomials which we use in the following
two sections, but before proceeding to those sections we prove two central properties of cyclotomic
polynomials. The first is the fact that all cyclotomic polynomials have integer coefficients, and as
such can be interpreted over any field. The second shows that all n’th cyclotomic polynomials are
equivalent to the extent of such interpretation.

Cyclotomic extensions are had by adjoining a complete set of n’th roots of unity to a field. A
central assumption we carry throughout exploration of cyclotomic extensions is that if the charac-
teristic of the field is non-zero (i.e. prime), then it does not divide n, otherwise the field cannot
hold all n’th roots of unity. To see this, suppose the field has characteristic p and n = m · pℓ. Since
p is prime we apply the Frobenius endomorphism to see Xn − 1 = (Xm − 1)p

ℓ . Then for any
ζ ∈ µn, ζn = 1 implies ζm = 1 with m < n and therefore no element of µn can function as a
primitive n’th root of unity in the field. So if we are to assume µn behaves as a complete set of
n’th roots of unity in a field we must assume the field has characteristic zero or characteristic not
dividing n. Henceforth we implicitly make this assumption.

Definition 1. An n’th cyclotomic extension of a field F is obtained by adjoining a set of n’th roots
of unity µn to F . The roots of unity µn may belong to any extension field of F . The field F (µn) is
called an n’th cyclotomic field.

Note that adjoining all n’th roots µn is equivalent to adjoining any generator of the set µn, that
is any primitive n’th root of unity.

Consider the unique polynomial vanishing on exactly the n distinct elements µn, that is the
polynomial Xn − 1. Since F (µn) contains all n roots of Xn − 1 (that is µn), it’s clear that Xn − 1
splits in F (µn). Moreover, since the n elements of µn are distinct, Xn−1 splits into distinct linear
factors in F (µn). With such splitting in mind we now show the extension F (µn)/F is Galois.

Theorem 1 (F (µn)/F is Galois). For a field F , the extension F (µn)/F is Galois.

Proof. We show normality and separability of this extension, that is the criteria for an extension
to be Galois. In both parts we use the following lemma, the proof of which is not relevant for our
purposes. Variations of the lemma can be found in many introductory texts on field theory (e.g.
[Mit]).

Suppose E/F is an algebraic field extension. If the minimal polynomial over F
of some α0 ∈ E splits in E, then the minimal polynomial over F of every αi ∈ E
splits in E. Moreover, if the minimal polynomial of α0 is separable, then the minimal
polynomial of every αi is separable.

Fix some ζ ∈ µn. The minimal polynomial over F of ζ is a factor of Xn − 1. To see this,
suppose dividing Xn − 1 by the minimal polynomial fζ of ζ leaves non-zero remainder rζ . Then
rζ must be of degree less than fζ and vanish on ζ (since both Xn− 1 and fζ vanish on ζ). As such,
r contradicts the minimality of fζ .

Normality: SinceXn−1 splits in F (µn), so does its factors, including the minimal polynomial
over F of ζ ∈ F (µn). Applying the lemma above we conclude the minimal polynomial over F of
every element in F (µn) splits in F (µn), and thus the extension F (µn)/F is normal.

Separability: Since Xn − 1 splits into distinct linear factors in F (µn), so does its factors,
including the minimal polynomial over F of ζ ∈ F (µn). Therefore the minimal polynomial of
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ζ is separable. Applying the lemma above we conclude the minimal polynomial over F of every
element in F (µn) is separable, and thus the extension F (µn)/F is separable.

With F (µn)/F Galois, what can we say about its Galois group? The Galois group of a Galois
extension F (µn)/F is the group of automorphisms on F (µn) that fix F . Since the field F (µn) is
composed of F and µn, an automorphism on F (µn) that fixes F is defined solely by its behavior
on µn. For every σ ∈ Gal(F (µn)/F ), the next theorem shows this behavior to be σ(ζ) = ζk for
all ζ ∈ µn and some k coprime with n. Thus σ may be defined piecewise on F (µn) as

σ(x) =

{
xk, x ∈ µn

x, x ∈ F

Theorem 2 (Gal(F (µn)/F ) is isomorphic to a subgroup of (Z/nZ)×). Each automorphism of
Gal(F (µn)/F ) is determined by some integer coprime with n. Let σk denote the automorphism
determined by integer k with (k, n) = 1. Then σk(ζ) = ζk for all ζ ∈ µn.

The map σk → (k + Z) of signature Gal(F (µn)/F ) → (Z/nZ)× is an injective group homo-
morphism. Therefore, Gal(F (µn)/F ) is isomorphic to a subgroup of (Z/nZ)×.

Proof. Fix some primitive root of unity ζ0 ∈ µn, and recall that all generators of µn have the form
ζk0 for some k coprime with n.

Since the automorphisms Gal(F (µn)/F ) of the field F (µn) fix the subfield F , they necessarily
map F (µn)\F = µn to itself. Moreover, since they are automorphisms of the multiplicative group
F (µn)

×, they are group automorphisms of µn. As any automorphism of the group µn must map
generators to generators, for σ ∈ Gal(F (µn)/F ) we must have σ(ζ0) = ζk0 for some k coprime
with n. With any element of µn taking the form ζt0 for some t, we have

σ(ζt0) = σ(ζ0)
t = (ζk0 )

t = (ζt0)
k

Thus σ is defined by raising all elements of µn to k. We associate σ with k and write σk. To see
the subscript notation σk is unique modulo n, suppose σk′ = σk. Then ζk−k′

0 = 1 and since ζ0 has
order n, it must be that n divides k − k′.

We now show the map σk → (k+Z) is an injective group homomorphism from Gal(F (µn)/F )
to (Z/nZ)×. The fact that (k, n) = 1 for all σk implies the image of σk is contained in (Z/nZ)×.
For σk, σk′ ∈ Gal(F (µn)/F ) and ζ ∈ µn we have

σk ◦ σk′(ζ) = σk(σk′(ζ)) = ζkk
′
= σkk′

Denoting the map by ψ we readily see it is a homomorphism as

ψ(σk ◦ σk′) = ψ(σkk′) = kk′ = ψ(σk) · ψ(σk′)

The kernel of the homomorphism is all σk such that k ≡ 1(modn) in which case σk is the identity
function, that is the identity element of the Galois group. The homomorphism is therefore injective.

We now introduce cyclotomic polynomials for their roles in cyclotomic extensions of Q and
Fq as explored in the next two sections. The n’th cyclotomic polynomial is defined as the monic,
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non-zero polynomial vanishing on the primitive n’th roots of unity in µn. Suppose ζ0 ∈ µn is a
primitive root of unity.

Φn(X) :=
∏

n’th primitive
roots of unity ζ

(X − ζ) =
∏

1≤k≤n
(k,n)=1

(X − ζk0 )

Since there are ϕ(n) primitive n’th roots of unity, Φn has degree ϕ(n).
We may partition the n’th roots of unity into all sets of primitive d’th roots of unity, one set for

every d dividing n. To see this, note that every n’th root of unity generates a subgroup of order d
and is therefore a primitive d’th root of unity for exactly one d dividing n. On the other hand, since
d divides n every primitive d’th root of unity is also an n’th root of unity. With this partition in
mind we may represent Xn−1 as the product of all cyclotomic polynomials Φd(X) for d a divisor
of n.

Xn − 1 =
∏
d|n

Φd(X)

We may regard this equation as an implicit, recursive definition of cyclotomic polynomials, written
explicitly as

Φn(X) =
(
Xn − 1

)/∏
d|n
d̸=n

Φd(X)

A potentially surprising property of cyclotomic polynomials is that they have integer coef-
ficients. Indeed, regardless the n’th roots of unity µn used to define Φn, even if the irrational
complex roots of unity, expanding the polynomial Φn into coefficient form always yields integer
coefficients. Note that integer coefficients can alternatively be interpreted as belonging to any field
by identifying them with multiples of the field’s additive identity. Thus when considering Φn over
F (µn) we may say Φn has coefficients over F .

Theorem 3 (Φn[X] ∈ Z[X]). The n’th cyclotomic polynomial Φn has integer coefficients.

Proof. We show this by induction using the recursive definition of cyclotomic polynomials. The
base case in clear with Φ1(X) = X − 1 ∈ Z[X]. For induction consider the equation

Xn − 1 = Φn(X) ·
∏
d|n
d ̸=n

Φd(X) = Φn(X) · γ(X)

The polynomial Xn − 1 has integer coefficients, and by induction so does γ. Note that γ is also
monic as it is the product of monic polynomials. Then one may observe that in dividing Xn−1 by
γ, the long division algorithm in Z[X] must yield a polynomial also in Z[X]. For a more explicit
argument, suppose the long division algorithm in Z[X] yields quotient q ∈ Z[X] and remainder
r ∈ Z[X] such that Xn − 1 = q(X)γ(X) + r(X). Then q(X)γ(X) + r(X) = Φn(X)γ(X) forces
r(X) = γ(X)(Φn(X) − q(X)) to be zero, otherwise deg(r) ≥ deg(γ). Therefore, Φn = q ∈
Z[X].

We can strengthen the previous result further. We can in fact say that all cyclotomic poly-
nomials are equivalent in the sense that two n’th cyclotomic polynomials defined over different
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fields share the same roots when interpreted over the same field. As mentioned previously, such
cross-field interpretation is possible because cyclotomic polynomials have integer coefficients. As
a result, a lot can be said about cyclotomic polynomials oblivious to the field over which they’re
defined.

We demonstrate equivalence between n’th cyclotomic polynomials by showing they are all
equivalent to the n’th cyclotomic polynomial over C. Consider the n’th cyclotomic polynomial in
C[X] defined as vanishing exactly on e2πi(k/n) for 1 ≤ k ≤ n with (n, k) = 1. Interpreting this
polynomial over any n’th cyclotomic field F (µn), we argue it vanishes on the primitive n’th roots
of unity in µn. Therefore, the following two polynomials are equal:

• The n’th cyclotomic polynomial defined over F (µn) as vanishing on exactly the primitive
n’th roots of unity in µn.

• The n’th cyclotomic polynomial defined over C and interpreted over F (µn).

By the transitivity of equivalence, we may then say any two cyclotomic polynomials defined over
different fields are equivalent ‘up to interpretation.’

Theorem 4 (Φn ∈ C[X] ≡ Φn ∈ F (µn)[X]). Let Φn be the n’th cyclotomic polynomial in C[X].
Let F (µn) be an n’th cyclotomic field. Then Φn ∈ F (µn)[X] vanishes on precisely the primitive
n’th roots of unity in µn, where Φn is Φn interpreted over F(µn).

Proof. Let x for x ∈ Z[X] denote x ∈ F [X], that is x from Z[X] interpreted in F [X]. Suppose
division ofXn−1 by Φn in Z[X] yields quotient q and remainder r. Then we may writeXn − 1 =
Φn(X) ·q(X)+r(X) with relations deg(r) < deg(Φn) = ϕ(n) still holding. That is, as Φn divides
Xn − 1 in Z[X], so Φn divides Xn − 1 = Xn − 1 in F [X]. Note that Xn − 1 splits in F (µn) with
roots µn, and therefore its factor Φn also splits in F (µn) with roots some subset of µn. Since the
subset must be of size ϕ(n) = deg(Φn), we are left to show that all roots of Φn are primitive n’th
roots of unity.

Supposing Φn(ζ) = 0 for ζ ∈ µn, we must show ζ is a primitive n’th root of unity. We will
refer to the following equation as the ‘cyclotomic decomposition’ of ζm − 1 for some m.

ζm − 1 =
∏
d|m

Φd(ζ)

Suppose ζ is not a primitive n’th root of unity. Then ζ is a primitive m’th root of unity for some
proper divisor m of n. The cyclotomic decomposition of ζm− 1 suggests Φd(ζ) = 0 for some d|m
which is a proper divisor of n. We now contradict this statement by recalling that Xn − 1 has no
repeated roots, and therefore ζ can only vanish on one of its factors. That is, Φd(ζ) = 0 can only
occur for one d|n in the cyclotomic decomposition of ζn − 1. Since we assume Φn(ζ) = 0, it must
be that Φd(ζ) ̸= 0 for all proper divisors d of n.

2.2 Extensions of Q
First we examine the reducibility of Φn over Q, then see what it means for the Galois group
Q(µn)/Q. We also mention the ring of integers of Q(µn). Note that since the field Q has char-
acteristic zero, we have met the assumption stated at the start of the prior section to ensure µn

functions as a full set of n’th roots of unity over Q.
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Theorem 5 (Φn is irreducible over Q). The n’th cyclotomic polynomial Φn is irreducible over Q.

Proof. See [Wei] for several of the most historical proofs. Here we give a proof that goes back as
far as Dedekind in 1857 ([Mil22]).

Suppose Φn(X) = f(x)g(x) ∈ Z[X] with f irreducible over Q. We will prove that for all
primes p not dividing n, if primitive n’th root of unity ζ is a root of f , then so is ζp. Therefore, for
all ϕ(n) values k with (k, n) = 1 we can say ζk is also a root of f , and thus f has degree ϕ(n) so it
must be Φn itself. To justify the latter conclusion, consider how any k has a prime decomposition,
and to say (k, n) = 1 is to say no prime in the decomposition divides n. To show f vanishes on ζk,
we raise ζ consecutively to each prime in the decomposition. Each time we do so, we are raising
a primitive n’th root of unity on which f vanishes to a prime not dividing n, so we may conclude
the result is another primitive n’th root of unity on which f vanishes.

Now we prove that for prime p not diving n, ζp is a root of f . Since ζp is an n’th primitive root
of unity, we have Φn(ζ

p) = 0 in which case either f(ζp) = 0 or g(ζp) = 0. Suppose the latter for
sake of contradiction. Since f is irreducible, and we assume it vanishes on ζ , it must be the minimal
polynomial of ζ over Q and so must divide g(xp). Now f and g have rational coefficients because
they are products of the minimal polynomials of the primitive n’th roots of unity over Q. Then by
a variant of what’s known as Gauss’ Lemma , by the fact that f(x)g(x) = Φn(x) it must be that f
and g and thus g(xp) have integer coefficients. With quotient q ∈ Q[X], f ∈ Z[X] ⊆ Q[X] and
g(xp) ∈ Z[X], we apply Gauss’ Lemma again to the equation f(x)q(x) = g(xp) and conclude q ∈
Z[X]. We may then pass the equation f(x)q(x) = g(xp) through the homomorphism of reducing
modulo p with signature Z[X] → Zp[X]. With g(xp) = g(x)p by the Frobenius automorphism, we
have f(ζ)q(ζ) = g(ζ)p = 0. Considering the equation g(ζ)p = 0 in C we conclude g(ζ) = 0 since
C has no zero divisors.

Now Φn divides Xn − 1 = Xn − 1 and Φn = f(X)g(X), so we may write

Xn − 1 =
Xn − 1

Φn(X)
· f(X) · g(X)

By f(ζ) = g(ζ) = 0 we see ζ is a double root of Xn − 1. But Xn − 1 has non-zero derivative
nXn since we assume p doesn’t divide n, and therefore Xn − 1 has no repeated roots. Thus a
contradiction.

The irreducibility of Φn over Q allows us to determine the degree of the extension Q(µn)/Q.
Recall that Φn over Q(µn) has ϕ(n) roots, namely the primitive n’th roots of unity. Since Φn

is irreducible over Q, it must be the minimal polynomial for these primitive n’th roots of unity.
Therefore the extension Q(µn)/Q has degree ϕ(n). To see this, note that the field Q(µn) is equiv-
alent to the field Q[X]/Φn(X) with equality had by identifying X with any primitive n’th root of
unity. The field Q[X]/Φn(X) extends Q with degree deg(Φn) = ϕ(n) and the claim follows.

The identity [Q(µn) : Q] = ϕ(n) allows us to now fully determine the Galois group.

Corollary 1 (Gal(Q(µn)/Q) ∼= (Z/nZ)×). The Galois group Gal(Q(µn)/Q) is isomorphic to the
multiplicative group (Z/nZ)×.

Proof. We will not prove it here, but a basic fact of Galois theory is that the order of the Galois
group equals the degree of the Galois extension. Having just established that Q(µn)/Q has degree
ϕ(n), we conclude ∣∣Gal(Q(µn)/Q)

∣∣ = [Q(µn) : Q
]
= ϕ(n)
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We showed in Theorem 2 that Gal(Q(µn)/Q) is isomorphic to a subgroup of (Z/nZ)×. Since the
group (Z/nZ)× has order ϕ(n) we conclude the subgroup must be (Z/nZ)× itself.

Before moving on to the case of finite fields, we mention another important theorem of cyclo-
tomic extensions of Q. The ring of integers of the field Q(µn) is the ring Z[µn]. The ideals of the
ring Z[µn] are the ‘ideal lattices’ at the foundation of modern lattice cryptography. Note that Z[µn]
is equivalent to Z[X]/Φn(X).

Theorem 6 (OQ(µn) = Z[µn]). The ring of integers of Q(µn) is Z[µn].

Proof. The proof is involved, see [Ngu].

2.3 Extensions of Fq

In opposite order of the previous section, we first examine the Galois group Fq(µn)/F, then see
what it means for the reducibility of Φn over Fq. Since finite fields have non-zero characteristic, re-
call that if µn is to function as a full set of n’th roots of unity in a finite field, the field characteristic
cannot divide n. We continue to implicitly make this assumption below.

We already know that Gal(Fq(µn)/Fq) is isomorphic to a subgroup of (Z/nZ)×. We now argue
this subgroup in generated by q.

Theorem 7 (Gal(Fq(µn)/Fq) is isomorphic to ⟨q+Z⟩ ⊆ (Z/nZ)×). For prime power q, the group
Gal(Fq(µn)/Fq) is isomorphic to the subgroup ⟨q + Z⟩ of (Z/nZ)× and thus has order ordn(q).

Proof. We will show the q’th power map is an element of the Galois group, and then show the q’th
power map in fact generates the Galois group. Using this knowledge we determine the image of
the Galois group in (Z/nZ)×.

Before proceeding we mention the Frobenius map. Suppose q = pℓ. The Frobenius map is the
p’th power map, which is an endomorphism of Fq(µn). In fact, it is an automorphism of Fq(µn)
because it is injective and Fq(µn) is finite. To see injectivity, note the kernel is all x ∈ Fq(µn) such
that xp = 0, and since Fq(µn) contains no zero-divisors this only holds for x = 0.

To show that the q’th power map belongs to Gal(Fq(µn)/Fq), we show it is an automorphism
fixing the field precisely equal to Fq. The map is an automorphism because it is the ℓ-depth compo-
sition of the Frobenius map, itself an automorphism. The q’th power map clearly fixes the additive
identity of Fq, and it also fixes the multiplicative group F×

q because group order q − 1 implies
xq−1 = 1 for x ∈ F×

q . Thus the q’th power map fixes Fq, and to see that it only fixes the q elements
of Fq, note thatXq−X has no more than q roots. Furthermore, we can say the same about all auto-
morphisms generated by the q’th power map. That is, the subgroup of Gal(Fq(µn)/Fq) generated
by the q’th power map also fixes Fq.

We now invoke the fundamental theorem of Galois theory to argue that two different subgroups
of Gal(Fq(µn)/Fq) must fix different fields. By definition, the goup Gal(Fq(µn)/Fq) fixes the field
Fq, but so does the subgroup generated by the q’th power map. Therefore, these groups are in fact
the same, that is the q’th power map generates Gal(Fq(µn)/Fq).

Finally we determine the image of the Galois group in (Z/nZ)×. Recall that the isomorphism
from Gal(Fq(µn)/Fq) to a subgroup of (Z/nZ)× takes the form σk → (k + Z) where σk is the
k’th power map on µn and the identity map on Fq. To say the q’th power map generates the Galois
group is to say σq generates the Galois group. Since σq maps to (q + Z), we may conclude that

11



the image is generated by (q + Z). Therefore the Galois group maps to the subgroup ⟨q + Z⟩ of
(Z/nZ)×, which has order ordn(q).

Again invoking the fact that the order of the Galois group is equal to the degree of the Galois
extension, we conclude the extension Fq(µn)/Fq has degree ordn(q). Now we utilize this fact to
examine how Φn splits in the field Fq.

Theorem 8 (Reducibility of Φn over Fq). Over the field Fq the polynomial Φn splits into ϕ(n)/ordn(q)
monic, irreducible factors each of degree ordn(q).

Proof. By definition, Φn over Fq(µn) has degree ϕ(n) and vanishes on the ϕ(n) primitive n’th
roots of unity. Therefore every irreducible factor of Φn over Fq is the minimal polynomial of one
or more primitive n’th roots of unity.

Fix a primitive n’th root of unity ζ with minimal polynomial fζ (an irreducible factor of Φn

over Fq). The field Fq(ζ) is a cyclotomic extension of Fq. As implied by the previous theorem, the
extension Fq(ζ)/Fq has degree ordn(q). But this extension is equivalent to Fq[X]/fζ(X) which
has degree deg(fζ). Therefore all irreducible factors of Φn over Fq have degree ordn(q). Since Φn

has degree ϕ(n), there are ϕ(n)/ordn(q) such factors.

We restate the previous theorem for the special case in which Φn is irreducible over Fq.

Corollary 2 (Irreducibility of Φn over Fq). In the field Fq the polynomial Φn is irreducible if and
only if ordn(q) = ϕ(n).

3 Reducibility and CRT
This section is dedicated to presenting two auxiliary notions that will play a role in investigating
Section 4. In the first section we present how cyclotomic polynomials split over finite fields. In
the second section we present the Chinese Remainder Theorem. In the third section we show how
the tools from the previous two sections can be combined, though at the moment in this project we
have no relevant context in which to apply this result.

3.1 Representation of Φn over Fq

In this section we introduce the Möbius function along with its inversion formula, then show how
it can be used to represent the n’th cyclotomic polynomial. Using this representation, we can
represent one cyclotomic polynomial in terms of another. We exploit this relationship to arrive at
our primary result for this section, that is how cyclotomic polynomials can split over finite fields
in any number of related ways (the factors not always irreducible). We now proceed through these
parts one after the other with no interleaving commentary.

Definition 2 (Möbius function). Let whole number n have prime decomposition
∏ℓ

i=1 p
ek
k where

ek > 0 for all k. That is, k enumerates the ℓ prime factors of n. Then the möbius function of n is
given as

µ(n) =

{
(−1)ℓ, ∀k, ek = 1

0, ∃k, ek > 1

12



Lemma 1 (Möbius inversion formula). For a function f consider the following definitions for all
integers n > 0.

F+(n) :=
∑
d|n

f(d), F×(n) :=
∏
d|n

f(d)

Then the Möbius inversion formula (which we will not prove) is

f(n) =
∑
d|n

µ(d) · F+

(n
d

)
=
∏
d|n

F×

(n
d

)µ(d)
Note that for every d|n with quotient q, we also have q|n with quotient d. The formulas may thus
be rewritten as

f(n) =
∑
d|n

µ
(n
d

)
· F+(d) =

∏
d|n

F×(d)
µ(n/d)

Lemma 2 (Φn by Möbius inversion).

Φn(X) =
∏
d|n

(
Xn/d − 1

)µ(d)
=
∏
d|n

(
Xd − 1

)µ(n/d)
Proof. Recall from Section 2 that Φn may be expressed as

Xn − 1 =
∏
d|n

Φd(X)

The results follow by applying the Möbius inversion formula with f(d) corresponding to Φd and
F×(n) corresponding to Xn − 1.

Theorem 9 (Φn(X) = Φm(X
n/m)). Suppose n and m have prime decompositions

∏
k p

ek
k and∏

k p
fk
k respectively, with ek ≥ fk ≥ 1 for all k. Then Φn(X) = Φm(X

n/m).

Proof. If d|n but d ∤ m then with prime decomposition d =
∏

k p
gk
k there exists some k such that

gk > fk ≥ 1, in which case µ(d) = 0. Using Möbius inversion for the first and last equations, we
write

Φn(X) =
∏
d|n

(Xn/d − 1)µ(d)

=
∏

d|n, d|m

((Xn/m)m/d − 1)µ(d)
∏

d|n, d∤m

(Xn/d − 1)0

= Φm(X
n/m)

Corollary 3 (Reducibility of Φn over Fq with respect to m). Suppose n and m have prime decom-
positions

∏
k p

ek
k and

∏
k p

fk
k respectively, with ek ≥ fk ≥ 1 for all k. With q some prime power,

suppose q ≡ 1(modm).
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Then Φn over Fq splits into ϕ(m) monic factors each of degree n/m in the following form:

Φn(X) =

ϕ(m)∏
k=1

(
Xn/m − ζk

)
where the ζk are the ϕ(m) primitive m’th roots of unity in the group F×

q . Moreover, these factors
are irreducible if and only if ordn(q) = n/m, in which case ϕ(m) = ϕ(n)/ordn(q).

Proof. Consider the finite field Fq, with cyclic multiplicative group of order q−1. Sincem divides
q − 1 by assumption, the multiplicative group must have a cyclic subgroup of order m, containing
the primitive m’th roots of unity {ζk}k∈[ϕ(m)], meaning ζ ik = 1 if and only if i ≡ 0(modm). We
may then use the definition of the m’th cyclotomic polynomial over Fq to write

Φm(X) =

ϕ(m)∏
k=1

(X − ζk)

Noting our assumptions meet the criteria, we may apply the transformation Φn(X) = Φm(X
n/m)

from Theorem 9 to get

Φn(X) =

ϕ(m)∏
k=1

(
Xn/m − ζk

)
Now the reducibility of Φn over Fq from Theorem 8 asserts that Φn splits into ϕ(n)/ordn(q)

monic, irreducible factors each of degree ordn(q). In the equation above, Φn has split into ϕ(m)
factors each of degree n/m. Then these factors are irreducible precisely when ordn(q) = n/m.

3.2 Chinese Remainder Theorem
The Chinese Remainder Theorem (CRT) was originally used in the context of modular arithmetic.
Here we first describe a more general version of the Chinese Remainder Theorem in the context
of arbitrary commutative rings, but restricted to the case of two ideals. Then we generalize from
the case of two ideals to the case of any finite number of ideals. Keep in mind we are presenting
the Chinese Remainder Theorem as something of independent interest from the representation of
cyclotomic polynomials in the first section.

Lemma 3 (Binary Chinese Remainder Theorem). For commutative ring R, let I, J ⊆ R be co-
prime ideals, meaning I + J = R. Then we have

R/(IJ) ∼= R/I ×R/J

with corresponding isomorphism x+ IJ → (x+ I, x+ J).

Proof. Consider the natural homomorphism ψ : R → R/I×R/J with ψ(x) = (x+ I, x+J). We
will show that ψ has kernel ker(ψ) = IJ and image img(ψ) = R/I ×R/J . Hence upon invoking
what’s called the ‘First Isomorphism Theorem’ for rings, we conclude

R/ker(ψ) ∼= img(ψ) =⇒ R/(IJ) ∼= R/I ×R/J

14



Since I + J = R, there must be i ∈ I and j ∈ J such that i + j = 1. We will exploit i and j
below without reintroduction.

Kernel: The kernel is all x ∈ R such that x+ I = I and x+ J = J , that is the set I ∩ J . For
x ∈ I ∩ J , we have x(i + j) = xi + xj ∈ IJ as ix, xj ∈ IJ , and thus I ∩ J ⊆ IJ . To show
IJ ⊆ I ∩ J we don’t need the fact the I and J are coprime. For x = i1j1 + · · ·+ injn ∈ IJ with
ik ∈ I and jk ∈ J we observe that each ikjk ∈ I∩J and since I∩J is itself an ideal, as an additive
subgroup it is closed under addition, that way x ∈ I ∩ J . We conclude ker(ψ) = I ∩ J = IJ .

Image: To prove img(ψ) = R/I ×R/J we must find a pre-image for any (α+ I, β + J). The
pre-image αi+ βj satisfies as

ψ(αi+ βj)

= (αi+ βj + I, αi+ βj + J)

= (βj + I, αi+ J)

= (βj + βi+ I, αi+ αj + J)

= (β + I, α + J)

Last we must show that the homomorphism f : R/IJ → R/I × R/J sending x + IJ to
ψ(x) = (x + I, x + J) is an isomorphism. Let π : R → R/IJ be the projection homomorphism
x→ x+ IJ . Then f ◦ π = ψ, and since ψ is surjective it must be that f (and π) is surjective. The
kernel of f is all x+ IJ such that x ∈ I and x ∈ J , that is I ∩ J which we know (from examining
the kernel of ψ) is equal to IJ . Since f is injective and surjective it is an isomorphism.

Remark 1. As is shown in the proof of the previous lemma, when two ideals I and J are coprime
we have the equality IJ = I ∩ J . The isomorphism for the binary case of the Chinese Remainder
Theorem can then be written as

R/(I ∩ J) ∼= R/I ×R/J

Similarly, for the general case shown in the following lemma we may write

R/(I1 ∩ · · · ∩ In) ∼= R/I1 × · · · ×R/In

Theorem 10 (Chinese Remainder Theorem). For commutative ring R, let I1, . . . , In ⊆ R be
mutually coprime ideals, meaning Ij + Ik = R for all 1 ≤ j < k ≤ n. Then we have

R/(I1 . . . In) ∼= R/I1 × · · · ×R/In

with corresponding isomorphism x+ (I1 . . . In) → (x+ I1, . . . , x+ In).

Proof. Two ideals are coprime if and only if their sum contains the multiplicative identity. Then
by assumption 1 ∈ Ij + In for all j ∈ [n− 1], and in particular there exist αj ∈ Ij, βj ∈ In for all
j ∈ [n− 1] such that αj + βj = 1. Their product expands as

1 =
n−1∏
j=1

(αj + βj) =

(
n−1∏
j=1

αj

)
+ γ ∈

(
n−1∏
j=1

Ij

)
+ In
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where γ ∈ In because every term of γ contains some βj ∈ In. Thus (I1 . . . In−1) and In are
coprime.

Then the binary case of the Chinese Remainder Theorem from Lemma 3 followed by induction
implies

R/(I1 . . . In) = R/((I1 . . . In−1)In)
∼= R/(I1 . . . In−1)×R/In
∼= (R/I1 × · · · ×R/In−1)×R/In
∼= R/I1 × · · · ×R/In

We may also apply the binary case of the Chinese Remainder Theorem to conclude the follow-
ing homomorphism is an isomorphism

x+ (I1 . . . In−1)In → (x+ (I1 . . . In−1), x+ In)

By induction x + (I1 . . . In−1) → (x + I1, . . . , x + In−1) is an isomorphism, so composing with
the previous isomorphism yields the desired isomorphism

x+ (I1 . . . In−1In) → (x+ I1, . . . , x+ In−1, x+ In)

3.3 An example representing Fq[X]/Φn(X)

The tools developed in the other two sections are used Section 4 in this project, and as far as we
have developed them so far they have no overlapping use. But before concluding this section we
can illustrate how we may combine them in a straightforward and useful way. In particular, below
we show how cyclotomic polynomials can be represented over finite fields using both the reducibil-
ity result shown in the first section, as well as the generalized Chinese Remainder Theorem.

Lemma 4 (Representation of Fq[X]/Φn(X)). Let Fq be a finite field of prime power order q, and
suppose we havem and n as discussed in Corollary 3 regarding the reducibility of Φn over Fq with
respect to m, but for the special case that ordn(q) = n/m. Then we have

Fq[X]/Φn(X) = Fq[X]

/ ϕ(m)∏
k=1

(
Xn/m − ζk

) ∼= ϕ(m)∏
k=1

Fq[X]

Xn/m − ζk

with ζk the ϕ(m) primitive m’th roots of unity in the group F×
q .

Proof. The first equality holds by the reducibility of Φn over Fq with respect tom from Corollary 3.
The isomorphism holds by the Chinese Remainder Theorem from Theorem 10 provided the ϕ(m)
factors of Φn generate mutually coprime ideals. We now show this is indeed the case.

Each factor Xn/m− ζk is irreducible since we assume ordn(q) = n/m, and therefore each ring
Fq/(X

n/m− ζk) in the direct product is a (finite) field. From commutative ring theory we know an
ideal I is maximal if and only if the quotient ring R/I is a field. Therefore, the ideals generated by
the factors Xn/m − ζk are maximal. If I and J are distinct, maximal ideals, then I + J is an ideal
larger than both I and J and hence must be R, that is I and J are coprime. As maximal ideals
(Xn/m− ζk) and (Xn/m− ζk′) are distinct for all k ̸= k′, we have it that the factors of Φn generate
mutually coprime ideals.
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4 Ring of interest
This section examines a certain kind of ring in three sections of increasing specificity. The kind
of ring of interest may seem rather arbitrary, but such rings are a central topic in algebraic number
theory. For ring of integers OL of number field L, our ring of interest is OL/pOL where p is a
prime ideal of the ring of integers OK of some number field K contained in L. The nature of this
ring is largely determined by how the ideal p ⊆ OK splits into prime ideals in OL, and indeed that
turns out to be the core topic of our investigation.

In the first section we present definitions and basic results for the general case of number fields
K and L in which we assume nothing particular about the extension L/K. Here we will make
use of the Chinese Remainder Theorem covered in Section 3. In the second section we focus
on the special case that the extension L/K is Galois. The increased specificity yields certain
simplifications, but those simplifications yield additional definitions and concepts to cover. In the
third section we further specialize to the case that K = Q and L = Q[X]/Φn(X), that is when
L/K is an n’th cyclotomic extension. Here we will make use of the reducibility of cyclotomic
polynomials covered in Section 3. In all sections we make claims standard to algebraic number
theory without providing proof. For proofs one may consult books such as [Mil20] and [Mar18].

4.1 The general case
Let K and L be number fields with corresponding rings of integers OK and OL, and consider
the extension L/K. Rings of integers of number fields are ‘Dedekind domains,’ those are integral
domains in which every (non-zero and proper) ideal factors into a (unique) product of prime ideals.
Moreover, every prime ideal in a Dedekind domain is maximal.

Remark 2. To say an ideal a divides an ideal b is to say there exists a quotient ideal q such that
aq = b. This is equivalent to the statement a ⊇ b. If it’s counter-intuitive that the divisor is larger
than the dividend, consider how ideals in Z are multiples of integers, so the smaller the integer the
larger the ideal.

Let p be an ideal in OK , and note that pOK is an ideal in OL. We say a prime ideal P in OL lies
over p (or p lies under P) if P|pOK (or we abuse notation and write P|p and refer to prime ideals
as ‘primes’). Every prime p ⊆ OK lies under some prime P ⊆ OL, and every prime P ⊆ OL lies
over some unique prime p ⊆ OK .

Continuing with P and p, since they are prime and thus maximal ideals, the quotient rings
OL/P and OK/p are fields (and in fact finite). This is because for any commutative ring R, an
ideal I is maximal if and only if R/I is a field. Moreover, since P ⊆ pOL the field OL/P is a
finite field extension of OK/p. The degree of the field extension [OL/P : OK/p] is the inertia
degree of P over p, and denoted f(P|p).

Suppose the ideal pOL ⊆ OL has unique prime factorization

pOL =

g∏
i=1

Pei
i

The exponents ei are called ramification indices, and the ramification index ei of Pi over p is
denoted e(Pi|p) = ei. Likewise we have the inertia degree fi of Pi over p as f(Pi|p) = [OL/Pi :
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OK/p]. The ramification indices and inertia degrees of the factorization satisfy the fundamental
relation

g∑
i=1

eifi =

g∑
i=1

e(Pi|p)f(Pi|p) =
∑
P|p

e(P|p)f(P|p) = [L : K]

Several definitions describe the nature of the factorization:

• If ei > 1 we say p ramifies in L, and more specifically Pi is ramified over p. Otherwise,
with all ei = 1 we say p is unramified in L.

• If g = [L : K] (in which case ei, fi = 1) we say p splits completely (or is totally split) in L.

• If g = 1, then in the case e1 = 1 we say p is inert in L, while in the case f1 = 1 we say p is
totally ramified in L.

Having introduced the setting, in the two subsections that follow we will introduce two basic
results. The first result is how one may go about finding the prime factors of pOLmaking a weak
assumption on p. The second result is how one may represent our ring of interest OL/pOL having
found the prime factors of pOL.

4.1.1 Finding the factors

We present a common technique for finding the prime factorization of prime ideal p ∈ OK in terms
of prime ideals of OL. First we must fix some α ∈ OL such that L = K[α] ∼= K[X]/(h(x))where
h ∈ K[X] is the minimal polynomial of α over K. Then OK [α] is a subring of OL with finite
index [OL : OK [α]]. This technique for factoring p in OL works provided the prime integer that
lies under p does not divide [OL : OK [α]].

Now h, while defined in K[X], is actually in OK [X] because α ∈ OL is the root of some
polynomial in Z[X] divisible by h ∈ K[X] which prevents h from having coefficients in K \ OK .
Suppose h = h(modp) factors over OK/p as

h(X) =

g∏
i=1

hi(X)ei mod p

where hi are distinct, monic, and irreducible in (OK/p)[X]. Then the prime decomposition of p in
OL is

pOL =

g∏
i=1

Pei
i

where Pi = (p, hi(α)) = pOL + hi(α)OL is the ideal in OL generated by p and hi(α). Moreover,
we have the following field isomorphism

OL

(p, hi(α))
∼=

(OK/p)[X]

(hi(X))

The inertia degree f(Pi|p) = [OL/Pi : OK/p] is then seen to be deg(hi) = deg(hi).
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4.1.2 Using the Chinese Remainder Theorem

We will now exploit prime factorization to invoke the Theorem 10. Since each Pi in the factoriza-
tion is maximal, so are the powers Pei

i . That is, if ideals I and J are coprime (I + J = R) then
so are their powers (Ik + Jk′ = R). Suppose otherwise, that there exists some maximal ideal K
such that Ik + Jk′ = K. Then since I (or argue using J) is prime, Ik ⊆ K implies I ⊆ K which
contradicts the maximality of I . The criteria for the Chinese Remainder Theorem requires that the
ideals Pei

i be coprime. For this we use the fact that any two distinct, maximal ideals are coprime.
For justification, note that if I and J are distinct, maximal ideals, then I + J is an ideal larger
than both I and J and hence must be the full ring. Now we may invoke the Chinese Remainder
Theorem for the ring OL/pOL.

OL/pOL = OL

/ g∏
i=1

Pei
i
∼=

g∏
i=1

OL/P
ei
i

Consider what this looks like having used the Section 4.1.1 method of factorizing pOL:

OL

pOL

∼=
g∏

i=1

OL

(p, hi(α))ei
∼=

g∏
i=1

(OK/p)[X]

(hi(X))ei

4.2 The Galois case
Continuing with L/K and the factorization of pOL into primes Pi, the ramification indices and
inertia degrees are simple in the case that L/K is Galois. In particular, all ei = e are equal, and all
fi = f are equal, and as such, the fundamental relation becomes

efg = [L : K]

Since automorphisms on L induce automorphisms on subrings, we have σ(OL) = OL for any
σ ∈ Gal(L/K). Also noting that σ(p) = p because σ fixes K, we may apply σ to the prime
decomposition of pOL to get

pOL = σ(pOL) =

g∏
i=1

σ(Pi)
e

As an automorphism, σ maps prime ideals to prime ideal, so {σ(Pi)}i∈[g] must be the unique prime
factorization of pOL and thus coincide with {Pi}i∈[g]. In other words, σ acts on the prime ideals
by permuting them. Moreover, the action is transitive, meaning for every two prime ideals Pi and
Pi′ lying over p there exists some σ ∈ Gal(L/K) such that σ(Pi) = Pi′ . Furthermore, to say the
action is simply transitive is to say there exists a unique such σ.

For some prime ideal P ⊆ OL the decomposition group of P is the subgroup of Gal(L/K)
that fixes P, that is

D(P) = {σ ∈ Gal(L/K) | σ(P) = P}

As with every Galois subgroup there is an associated field, the field that is fixed by exactly the
automorphisms of the subgroup. The decomposition field associated with D(P) is

LD(P) = {x ∈ L | ∀σ ∈ D(P), σ(x) = x}
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In the case σ ∈ D(P), since σ is invariant on P and thus its cosets, we may consider σ =
σ(modP) as an automorphism on OL/P. Note by fixingK, any σ ∈ Gal(L/K) also fixes OK/p.
Therefore, with any σ ∈ D(P) inducing an automorphism on OL/P that fixes subfield OK/p, we
have the natural map D(P) → Gal((OL/P)/(OK/p)) defined as σ → σ. The kernel of this
homomorphism, a subgroup of D(P), is referred to as the inertia group of P, and takes the form

E(B) = {σ ∈ D(P) | ∀x ∈ OL, σ(x) ≡ x mod P}

Analogous to the decomposition field, we define the inertia field associated with E(P) as

LE(P) = {x ∈ L | ∀σ ∈ E(P), σ(x) = x}

The natural map from D(P) to Gal((OL/P)/(OK/p)) is actually surjective, and thus we have
a group isomorphism D(P)/E(P) ∼= Gal((OL/P)/(OK/p)). Since the latter Galois group is
cyclic and generated by the Frobenius element, so is D(P)/E(P) and we denote it as F (P). We
have the following automorphism group orders:

• |Gal(L/K)| = e(P|p)f(P|p)g

• |D(P)| = e(P|p)f(P|p)

• |E(P)| = e(P|p)

• |F (P)| = f(P|p)

The following diagram illustrates the changes in ramification indices and inertia degrees as we step
through the fields from K to L.

L P

[L : LE] = e
∥∥∥ ∥∥∥ e(P|P ∩ LE) = e(P|p) f(P|P ∩ LE) = 1

LE P ∩ LE

[LE : LD] = f
∥∥∥ ∥∥∥ e(P ∩ LE|P ∩ LD) = 1 f(P ∩ LE|P ∩ LD) = f(P|p)

LD P ∩ LD

[LD : K] = g
∥∥∥ ∥∥∥ e(P ∩ LD|p) = 1 f(P ∩ LD|p) = 1

K p

The word ‘decomposition’ reflects how in the bottom layer the prime decomposes into g parts. The
word ‘inertia’ reflects how in the middle layer the prime remains inert with inertia degree 1, not
ramifying until the top layer.

4.2.1 The abelian Galois case

In the case that the Galois group is abelian, the decomposition groups for all Pi lying over p
coincide. Let P be any such Pi. It suffices to show that D(P) = D(τ(P)) for all τ in the Galois

20



group. This is because by the transitivity of the Galois action every prime lying above p takes the
form τ(P) for some τ . Equality of D(P) and D(τ(P)) is seen set-membership-wise as

σ ∈ D(τ(P))

⇐⇒ σ(τ(P)) = τ(P)

⇐⇒ (τ−1 ◦ σ ◦ τ)(P) = P

⇐⇒ σ(P) = P

⇐⇒ σ ∈ D(P)

Since all decomposition groups D(Pi) are the same (normal) subgroup of Gal(L/K), we may
consider the quotient group Gal(L/K)/D(P) of order efg/ef = g where P is again any Pi. We
will now show that this quotient group acts simply transitively on the primes lying above p. To do
so we show that the map σ → σ(P) with domain Gal(L/K)/D(P) is injective, hence for each
prime P′ lying above p there is a unique σ ∈ Gal(L/K)/D(P) such that σ(P) = P′. For two
cosets τ ◦D(P) and τ ′ ◦D(P) had by some coset representatives τ and τ ′ we have

(τ ′ ◦D)(P) = (τ ◦D)(P)

=⇒ τ ′(D(P)) = τ(D(P))

=⇒ τ ′(P) = τ(P)

=⇒ (τ−1 ◦ τ ′)(P) = P

=⇒ τ−1 ◦ τ ′ ∈ D(P)

and hence by the equivalence relation of cosets τ and τ ′ belong to the same coset.
The simple transitivity of Gal(L/K)/D(P) allows us to express the prime factorization of pOL

as
pOL =

∏
σ∈Gal(L/K)/D(P)

σ(P)e

and along with the Chinese Remainder Theorem we may write our ring of interest as

OL/pOL
∼=

∏
σ∈Gal(L/K)/D(P)

OL/σ(P)e

4.3 The cyclotomic case
We will now examine the special case of cyclotomic fields, that is number fields of the form
L = Q(µn) (extending K = Q) where µn are the n’th complex roots of unity. The extension
L/K = Q(µn)/Q is Galois, and we briefly examined such extensions in Section 2. The minimal
polynomial over Q of the generators of µn (the primitive n’th complex roots of unity) is Φn, the
n’th cyclotomic polynomial. The ring of integers of Q is Z, and the ring of integers of Q(µn) turns
out to be Z[µn].

Remark 3. For a ring R the notations R[α] and R(α) indeed carry different meanings, though
they coincide in certain cases. The ring R[α] denotes the ring had by adjoining α to R, which
is the smallest ring containing both α and R. The ring R(α), only really used when R is a field,
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denotes the ring had by adjoining α and 1/α to R, that is the smallest field containing both α and
R.

If α is the root of some polynomial h overR with invertible constant coefficient, then 1/α exists
in R[α] and thus R[α] = R(α) since

α ·
hdeg(h)α

deg(h)−1 + · · ·+ h1
−h0

= 1

Therefore in the case that R is a field, the two notations coincide if and only if α is algebraic over
R.

In our case, since Q is a field and µn vanishes on Φn ∈ Q[X] we have Q[µn] = Q(µn), while
on the other hand Z[µn] ̸= Z(µn).

Recall our goal here is to investigate the ring OL/pOL where p is a prime ideal of OK . In the
cyclotomic case, since OK = Z we have p = (p) ⊆ Z generated by some prime number p ∈ Z.
Our ring of interest is then Z[µn]/(p)Z[µn]. To clarify, we have the following correspondences:

• Number fields: K = Q and L = Q(µn)

• Rings of integers: OK = Z and OL = Z[µn].

• Primes: p = (p) ⊆ Z for some prime number p ∈ Z, and the primes Pi ⊆ Z[µn] lying
above p will be found in the following subsection.

4.3.1 Cyclotomics as a general case

Now we apply the tools from the general case discussed in Section 4.1 to the cyclotomic case,
namely how to find the prime factors of (p)Z[µn] and how to represent Z[µn]/(p)Z[µn] in terms of
those prime factors using the Chinese Remainder Theorem.

To find the factorization of prime ideal p = (p) ∈ OK into prime ideals of OL = Z[µn], we
will use the method presented Section 4.1.1. First we fix some primitive n’th root of unity α ∈ µn.
Then we have L = Q(α) = Q[α] = K[α] since L is an algebraic extension of K. Furthermore,
we have the isomorphism Q(α) ∼= Q[X]/(Φn(X)). To complete the criteria for using the method,
note that p (the prime number lying under (p)) does not divide [OL : OK [α]] = [Z[α] : Z[α]] = 1.

We know from the discussion of reducibility of cyclotomic polynomials over finite fields from
Corollary 3 that Φn over the finite field OK/p = Z/(p) factors into irreducibles as

Φn(X) mod (p) =

ϕ(r)∏
i=1

(Xn/r − ζi) mod (p)

where ζi are the primitive r’th roots of unity in the group (Z/(p))× for r = n/ordn(p). The method
then yields the prime ideal decomposition of (p) in Z[α] as

(p)Z[α] =
ϕ(r)∏
i=1

(
p, αn/r − ζi

)
That is, (p)Z[α] splits completely into prime ideals generated by both p and αn/r − ζi which
we denote Pi = (p, αn/r − ζi). Moreover, the finite field Z[α]/(p, αn/r − ζi) is isomorphic to
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(Z/(p))[X]/(Xn/r − ζi) and hence f((p,Xn/r − ζi)|(p)) = deg(Xn/r − ζi) = ordn(p). Notice
how these inertia degrees are P-invariant, and also notice how the ramification indices are also
P-invariant as (p)Z[α] splits completely. Recall that these invariants are expected since we are in
a Galois extension.

We may use this prime factorization to apply the Chinese Remainder Theorem and express our
ring of interest as

Z[µn]

(p)Z[µn]
∼=

ϕ(r)∏
i=1

Z[α]
(p, αn/r − ζi)

∼=
ϕ(r)∏
i=1

(Z/(p))[X]

(Xn/r − ζi)

This is a special case of the more general result for representing Fq[X]/Φn(X) from Lemma 4.

4.3.2 Cyclotomics as a Galois case

Lastly we apply the tools from the Galois case in Section 4.2 to the cyclotomic case. Keep in mind
throughout that Pi = (p,Xn/r − ζi). As expected, we observed in the previous subsection that all
inertia degrees and ramification indices coincide. The fundamental identity in the cyclotomic case
becomes

efg = 1 · ordn(p) · ϕ(n/ordn(p)) = ϕ(n) = [Q(µn) : Q]

Moreover, our list of automorphism group orders becomes

• |Gal(Q(µn)/Q)| = efg = ϕ(n)

• |D(Pi)| = ef = 1 · ordn(p) = ordn(p)

• |E(Pi)| = e = 1

• |F (Pi)| = f = ordn(p)

Recall that the natural map σ → σ( mod (p)) fromF (Pi) := D(Pi)/E(Pi) to Gal((Z[µn]/Pi)/(Z/(p)))
is surjective. Since E(Pi) is the trivial group with order 1, the natural map is in fact an isomor-
phism between D(Pi) and Gal((Z[µn]/Pi)/(Z/(p))). As listed above, D(Pi) has order ordn(p),
and as a subgroup of Gal(Q(µn)/Q) it is isomorphic to a subgroup of (Z/(n))×. With these con-
straints in mind, we may guess that D(Pi) is isomorphic to the subgroup of (Z/(n))× generated
by p, which we denote ⟨p⟩. Indeed, from the theory of finite fields we know the Frobenius auto-
morphism x→ xp generates the Galois group of any finite field extension.

Since the Galois group is abelian (as it’s isomorphic to (Z/(n))×), we may use the abelian
Galois case discussed in Section 4.2.1 to express the prime factorization in terms of a single prime
as

(p)Z[µn] =
∏

σ∈Gal(Q(µn)/Q)/D(P)

σ((p,Xn/r − ζ))

where ζ is any primitive (n/ordn(p))’th root of unity in the group (Z/(p))×, and P is any of the
primes Pi. Once again using the Chinese Remainder Theorem we may write our ring of interest
as

Z[µn]

(p)Z[µn]
∼=

∏
σ∈Gal(Q(µn)/Q)/D(P)

Z[α]
σ((p, αn/r − ζ))

∼=
∏

σ∈Gal(Q(µn)/Q)/D(P)

(Z[µn]/(p))[X]

σ((Xn/r − ζ))
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where for the last isomorphism we use the fact that σ((p, αn/r − ζ)) = (p, σ(αn/r − ζ)) since σ
fixes p ∈ Q.

5 Tree form factorization
In Section 4 we saw how our ring of interest may be expressed in two particular ways. In the
general case of cyclotomics discussed in Section 4.3.1, we observed the representation

ϕ(r)∏
i=1

(Z/(p))[X]

(Xn/r − ζi)
(1)

where r = n/ordn(p), ordr(p) = 1, and ζi are the ϕ(r) primitive r’th roots of unity. In the galois
case of cyclotomic as discussed in Section 4.3.2, we observed the representation∏

σ∈Gal(Q(µn)/Q)/D(P)

(Z[µn]/(p))[X]

σ((Xn/r − ζ))
(2)

for the same values of r, where Q(µn)/Q is the n’th cyclotomic field, ζ is any primitive r’th root of
unity, and D(P) is the decomposition group of the prime ideal P = (Xn/r − ζ). We only focused,
however, on how the ideal (p) splits into prime ideals of the cyclotomic ring of integers Z[µn]. We
are now interested rather in how (p) splits more generally into reducible (non-prime) ideals before
splitting into irreducible (prime) ideals. In other words, the two decompositions Equation (1)
and Equation (2) are fully-split decompositions, whereas now we’re interested in more general
partially-split decompositions. Our motivation is the full convenience of such representations.

If one recalls from Section 4.1.1, to determine the splitting of (p) in Z[µn] we instead turn to
the splitting of Φn over Z/(p). The method may be applied, however, not only to identify how the
full splitting into prime ideals occurs, but to identify any partial splitting into non-prime ideals as
well. Specifically, if Φn splits over Z/(p) into not necessarily irreducible factors hi as

Φn(X) mod (p) =
∏
i

hi(X) mod (p)

then (p) splits in Z[µn] such that our ring representation becomes

(Z/(p))[X]

(Φn(X))
=
∏
i

(Z/(p))[X]

(hi(X))

While this kind of decomposition is similar to Equation (1), we can also derive decompositions
similar to Equation (2) by analyzing how (subgroups of) the Galois group of Q(µn)/Q acts on these
ideals (hi(X)) ⊆ (Z/(p))[X]/(Φn(X)). In fact, instead of focusing on the ring representation
directly, we will only focus on the ideals (hi(X)), how the Galois group acts on them, and how
they compose to form (Φn(X)) as

(Φn(X)) =
∏
i

(hi(X))

In particular, the following two sections focus on different ways to index the ideals (hi(X)). In
the first section we use indexing similar to Equation (1), and in the second section we use indexing
similar to Equation (2).
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5.1 Indexing via Hm sets
Let n =

∏
k p

fk
k and m =

∏
k p

ek
k for primes pk and powers ek ≥ fk ≥ 1. We begin with a lemma

that holds for such n and m.

Lemma 5 (ϕ(n)/ϕ(m) = n/m). For n and m as described we have ϕ(n)/ϕ(m) = n/m.

Proof. By the properites of Euler’s totient function ϕ we have

ϕ(n) =
∏
k

ϕ(pekk ) =
∏
k

pekk

(
1− 1

pk

)
ϕ(n) =

∏
k

ϕ(pfkk ) =
∏
k

pfkk

(
1− 1

pk

)

Therefore ϕ(n)/ϕ(m) reduces to ∏
k

pekk
pfkk

=
n

m

Next define Hm ⊆ Z×
n to be the subgroup

Hm :=
{
x ∈ Z×

n | x ≡ 1 mod m
}

Note Hn is the trivial subgroup. A important identity for Hm is Z×
n /Hm

∼= Z×
m, which comes from

the First Isomorphism Theorem with respect to the homomorphism (x → x mod m) : Z×
n → Z×

m

with kernel Hm and image Z×
m. From this isomorphism and Lemma 5 we conclude |Hm| =

ϕ(n)/ϕ(m) = n/m.
Our first form for indexing factors of (Φn(X)) is the form we’ve used in previous sections, that

is by enumerating the primitive m’th roots of unity ζi as

(Φn(X)) =

ϕ(m)∏
i=1

(Xn/m − ζi)

assuming ordm(p) = 1, and indeed let us assume henceforth that this holds by assumption when-
ever we split Φn. We may instead index the factors in the direct product by selecting any primitive
m’th root of unity ζ and exponentiating over Z×

m as

(Φn(X)) =
∏
i∈Z×

m

(Xn/m − ζ i)

Alternatively, consider the isomorphism Z×
m
∼= Z×

n /Hm together with the map (x→ x·Hm) : Z×
m →

Z×
n /Hm. Using Z×

n /Hm as an alternative set to Z×
m for exponentiating ζ is well defined because

Hm is the subgroup of Z×
n that fixes the (primitive) m’th roots of unity on exponentiation. By the
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fact that Hm, and hence its cosets, are fixed on the (primitive) m’th root of unity ζ , exponentiating
ζ by any coset representatives in a given coset yield the same result. We may thus write

(Φn(X)) =
∏

i∈Z×
n /Hm

(Xn/m − ζ i) (3)

We have so far represented (Φn(X)) in a decomposition using a new indexing set Z×
n /Hm. We

can extend our use of Hm to further decompose the factors (Xn/m − ζ i), and continuing as such
we can recursively decompose (Φn(X)) down to it’s prime ideals.

Theorem 11 (Decomposition byHm sets). Consider a sequencem1, . . . ,mt such that allmk share
the same prime factors as n, and mk|mk+1 for k ∈ [t− 1] and mt|n. With ζ a primitive mt’th root
of unity, we have

(Φn(X)) =
∏

i1∈Z×
n /Hm1

∏
i2∈Hm1/Hm2

· · ·
∏

it∈Hmt−1/Hmt

(Xn/mt − ζ i1···it)

Proof. We will prove a single iteration of this recursion, and to do so we simplify notation. Given
a pair mk and mk+1, we alias with ℓ := mi and m := mi+1 noting ℓ|m. Furthermore, let ζ be a
primitive m’th root of unit, and let η := ζm/ℓ. We’ll prove that η is a primitive ℓ’th root of unity
and for i ∈ Z×

n /Hℓ we have

(Xn/ℓ − ηi) =
∏

j∈Hℓ/Hm

(Xn/m − ζ ij) (4)

This decomposition may be applied directly after decomposition Equation (3). To then recurse on
this decomposition, note that with representative i ∈ Z×

n /Hℓ and representative j ∈ Hℓ/Hm we
have representative ij ∈ Z×

n /Hm.
To prove that η is a primitive ℓ’th roof of unity, we argue ηx = 1 if and only if ℓ divides x. The

equation
ηx =

(
ζm/ℓ

)x
= 1

holds if and only if m divides xm/ℓ, since ζ is a primitive m’th root of unity. But m divides
m(x/ℓ) if and only if ℓ divides x.

To prove the decomposition Equation (4), we show the generating polynomials of both sides
are the same in degree and any root of the right side is a root of the left side. Regarding degree, the
left side has degree n/ℓ while the right side has degree

(n/m)
|Hℓ|
|Hm|

= (n/m)
n/ℓ

n/m
= n/ℓ

Regarding roots, any X satisfying Xn/m = ζ ij for some j ∈ Hℓ/Hm satisfies Xn/ℓ = ηi. Take
Xn/m = ζ ij and raise both sides to m/ℓ getting

Xn/ℓ =
(
ζm/ℓ

)ij
= ηij = ηi

where ζm/ℓ = η by definition of η, and ηij = ηi since j ⊆ Hm fixes η as a (primitive) ℓ’th root of
unity.
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5.2 Indexing via Gm sets
Recall that the Galois group of the n’th cyclotomic field Q(µn)/Q is isomorphic to Z×

n via the map

(k → σk) : Z×
n → Gal(Q(µn)/Q)

where σk leaves Q fixed while raising any element of µn to the power k. In the context of (Φn(X))
over Z/(p), that means leaving the base field Z/(p) fixed and raising X to the power k.

We would like to exploit this isomorphism to express the decomposition by Hm sets in The-
orem 11 using subgroups of the Galois group. Define Gm ⊆ Gal(Q(µn)/Q) to be the Galois
subgroup isomorphic to Hm ⊆ Z×

n .

Theorem 12 (Decomposition byGm sets). Consider a sequencem1, . . . ,mt such that allmk share
the same prime factors as n, and mk|mk+1 for k ∈ [t− 1] and mt|n. With ζ a primitive mt’th root
of unity, we have

(Φn(X)) =
∏

σ1∈Gal(Q(µn)/Q)/Gm1

∏
σ2∈Gm1/Gm2

· · ·
∏

σt∈Gmt−1/Gmt

(σt ◦ · · · ◦ σ1)(Xn/mt − ζ)

Proof. As we did in proving decomposition byHm sets in Theorem 11, we will prove this equation
by a single iteration of recursion with simplified notation. Given a pairmk andmk+1, we alias with
ℓ := mk and m := mk+1 noting ℓ|m. Furthermore, let ζ be a primitive m’th root of unit, and let
η := ζm/ℓ. We’ll prove that for σi ∈ Gal(Q(µn)/Q)/Gℓ we have

σi(X
n/ℓ − η) =

∏
σj∈Gℓ/Gm

(σj ◦ σi)(Xn/m − ζ) (5)

To recurse on this decomposition, note that with σi ∈ Gal(Q(µn)/Q)/Gℓ and σj ∈ Gℓ/Gm we
have (σj◦σi) ∈ Gal(Q(µn)/Q)/Gm. We also note, having proved it previously, that η is a primitive
ℓ’th root of untiy.

We now argue for the following equation

σk((X − α)) = (Xk − α) = (X − α1/k)

where 1/k is the inverse of k in the group Z×
n . The first equation follows by definition of σk. The

second equation will be proven by showing each ideal contains the other. As any root of X − α1/k

is a root of Xk − α, we have (Xk − α) contained in (X − α1/k). For the other direction, let
k′ = 1/k denote the inverse of k in the group Z×

n . Since we are considering these ideals within the
ring (Z[X]/(p))/(Φn(X)) where Xn = 1, we have Xk′k = X . Then any root of Xk − α is a root
of

(Xk)k
′ − αk′ = X − αk′ = X − α1/k

so (X − α1/k) is contained in (Xk − α).
With this equation in mind, we may rewrite the decomposition Equation (5) as

(Xn/ℓ − η1/i) =
∏

j∈Hℓ/Hm

(Xn/m − ζ(1/i)(1/j))
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With i′ ∈ Z×
n /Hℓ the inverse to i in any subgroup of Z×

n we may further rewrite the decomposition
as

(Xn/ℓ − ηi
′
) =

∏
j′∈Hℓ/Hm

(Xn/m − ζ i
′j′)

Since we are indexing over a group (that is Hℓ/Hm), for every j that appeared in the group pre-
viously there is now a unique inverse j′, so the two are interchangeable. This equation, however,
was already proven in Equation (4), so our proof is complete.

5.3 Indexing via ⟨m+ 1⟩ sets
It turns out that in many cases Hm is generated by ⟨m+ 1⟩. This is the case provided m doesn’t
have a single factor of 2 in it’s prime decomposition, that is 2 may have multiplicity 0 or k > 1.
We will prove this statement below. Without reintroducing notation, we may rewrite the two
decompositions proven above in this alternative form. The first decomposition due to Theorem 11
becomes

(Φn(X)) =
∏

i1∈Z×
n /⟨m1+1⟩

∏
i2∈⟨m1+1⟩/⟨m2+1⟩

· · ·
∏

it∈⟨mt−1+1⟩/⟨mt+1⟩

(Xn/mt − ζ i1···it)

The second decomposition due to Theorem 12 becomes

(Φn(X)) =
∏

σ1∈Gal(Q(µn)/Q)/⟨σm1+1⟩

∏
σ2∈⟨σm1+1⟩/⟨σm2+1⟩

· · ·
∏

σt∈⟨σmt−1+1⟩/⟨σmt+1⟩
(σt◦· · ·◦σ1)(Xn/mt−ζ)

The following theorem demonstrates when ⟨m+ 1⟩ generates Hm.

Theorem 13 (When ⟨m+ 1⟩ generates Hm). Suppose n =
∏

i p
ei
i and m =

∏
i p

fi
i with ei ≥ fi ≥

1. Moreover, suppose that if pi = 2 then fi ≥ 2. Then ⟨m+ 1⟩ generates the subgroup Hm ⊆ Z×
n .

Proof. As a subgroup of Hm, we know ⟨m+ 1⟩ has order dividing n/m, and we are left to show
it has order at least n/m =

∏
i p

ei−fi
i . To do so we’ll show that raising m + 1 to any of the

powers
∏

i p
gi
i for gi = ei − fi or gi = ei − fi − 1 results in modulo 1 only for the trivial case that

∀i, gi = ei − fi in which case
∏

i p
gi
i = n/m.

Our core lemma is that power
∏

i p
gi
i for gi ≥ 0 of m+ 1 takes the form

1 + d
∏
i

pfi+gi
i

for some d coprime with all pi, that is (d,
∏

i pi) = 1. In the case that ∀i, gi = ei − fi this reduces
to

1 + d
∏
i

peii = 1 + dn

which has residue 1 modulo n. In all other cases, however, there exists at least one j such that
gj = ej − fj − 1 in which case the expression reduces to

1 + d · pej−1
j

∏
i ̸=j

pfi+gi
i
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As n does not divide pej−1
j

∏
i ̸=j p

fi+gi
i and d is coprime with n, the expression has residue not

equal to 1 modulo n.
Now to prove the lemma, we note that the power 1 of m + 1 takes this form with ∀i, gi =

0 and d = 1. For induction, we consider raising (1 + d
∏

i p
fi+gi
i ) to power pj to get power

(1 + d · pfi+(gi+1)
j

∏
i ̸=j p

fi+gi
i ) and demonstrate it indeed takes the form

1 + d′

(
p
fi+(gi+1)
j

∏
i ̸=j

pfi+gi
i

)
for some d′ with (d′,

∏
i pi) = 1.

We compute the power with binomial expansion as follows.(
1 + d

∏
i

pfi+gi
i

)pj

=

pj∑
k=0

(
d
∏
i

pfi+gi
i

)k

= 1 + pj

(
d · pfj+gj

j

∏
i ̸=j

p
fj+gj
i

)

+

pj∑
k=2

(
pj
k

)
dk · pfj+gj+1

j · p(k−1)(fj+gj)−1
j

∏
i ̸=j

p
k(fi+gi)
i

= 1 + p
fj+(gj+1)
j

(
d
∏
i ̸=j

p
fj+gj
i

)

+

pj∑
k=2

(
pj
k

)
dk · p(k−1)(fj+gj)

j

∏
i ̸=j

pfi+gi
i

∏
i ̸=j

p
(k−1)(fi+gi)
i

= 1 + p
fj+(gj+1)
j

∏
j ̸=j

pfi+gi
i

(
d+

pj∑
k=2

(
pj
k

)
dk · p(k−1)(fj+gj)−1

j

∏
i ̸=j

p
(k−1)(fi+gi)
i

)

= 1 + d′

(
p
fj+(gj+1)
j

∏
j ̸=j

pfi+gi
i

)
for

d′ := d+

pj∑
k=2

(
pj
k

)
dk · p(k−1)(fj+gj)−1

j

∏
i ̸=j

p
(k−1)(fi+gi)
i

Now we must argue that (d′,
∏

i pi) = 1. Write d′ = d + T , and recall that by induction d is
coprime with

∏
i pi. On the other hand, T is a sum consisting of pj − 1 terms, and each term is

divisible by pi for i ̸= j because (k − 1)(fi + gi) ≥ 1 because k ≥ 2, fi ≥ 1, and gi ≥ 0. We now
also argue that each term of T is divisible by pj . First note this holds for all terms k ≥ 3. For the
case k = 2, note the term is

pj(pj − 1)

2
d2 · pfj+gj−1

j

∏
i ̸=j

pfi+gi
i

and we split analysis by condition on pj .
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• Suppose pj = 2. Then fj + gj − 1 ≥ 1 as fj ≥ 2, thus the term is divisible by pj .

• Suppose pj ̸= 2. Then pj is odd, so (pj−1)/2 is a whole number and the binomial coefficient
pj(pj − 1)/2 is divisible by pj .

Thus for every prime pi (including i = j), d is coprime with pi while T is divisible by pi. We wish
to conclude that (d′, pi) = 1 for all i. Suppose T = pi ·qi for quotient qi, so d′ = d+pi ·qi. Suppose
for sake of contradiction that d′ = Qi · pi. Then pi(Qi − qi) = d, contradicting (d, pi) = 1, and
therefore (d′, pi) = 1. As such we have d′ coprime with

∏
i pi as promised.

There is, however, a simpler way to write these decompositions in terms of ⟨m+ 1⟩ and
⟨σm+1⟩. We can show that the representative (mk + 1) has order mk+1/mk in the subgroup
Hmk

/Hmk+1
, which itself has order mk+1/mk. Therefore the first mk+1/mk powers of (mk + 1)

generate elements in Hmk
that represent each of the mk+1/mk cosets of Hmk

/Hmk+1
. To see this,

note the t’th power of (mk + 1) takes the form

T ·m2
k + t ·mk + 1

for some expression T . The smallest t for which this expression reduces to 1 mod mk+1 is t =
mk+1/mk, thus mk+1/mk is the order of representative (mk + 1) in the subgroup Hmk

/Hmk+1
.

Having established that powers of (mk +1) may serve in place of the quotient groups, we may
replace the quotient groups with simple integer enumeration (also replacing Z×

n / ⟨m1 + 1⟩ with
Z×

m1
). The first decomposition now becomes

(Φn(X)) =
∏

i1∈Z×
m1

m2/m1−1∏
i2=0

· · ·
mt/mt−1−1∏

it=0

(Xn/mt − ζ(m1+1)i1 ···(mt+1)it )

The second decomposition now becomes

(Φn(X)) =
∏

i1∈Z×
m1

m2/m1−1∏
i2=0

· · ·
mt/mt−1−1∏

it=0

(σit
t ◦ · · · ◦ σi2

2 ◦ σi1
1 )(X

n/mt − ζ)

where σk corresponds to mk + 1.

6 An initial GPU algorithm
This section and the final section following are each dedicated to reasoning about an abstract GPU
algorithm for multiplying ring elements in our ring of interest Zp[X]/Φn(X), where p is a prime
not dividing n and Φn(X) is the n’th cyclotomic polynomial with n a power of 2. Indeed, we
restrict to n a power of 2 because the smaller the prime factors of n (2 is optimal) the better for our
purposes. There are three reasons for this:

• We want to minimize the growth of the coefficients of ring elements on multiplication, and
therefore on polynomial reduction modulo Φn. The growth of coefficients on reduction
modulo Φn is in proportion to the sparsity of Φn, which is in proportion to the size of the
prime factors of n.
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• We want to most efficiently compute the Chinese Remainder Theorem transformation (CRT)
in Zp[X]/Φn(X), meaning we want Φn(X) to split into sets of polynomials of degrees
n/m for as many m as possible provided m shares the same prime factors as n and m ≤
n/ordn(p). Each such set enables an additional level of recursion for the CRT, so the more
sets the more efficient the transformation. The larger the prime factors of n, the fewer the
possibilities for m.

• We want to choose a structured prime p to enable tricks for fast modular arithmetic on mod-
ern processors. As modern processors operate on binary data, a natural choice is having
p = Φℓ(2) for some sparse cyclotomic polynomial Φℓ. The sparsity of Φℓ enables tricks for
fast modular reduction, while the fact that Φℓ vanishes on the ℓ’th primitive roots of unity
means some powers of 2 represent roots of unity enabling fast twiddle-factor multiplica-
tion. In order to control the splitting of Φn in Zp[X] we need to control ordn(p) and with
p = Φℓ(2) composed of sums of powers of 2 (for ℓ < 105) this can basically only be done
with n a power of 2.

While the first two priorities are essential to our purposes, they only ask for small prime factors of
n, not necessarily 2. While the last priority, on the other hand, is not essential since other efficient
number systems exist apart from ‘cyclotomic primes,’ the last priority indeed restricts to n a power
of 2. At the moment we have little reason not to choose n a power of 2, so we will continue in this
section with n indeed a power of 2.

We approach the problem of multiplying two ring elements by first decomposing the ring el-
ements into irreducible components and then multiplying those components. This section will
present an algorithm for decomposing a ring element into irreducibles. The first subsection is
about reading the input. The second subsection is about applying decomposition within each GPU
thread, while the third subsection is about applying decomposition across GPU threads when de-
composition within threads is no longer applicable.

It turns out there’s a faster solution to apply decomposition across GPU threads, and the sec-
tion following this one develops this second solution. The first solution we develop herein for
decomposition within threads, however, is also applied in the solution of the subsequent section.
The material of the first three subsections of this section are thus relevant for the second solution.
The material of the fourth subsection is also informative, but since we find the alternative solution
presented in the subsequent section to be heuristically of higher performance, we continue no fur-
ther with the material of the fourth subsection. Specifically, upon completing decomposition the
components must be multiplied, and the strategy for multiplication depends on the decomposition
algorithm. We will develop multiplication algorithms only for the decomposition solution of the
subsequent section, and the algorithms are presented therein.

6.1 Introduction
With n a power of 2, the cyclotomic polynomial Φn takes the shape

Φn(X) = XD + 1

for degree D := n/2 (also a power of 2). Let S > 1 be a divisor of D. Let T and U also be divisors
of D such that STU = D. Note that with D a power of 2, so are S, T , and U . We will use these
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divisors to form a radix number system that enumerates the D coefficients of a polynomial from
the set Zp[X]/Φn(X). The following set is equal to [D]− 1 := {0, . . . , D − 1}

{sTU + tU + u | s ∈ [S]− 1, t ∈ [T ]− 1, u ∈ [U ]− 1} (6)

where this is first sight of the non-standard notation [Z] − 1 as a variant of the standard notation
[Z] representing {1, . . . , Z}.

Suppose we wish to multiply elements C,R ∈ Zp[X]/Φn(X), where C is given in power basis
form, while R can be represented in any basis. We will actually not fully multiply these elements
as suggested initially. Rather, we’ll decompose C using the CRT (Chinese Remainder Theorem)
decomposition, assume thatR has already been decomposed, multiply the irreducible components,
and leave that as our multiplication result rather than inverting back to coefficient form. It turns
out this process is sufficient for our purposes in lattice cryptography. Our algorithm will consist
of two primary stages. First we compute the CRT form of C, and then we multiply that by the
precomputed CRT form of R.

In our GPU context, we will have T ‘threads’ executing in parallel to compute the multiplica-
tion of C and R. In the second subsection, following this first subsection, we will read the input
polynomial C into the registers of the T threads, assuming R is loaded separately at some point
or is hardcoded into the program. In the third subsection we will focus on computing as much
in parallel as possible with no cross-thread communication. In particular, we will show how T
threads in parallel can decompose C into a CRT representation of S component polynomials, with
each thread holding U coefficients of each polynomial. In the fourth subsection, we will focus on
how the threads can cross-communicate in order to decompose further to the CRT representation
of irreducible components.

6.2 Reading into registers
Our first task is reading the D coefficients of C into the registers of the T threads. We will do this
by having each thread read SU coefficients into its registers. The reading will occur in S steps, at
each step each thread reads U values. Specifically, at step s ∈ [S]− 1, thread t will read the values
at indices

{sTU + tU + u | u ∈ [U ]− 1}

Each thread may read its SU values into an S-major, U -minor ordered array.
The reason we choose to read according to this enumeration is twofold. First, at each step

we want the threads to read from consecutive memory locations as this enables memory reads
to be batched across threads. Second, we want threads to read values which can be partially
decomposed before needing any cross-thread communication. A thread will decompose S values
to another S values, and there are U sets of such S values. It may seem logical then given a fixed
reading capacity SU to maximize S and set U = 1, thus allowing as much independent thread
decomposition as possible. The only reason we may want U > 1 is because the values to be
read are the coefficients of C which are small, and likely small enough that each thread can read
multiple of them in a single read. To determine the amount a thread can read in total, we determine
U as the amount a thread can read in a single step, and then we determine S as the number of steps
a thread can perform before its registers are full. But maximizing SU may actually not be the best
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option, as smaller register-space footprint allows more threads to run concurrently. Trial and error
determine optimal parameters.

Let us mention an alternative that we will not pursue. Instead of threads decomposing indepen-
dently followed by cross-thread communication, we could begin with cross-thread communication,
and then allow each thread to run independently to completion. The reason we don’t pursue this,
for now, is it requires adjacent threads to read from non-adjacent memory locations in each step
(though across steps a thread reads from adjacent memory locations). It could be that some modern
GPUs can still manage to batch such non-adjacent memory accesses, but for now we leave this ap-
proach alone. As it turns out, however, this alternative can be had by applying the exact algorithm
we discuss in this section apart this first step of reading values into registers. While our intention
is S ≫ U one may implement the alternative model by having S ≪ U , in particular with S = 0 in
which case there is no per-thread decomposition before cross-thread decomposition, and rather all
per-thread decomposition can occur after cross-thread decomposition has completed.

6.3 Decomposing within threads
In this subsection we will establish what exactly we wish to decompose, and then we will present
the decomposition. For the purpose of implementation, we then reformulate the decomposition
using arrays. Last we examine how many times the decomposition may be applied.

6.3.1 What to decompose

Let us write C using our enumeration Equation (6), and to avoid verbose subscripts, we index
the coefficients using square brackets. While it may be most intuitive to sum over [S] − 1 on the
outside, [T ]− 1 in the middle and [U ]− 1 on the inside, it turns out we will work with them in the
reverse order.

D−1∑
i=0

C[i]X i =
∑

u∈[U ]−1

∑
t∈[T ]−1

∑
s∈[S]−1

C[sTU + tU + u]XsTU+tU+u (7)

Our goal is to decompose this polynomial using the CRT decomposition. Of the several formula-
tions of the CRT decomposition we’ve developed, we will use the decomposition by Hm sets from
Theorem 11. Recall such a decomposition is parameterized by an increasing sequence of values,
each dividing the next, and the last dividing n. With n a power of 2, our sequence will be

m1 = 21, m2 = 22, . . . , mk = 2k, mk+1 = 2k+1 ≤ n

We also need η, a primitive mk+1 = 2k+1’th root of unity. As discussed at the end of the previous
section, mk + 1 has the same order as Hmk

/Hmk+1
, namely mk+1/mk = 2k+1/2k = 2, so we will

replace enumeration overHmk
/Hmk+1

with enumeration over powers ofmk+1 to get enumeration
set {1,mk + 1} = {1, 2k + 1}. Before writing C using the decomposition, let us review the
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decomposition applied to Φn

Φn(X) =
∏

i0∈Z×
m1

∏
i1∈Hm1/Hm2

· · ·
∏

ik∈Hmk
/Hmk+1

Xn/mk+1 − ηi0·i1···ik

=
∏

i0∈Z×
2

∏
i1∈{1,21+1}

· · ·
∏

ik∈{1,2k+1}

X(2D)/2k+1 − ηi0·i1···ik

=
∏

i1∈{1,21+1}

· · ·
∏

ik∈{1,2k+1}

XD/2k − ηi1···ik

=
∏

i1∈{0,1}

· · ·
∏

ik∈{0,1}

XD/2k − ηϵ(i1,...ik)

=
∏

i∈{0,1}k
XD/2k − ηϵ(i)

ϵ(i) := ϵ(i1, . . . ik) :=
k∏

z=1

(1 + iz · 2z)

where we are overloading ϵ to accept either k bit-values or a vector of k bits. Note these bits
are indexed with [k] rather than [k] − 1. We will use such vectors to identify components in the
direct product decomposition. But for convenience we will map them to the natural numbers and
typically index with the natural numbers instead. For binary vector i = (i1, . . . i|i|) ∈ {0, 1}|i| of
length |i| ≥ k we define αk as

αk(i) := αk(i1, . . . i|i|) :=
k−1∑
z=0

ik−z · 2z

noting how αk ignores the last |i|−k coordinates of i. The function αk maps the first k coordinates
of i to the set [2k]− 1, with i1 as the most significant digit and ik as the least significant digit. For
i ∈ [2k1+k2 ] − 1 with k2 ≥ 0 one may think of αk1(i) as the right-shift of i by k2 bits. We will
use i ∈ {0, 1}k and i = αk(i) ∈ [2k]− 1 interchangeably as one can be recovered from the other.
For example, the component with index i ∈ [2k] − 1 of the decomposition corresponds to factor
XD/2k − ηϵ(i) where i is the unique pre-image of i under αk. A useful property we will use is that

αk+1(i1, . . . , ik, ik+1) = 2 · αk(i1, . . . , ik) + ik+1

or for i ∈ [2k]− 1 and b ∈ {0, 1} one may write αk+1(i, b) = 2i+ b.
As a special case of this factorization of Φn, we can recognize that with k = 0 our sequence is

m1 = 2, our primitive 2nd root of unity is η = −1, and we recover

Φn(X) =
∏

i0∈Z×
2

Xn/2 − (−1)i0 = XD + 1

We can use this factorization of Φn to represent our corresponding direct product decomposi-
tion. Let Ck denote the corresponding decomposition of depth k ≥ 0 with the component polyno-
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mials C(i)
k for i ∈ [2k]− 1

C
(i)
k (X) := C(X) mod

(
XD/2k − ηϵ(i)

)
∈ Zp[X]

XD/2k − ηϵ(i)

Ck(X) :=
∏

i∈[2k]−1

C
(i)
k (X) ∈

∏
i∈[2k]−1

Zp[X]

XD/2k − ηϵ(i)

where we’re using the symbol
∏

over the C(i)
k to denote direct product rather than arithmetic

product.
Our goal is to compute C(i)

k for i ∈ [2k]− 1 for the largest k applicable (to be discussed at the
end of the subsection). For clarity on what computing C(i)

k entails, we expand it using a variation
of our enumeration Equation (6). Previously we enumerated the D coefficients of C with most
significant digit s ∈ [S] − 1, such that with lower digits t ∈ [T ] − 1 and u ∈ [U ] − 1 the digit
combinations span [STU ] − 1 = [D] − 1. Now we’d like to generalize by enumerating the D/2k

coefficients of C(i)
k , so we alter our most significant digit to be s ∈ [S/2k] − 1, such that with

identical lower digits the digit combinations now span [(S/2k)TU ] − 1 = [D/2k] − 1. Also,
instead of summing over [S] − 1 as the outside sum as in Equation (7) we will instead sum over
[S/2k]− 1 as the inside sum, and furthermore we give this inside sum the name C

(i)

k .

C
(i)

k (X, t, u) :=
∑

s∈[S/2k]−1

C
(i)
k [sTU + tU + u]XsTU+tU+u

C
(i)
k (X) =

∑
u∈[U ]−1

∑
t∈[T ]−1

C
(i)

k (X, t, u)

Note the latter equation reduces to Equation (7) for the case k = 0. We write Ck in terms of our
newly defined C

(i)

k as

Ck(X) =
∏

i∈[2k]−1

∑
u∈[U ]−1

∑
t∈[T ]−1

C
(i)

k (X, t, u)

=
∑

u∈[U ]−1

∑
t∈[T ]−1

∏
i∈[2k]−1

C
(i)

k (X, t, u)

We may henceforth in this subsection focus on the inner direct product, consisting of the 2k poly-
nomials (in X) C

(i)

k . This direct product is parameterized by t and u, and indeed each thread t
will compute its own set of direct products, one direct product for each u ∈ [U ] − 1. Once all T
threads have completed their U direct products, we may sum over [U ] − 1 and [T ] − 1 to obtain
Ck. Decomposing Ck further when it is a sum distributed as such among threads will be the topic
of the next subsection, and it will require cross-thread communication.

6.3.2 How to decompose with polynomials

The direct product
∏

i∈[2k]−1C
(i)

k (X, t, u) is what we wish to decompose, meaning that given this
direct product for some appropriate k, we wish to compute it for k+1. For the full decomposition,

35



we begin with k = 0 and proceed in steps by incrementing k until we can decompose no further.
At step k we have a direct product of 2k polynomials C

(i)

k for i ∈ [2k]− 1 such that∏
i∈[2k]−1

C
(i)

k (X) ∈
∏

i∈[2k]−1

Zp[X]

XD/2k − ηϵ(i)

We wish to decompose it into a direct product of 2k+1 polynomials C
(i′)

k+1 for i′ ∈ [2k+1] − 1 such
that ∏

i′∈[2k+1]−1

C
(i′)

k+1(X) ∈
∏

i′∈[2k+1]−1

Zp[X]

XD/2k+1 − ζϵ(i
′)

(8)

where ζ is a primitive 2k+2’th root of unity satisfying ζ2 = η. This decomposition occurs by
every component XD/2k − ηϵ(i) splitting into two components XD/2k − ζϵ(i

′) for i′ = (i, b) with
b ∈ {0, 1}, also written i′ = 2i + b. To see this splitting, note that ζ2k+1

= −1, and also that
ϵ(i, b) = ϵ(i)(1 + b2k+1). Then we may write

(XD/2k+1 − ζϵ(i,0))(XD/2k+1 − ζϵ(i,1))

= XD/2k −XD/2k+1

ζϵ(i)(ζ1+0 + ζ1+2k+1

) + ζϵ(i)(1+0)ζϵ(i)(1+2k+1)

= XD/2k −XD/2k+1

ζϵ(i)(ζ + ζ(−1)) + ζ2·ϵ(i)(−1)

= XD/2k − ηϵ(i)

We will decompose C
(i)

k by replacing XD/2k+1 with the two values ζϵ(i,b) for b ∈ {0, 1}. But
as ζ1+0 and ζ1+2k+1

= ζ(−1) are additive inverses, we will instead use the two values (−1)bζϵ(i).
Our decomposition may be written as follows with t ∈ [T ]− 1, u ∈ [U ]− 1, and i ∈ [2k]− 1 (the
range for k to be discussed last in this subsection)

C
(i)

k (X, t, u) =
∑

s∈[S/2k]−1

C
(i)
k [sTU + tU + u]XsTU+tU+u

=
∑

s∈[S/2k+1]−1

C
(i)
k [sTU + tU + u]XsTU+tU+u

+
∑

s∈[S/2k+1]−1

C
(i)
k [(s+ S/2k+1)TU + tU + u]X(s+S/2k+1)TU+tU+u

=
∑

s∈[S/2k+1]−1

C
(i)
k [sTU + tU + u]XsTU+tU+u

+XD/2k+1 ·
∑

s∈[S/2k+1]−1

C
(i)
k [D/2k+1 + sTU + tU + u]XsTU+tU+u

=
∑

s∈[S/2k+1]−1

(
C

(i)
k [sTU + tU + u] + (−1)bζϵ(i)C

(i)
k [D/2k+1 + sTU + tU + u])

XsTU+tU+u
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We have decomposed C
(i)

k into two polynomials that correspond to the two factors XD/2k+1
+

ζϵ(i,b) within our desired direct product decomposition Equation (8). Therefore we may assign the
two polynomials C

(2i+b)

k to the two decomposed results

C
(2i+b)

k+1 (X, t, u) =
∑

i∈[S/2k+1]−1

C
(2i+b)
k+1 [sTU + tU + u]XsTU+tU+u

=
∑

i∈[S/2k+1]−1

(
C

(i)
k [sTU + tU + u] + (−1)bζϵ(i)C

(i)
k [D/2k+1 + sTU + tU + u])

XsTU+tU+u

As the polynomials are equal, so are their coefficients, yielding our decomposition formula ∀s ∈
[D/2k+1]− 1

C
(2i+b)
k+1 [sTU + tU + u] = (9)

C
(i)
k [sTU + tU + u] + (−1)bζϵ(i)C

(i)
k [D/2k+1 + sTU + tU + u] (10)

We have written the formula using the coefficients of C(i)
k and C(2i+b)

k+1 . But the formula can also

be written using the coefficients of C
(i)

k and C
(2i+b)

k+1 , though they must be parameterized by a t

and u in that coefficient sTU + tU + u of C(i)
k (X) and C

(i)

k (X, t, u) coincide, and similarly for
C

(2i+b)
k+1 and C

(2i+b)

k+1 . Our use of C
(i)

k is to identify it as an important polynomial had via C(i)
k , and to

identify it without summing over [S/2k]−1 each time. Now that we have a decomposition formula
in coefficient form, we will henceforth, whenever using coefficient form, use coefficients of C(i)

k

rather than those of C
(i)

k .

6.3.3 How to decompose with arrays

The formula in Equation (10) is the decomposition formula one may use to decompose C
(i)

k . In it’s
current form this formula applies independently for each t and u. We will now show how thread
t can, for each invocation k of the decomposition, use an array A(t)

k to encode C
(i)

k (X, t, u) for all
i ∈ [2k]− 1 and u ∈ [U ]− 1. In practice, thread t would not have a separate array A(t)

k for each k
but rather have a single array A(t) mutated in-place.

Recall our choice to use coefficients of C(i)
k (X) given t and u values rather than the same

and equal coefficients of C
(i)

k (X, t, u). Given this choice and the fact that arrays will encode
coefficients, we proceed with C(i)

k (X) rather than C
(i)

k (X, t, u), though we will note how an array
indeed encodes C

(i)

k (X, t, u). Suppose we wish to enumerate all STU/2k coefficients of all 2k

polynomials C(i)
k for i ∈ [2k]− 1 in component-major order. Then our enumeration set is{

i(S/2k)TU + sTU + tU + u

∣∣∣∣∣ i ∈ [2k]− 1, s ∈ [S/2k]− 1

t ∈ [T ]− 1, u ∈ [U ]− 1

}
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Note that for k = 0 this enumeration reduces to enumeration Equation (6). We use this enumeration
set to connect the enumeration of components and their coefficients to arrays and their entries.
When enumerating components we use i ∈ [2k]−1 and therefore when enumerating the coefficients
of components we discard i and its scaling factor (S/2k)TU from the enumeration to recover
C

(i)
k [sTU + tU + u]. Similarly, when enumerating arrays we use t since there’s one array for each

thread. Therefore when enumerating the entries of arrays we discard t and its scaling factor T from
the enumeration to get A(t)

k [i(S/2k)U + sU + u]. We thus define our array entries as

∀i ∈ [2k]− 1, ∀s ∈ [S/2k]− 1, ∀u ∈ [U ]− 1 :

A
(t)
k [i(S/2k)U + sU + u] := C

(i)
k [sTU + tU + u]

Note how array t indeed encodes exactly the SU coefficients of C
(i)

k (X, t, u).
Given the definition of A(t)

k , we now may adapt our decomposition formula Equation (10) for
the encoding ofA(t)

k . The two split halves ofC
(i)

k (X, t, u), that is its upper and lower halves, are had
by replacing s ∈ [S/2k]− 1 with s ∈ [S/2k+1]− 1 and respectively replacing s with b(S/2k+1)+ s
for b ∈ {0, 1}. Doing the same here we have

∀i ∈ [2k]− 1, ∀s ∈ [S/2k+1]− 1, ∀u ∈ [U ]− 1 : (11)

A
(t)
k [(2i+ b)(S/2k+1)U + sU + u] := C

(i)
k [b(D/2k+1) + sTU + tU + u] (12)

We may now construct an analogous formula to Equation (10) by copying Equation (10) and
making appropriate translations using our defining equation for arrays along with Equation (12)

∀i ∈ [2k]− 1, ∀b ∈ {0, 1}, ∀s ∈ [S/2k+1]− 1, ∀t ∈ [T ]− 1, ∀u ∈ [U ]− 1 :

A
(t)
k+1[(2i+ b)(S/2k+1)U + sU + u] =

A
(t)
k [(2i)(S/2k+1)U + sU + u] + (−1)bζϵ(i)A

(t)
k [(2i+ 1)(S/2k+1)U + sU + u]

6.3.4 How many times to decompose

Lastly for this subsection we consider how many applications of the decomposition threads may
apply before the polynomial becomes irreducible, noting that log(S) is an upper bound because
the decomposition is applied to sets of size S. The degree of irreducibles is ordn(p) − 1, so
by considering XD/2k+1 we conclude the decomposition may only be applied when D/2k+1 ≥
ordn(p), that is when k < log(D/ordn(p)). One may also observe the degree of the polyno-
mial to be up to (S/2k − 1)TU + (T − 1)U + (U − 1) = D/2k − 1, confirming that the de-
composition is non-applicable when D/2k − 1 ≤ ordn(p) − 1, that is k ≥ log(D/ordn(p)).
Each thread may then apply the decomposition no more than log(D/ordn(p)) times with k =
{0, . . . , log(D/ordn(p)) − 1}. Depending on S, however, one may need to stop short of all
log(D/ordn(p)) applications. If k ≥ log(S) we cannot split the enumeration set [S/2k]− 1 = {0}
in half. Therefore one may apply the decomposition a maximum of min{log(D/ordn(p)), log(S)}
times for k = {0, . . . ,min{log(D/ordn(p)), log(S)} − 1}. In practice we will always choose
S ≤ D/ordn(p) because we strategically choose the set S in order to decompose, and decomposi-
tion doesn’t apply for S > D/ordn(p). We may finally state that we will apply the decomposition
exactly log(S) times for k = {0, . . . , log(S)− 1}.
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6.4 Decomposing across threads
After applying the decomposition from the previous subsection log(S) times within each thread,
each thread t holds the set of polynomials C

(i)

log(S) for i ∈ [S]− 1 satisfying

C
(i)

log(S)(X, t, u) = C
(i)
log(S)[tU + u]X tU+u

C
(i)
log(S)(X) =

∑
u∈[U ]−1

∑
t∈[T ]−1

C
(i)

log(S)(X, t, u)

=
∑

u∈[U ]−1

∑
t∈[T ]−1

C
(i)
log(S)[tU + u]X tU+u

Each polynomial C(i)
log(S) is of degree TU yet may still be decomposed into TU/ordn(p) poly-

nomials of degree ordn(p). Having already applied the decomposition log(S) times out of the
maximum log(D/ordn(p)) possible times, the maximum number of times we may further apply
the decomposition is

log(D/ordn(p))− log(S) = log(D/S)− log(ordn(p)) = log(TU)− log(ordn(p))

For convenience we define ℓ := k − log(S), and for i ∈ [2k] − 1 = [S2ℓ] − 1 we focus on
decomposing the inner sum for each u ∈ [U ]− 1∑

t∈[T/2ℓ]−1

C
(i)
log(S)+ℓ[tU + u]X tU+u

in steps ℓ ∈ {0, . . . , log(TU)−log(ordn(p))−1} analogous to our previous steps k ∈ {0, . . . , log(S)−
1}.
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6.4.1 How to decompose with polynomials

Writing the decomposition analogous to before for i ∈ [S2ℓ]− 1 yields∑
t∈[T/2ℓ]−1

C
(i)
log(S)+ℓ[tU + u]X tU+u

=
∑

t∈[T/2ℓ+1]−1

C
(i)
log(S)+ℓ[tU + u]X tU+u

+
∑

t∈[T/2ℓ+1]−1

C
(i)
log(S)+ℓ[(t+ T/2ℓ+1)U + u]X(t+T/2ℓ+1)U+u

=
∑

t∈[T/2ℓ+1]−1

C
(i)
log(S)+ℓ[tU + u]X tU+u

+XTU/2ℓ+1 ·
∑

t∈[T/2ℓ+1]−1

C
(i)
log(S)+ℓ[TU/2

ℓ+1 + tU + u]X tU+u

=
∑

t∈[T/2ℓ+1]−1

(
C

(i)
log(S)+ℓ[tU + u] + (−1)bζ · C(i)

log(S)+ℓ[TU/2
ℓ+1 + tU + u])

X tU+u

where as before we have replaced XTU/2l+1
= XD/2k+1 with (−1)bζ for b ∈ {0, 1} where ζ

is a primitive S2l+2 = 2k+2’th primitive root of unity. We derive the decomposition formula
∀t ∈ [T/2ℓ]− 1 in terms of coefficients as

C
(2i+b)
log(S)+ℓ+1[tU + u] = (13)

C
(i)
log(S)+ℓ[tU + u] + (−1)bζ · C(i)

log(S)+ℓ[TU/2
ℓ+1 + tU + u] (14)

6.4.2 How to decompose with arrays

Our task now is to adapt this decomposition formula to arrays. The decomposition using polyno-
mials is independent of how exactly coefficients are distributed among threads and layed out in
the arrays. When adapting the decomposition to arrays, these details are crucial and require some
examination. Our state when we begin cross-thread communication consists of threads t ∈ [T ]− 1

each holding an array A(t)
log(S) which encodes S sets of U elements. Each set of U elements belongs

to a different component C(i)
log(S) for i ∈ [S] − 1. Upon decomposing ℓ times further, our direct

product decomposition will consist of 2k = S2ℓ components. Each thread, however, will continue
to hold an array that encodes only S sets of U elements, and therefore can encode a set of U ele-
ments for only S out of all S2ℓ components. Naturally, then, we will partition the S2ℓ components
into 2ℓ groups with S components in each group. Along with partitioning the components, we will
also partition the threads into 2ℓ groups with T/2ℓ threads in each group. Note both partitions have
2ℓ groups and indeed each group of threads will hold one group of components.
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Our new notation will consist of an identifier for each group, and identifiers for each component
and each thread in a given group. Let us define for i with |i| ≥ log(S)

βℓ(i) := β(i1, . . . , ilog(S), ilog(S)+1 . . . , ilog(S)+ℓ)

:=
ℓ∑

z=1

ilog(S)+z · (T/2z)

noting βℓ(i) depends on only the last ℓ coordinates. A useful property we will use is that for
i ∈ [S2ℓ]− 1 and b ∈ {0, 1}

βℓ+1(i, b) = βℓ(i) + b(T/2ℓ+1) (15)

We will use βℓ to identify the 2ℓ groups, implying that component i belongs to the group with index
βℓ(i). The index of thread t ∈ [T/2ℓ] − 1 in group βℓ(i), among all T threads, may be calculated
as βℓ(i) + t, and we use this notation to identify the thread’s corresponding array A(βℓ(i)+t)

log(S)+ℓ . We
will use αlog(S), on the other hand, to identify the S components in a group. Recall that

αlog(S)(i) =

log(S)−1∑
z=0

ilog(S)−z · 2z

noting αlog(S)(i) depends on only the first log(S) coordinates. We will have αlog(S)(i) the index of
component i ∈ [S2ℓ]−1 within group βℓ(i). Given a componentC(i)

log(S)+ℓ, and given the coefficient
index tU + u at which to access the component, let us identify how to access this coefficient using
arrays. With i the component index, we know βℓ(i) to be the group index. With tU + u the
coefficient index, we know βℓ(i) + t to be the index of the thread that holds this coefficient. Lastly
we must determine at what index of the array we may access the coefficient. Array A(βℓ(i)+t)

log(S)+ℓ holds
S sets of U elements, each set belonging to a component in the group βℓ(i). We target the i’th
component, which is the αlog(S)(i)’th component in the group βℓ(i), so we target the αlog(S)(i)’th
set of U elements in the array. We then define A(βℓ(i)+t)

log(S)+ℓ as

∀i ∈ [S2ℓ]− 1, ∀t ∈ [T/2ℓ]− 1, ∀u ∈ [U ]− 1 :

A
(βℓ(i)+t)
log(S)+ℓ [αlog(S)(i)U + u] := C

(i)
log(S)+ℓ[tU + u]

At this point we’ve defined how our arrays (for k ≥ log(S)) represent the components. To
arrive at the decomposition formula Equation (14) in terms of arrays, we must see how the splitting
occurs in array form. The two split halves of C(i)

log(S)+ℓ are had by replacing t ∈ [T/2ℓ] − 1 with
t ∈ [T/2ℓ+1] − 1 and respectively replacing t with b(T/2ℓ+1 + t) for b ∈ {0, 1}. Doing the same
here we have

∀i ∈ [S2ℓ]− 1, ∀t ∈ [T/2ℓ+1]− 1, ∀u ∈ [U ]− 1 : (16)

A
(βℓ+1(i,b)+t)

log(S)+ℓ [αlog(S)(i)U + u] = C
(i)
log(S)+ℓ[b(TU/2

l+1) + tU + u] (17)
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where we have used the fact that, with i′ := (i, b), we have

βℓ(i) + b(T/2l+1) =
ℓ∑

j=1

ilog(S)+j · (T/2j) + b(T/2l+1)

=
ℓ+1∑
j=1

i′log(S)+j · (T/2j)

= βℓ+1(i
′) = βℓ+1(i, b)

We may now construct an analogous formula to Equation (14) by copying Equation (14) and
making appropriate translations using our defining equation for arrays along with Equation (17)

∀i ∈ [S2ℓ]− 1, ∀t ∈ [T/2ℓ+1]− 1, ∀u ∈ [U ]− 1 :

A
(βℓ+1(i

′)+t)

log(S)+ℓ+1 [αlog(S)(i)U + u] =

A
(βℓ+1(i,0)+t)

log(S)+ℓ [αlog(S)(i)U + u] + (−1)bζ · A(βℓ+1(i,1)+t)

log(S)+ℓ [αlog(S)(i)U + u]

where i′ := (i, b). This decomposition formula may be applied log(TU)− log(ordn(p)) times. We
can compare this to the corresponding formula for decomposing within individual threads. There
the two source arrays were the same, and we accessed them at different locations. Here, on the
other hand, the two source arrays are different, and we access them at the same location.

6.4.3 For implementation

We can simplify the array formula for implementation. Note that the ℓ least significant bits of i
determine βℓ+1(i, b) for b ∈ {0, 1}, while the log(S) most significant bits determine αlog(S)(i). Let
us then split i into it’s ℓ least significant bits and log(S) most significant bits, by representing i
with s ∈ [S]− 1 and r ∈ [2ℓ]− 1 as i = s2ℓ + r. Note that ilog(S)+z = rℓ−z for z ∈ [ℓ] as we will
use this fact below.

Not only is αlog(S)(i) determined by s, but the two are in fact equal. To see this, recall that
when introducing αk, we mentioned in passing that with i ∈ [2log(S)+ℓ] we have αlog(S)(i) equal to
the right-shift of i by ℓ bits, which is indeed equal to s. Thus we can replace αlog(S)(i) with s.

Now let us focus on simplifying the array identifier βℓ+1(i, b) + t. Applying property Equa-
tion (15) to βℓ+1(i, b) followed by factoring out T/2ℓ+1 we may write

βℓ+1(i, b) + t = βℓ(i) + b(T/2ℓ+1) + t

=

(
2

ℓ∑
z=1

ilog(S)+z · 2ℓ−z + b

)
(T/2ℓ+1) + t

=

(
2

ℓ∑
z=1

rℓ−z · 2ℓ−z + b

)
(T/2ℓ+1) + t

= (2r + b)(T/2ℓ+1) + t

42



Having rewritten αlog(S)(i) as s, and rewritten βℓ+1(i, b) + t as (2r + b)(T/2ℓ+1) + t, we may
now rewrite our array formula as follows for b ∈ {0, 1}.

∀t ∈[T/2ℓ+1]− 1, ∀r ∈ [2ℓ]− 1, ∀s ∈ [S]− 1, ∀u ∈ [U ]− 1 :

A
((2r+b)(T/2ℓ+1)+t)
log(S)+ℓ+1 [sU + u]

= A
((2r)(T/2ℓ+1)+t)
log(S)+ℓ [sU + u] + (−1)bζ · A((2r+1)(T/2ℓ+1)+t)

log(S)+ℓ [sU + u]

While this formula may not look much simpler than our pervious formula, it is more suitable for
thread τ ∈ [T ] − 1 to determine with which other thread it must exchange information in round ℓ
of the decomposition. Thread τ = (2r + b)(T/2ℓ+1) + t must exchange information with thread
σ = (2r+ (1− b))(T/2ℓ+1) + t, that is the thread with address had by bit-flipping the (T/2ℓ+1)’th
bit of τ . Upon exchanging information, thread τ merges the two terms in the formula using (−1)b,
while σ merges using (−1)1−b.

7 An improved GPU algorithm
We discuss decomposition in Section 7.1, arranging irreducible components for multiplication in
Section 7.2, and finally three algorithms for multiplication in Section 7.3.

7.1 A second solution
The GPU algorithm for decomposition within and across threads of the previous section may be
followed by multiplication of components. One way to do so is to make set U ≥ ordn(p) and then
with SU/ordn(p) irreducible components within each thread one may apply any multiplication al-
gorithm without concern for further cross-thread communication. If U < ordn(p) one must instead
develop some cross-thread multiplication algorithm. In this section, however, we don’t pursue ei-
ther of these paths, but rather develop an alternative solution for decomposition within and across
thread, and then we develop multiplication algorithms specialized for our new decompositions.

Let us articulate why we have developed an alternative decomposition solution. Our decom-
position solution of the previous section is most efficient when decomposing within threads, and
more costly when decomposing across threads. There occur log(S) decompositions within threads,
and log(T ) decompositions across threads, so one strategy is to minimize T and maximize S. But
this strategy is at odds with the fact that concurrency scales with T , that is we prefer more threads
with less inputs over less threads with more inputs. It turns out there’s a solution to this conflict, al-
lowing log(S) decompositions to occur within threads more than once, the effect being less needed
cross-thread communication.

The strategy is an extension of our ‘decomposing within threads’ strategy of Section 6.3.
The idea is once k reaches log(S) and decomposition within threads is no longer applicable, we
swap data between threads such that each thread is loaded with another SU values which can
again be decomposed locally within the thread, providing another log(S) iterations of decomposi-
tion. We continue this process until all decomposition has occurred, ultimately requiring roughly
log(T )/ log(S) rather than log(T ) rounds of cross-thread communication. We will formalize this
sketch, but with two differences. First, since the purpose of this approach is to maximize the num-
ber of decompositions within threads, and noting that a thread holding SU values can perform
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log(S) decompositions, we will set U = 1. Second, the number of decompositions that may be
applied in total may not be a multiple of S, so we generalize to allow a sequence of S values
S0 = S, S1, . . . , Sj . . . , SJ−1 satisfying

∏
j∈[J ]−1 Sj = D/ordn(p).

Let us define symbols relevant to generalized Sj values. For each Sj we have a variable kj ∈
[log(Sj)]− 1 analogous to k with respect to S of the previous section. We define the following as
generalizations of D and T .

D0 := D, ∀j > 0, Dj := Dj−1/Sj−1

T0 := T, ∀j > 0, Tj := Dj/Sj

We also define for convenience Lj :=
∑j−1

h=0 log(Sh). In round j we start with kj = 0 and∏
h∈[j]−1 Sh components. As kj increases we have (

∏
h∈[j]−1 Sh)2

kj components. We will ex-
tend our notation from the previous section (using i ∈ [2k0 ]) to enumerate these (

∏
h∈[j]−1 Sh)2

kj

components as r2kj + i for r ∈ [D/Dj]− 1 and i ∈ [2kj ]− 1. Here r is a different variable than in
the previous section, and without conflict since the two solutions for cross-thread communication
are exclusive.

In the first subsection that follows we develop the new decomposition formula for application
within threads, first presenting the polynomial form and then adapting it to array form. In the
second subsection that follows we develop the cross-thread communication mechanism we need
in order to locate coefficients within threads appropriately for our decomposition formula.

7.1.1 Decomposition for round j

In the previous section, both when decomposing within threads and across threads, we implicitly
applied the same four-step process. Before doing the same here we outline the process as follows.

1. First we write the decomposition formula in polynomial form.

2. Second we specify how the arrays of the threads encode the polynomial components.

3. Third we see how splitting components into their lower and upper halves translates to split-
ting array entries into two halves.

4. Fourth we use steps 2 and 3 to translate the decomposition formula from step 1 into array
form.

First we write the decomposition formula in polynomial form. We already derived the decom-
position formula in Equation (10) of Section 6, but we will now rewrite it in our new context.

∀r ∈ [D/Dj]− 1, ∀i ∈ [2kj ]− 1, ∀b ∈ {0, 1}, ∀s ∈ [Sj/2
kj ]− 1, ∀t ∈ [Tj]− 1 :

C
(r2kj+1+(2i+b))
Lj+kj+1 [sTj + t] =

C
(r2kj+i)
Lj+kj

[sTj + t] + (−1)bζϵ((r,i))C
(r2kj+i)
Lj+kj

[Dj/2
kj+1 + sTj + t] (18)

Second we specify how the arrays of the threads encode the components. We enumerate the
T = T0 threads as τ := rTj + t for r ∈ [D/Dj] − 1 and t ∈ [Tj] − 1. Analogous to our process
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in Section 6.3.3 of decomposing with arrays, we enumerate the Dj/2
kj coefficients of all D/Dj

components r2kj + i in component-major order as{
(r2kj + i)(Sj/2

kj)Tj + sTj + t

∣∣∣∣∣ r ∈ [D/Dj]− 1, i ∈ [2kj ]− 1

s ∈ [Sj/2
kj ]− 1, t ∈ [Tj]− 1

}

We use this enumeration set to connect the components and their coefficients to arrays and their
entries. When enumerating components we use r2kj + i and therefore when enumerating the
coefficients of components we discard r2kj + i along with its scaling factor (Sj/2

kj)Tj from the

enumeration to recover C(r2kj+i)
Lj+kj

[sTj + s]. Similarly, when enumerating arrays we use rTj + t,
and therefore when enumerating array entries we discard digits r and t along with corresponding
scaling factors 2kj and Tj from the enumeration to get A(rTj+t)

Lj+kj
[i(Sj/2

kj) + s]. We thus define our
array entries as

∀r ∈ [D/Dj]− 1, ∀i ∈ [2kj ]− 1, ∀s ∈ [Sj/2
kj ]− 1, ∀t ∈ [Tj]− 1 :

A
(rTj+t)
Lj+kj

[i(Sj/2
kj) + s] := C

(r2kj+i)
Lj+kj

[sTj + t]

Third we see how splitting C(r2kj+i)
Lj+kj

into lower and upper halves translates to array form. To
do so we note that s is the most significant digit of the coefficient enumeration, and thus it is
responsible for separating the upper and lower halves. We separate s into its lower and upper
halves by replacing the left enumerating set below with the equal right enumerating set.{

s
∣∣ s ∈ [Sj/2

kj ]− 1
}
=
{
bSj/2

kj+1 + s
∣∣ s ∈ [Sj/2

kj+1]− 1, b ∈ {0, 1}
}

This change of enumeration yields

∀r ∈ [D/Dj]− 1, ∀i ∈ [2kj ]− 1, ∀s ∈ [Sj/2
kj+1]− 1, ∀b ∈ {0, 1}, ∀t ∈ [Tj]− 1 :

A
(rTj+t)
Lj+kj

[(2i+ b)(Sj/2
kj+1) + s] = C

(r2kj+i)
Lj+kj

[bDj/2
kj+1 + sTj + t]

Fourth we use our defining equation for arrays along with the previous equation to translate the
decomposition formula Equation (18) from polynomial form to array form.

∀r ∈ [D/Dj]− 1, ∀i ∈ [2kj ]− 1, ∀b ∈ {0, 1}, ∀s ∈ [Sj/2
kj ]− 1, ∀t ∈ [Tj]− 1 :

A
(rTj+t)
Lj+kj+1[(2i+ b)(Sj/2

kj+1) + s] =

A
(rTj+t)
Lj+kj

[(2i)(Sj/2
kj+1) + s] + (−1)bζϵ((r,i))A

(rTj+t)
Lj+kj

[(2i+ 1)(Sj/2
kj+1) + s]

7.1.2 Translation for round j

So far in this section we have focused on a single round j and the formula for log(Sj) decompo-
sitions to be applied within threads. We must now examine how to arrive at the appropriate array
encoding for j in the first place, in order to apply these decompositions. Specifically, suppose we
have completed decompositions for j − 1 for j > 0 and must apply cross-thread communication
to arrive at the starting configuration to apply decompositions for j with kj = 0. We will not
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discuss arriving at the starting configuration for j = 0 since that is the topic of reading from global
memory covered in previous section. Henceforth in this subsection we assume j > 0.

Let us write the state of our array encoding having completed decompositions for j − 1. With
kj−1 = log(Sj−1) we have

∀r ∈ [D/Dj−1]− 1, ∀i ∈ [Sj−1]− 1, ∀t ∈ [Tj−1]− 1 :

A
(rTj−1+t)
Lj

[i] = C
(rSj−1+i)
Lj

[t]

where we have used Lj−1 + log(Sj−1) = Lj . On the other hand, to begin decompositions for j we
need the following state of array encodings. With kj = 0 we have

∀r ∈ [D/Dj]− 1, ∀s ∈ [Sj]− 1, ∀t ∈ [Tj]− 1 :

A
(rTj+t)
Lj

[s] = C
(r)
Lj

[sTj + t]

We must be careful in reading these equations, because the arrays for j− 1 in the first equation are
not necessarily the same as the arrays for j in the second equation. The two sets of arrays share
the same names with equal subscripts and superscript sets (of size T ), but for j− 1 the arrays have
length Sj−1 while for j they have length Sj . We may assume for simplicity that they are the same
arrays with length max{Sj−1, Sj}.

Our goal is to match up the array entries for j − 1 and j, depicting how the source array values
for j − 1 must be mapped to the destination array values for j. To do so we must equate the right
sides of the equations, that is the two different enumerations of the equal set of polynomials C(·)

Lj
[·].

We make three changes of variable.

• Replace t ∈ [Tj−1] − 1 in the first equation with sTj + t for s ∈ [Sj] − 1 and t ∈ [Tj] − 1.
Moreover, replace Tj−1 in the first equation with SjTj , noting SjTj = Dj = Dj−1/Sj−1 =
Tj−1.

• Replace r ∈ [D/Dj] − 1 in the second equation with rSj−1 + i for r ∈ [D/Dj−1] − 1 and
i ∈ [Sj−1]− 1.

The result, with the array for j − 1 on the left and the array for j on the right, is then

∀r ∈ [D/Dj−1]− 1, ∀i ∈ [Sj−1]− 1, ∀s ∈ [Sj]− 1, ∀t ∈ [Tj]− 1 :

A
((rSj+s)Tj+t)
Lj

[i] = C
(rSj−1+i)
Lj

[sTj + t] = A
((rSj−1+i)Tj+t)
Lj

[s]

This equation presents our desired mapping. Given values for r, i, s, and t, one may determine the
value of any destination array ((rSj−1 + i)Tj + t) at any index (s), by the value of the appropriate
source array ((rSj + s)Tj + t) at the appropriate index (i).

As the formula suggests by the symmetry of i and s, this is effectively a transpose operation.
Indeed, for all r ∈ [D/Dj−1] − 1 and all t ∈ [Tj] − 1 one can think of each of the Sj source
arrays (on the left) with indices (rSj + s)Tj + t as a row of width Sj−1 of an Sj × Sj−1 matrix.
On the other hand, one may think of each of the Sj−1 destination arrays (on the right) with indices
(rSj−1 + s)Tj + t as a row of width Sj of an Sj−1 × Sj matrix. Then by the symmetry of s and i
these two matrices must be transposes.
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7.1.3 For implementation

We discuss implementation in the context of threads on a GPU that may communicate via memory
or what we call ‘shuffle’ operations. Threads on a GPU execute in sets call ‘warps,’ with set sizes
a power of two and usually 32. The threads in a warp execute in lockstep, and this gives them the
ability the communicate between each other using an instruction we call ‘shuffle.’ On a shuffle
instruction, each thread in the warp provides data along with the index for some thread in the warp,
the returned result being the data submitted by that thread. This way threads in a warp can shuffle
data between each other in an arbitrary pattern, all done with a single instruction. All threads, on
the other hand, whether or not in the same warp, may communicate using memory, but that requires
three instructions rather than one. The first instruction writes to memory, the second instruction
synchronizes the threads to be sure all have finished writing, and the third instruction reads back
from memory. Therefore we prefer shuffle operations whenever communicating threads are in the
same warp, and we resort to memory whenever communicating threads are not in the same warp.

To implement the translation using memory, threads may write their values to memory in any
desired order, and then read them back according to that order and the translation formula. We will
order in component-major order, first ordering components with rSj−1 + i and within each com-
ponent ordering coefficients with sTj + t. Therefore the operation may be completed as follows.

1. To write to memory, each source thread first identifies its r, s, and t values. The threads then
iterate through steps i ∈ [Sj−1] and at each step i, source thread (rSj + s)Tj + t writes from
array index i to memory address (rSj−1 + i)Dj + sTj + t.

2. Synchronize to ensure all threads have completed writing.

3. To read from memory, each destination thread first identifies its r, i, and t values. The threads
then iterate through steps s ∈ [Sj]−1 and at each step s, destination thread (rSj−1+ i)Tj+ t
reads from memory address (rSj−1 + i)Dj + sTj + t into array index s.

We now move on to the case that the number of threads T [j − 1] fits in a warp such that we
may translate from j − 1 to j using shuffle operations. While Sj−1 and Sj may not coincide, im-
plementation is certainly easier when they do. It may be that one is simply distinguishing between
Sj−1 and Sj because one wishes to perform Sj−1 + Sj rather than 2S decompositions, and this
is basically our situation. In general we would like to use a single S value, but it may not divide
the number the decompositions we wish to apply. Starting with D0 we have the option to apply d
decompositions for any d ∈ {0, log(D0)− (log(D0) mod log(S))}. For any such d there is a mul-
tiplier m := ⌈d/ log(S)⌉ satisfying d ≤ m log(S) ≤ log(D0) such that we could (if algebraically
possible) apply m log(S) decompositions with no complication, but we choose to stop short with
only d decompositions. While this can prevent one from applying up to log(S)−1 decompositions
one could otherwise apply using variable Sj values, it turns out for our particular purposes not
described in this section, such a restriction is not a problem. So henceforth we indeed focus on a
singe S value, and to apply d decomposition for appropriate d we proceed as follows.

1. We may apply log(S) decompositions within threads followed by the translation of the previ-
ous subsection. We may repeat this process ⌊d/ log(S)⌋ times, for a total of log(S) ⌊d/ log(S)⌋
decompositions.
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2. There remain d mod log(S) decompositions to perform, and these too may be performed
within threads, but we only apply d mod log(S) decompositions this last round rather than
log(S) as in the previous rounds.

While we could have written the previous formulas in this section for a single S value, working
with variable Sj values provided clarity (as least for the author) as well as opportunity for more
flexibility in the future in case d ∈ {0, D0 − (D0 mod log(S))} becomes too restrictive. Note that
Tj , Dj , and Lj values may still differ across j.

Recall from the end of the previous subsection that for every r ∈ [D/Dj−1] − 1 and t ∈
[Tj] − 1 we are tasked with implementing a transposition. The matrix to be transposed has size
Sj × Sj−1 = S × S and each row of the matrix corresponds to a source array. Since we have
a single S, the number of source and destination arrays coincide, so we may assume the source
arrays are in fact the destination arrays too. Thus the task of transferring values from source to
destination arrays becomes a task of permuting the values among the arrays. We will use shuffle
operations to implement these permutations.

By examining a square matrix and recalling that arrays correspond to rows, it is clear that
every array must write to and read from every other array. If we were to iterate across rows
s ∈ [S]− 1 or columns i ∈ [S]− 1 and naively perform the necessary swaps, at each step a single
array would need to read all its values or write all its values. This pattern is not fit for a parallel
implementation. Instead we need each array at each step to read one value and write one value.
While this is sufficient, it is not optimal, since it may be that an array must read values for many
coefficients before it sends its own values for those coefficients, costing either temporary storage
up two twice the size of the array, or complex data movement at every step. If we can have each
thread at each step read and write for the same coefficient, we can avoid these costs. Arranging
the communication between threads to do so seems to imply that at any step we must have pairs
of threads swap values (rather than larger cycles of sharing). We now develop this further into a
solution.

Let us identify arrays (one-to-one with threads) by τ(i) := (rS + i)Tj + t for i ∈ [S]− 1. We
rewrite our array translation equation using τ as

∀i ∈ [S]− 1, ∀s ∈ [S]− 1

A
(τ(s))
Lj

[i] = A
(τ(i))
Lj

[s]

Each array τ(i) will proceed through steps s ∈ [S − 1], in each step to swap a coefficient with
another array. The coefficient to target, however, cannot be s for all arrays as this would mean all
arrays must swap with the single thread τ(s). Instead, each thread τ(i) must swap a coefficient
with a distinct thread γs(i) for some γs : S → S. Thus we rather use the formula

∀i ∈ [S]− 1, ∀s ∈ [S]− 1

i′ := γs(i)

A
(τ(i′))
Lj

[i] = A
(τ(i))
Lj

[i′]

and it remains to find an appropriate function γs. We assume array τ(i) follows the formula and
swaps for coefficient γs(i) when swapping with array τ(γs(i)). Two properties of γs are necessary
and sufficient for our purpose.
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• We need γs to be a permutation. This way, array τ(i) swaps with every other array τ(γs(i))
exactly once, and therefore swaps for every coefficient.

• To ensure γs indeed induces ‘swapping’ between arrays, we require that γs◦γs is the identity
function. This way, for array τ(i) to swap with array i′ := γs(i) means for array τ(i′) to swap
with array γs(i′) = γs(γs(i)) = i.

In our case where S is a power of two, such a function may be had simply as γs(i) := i⊕ s where
⊕ returns the integer had by XORing the bit decompositions of its arguments. Indeed, this function
is both a permutation and a proper swapping function as (i⊕ s)⊕ s = i. Our final formula is

∀i ∈ [S]− 1, ∀s ∈ [S]− 1

A
(τ(i⊕s))
Lj

[i] = A
(τ(i))
Lj

[i⊕ s]

7.2 Arrangement of components for multiplication
Thus far in this section we have discussed decomposing a ring element in Zp[X]/Φn(X) into
components. We will now assume the components are fully decomposed, in which case there are
D/ordn(p) of them and each is an element in a distinct finite field of extension degree ordn(p).
Recall that the previous section also focused on decomposition into irreducible components, but
stopped short of multiplying those irrducibles with the irreducibles of another ring element. The
reason is the decomposition algorithm described in this section is heuristically faster because it was
designed for minimal cross-thread communication. The two decomposition algorithms encode
the irreducibles differently, and therefore to focus on the faster algorithm, we will now discuss
multiplication of irreducibles assuming they are encoded according to the decomposition algorithm
of this section. In neither of the two notes do we discuss multiplication of irreducibles encoded
according to the algorithm of the previous section, though the algorithms we will develop in the
next section may serve as guides.

Our task for the remainder of this section is multiplying a ring element in fully decomposed
form (decomposed by the algorithm of this section) by another ring element also in fully decom-
posed form. We will assume the component coefficients of the other ring element can be loaded
on demand, and while they could be loaded multiple times to reduce space complexity, we will
restrict to loading them only once.

Once our ring element is fully decomposed, each component may or may not be distributed
among threads depending on parameters. While multiplication can be done when a component is
distributed across threads, doing so efficiently seems exceedingly complex. The reason is different
depending on the multiplication algorithm, the three of which we will consider being ‘schoolbook’
multiplication and two variants of Karatsuba multiplication. Though schoolbook multiplication
minimizes space complexity, and Karatsuba multiplication minimizes time complexity, the way
components are distributed among threads partially negates these benefits. One may trade space
and time complexities whether multiplying within a thread or across threads, but when doing so
across threads the trades are more expensive. An optimal trade-off complexity across threads
comes at the cost of extra cross-thread communication. For example, our component coefficients
are currently distributed among threads such that each thread could multiply for the coefficients
it holds and apply finite field reduction such that the output is no larger than the inputs. To do so
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would not yield optimal time complexity since it would require more finite field reductions than
necessary, requiring almost twice as many associated multiplications as necessary. Not to do so, on
the other hand, would cause the polynomials multiplied within threads to expand in size such that
overlapping coefficients are located on separate threads, costing both extra space and extra cross-
thread communication to resolve the overlaps. Another issue is the ternary nature of Karatsuba
multiplication in the context of thread count being a power of 2; either some threads already in
use must delegate to other threads to have thread count a power of 3, or schoolbook multiplication
must be used for one of the three recursive invocations to balance the load.

For these reasons, we will instead perform each multiplication within a single thread and accept
the accompanying consequences. The primary consequence is the restriction that a component
must be small enough to fit in a single thread. Furthermore, depending on the multiplication
algorithm, both components being multiplied may need to fit in a single thread. For our purposes
this restriction is acceptable. The other consequence is that with each component distributed among
multiple threads, we must rearrange the components using cross-thread communication such that
each component is located in a single thread. This consequence is also acceptable because should
we instead multiply components when distributed across threads, at least the same amount of
cross-thread communication and likely more would be necessary.

We now describe the process one may perform after all components have been moved into in-
dividual threads. We will not formally describe the process step-by-step, but rather now describe
how the remaining items in this section fit together to constitute the process. In the next section
three multiplication algorithms will be presented. All multiplication algorithms are for the purpose
of multiplying two irreducible components, and all of them express their output in power basis
form. In this section we will assume thread τ allocates a second array B(τ) also of size S for the
purpose of storing the outputs of all component multiplications. Specifically, upon allocating array
B(τ), one iterates in natural order through the components in the array A(τ) and invokes a multi-
plication algorithm on each one, directing the output to array B(τ). This way, upon completing all
multiplications, array B(τ) encodes the results with components ordered naturally and coefficients
encoded by power basis. Finally, we wish to write array B(τ) to memory as final output. While the
next section is devoted to the multiplication algorithms, in the first subsection below we will jump
ahead to the point that B(τ) contains the results and is to be written to memory. We will describe
how this memory operation might best be done. In the second subsection below we will cover
how we may use cross-thread communication to collect components into single threads such that
multiplication algorithms can be applied to them in the first place.

7.2.1 Writing results to shared memory

Upon moving components into single threads (as described in the next subsection) and invoking
multiplication on each, array B(τ) will contain the results and we wish to write them to memory.
As mentioned, components will be encoded in B(τ) in their natural order and within each compo-
nent coefficients will be encoded in power basis order. Each thread is then to write array B(τ) to
memory. Specifically, thread τ ∈ [T ]− 1 is to write the S values of array B(τ) to the τ ’th segment
of S memory cells. In this subsection we discuss how this memory writing operation can be done
efficiently. It may seem this task of writing to memory is simple: either iterate through the S array
indices and write each array value to its proper memory index, or iterate through the S memory
indices and write to each memory index from its proper array index. The flaw in these simple
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strategies should become apparent once we clarify what we mean by ‘memory.’
Apart from cache memory, there are two primary types of GPU memory commonly called

‘global memory’ and ‘shared memory.’ Global memory is much larger and takes much longer to
access. Shared memory is smaller and faster. For our circumstance, we wish to write our result to
shared memory. The reason is that, while the topic is multiplying two ring elements, in practice
we wish to multiply many pairs of ring elements and then sum them together. We will use shared
memory to store the intermediate products before we sum them together.

Best practices for accessing shared memory differ from those for accessing global memory. In
the first note when we read input from memory, we were accessing global memory, in which case
we prioritize sequential threads accessing sequential memory locations. When accessing shared
memory, in contrast, we prioritize each warp of X threads accessing memory indices representing
the full residue set [X] − 1 modulo X . (X is often called the ‘execution-width.’) The reason is
shared memory is divided into X memory ‘banks,’ each bank only able to process one read or
write operation at a time. Therefore to avoid delay we prefer read and write instructions for which
each of the X threads in a warp accesses a distinct bank. To do so we must understand how banks
represent memory. Bank x ∈ [X] − 1 represents all memory indices with index x mod X . GPU
shared memory is designed as such to optimize for the common case that sequential threads will
access sequential memory locations. Unlike global memory, however, this architecture allows us
to optimize memory transactions for the more general case that threads access indices with distinct
residues modulo X in any order, noting sequentially ordered indices are one special case.

Recall how earlier in this section we used ‘memory’ (not specifying global or shared memory)
when we translated between decomposition rounds j − 1 and j by writing to and reading back
from memory. In practice we would use shared memory for this. We did not concern ourselves
with optimized memory access because in practice we would only translate from j − 1 to j when
Tj ≥ X , switching to shuffle operations for Tj < X . On returning to that material one may
observe that the Tj threads in each group write to Tj adjacent memory addresses. Therefore,
whether accessing global memory or shared memory, the access pattern is appropriate provided
Tj ≥ X .

We now describe the access pattern we use for threads to write their S values to memory. We
consider two separate cases for X < S and X ≥ S.

• Supposing X < S, we proceed in S steps, at step s ∈ [S]− 1 thread x ∈ [X]− 1 reads from
array index (x+ s) mod S and writes to memory index xS+(x+ s) mod S. To see that for
any fixed s the expression yields for each x a distinct residue modulo X , first note that

xS + (x+ s) mod S = xX(S/X) + (x+ s) mod X(S/X) = (x+ s) mod X(S/X)

With x ∈ [X] − 1 the X values {(x + s) mod X(S/X)} are contiguous modulo X(S/X),
and must therefore be contiguous modulo X .

• Supposing X ≥ S, we divide the X threads in a warp into S groups of size X/S. We will
proceed in S steps. At step s ∈ [S]− 1, each thread δ ∈ [X/S]− 1 in group γ ∈ [S]− 1 will
read from array index (γ+ s) mod S and write to memory index γX + δS+(γ+ s) mod S
where we are writing the modulo operation with higher precedence than addition. (Note the
symbol γ should not be confused with its role in a previous section of this section, nor should
δ be confused with its role in a subsequent section.) As s spans [S] − 1 each thread reads
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from all S array indices and writes to the S adjacent memory indices beginning at index
γX + δS. Furthermore, for each step s ∈ [S] − 1 all X threads access a distinct memory
index modulo X . To see this, note the expression modulo X reduces to δS+(γ+s) mod S,
and as δ and γ span their range this expression spans the residue set [X]− 1 modulo X .

Upon completing all multiplications and array B(τ) containing the outputs, each thread in a warp
may invoke this algorithm to write final outputs to memory.

7.2.2 Collecting components into threads

In this subsection we will discover the cross-thread communication pattern one may employ to
rearrange data from its current state after decomposition to its desired state of every component
located within a single thread. Once all decompositions have been applied, one will have last
applied some kj = K decompositions within some round j = J . In this state our components are
distributed among threads by the following equation

∀r ∈ [D/DJ ]− 1, ∀i ∈ [2K ]− 1, ∀s ∈ [S/2K ], ∀t ∈ [TJ ]− 1 :

A
(rTJ+t)
LJ+K [i(S/2K) + s] = C

(r2K+i)
LJ+K [sTJ + t]

Our desired state is essentially any state in which all components are encoded within individual
threads. Before discussing our desired encoding, let us define relevant notation. First note that there
are 2K components per group of TJ threads, and with each thread holding an array of size S each
component must have size TJS/2K and thus 2K/TJ components will fit in each array. Let us use
the symbol u ∈ [2K/Tj]− 1 to enumerate the components within a thread, without confusing with
use of the same symbol in the previous section.

Whereas the equation above is the current encoding (having components across threads), here
we are concerned with notation for the desired encoding (having components within threads).
Therefore to enumerate the threads in the new encoding, using rTJ + t may be problematic since
the variables r and t are already tied to representing the current encoding. But cross-thread com-
munication will not cross thread group boundaries, meaning for each group r ∈ [D/DJ ]− 1 of TJ
threads, together encoding 2K components, all threads in the group will exchange data among only
themselves. Therefore we may reuse the variable r in the enumeration of arrays for our desired
encoding, though in place of twe’ll use a free variable t′ ∈ [TJ ]−1. To enumerate all components,
we combine our new enumeration of threads with our enumeration of components within a thread
to get (rTJ + t′)(2K/TJ) + u. We can take this moment to relate the current enumeration of com-
ponents to this new enumeration. Setting r2K+ i to (rTJ + t

′)(2K/TJ)+u = r2K+ t′(2K/TJ)+u
we can substitute for i with t′(2K/TJ) + u. Let us restate the current encoding using this new
enumeration

∀r ∈ [D/DJ ]− 1, ∀s ∈ [S/2K ], ∀t, t′ ∈ [TJ ]− 1, ∀u ∈ [2K/TJ ]− 1 :

A
(rTJ+t)
LJ+K [t′(S/TJ) + u(S/2K) + s] = C

((rTJ+t′)(2K/TJ )+u)
LJ+K [sTJ + t]

There are many natural ways to encode multiple components in a single array. It would be
most natural and fitting for multiplication algorithms if encoding is in component-major order,
and especially convenient if the coefficients are encoded in power basis order. Therefore as a
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naive first attempt we consider mapping all ordered threads and their ordered array entries to all
ordered components and their power-basis-ordered coefficients. That is, array entries are indexed
with digits (u, s, t) as u(TJS/2K) + (sTJ + t). Going through the motions to figure out how
coefficients must be exchanged between threads to achieve this encoding, one will soon discover
an asymmetry in the way two threads must exchange coefficients. In particular, the coefficient a
thread sends in each step is not the same as the coefficient it receives. Consequently, there are two
options, doubling usage of either space or time as follows.

• Each thread could allocate another array with size S to hold newly received values for coef-
ficients that have yet to be sent.

• Each thread could replace values sent with values received, requiring a subsequent corrective
reshuffling of coefficients, costing essentially as many steps as the cross-thread communica-
tion.

To avoid these costs, we may try as a second attempt preserving component-major order but invert-
ing coefficient order with digits (u, t, s) as u(TJS/2K) + t(S/2K) + s. This encoding, however,
leads to a similar asymmetry. We cannot, therefore, encode in a component-major order. We must
instead turn to the dual encoding of the current encoding, had by swapping values t and t′ to yield
encoding

∀r ∈ [D/DJ ]− 1, ∀s ∈ [S/2K ]− 1, ∀t, t′ ∈ [TJ ]− 1, ∀u ∈ [2K/TJ ]− 1 :

A
(rTJ+t′)
LJ+K [t(S/TJ) + u(S/2k) + s] = C

((rTJ+t′)(2K/TJ )+u)
LJ+K [sTJ + t] (19)

This leads to relation

∀r ∈ [D/DJ ]− 1, ∀s ∈ [S/2K ]− 1, ∀t, t′ ∈ [TJ ]− 1, ∀u ∈ [2K/TJ ]− 1 :

A
(rTJ+t)
LJ+K [(t′(2K/TJ) + u)(S/2K) + s]

= C
((rTJ+t′)(2K/TJ )+u)
LJ+K [sTJ + t]

= A
(rTJ+t′)
LJ+K [t(S/TJ) + u(S/2K) + s]

where the array on the top has the current encoding and the array on the bottom has the desired
encoding. We can simplify the enumerations noting s and u appear in both array expressions only
as u(S/2K) + s and can thus be replaced by v ∈ [S/TJ ]− 1 yielding

∀r ∈ [D/DJ ]− 1, ∀t, t′ ∈ [TJ ]− 1, ∀v ∈ [S/TJ ]− 1 :

A
(rTJ+t)
LJ+K [t′(S/TJ) + v] = A

(rTJ+t′)
LJ+K [t(S/TJ) + v]

One could implement this data rearrangement using memory by writing all values to memory
and reading back accordingly. But for efficiency we prefer shuffle operations to memory opera-
tions. Note how in each group of TJ threads, every thread must exchange S/TJ values with every
other thread. Once again XOR may serve our purpose as it did in the ‘translation for round j’ in
Section 7.1.2. Iterating in steps, for each step t′ ∈ [TJ ]− 1 each thread t ∈ [TJ ]− 1 will exchange
all appropriate S/TJ values with thread t⊕ t′ ∈ [TJ ]− 1. Our formula becomes

∀r ∈ [D/DJ ]− 1, ∀t, t′ ∈ [TJ ]− 1, ∀v ∈ [S/TJ ]− 1 :

A
(rTJ+t)
LJ+K [(t⊕ t′)(S/TJ) + v] = A

(rTJ+t⊕t′)
LJ+K [t(S/TJ) + v]
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Upon applying this formula for rearranging all components into single threads, we may apply any
of the three multiplication algorithms that follow in the next section.

7.3 Multiplying components within threads
We are multiplying the D/ordn(p) irreducible components of the ring element we have decom-
posed by the irreducible components of another ring element that we may load incrementally on
demand. We will refer to the ring element we have decomposed as the ‘major’ ring element, and
the other ring element as the ‘minor’ ring element, simply for sake of convenient distinction. When
we begin multiplication, components and their coefficients are distributed among threads accord-
ing to encoding Equation (19). Each multiplication algorithm is responsible for adapting to this
input encoding. We may rewrite the encoding simplifying rTJ + t to a single variable τ ∈ [T ]− 1.

∀τ ∈ [T ]− 1, ∀s ∈ [S/2K ]− 1, ∀t ∈ [TJ ]− 1, ∀u ∈ [2K/TJ ]− 1 : (20)

A
(τ)
LJ+K [t(S/TJ) + u(S/2K) + s] = C

(τ(2K/TJ )+u)
LJ+K [sTJ + t] (21)

For each τ and u there is a major component to multiply by a minor component, and we focus
on one such pair. Before we begin discussion of individual algorithms, we specify in which finite
field each multiplication takes place. Every multiplication takes place in a distinct extension field
of Zp[X] with defining modulus Xordn(p) − ζϵ(i), where zeta is a primitive D/ordn(p)’th root of
unity, and i := τ(2K/TJ) + u is the component index. Henceforth we will reference ζϵ(i) as the
value defining the relevant finite field without re-introduction.

7.3.1 Schoolbook multiplication

We begin with the schoolbook multiplication algorithm. We will proceed in TJS/2
K steps, at

step sTJ + t for s ∈ [S/2K ] − 1 and t ∈ [TJ ] − 1 loading coefficient sTJ + t of the minor
component, multiplying the corresponding monomial (of power sTJ + t) with all coefficients of
the major component, and then adding the results to an accumulator to sum the results of all steps.
As for the encoding of the accumulator, we choose the power basis, that is coefficient sTJ + t of
component u ∈ [2K/TJ ] − 1 will reside at index u(TJS/2K) + sTJ + t. Our accumulator will
be the newly allocated array B(τ) of size S, and since we use it as an accumulator it is important
all entries are initialized to zero. For a single multiplication, the time complexity will be ordn(p)

2

while the space complexity will be 2ordn(p) + 1, using ordn(p) space for the major component,
ordn(p) space within the accumulator, and an additional unit space for the currently loaded minor
coefficient. Of course the time and space complexities are 2K/TJ times larger accounting for all
2K/TJ components multiplied, but we still find it relevant to consider the complexity for a single
multiplication.

We will now present the multiplication of component u ∈ [2K/TJ ]−1 with output to be written
to accumulator B(τ) starting at index u(TJS/2K). At step sTJ + t on loading coefficient sTJ + t
of the minor component we must multiply its corresponding monomial by all coefficients of the
major component and add results to the accumulator. To do so we will shift all major monomials
up by sTJ + t powers, multiply the top sTJ + t major monomials by ζϵ(i), and rotate those top
sTJ + t major monomials into the bottom monomials. Finally, we multiply this new arrangement
of major monomials by the minor monomial and add all resulting monomials to the accumulator.
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Literally rotating the major monomials and multiplying sTJ + t of them by ζϵ(i) at each step is a
task that would require both extra space and time, and is in fact unnecessary. Instead, we will keep
the major monomials in place, multiply only major coefficient TJS/2K − (sTJ + t) (non-existent
for sTJ + t = 0) by ζϵ(i), multiply all major coefficients (some already multiplied by ζϵ(i)) by the
minor coefficient sTJ + t, and finally add results to the accumulator accordingly. Note that once
a major coefficient is multiplied in-place by ζϵ(i) it may remain that way for all remaining steps.
Moreover, post-multiplication we abuse notation and continue to use the term ‘major coefficient’
for reference.

First we clarify for step sTJ + t which array entry to multiply by ζϵ(i), and second we clar-
ify which array entry to add to which accumulator entry. We rewrite the major coefficient to be
multiplied by ζϵ(i) piecewise as

TJS/2
K − (sTJ + t) = (S/2K − s)TJ − t =

{
t = 0 : (S/2K − s)TJ + 0

t > 0 : (S/2K − (s+ 1))TJ + (TJ − t)

Recall that the u’th component in the thread is encoded in the array with coefficient sTJ+t residing
at index t(S/TJ)+u(S/2K)+ s. Therefore, coefficient TJS/2K − (sTJ + t) of component u must
reside at index {

t = 0 : 0 · (S/TJ) + u(S/2K) + (S/2K − s)

t > 0 : (TJ − t)(S/TJ) + u(S/2K) + (S/2K − (s+ 1))

=

{
t = 0 : (u+ 1)(S/2K)− s

t > 0 : (TJ − t)(S/TJ) + (u+ 1)(S/2K)− (s+ 1)

Thus at step sTJ + t one must examine t to determine the correct index expression.
Regarding multiplication with the minor coefficient and addition with the accumulator, we

iterate across the major coefficients using t′(S/TJ) + u(S/2K) + s′ for all s′ ∈ [S/2K ] − 1 and
t′ ∈ [TJ ] − 1, multiplying each major coefficient with the minor coefficient. As we do so, each
product must be added to the accumulator at the appropriate index, which depends on both the
minor coefficient and the major coefficient. Since the accumulator is encoded in the power basis,
we consider the power basis indices of the major and minor coefficients multiplied, those are
indices s′TJ + t′ for the major coefficients sTJ + t for the minor coefficient. The index of their
product, again in the power basis, should be ((s′TJ + t′) + (sTJ + t)) mod (TJS/2

K). Therefore
the product should be added at accumulator index u(TJS/2K) + δ(s, t, s′, t′) where δ(s, t, s′, t′) is
defined as

δ(s, t, s′, t′) := ((sTJ + t) + (s′TJ + t′)) mod TJS/2
K

Therefore we have our formula as

B(τ)[u(TJS/2
K) + δ(s, t, s′, t′)] :=

B(τ)[u(TJS/2
K) + δ(s, t, s′, t′)] + A(τ)[t′(S/TJ) + u(S/2K) + s′]× Minor(τ(2

K/TJ )+u)[sTJ + t]

Note that B(τ) encodes the outputs as promised, that is with components in natural order and
coefficients in power basis order. To see this, note component u ∈ [2K/TJ ] − 1 is naturally
encoded beginning at index u(TJS/2K). Regarding coefficients, when we wrote the product of
minor coefficient sTJ + t and major coefficient s′TJ + t′ (in power basis) to B(τ), we wrote it at
coefficient index δ(s, t, s′, t′) which is the proper index in power basis form.
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7.3.2 Minimal time Karatsuba multiplication

Karatsuba multiplication saves on time complexity relative to schoolbook multiplication, but at the
expense of space complexity. By time complexity we essentially mean the number of base field
multiplications that must be performed to multiply a major and minor component. Given the major
component in power-basis form, we must multiply it by a minor component, which can be loaded
on demand in any basis desired. We are assuming that the components to multiply are irreducible,
and let us denote the component size by Θ := TJS/2

K . For sake of comparison, suppose we could
fully decompose the components down to the base field (irreducibles of degree zero), at which point
we’d simply perform log(Θ) more layers of decomposition and then perform Θ multiplications in
the base field (loading the minor component in fully decomposed form). Let us calculate the
number of multiplications required for this approach. Each layer of decomposition requires Θ/2
multiplications, so in total the number of multiplications required is Θ log(Θ)/2 + Θ. Karatsuba
multiplication, on the other hand, requires Θlog(3) (an integer as Θ is a power of 2) multiplications
for the product polynomial of degree 2(Θ − 1), followed by Θ − 1 multiplications for finite field
reduction. For all Θ > 1 Karatsuba requires more multiplications, specifically for Θ = 2, 4, 8, 16
Karatsuba requires respectively 1.33, 1.5, 1.7, 2 times more multiplications. Unfortunately, often
it is the case that our ring does not fully decompose, so we must use Karatsuba multiplication and
tolerate the additional time complexity, space complexity, and implementation complexity.

There are many ways to implement Karatsuba multiplication for polynomials, choosing trade-
offs between space and time. Since our schoolbook algorithm prioritizes saving space at the ex-
pense of time, with Karatsuba we will instead prioritize time at the expense of space. Depending
on the relative performance of the schoolbook and Karatsuba algorithms, one may choose an algo-
rithm appropriately on the spectrum between the two. We will next present our recursive Karatsuba
algorithm, which will not involve any finite field reduction to avoid redundant reduction for the sake
of minimal time complexity. We will describe finite field reduction after Karatsuba multiplication,
and indeed the reduction will be applied after the multiplication.

Our Karatsuba algorithm takes as inputs two arrays of length Θ holding the coefficients of
two polynomials to multiply. The output of the algorithm is the product of the polynomials with
2 ·Θ− 1 coefficients, and it will overwrite the input to save space. The extra space required by the
algorithm is 2 · Θ − 1. Specifically, with log(Θ) layers of recursion, the top layer will allocate Θ
space, and all other layers will collectively allocate Θ − 1 space. Denote the two polynomials to
multiply as P and P ′.

We now describe the algorithm we call ‘Karatsuba’ which accepts as input two polynomials
represented as coefficient lists. Throughout the algorithm we will denote a polynomial via a co-
efficient list denoted by an array with Python slice notation indicating the relevant entries of the
array. All polynomials represented as such are associated with the power basis. We will now list
the steps for invoking the algorithm as Karatsuba(P [0 : Θ], P ′[0 : Θ]). The output is the product
polynomial of size 2 · Θ − 1 and will be be encoded by overwriting the input with the lower Θ
coefficients in P and the upper Θ − 1 coefficients in P ′. The top coefficient of P ′ may not equal
zero and is to be ignored.

1. If Θ = 1 then set P [0] := P [0] ·P ′[0] and exit the algorithm. Note that as promised the lower
Θ = 1 coefficients are encoded in P while the upper Θ − 1 = 0 coefficients (non-existent)
are encoded in P ′. If Θ > 1 then skip this step and perform all others.
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2. Allocate an extra array denoted Q of size Θ.

3. For both P and P ′ we sum the bottom and top halves and store the results in Q, the two
results to be multiplied as polynomials of size Θ/2 in the subsequent step.

∀θ ∈ [Θ/2]− 1 :

Q[θ] := P [θ] + P [Θ/2 + θ]

Q[Θ/2 + θ] := P ′[θ] + P ′[Θ/2 + θ]

4. The following three recursive invocations of the algorithm are independent, though they must
be executed in sequence to prevent exponential growth in space complexity.

Karatsuba(P [0 : Θ/2], P ′[0 : Θ/2])

Karatsuba(Q[0 : Θ/2], Q[Θ/2 : Θ])

Karatsuba(P [Θ/2 : Θ], P ′[Θ/2 : Θ])

Note how the first invocation takes place across the bottom halves of P and P ′, the second
invocation across the two halves of Q, and the third invocation across the top halves of P
and P ′. Suppose informally that R0, R1, and R2 represent the polynomials computed by the
first, second, and third invocations above. Then the output polynomial is

R0(X) +XΘ/2(R1(X)−R0(X)−R2(X)) +XΘR2(X)

5. Let us take this step only to clarify what remains to be computed before specifying the
algorithmic steps to compute it.

• The lower half of P must hold coefficients (0 : Θ/2) of R0. This is in fact already the
case.

• The upper half of P must hold the sum of coefficients (Θ/2 : Θ − 1) of R0 and
coefficients (0 : Θ/2) of R1−R0−R2. Since coefficient Θ− 1 of R0 is zero, we write
coefficient Θ− 1 of P as

P [Θ− 1] := Q[Θ/2− 1]− P [Θ/2− 1]− P [Θ− 1]

and we write the remaining Θ/2− 1 coefficients of the upper half of P as

∀θ ∈ [Θ/2− 1]− 1 :

P [Θ/2 + θ] := P ′[θ] + (Q[θ]− P [θ]− P [Θ/2 + θ])

• The lower half of P ′ must hold the sum of coefficients (0 : Θ/2) of R2 and coefficients
(Θ/2 : Θ− 1) of R1 −R0 −R2. Since coefficient Θ− 1 of R1 −R0 −R2 is zero, we
write coefficient Θ/2− 1 of P ′ as

P ′[Θ/2− 1] := P [Θ− 1]
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and we write the remaining Θ/2− 1 coefficients of the lower half of P ′ as

∀θ ∈ [Θ/2− 1]− 1 :

P ′[θ] := P [Θ/2 + θ] + (Q[Θ/2 + θ]− P ′[θ]− P ′[Θ/2 + θ])

where we are not assuming the upper half of P was set as in the previous point because
we are only writing these assignments for clarification.

• The upper half of P ′ must hold coefficients (Θ/2 : Θ−1) of R2. This is in fact already
the case.

Notice how for θ ∈ [Θ/2−1]−1 the difference P ′[θ]−P [Θ/2+θ] appears in the upper half
of P while the difference P [Θ/2+ θ]−P ′[θ] appears in the lower half of P ′. The remaining
steps will take advantage of this symmetry to compute the desired results for the upper half
of P and the lower half of P ′.

6. We compute the following difference to appear in the upper half of P

∀θ ∈ [Θ/2]− 1 :

Q[θ] := Q[θ]− P [θ]

and the corresponding difference to appear in the lower half of P ′

∀θ ∈ [Θ/2− 1]− 1 :

Q[Θ/2 + θ] := Q[Θ/2 + θ]− P ′[Θ/2 + θ]

7. Here we handle the outlier coefficients P [Θ− 1] and P ′[Θ/2− 1]. To do so we perform the
following.

P ′[Θ/2− 1] := P [Θ− 1]

P [Θ− 1] := Q[Θ/2− 1]− P ′[Θ/2− 1]

8. For θ ∈ [Θ/2 − 1] − 1 we will compute one of the two differences P ′[θ] − P [Θ/2 + θ] or
P [Θ/2+ θ]−P ′[θ]. Arbitrarily choosing the latter which appears in the lower half of P ′ we
calculate

∀θ ∈ [Θ/2− 1]− 1 :

P ′[θ] := P [Θ/2 + θ]− P ′[θ]

9. To compute the final upper half of P we write

∀θ ∈ [Θ/2− 1]− 1 :

P [Θ/2 + θ] := Q[θ]− P ′[θ]

To compute the final lower half of P ′ we write

∀θ ∈ [Θ/2− 1]− 1 :

P ′[θ] := Q[Θ/2 + θ] + P ′[θ]

58



The algorithm of Karatsuba multiplication we’ve layed out multiplies a major and minor com-
ponent without performing finite field reduction, the task to which we now turn. Continuing with
the notation P and P ′, upon invoking the Karatsuba algorithm with Θ = TJS/2

K , the resulting
polynomial has its lower Θ coefficients in P and its upper Θ− 1 coefficients in P ′. Finite field re-
duction means multiplying coefficient θ of P ′ for θ ∈ [Θ− 1]− 1 by ζϵ(i) and adding to coefficient
θ of P .

∀θ ∈ [Θ− 1]− 1 :

P [θ] := P [θ] + ζϵ(i) · P ′[θ]

Finally let us calculate the time and space complexity of applying Karatsuba followed by finite
field reduction. For space complexity, the two inputs together account for 2·Θ space. As mentioned
previously the extra space needed is 2·Θ−1, so total space complexity is 4·Θ−1. Note there are no
temporary variables used in algorithm. Regarding time complexity, the number of multiplications
is 3log(Θ) = Θlog(3) for Karatsuba due to the log(Θ) depth recursion and each step of recursion
spawning 3 instances. Then another Θ − 1 multiplications are needed for finite field reduction,
yielding total Mult(Θ) := Θlog(3)+Θ−1. The number of additions and subtractions for Karatsuba
not accounting for the 3 recursive invocations is tabulated for Θ > 1 as

• Θ additions for step 3.

• (Θ/2) + (Θ/2− 1) subtractions for step 6.

• 1 subtraction for step 7.

• Θ/2− 1 subtractions for step 8.

• Θ/2− 1 subtractions and Θ/2− 1 additions for step 9.

Not counting additions and subtractions due to the 3 recursive invocations, that’s a total of Θ +
Θ/2−1 = 3 ·Θ/2−1 additions and Θ/2+1+3(Θ/2−1) = 2(Θ−1) subtractions. Then another
Θ− 1 additions are needed for finite field reduction. Therefore we have recursive formulas

AddKaratsuba(Θ) := 3 ·Θ/2− 1 + 3 · Add(Θ/2)
AddTotal(Θ) := Θ− 1 + AddKaratsuba(Θ)

SubTotal(Θ) := 2(Θ− 1) + 3 · SubTotal(Θ/2)

Rather than resolving the recursive formulas to non-recursive forms for asymptotic analysis, we
write out the number of additions and subtractions for relevant powers of 2 as follows.

Θ 1 2 4 8 16 32 64 128
Mult(Θ) 1 4 12 34 96 274 792 2314
Add(Θ) 0 3 14 51 170 543 1694 5212
Sub(Θ) 0 2 12 50 195 678 2223 7050

This algorithm assumes the input is in power basis form, and the output overwrites the input P .
Therefore we must load P and P ′ with inputs in power basis form, and with the output contained in

59



P we must make P an alias for the appropriate segment of output arrayB(τ). The current encoding
after arranging components into individual threads is shown in Equation (21). In that encoding,
array entries are enumerated by t(S/TJ) + u(S/2K) + s, whereas in the power basis encoding,
entries are enumerated by u(TJS/2K) + sTJ + t. Therefore, when we are to multiply component
u ∈ [2K/TJ ]− 1 we load the component into B(τ) and alias with P as follows

P [sTJ + t] := B(τ)[u(TJS/2
K) + sTJ + t] := A(τ)[t(S/TJ) + u(S/2K) + s]

Doing so prepares P for multiplication with P ′ (to be loaded separately). Once all multiplications
have taken place, B(τ) contains the outputs as promised with components naturally ordered and
coefficients ordered by power basis, at which point B(τ) may be written to memory as final output.

7.3.3 Minimal space Karatsuba multiplication

Since we are performing this multiplication in a finite field where the output has the same size as
each of the inputs, we can save space Θ at the cost of Θ − 2 extra multiplications. Again, we are
considering time and space complexity here for a single multiplication. By representing the input
polynomials of size Θ in bit-reversed order, upon splitting the polynomials in half and multiplying
two halves of size Θ/2 (as the Karatsuba algorithm does 3 times), the output is also of size Θ/2
rather than Θ − 1. By ‘bit-reversed’ order, we mean the coefficient associated with power m is
not located at array index m as in the power basis encoding, but rather at index m′ where m′ is
the number corresponding to the bit-reversed binary decomposition of m. We briefly touched on
this technique when we chose not to multiply components when coefficients are distributed across
threads. While this technique indeed trades time for space, the trade is less expensive here applying
it within threads than it would be applying it across threads.

First we present the algorithm for multiplication assuming the polynomials are already in bit-
reversed form, at the end addressing how we may arrive at this form. Calling the algorithm ‘Du-
alKaratsuba’ we now list the steps for invoking the algorithm as DualKaratsuba(P [0 : Θ], P ′[0 :
Θ], preserve) where preserve is a boolean argument indicating if P ′ must be preserved or
whether it can be overwritten.

1. If Θ = 1 then set P [0] := P [0] × P ′[0] and exit the algorithm. Note that P ′ is preserved
regardless. If Θ > 1 then skip this step and perform all others.

2. Allocate an extra array Q of size Θ/2.

3. Copy the top half of P to Q, that is

∀θ ∈ [Θ/2]− 1 :

Q[θ] := P [Θ/2 + θ]

4. Recursively multiply the tops of P and P ′, located in Q and the top half of P ′, respectively.
We pass true as the boolean argument in order to preserve the top half of P ′.

DualKaratsuba(Q[0 : Θ/2], P ′[Θ/2 : Θ], true)
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5. For both P and P ′ add the bottom half to the top half. Already having multiplied their two
top halves, their top halves may be overwritten with these sums.

∀θ ∈ [Θ/2]− 1 :

P [Θ/2 + θ] := P [Θ/2 + θ] + P [θ]

P ′[Θ/2 + θ] := P ′[Θ/2 + θ] + P ′[θ]

6. Recursively multiply the bottom halves of P and P ′, and also recursively multiply the sums
which are located in the top halves of P and P ′. After these multiplications we have no
further need for P ′ other than to return it in preserved form if requested. Note that in these
two recursive calls the two items to potentially preserve are the top and bottom halves of
P ′. Therefore we request preservation in these calls if and only if preservation of P ′ in the
current call is requested.

DualKaratsuba(P [0 : Θ/2], P ′[0 : Θ/2], preserve)

DualKaratsuba(P [Θ/2 : Θ], P ′[Θ/2 : Θ], preserve)

Note the results are stored in the bottom and top halves of P , respectively.

7. At this point the product polynomial consists of three non-overlapping parts. With respect
to bit-reversed coefficients, the bottom half of P holds coefficients (0 : Θ/2), the top half
of P holds coefficients (Θ/2 : Θ), and Q holds coefficients (Θ : 3 · Θ/2). Whereas had we
applied Karatsuba with the power basis the polynomial would have size 2 ·Θ− 1, using the
bit-reversed basis the polynomial has size 3 ·Θ/2.

Next we subtract the bottom and top of the non-reduced polynomial from the middle of the
non-reduced polynomial.

∀θ ∈ [Θ/2]− 1 :

P [Θ/2 + θ] := P [Θ/2 + θ]−Q[θ]

P [Θ/2 + θ] := P [Θ/2 + θ]− P [θ]

8. To finally construct the output polynomial in P we apply finite field reduction. Let us con-
sider the polynomial of size Θ/2 located in Q. Finite field reduction first involves multiply-
ing this polynomial by the degree-2 monic monomial and reducing it to another polynomial
in the same basis, finally adding the result to the bottom half of P . The basis here is the
bit-reversed power basis in which powers are taken of the degree-2 monic monomial. But
let us consider the power basis for a moment. Upon multiplying the polynomial in Q by the
monomial, all coefficients shift up by 1, and the highest coefficient is multiplied by ζϵ(i) and
rotated down into the lowest coefficient. While this transformation is simple in the power
basis, we must apply it to our bit-reversed power basis instead.

There may be more clever representations of this transformation, but we will simply map the
bit-reversed power basis to the regular power basis, perform the transformation there as just
described, and map back to the bit-reversed power basis. In practice, this can be done using
a lookup table. First we handle the special case of the top coefficient in Q, which in either
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basis will be handled the same. We simply multiply it by ζϵ(i) and add the result to P [0], that
is

P [0] := P [0] +Q[Θ/2− 1] · ζϵ(i)

The reason this doesn’t change for the bit-reversed basis is because it involves the lowest
index of P with all bits 0, and the highest index of Q with all bits 1, both of which are
invariant under bit reversal. As for coefficient θ ∈ [Θ/2 − 1] of P , we first map it to the
power basis as ρ(θ) where ρ : ([Θ/2] − 1) → ([Θ/2] − 1) is the bit-reversal function. We
then determine that coefficient ofQwith power basis index ρ(θ)−1 should be added to P [θ],
so we access that index by mapping back to the bit-reversed basis as Q[ρ(ρ(θ) − 1)]. Our
formula is thus

∀θ ∈ [Θ/2− 1] :

P [θ] := P [θ] +Q[ρ(ρ(θ)− 1)]

9. Lastly, if preserve = true then we must invert the single operation we’ve performed on
P ′, which is adding its bottom half to its top half. Therefore we now subtract the bottom
from the top as

∀θ ∈ [Θ/2]− 1 :

P ′[Θ/2 + θ] := P ′[Θ/2 + θ]− P ′[θ]

Lets calculate time and space complexity (and tabulate) after we’re sure it works. do it not
analytically but numerically

As we did for Karatsuba multiplication, we must make P an alias for a segment of B(τ) and
specify how they are loaded with input. The encoding after components have been moved into
individual threads is shown by Equation (21). In that encoding, array entries are enumerated by
t(S/TJ) + u(S/2K) + s, whereas in the bit-reversed power basis encoding, entries are enumerated
by u(TJS/2K)+ρ(t)(S/2K)+ρ(s). Therefore, when we are to multiply component u ∈ [2K/TJ ]−
1 we load the component into B(τ) and alias with P as follows

P [ρ(t)(S/2K) + ρ(s)] := B(τ)[u(TJS/2
K) + ρ(t)(S/2K) + ρ(s)] := A(τ)[t(S/TJ) + u(S/2K) + s]

Once all multiplications have taken place, B(τ) contains outputs with components in natural order,
but coefficients are now in bit-reversed power basis order. To order coefficients by power basis we
apply the following rearrangement.

∀τ ∈ [T ]− 1, ∀s ∈ [S/2K ]− 1, ∀t ∈ [TJ ]− 1, ∀u ∈ [2K/TJ ]− 1 :

B(τ)[u(TJS/2
K) + sTJ + t] := B(τ)[u(TJS/2

K) + ρ(t)(S/2K) + ρ(s)]

At this point B(τ) may be written to memory as final output.
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