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Abstract: In order to challenge the security of cryptographic systems, Side-Channel Attacks

exploit data leaks such as power consumption and electromagnetic emissions. Classic Side-

Channel Attacks, which mainly focus on mono-channel data, fail to utilize the joint information

of multi-channel data. However, previous studies of multi-channel attacks have often been lim-

ited in how they process and adapt to dynamic data. Furthermore, the different data types from

various channels make it difficult to use them effectively. This study introduces the Fusion Chan-

nel Attack with POI Learning Encoder (FCA), which employs a set of POI Learning encoders

that learn the inverse base transformation function family and project the data of each channel

into a unified fusion latent space. Furthermore, our method introduces an optimal transport

theory based metric for evaluating feature space fusion, which is used to assess the differences

in feature spaces between channels. This model not only enhances the ability to process and

interpret multi-source data, but also significantly improves the accuracy and applicability of

SCAs in different environments.

Keywords: Multi-channel attacks, Deep Learning, Self-Attention mechanism

1 Introduction

In the contemporary digital age, Side-Channel Attacks(SCAs) exploit unintentional in-

formation leaks such as power consumption and electromagnetic(EM) emissions to avoid

cryptographic security measures [1]. As digital technologies integrate more deeply into

everyday life, SCAs are becoming increasingly relevant and raising risks such as identity

theft [2] and unauthorised surveillance [3]. Initially, SCAs relied on single physical chan-

nels for data extraction. Nevertheless, the development of cryptographic protections has

led to the employment of multi-channel approaches that enhance attack power through

efficient data fusion techniques. These techniques have evolved from simple data splicing
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methods [4] complex feature fusion methods [5], such as Principal Component Analy-

sis(PCA) and Linear Discriminant Analysis(LDA) [6]. However, multi-channel attacks

face significant challenges, including high computational complexity from increased input

dimensions, dependency on complete data from all channels, and limited scalability after

model training, which complicates the adaptation and processing of dynamic data [7].

It is therefore vital to address these issues to improve the reliability and practicality of

multi-channel attacks in the context of digital security threats.

Multi-channel attacks offer advantages, but existing analytical techniques have lim-

its. They struggle to handle the variability and high dimensionality of multi-channel data,

which is crucial for developing more robust security measures. In this paper, we systemat-

ically investigate the question: Is the model really interpretable just because it effectively

fuses information from different channels? We introduce a groundbreaking model, called

Fusion Channel Attack with POI Learning Encoder (FCA), which employs a set of POI

Learning encoders that learn the inverse base transformation function family and project

the data of each channel into a unified fusion latent space. Our methodology not only

enhances the ability to work with multi-channel data, but also challenges the conventional

view of model interpretability in the context of integrated data sources.

Contributions. We summarize the contributions as follows:

• A novel Fusion Channel Attack. Our method uses a feature extractor based on

the self-attention mechanism to explicitly encode points of interest (POIs) from dif-

ferent channels, compressing data from different channels into the same latent space.

This method allows the same model to learn feature information from multiple chan-

nels, improving the efficiency and effectiveness of multi-channel data processing.

• Interpretable integration evaluation index. Our method introduces an opti-

mal transport theory based metric for evaluating feature space fusion, which is used

to assess the differences in feature spaces between channels. The effectiveness of the

fused feature spaces is extensively demonstrated using this evaluation metric and

visualisation techniques.

• A new data set for evaluation. In addition to proposing theoretical models

and evaluation methods, we also construct a comprehensive dataset for assessment

purposes. This dataset uses the new fusion degree metric to evaluate various ex-

isting multi-channel fusion attack methods. In particular, by fusing feature spaces

from power and electromagnetic channels, the approach achieves more effective key

recovery attacks on cryptographically protected devices with masking.

2 Methodology

By leveraging data from different channels, multi-channel attacks can significantly in-

crease the amount of leakage information. However, utilizing multi-channel datas is still
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challenging. Often requiring specially designed models or complex data processing meth-

ods to implement attacks.Why is it not feasible to directly use multi-channel data to train

a model? Beyond factors such as data dimensionality, we believe that the primary reason

is data heterogeneity.

2.1 Heterogeneity of Multi-channel Data

Suppose the data from different channels is collected simultaneously from the same device.

In this case, different channels’ information can be viewed as representations of the same

private variable (e.g. keys, intermediate variables). However, even though these data

expose the same information, it is challenging to directly utilize them for attacks. Taking

deep learning-based attack methods as an example, training a convolutional neural net-

work (CNN) directly with data from different channels can lead to significant degradation

in model performance. We believe this is because the feature spaces of data from differ-

ent channels differ significantly, making it challenging to utilize this data simultaneously.

The differences in feature spaces is referred as data heterogeneity. To more precisely

demonstrate data heterogeneity, we employ UMAP (Uniform Manifold Approximation

and Projection) to visualize the high-dimensional manifolds of the data [8]. UMAP is a

dimensionality reduction technique that constructs a weighted k-nearest neighbor graph

and optimizes its layout in a lower-dimensional space to preserve the topological structure.

The edge weights of the graph are defined by:

µij = exp

(
−d(xi, xj)− ρi

σi

)
(1)

where d(xi, xj) is the distance between data points xi and xj, hoi is the distance to the

nearest neighbor of xi, and σi is a scaling factor. The UMAP is based on the following

optimization objective:

L =
∑

(i,j)∈G

µij log

(
µij

νij

)
+ (1− µij) log

(
1− µij

1− νij

)
(2)

where uij is the probability of an edge between points i and j in the low-dimensional

space. The optimization process captures the high-dimensional manifold structure of the

data in a lower-dimensional representation, making it ideal for visualizing data hetero-

geneity.

Taking electromagnetic side channel and power side channels as examples, data from

both channels are collected from the same cryptographic device and have been standard-

ized and aligned. The dimension of both electromagnetic and power data are reduced

to 700 using Principal Component Analysis(PCA) to eliminate the impact of different

channel noises. As shown in Fig 1, the shapes of the two channel datas exhibit significant

differences. The UMAP visualization can be seen as a projection of the high-dimensional

manifold onto a two-dimensional space, indicating that the power and electromagnetic in-

formation have significant differences in their high-dimensional manifolds. The difference

3



Figure 1: Visualization of Channel Feature Space

in manifolds demonstrates the disparity in the feature spaces of the two channels, as they

are collected from the same device and correspond to the same private variable set.

2.2 Fusion Channel Transformation

The difficulty in directly utilizing data from different channels is due to the disparity in

their feature spaces. Therefore, we aim to transform the feature spaces of the two channels

into a similar latent space where they share comparable manifolds.

We refer to the unified latent space as the fusion channel space. The transformation

of the feature spaces is referred as fusion channel Transformation.

The used side channels are defined as the set I.We define a base transformation func-

tions family as F = {fi | i ∈ I}. The feature space of channel i can be viewed as

projections under the base transformation function fi. We denote the feature set of dif-

ferent channels as C. The transformation process can be expressed as:

{ci = fi(a), c ∈ C, f ∈ F , i ∈ I} (3)

where a is the latent variable shared by each channel, representing that the information

from different channels corresponds to the same private variable.

We use a set of decoders D to learn the base transformation function family F . The

learning objective for this process is:

min loss(di(a), fi(a)), d ∈ D, f ∈ F (4)
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A set of encoders E is adopted to learn the inverse projection process from ci to a.

The learning objective for encoders is set as:

min loss(ei(a), ci), e ∈ E, c ∈ C (5)

Combining these two learning processes, the final learning objective of the encoder

and decoder can be expressed as:

min loss(D(E(C)),F(a)) (6)

equivalently,

min loss(D(E(C)), C) (7)

However, it is evident that training a neural network based on this learning objective

can easily lead to a collapsed solution where E(x) = x and D(x) = x. To avoid such

collapse, we expect the encoder and decoder to focus on the more valuable parts of the

features, known as Points of Interest (POI), which refers to specific time instances in the

side-channel trace that are highly correlated with the private variable.

2.3 POI Learning with Self-attention Algorithm

To make the process of finding POI learnable, we utilize the self-attention algorithm [9] to

enable the encoder and decoder to automatically learn the POI of the data through train-

ing. The self-attention algorithm allows the model focus on the more valuable segment

of the feature. It involves computing attention scores that determine the importance of

each part of the input data. The attention matrix is calculated by:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (8)

where Q (queries), K (keys), and V (values) are linear transformations of the input

data, and dk is the dimension of the keys. Based on the self-attention algorithm, the

model can better integrate information from different time slices as well. This integration

process enables the model to effectively attack cryptographic devices protected by masking

algorithms.

To verify the effectiveness of POI learning, we compared the performance of the POI

learning encoder with the common neural network(a fully connected neural network)

during the training process. We trained them using the same channel data based on the

proposed training objective. The mean squared error(MSE) function is adopted as the

loss function. We present the loss value changing during the training process. As shown

in Fig 2 and Fig 3, the loss values of the fully connected network did not show a significant

downward trend, while the loss of the POI learning encoder steadily decreased to zero.

The result indicates that neural networks based on POI learning have a better feature

extraction capability.
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Figure 2: Loss Changing of MLP

Figure 3: Loss Changing of POL Learning Network

Based on our proposed learning objective, for a set of channels I, we train a set of

Encoder and Decoder pairs {E,D}. Based on Eq 5, we can obtain the latent variable

a by inversely projecting the channel data ci using Encoder ei. In this work, we use a

three-layer transformer network as the POI learning encoder with 8 self-attention heads.

The Adam optimizer is employed for training. We obtain the latent variable a for power

and electromagnetic channels. The UMAP visualization of the latent variables is shown

in the Fig 4.

2.4 Evaluation of Fusion Channel

How do we verify that the obtained latent variable a is in the same feature space? We

propose a quantitative metric called the Reduced-DW distance based on the optimal

transport theory to measure the difference between two feature spaces. The DW (Distri-

butional Wasserstein) distance is a measure of the dissimilarity between two probability

distributions [10]. It quantifies the minimum cost of transporting mass to transform one

distribution into another, which is particularly useful for comparing the distributions of
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Figure 4: Visualization of Latent variables

high-dimensional data. The DW distance between two distributions P and Q is defined

as:

DW (P,Q) = inf
γ∈Γ(P,Q)

E(x,y)∼γ[∥x− y∥] (9)

However, since side-channel data typically has high dimensionality, directly calculating

the DW distance between two channel data sets is time-consuming and may not reflect

the true distribution of the data in high-dimensional space. Therefore, we propose the

Reduced-DW distance, where the side-channel data is first reduced to two dimensions

using UMAP, and then the DW distance between the two channel data sets is calculated.

We calculate the Reduced-DW distance between the power and electromagnetic signals

after PCA dimensionality reduction, as well as the Reduced-DW distance between the

latent variables of the two channels. The former distance is 0.7234, while the latter is

0.1041. It is evident that the feature space similarity between the latent variables is

higher.

.

3 Conclusion

In this work we proposed a new multi-channel fusion framework based on with POI Learn-

ing Encoder, which uses a POI Learning encoder to innovatively integrate multi-channel

data into a unified latent space. In a comprehensive case study we demonstrated the appli-
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cation of our proposed framework through key recovery attack experiments conducted on

the publicly available multi-channel dataset, the SPERO dataset [11], yielding favorable

outcomes. Figs. 5- 6 compare the optimized attack results of models with and without

POI Learning encoding, following comprehensive parameter adjustments. Under specific

parameter settings, the POI Learning encoded model demonstrates a marked improve-

ment in key prediction accuracy when evaluated with a limited dataset, outperforming

the non-POI Learning encoded model while requiring substantially fewer training epochs.

Figure 5: The key recovery results of the model

trained without the POI Learning Encoder, under

the conditions of 10 training epochs and a learning

rate of 0.00001.

Figure 6: The key recovery results of the model

trained with the POI Learning Encoder, under the

conditions of 10 training epochs and a learning rate

of 0.00003.

In this study, our framework not only learns and processes data from multiple channels

through the same model, but also has a complete system of evaluation metrics to assess

the spatial differences between different channels, making FCA interpretable. Then we

not only propose the theoretical model and evaluation method, but also actually construct

the dataset used for evaluation. Our work not only develops new ideas in theory, but also

demonstrates its effectiveness in practical applications.
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