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Abstract
Censorship circumvention tools enable clients to access endpoints

in a network despite the presence of a censor. Censors use a variety

of techniques to identify content they wish to block, including filter-

ing traffic patterns that are characteristic of proxy or circumvention

protocols and actively probing potential proxy servers. Circumven-

tion practitioners have developed fully encrypted protocols (FEPs),
intended to have traffic that appears indistinguishable from random.

A FEP is typically composed of a key exchange protocol to establish

shared secret keys, and then a secure channel protocol to encrypt

application data; both must avoid revealing to observers that an

obfuscated protocol is in use.

We formalize the notion of obfuscated key exchange, capturing the
requirement that a key exchange protocol’s traffic “looks random”

and that it resists active probing attacks, in addition to ensuring

secure session keys and authentication. We show that the Tor net-

work’s obfs4 protocol satisfies this definition. We then show how

to extend the obfs4 design to defend against stronger censorship

attacks and present a quantum-safe obfuscated key exchange pro-

tocol. To instantiate our quantum-safe protocol using the ML-KEM

(Kyber) standard, we present Kemeleon, a new mapping between

ML-KEM public keys/ciphertexts and uniform byte strings.

Keywords
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KEM, quantum-safe

1 Introduction
Internet censors in control of a network use various techniques to

prevent clients from reaching destinations, including looking for

particular patterns that are characteristic of proxy or circumvention

protocols. To evade this class of blocking, censorship circumven-

tion practitioners have developed fully encrypted protocols (FEPs)

like obfsproxy [60], Shadowsocks [4], and VMess [3], which aim

to hide any pattern by making the entire communication appear

indistinguishable from random. This is in contrast to typical secure

connection protocols, such as TLS [54], which have recognizable

formats and plaintext fields, both in their handshake phase estab-

lishing the connection through some key exchange as well as in

the secure channel phase when sending application data. These ob-

fuscated protocols are used for a broad range of applications, from

generally providing access to blocked or censored websites [3, 4, 53]

to obfuscating specific filesharing protocols, such as eDonkey [1]

and BitTorrent [2]. Another proposed use of FEPs is for generating

random-looking transcripts in pseudorandom compact TLS [56].

Despite being a crucial component for enabling censorship-

resilient communication, fully encrypted protocols have received

only minimal attention from the academic community. Most of the

research on FEPs focuses on detection and identification attacks.

Only very recently, a preliminary study [26] analyzed the secure

channel phase of FEPs to put forward security notions and con-

structions. Likewise, establishing shared keys and agreement on a

protocol without revealing to passive observers that an obfuscated

protocol is in use is key to establishing hidden connections, and

yet no formal security definition for the handshake phase exists.

obfs2..3..4: an iterative design process. obfsproxy [58–60] is a pro-

totypical fully encrypted protocol: it is the most-used method of

accessing the Tor network from censored regions (∼75k concurrent
users among ∼110k total pluggable transport users as of May 2024

[61]) and targets a sophisticated threat model founded on real be-

havior from censors. The inaugural obfsproxy design, obfs2, was
insecure against passive observers who were able to decrypt hand-

shake messages. The subsequent generation, obfs3, amended the

vulnerability in obfs2 by establishing secure session keys. Over

time, the design sequentially adapted to new and stronger abilities

of censors. For example, dating back to at least 2015, there has

been evidence of governments performing active probing attacks

wherein censors try to establish a connection with a server in an

attempt to identify whether it is a proxy/obfuscation server [25].

The latest design of the protocol, obfs4, is catered to defend against
such probing attacks. Yet, as a consequence of this ad-hoc design

process, no formal analysis of the security guarantees of obfs4 has

been performed to date, despite obfs4 being the state-of-the-art

for obfuscated communication.

1.1 Our contributions
In this work, we bring concrete technical results to the landscape

of FEPs. We formalize obfuscated key exchange, capturing these

goals concretely and, for the first time, providing tangible security

assurance for the latest obfsproxy design obfs4 as an obfuscated

key exchange. Additionally, we show how to, in a systematic way,

strengthen obfs4’s security against more powerful censors and

make it quantum-safe. Finally, we discuss further challenges.

Obfuscated key exchange: more than just random messages. Our

work focuses on capturing the handshake phase of fully encrypted

protocols, which we term obfuscated key exchange. We introduce a

game-based security model (in Section 4) that incorporates classical,

Bellare–Rogaway-style [14] properties of key exchange, such as

key indistinguishability and authentication, while also capturing

the more sophisticated properties of threat models for FEPs, such

as probing resistance and, of course, obfuscation itself.

Our model aims to capture obfuscation properties that are ef-

fective for censorship circumvention. This requires some care in

defining security guarantees so that we do not impose inadequate

requirements. For example, although FEPs are also known as “look-

like-nothing” or “randomized” protocols, messages with excessively
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obfs family [58–60] Our protocols Our model
Property obfs2 obfs3 obfs4 st-obfs pq-obfs ObfKE

Key indistinguishability ✓ ✓ ✓ ✓ ✓
Explicit authentication ✓ ✓ ✓ ✓
Probing resistance ✓ ✓ ✓ ✓

Obfuscation of . . .

— packet lengths ✓ ✓ ✓ ✓ ✓ ✓S
— explicit header fields ✓ ✓ ✓ ✓ ✓S
— entropy, directionality ✓S
— timing properties

Obfuscation when pk revealed ✓ ✓ ✓opt

Quantum safety ✓ ✓opt

Table 1: Overview of properties of obfuscated protocols.
Checkmarks in the obfs columns indicate which properties each

protocol version achieves. The final column indicates properties

our model captures: ✓S denotes a simulator-dependent property;

✓opt an optional one.

high levels of entropy are an identifiable feature of protocols that a

censor can leverage [71]. At the same time, whitelisting is generally

disincentivized for censors due to high collateral damage [7, 63]

and so the strategy of “avoiding blacklists” by looking random is ef-

fective in practice. Therefore, we take a more general approach and

define obfuscation as the guarantee that a given protocol is indistin-

guishable from other protocols within a certain class of protocols.
We define such a class of protocols via a simulator that determines

the traffic pattern and distribution of messages in the protocol, al-

lowing our definitions to capture a wide range of protocol classes

including “looking like random” or matching a whitelisted protocol

such as TLS. Concretely, the simulator-based definition can capture

properties such as packet lengths and explicit header fields (e.g.,

plaintext TLS fields such as extensions or ciphersuites) that are

used by censors to classify traffic and obfuscated by FEPs. We can

also capture entropy and directionality of packets (e.g., the number

of packets sent in each direction), which are not obfuscated by

modern FEPs, but used by censors to classify traffic. We discuss

these security goals in detail when introducing our model formally

(Section 4.1), and further motivate them by a review of protocol

features used for classifying traffic (Section 8.2). Table 1 summarizes

the properties that our model captures and those that are achieved

by each protocol in the obfsproxy family and by the new protocols

we propose in this work, discussed next.

Security analysis and extensions for obfs4. We then apply our

security model to the obfs4 handshake (in Section 5), establishing

the first formal proof of its security as an obfuscated key exchange,

including probing resistance and obfuscation. As a useful ingre-

dient, we introduce the notion of obfuscated key generation (in

Section 2). This formalizes mappings of public keys to uniform ran-

dom strings used in obfuscated key exchange protocols, and allows

us to make precise the parameters of the Elligator2 mapping [15]

(used in obfs4 for X25519 [43] Diffie–Hellman (DH) public keys),

Uniform DH [32], and Telex’s original-or-twist method [72].

One limitation of obfs4 is that its obfuscation property relies on

semi-secret public-key information of Tor bridge servers. Specifi-

cally, these public keys are assumed to only be known by honest

clients and unknown to adversaries, enabling a server to identify

an honest client attempting to connect to the proxy service. By

design, and confirmed by our security model, the current version of

obfs4 provides obfuscation in the case where these public keys are

never revealed to an adversary; however, as soon as such keys are

revealed, one can identify current as well as past and future traffic

as obfs4 traffic. Our model allows us to express a stronger obfus-

cation property for a new variant of the protocol, st-obfs, that
we prove secure under the same assumptions as for obfs4: there,
traffic remains obfuscated even when the public-key information

that honest clients need to connect leaks to an adversary.

In a different direction, we tackle challenges in making protocols

like obfs4 quantum-safe; in line with plans by The Tor Project

to transition the many cryptographic components within Tor to

quantum-safe variants. Classically, obfs4 and other FEPs employ

a Diffie–Hellman-based key exchange (e.g., ntor [33]) to establish

key material, encoding the DH public keys into uniform strings on

the wire. Towards constructing a quantum-safe version of obfs4,
we introduce (in Section 2.4) a novel encoding algorithm, dubbed

Kemeleon, for mapping ML-KEM [50] public keys and ciphertexts

to random byte strings; ML-KEM, previously known as Kyber, is
the post-quantum KEM based on module learning-with-errors that

NIST has selected for standardization. We formalize this via the

notion of an obfuscated KEM, showing that the approach taken

for Kemeleon generalizes and preserves the relevant KEM security

properties. This ultimately allows us to use obfuscated KEMs as

a building block in a quantum-safe obfuscated protocol design,

pq-obfs, which we propose and prove secure (in Section 7).

Discussion and further challenges. Finally, we discuss (in Section 8)

how the guarantees provided by our securitymodel and its simulator-

based definition relate to obfuscation challenges in practice. We

perform a brief literature review of works that detect obfuscated

protocols, extracting relevant features used by censors to classify

(obfuscated) protocol traffic and hence requiring obfuscation. Our

review suggests that censors can use not only byte distributions

and packet lengths to identify protocols but also timing information

and directionality of packets. While our obfuscated key exchange

model captures a wide range of these features already, our review

points to further challenges for cryptographic modeling, given that

timing information has been difficult to express formally.

1.2 Related Work
Covert authentication and authenticated key exchange. The prob-

lem of initiating an interaction in a covert (or steganographic) way

has been considered in prior academic literature. von Ahn and Hop-

per [64] were the first to study public-key steganographic protocols

and among them steganographic key exchange in which two parties

establish a shared key through a sequence of messages indistin-

guishable from normal traffic on some communication channel.

Focused on simple protocols (sending/receiving one message per

party) and security notions (distinguishing a single, passive protocol

trace), this work formalizes the idea of “looking-like-nothing” key

exchange and considers a basic construction, but does not consider

active attacks or authentication. Jarecki [40] studied covert authen-

tication based on conditional KEMs and identity escrow schemes;

however, did not consider concurrent security, protection against

active attacks, or guaranteed independence of session keys. More
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recently, Eldefrawy, Genise, and Jarecki [24] proposed a more effi-

cient covert authenticated key exchange protocol based on similar

building blocks and proven secure in the UC framework. Their

work is in the group setting, where a trusted group manager issues

certificates to parties who can then covertly establish a key if their

groups match.

Notably, parties in the covert authentication setting do not know

each other’s public keys. In contrast, in the obfuscated key exchange

protocols like obfs4 that we consider, the server’s public key is

known to clients (but not to the censor), which allows the deployed

real-world protocols to use simpler building blocks. These deployed

protocols aim for security properties not covered in prior work on

covert authenticated key exchange, such as explicit authentication,

probing resistance, and stronger obfuscation when public keys are

revealed, which our model captures.

Encrypted and covert TLS key exchanges. Prior work has consid-

ered how to hide plaintext fields or obfuscate additional informa-

tion in TLS handshakes. Schwartz and Patton [56] propose using a

pre-shared key (from a cTLS template) to encipher/decipher all not-

already-encrypted values (i.e., handshake and ciphertext headers)

with a tweakable strong pseudorandom permutation. They note a

similar motivation to ours, stating that “every cTLS template poten-

tially results in a distinct wire image, with important implications

for user privacy,” but assume a different setting in which a client

and server already have an established pre-shared key. Meanwhile,

Encrypted Client Hello [55] proposes a method for encrypting the

plaintext Server Name Indication and other potentially sensitive

fields in ClientHello messages. The draft includes a discussion of a

“Do Not Stick Out” criterion [55, Section 10.9.4], which is similar

to the obfuscation goals of FEPs, although specific to the case of

TLS handshakes. The recently proposed stealth key exchange [28]
analyzes how to embed a covert key into the nonce of a TLS 1.3

handshake. The approach uses similar techniques that are used

in obfuscated key exchanges, such as the Elligator2 encoding [15]
for mapping keys to random strings. We discuss how to apply our

model to protocols that attempt to simulate a TLS 1.3 handshake

(in Section 8.1).

Fully encrypted protocols. Most research on FEPs for censorship

circumvention relates to classifying protocol behavior and measur-

ing features used by censors to block traffic [5, 6, 25, 30, 65, 71].

Although this work has proven useful for determining some neces-

sary properties that a FEP should achieve in order to evade censor-

ship, the protocols themselves remain without any formal security

analysis. Only recently, Fenske and Johnson [26, 27] proposed a

formal model and construction for the secure channel phase of FEPs

(in both the datastream and datagram settings) and applied their

work to evaluate existing protocols, including Shadowsocks [4].

Our work complements that of Fenske and Johnson, by providing a

formal analysis of the key exchange phase of FEPs. Moreover, we

conduct a literature review of techniques used to classify obfuscated

protocols in Section 8.2 to better inform our security models and

ensure that our goals are grounded in reasonable assumptions.

2 A Useful Ingredient: Making Public Keys and
Ciphertexts Look Random

An identifying feature of many key exchange protocols is the place-

ment and distribution of public keys in the handshake messages.

Whereas padding and MAC tags can be shown to be indistinguish-

able from random, the same cannot be said for public keys. There-

fore, obfuscated key exchange protocols must take one of two ap-

proaches: embedding public keys in the same positions that cover

protocols place public keys, or encoding public keys as random (or

other) strings. The latter approach is the strategy taken by obfs4,
which uses the Elligator2 mapping [15] to encode X25519 [43]

public keys as uniformly random strings. Other examples of map-

pings of public keys to random strings include Uniform DH [32],

Telex’s original-or-twist method [72], and Elligator Squared [62].

We present a systematic treatment of similar maps in Appendix B.

Here, we present the first formal definitions capturing these en-

codings and security properties that will be useful in proving the

security of our key exchange protocols. Additionally, we present a

new encoding forML-KEM [50] public keys and ciphertexts, which

later acts as a building block towards a post-quantum obfuscated

key encapsulation mechanism.

2.1 Obfuscating Public Keys
Often, encodings do not work for all public keys, but, for exam-

ple, only for half of them. We hence deem it useful to couple the

encoding process with the key generation process, as follows.

Definition 2.1 (Obfuscated key generation scheme). An obfuscated
key generation schemeO = (KGen, Encode,Decode) with obfuscated
key length ol ∈ N consists of three algorithms:

• KGen() $−→ (sk, pk, ˆpk) is the randomized (obfuscated) key gen-

eration algorithm that, with no input, generates a secret key sk,
public key pk, and obfuscated public key ˆpk ∈ {0, 1}ol.
• Encode(pk) $−→ ˆpk is the (possibly randomized) encoding algo-
rithm that on input a public key pk outputs an obfuscated public
key ˆpk ∈ {0, 1}ol or an error ⊥.
• Decode( ˆpk) → pk is the deterministic decoding algorithm that
on input an obfuscated public key ˆpk ∈ {0, 1}ol outputs a public
key pk.

For correctness, we demand that (obfuscated) public keys generated
by KGen can be successfully encoded/decoded into each other:

Pr

[
Encode(pk) = ˆpk ∧
Decode( ˆpk) = pk

����(sk, pk, ˆpk) $←− KGen()
]
= 1.

Most encodings follow what we call the “keygen-then-encode”

paradigm, where a regular key is generated and then encoded into

an obfuscated one, possibly repeating the process if the generated

key does not allow for an encoding (rejection sampling).

Definition 2.2 (Keygen-then-encode obfuscated key generation

scheme). Let KGen′ be a key generation algorithm and Encode,
Decode be encoding/decoding algorithms working on the public key
space of KGen′. We define the corresponding keygen-then-encode
obfuscated key generation scheme O = (KGen, Encode,Decode) as:
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KGen() :
1 repeat

2 (sk, pk) $←− KGen′ ()
3 ˆpk ← Encode(pk)
4 until

ˆpk ≠ ⊥
5 return (sk, pk, ˆpk)

For keygen-then-encode obfuscated key generation schemes,

we will in security reductions be interested in the probability that

the first key pair (sk, pk) generated by KGen′ can be successfully

encoded (i.e., the probability that no resampling is necessary).

Definition 2.3 (First-keygen success probability). LetO be a keygen-
then-encode obfuscated key generation scheme based on key gener-
ation algorithm KGen′. The first-keygen success probability of O
is

𝜖
1kgensucc
O := Pr[Encode(pk) ≠ ⊥ | (sk, pk) $←− KGen′()] .

We are also interested in obfuscated key generation schemes

whose obfuscated public key is (statistically) close to uniform.

Definition 2.4 (Public key uniformity). Let O be an obfuscated key
generation scheme (as per Definition 2.1). We measure the uniformity
of the obfuscated public keys of length ol generated by O against an
unbounded adversary A as

Advpk-unifO (A) :=2 Pr
[
A( ˆpk𝑏 )=𝑏

���� 𝑏 $←− {0, 1}, ˆpk
0

$←− {0, 1}ol,
(sk1, pk1, ˆpk1)

$←− O.KGen()

]
−1.

The obfs4 protocol uses the Elligator2 encoding, which maps

elliptic curve public keys to random strings. When applied to

X25519 [43] keys (over Curve25519), it satisfies our definition of

an obfuscated key generation scheme with first-keygen success

probability ≈ 1

2
and public key uniformity ≈ 2

−250.83
. The complete

description and analysis of Elligator2 follows.

Elligator2 [15]. Elligator maps elliptic curve points to random

strings (more specifically, to a representative element 𝑟 in a field).

The underlying finite field must have a characteristic that is close

to a power of two in order to achieve good public key uniformity.

Herein, we refer only to the Elligator2 construction from [15], since

it is more widely applicable than Elligator1 and thus has been more

widely adopted.

To define the map, we first instantiate some parameters:

• a finite field𝐺𝐹 (𝑞) of odd characteristic where 𝑞 is a prime

power, e.g., 𝑞 = 2
255 − 19 for Curve25519;

• a curve 𝐸 defined over𝐺𝐹 (𝑞) of the form 𝑣2 = 𝑢3 +𝐴𝑢2 +𝐵𝑢
(parameterized by 𝐴, 𝐵);

• a non-square 𝑍 in 𝐺𝐹 (𝑞) (typically small); and

• a set of non-negative field elements 𝑆 (common choices are

{0, 1, . . . , (𝑞 − 1)/2} or the set of even numbers).

The encoding and its inverse are then defined in Figure 1, where 𝑟

is a representative (element) of the field 𝐺𝐹 (𝑞), and legendre(𝑥)
returns 1 if 𝑥 is a square in 𝐺𝐹 (𝑞) and 0 otherwise.

Most implementations of Elligator are written for Curve25519

where 𝑞 = 2
255 − 19, 𝐴 = 486662, and 𝑍 = 2. The encoding maps

to the range of integers [0, (𝑞 − 1)/2]. It follows from the fact that

the decoding function is injective that the public key uniformity

Elligator2.Encode(𝑃 = (𝑢, 𝑣)) :
1 if 𝑢 = −𝐴 or −𝑍𝑢 (𝑢 +𝐴) is

not a square then return ⊥
2 if 𝑣 = 0 and 𝑢 ≠ 0 then return ⊥
3 if 𝑣 ≥ 0 then 𝑟 ←

√
−𝑢/(𝑍 (𝑢 +𝐴))

4 if 𝑣 < 0 then 𝑟 ←
√
−(𝑢 +𝐴)/(𝑍𝑢)

5 return 𝑟

Elligator2.Decode(𝑟 ) :
1 𝑤 ← −𝐴/(1 + 𝑍𝑟 2)
2 𝑒 ← legendre(𝑤3 +𝐴𝑤2 + 𝐵𝑤)
3 𝑢 ← 𝑒𝑤 − (1 − 𝑒) (𝐴/2)
4 𝑣 ← −𝑒

√
𝑢3 +𝐴𝑢2 + 𝐵𝑢

5 return 𝑃 = (𝑢, 𝑣)

Figure 1: Elligator2 encoding and decoding algorithms

(cf. Definition 2.4) is:

Δ(U,Z) = 1

2

∑
𝛼 ∈[0,2254−1]

|Pr[Z = 𝛼] − Pr[U = 𝛼] |

=
1

2

(
𝑞 + 1
2

·
���� 2

𝑞 + 1 −
1

2
254

���� + (2254 − 𝑞 + 1
2

)
·
���� 1

2
254

����)
= 1 − 𝑞 + 1

2
255
≈ 2
−250.83 .

With these parameters, the first-keygen success probability (cf. Def-

inition 2.3) is

Pr[𝑢 ≠ −486662,−2𝑢 (𝑢 + 486662) is a QR mod 𝑞,𝑢 = 0 | 𝑣 = 0]
= 1 · Pr[−2𝑢 (𝑢 + 486662) is a QR mod 𝑞] · 1 ≈ 2

−1,

which follows from the fact that for curves of this form, approxi-

mately half of the x-coordinates are quadratic residues modulo 𝑞.

2.2 Obfuscating KEM Public Keys and
Ciphertexts

For obfuscation of Diffie–Hellman-based key exchange, it suffices to

have encodings of public keys as random strings. However, in a KEM

setting, ciphertexts must also be transmitted and may not follow

a uniformly random byte distribution. Here we present analogous

definitions of obfuscated key generation schemes and obfuscation

uniformity for KEMs.

Definition 2.5 (Obfuscated KEM). An obfuscated KEM OKEM =

(KGen, Encode,Decode, Encap,Decap, EncodeCtxt,DecodeCtxt)
with obfuscated key and ciphertext lengths ol, cl ∈ N consists of
seven algorithms and a parameter cl ∈ N:

• (KGen, Encode,Decode) is an obfuscated key generation scheme

with (key) obfuscation length ol (Definition 2.1).
• Encap(pk) $−→ (c,K, ĉ) is the randomized (obfuscated) encapsu-

lation algorithm that takes as input a KEM public key pk, and out-
puts a ciphertext c, key K, and obfuscated ciphertext ĉ ∈ {0, 1}cl.
• Decap(sk, ĉ) → (K) is the (obfuscated) decapsulation algorithm
that takes as input a secret key sk and obfuscated ciphertext ĉ,
and outputs a key K.
• EncodeCtxt(c) $−→ ĉ is the (possibly randomized) encoding algo-
rithm that on input a ciphertext c outputs an obfuscated cipher-
text ĉ ∈ {0, 1}cl or an error ⊥.
• DecodeCtxt (̂c) → c is the deterministic decoding algorithm
that on input an obfuscated ciphertext ĉ ∈ {0, 1}cl outputs a
ciphertext c.
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For correctness of obfuscation, we need that (obfuscated) ciphertexts
output byOKEM can be successfully encoded/decoded into each other:

Pr

[
DecodeCtxt(EncodeCtxt(c)) = c

∧ DecodeCtxt(̂c) = c

���� (sk, pk, 𝑝𝑘) $←− KGen(),
(c,K, ĉ) $←− Encap(pk)

]
= 1.

Definition 2.6 (OKEM encapsulation/decapsulation correctness).
We say that an obfuscated KEM OKEM is 𝛿OKEM-correct if

Pr

[
Decap(sk, ĉ) ≠ K

���� (sk, pk, 𝑝𝑘) $←− KGen(),
(c,K, ĉ) $←− Encap(pk)

]
≤ 𝛿OKEM .

Definition 2.7 (OKEM public key collision probability). LetOKEM
be an obfuscated KEM. We define the public key collision probability

of OKEM for 𝑛 ∈ N public keys as

pkcollOKEM (𝑛) := Pr

[
pk𝑖 =pk 𝑗
∧𝑖 ≠ 𝑗

���� (sk𝑖 , pk𝑖 , 𝑝𝑘𝑖 ) $←−OKEM.KGen()
for 𝑖 ∈ [1, 𝑛]

]
.

As with obfuscated key generation schemes, an obfuscated KEM

may follow an analogous “encapsulate-then-encode” paradigm,

where a ciphertext that is output from an encapsulation is encoded

into an obfuscated one, possibly repeating the encapsulation pro-

cess if the ciphertext does not allow for an encoding (rejection

sampling).

Definition 2.8 ((Keygen/)Encapsulate-then-encode obfuscated KEM).
Let KEM′ = (KGen, Encap′,Decap′) be a KEM, let Encode, Decode
be encoding/decoding algorithms working on the public key space of
KGen, and let EncodeCtxt, DecodeCtxt be encoding/decoding algo-
rithms working on the ciphertext space of Encap′. We define the corre-
sponding encapsulate-then-encode obfuscated KEM OKEM = (KGen,
Encode,Decode, Encap,Decap, EncodeCtxt,DecodeCtxt) with:
Encap(pk) :
1 repeat

2 (c,K) $←− Encap′ (pk)
3 ĉ $←− EncodeCtxt(c)
4 until ĉ ≠ ⊥
5 return (c,K, ĉ)

Decap(sk, ĉ) :
1 c ← DecodeCtxt (̂c)
2 return Decap′ (sk, c)

Moreover, if KGen is of type keygen-then-encode (Definition 2.2), we
call OKEM a keygen/encapsulate-then-encode obfuscated KEM.

Similar to keygen-then-encode obfuscated key generation schemes,

for encapsulate-then-encode obfuscated KEMs we are interested

in: (1) the probability that the first ciphertext output from Encap′

can be successfully encoded, and (2) obfuscated ciphertexts that are

statistically close to uniform.

Definition 2.9 (First-encap success probability). Let OKEM be a
encapsulate-then-encode obfuscated KEM based on KEM′ = (KGen′,
Encap′,Decap′). The first-encap success probability of OKEM is

𝜖1encsuccOKEM := Pr

[
EncodeCtxt(c) ≠ ⊥

���� (sk, pk) $←− KGen′(),
(c,K) $←− Encap′(pk)

]
.

Definition 2.10 (Ciphertext uniformity). Let OKEM.Encap be an
obfuscated KEM (as per Definition 2.5). We measure the uniformity
of the obfuscated ciphertext of length cl generated by OKEM.Encap
against an unbounded adversary A as

Advctxt-unifOKEM (A) :=

2 · Pr
A(̂c𝑏 ) = 𝑏

������
𝑏

$←− {0, 1}, ĉ0 $←− {0, 1}cl,
(sk, pk, 𝑝𝑘) $←− OKEM.KGen(),
(c1,K1, ĉ1) $←− OKEM.Encap(pk)

 − 1.

GIND-CCA
K (A) :

1 𝑏 $←− {0, 1}

2 (pk, sk, ˆpk ) $←− KGen()

3 (c∗,K∗
1
, ĉ∗ ) $←− Encap(pk)

4 K∗
0

$←− K

5 𝑥 ← c∗ ; 𝑥 ← ĉ∗

6 𝑏′ $←− ADecap𝑥 (·) (pk, c∗,K∗
𝑏
, ĉ∗ )

7 return ⟦𝑏 = 𝑏′⟧

Decap𝑥 (𝑐) :
1 if 𝑐 = 𝑥 then return ⊥
2 K ← Decap(sk, 𝑐)
3 return K

GSPR-CCA
K(,S) (A) :

1 𝑏 $←− {0, 1}

2 (pk, sk, ˆpk ) $←− KGen()

3 (c∗
1
,K∗

1
, ĉ∗

1
) $←− Encap(pk)

4 c∗
0

$←− S

5 ĉ∗
0

$←− {0, 1}cl ; c∗
0
← DecodeCtxt(ĉ∗

0
)

6 K∗
0

$←− K

7 𝑥 ← c∗
𝑏

; 𝑥 ← ĉ∗
𝑏

8 𝑏′ ← ADecap𝑥 (·) (pk, c∗
𝑏
,K∗

𝑏
, ĉ∗

𝑏
)

9 return ⟦𝑏 = 𝑏′⟧

Figure 2: Security games for IND-CCA and SPR-CCA security
of a KEM or obfuscated KEM K = (KGen, Encap,Decap, . . . )
with key space K . Code in dashed boxes is only included
for an obfuscated KEM; the simulator S is only involved for
regular KEMs.

2.3 Obfuscated KEM Security
In our protocol analysis, we want to rely on standard KEM secu-

rity notions, but we will be working with obfuscated KEMs. In the

following we naturally extend both traditional KEM security no-

tions to obfuscated KEMs: both indistinguishability under chosen-

ciphertext attacks (IND-CCA) as well as strong pseudorandom-

ness under chosen-ciphertext attacks (SPR-CCA), which was intro-

duced and established for Kyber in [46, 73]. We then show that for

keygen/encapsulate-then-encode obfuscated KEMs (Definition 2.8),

the two notions are implied by the underlying KEM achieving them

and the obfuscated KEM’s first-keygen/encap success probability

and ciphertext uniformity. This in particular will apply to our ob-

fuscated KEM ML-Kemeleon which we introduce in Section 2.4.

Definition 2.11 ((Obfuscated) KEM security). Let K = (KGen,
Encap,Decap, . . . ) be a KEM or obfuscated KEM with key space K
and Ggoal-CCA

K(,S) for goal ∈ {IND, SPR} be defined as in Figure 2. We
say that K is (𝑡, 𝜖, 𝑞)-goal-CCA-secure, with respect to a simulator S
when goal = SPR, if for any adversary A with running time at most
𝑡 , and making at most 𝑞 queries to the Decap oracle, we have that

Advgoal-CCAK(,S) (A) := 2 · Pr[Ggoal-CCA
K(,S) (A) = 1] − 1 ≤ 𝜖.

We also use IND-1CCA security, restrictingA to a single Decap call.

We first establish that a keygen/encapsulate-then-encode obfus-

cated KEM maintains IND-CCA security.

Theorem 2.12 (Keygen/encapsulate-then-encode obfuscated KEM

IND-CCA security). LetOKEM be a keygen/encapsulate-then-encode
obfuscated KEM based on a regular KEM KEM as per Definitions 2.2
and 2.8. For any adversary A against the IND-CCA security of
OKEM, we give an algorithm B such that

AdvIND-CCAOKEM (A) ≤ 1/𝜖1kgensuccOKEM · 1/𝜖1encsuccOKEM · AdvIND-CCAKEM (B).

Proof. The reductionB obtains (pk, c∗,K∗) as challenge. It com-

putes the encoded public key as
ˆpk ← Encode(pk) and aborts if

encoding fails, which happens with probability at most 𝜖
1kgensucc
OKEM . It
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then computes the encoded ciphertext as ĉ $←− EncodeCtxt(c∗) and
again aborts if encoding fails, which happens with probability at

most 𝜖1encsuccOKEM . Run A on input (pk, c∗,K∗, ĉ∗). Upon a Decap𝑥 (𝑐)
query, B asks DecodeCtxt(𝑐) to its own decapsulation oracle (for

unencoded ciphertexts) and returns the response. Finally,B outputs

A’s bit guess as its own. If B does not abort, it provides a validly

distributed simulation for A, which establishes the claim. □

We next show that a keygen/encapsulate-then-encode obfus-

cated KEM maintains SPR-CCA security, if the underlying KEM

is SPR-CCA-secure wrt. what we call a “uniform-encapsulation”

simulator Sunif which samples a fresh key pair (sk, pk) and outputs
the ciphertext resulting from encapsulating against pk.

Theorem 2.13 (Keygen/encapsulate-then-encode obfuscated KEM

SPR-CCA security). LetOKEM be a keygen/encapsulate-then-encode
obfuscated KEM based on a regular KEM KEM as per Definitions 2.2
and 2.8. For any adversary A against the SPR-CCA security of
OKEM, we give algorithms B1, B2 such that

AdvSPR-CCAOKEM (A) ≤ 1/𝜖1kgensuccOKEM · 1/𝜖1encsuccOKEM · AdvSPR-CCAKEM,Sunif (B1)

+ Advctxt-unifOKEM (B2),
where Sunif is a “uniform-encapsulation” simulator for KEM.

Proof. We consider an intermediate game G′ which behaves

like GSPR-CCA
OKEM for 𝑏 = 0 but omits line 5 and instead keeps c∗

0

$←−
Sunif sampled by the simulator and computes ĉ∗

0
as EncodeCtxt(c∗

0
).

We first bound the difference between GSPR-CCA
OKEM for 𝑏 = 1 and

G′ by the SPR-CCA security for simulator Sunif of the underlying
KEM. The reduction B1 works analogous to the proof of Theo-

rem 2.12, trying to encode both pk and c∗ and aborting if this fails,

and then simulating the game for A with these values. (Note that

the “uniform-encapsulation” simulator Sunif (also) follows the dis-
tribution in the 1encsucc definition, hence this probability applies

to aborting on simulated ciphertexts, too.) Depending on B1’s chal-
lenge bit, this corresponds to either GSPR-CCA

OKEM for 𝑏 = 1 or G′, so
we have

Pr[GSPR-CCA,𝑏=1
OKEM ]−Pr[G′] ≤ 1/𝜖1kgensuccOKEM ·1/𝜖1encsuccOKEM ·AdvSPR-CCAKEM,Sunif (B1) .

We now bound the difference between G′ and GSPR-CCA
OKEM for

𝑏 = 0 by the ciphertext uniformity (ctxt-unif) of OKEM. The

reduction B2 runs KGen itself, obtains ĉ as challenge and sets

c ← DecodeCtxt(̂c). (Note thatB2 can use the self-generated secret
key sk to answerA’sDecap queries.) If ĉ is the real encoded cipher-
text, B2 simulates Game G′ encoding a real ciphertext produced

by Sunif ; else, it simulates GSPR-CCA
OKEM for 𝑏 = 0. So we have,

Pr[G′] − Pr[GSPR-CCA,𝑏=0
OKEM ] ≤ Advctxt-unifOKEM (B2),

which concludes the proof. □

2.4 Obfuscating ML-KEM with Kemeleon
Prior work constructed encodings for Diffie–Hellman public keys

to random bytestrings [15, 32, 72], which can be used to construct

obfuscated key generation schemes; however, there is not yet any

similar construction for public keys used in post-quantum schemes

that can be used to construct an obfuscated KEM. In this subsection,

we introduce encoding algorithms that work with ML-KEM [50]

public keys and ciphertexts, and can be combined withML-KEM to

create an obfuscated KEM. We call our encoding scheme Kemeleon
and give its algorithms in Figure 3.

1

Notation. For a vector a of length len(a), a[𝑖] denotes the 𝑖th entry
and a[𝑖 : 𝑗] the entries between indices 𝑖 and 𝑗 , inclusive (where

omitting 𝑖 or 𝑗 means 𝑖 = 1 resp. 𝑗 = len(a)). For an integer 𝑏,

let 𝑏.bit(𝑖) denote the 𝑖th bit of the bit representation of 𝑏, where

𝑖 = 0 denotes the least significant bit. Additionally, 𝑏.bit(𝑖 : 𝑗)
denotes the bitstring of bits between the 𝑖th and 𝑗th bit, inclusive.

We transparently map between a vector of length 𝑘 of polynomials

of degree 𝑛 with coefficients in Z𝑞 and a single vector in Z𝑘 ·𝑛𝑞 .

Public keys. ML-KEM public keys consist of a vector t̂ of polyno-
mials and a public seed 𝜌 used to generate a public matrix Â. The
public seed 𝜌 is already a string of random bytes and can hence

simply be concatenated in the encoded public key, so we focus on

the vector of polynomials t̂. Each polynomial in t̂ has coefficients

in Z𝑞 where 𝑞 = 3329. During key generation, each coefficient is

stored as a 16-bit integer value. Before the public key is returned,

t̂ is serialized into a byte array. Since only 12 of the 16 bits are

required to store integers modulo 𝑞, every pair of coefficients is

mapped to three 8-bit integers during serialization. However, since

each coefficient is an integer modulo 𝑞 = 3329, every 12th bit in

the output is biased toward 0. That is, coefficients do not cover the

entire range of integers up to 2
12 = 4096, and so the most significant

bit of each integer is more likely to be 0 than it is to be 1.

We use a combination of accumulation and rejection sampling, in

line with the keygen-then-encode obfuscated key generation para-

digm, to mapML-KEM public keys to random strings. The intuition

here is to accumulate (sum) the integer coefficients, resulting in a

single larger integer whose intermediary bits are no longer biased.

Following accumulation, only the single most-significant bit will

be biased toward 0. If the most-significant bit in the accumulation

is 0, we remove it from the returned string. If the most-significant

bit in the accumulation is 1, we reject and generate a new key pair;

this is the rejection sampling step of our algorithm.

The first-keygen success probability is the probability that the

highest-order bit after accumulation is 0:

𝜖
1kgensucc
Kemeleon = Pr[𝑟 .bit(⌈log

2
(𝑞𝑛 ·𝑘 + 1)⌉) = 0] = 2

⌈log
2
(𝑞𝑛·𝑘+1) ⌉−1

𝑞𝑛 ·𝑘
.

This follows from a counting argument: the total number of possible

inputs is 𝑞𝑛 ·𝑘 , and the number of inputs such that the highest-order

bit is 0 is the number of integers of bit-length equal to that of 𝑞𝑛 ·𝑘

(whose bit-length is ⌈log
2
(𝑞𝑛 ·𝑘 + 1)⌉) where the highest-order bit is

zero—this is the number of integers of bit-length ⌈log
2
(𝑞𝑛 ·𝑘 +1)⌉−1.

For ML-KEM-512 with parameters 𝑞 = 3329, 𝑛 = 256, 𝑘 = 2, this

probability is ≈ 0.56, for ML-KEM-768 with 𝑘 = 3 it is ≈ 0.83,

and for ML-KEM-1024 with 𝑘 = 4 and 𝑑𝑣 = 5, it is ≈ 0.62. For

uniform t̂ ∈ (Z𝑛𝑞 )𝑘 , the statistical distance of the encoded public

key from uniform ol-bit strings is 0, since the Kemeleon output

covers the entire output space uniformly (recall that 𝜌 is already

uniformly random). The advantage of any adversary against public

key uniformity now depends on the hardness of the Module-LWE

1
Our encoding also works forKyber [8] which has identical public keys and ciphertexts.
Naturally, we call that combination Kyber-Kemeleon [20].
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Obfuscated Key Exchange

Public Key Encoding/Decoding:

Kemeleon.Encode(pk = (𝜌, t̂)) :

1 𝑟 ← VectorEncode( t̂)
2 if 𝑟 = ⊥ then return ⊥
3 return 𝜌 ∥𝑟

Kemeleon.Decode( ˆpk) :

1 𝜌 ∥𝑟 ← ˆpk // 𝜌 is fixed-length

2 t̂← VectorDecode(𝑟 )
3 return (𝜌, t̂)

Ciphertext Encoding/Decoding:

Kemeleon.EncodeCtxt(c = (c1 ∥c2)) :
1 u← Decompress𝑞 (c1, 𝑑𝑢 )
2 for 𝑖 = 1 to 𝑘 · 𝑛:
3 𝑥 $←−

{
𝑎 :

Decompress𝑞 (Compress𝑞 (..
.. u[𝑖 ] + 𝑎,𝑑𝑢 ), 𝑑𝑢 ) = u[𝑖 ]

}
4 u[𝑖 ] ← u[𝑖 ] + 𝑥
5 𝑟 ← VectorEncode(u)
6 if 𝑟 = ⊥ then return ⊥
7 for 𝑖 = 1 to 𝑛:

8 if c2 [𝑖 ] = 0 return ⊥ with prob. 1/⌈𝑞/2𝑑𝑣 ⌉
9 return 𝑟 ∥c2

Kemeleon.DecodeCtxt (̂c) :
1 𝑟 ∥c2 ← ĉ // c

2
has fixed length𝑑𝑣 ·𝑛

2 u← VectorDecode(𝑟 )
3 c1 ← Compress𝑞 (u, 𝑑𝑢 )
4 return c1 ∥c2

Subroutines:

VectorEncode(a) :

1 𝑟 ← ∑𝑘 ·𝑛
𝑖=1 𝑞

𝑖−1 · a[𝑖 ]
2 if 𝑟 .bit( ⌈log

2
(𝑞𝑛·𝑘 + 1) ⌉) = 1:

3 return ⊥ // most significant bit is 1

4 return 𝑟 .bit(0 : ⌈log
2
(𝑞𝑛·𝑘 + 1) ⌉ − 1)

VectorDecode(𝑟 ) :
1 for 𝑖 = 1 to 𝑘 · 𝑛:

2 a[𝑖 ] ←
(
𝑟−∑𝑖−1

𝑗=1
a[ 𝑗 ]

𝑞𝑖−1

)
mod 𝑞

3 return a

Figure 3: Kemeleon public key and ciphertext encoding and
decoding algorithms.

problem, as distinguishing the encoded bitstring from a random

string can be accomplished by observing that the vector t̂ in the

public key is of the form Â · ŝ + ê, where the matrix Â is generated

from the seed 𝜌 .

Ciphertexts. ML-KEM ciphertexts consist of two components, c1
and c2, where c1 = Compress𝑞 (u, 𝑑𝑢 ) is the compression of a

vector u of polynomials and c2 = Compress𝑞 (𝑣, 𝑑𝑣) is the com-

pression of a polynomial 𝑣 (component-wise to 𝑑𝑢 and 𝑑𝑣 bits,

respectively). The Compress and Decompress algorithms are de-

fined in [50, Section 4.2.1] as follows, and act component-wise:

Compress𝑞 (𝑥, 𝑑) := ⌈(2𝑑/𝑞) · 𝑥⌋ mod 2
𝑑
(taking the canonical rep-

resentative in [0, 2𝑑 )) and Decompress𝑞 (𝑥, 𝑑) := ⌈(𝑞/2𝑑 ) · 𝑥⌋.
Intuitively, the compression discards some low-order bits of the

ciphertext components. As a result of this compression, coefficients

in the output ciphertexts are distributed across Z
2
𝑑 with some bias

due to 𝑞 not being divisible by 2
𝑑
. The compression function, at

a high level, distributes this bias evenly across the space [0, 2𝑑 ).
Now, there is no longer an overly biased most significant bit (as

in the case of public keys); however, the difference in distributions

is still significant. Across a vector of 𝑘 polynomials, each with 𝑛

coefficients, this further compounds. In particular, for the case of the

ML-KEM parameter sets for the c1 ciphertext, this is non-negligible.
To address the non-uniformity in c1, we decompress c1 and then

“recover” randomness by adding random values within a designated

range. After reintroducing randomness, we have coefficients that

are uniformly distributed modulo 𝑞, which brings us to the same

setting as with public keys. We can then apply the strategy used

for public keys on these decompressed and rerandomized values.

While c2 = Compress𝑞 (𝑣, 𝑑𝑣), has a similar non-uniformity, we

are able to deal with c2 in a more space-efficient way due to the

specific values of the ML-KEM parameters. For ML-KEM, we have

𝑑𝑣 ∈ {4, 5}, so 𝑞 mod 2
𝑑𝑣 = 1, and hence the distribution of com-

pressed ciphertexts is nearly uniform. Only the value 0 occurs

with a slightly higher probability than other outputs (increased

by 1/⌈𝑞/2𝑑𝑣 ⌉). In this case, we can perform rejection sampling: for

each coefficient of c2 equal to 0, reject (output ⊥) with probability

1/⌈𝑞/2𝑑𝑣 ⌉. This results in an exactly uniform distribution. Since c2
is a single polynomial with 𝑛 = 256 coefficients, the probability that

a given c2 is successfully encoded is (1− 1/(2𝑑𝑣 · ⌈𝑞/2𝑑𝑣 ⌉))𝑛 , which
is ≈ 0.926 for 𝑑𝑣 = 4 and ≈ 0.927 for 𝑑𝑣 = 5. Note that applying this

strategy to the firstML-KEM ciphertext element c1 would result in

an unacceptably small success probability, which is why we opt for

the decompression and randomness recovery strategy for c1.
Tallying the results for c1 and c2, the statistical distance between

uniformly random bit strings and Kemeleon-encoded ML-KEM
ciphertexts which are the compression of uniformly random values

(u, 𝑣) $←− Z𝑘 ·𝑛𝑞 × Z𝑛𝑞 is 0. We note that this can easily be adapted to

byte strings via random padding to a multiple of 8 bits. The first-

encap success probability (Definition 2.9) is the probability that

VectorEncode(𝑢) ≠ ⊥ in line 5 of EncodeCtxt and that the second

element is not rejected:

𝜖1encsuccKemeleon =
2
⌈log

2
(𝑞𝑛·𝑘+1) ⌉−1

𝑞𝑛 ·𝑘
·
(
1 − 1

2
𝑑𝑣 · ⌈𝑞/2𝑑𝑣 ⌉

)𝑛
.

ForML-KEM-512 with parameters 𝑞 = 3329, 𝑛 = 256, 𝑘 = 2, 𝑑𝑣 = 4,

this probability is ≈ 0.51, for ML-KEM-768 with 𝑘 = 3, 𝑑𝑣 = 4, it is

≈ 0.77, and forML-KEM-1024 with 𝑘 = 4, 𝑑𝑣 = 5, it is ≈ 0.57.

ML-Kemeleon. We can now instantiate an obfuscated KEM using

Kemeleon as the obfuscator. In particular, we defineML-Kemeleon
to be the keygen/encapsulate-then-encode obfuscated KEM (Defi-

nition 2.8) based onML-KEM and using the Kemeleon public key

and ciphertext encoding/decoding algorithms from Figure 3.

We establish the following bounds for the public key and cipher-

text uniformity ofML-Kemeleon.

Lemma 2.14 (pk-unif of ML-Kemeleon). For any adversary A
against the public key uniformity (Definition 2.4) of ML-Kemeleon,
we give an algorithm B, such that

Advpk-unifML-Kemeleon (A) ≤ 1/𝜖1kgensuccKemeleon · Adv
M-LWE
ML-KEM (B) .

Proof. Let G1 denote the 𝑏 = 1 version of the pk-unif challenge
(running KGen and encoding the fresh public key) and G0 the

𝑏 = 0 version (sampling the challenge uniformly from {0, 1}ol),
i.e., Advpk-unifML-Kemeleon (A) = Pr[G1] − Pr[G0] by standard advantage

rewriting. We consider an intermediate game G′ which works like

G1 but rather than generating t̂ = Â · ŝ+ êwithin KGen, it generates
a uniformly random vector

ˆb $←− (Z𝑛𝑞 )𝑘 and gives the encoding of

this value to the adversary.

The difference between G1 and G′ can be bounded by a Module-

LWE (M-LWE) reduction B, which embeds itsM-LWE challenge

in place of t̂ within pk
1
before it is encoded, and aborts if the en-

coding fails (which occurs with probability bounded by 𝜖
1kgensucc
Kemeleon ).

It then runs A on input
ˆpk
1
and outputs A’s bit guess as its own.

Depending on B’s challenge bit, this corresponds to either G1 or

7
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Map Domain Obfuscation/Ciphertext
Uniformity
(Defn. 2.4 and 2.10)

First-Keygen/Encap
Success Probability
(Defn. 2.3 and 2.9)

Output Size
(in bytes)

von Ahn–Hopper [64] Z𝑝 , s.t. 𝑝 = 𝑟𝑞 + 1,
𝑞 is prime, and 𝑟 coprime to 𝑞.

0 ≥ 1

2
(⌈log

2
(𝑝)⌉ − 1)/8

UDH [32]

Z𝑝 , s.t. 𝑝 ≡ 3 mod 4, and

𝑞 = (𝑝 − 1)/2 is prime.

≈ 2
−66

(MODP 5 & 14)
1

2
⌈log

2
(𝑝)⌉/8

Telex [72]
𝐸 (Z𝑝 ) = {(𝑥,𝑦) : 𝑦2 = 𝑥3 − 3𝑥 + 𝑏}, s.t.
𝑝 ≡ 3 mod 4, and

𝐸 and 𝐸 ′ : −𝑦2 = 𝑥3 − 3𝑥 + 𝑏 have prime order.

≈ 2
−160

(𝑝 = 2
168 − 28 − 1) 1 ⌈log

2
(𝑝)⌉/8

Elligator2 [15]
𝐸 (𝐺𝐹 (𝑞)) = {(𝑢, 𝑣) : 𝑣2 = 𝑢3 +𝐴𝑢2 + 𝐵𝑢}, s.t.
𝐺𝐹 (𝑞) has odd characteristic and 𝐴𝐵(𝐴2 − 4𝐵) ≠ 0.

≈ 2
−250.83

(Curve25519) ≈ 1

2

⌈log
2
(𝑞)⌉/8

32 (Curve25519, ±0)

Elligator2 [62] 𝐸 (𝐺𝐹 (𝑞)) = {(𝑢, 𝑣) : 𝑣2 = 𝑢3 +𝐴𝑢2 + 𝐵𝑢} ≈ 2
−249.752

(Curve25519) 1 2 · ⌈log
2
(𝑞)⌉/8

ML-Kemeleon

— public keys (Z𝑞 [𝑋 ]/(𝑋𝑛 + 1))𝑘 ≤ 2 · AdvM-LWE
ML-KEM (B)

(cf. Lemma 2.14)

≈ 0.56 (ML-KEM-512)
≈ 0.83 (ML-KEM-768)
≈ 0.62 (ML-KEM-1024)

781 (ML-KEM-512, −19)
1156 (ML-KEM-768, −28)
1530 (ML-KEM-1024, −38)

— ciphertexts (Z
2
𝑑𝑢 [𝑋 ]/(𝑋𝑛 + 1))𝑘 × (Z

2
𝑑𝑣 [𝑋 ]/(𝑋𝑛 + 1))

≤ 2 · AdvSPR-CCAML-KEM,S
$compr
(B)

(cf. Lemma 2.15)

≈ 0.51 (ML-KEM-512)
≈ 0.77 (ML-KEM-768)
≈ 0.57 (ML-KEM-1024)

877 (ML-KEM-512, +109)
1252 (ML-KEM-768, +164)
1658 (ML-KEM-1024, +90)

Table 2: Summary of public key and ciphertext encodings. (UDH/Telex/Elligator2 interpreted in the keygen-then-encode par-
adigm.) Where statistics are given for particular parameters, the parameters or their origin are specified, and for output sizes,
differences in bytes from original public key/ciphertext sizes are given.

G′, so we have

Pr[G1] − Pr[G′] ≤ 1/𝜖1kgensuccKemeleon · Adv
M-LWE
ML-KEM (B) .

Now, betweenG′ andG0,A must distinguish between the encod-

ing of (the uniform seed and) a uniformly random value
ˆb, and uni-

formly random bit strings from {0, 1}ol. Since the statistical distance
between these distributions is 0, we have that Pr[G′] − Pr[G0] = 0

and the theorem statement follows. □

Lemma 2.15 (ctxt-unif of ML-Kemeleon). For any adversary A
against the ciphertext uniformity (Definition 2.10) of ML-Kemeleon,
we give an algorithm B wrt. a simulator S

$compr that samples uni-
formly random ciphertexts (u, 𝑣) before compression and outputs
c = Compress𝑞 (u, 𝑑𝑢 )∥Compress𝑞 (𝑣, 𝑑𝑣), such that

Advctxt-unifML-Kemeleon (A) ≤ 1/𝜖1encsuccKemeleon · Adv
SPR-CCA
ML-KEM,S

$compr
(B).

Proof. Denote by G1 the 𝑏 = 1 version of the ctxt-unif chal-
lenge (sampling and encoding a freshly encapsulated ciphertext)

and byG0 the𝑏 = 0 version (sampling the challenge uniformly from

{0, 1}cl), i.e., Advctxt-unifML-Kemeleon (A) = Pr[G1] − Pr[G0] by standard

advantage rewriting. We consider an intermediate game G′ which
works likeG1 but obtains a ciphertext c

$←− S
$compr from the simula-

tor and instead of ĉ1 hands the encoding ĉ ← Kemeleon.EncodeCtxt(c)
of c to the adversary.

We first bound the difference betweenG1 andG′ by the SPR-CCA
security of ML-KEM for simulator S

$compr. The reduction obtains

(pk, c∗,K∗) and encodes ĉ∗ ← Kemeleon.EncodeCtxt(c∗), abort-
ing if the latter fails (which happens with probability bounded by

𝜖1encsuccKemeleon). It then runsA on input c∗ and outputsA’s bit guess as

its own. Depending on B’s challenge bit, this corresponds to either

G1 or G′, so we have

Pr[G1] − Pr[G′] ≤ 1/𝜖1encsuccKemeleon · Adv
SPR-CCA
ML-KEM,S

$compr
(B).

Now, betweenG′ andG0,A must distinguish between the encod-

ing of uniformly random ciphertexts (u, 𝑣) before compression, as

output by S
$compr, and uniformly random bit strings from {0, 1}cl.

But as previously established, the statistical distance between these

distributions is 0. So, we have that Pr[G′] − Pr[G0] = 0 and the

theorem statement follows. □

The properties of public key and ciphertext mappings are sum-

marized in Table 2, and the analysis of UDH and Telex is deferred
to Appendix B.

3 The obfs4/lyrebird Protocol
The obfs4/lyrebird protocol, specified in [60]

2
, is separated into

two distinct phases: a key exchange phase and a data transfer phase.
We refer to the protocol as obfs4, but note that the implementation

on which we base our analysis has been renamed to lyrebird.
We are interested specifically in the key exchange protocol, which

is shown in Figure 4. The intent of obfs4’s key exchange is to

establish a shared key between client and server which is forward

secret and explicitly authenticated by the server. This is generally

accomplished via an ntor handshake component [33], which is the

traditional implicitly authenticated Diffie–Hellman key exchange

protocol used in Tor. The additional steps of the protocol are to

ensure obfuscation properties, i.e., that the messages exchanged are

of random length and consist of random byte strings. The obfs4 key

2
We base our analysis on the implementation from The Tor Project [53].
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exchange protocol consists of two messages exchanged between

the client and the server.

Client to server message. The client begins by performing a keygen-

then-encode obfuscated key generation, in which it samples an

ephemeral X25519 [43] Diffie–Hellman secret x and computes cor-

responding public keyX and the Elligator2-encoded [15] obfuscated
public key X ′. The client generates padding, PC , of random length

and then computes a MAC tag, MC , keyed with semi-secret bridge

information (a DH public key, B, and a 160-bit string, NodeID),
of the obfuscated public key X ′. Finally, it computes a MAC tag,

MACC , over the three previous components of the message: X ′,
PC , and MC . It sends the obfuscated public key together with the

random padding and the two MAC tags. Here, the random padding

is intended to vary the length of initial messages, contributing to ob-

fuscation properties. The final MAC tag authenticates the message

and the intermediate MAC tag is intended to prevent clients who do

not know the bridge information (B and NodeID) from connecting

to the server.

We note that the intermediate tag MC is not necessary, neither

for parsing the message nor for preventing active probing, since

the bridge information also acts as a key inMACC and a server can

use the known length of the obfuscated public key and the final

MAC tag to parse the message from the end.

Server to client message. Upon receipt of the client message, the

server computes MC and verifies that it appears as expected in

the message. It then verifies the final MAC tag MACC . If either
verification fails or MACC has already been seen by the server,

then the server aborts and does not respond to the client. Other-

wise, it continues with the protocol, decoding the obfuscated public

key and generating its own Elligator2-encoded, obfuscated X25519
ephemeral keys, y, Y , Y ′. It then performs the server-side compu-

tation of an ntor [33] handshake using its ephemeral (y,Y ) and
long-term (b, B) keys, and the client’s public key X . Similar to the

client, the server generates random padding PS and computes two

MAC tags,MS andMACS . The server returns to the client its obfus-
cated public key Y ′, the ntor authentication tag auth, padding PS ,
and the two MAC tags MS and MACS . Here, auth serves to provide

authentication of the server, and MS is necessary for the client to

parse the message, because the server may continue sending data

following the final authentication tag, preventing the client from

parsing the message from the end.

Upon receipt, the client similarly verifies both MAC values and

then performs the remainder of the client-side operations of the

ntor handshake. The ntor component includes the computation

of the session key, skey, and enables authentication of the server.

Epochs. Tomanage the state overhead for replay protection, obfs4
works in epochs. The client signals its epoch and includes it under

the value MACC . The server then checks that this epoch is off by

at most one from its own epoch. This allows the server to store the

set of MAC values seen in its state SMAC per epoch, and clear that

storage for an epoch once the one after next is reached. To simplify

the presentation, we omit epochs here.

Server key generation/setup

NodeID $←− {0, 1}160
(b, B) $←− KGenX25519 ()
st .SMAC ← ∅
return ( (b,NodeID), (B,NodeID), st)

Client Server
knows (B,NodeID) knows (b,NodeID)

(x,X ,X ′) $←− X2Ell2.KGen()
PC

$←− {0, 1}pminC ..pmaxC

MC ← HMAC(B∥NodeID,X ′)
MACC ← HMAC(B∥NodeID,X ′∥PC ∥MC)

msg𝐶 = X ′∥PC ∥MC ∥MACC

X ′ ← msg𝐶 [1..ol]
MC ← HMAC(B∥NodeID,X ′)
parse (X ′∥PC ∥MC ∥MACC) ← msg𝐶 using MC ; else break

if HMAC(B∥NodeID,X ′∥PC ∥MC) ≠ MACC : break
if MACC ∈ st .SMAC : break

st .SMAC ← st .SMAC ∪ {MACC }
X ← X2Ell2.Decode(X ′)
(y, Y , Y ′) $←− X2Ell2.KGen()
protoID← “ntor-curve25519-sha256-1”

secret_input ← Xy ∥Xb∥B∥B∥X ∥Y ∥protoID∥NodeID
skey ← HMAC(secret_input, “:key_extract”)
verify ← HMAC(secret_input, “:key_verify”)
auth_input ← verify∥B∥B∥X ∥Y ∥protoID∥NodeID∥“Server”
auth← HMAC(auth_input, “:mac”)n

t
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PS
$←− {0, 1}pminS ..pmaxS

MS ← HMAC(B∥NodeID, Y ′)
MACS ← HMAC(B∥NodeID, Y ′∥auth∥PS ∥MS)

msg𝑆 = Y ′∥auth∥PS ∥MS ∥MACS

Y ′ ← msg𝑆 [1..ol]
MS ← HMAC(B∥NodeID, Y ′)
parse (Y ′∥auth∥PS ∥MS ∥MACS) ← msg𝑆 using MS ; else break

if HMAC(B∥NodeID, Y ′∥auth∥PS ∥MS) ≠ MACS : break
Y ← X2Ell2.Decode(Y ′)
protoID← “ntor-curve25519-sha256-1”

secret_input ← Yx ∥Bx ∥B∥B∥X ∥Y ∥protoID∥NodeID
skey ← HMAC(secret_input, “:key_extract”)
verify ← HMAC(secret_input, “:key_verify”)
auth_input ← verify∥B∥B∥X ∥Y ∥protoID∥NodeID∥“Server”
if HMAC(auth_input, “:mac”) ≠ auth: breakn

t
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e
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o
m
p
o
n
e
n
t

Figure 4: The obfs4 [60] obfuscated key exchange protocol.

4 Obfuscated Key Exchange
4.1 Security Goals
An obfuscated key exchange protocol aims to satisfy traditional key

exchange properties and those specific to the setting of censorship

circumvention. Some of our goals are motivated by properties that

are used in practice by censors to classify obfuscated traffic (dis-

cussed in Section 8.2). Our goals are also motivated by the explicit

threat models of FEPs, such as those in [60, §2], that have developed

over time in reaction to increased capabilities of censors. First, we

explain the security goals of our model, then formalize security

using a Bellare–Rogaway-style key exchange model [14].

(1) Key indistinguishability. Secrecy of the shared key estab-

lished in the protocol is through indistinguishability from random,

9
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as in Bellare–Rogaway [14]. This is not related to any explicit obfs4
goal but is a clear goal of the key exchange protocol. The aim of

the adversary is to guess the challenge bit b used in Test queries

which return a real or random session key. Any tested session must

be fresh: the session key cannot have been revealed (on a session or

its partnered session). Further, we consider key indistinguishability

against passive executions (sessions have honest partners) and with

forward secrecy, i.e., the responder’s long-term secret key must be

unrevealed prior to acceptance. The adversary wins if it correctly

guesses the challenge bit without violating freshness.

(2) Obfuscation. Intuitively the obfuscation property should cap-

ture a protocol’s ability to be unidentifiable or fingerprintable by

an adversary. From the obfs4 threat model [60, §2]:

“obfs4 offers protection against passive Deep Packet Inspec-

tion machines that expect the obfs4 protocol. Such machines

should not be able to verify the existence of the obfs4 protocol

without obtaining the server’s Node ID and identity public key.

[. . . ] obfs4 offers protection against some non-content protocol

fingerprints, specifically the packet size, and optionally packet

timing.”

We observe that protocols can be divided into classes, where a class
of protocols determines its traffic pattern, message sequence, etc.

(e.g., all TLS traffic may lie in one class while all Skype traffic lies

in another). Obfuscation is defined with respect to a simulator S
that defines a class of protocols. Then, real executions should look

indistinguishable from simulated messages exchanged. Ideally, the

simulator captures a class that hides a protocol from identification.

Our simulator-based definition is generic and adaptable, and we

discuss properties for “good” simulators in Section 8.2. We prove

obfuscation of our protocols with respect to a simulator that out-

puts all-random messages of varying lengths. The simulator-based

approach enables us to capture both types of circumvention proto-

cols defined in [63]: polymorphic-style protocols (which aim to hide

identifying features to evade blacklisting), and steganographic-style
protocols (which aim to appear like a white-listed protocol).

Obfuscation is modeled via a ChallExec oracle and ObfFresh
predicate. The aim of the adversary is to guess the challenge bit b
used inChallExec queries which return either the real transcript

and key from a protocol run, or a simulated transcript and random

key.
3
The ObfFresh predicate captures two variants of obfuscation:

regular obfuscation, which requires that the server’s public key
is not revealed, and strong obfuscation, which requires that the

server’s secret key is not revealed.

(3) Probing resistance. Following evidence of censors actively

probing suspicious proxy servers [25] and evidence of the efficacy of

probing against FEPs [30], the following requirement was included

in the obfs4 threat model [60, §2]:

“obfs4 offers protection against active attackers attempting to

probe for obfs4 servers. Such machines should not be able to

verify the existence of an obfs4 server without obtaining the

server’s Node ID and identity public key.”

Servers should not respond to active probing attacks, in which the

client does not know the server’s public key. This is modeled within

the normal Bellare–Rogaway-style Send oracle via a Probed flag.

3
The steganographic key exchange security notion from [64] can be seen as a single

ChallExec oracle run (one real-or-random trace, with real-or-random key).

The model tracks the first messages sent by initiators in a list F .
Once a message is delivered to a responder, it is removed from F .
If the adversary successfully elicits a non-empty response from

a responder, whose public key is not revealed, in response to a

message not in F , then the adversary wins. The list F ensures that

an adversary cannot trivially win by forwarding the first message

from an honest initiator to a responder and receiving a response.

(4) Explicit authentication. Finally, our model ensures explicit

authentication of the server. An adversary wins if it causes a client

to accept a session without a partnered server session existing. This

property is modeled via the ExplicitAuth predicate and captures

the following statement from the obfs4 threat model [60, §2]:

“obfs4 offers protection against active attackers that have ob-

tained the server’s Node ID and identity public key. Such ma-

chines should not be able to impersonate the server without

obtaining the server’s identity private key.”

4.2 Key Exchange and Model Syntax
We specify a key exchange protocol KE through two algorithms:

• Setup(id, role) $−→ (sk, pk, st) generates the public-secret key

pair (pk, sk) as well as the initial user state st for a protocol

user with identity id in role role ∈ {initiator, responder}.
• Run(𝜋𝑖𝑢 , st𝑢 , sk𝑢 , pk𝑣,𝑚)

$−→ (𝜋𝑖𝑢 , st𝑢 ,𝑚′) processes a protocol
message𝑚 delivered to session 𝜋𝑖𝑢 following the protocol spec-

ification (along with inputs the session owner’s state st𝑢 and

secret key sk𝑢 , and the session’s peer public key pk𝑣 ), updates
𝜋𝑖𝑢 and st𝑢 accordingly, and outputs the response message𝑚′.

Further, we write KE.KS to denote the session key space of KE.

4.2.1 Session and game variables. Session object 𝜋𝑖𝑢 captures the

session information for the 𝑖th session owned by user 𝑢. Each

user 𝑢 is assigned a role, 𝑢.role ∈ {initiator, responder}, and acts

accordingly as initiator or responder in the protocol.

Each session object 𝜋𝑖𝑢 holds several variables. The following

session variables in italics font are accessible by the key exchange

protocol (i.e., Run):

• 𝜋𝑖𝑢 .peerid: the identity of the session’s intended peer.

• 𝜋𝑖𝑢 .status: the state of execution (initially running, then set once
by the protocol to accepted or rejected).
• 𝜋𝑖𝑢 .skey: the session key.

• 𝜋𝑖𝑢 .sid, 𝜋
𝑖
𝑢 .cid: the session and contributive identifiers.

These folllowing session variables in sans-serif font are accessible
by the security game only:

• 𝜋𝑖𝑢 .tacc: the time at which the session accepted (initially∞).
• 𝜋𝑖𝑢 .revealed, 𝜋

𝑖
𝑢 .tested: flags indicating whether the session was

revealed or tested, respectively.

The security game further tracks the following game variables:

• time: a logical clock to order queries by the adversary.

• users: the number of users in the game.

• b: the challenge bit.
• sk𝑢 , pk𝑢 : the secret and public key of user 𝑢.

• revsk𝑢 , revpk𝑢 : flags indicating whether the secret or public,

key of user 𝑢 was revealed.

For syntactical convenience, we will interpret variables which

are unset or set to∞ as false in boolean conditions.

10
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4.2.2 Session identifiers, contributive identifiers, and partnering. We

use session identifiers [13] to determine that two sessions 𝜋𝑖𝑢 , 𝜋
𝑗
𝑣

are partnered if and only if 𝜋𝑖𝑢 .sid = 𝜋
𝑗
𝑣 .sid. Partnering is used to

define basic correctness/soundness properties and to exclude trivial

attacks like testing and revealing two partnered sessions that jointly

executed the protocol.

We further use contributive identifiers [22] to determine when a

responder session has an honest communication partner. Recall that

initiators are unauthenticated. Hence, to avoid trivial attacks, the

adversary may test a responder session only if that session honestly

received the values specified in the contributive identifier cid.

4.2.3 Security Definition

Definition 4.1 (Obfuscated key exchange security). Let KE be a
key exchange protocol and GObfKE

KE,S (A) be the obfuscated key ex-
change security game wrt. a simulator S defined in Figure 5 for an
adversary A. We define the advantage of A in breaking the ObfKE
security of KE as

AdvObfKEKE,S (A) := 2 · Pr
[
GObfKE
KE,S (A) ⇒ 1

]
− 1.

We distinguish two flavors ofObfKE, capturing regular (rObfKE) and
strong (sObfKE) obfuscation through different ObfFresh predicates
(Figure 5); we omit the prefixes if the flavor is clear from context.

4.2.4 Single-challenge selective security For our security analyses,

it will be convenient to establish security in a simpler version of the

obfuscated key exchange game, where the adversary has to commit

to winning via either:

(1) a single Test query to some pre-declared session, or

(2) a single (or, optionally, multiple)ChallExec queries against

some pre-declared server.

We denote these variants as ObfKE-1 (for a single ChallExec
query) and ObfKE-1∗ (for multiple ChallExec queries). These

are weaker versions of the main game, asking only for selective

security in a single-challenge setting. Yet we show in the following

that these simpler versions generically imply full security (per Def-

inition 4.1) via a hybrid argument, for the same type of obfuscation

(regular or strong). The hybrid works via guessing which session

or server the adversary will challenge, losing a factor (𝑛𝑠 + 𝑛𝑟𝑞C)
when reducingObfKE toObfKE-1 security, where 𝑛𝑠 and 𝑛𝑟 are the
number of sessions and servers in the game and 𝑞C the number of

ChallExec queries the adversary makes. ForObfKE-1∗, allowing
multiple ChallExec queries to the pre-declared server, the loss

is only (𝑛𝑠 + 𝑛𝑟 ).

Definition 4.2 (Single-challenge selective obfuscated key exchange
security). Let KE be a key exchange protocol and GObfKE-1

KE,S (A) be
the obfuscated key exchange security game wrt. a simulator S defined
in Figure 5 for an adversary A, with the following restrictions:

(1) At the outset of the game (as input to Initialize), A has
to commit on winning via a Test query or ChallExec
queries by outputting an attack type A, where A ∈ {Test,
ChallExec}.

(2) If A = Test, A has to further commit to a session index 𝑠 ∈
[1..𝑛𝑠 ] at the outset of the game. In the game, A can only
make a single Test query which has to be on the 𝑠th created

session. The game penalizes A by setting 𝑏 ′ ← 0 if it makes
any other Test query, or any query to ChallExec.

(3) If A = ChallExec, A has to further commit to a user
index 𝑝 ∈ [1..𝑛𝑟 ] at the outset of the game. In the game,
A can only make a single ChallExec(𝑢, 𝑣) query with 𝑣

being the 𝑝th created server. The game penalizes A by setting
𝑏 ′ ← 0 if it makes any other ChallExec query, or any
query to Test.

We define the advantage of A in breaking the (“single-challenge
selective”) ObfKE-1 security of KE as

AdvObfKE-1KE,S (A) := 2 · Pr
[
GObfKE-1
KE,S (A) ⇒ 1

]
− 1.

We also consider a ObfKE-1∗ variant GObfKE-1∗ where for A =

ChallExec, A is allowed to make multiple ChallExec(𝑢, 𝑣)
queries with 𝑣 being the 𝑝th created server.

As for the full security game (cf. Definition 4.1), we distinguish
regular (rObfKE-1, rObfKE-1∗) and strong (sObfKE-1, sObfKE-1∗)
obfuscation through different ObfFresh predicates (Figure 5); we omit
the prefixes if the flavor is clear from context.

Clearly, ObfKE security implies ObfKE-1 (and ObfKE-1∗) secu-
rity, since a successful adversary against the latter is also one against

the former where no commitment or query restrictions apply. We

next show that the reverse also holds via a hybrid argument.

Theorem 4.3 (ObfKE-1,ObfKE-1∗ =⇒ ObfKE). Let KE be a key
exchange protocol. Then for any adversary A against the ObfKE
security of KE interacting with at most 𝑛𝑠 sessions and 𝑛𝑟 servers,
there is an adversary B against the ObfKE-1 or ObfKE-1∗ security
of KE such that

AdvObfKEKE,S (A) ≤ (𝑛𝑠 + 𝑛𝑟 · 𝑞C) · Adv
ObfKE-1
KE,S (B),

AdvObfKEKE,S (A) ≤ (𝑛𝑠 + 𝑛𝑟 ) · Adv
ObfKE-1∗
KE,S (B).

The relations hold for both regular and strong obfuscation flavors of
the respective games.

We defer the proofs for theObfKE-1 andObfKE-1∗ hybrid results
in Theorem 4.3 to Appendix C.

5 Security Analysis of obfs4
We now analyze the security of obfs4 in our model, showing that

it achieves rObfKE security (i.e., with regular obfuscation). We rely

on the gap Diffie–Hellman (GapDH) problem [51] being hard for

X25519, modelingHMAC as a random oracle, and the public key uni-

formity of keygen-then-encode obfuscated X25519 [43] DH shares

with Elligator2 encoding [15] (which we computed in Section 2.1).

Simulator definition. We establish rObfKE security with respect

to the following simulator Sobfs4 which outputs two uniformly

random messages of length corresponding to the obfs4 message

elements including random-length padding:

Sobfs4 :
1 𝑟𝐶

$←− [pminC, pmaxC ] ; 𝑟𝑆 $←− [pminS, pmaxS ] // random-length client/server padding

2 𝑚1

$←− {0, 1}ol+512+𝑟𝐶 // 1x encoded DH + 2x HMAC outputs + client padding

3 𝑚2

$←− {0, 1}ol+768+𝑟𝑆 // 1x encoded DH + 3x HMAC outputs + server padding

4 return (𝑚1,𝑚2)
11
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GObfKE
KE,S (A)

Initialize:

1 time← 0; users← 0

2 b $←− {0, 1}
3 Probed← false

NewUser(id, role) :
4 𝑢 ← ++users
5 𝑢.role← role
6 (pk𝑢 , sk𝑢 , st𝑢 ) $←− Setup(id, role)
7 revsk𝑢 ←∞ ; revpk𝑢 ←∞

RevSessionKey(𝑢, 𝑖) :
8 if 𝜋𝑖

𝑢 = ⊥ or ¬𝜋𝑖
𝑢 .tacc then return ⊥

9 𝜋𝑖
𝑢 .revealed← true

10 return 𝜋𝑖
𝑢 .skey

RevSecretKey(𝑢) :
11 if revsk𝑢 then return ⊥
12 revsk𝑢 ← ++time
13 if ¬revpk𝑢 then revpk𝑢 ← time // Consider pk𝑢 revealed, too

14 return sk𝑢

RevPublicKey(𝑢) :
15 if revpk𝑢 then return ⊥
16 revpk𝑢 ← ++time
17 return pk𝑢

Test(𝑢, 𝑖) :
18 if 𝜋𝑖

𝑢 = ⊥ or ¬𝜋𝑖
𝑢 .tacc or 𝜋

𝑖
𝑢 .tested then

19 return ⊥
20 𝜋𝑖

𝑢 .tested← true
21 𝑘1 ← 𝜋𝑖

𝑢 .skey
22 𝑘0

$←− KE.KS
23 return 𝑘b

Finalize(b′) :
24 if ¬Sound then b′ ← b
25 if ¬ExplicitAuth then b′ ← b
26 if Probed then b′ ← b
27 if ¬Fresh then b′ ← 0

28 if ¬ObfFresh then b′ ← 0

29 return ⟦b = b′⟧

Send(𝑢, 𝑖,𝑚) :
30 𝑓 ← ⟦𝜋𝑖

𝑢 = ⊥⟧ // First Send to this session?

31 if 𝜋𝑖
𝑢 = ⊥ and 𝑢.role = initiator then

32 𝜋𝑖
𝑢 .peerid ←𝑚;𝑚 ← 𝜀 // “Virtual” first message to initiator sets peer id

33 if 𝜋𝑖
𝑢 .status ∈ {accepted, rejected} then return ⊥

34 (𝜋𝑖
𝑢 , st𝑢 ,𝑚

′) $←− Run(𝜋𝑖
𝑢 , st𝑢 , sk𝑢 , pk𝜋𝑖𝑢 .peerid ,𝑚)

35 if 𝜋𝑖
𝑢 .status = accepted then 𝜋𝑖

𝑢 .tacc ← ++time
36 if 𝑓 then // Upon first message sent/received. . .

37 if 𝑢.role = initiator then
38 F

𝜋𝑖𝑢 .peerid ← F𝜋𝑖𝑢 .peerid ∪ {𝑚
′ } // Record initators’ first messages (per responder)

39 if 𝑢.role = responder and𝑚′ ≠ 𝜀 then

40 if𝑚 ∉ F𝑢 and ¬revpk𝑢 then Probed← true // Response to a non–initiator-first message by a non–pk-revelead responder
is a successful probe

41 F𝑢 ← F𝑢 \ {𝑚} // Consider𝑚 “consumed”

42 return (𝜋𝑖
𝑢 .status,𝑚

′)

ChallExec(𝑢, 𝑣) :
43 𝜋𝑢 ← 𝜋𝑣 ← ⊥ // Temporary initator and responder sessions

44 if 𝑢.role ≠ initiator or 𝑣.role ≠ responder then return ⊥
45 trans1 ← () ; 𝜋𝑢 .peerid ← 𝑣; 𝑝 ← 𝑢;𝑚 ← 𝜀

46 repeat // Execute entire protocol and collect real transcript

47 (𝜋𝑝 , st𝑝 ,𝑚) $←− Run(𝜋𝑝 , st𝑝 , sk𝑝 , pk𝜋𝑝 .peerid ,𝑚)
48 trans1 ← trans1 ∥ (𝑚)
49 if 𝑝 = 𝑢 then 𝑝 ← 𝑣 else 𝑝 ← 𝑢 // Switch parties

50 until 𝜋𝑢 .status = 𝜋𝑣 .status = accepted
51 trans0 $←− S() // Simulated transcript

52 𝑘1 ← 𝜋𝑢 .skey; 𝑘0
$←− KE.KS // Real-or-random session key

53 chall𝑣 ← true // Mark server 𝑣 as challenged

54 return (transb, 𝑘b)

Fresh:

1 for each 𝜋𝑖
𝑢 : 𝜋𝑖

𝑢 .tested
2 if 𝜋𝑖

𝑢 .revealed then

3 return false // tested session may not be revealed

4 if ∃𝜋 𝑗
𝑣 ≠ 𝜋𝑖

𝑢 : 𝜋
𝑗
𝑣 .sid = 𝜋𝑖

𝑢 .sid ∧ (𝜋
𝑗
𝑣 .tested ∨ 𝜋 𝑗

𝑣 .revealed) then
5 return false // tested session’s partnered session may not be tested or revealed

6 if 𝑢.role = initiator ∧ revsk
𝜋𝑖𝑢 .peerid ≤ 𝜋𝑖

𝑢 .tacc ∧ ¬∃𝜋
𝑗
𝑣 ≠ 𝜋𝑖

𝑢 : (𝜋𝑖
𝑢 .sid = 𝜋

𝑗
𝑣 .sid)

7 return false // initiators: forward secrecy (peer’s sk unrevealed prior to acceptance) or passive execution

8 if 𝑢.role = responder ∧ ¬∃𝜋 𝑗
𝑣 ≠ 𝜋𝑖

𝑢 : (𝜋𝑖
𝑢 .cid = 𝜋

𝑗
𝑣 .cid ∧ 𝑣.role = initiator)

9 return false // responders: security only for passive executions (as initiators are unauthenticated)

10 return true

ObfFresh:

1 if ∃𝑣 : revpk𝑣 ∧ chall𝑣 then // Regular obfuscation (rObfKE)

if ∃𝑣 : revsk𝑣 ∧ chall𝑣 then // Strong obfuscation (sObfKE)

2 return false // Challenge pk revealed (fwd-secret: prior to challenge)

3 return true

ExplicitAuth:
// Explicit authentication of responders to initiators

1 ∀𝜋𝑖
𝑢 :

(
𝑢.role = initiator ∧ 𝜋𝑖

𝑢 .tacc < revsk
𝜋𝑖𝑢 .peerid

=⇒ ∃𝜋 𝑗
𝑣 : 𝑣 = 𝜋𝑖

𝑢 .peerid ∧ 𝜋𝑖
𝑢 .sid = 𝜋

𝑗
𝑣 .sid

)
Sound:

1 if ∃ distinct 𝜋𝑖
𝑢 , 𝜋

𝑗
𝑣 , 𝜋

𝑘
𝑤 : 𝜋𝑖

𝑢 .sid = 𝜋
𝑗
𝑣 .sid = 𝜋𝑘

𝑤 .sid ≠ ⊥ then

2 return false // no triple sid match

3 if ∃𝜋𝑖
𝑢 , 𝜋

𝑗
𝑣 : 𝜋𝑖

𝑢 .sid = 𝜋
𝑗
𝑣 .sid ≠ ⊥ ∧𝑢.role = 𝑣.role then

4 return false // partnering implies different roles

5 if ∃𝜋𝑖
𝑢 , 𝜋

𝑗
𝑣 : 𝜋𝑖

𝑢 .sid = 𝜋
𝑗
𝑣 .sid ≠ ⊥ ∧ 𝜋𝑖

𝑢 .cid ≠ 𝜋
𝑗
𝑣 .cid then

6 return false // partnering implies same contributive identifiers

7 if ∃𝜋𝑖
𝑢 , 𝜋

𝑗
𝑣 : 𝜋𝑖

𝑢 .sid = 𝜋
𝑗
𝑣 .sid ≠ ⊥ ∧𝑢.role = initiator ∧ 𝜋𝑖

𝑢 .peerid ≠ 𝑣 then

8 return false // partnering implies agreement on responder ID

9 if ∃𝜋𝑖
𝑢 , 𝜋

𝑗
𝑣 : 𝜋𝑖

𝑢 .sid = 𝜋
𝑗
𝑣 .sid ≠ ⊥ ∧ 𝜋𝑖

𝑢 .skey ≠ 𝜋
𝑗
𝑣 .skey then

10 return false // partnering implies same key

11 return true

Figure 5: Obfuscated key exchange security (ObfKE) game (top) capturing key indistinguishability, explicit server authentica-
tion, ( regular (rObfKE) or strong (sObfKE) ) obfuscationwith respect to a simulatorS, and probing resistance, via predicates
(bottom) Fresh, ExplicitAuth, ObfFresh, and flag Probed, respectively.

Session and contributive identifiers. We set the session identifier

sid := (X , Y , B,NodeID),

where X , Y are the sent/received initiator/responder DH shares,

and (B,NodeID) is the responder’s public key. Sessions set the con-
tributive identifier to

cid := (X )

upon the client sending or the server receiving the first message.

We now give the theorem statement and a proof sketch; the

complete proof is deferred to Appendix D.

Theorem 5.1. Let obfs4 be defined as in Figure 4. Assume the
GapDH problem is hard for X25519 and that HMAC behaves like a
random oracle. For any rObfKE adversary A against obfs4, we give
algorithms B1, B2, B3 in the proof such that

AdvrObfKEobfs4,Sobfs4 (A) ≤ 2 ·
(
𝑛2𝑠 + 𝑛2𝑟

𝑞
+ 𝑛

2

𝑟 + 3𝑞RO · 𝑛𝑟
2
160

+ 𝑞S

2
256
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+ 𝑛𝑠𝑛𝑟 · 1/𝜖1kgensuccX2Ell2 ·
(
AdvGapDHX25519 (B1) +

1

2
256

)
+ (𝑛𝑠 + 𝑛𝑟 ) ·

(
𝑛𝑠 · (1/𝜖1kgensuccX2Ell2 )2 · AdvGapDHX25519 (B2)

+ 3𝑞RO

2
160
+ 2𝑞C · Adv

pk-unif
X2Ell2 (B3)

))
,

where A makes at most 𝑞S, 𝑞C, and 𝑞RO queries to its Send oracle,
ChallExec oracle, and the random oracle; 𝑛𝑠 , 𝑛𝑟 are the number
sessions and servers (parties in responder role) thatA interacts with;
and 𝑞 ≈ 2

252 is the X25519 group order. X2Ell2 denotes the keygen-
then-encode (Definition 2.2) obfuscated key generation constructed
from X25519 key generation and the Elligator2 encoding.

Proof sketch. The proof proceeds via a series of game hops

and branches. Our goal is to ensure that Finalize in Figure 5

returns a random bit, so we consider each clause in Finalize. We

first rule out collisions in the DH shares (term (𝑛2

𝑠+𝑛2

𝑟 )/𝑞), which
ensures soundness (Sound).

A first branch then rules out thatA successfully probes a server

(Probed). We excludeNodeID collisions (𝑛
2

𝑟/2160) and then rule outA
querying the HMAC random oracle on an uncompromised NodeID
value (3𝑞RO ·𝑛𝑟/2160). In particular, the challenger samples the output

of anyHMAC call involving someNodeID input uniformly (but con-

sistently) at random, instead of querying the HMAC random oracle,

where theNodeID values are the randomnode IDs sampled for every

server, i.e., every user𝑢 with𝑢.role = responder. However, from the

moment RevPublicKey or RevSecretKey is queried on 𝑢

(revealing the NodeID of 𝑢 to A), the challenger programs these

values into the random oracle. This change is observable forA only

if it makes a random oracle query involving some user’s NodeID
prior to that NodeID being revealed.

Now Probed is set if a non–initiator-firstmessage𝑚 yields a reply

by an unrevealed responder. Such a message𝑚 is either rejected

due to replay checks against MAC values, or is different from all

honest initiators’ first messages sent to this responder. In the latter

case,𝑚 contains the client MAC MACC , which is now a random

256-bit value, leaving A a 𝑞S/2256 guessing chance.

A second branch prevents explicit authentication (ExplicitAuth)
from being violated.We first guess the first session violating ExplicitAuth,
𝜋∗, and its peer, 𝑣∗, (losing a factor 𝑛𝑠 ·𝑛𝑟 ), and rule out the case that
its DH share is not encodable (losing a factor 1/𝜖1kgensuccX2Ell2 ). Then,

we can embed a GapDH challenge in that session’s DH public key

X and the partner’s DH public key B (term AdvGapDHX25519 (B1)). Specif-
ically, we replace the outputs of the random oracle HMAC using

as input secret_input containing DH(X , B) with uniformly random

values. This means the verify value derived in the target session 𝜋∗

is replaced by some uniform value verify∗. We can bound this game

hop by a GapDH reduction B1 which embeds its GapDH challenge

in the ephemeral DH share X of 𝜋∗ and its peer’s long-term public

key B. Then B1 simulates sessions of 𝑣∗ without knowledge of b
by using the DDH oracle to ensure consistency of responses to

HMAC random oracle and RevSessionKey queries: whenever

HMAC would need to be evaluated on an input involving 𝑍b
for

some DH share 𝑍 , B1 checks whether A made a corresponding

random oracle query (identifiable via 𝑍 and B) with the poten-

tial DH secret 𝐶 by querying DDH(𝑍, B,𝐶). Unless A makes a

query involving the DH secret DH(X , B) prior to 𝜋∗ accepting, it

cannot detect the replacements upon input secret_input (including
verify∗). IfA makes such a query, B1 is able to detect this (using its
DDH oracle) and wins the GapDH game by outputting the CDH

solution DH(X , B).
Finally, the target session 𝜋∗ computes the authentication value,

auth, using HMAC on input a uniformly random value verify∗ ∈
{0, 1}256 unknown to A prior to 𝜋∗ accepting. After that, A only

has a 1/2256 chance to guess the correct auth value violating explicit

authentication for that session.

We then restrict the adversary to a single-challenge (rObfKE-1∗)
version of the game, applying the hybrid argument from Section 4.2.4

with a (𝑛𝑠 + 𝑛𝑟 ) loss. We separately treat the following two cases.

For Case I (A makes a single Test query), we guess the (sid-
or cid-)partner session of the tested session 𝜋∗ (𝑛𝑠 loss) and abort

if the DH share in either session is not encodable ((1/𝜖1kgensuccX2Ell2 )2
loss). We then replace the outputs of the random oracle HMAC on

input secret_input containing DH(X , Y ) with uniformly random

values, where X and Y are the ephemeral DH shares sent or received

by 𝜋∗. This in particular replaces the session key skey derived in

𝜋∗ by a uniform random value. We can bound this game hop by

a GapDH reduction B2 which embeds its GapDH challenge in X
and Y . If 𝜋∗ is a responder session, 𝜋∗𝑝 might receive a different

ephemeral DH share than Y , in which case B2 uses itsDDH oracle

to ensure consistency with the HMAC random oracle. Unless A
makes a query involving the DH secret DH(X , Y ), it cannot detect
the replacement, and if it does, B2 detects this and outputs the CDH
solution. This incurs the term AdvGapDHX25519 (B2) and results in the test

session’s key being random, which concludes this case.

For Case II (A wins via ChallExec queries to a single server),

we first rule out thatA queries theHMAC random oracle on the un-

compromised NodeID belong to the single challenged server (term

3𝑞RO/2160). In particular, the challenger samples the output of any

HMAC call involvingNodeID𝑝 as input uniformly (but consistently)

at random, instead of querying the HMAC random oracle. This in

particular affects the derived session keys skey and authentication

values auth in ChallExec sessions with server 𝑝 . This change

is hence observable for A only if it makes a random oracle query

involving NodeID𝑝 . As NodeID occurs at three distinct, fixed places

in HMAC inputs, as HMAC(B∥NodeID, ·), in secret_input, and in

auth_input, each random oracle query might match with one of

the three input types. Next, instead of computing the ephemeral

DH shares of sessions in the ChallExec oracle as (x,X ,X ′) $←−
X2Ell2.KGen() and (y, Y , Y ′) $←− X2Ell2.KGen(), we sample X ′ $←−
{0, 1}ol and Y ′ $←− {0, 1}ol, and then compute the DH shares as X ←
X2Ell2.Decode(X ′) and Y ← X2Ell2.Decode(Y ′). The replacement

of each such DH share can be bounded by the pk-unif security
of X2Ell2, letting the reduction B3 use the obtained obfuscated pub-
lic key

ˆpk in place of X ′ resp. Y ′, and its decoding Decode( ˆpk)
in place of X resp. Y . This can be bounded by the uniformity of

X25519 public keys encoded with Elligator2 via a hybrid argument

of all 𝑞C many ChallExec queries, i.e., 2𝑞C · Adv
pk-unif
X2Ell2 (B3). At

this point, the protocol messages in ChallExec sessions are uni-

formly distributed like outputs of the simulator Sobfs4, concluding
this case and the proof. □
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6 The st-obfs Protocol with Strong Obfusation
In obfs4, MAC tags are computed using HMAC keyed with the

long-term public key of the server, B andNodeID. As a result, should
the server’s long-term public key leak to an adversary, the adversary

can immediately identify prior and future traffic to this particular

server.
4
We present a simple variant of the obfs4 protocol, which

we call st-obfs, which achieves our notion of strong obfuscation:
providing obfuscation as long as the server’s secret key is unre-

vealed; the public key however may be revealed to the adversary.

In practice this means that an adversary cannot leverage obtained

Tor bridge information (B, NodeID) to identify traffic to/from the

bridge server.

Our st-obfs protocol is presented in Figure 6. In comparison

to obfs4, it replaces the long-term public information used as the

key to HMAC with the ephemeral/long-term DH key DH(X , B)—a
key which is also computed in obfs4, just that here we derive and
use it earlier. We remark that the changes require that the server

decode the encoded public key X ′ and compute the ephemeral

handshake key Xb
before being able to verify the MAC tags. This

increases the workload on the server by one decoding and one

modular exponentiation operation before it can rule out any probing

attempt.

Security. We establish sObfKE security for st-obfs under the

same assumptions used in our result for obfs4 (cf. Theorem 5.1).

The simulator Sobfs4, as well as the session and contributive iden-

tifiers, are defined as for obfs4 (cf. Section 5).

Theorem 6.1. Let st-obfs be defined as in Figure 6. Assume the
GapDH problem is hard for X25519 and that HMAC behaves like a
random oracle. For any sObfKE adversary A against st-obfs, we
give algorithms B1, B2, B3, B4 in the proof such that

AdvsObfKEst-obfs,Sobfs4 (A) ≤ 2 ·
(
𝑛2𝑠 + 𝑛2𝑟

𝑞
+ 𝑛

2

𝑟 + 3𝑞RO · 𝑛𝑟
2
160

+ 𝑞S

2
256

+ 𝑛𝑠𝑛𝑟 · 1/𝜖1kgensuccX2Ell2 ·
(
AdvGapDHX25519 (B1) +

1

2
256

)
+ (𝑛𝑠 + 𝑛𝑟 · 𝑞C) ·

(
𝑛𝑠 · (1/𝜖1kgensuccX2Ell2 )2 · AdvGapDHX25519 (B2)

+ (1/𝜖1kgensuccX2Ell2 )2 ·
(
AdvGapDHX25519 (B3) + 2 · Adv

pk-unif
X2Ell2 (B4)

)))
,

where A makes at most 𝑞S, 𝑞C, and 𝑞RO queries to its Send oracle,
ChallExec oracle, resp. the random oracle, 𝑛𝑠 , 𝑛𝑟 are the number
sessions, resp. servers (parties in responder role) thatA interacts with,
and 𝑞 ≈ 2

252 is the X25519 group order.

We defer the proof to Appendix E.

6.1 Forward Obfuscation
Our notion of strong obfuscation differs from that of forward secrecy.
Forward secrecy requires that an adversary cannot learn past ses-

sion keys even if they have compromised a secret key. An analogous

forward obfuscation property can be defined: an adversary cannot

distinguish past traffic from simulated traffic even if a secret key

is revealed. Our construction does not, however, achieve such a

4
This property has previously been noted by David Fifield: https://gitlab.torproject.org/

tpo/anti-censorship/pluggable-transports/lyrebird/-/issues/30716#note_2832771.

Server key generation/setup

NodeID $←− {0, 1}160
(b, B) $←− KGenX25519 ()
st .SMAC ← ∅
return ( (b,NodeID), (B,NodeID), st)

Client Server
knows (B,NodeID) knows (b,NodeID)

(x,X ,X ′) $←− X2Ell2.KGen()
PC

$←− {0, 1}pminC ..pmaxC

MC ← HMAC(Bx , B∥NodeID∥X ′)
MACC ← HMAC(Bx , B∥NodeID∥X ′∥PC ∥MC)

msg𝐶 = X ′∥PC ∥MC ∥MACC

X ′ ← msg𝐶 [1..ol]
X ← X2Ell2.Decode(X ′)
MC ← HMAC(Xb, B∥NodeID∥X ′)
parse (X ′∥PC ∥MC ∥MACC) ← msg𝐶 using MC ; else break

if HMAC(Xb, B∥NodeID∥X ′∥PC ∥MC) ≠ MACC : break
if MACC ∈ st .SMAC : break

st .SMAC ← st .SMAC ∪ {MACC }
(y, Y , Y ′) $←− X2Ell2.KGen()
// ntor handshake component

protoID← “strong-obfs”

secret_input ← Xy ∥Xb∥B∥B∥X ∥Y ∥protoID∥NodeID
skey ← HMAC(secret_input, “:key_extract”)
verify ← HMAC(secret_input, “:key_verify”)
auth_input ← verify∥B∥B∥X ∥Y ∥protoID∥NodeID∥“Server”
auth← HMAC(auth_input, “:mac”)
// end ntor handshake component

PS
$←− {0, 1}pminS ..pmaxS

MS ← HMAC(Xb, B∥NodeID∥Y ′)
MACS ← HMAC(Xb, B∥NodeID∥Y ′∥auth∥PS ∥MS)

msg𝑆 = Y ′∥auth∥PS ∥MS ∥MACS

Y ′ ← msg𝑆 [1..ol]
MS ← HMAC(Bx , B∥NodeID, Y ′)
parse (Y ′∥auth∥PS ∥MS ∥MACS) ← msg𝑆 using MS ; else break

if HMAC(Bx , B∥NodeID∥Y ′∥auth∥PS ∥MS) ≠ MACS : break
Y ← X2Ell2.Decode(Y ′)
// ntor handshake component

protoID← “strong-obfs”

secret_input ← Yx ∥Bx ∥B∥B∥X ∥Y ∥protoID∥NodeID
skey ← HMAC(secret_input, “:key_extract”)
verify ← HMAC(secret_input, “:key_verify”)
auth_input ← verify∥B∥B∥X ∥Y ∥protoID∥NodeID∥“Server”
if HMAC(auth_input, “:mac”) ≠ auth: break

Figure 6: Our obfuscated key exchange protocol st-obfswith
strong obfuscation. Changes compared to the original obfs4
protocol (cf. Figure 4) are highlighted in blue.

property. Strong obfuscation ensures that traffic is indistinguish-

able from simulated traffic when public keys are revealed, yet it

does not protect in the setting where a secret key is revealed. In

particular, if the secret key of a server is revealed (in obfs4, this is
𝑏 and 𝑁𝑜𝑑𝑒𝐼𝐷), then an adversary is able to distinguish prior traffic.

This is true both for the existing obfs4 protocol and our st-obfs
variant. In theory, one could introduce the property of forward

obfuscation into the protocol by employing puncturing pseudoran-

dom functions, as in [9], or by using a time-based evolution of keys.
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However, the use of PPRFs is expensive and a time-based evolution

of keys would only be of value in the case where bridge servers are

relatively long-lived.

We collected data from the Collector’s bridgepool assignment

archive [52] to determine the approximate lifetime of a Tor bridge

server and estimate the value of introducing forward obfuscation.

Data was collected between June to December 2023, from which

we calculated statistics about the distribution of bridge lifetimes

(capped at 6 months for each bridge server). Of the 4516 bridge

servers that were active between June and December 2023, we

observed the average lifetime of a bridge server to be 10.42 days

and the 90th percentile to be 19.93 days. A large proportion of

bridge servers are observed to be short-lived; nonetheless, bridge

operators may consider stronger obfuscation properties desirable

in some cases. We leave such constructions to future work.

7 Quantum-safe Obfuscated Key Exchange
In this section we present our quantum-safe obfuscated key ex-

change protocol pq-obfs with strong obfuscation.

7.1 The pq-obfs Protocol
Our pq-obfs protocol achieves each of the security goals outlined

in Section 4.1: key indistinguishability, strong obfuscation, probing

resistance, and explicit authentication. At a high-level, we have

replaced the ephemeral-ephemeral and ephemeral-static DH ex-

changes in obfs4 with ephemeral and static KEM encapsulations,

and carefully adapted the key schedule inspired by HKDF’s Extract-

then-Expand paradigm [42] to obtain security under standard-

model assumptions. The use of KEMs in place of the elliptic curve

key exchange operations enables post-quantum security of the pro-

tocol. Aside from the use of KEMs, pq-obfs is largely modelled after

obfs4 and ntor, and includes similar MAC tags and random-length

padding for the same purposes as in obfs4. Strong obfuscation is

achieved via an ephemeral key input to the computations of MAC

tags, similar to the approach in st-obfs (cf. Section 6). Finally, KEM

public keys and ciphertexts sent between client and server must be

indistinguishable from random. For this, we require that the proto-

col uses an obfuscated KEM (Definition 2.5). The complete protocol

flow is given in Figure 7; Figure 9 in the appendix details the key

schedule. We assume that, for replay protection, the protocol works

in epochs, but we omit epochs from the description for simplicity

(as we did for obfs4).
In our protocol, F1 is a secure pseudorandom function with

output length fl1. A PRF F : X × Y → Z treats the first input as a

key and the second as a message, and for an unknown key should

be indistinguishable from a random function on the message input.

The swap of F is F′(𝑦, 𝑥) = F(𝑥,𝑦). We say that F is a swap-PRF if

its swap F′ is a PRF. We will treat F2 as a dual-PRF, i.e., both a PRF

and a swap-PRF, with output length fl2. We may also refer to F2 as
a key combiner. See Appendix A for the details of PRF definitions.

Instantiating the protocol. Our construction is generic in the sense

that any combination of an obfuscated KEM and functions F1, F2
can be used as long as they satisfy certain properties. In partic-

ular, we require an obfuscated KEM, as defined in Definition 2.5,

that satisfies IND-CCA and SPR-CCA security. This is achieved

by ML-Kemeleon (ML-KEM [50] with our Kemeleon encoding of

Server key generation/setup

NodeID $←− {0, 1}nl
(pk𝑆 , sk𝑆 , _) $←− OKEM.KGen()
st .SMAC ← ∅
return ( (sk𝑆 ,NodeID), (pk𝑆 ,NodeID), st)

Client Server
knows (pk𝑆 ,NodeID) knows (sk𝑆 ,NodeID)

(sk𝑒 , pk𝑒 , 𝑝𝑘𝑒 )
$←− OKEM.KGen()

PC
$←− {0, 1}pminC ..pmaxC

(c𝑆 ,K𝑆 , ĉ𝑆 ) $←− OKEM.Encap(pk𝑆 )
ES ← F2 (NodeID,K𝑆 )
MC ← F1 (ES, 𝑝𝑘𝑒 ∥̂c𝑆 ∥“:mc”)
MACC ← F1 (ES, 𝑝𝑘𝑒 ∥̂c𝑆 ∥PC ∥MC ∥“:mac_c”)

msg𝐶 = 𝑝𝑘𝑒 ∥̂c𝑆 ∥PC ∥MC ∥MACC

𝑝𝑘𝑒 ← msg𝐶 [1..ol] ; ĉ𝑆 ← msg𝐶 [ol + 1..ol + cl]
K𝑆 ← OKEM.Decap(sk𝑆 , ĉ𝑆 )
ES ← F2 (NodeID,K𝑆 )
MC ← F1 (𝐸𝑆, 𝑝𝑘𝑒 ∥̂c𝑆 ∥“:mc”)
parse (𝑝𝑘𝑒 ∥̂c𝑆 ∥PC ∥MC ∥MACC) ← msg𝐶 using MC ; else break

if F1 (ES, 𝑝𝑘𝑒 ∥̂c𝑆 ∥PC ∥MC ∥“:mac_c”) ≠ MACC : break

if MACC ∈ st .SMAC : break

pk𝑒 ← OKEM.Decode(𝑝𝑘𝑒 )
(c𝑒 ,K𝑒 , ĉ𝑒 ) $←− OKEM.Encap(pk𝑒 )
protoID← “pq-obfs”

ES′ ← F1 (ES, “:derive_key”) ; FS ← F2 (ES′,K𝑒 )
context ← pk𝑆 ∥c𝑆 ∥pk𝑒 ∥c𝑒 ∥protoID
skey ← F1 (FS, context∥“:key_extract”)
auth← F1 (FS, context∥“:server_mac”)
PS

$←− {0, 1}pminS ..pmaxS

MS ← F1 (ES, ĉ𝑒 ∥“:ms”)
MACS ← F1 (ES, ĉ𝑒 ∥auth∥PS ∥MS ∥“:mac_s”)

msg𝑆 = ĉ𝑒 ∥auth∥PS ∥MS ∥MACS

ĉ𝑒 ← msg𝑆 [1..cl]
MS ← F1 (𝐸𝑆, ĉ𝑒 ∥“:ms”)
parse (̂c𝑒 ∥auth∥PS ∥MS ∥MACS) ← msg𝑆 using MS ; else break

if F1 (ES, ĉ𝑒 ∥auth∥PS ∥MS ∥“:mac_s”) ≠ MACS : break
K𝑒 ← OKEM.Decap(sk𝑒 , ĉ𝑒 )
protoID← “pq-obfs”

ES′ ← F1 (ES, “:derive_key”) ; FS ← F2 (ES′,K𝑒 )
context ← pk𝑆 ∥c𝑆 ∥pk𝑒 ∥c𝑒 ∥protoID
skey ← F1 (FS, context∥“:key_extract”)
if F1 (FS, context∥“:server_mac”) ≠ auth: break

Figure 7: Our post-quantum obfuscated key exchange proto-
col pq-obfs with strong obfuscation.

public keys and ciphertexts as in Section 2.4). The IND-CCA and

SPR-CCA security of ML-KEM, established in [17, 38, 46], trans-

late toML-Kemeleon, with a small loss from its first-keygen/encap

success probability and ciphertext uniformity; see Theorems 2.12

and 2.13. We can instantiate F1 and F2 withHMAC, whose dual-PRF
security for fixed-length keys is proven in [11].

Performance. Our pq-obfs protocol is structurally close to obfs4:
client and server send one message each (one round-trip) to estab-

lish ephemeral-ephemeral and ephemeral-static secrets, and from

those derive session keys and authentication tags. In terms of per-

formance, the difference is dominated by the costs arising from
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replacing elliptic-curve DHwith a KEM, since the other changes are

small and efficient (e.g., instantiating key derivation with HMAC).

For X25519 vs. Kyber/ML-KEM, this primarily means that pq-obfs
will have a larger communication overhead for sending public

keys and ciphertexts (781 and 877 bytes for Kemeleon-encoded
ML-KEM-512 vs. twice 32 bytes for X25519; see Table 2 for output
sizes of encodings), while computations can actually be faster in

practice [68].

7.2 Security Analysis of pq-obfs
We now analyze the security of pq-obfs in our model, showing that

it achieves strong obfuscation (sObfKE) security. Our results rely
on the IND-CCA and SPR-CCA security, public key and ciphertext

uniformity, public key collision probability, and correctness of the

obfuscated KEM OKEM, in addition to PRF security of F1 and F2,
and swap-PRF security of F2.

Simulator definition. We establish sObfKE security with respect

to the following simulator Spq-obfs which outputs two uniformly

random messages of length corresponding to the pq-obfs message

elements including random-length padding:

Spq-obfs :
1 𝑟𝐶

$←− [pminC, pmaxC ] ; 𝑟𝑆 $←− [pminS, pmaxS ] // random-length client/server padding

2 𝑚1

$←− {0, 1}ol+cl+2·fl1+𝑟𝐶 // 1x encoded pk + 1x encoded ctxt + 2x F
1
outputs + client padding

3 𝑚2

$←− {0, 1}cl+3·fl1+𝑟𝑆 // 1x encoded ctxt + 3x F
1
outputs + server padding

4 return (𝑚1,𝑚2)

Session and contributive identifiers. We set the session identifeir as

sid := (pk𝑒 , c𝑒 , pk𝑆 , c𝑆 ),

where pk𝑒 is the initiator’s KEM public key, pk𝑆 is the responder’s

static KEM public key, and NodeID is the responder’s long-term

identifier. We set the contributive identifier to

cid := (pk𝑒 , c𝑆 )

upon the client sending or server receiving the first message.

We now give the theorem statement and a proof sketch; the

complete proof is deferred to Appendix F. Our design allows the

proof to proceed via a sequence of reductions to (dual-)PRF security

of F1 and F2, applications of IND-CCA and SPR-CCA security, and

uniformity properties of the obfuscated KEM; we do not need to

rely on a (quantum) random oracle.

Theorem7.1. Let pq-obfs be defined as in Figure 7. For any sObfKE
adversary A against pq-obfs, we give algorithms B1–B17 in the
proof such that

AdvsObfKEpq-obfs,Spq-obfs (A) ≤ 2 ·
(
pkcollOKEM (𝑛𝑠 + 𝑛𝑟 ) + 2𝑛𝑠 · 𝛿OKEM

+ 𝑛𝑠𝑛𝑟 ·
(
AdvPRFF2

(B1) + AdvPRFF1
(B2) +

1

2
fl1

)
+ 𝑛𝑠𝑛𝑟 ·

(
AdvIND-CCAOKEM (B3) + Advswap-PRFF2

(B4) + AdvPRFF2
(B5)

+ AdvPRFF1
(B6) + AdvPRFF1

(B7) +
1

2
fl1

)
+ (𝑛𝑠 + 𝑛𝑟𝑞C) ·

(
𝑛𝑠 ·

(
AdvIND-1CCAOKEM (B8) + Advswap-PRFF2

(B9)

+ AdvPRFF1
(B10)

)

+ AdvSPR-CCAOKEM (B11) + Advswap-PRFF2
(B12)

+AdvPRFF1
(B13)+AdvPRFF2

(B14)+AdvPRFF1
(B15)

+ Advpk-unifOKEM (B16) + Adv
ctxt-unif
OKEM (B17)

))
,

whereA makes at most𝑞C ChallExec queries,𝑛𝑠 ,𝑛𝑟 are the num-
ber sessions and servers (parties in responder role) that A interacts
with, nl is the NodeID bit-length, and fl1 is the output bit-length of F1.

Proof sketch. Similar to the obfs4 proof (Theorem 5.1), we

proceed via a series of game hops and branches, considering each

clause in Finalize. We first rule out KEM public key collisions

(term pkcollOKEM (𝑛𝑠 + 𝑛𝑟 )) and assume correct decapsulation in

all sessions (2𝑛𝑠 · 𝛿OKEM), which ensures soundness (Sound).
A first branch then rules out thatA successfully probes a server

(Probed): we guess the first server and session that sets Probed
(with a 𝑛𝑠 · 𝑛𝑟 loss). From that server’s uncompromised NodeID,
we apply PRF security to turn ES and MACC into random val-

ues. After this, we observe that Probed is set if a non–initiator-

first message𝑚 yields a reply by an unrevealed responder. Such

a message 𝑚 is either rejected due to the replay check, or it is

different from all honest initiators’ first messages sent to this re-

sponder. In the second case, 𝑚 contains the target client MAC

value MACC∗ which is a random fl1-bit value unknown to A. The

adversary A can therefore only guess MACC∗; the corresponding
bound is AdvPRFF2

(B1) + AdvPRFF1
(B2) + 1/2fl1 .

A second branch prevents explicit authentication (ExplicitAuth)
being violated. We guess the first session violating ExplicitAuth,
𝜋∗, and its peer, 𝑣∗, (losing a factor 𝑛𝑠 · 𝑛𝑟 ). Then we can embed an

IND-CCA challenge in that the peer’s public key, the session’s c𝑆 ,
and the derived K𝑆 key as follows (term AdvIND-CCAOKEM (B3)). Let
(c𝑆 ,K𝑆 , ĉ𝑆 ) $←− OKEM.Encap(pk𝑆 ) be the encapsulation computed

in the target session 𝜋∗ with the long-term public key of 𝑣∗. We

replace the long-term KEM key K𝑆 with a uniformly random K̃𝑆
in 𝜋∗. All values derived from K𝑆 in 𝜋∗ use the randomized value

K̃𝑆 . We bound the adversary A’s difference in advantage by a

reduction B3 to the IND-CCA security of OKEM. B3 obtains the
IND-CCA challenge (pk, c∗,K∗, ĉ∗) and simulates the game for A
as follows. It uses pk as the long-term public key of 𝑣∗. In 𝜋∗, B3
uses c∗ as the ciphertext c𝑆 and its encoding ĉ∗ as ĉ𝑆 . In any session

of 𝑣∗, if the ciphertext ĉ𝑆 received is not ĉ∗, then B3 queries its

IND-CCA decapsulation oracle and uses the response as K𝑆 ; else,
if ĉ𝑆 = ĉ∗, then B3 uses K∗ as K𝑆 . Next, through four (swap-)PRF

hops (B4–B7), we show that this turns auth into a random fl1-bit
value leaving A with a 1/2fl1 chance to violate ExplicitAuth.

We then restrict the adversary to a single-challenge (sObfKE-1)
version of the game, applying the hybrid argument from Section 4.2.4

with a (𝑛𝑠 +𝑛𝑟𝑞C) loss. We separately treat the following two cases.

For Case I (A makes a single Test query), we first guess the

(sid- or cid-)partner session of the tested session (losing a factor 𝑛𝑠 ).

We then embed an IND-1CCA challenge in the ephemeral KEM

encapsulation of the test session, 𝜋∗, and its partner session, 𝜋∗𝑝
(term AdvIND-1CCAOKEM (B8)). In particular, we replace the ephemeral

KEM key K𝑒 with a uniformly random K̃𝑒 in the target session 𝜋∗.
All values derived from K𝑒 in 𝜋∗ use the randomized value K̃𝑒 . We

bound the adversary A’s difference in advantage by a reduction
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B8 to the IND-1CCA security ofOKEM. B8 obtains the IND-1CCA
challenge (pk, c∗,K∗, ĉ∗) and simulates the game for A as follows.

In the protocol run between 𝜋∗ and 𝜋∗𝑝 ,B8 uses pk as the ephemeral

public key of the initiator and c∗ as the ciphertext c𝑒 and its en-

coding ĉ∗ as the obfuscated ciphertext ĉ𝑒 of the responder. If the

initiator session receives a ciphertext ĉ𝑒 ≠ ĉ∗, then B8 queries its
IND-1CCA decapsulation oracle (once) and uses the response as

K𝑒 ; else, if ĉ𝑒 = ĉ∗, then B8 uses K∗ as K𝑒 . Following this, we apply
two (swap-)PRF hops (B9, B10) to randomize the test session’s key,

concluding this case.

For Case II (A makes a single ChallExec query to a pre-

determined server), we embed a SPR-CCA challenge in the long-

term KEM encapsulation of the ChallExec sessions (term

AdvSPR-CCAOKEM (B11)), randomizing both ĉ𝑆 and K𝑆 . Specifically, we
replace the ciphertext c𝑆 and its encoding ĉ𝑆 , as well as the long-
term KEM key K𝑆 as follows. Instead of running OKEM.Encap, the
initiator samples ĉ𝑆

$←− {0, 1}cl and K𝑆
$←− K uniformly at random

and derives the ciphertext as c𝑆 ← DecodeCtxt(̂c𝑆 ). We bound the

adversary A’s difference in advantage by a reduction B11 to the

SPR-CCA security of OKEM.B11 obtains the SPR-CCA challenge

(pk, c∗,K∗, ĉ∗) and simulates the game for A as follows. It uses pk
as the public key of the 𝑝th-created responder 𝑣∗ committed to

by the adversary. When ChallExec is called, B11 uses c∗ as the
ciphertext c𝑆 and its encoding ĉ∗ as ĉ𝑆 . In any session of 𝑣∗, if the
ciphertext ĉ𝑆 received is not ĉ∗, then B11 queries its SPR-CCA de-

capsulation oracle and uses the response as K𝑆 ; else, if ĉ𝑆 = ĉ∗, then
B11 uses K∗ as K𝑆 . Subsequently, we proceed via four (swap-)PRF

hops (B12–B15) to randomize the transcript’s MAC values as well as

the session key. Finally, we apply the public key and ciphertext uni-

formity of the obfuscated KEM OKEM (terms Advpk-unifOKEM (B16) and
Advctxt-unifOKEM (B17)) to randomize 𝑝𝑘𝑒 and ĉ𝑒 . At this point, the pro-
tocol messages in ChallExec sessions are uniformly distributed

like outputs of the simulator Spq-obfs, concluding this case and the

proof. □

8 Discussion and Further Challenges
8.1 Simulating TLS 1.3
Due to the pervasiveness of TLS [54], circumvention tools often

attempt tomimic TLS patterns [31] to hide within a large anonymity

set. It is hence natural to consider if one could prove that a particular

obfuscated key exchange protocol is indistinguishable from a TLS

handshake in our model.

TLS 1.3 [54] is not inherently resistant to active probing: there

is no mechanism for a server to distinguish between honest clients

and probing attempts. This is because public keys are assumed to

be public, unlike the semi-private bridge server information in Tor.

Nonetheless, we can consider how to simulate a TLS 1.3 handshake.

The simulator is given a coroutine that defines TLS 1.3 behavior

and distribution of handshake fields. To achieve probing resistance,

an obfuscated protocol mimicking TLS 1.3 should copy the same

failure modes. Our model currently does not capture responses to

probes other than empty messages, but this is easily generalized to

reflect an alternative error response to an unverified probe.

TLS 1.3 handshakes have the following fields in which one might

embed additional information:

• Nonce: The 256-bit random nonce field can be used to embed

additional information, e.g., an X25519 key as discussed in [28].

• Ephemeral Public Key: One can of course send a public key

in the field intended to contain a public key, but any value

following the same distribution as the appropriate public key

(e.g. X25519, X448, depending on the version) would suffice.

• PSK Binder Value: Binder values typically contain the output

of a MAC applied to a pre-shared key identifier and nonce. One

could embed in this field anything following the same distribu-

tion as the output of the corresponding MAC function, e.g., a

MAC of semi-secret bridge information for probing resistance.

• PSKIdentity: The identity values of pre-shared keys are cho-

sen by servers and may be arbitrarily distributed; however,

uniformly random strings would be a natural choice, such as in

the case of encrypted TLS session tickets.

These fields need not necessarily be uniformly random. For example,

in Cloak [66], which composes a TLS connection and hides infor-

mation within the handshake, ephemeral key information can be

embedded in a field intended for public keys. This avoids any issues

with distinguishability due to keys not being uniformly random.
5

We provide a theoretical foundation for correctly embedding in-

formation in various TLS handshake fields. However, as pointed out

by [31, 39], staying up-to-date with current TLS implementations

to avoid fingerprinting of protocols can be difficult in practice.

8.2 Defining a Simulator
Obfuscation security is proven in our model with respect to a spe-

cific simulator, capturing the class of protocols that a protocol hides

within. One might imagine an ideal setting in which all protocols

fall into the same class and thus, all handshakes could be proven

indistinguishable from another. In reality, protocols have a surfeit

of properties that distinguish them from one another. Capturing all

of these properties in a singular definition or model is challenging,

and defining a concrete collection of features that, when combined,

is hard to fingerprint remains an open problem. Defining security

with respect to a given simulator makes our model flexible and

avoids prescribing a (potentially flawed) selection of features.

Towards determining what collection of features are relevant

for obfuscated protocols (and defining simulators), we perform a

brief literature review of work that takes a feature-based detection

approach to classify obfuscated traffic. Many prior works develop

machine-learning-based techniques for classifying obfuscated traf-

fic. These models are typically trained on a set of features that are

useful in fingerprinting such protocols. A systematic collection of

these features provides a lower bound on what properties must be

protected/obfuscated to avoid this class of blocking, even if not all

of these features are used in practice for classifying traffic today.

Our review includes observations from both censorship circum-

vention research aiming to improve the state-of-the-art protocols

and research developing censorship tools to block these protocols.

We collect features from work that aim to classify obfuscated traffic

(e.g., obfs4, Shadowsocks), underlying applications of encrypted
traffic, and other circumvention tools (e.g., Snowflake [16]). Not all

of the features we found in the literature can be captured by our

model; we discuss challenges that remain in modeling them. We

5
Such as https://github.com/net4people/bbs/issues/287#issuecomment-1718920382.
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summarize the results of our review below; more details are given

in Table 3.

The most commonly referenced features that are used for proto-

col classification are entropy, directionality, and length of packets.

Each of these can be captured in our model through an according

simulator. Notably, there is evidence that the GFW has blocked fully

encrypted traffic with uncommonly high entropy [71]. This can

generally be remedied through post-processing of the encrypted

data to reduce randomness. Existing FEPs aim to obfuscate packet

lengths, but do not prescribe any specific traffic pattern that would

obfuscate the directionality of packets. Defining such effectively

obfuscated directionality patterns remains an open problem.

Several works point out that analyzing protocols on a per-session

or per-host basis can be more effective than analyzing individual

packets [37, 45, 65]. Our model captures an adversary’s ability to

evaluate the key exchange protocol as a whole, and not necessarily

individual packets; however, it does not consider how this analysis

may be combined with the following data transfer phase. One might

consider how our model can be composed with that of [26] to view

the protocol as a whole. We note, however, that evidence of real-

world blocking [71] suggested that only rudimentary classification

tests were placed on the first TCP payload.

The features found in the literature that cannot be captured by

our model are all properties related to timing: inter-packet delay,
packet direction/timing sequence, total execution time, volume of

traffic, and timeouts. The remaining features we found can all be

captured in the definition of a simulator (or via probing resistance).

Fenske and Johnson [26] include termination of TCP connections

into their model of the data transfer phase and suggest that the ideal

behaviour for a FEP is to never close a connection. This addresses

the timeout feature, but the remaining timing-based properties

of packets remain unresolved. For example, the obfs4 handshake
requires that the client wait for the server’s response before sending

more data. This stems from the fact that any data following the

handshake must be encrypted with the established shared key. This

packet sequence is identifiable because, for the period of time that

the client is waiting for the server’s response, it sends no data.
6
Our

current model is incapable of capturing this property because we

model the handshake as a transcript of messages. Modeling timing

behavior is challenging because it requires a streaming-like notion

[29] for key exchange protocols. Expanding key exchange models

in general and our model in particular to capture timing properties

of protocols is an interesting avenue for future work.

8.3 Obfuscating Further Post-Quantum KEMs
With Kemeleon for Kyber/ML-KEM, we present a first construc-

tion for mapping public keys and ciphertext of a post-quantum

KEM to random bytestrings, and also make the required proper-

ties formal. Finding such mappings for further post-quantum KEM

schemes is an interesting avenue for future work. Strong pseudoran-

domness under chosen-ciphertext attacks can be a useful building

block towards such mappings, as we show for ML-Kemeleon (cf.

Lemma 2.15), and has been studied for the NIST PQC Round 3 KEM

candidates in [73]. This suggests that, for example, the lattice-based

6
This has previously been discussed on the tor-dev mailing list, see https://lists.

torproject.org/pipermail/tor-dev/2017-June/012310.html.

public keys and ciphertexts of FrodoKEM [48] already are uniform

strings. In general, finding an appropriate obfuscation mechanism

is however non-trivial; for example, an attempt to create an isogeny-

based password authenticated key exchange (PAKE) failed due in

part to the difficulty of making isogeny-based public keys indistin-

guishable from random bitstrings [10].
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— Directionality

Statistics on number and ordering of packets in each direction

(total, variance, entropy, ratio).

[21, 34, 36, 44, 70, 74, 75]

Packet length

— Packet length
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A Additional Definitions
Definition A.1 (Pseudorandom function). A pseudorandom func-

tion F : {0, 1}𝜅 × {0, 1}𝜄 → {0, 1}𝜆 takes as input a key of length 𝜅
and an input of length 𝜄, and produces an output of length 𝜆.

Definition A.2 (Secure pseudorandom function). A pseudorandom
function F is said to be secure if it is computationally infeasible for
an adversary to distinguish the output of a pseudorandom function
(under an unknown key) from the output of a random function. More
precisely, let F : {0, 1}𝜅 × {0, 1}𝜄 → {0, 1}𝜆 and define

AdvPRFF (A) := Pr

[
AF(𝑘, ·) () ⇒ 1 | 𝑘 $←− {0, 1}𝜅

]
− Pr

[
A𝑅 ( ·) () ⇒ 1 | 𝑅 $←− {all functions : {0, 1}𝜄 → {0, 1}𝜆}

]
.

B Public Key and Ciphertext Encodings
We provide the first systematic treatment of existing encodings

between public keys and random strings. The obfs4 construction
makes use of the Elligator2 encoding. Before Elligator2, the first
examples of mappings of public keys to random strings were the

Uniform DH (UDH) encoding [32] and Telex’s original-or-twist

strategy [72]. We can also consider an aspect of the authenticated

key exchange scheme from von Ahn and Hopper [64] as one such

mapping. Here we review the details of each mapping and evaluate
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them according to the properties defined in Section 2. We sum-

marize the properties of these mappings, in addition to our new

encoding scheme Kemeleon, in Table 2.

von Ahn–Hopper [64]. In a construction for a steganographic key

exchange, von Ahn and Hopper [64, §6.3] propose a DH key genera-

tion algorithm that can be viewed as an encoding of DH public keys

to random strings. Aligned with the keygen-then-encode paradigm

described in Section 2.1, public keys are sampled and then rejected

if they do not satisfy an “encodable” form. In this case, working in

the group Z𝑝 , the algorithm samples a private key 𝑎
$←− Z𝑝−1 and

rejects the resulting public key, 𝑔𝑎 for a generator 𝑔, if the most

significant bit is 1. Else, it outputs all bits of 𝑔𝑎 except the most

significant bit (this bit is deterministically set to 0 upon decoding).

Naturally, the resulting output is a perfectly uniform bitstring of

length ⌈log
2
(𝑝)⌉ − 1. The first-keygen success probability is the

probability that for a randomly sampled public key, its most signifi-

cant bit is 0. This is 2
⌈log

2
(𝑝 )⌉−1/𝑝 > 1

2
. Pseudocode for the algorithm

is given in Figure 8 and details are summarized in Table 2.

UDH. The Uniform DH map, originally proposed in [32], maps

elements from a group Z𝑝 to random values in the range [0, 2 |𝑝 |−1].
In particular, the original proposal focuses on modular exponential

groups designed for key exchange [41]. In the protocol description,

the input is assumed to be an element of Z𝑝 where 𝑝 ≡ 3 mod 4

is prime with 𝑞 = (𝑝 − 1)/2 also prime. We also require that 𝑝 is

close to a multiple of 256 in order to achieve a strong uniformity

property.

We describe the key generation here as a single algorithm, since

the Uniform DH map does not follow the keygen-then-encode

paradigm. The algorithm is given in Figure 8.

The map relies on the fact that if 𝑥 and 𝑦 are even, 𝑋 = 𝑔𝑥

(mod 𝑝), and 𝑌 = 𝑔𝑦 (mod 𝑝), then (𝑝 − 𝑌 )𝑥 = 𝑌𝑥 (mod 𝑝) and
(𝑝 − 𝑋 )𝑦 = 𝑋 𝑦 (mod 𝑝). The uniformity in this case depends on

the size of the group. Uniform DH was originally proposed as a

mapping for MODP groups 5 and 14 [41]. We note that group 5 was

downgraded to SHOULDNOT in RFC 8247 [49], as the security mar-

gin was considered too narrow due to group size. For completeness,

we describe the statistical distance from uniform when embedding

keys in such a group anyway.

In group 5, we have 𝑝5 = 2
1536−21472−1+264 · (21406𝜋 +741804).

Let 𝛿5 = 2
1536 − 𝑝5 ≈ 2

1470
. In group 14, we have 𝑝14 = 2

2048 −
2
1984 − 1+ 264 · (21918𝜋 + 124476) and 𝛿14 = 2

2048 −𝑝14 ≈ 2
1982

. Let

U𝑑 be a uniform distribution over 𝑑 bit integers (where 𝑑 = 1536 or

𝑑 = 2048), and letZ𝑘 be the distribution of the respective Uniform

DH map. The public key uniformity (cf. Definition 2.4) for the map

over group 𝑘 is then the statistical distance between distributions

Z𝑘 andU𝑑 :

Δ(U𝑑 ,Z𝑘 ) =
1

2

∑
𝛼 ∈[0,2𝑑−1]

|Pr[Z𝑘 = 𝛼] − Pr[U𝑑 = 𝛼] |

=
1

2

(
(𝑝𝑘 − 𝛿𝑘 ) ·

���� 1𝑝𝑘 − 1

𝑝𝑘 + 𝛿𝑘

���� + 2𝛿𝑘 · ���� 1

2𝑝𝑘
− 1

𝑝𝑘 + 𝛿𝑘

����) .
For both MODP group 5 and group 14, this is approximately 2

−66
.

Our analysis confirms the calculations from [69, Appendix A].

UDH.KGen() :
1 𝑥 $←− [0, 𝑝 − 2] // private key
2 if 𝑥 mod 2 ≠ 0, return ⊥
3 𝑋 ← 𝑔𝑥 (mod 𝑝)
4 𝑏 $←− {0, 1}
5 𝑋0 ← 𝑋

6 𝑋1 ← 𝑝 −𝑋
7 return 𝑥,𝑋𝑏 , 𝑋𝑏

von Ahn–Hopper.KGen() :
1 𝑥 $←− [0, 𝑝 − 2] // private key
2 𝑋 ← 𝑔𝑥 (mod 𝑝)
3 if MSB of 𝑋 is 1, return ⊥
4 𝑋 ′ ← all bits of 𝑋 except MSB

5 return 𝑥,𝑋,𝑋 ′

Telex.KGen() :
1 𝑠 $←− [1, 𝑝 − 1] // private key
2 𝑏 $←− {0, 1}
3 𝛽 ← 𝑠 · 𝑔𝑏 // x-coordinate only

4 return 𝑠, 𝛽, 𝛽

Figure 8:UDH, von Ahn–Hopper, and Telex KGen algorithms.

Any odd values of the private key 𝑥 are rejected in the encoding

function. Therefore, given that 𝑝 is an odd prime, the first-keygen

success probability (cf. Definition 2.3) is
1

2
.

Telex original-or-twist [72]. Telex uses a tagging mechanism that

embeds information into a uniformly random string that is only

usable to a party with the corresponding secret information. This

tag functions similarly to the marker 𝑀𝐶 in the obfs4 protocol;

however, the Telex tag also includes an elliptic curve public key.

Here, we only describe the initial part of the tag which includes the

public key.

Telex selects several public parameters. The elliptic curve 𝐸 =

{(𝑥,𝑦) : 𝑦2 = 𝑥3 − 3𝑥 + 𝑏} is defined over a field of prime order 𝑝 ,

F𝑝 , where 𝑝 ≡ 3 mod 4. Let ℓ𝑝 denote the bit length of 𝑝 . The twist
curve is then 𝐸 ′ = {(𝑥,𝑦) : −𝑦2 = 𝑥3 − 3𝑥 + 𝑏}. 𝑏 must be chosen

such that 𝐸 and 𝐸 ′ have prime order over F𝑝 . This ensures that for
any 𝑎 ∈ F𝑝 , 𝑎 is either the x-coordinate of a point on 𝐸 or it is the

x-coordinate of a point on 𝐸 ′. The idea of using a curve or its twist

for random ciphertexts was similarly proposed by Möller [47].

To setup the encoding, the following steps are taken:

• Two public hash functions, 𝐻1 and 𝐻2, are defined.

• The x-coordinates of generators 𝑔0 and 𝑔1 for curves 𝐸 and

𝐸 ′, respectively, are published as public information.

• A randomprivate key 𝑟 ∈ {0, 1}ℓ𝑝 is selected. The x-coordinates
of 𝛼0 = 𝑟 · 𝑔0 and 𝛼1 = 𝑟 · 𝑔1 are published. These must not

be the point at infinity.

We describe the key generation here as a single algorithm, since

the Telex map does not follow the keygen-then-encode paradigm.

The algorithm is given in Figure 8. The inverse operation is omitted

since the public key is the same as its encoded variant.

The public key uniformity (cf. Definition 2.4) of this encoding is

then the statistical distance between the output distribution of the

encoding and the uniform distribution. That is,

1

2

(
𝑝 ·

���� 1𝑝 − 1

2
ℓ𝑝

���� + (2ℓ𝑝 − 𝑝) · ���� 1
2
ℓ𝑝

����) .
For the parameters used in the Telex implementation, 𝑝 = 2

168 −
2
8 − 1 and ℓ𝑝 = 168, this is approximately 2

−160
. There is no rejec-

tion of values in the key generation algorithm, so the first-keygen

success probability is 1.

Elligator2 [62]. To address some shortcomings of the Elligator2
encoding (in particular, the fact that only ≈ 1/2 the points on a

curve can be encoded and the restrictions on the types of Ellip-

tic curves that can be encoded), Tibouchi proposed an alternative
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encoding for elliptic curve points, named Elligator2. The construc-
tion first fixes a suitable, injective point encoding function that

maps points from a finite field to an elliptic curve defined over the

field, i.e., 𝑓 : 𝐺𝐹 (𝑞) → 𝐸 (𝐺𝐹 (𝑞)). Then, a point 𝑃 ∈ 𝐸 (𝐺𝐹 (𝑞)) is
represented as a random preimage of the tensor square function

𝑓 ⊗2 : (𝑢, 𝑣) ∈ (𝑓 ⊗2)−1 (𝑃) ⊂ 𝐺𝐹 (𝑞)2. Here, the tensor square func-
tion 𝑓 ⊗2 : 𝐺𝐹 (𝑞)2 → 𝐸 (𝐺𝐹 (𝑞))maps (𝑢, 𝑣) to 𝑓 (𝑢)+𝑓 (𝑣). Elements

of𝐺𝐹 (𝑞)2 are thenmapped directly to their bit-representationwhen

𝑞 is close to a power of 2. The encoding therefore transmits data cor-

responding to both 𝑢 and 𝑣 for a given point 𝑃 = (𝑢, 𝑣). As a result,
the output is approximately twice as long as an Elligator2 encoding,
but has a first-keygen success probability of 1 (as opposed to ≈ 1/2).
Additionally, the statistical distance from uniform is 2 · (1 − 𝑞/2𝑛)
where 𝑛 is the bitlength of 𝑞. For example, for Curve25519 this value

is ≈ 2
−249.752

.

The problem then reduces to finding a suitable well-bounded
encoding function 𝑓 : 𝐺𝐹 (𝑞) → 𝐸 (𝐺𝐹 (𝑞)) whose inverse is effi-

ciently computable. We refer the reader to [62] for appropriate

definitions of well-boundedness and constructions of specific en-

coding functions. Several proposals are given for different classes

of curves including ordinary curves where 𝑝 ≡ 3 mod 4, Elligator

1-compatible curves, and Barreto–Naehrig curves [62, §4].

Alternative Kemeleon ciphertext encoding. We briefly describe a

slightly modified alternative encoding for ML-KEM ciphertexts,

than the one described in Section 2.4. In the current approach,

we propose rejecting values of 𝑐2 based on the coefficients that

are equal to 0. An alternative approach would be to forgo the re-

jection of 𝑐2 and instead perform the same decompression and

randomness recovery as is done for 𝑐1. In this method, the encod-

ing algorithm VectorEncode is applied to the concatenated vector

of coefficients from 𝑐1 and 𝑐2. Although 𝑐1 is a vector of 𝑘 polyno-

mials and 𝑐2 is a single polynomial, this can simply be treated as

a vector of (𝑘 + 1) · 𝑛 coefficients. Then, the resulting first-encap

success probability becomes 2
⌈log

2
(𝑞𝑛· (𝑘+1)+1) ⌉−1/𝑞𝑛 · (𝑘+1) , which is

≈ 2
−0.694

for 𝑘 = 3. This is strictly worse because the first-encap

success probability decreases and the output size of encoded ci-

phertexts increases. On the other hand, for 𝑘 = 2, this probability

becomes ≈ 2
−0.27

which is much better than the previous 2
−0.957

;

however, this approach comes with the tradeoff of increased output

size. In any case, the first-encap success probability is greater than

1/2 and the statistical distance from uniform remains as 0.

C Proof of Theorem 4.3
Assume A makes 𝑞T queries to the Test oracle. Since A can test

each session at most once (assuming w.l.o.g. that it does not make

useless queries that definitely result in a ⊥ response), we have that

𝑞T ≤ 𝑛𝑠 .

By standard advantage term rewriting, we have

AdvObfKEKE,S (A) = 2 · Pr
[
GObfKE
KE,S (A) ⇒ 1

]
− 1

= Pr

[
GObfKE
KE,S,1 (A) ⇒ 1

]
− Pr

[
GObfKE
KE,S,0 (A) ⇒ 1

]
,

where GObfKE
KE,S,𝑏 denotes the game GObfKE

KE,S with a fixed challenge

bit 𝑏.

We describe the ObfKE-1 case in detail first, and derive the

ObfKE-1∗ one from it afterward. Define hybrid games GObfKE𝑛
KE,S

for 𝑛 ∈ [0..𝑛𝑠 + 𝑛𝑟 · 𝑞C] that work like GObfKE
KE,S,1, except with the

following changes to the Test and ChallExec oracles:

• Test(𝑢, 𝑖): Let 𝜋𝑖𝑢 be the 𝑡 th session created in the game. If

𝑡 ≤ 𝑛, return 𝑘0, else return 𝑘1.

(That is, we letTest return the random key 𝑘0 for the first 𝑛

sessions, and the real key 𝑘1 for the remaining sessions.)

• ChallExec(𝑢, 𝑣): Let 𝑣 be the 𝑟 th server created in the

game (via a call toNewUser), and theChallExec query

be the 𝑡th query to that server. If (𝑟 − 1) · 𝑞C + 𝑡 ≤ 𝑛 − 𝑛𝑠 ,
return (trans0, 𝑘0), else return (trans1, 𝑘1). That is, we let

ChallExec return a simulated transcript and random key,

(trans0, 𝑘0), when called on the first 𝑡 calls with the 𝑟 th server
and on server created before. For the remaining calls to

the 𝑟 th server and to all later-created servers, ChallExec
returns the real transcript and key, (trans1, 𝑘1). Also, for the
first 𝑛𝑠 hybrids, we return the real transcript and key.

We have that GObfKE0
KE,S equals the “real” game GObfKE

KE,S,1 for 𝑏 = 1

and G
ObfKE𝑛𝑠+𝑛𝑟 ·𝑞C
KE,S equals the “random” game GObfKE

KE,S,0 for 𝑏 = 0.

We will now bound each hop from GObfKE𝑛−1
KE,S to GObfKE𝑛

KE,S by the

advantage of a reduction B against the single-challenge selective

game GObfKE-1
KE,S .

The reduction samples 𝑛
$←− [1..𝑛𝑠 + 𝑛𝑟 · 𝑞C] at random and

commits to attack type A = Test and session 𝑠 = 𝑛 if 𝑠 ≤ 𝑛𝑠 , and

to attack type A = ChallExec and server 𝑝 = ⌈(𝑛 − 𝑛𝑠 )/𝑞C⌉
otherwise. It then simulates the hybrid game GObfKE𝑛

KE,S for A by

relaying the queries of A to its own oracles, except for queries to

the Test and ChallExec oracles, which B handles as follows:

• Test(𝑢, 𝑖): Let 𝜋𝑖𝑢 be the 𝑡 th session created in the game.

– If 𝑡 < 𝑛, B samples and returns a random key 𝑘0
$←− KE.KS.

– If 𝑡 = 𝑛, B makes its single Test oracle query on (𝑢, 𝑖).
– If 𝑡 > 𝑛, B calls RevSessionKey(𝑢, 𝑖) and returns the

resulting (real) session key.

Note that such RevSessionKey queries cannot violate

the freshness predicate inB’s game unlessA violates Fresh
in its game, since Test queries (by A) cannot be made

on sessions partnered with tested or revealed sessions.

Note that 𝑡 = 𝑛 implies that 𝑛 ≤ 𝑛𝑠 and hence 𝑡 = 𝑛 = 𝑠 ,

so B correctly committed to testing the 𝑠th session. Also,

for 𝑛 ≥ 𝑛𝑠 , B samples all answers at random and never

queries Test.
• ChallExec(𝑢, 𝑣): Let 𝑣 be the 𝑟 th server created in the

game and the query be the 𝑡th ChallExec query to 𝑣 .

Define 𝑡∗ := 𝑛𝑠 + (𝑟 − 1) · 𝑞C + 𝑡 .
– If 𝑡∗ < 𝑛, B runs the simulator S and returns the resulting

simulated transcript trans0 and a random key 𝑘0
$←− KE.KS.

– If 𝑡∗ = 𝑛, B makes its single ChallExec oracle query

on (𝑢, 𝑣).
Note that in B’s game, only chall𝑣 will be set to true since
B simulates all other queries to ChallExec itself. This

can only help B, since the ObfFresh predicate (indepen-

dent of regular or strong obfuscation) in its game might

be satisfied even when A violates its predicate.
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– Else (if 𝑡∗ > 𝑛, and in particular if 𝑛 ≤ 𝑛𝑠 ), B uses its

Send oracle (for some new indices 𝑖 > 𝑛𝑠 unused by A)

repeatedly to simulate the full protocol run between 𝜋𝑢
and 𝜋𝑣 in the ChallExec oracle. It concatenates the re-

sulting message into trans1 and reveals the session key

(via RevSessionKey) and returns that transcript and

key.

Note that the initiator’s first message is immediately “con-

sumed” by sending it to the responder, hence the set F𝑣 is
unchanged after B completes its sequence of Send oracle

calls. Furthermore, B’s RevSessionKey queries do not

violate Fresh as it does not test any session.

Note that 𝑡∗ = 𝑛 implies that 𝑝 = ⌈(𝑛 − 𝑛𝑠 )/𝑞C⌉ = 𝑟 , so B
correctly committed to the challenged server 𝑣 being the 𝑝th

created one.

Finally, B outputs A’s bit guess 𝑏 ′ as its own.
We have that B simulates either hybrid game GObfKE𝑛−1

KE,S or

GObfKE𝑛
KE,S , dependingwhether the challenge bit inB’s gameGObfKE-1

KE,S,𝑏
is 𝑏 = 1 or 𝑏 = 0. To see this, observe that when testing the (𝑡 = 𝑛)-
th session, the response is real (simulating hybrid 𝑛 − 1) if 𝑏 = 1

in B’s game GObfKE-1
KE,S,𝑏 and random (simulating hybrid 𝑛) if 𝑏 = 0.

Likewise, for the 𝑡 th query to ChallExec for the 𝑝th server, the

transcript and key are real if 𝑏 = 1 and random if 𝑏 = 0. We hence

have

Pr

[
GObfKE𝑛−1
KE,S (A) ⇒ 1

]
− Pr

[
GObfKE𝑛
KE,S (A) ⇒ 1

]
≤ Pr

[
GObfKE-1
KE,S,1 (B) ⇒ 1

]
− Pr

[
GObfKE-1
KE,S,0 (B) ⇒ 1

]
= AdvObfKE-1KE,S (B) .

Summing over the hybrids GObfKE𝑛
KE,S for 𝑛 ∈ [1..𝑛𝑠 + 𝑛𝑟 · 𝑞C], and

recalling that GObfKE
KE,S,1 = GObfKE0

KE,S and GObfKE
KE,S,0 = G

ObfKE𝑛𝑠+𝑛𝑟 ·𝑞C
KE,S

yields the theorem bound.

ObfKE-1∗. The case of ObfKE-1∗ works as above by setting 𝑞C = 1

and 𝑡∗ := 𝑛𝑠 + 𝑟 , and having B relay all ChallExec queries

(instead of just one) for the 𝑟 th server to its own ChallExec
oracle. □

D Security Proof for obfs4 (Theorem 5.1)
We proceed via a series of game hops.

Game 0. We start with the security game for regular obfuscation

(rObfKE), G0 = GrObfKE
obfs4,Sobfs4 . So, omitting the Sobfs4 subscript

from here on, we have

AdvrObfKEobfs4 (A) = AdvG0

obfs4
(A) = 2 · Pr[G0] − 1.

Game 1 (Exclude DH collisions). In Game G1, we abort if two

honest sessions sample the same DH share (X and Y ) or if two
servers sample the same long-term DH share B. By the birthday

bound, across at most 𝑛𝑠 honest sessions (for the former) and at

most 𝑛𝑟 servers (for the latter), the probability of such an abort can

be upper-bounded by

Pr[G0] − Pr[G1] ≤
𝑛2𝑠 + 𝑛2𝑟

𝑞
,

where 𝑞 is the X25519 DH group order.

Establishing soundness (Sound). Wenowobserve that in GameG1,

the adversary cannot violate soundness anymore (i.e., the predi-

cate Sound cannot be false). To see this, we check the conditions

in Sound (Figure 5); recall that the session identifier is sid :=

(X , Y , B,NodeID) and the contributive identifier is cid := (X ).
(1) No triple sid match: For three session identifiers to match,

two initiator sessions or two responder sessions would have

to sample the same curve point. However, G1 aborts in that

case.

(2) Partnering implies different roles: For two same-role sessions

to be partnered, they would have to sample the same curve

point. Again, G1 prevents that.

(3) Partnering implies same contributive identifiers: The con-

tributive identifier contains a subset of entries in the session

identifier. Hence, agreement on the latter implies agreement

on the former.

(4) Partnering implies agreement on responder ID: The ses-

sion identifier contains the involved server’s long-term DH

share B. As these do not collide by G1, they uniquely identify

the responder.

(5) Partnering implies same key: The elements in the session

identifier uniquely determine the inputs to the computation

of the session key skey, hence agreement on the former

implies agreement on the latter.

Game 2 (Prevent Probed being set). In Game G2, we stop set-

ting Probed← true (i.e.,A cannot win anymore in G2 by breaking

probing resistance). We have

Pr[G1] − Pr[G2] ≤ Pr[G1 sets Probed]
and will bound the latter probability via the following, branching

game hops G1.1 and G1.2.

Game 1.1 (Exclude NodeID collisions). In Game G1.1, we abort

if two servers sample the sameNodeID value in Setup. By a birthday
bound over the 𝑛𝑟 many servers and the 160-bit NodeID values, we

have

Pr[G1 sets Probed] − Pr[G1.1 sets Probed] ≤
𝑛2𝑟

2
160

.

Game 1.2 (Sample HMAC(. . .NodeID . . . ) at random). In

Game G1.2, we let the challenger sample the output of any HMAC
call involving some NodeID input uniformly (but consistently) at

random, instead of querying the HMAC random oracle, where the

NodeID values are the random node IDs sampled for every server,

i.e., every user 𝑢 with 𝑢.role = responder. However, from the mo-

ment RevPublicKey or RevSecretKey is queried on 𝑢 (re-

vealing theNodeID of𝑢 toA), the challenger programs these values

into the random oracle.

This change is observable forA only if it makes a random oracle

query involving some user’s NodeID prior to that NodeID being

revealed. As NodeID occurs at three distinct, fixed places in HMAC
inputs, as HMAC(B∥NodeID, ·), in secret_input, and in auth_input,
each random oracle query might match with one of the three input

types. Recalling that there are 𝑛𝑟 many uniformly random NodeID
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values of length 160 bits each, we can upper bound the probability

that A makes such a query by

Pr[G1.1 sets Probed] − Pr[G1.2 sets Probed] ≤
3𝑞RO · 𝑛𝑟

2
160

.

Now observe that Probed in G1.2 is set if a non–initiator-first

message𝑚 yields a reply by an unrevealed responder. Such a mes-

sage𝑚 can be either (1) a replay of an already consumed message

output by an honest initiator for this responder, or (2) one that

is different from all honest initiators’ first messages sent to this

responder.

In the first case,𝑚 is rejected due to the replay check against the

list of seen MAC values st .SMAC recorded in the server’s state.

In the second case, 𝑚 = X ′∥PC ∥MC ∥MACC must be different

from any initiator session’s message sent to this responder. Since

MACC is computed deterministically from X ′∥PC ∥MC for a fixed re-

sponder andNodeID values do not collide byG1.1, it must be that no

initiator session output MACC = HMAC(B∥NodeID,X ′∥PC ∥MC).
By G1.2, adversary A also made no random oracle query matching

HMAC(B∥NodeID,X ′∥PC ∥MC) as NodeID is unrevealed when 𝑚

is received. Hence, the value HMAC(B∥NodeID,X ′∥PC ∥MC) com-

puted by the unrevealed responder (via the random oracle) is an

independent random 256-bit value when the Probed flag would

be set in a Send oracle call of G1.2. Across all 𝑞S such calls, the

adversary hence has the following guessing chance setting Probed
in G1.2:

Pr[G1.2 sets Probed] ≤
𝑞S

2
256

.

This completes the branching, bounding Pr[G1 sets Probed] ≤
𝑛2

𝑟

2
160
+ 3𝑞RO ·𝑛𝑟

2
160

+ 𝑞S

2
256

. We now continue with the main proof from

G2, where Probed is never set.

Game 3 (Prevent ExplicitAuth being violated). In Game G3,

we abort the game if ExplicitAuth is violated (i.e., A cannot win

anymore in G3 by breaking explicit authentication). We have

Pr[G2] − Pr[G3] ≤ Pr[¬ExplicitAuth in G2] .
Recall that for ExplicitAuth to be violated, an initiator session must

accept with a peer whose secret key is uncompromised at this point

in the game, but for which there is no session of that peer holding

the same session identifier. Formally,

Pr[¬ExplicitAuth in G2]
= Pr

[
∃𝜋𝑖𝑢 : 𝑢.role = initiator ∧ 𝜋𝑖𝑢 .tacc < revsk𝜋𝑖

𝑢 .peerid ∧

∀𝜋 𝑗
𝑣 s.t. 𝑣 = 𝜋𝑖𝑢 .peerid : 𝜋𝑖𝑢 .sid ≠ 𝜋

𝑗
𝑣 .sid

]
.

We will bound this probability again through a series of branching

game hops G2.1 and G2.3.

Game 2.1 (Guess violated initiator session and peer). In

Game G2.1, we guess a “target session” 𝜋∗, the first session (in

order of creation) which makes ExplicitAuth evaluate to false, as
well as that session’s peer, 𝑣∗ = 𝜋∗ .peerid. We let the game abort

if that guess is incorrect, i.e., if ExplicitAuth is not violated when

the session 𝜋∗ accepts or if 𝑣∗ is not its peer. This introduces a
corresponding loss in the number of sessions and servers:

Pr[¬ExplicitAuth in G2] ≤ 𝑛𝑠 · 𝑛𝑟 · Pr[¬ExplicitAuth in G2.1] .

Game 2.2 (Stop resampling in KGen). Recall that the obfus-

cated ephemeral DH share generation (x,X ,X ′) $←− X2Ell2.KGen()
is of “keygen-then-encode” type (cf. Definition 2.2). In Game G2.2,

we abort if in the first session violating ExplicitAuth, 𝜋∗, the first
DH share sampled in X2Ell2.KGen() cannot be successfully encoded
(i.e., Encode(X ) = ⊥). Game G2.2 equals Game G2.1 if no resam-

pling is necessary in the latter, i.e., with probability equal to the

first-keygen success probability of X2Ell2:

Pr[¬ExplicitAuth in G2.1] ≤ 1/𝜖1kgensuccX2Ell2 ·Pr[¬ExplicitAuth in G2.2] .

Game 2.3 (GapDH in X , B). In Game G2.3, we replace the out-

puts of the random oracle HMAC using as input secret_input con-
taining DH(X , B) with uniformly random values. This in particular

means the verify value derived in 𝜋∗ is replaced by some uniform

value verify∗.
We can bound this game hop by a GapDH reduction B1 which

embeds its GapDH challenge in the ephemeral DH share X of the

target session 𝜋∗ and its peer’s long-term public key B. Note that
by Game G2.2, X is generated as regular DH share without re-

sampling.
7
Also, 𝜋∗ violating ExplicitAuth guarantees that upon

acceptance of 𝜋∗, b is unrevealed. We let B1 simulate sessions of 𝑣∗

without knowledge of b by using theDDH oracle to ensure consis-

tency of responses toHMAC random oracle andRevSessionKey
queries: whenever HMAC would need to be evaluated on an input

involving 𝑍b
for some DH share 𝑍 , B1 checks whether A made a

corresponding random oracle query (identifiable via 𝑍 and B) with
the potential DH secret 𝐶 by querying DDH(𝑍, B,𝐶).

Unless A makes a query involving the DH secret DH(X , B)
prior to 𝜋∗ accepting, it cannot detect the replacements upon in-

put secret_input (including verify∗). If A makes such a query, B1
is able to detect this (using its DDH oracle) and wins the GapDH
game by outputting the CDH solution DH(X , B). Hence we have

Pr[¬ExplicitAuth in G2.2]−Pr[¬ExplicitAuth in G2.3] ≤ AdvGapDHX25519 (B1).
Finally, in Game G2.3, the target session 𝜋∗ computes the au-

thentication value auth using HMAC on input a uniformly random

value verify∗ ∈ {0, 1}256 unknown to A prior to 𝜋∗ accepting. Ex-
plicit authentication being violated for 𝜋∗ means that no session

of 𝑣∗ can have computed this value auth, as its input includes the
session identifier components sid = (X , Y , B,NodeID) and such ses-

sion would otherwise be partnered with 𝜋∗ (and hence ExplicitAuth
satisfied). So, the only chance for making 𝜋∗ accept without partner
session is to correctly guess the 256-bit output auth of the ran-

dom oracle HMAC on an unknown 256-bit input, the probability

of which is

Pr[¬ExplicitAuth in G2.3] ≤
1

2
256

.

This completes the branching, with Pr[¬ExplicitAuth in G2] ≤

𝑛𝑠 · 𝑛𝑟 · 1/𝜖1kgensuccX2Ell2 ·
(
AdvGapDHX25519 (B1) +

1

2
256

)
. We now continue

with the main proof from G3, where ExplicitAuth is never violated.

7
Alternatively, we can forgo G2.2 and instead use the fact that GapDH challenges are

rerandomizable (cf. [12, 19]): we would rerandomize the challenge used for X (where

otherwise obfs4 would sample a new DH value), undoing the randomization in the

DDH queries. Rerandomization can be applied up to some limit, at which point the

game would abort. This makes the subsequent loss (although still dependent on the

first-keygen success probability) arbitrarily small.
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Game4 (Single-challenge selective security). Wenow restrict

the adversary to a single-challenge selective (rObfKE-1∗) versionG4

of game G3, where A has to commit upfront to winning either

(I) via a Test query on the pre-determined 𝑠th created session

(A = Test), or
(II) via (possibly multiple) ChallExec queries on the pre-

determined 𝑝th created server (A = ChallExec).

Recall that in G3, Sound is never violated, Probed never set, and

ExplicitAuth never violated, hence A can only win via Test or

ChallExec queries. Applying the hybrid argument from The-

orem 4.3 (cf. Appendix C), which holds analogously for the so-

modified Game G3, we have

AdvG3

obfs4
(A) ≤ (𝑛𝑠 + 𝑛𝑟 ) · AdvG4

obfs4
(A).

Let us write GT
4
and GC

4
for the game G4 restricted to the two

winning options of A (A ∈ {Test,ChallExec}). By the union

bound,

AdvG4

obfs4
(A) ≤ Adv

GT
4

obfs4
(A) + AdvG

C
4

obfs4
(A) .

We will bound each term separately, through the following proof

cases I and II.

Case I. Win viaTest In this proof case,A commits to winning via

a single Test query on the 𝑠th created session, which we call 𝜋∗.
For the test session to satisfy Fresh, we must have that there is

an honest partner—i.e., a session 𝜋∗𝑝 holding the same cid or sid
(“passive execution”)—or that the responder peer is uncompromised

upon acceptance of the initiator session 𝜋∗ (“forward secrecy”).

Note that since ExplicitAuth is ensured to hold (by Game G3), the

latter implies that there actually must be an honest partner 𝜋∗𝑝
holding the same sid, so we can at this point focus on such passive

executions.

Essentially following that case in the proof for the ntor pro-

tocol [33, Theorem 1], we will embed a GapDH challenge in the

ephemeral DH shares of the test session 𝜋∗ and its partner 𝜋∗𝑝 ,
turning the test session’s key into a uniformly random one.

Game I.0. This case begins with Game G4 conditioned on A =

Test, where the test session has an honest (sid- or cid-)partner:

AdvGI.0

obfs4
(A) = Adv

GT
4

obfs4
(A).

Game I.1 (Guess the partner session). In Game GI.1, we guess

the session 𝜋∗𝑝 that is the honest sid partner (if 𝜋∗ is an initiator)

resp. cid partner (if 𝜋∗ is a responder) of 𝜋∗. Aborting if the guess
is incorrect, this introduces a loss in the number of sessions:

AdvGI.0

obfs4
(A) ≤ 𝑛𝑠 · AdvGI.1

obfs4
(A).

Game I.2 (Stop resampling in KGen). Next, we abort in GI.2 if

the first DH shared sampled in X2Ell2.KGen() in the 𝜋∗ or 𝜋∗𝑝 ses-

sion cannot be successfully encoded (Encode(X ) = ⊥). Game GI.2

equals GameGI.1 if no resampling is necessary, i.e., with probability

equal to the first-keygen success probability of X2Ell2 squared:

AdvGI.1

obfs4
(A) ≤ (1/𝜖1kgensuccX2Ell2 )2 · AdvGI.2

obfs4
(A) .

Game I.3 (GapDH in X , Y ). In Game GI.3, we replace the out-

puts of the random oracle HMAC on input secret_input containing
DH(X , Y ) with uniformly random values, where X and Y are the

ephemeral DH shares sent or received by 𝜋∗. This in particular

replaces the session key skey derived in 𝜋∗ by a uniform random

value.

We can bound this game hop by a GapDH reduction B2 which
embeds its GapDH challenge in X and Y (which by GI.2 are gener-

ated as regular DH shares without resampling). If 𝜋∗ is a responder
session, 𝜋∗𝑝 might receive a different ephemeral DH share than Y ,
in which case B2 uses its DDH oracle to ensure consistency with

the HMAC random oracle.

Unless A makes a query involving the DH secret DH(X , Y ), it
cannot detect the replacement, and if it does, B2 detects this and
outputs the CDH solution. So,

Pr[GI.2] − Pr[GI.3] ≤ AdvGapDHX25519 (B2) .

Finally, in GI.3, the real and random session key output of the

Test oracle are equally distributed. Also, any non-partnered ses-

sion keys are independent of 𝜋∗. Hence, A has no better chance

than guessing the challenge bit 𝑏 and AdvGI.3

obfs4
(A) = 0.

Case II. Win via ChallExec In this proof case, A commits to

challenging only the 𝑝th created server (and not making anyTest
queries). LetNodeID𝑝 denote the node ID sampled in key generation

of the 𝑝th user with role = responder; since it is sampled uniformly

at random, we can have the game sample it already at the outset.

We can assume thatA makes at least oneChallExec call, as oth-

erwise its advantage is 0, and hence never calls RevPublicKey
or RevSecretKey on 𝑝 , as otherwise it would violate ObfFresh
and lose.

Game II.0. This case begins with Game G4 conditioned on A =

ChallExec:

AdvGII.0

obfs4
(A) = Adv

GC
4

obfs4
(A).

Game II.1 (Sample HMAC(. . .NodeID𝑝 . . . ) at random). In

Game GII.1, we let the challenger sample the output of any HMAC
call involving NodeID𝑝 as input uniformly (but consistently) at

random, instead of querying the HMAC random oracle. This in par-

ticular affects the derived session keys skey and authentication val-

ues auth in ChallExec sessions with server 𝑝 . Note that, by the

condition of ObfFresh, NodeID𝑝 will never be compromised. This

change is hence observable for A only if it makes a random oracle

query involving NodeID𝑝 . As NodeID occurs at three distinct, fixed

places in HMAC inputs, as HMAC(B∥NodeID, ·), in secret_input,
and in auth_input, each random oracle query might match with

one of the three input types. So we can upper bound the probability

of A making a query matchin NodeID by

Pr[GII.0] − Pr[GII.1] ≤
3𝑞RO

2
160

.

Game II.2 (Drop DH secrets from secret_input). From

secret_input values containingNodeID𝑝 (and which are hence never

queried to the random oracle), we can remove the DH secrets

25



Felix Günther, Douglas Stebila, and Shannon Veitch

Xy ∥Xb
(resp. Yx ∥Bx ) without losing uniqueness of random or-

acle queries, since the further inputs B∥X ∥Y uniquely determines

them. This change is unobservable to A, hence

Pr[GII.1] = Pr[GII.2] .

Game II.3 (Rewrite sampling DH values). Instead of comput-

ing the ephemeral DH shares of sessions in the ChallExec ora-

cle as (x,X ,X ′) $←− X2Ell2.KGen() and (y, Y , Y ′) $←− X2Ell2.KGen(),
in this game we sample X ′ $←− {0, 1}ol and Y ′ $←− {0, 1}ol, and
then compute the DH shares as X ← X2Ell2.Decode(X ′) and
Y ← X2Ell2.Decode(Y ′). Note that due to the change in GameGII.2,

the challenger does not use the DH secrets x and y anymore.

The replacement of each such DH share can be bounded by the

pk-unif security of X2Ell2, letting the reductionB3 use the obtained
obfuscated public key

ˆpk in place of X ′ resp. Y ′, and its decoding

Decode( ˆpk) in place of X resp. Y . Via a standard hybrid argument

over the 𝑞C many queries to ChallExec, each involving two

obfuscated DH public keys, we obtain

Pr[GII.2] − Pr[GII.3] ≤ 2𝑞C · Adv
pk-unif
X2Ell2 (B3) .

At this point, responses to theChallExec oracle are distributed

independent of the challenge bit 𝑏. In both cases, the returned tran-

script consists of random strings of length corresponding to the

protocol messages and variable padding, matching the output of

the simulator Sobfs4 (Section 5): X ′, Y ′ are replaced by random

strings (by GII.3), PC , PS are random padding by definition, and

MC , MACC , auth, MS , MACS as well as the session key skey are all

replaced by uniformly random sampled values (by GII.1) as they

would be computed with HMAC on input NodeID𝑝 .

Hence A cannot win in this case anymore and we have

AdvGII.3

obfs4
(A) ≤ 0.

Collecting the bounds yields the theorem statement. □

E Security Proof for st-obfs (Theorem 6.1)
Proof. The security proof for the most part proceeds identically

to that for obfs4 (cf. Appendix D). Ensuring soundness, preventing
probing attacks, and preventing violations of explicit authentication

applies unchanged, since the involved protocol parts are either

unmodified or, in the case of probing resistance computing MACC
still involve theNodeID input toHMAC (modeled as random oracle).

We restrict the adversary to a single-challenge selectiveObfKE-1
version of the game (rather than ObfKE-1∗ as in the obfs4 proof).
Thus, the adversary A has to commit to winning either

(I) via a Test query on the pre-determined 𝑠th created session

(A = Test), or
(II) via a single ChallExec query on the pre-determined 𝑝th

created server (A = ChallExec).

This differs from the use of 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 4.3 for obfs4 in that the

adversary cannot win via making multiple ChallExec queries

– rather, A can make only one ChallExec query. Therefore,

applying Theorem 4.3 (cf. Appendix C), we have

AdvG3

st-obfs
(A) ≤ (𝑛𝑠 + 𝑛𝑟 · 𝑞C) · AdvG4

st-obfs
(A).

Handling Case I of A winning via a single Test query applies

unchanged, since the session key skey is computed as before. It

is indeed only Case II, treating A winning via a ChallExec
query to the pre-determined 𝑝th-created server which obviously

requires a different treatment, since nowwewant to establish strong

obfuscation (instead of regular obfuscation for obfs4). In particular,

we cannot rely on that server’s NodeID𝑝 as an unknown input

to HMAC anymore (cf. Appendix D, Game GII.1), since the server’s

public key (containing NodeID𝑝 ) may be revealed in the strong

obfuscation case. Case II for st-obfs then proceeds as follows.

Case II. Win via ChallExec In this proof case, A commits to

challenging only the 𝑝th created server, on which it never calls

RevSecretKey (as otherwise, ObfFresh for strong obfuscation

would be violated). Denote that server’s long-term key pair as

(b𝑝 , B𝑝 ). We assume that A makes one ChallExec call, as oth-

erwise its advantage is 0.

Game II.0. This case begins with Game G4 (up to that point

identical to the obfs4 proof, cf. Appendix D) conditioned on A =

ChallExec:

AdvGII.0

st-obfs
(A) = Adv

GC
4

st-obfs
(A).

Game II.1 (Stop resampling in KGen). We abort in GII.1 if ei-

ther of the first DH shared sampled in X2Ell2.KGen() in the two

sessions (initiator and responder) created by ChallExec can-
not be successfully encoded (Encode(X ) = ⊥). Game GII.1 equals

Game GII.0 if no resampling is necessary, i.e., with probability equal

to the first-keygen success probability of X2Ell2 squared:

AdvGII.0

st-obfs
(A) ≤ (1/𝜖1kgensuccX2Ell2 )2 · AdvGII.1

st-obfs
(A).

Game II.2 (GapDH in X , B). In Game GII.2, we replace the out-

puts of the random oracle HMAC using as input DH(X , B𝑝 ) in the

sessions created by ChallExec with uniformly random values.

This in particular replaces the MAC tags MC , MACC , MS , MACS ,
and auth as well as the session key skey in these sessions with

uniformly random values.

We can bound this game hop by a GapDH reduction B3 which
embeds its GapDH challenge (𝑈 ,𝑉 ) as follows: it embeds 𝑉 in the

𝑝th server’s long-term public B𝑝 . For the initiator session created

by ChallExec, B3 embeds a randomized version 𝑈 𝑟
(for a fresh

random 𝑟 ) of 𝑈 in the client’s ephemeral public key X (which

by GII.1 is generated as a regular DH share without resampling).

We let B3 simulate other sessions of the 𝑝th-created server without

knowledge of b by using the DDH oracle to ensure consistency of

responses to HMAC random oracle andRevSessionKey queries.

Recall thatB3 never has to reveal the 𝑝th-created server’s long-term
secret key, as otherwise ObfFresh would be violated.

Unless A makes a query involving the DH secret DH(X , B𝑝 )
of the sessions created by ChallExec, it cannot detect the re-

placements made. If A makes such a query, B3 is able to detect

this (using its DDH) and wins the GapDH game by outputting

the CDH solution DH(X−𝑟 , B), where 𝑟 is the randomizer for the

corresponding X value. Hence we have

Pr[GII.1] − Pr[GII.2] ≤ AdvGapDHX25519 (B3) .
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Game II.3 (Rewrite sampling DH values). Now we proceed

as in Game GII.3 in the obfs4 proof. Instead of computing the

ephemeral DH shares in the ChallExec sessions as (x,X ,X ′) $←−
X2Ell2.KGen() and (y, Y , Y ′) $←− X2Ell2.KGen(), in Game GII.3 we

sample X ′ $←− {0, 1}ol and Y ′ $←− {0, 1}ol, and then compute the DH

shares as X ← X2Ell2.Decode(X ′) and Y ← X2Ell2.Decode(Y ′).
Note that due to Game GII.2, the challenger does not use the DH

secrets x and y anymore, as all HMAC computations where these

are involved have been replaced with random sampling in the

ChallExec sessions.

The replacement of each such DH share can be bounded by the

pk-unif security of X2Ell2, letting the reductionB4 use the obtained
obfuscated public key

ˆpk in place of X ′ resp. Y ′, and its decoding

Decode( ˆpk) in place of X resp. Y . As there are two obfuscated DH

public keys in the two sessions created byChallExec, we obtain

Pr[GII.2] − Pr[GII.3] ≤ 2 · Advpk-unifX2Ell2 (B4) .

At this point, the response to the ChallExec oracle is dis-

tributed independent of the challenge bit 𝑏: In both cases, the re-

turned transcript consists of random strings of length correspond-

ing to the protocol messages and variable padding, as output by

the simulator Sobfs4 (cf. Section 5): X ′, Y ′ are replaced by random

strings (by GII.3), PC , PS are random padding by definition, andMC ,

MACC , MS , MACS , and auth as well as the session key skey are all

replaced by uniformly random sampled values (by GII.2).

Hence A cannot win in this case anymore and we have

AdvGII.3

st-obfs
(A) ≤ 0.

Replacing the sum of the above advantage terms for Case II for

those from the same proof case in obfs4 yields the claimed overall

bound. □

F Security Proof for pq-obfs (Theorem 7.1)
We proceed via a series of game hops.

Game 0. We start with the security game for strong obfuscation

(sObfKE), G0 = GsObfKE
pq-obfs,Spq-obfs , omitting the Spq-obfs subscript

from here on:

AdvsObfKEpq-obfs (A) = AdvG0

pq-obfs
(A) = 2 · Pr[G0] − 1.

Game 1 (Exclude KEM public key collisions). We modify

GameG0 to abort if two honest sessions sample the same ephemeral

KEM key (pk𝑒 ) or if two servers sample the same long-term KEM

key (pk𝑆 ). This is bounded by the public key collision probabil-

ity pkcollOKEM of the obfuscated KEM for the at most 𝑛𝑠 ephemeral

and 𝑛𝑟 long-term KEM keys (Definition 2.7):

Pr[G0] − Pr[G1] ≤ pkcollOKEM (𝑛𝑠 + 𝑛𝑟 ) .

Game 2 (KEM correctness). Wemodify Game G1 to abort if for

any keys (sk, pk, 𝑝𝑘) $←− KGen() and encapsulation (c,K, ĉ) $←−
Encap(pk), we have that K ≠ Decap(sk, ĉ). The probability of

this happening for any tuple (sk, pk, 𝑝𝑘, c, ĉ) is upper-bounded by

the correctness error 𝛿OKEM of the obfuscated KEM as defined in

Definition 2.6. Since there are two such tuples per session, we can

bound the probability of such an abort by

Pr[G1] − Pr[G2] ≤ 2𝑛𝑠 · 𝛿OKEM .

Establishing soundness (Sound). We observe that in Game G2,

the adversary cannot violate soundness anymore (i.e., the predicate

Sound cannot be false). Checking the conditions in Sound (Figure 5),
we have:

(1) No triple sid match: For three session identifiers to match,

two initiator sessions or two responder sessions would have

to sample the same KEM keys. However, G1 aborts in that

case.

(2) Partnering implies different roles: For two same-role ses-

sions to be partnered, they would have to sample the same

ephemeral KEM key. Again, G1 prevents that.

(3) Partnering implies same contributive identifiers: The con-

tributive identifier contains a subset of entries in the session

identifier. Hence, agreement on the latter implies agreement

on the former.

(4) Partnering implies agreement on responder ID: The ses-

sion identifier contains the involved server’s long-term KEM

key pk𝑆 . As these do not collide byG1, they uniquely identify

the responder.

(5) Partnering implies same key: For two partnered sessions to

derive a different key, the inputs to the computation of skey
would have to differ. This may occur if the inputs to Encap
(or Decap) are not consistent or if Encap (or Decap) has a
correctness error. The latter case is prevented by G2. For the

former, the elements in the session identifier uniquely deter-

mine the inputs; note in particular that it uniquely identifies

the responder (as per above) and hence the NodeID input.

Hence agreement on session identifiers implies that the same

key is generated.

Game 3 (Prevent Probed being set). In Game G3, we stop set-

ting Probed← true (i.e.,A cannot win anymore in G3 by breaking

probing resistance). We have

Pr[G2] − Pr[G3] ≤ Pr[G2 sets Probed] .

Recall that for Probed to be set, a responder session, whose public
key (pk𝑆 ,NodeID) is not revealed, must reply to a non-initiator-

first message𝑚, with a non-empty message𝑚′. We will bound this

probability via the following, branching game hops G2.1–G2.3.

Game 2.1 (Guess violated server and session). In Game G2.1,

we guess a “target server” 𝑣∗, the first server (in order of creation) on
which Probed is set to true, as well as the (first) session 𝜋∗ in which

this happens. We let the game abort if that guess is incorrect, i.e., if

Probed is not set to true when the server responds in session 𝜋∗ or
if Probed is set to true on a response from a server that was created

earlier. This introduces an according loss in the number of servers

times the number of sessions:

Pr[G3 sets Probed] ≤ 𝑛𝑠 · 𝑛𝑟 · Pr[G2.1 sets Probed] .
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NodeID F2

K𝑆

ES F1 ES′

𝜀

F2 FS

K𝑒

F1 skey

pk𝑆 ∥c𝑆 ∥pk𝑒 ∥c𝑒 ∥protoID

F1F1F1 F1

MSMACCMC MACS

𝑝𝑘𝑒 ∥̂c𝑆 𝑝𝑘𝑒 ∥̂c𝑆 ∥PC ∥MC ĉ𝑒 ĉ𝑒 ∥auth∥PS ∥MS F1

auth

pk𝑆 ∥c𝑆 ∥pk𝑒 ∥c𝑒 ∥protoID

Legend: Input secrets

Derived secrets

Session key

Authentication tag

F1𝑘

𝑐𝑜𝑛𝑡𝑒𝑥𝑡

= F1 (𝑘, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ∥𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑙𝑎𝑏𝑒𝑙) F2𝑘1

𝑘2

= F2 (𝑘1, 𝑘2)

Figure 9: Key schedule for our post-quantum obfuscated key exchange protocol pq-obfs (Figure 7).

Game 2.2 (Random ES). In Game G2.2, we replace ES in any

session with the target server 𝑣∗ with uniformly random values

ES∗.
We bound the difference in this step by a reduction to the PRF

security of F2. The reduction B1 does not sample NodeID for 𝑣∗ it-
self, but instead uses its oracle to compute ES in sessions with 𝑣∗ by
calling its oracle onK𝑆 . When the oracle output is real, reductionB1
exactly simulates G2.1, whereas when the output is random, it sim-

ulates G2.2. Therefore, because NodeID is unrevealed for server 𝑣∗,

Pr[G2.1 sets Probed] − Pr[G2.2 sets Probed] ≤ AdvPRFF2
(B1).

Game 2.3 (RandomMACC ). In Game G2.3, we replace any eval-

uation of F1 on input random values ES∗ in sessions with the target

server 𝑣∗ with a random function (per such value). This in particular

replaces MACC in any session with 𝑣∗ uniformly random values

MACC∗.
We bound the difference in this step by a reduction to the PRF

security of F1. The reduction B2 does not sample ES∗ in the target

session 𝜋∗ itself, but instead uses its oracle to compute F1 (ES∗, ·);
in particular for computing MACC . Based on the oracle’s output,

B2 correctly simulates either G2.2 or G2.3. Hence,

Pr[G2.2 sets Probed] − Pr[G2.3 sets Probed] ≤ AdvPRFF1
(B2).

Observe that Probed in G2.3 is set if a non–initiator-first mes-

sage𝑚 yields a reply by an unrevealed responder. Such a message𝑚

can be either (1) a replay of an already consumed message output

by an honest initiator for this responder, or (2) one that is different

from all honest initiators’ first messages sent to this responder.

In the first case,𝑚 is rejected due to the replay check against the

list of seen MAC values st .SMAC recorded in the server’s state.

In the second case,𝑚 = 𝑝𝑘𝑒 ∥̂c𝑆 ∥PC ∥MC ∥MACC must be differ-

ent from any initiator session’s message sent to this responder. By

G2.3, the target client MAC value MACC∗ that the session 𝜋∗ with

𝑣∗ that first sets probed is a random fl1-bit value unknown to A.

The adversaryA can therefore only guessMACC∗ with probability

Pr[G2.3 sets Probed] ≤
1

2
fl1

.

This completes the branching game hops bounding

Pr[G2 sets Probed] ≤ 𝑛𝑠𝑛𝑟 ·
(
AdvPRFF2

(B1) + AdvPRFF1
(B2) +

1

2
fl1

)
.

We now continue with the main proof from G3, where Probed
is never set.

Game 4 (Prevent ExplicitAuth being violated). In Game G4,

we abort the game if ExplicitAuth is violated (i.e., A cannot win

anymore in G4 by breaking explicit authentication). We have

Pr[G3] − Pr[G4] ≤ Pr[¬ExplicitAuth in G3] .

Recall that for ExplicitAuth to be violated, an initiator session must

accept with a peer whose secret key is uncompromised at this point

in the game, but for which there is no session of that peer holding

the same session identifier. Formally,

Pr[¬ExplicitAuth in G3]
= Pr

[
∃𝜋𝑖𝑢 : 𝑢.role = initiator ∧ 𝜋𝑖𝑢 .tacc < revsk𝜋𝑖

𝑢 .peerid ∧

∀𝜋 𝑗
𝑣 s.t. 𝑣 = 𝜋𝑖𝑢 .peerid : 𝜋𝑖𝑢 .sid ≠ 𝜋

𝑗
𝑣 .sid

]
.

We will bound this probability again through a series of branching

game hops G3.1–G3.6.

Game 3.1 (Guess violated initiator session and peer). In

Game G3.1, we guess a “target session” 𝜋∗, the first session (in

order of creation) which makes ExplicitAuth evaluate to false, as
well as that session’s peer, 𝑣∗ = 𝜋∗ .peerid. We let the game abort if

that guess is incorrect, i.e., if ExplicitAuth is not violated when the
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session 𝜋∗ accepts or if 𝑣∗ is not its peer. This introduces an accord-

ing loss in the number of sessions times the number of servers:

Pr[¬ExplicitAuth in G3] ≤ 𝑛𝑠 · 𝑛𝑟 · Pr[¬ExplicitAuth in G3.1] .

Game 3.2 (Long-term KEM IND-CCA). Let

(c𝑆 ,K𝑆 , ĉ𝑆 ) $←− OKEM.Encap(pk𝑆 )

be the encapsulation computed at session 𝜋∗ with the long-term

public key of 𝑣∗. In Game G3.2, we replace the long-term KEM

key K𝑆 with a uniformly random K̃𝑆 in 𝜋∗. All values derived from

K𝑆 in 𝜋∗ use the randomized value K̃𝑆 .
We bound the adversary A’s difference in advantage by a re-

duction B3 to the IND-CCA security of OKEM.
8 B3 obtains the

IND-CCA challenge (pk, c∗,K∗, ĉ∗) and simulates the game for A
as follows. It uses pk as the long-term public key of 𝑣∗. In 𝜋∗, B3
uses c∗ as the ciphertext c𝑆 and its encoding ĉ∗ as ĉ𝑆 . In any ses-

sion of 𝑣∗, if the ciphertext ĉ𝑆 received is not ĉ∗, then B3 queries
its IND-CCA decapsulation oracle and uses the response as K𝑆 ;
else, if ĉ𝑆 = ĉ∗, then B3 uses K∗ as K𝑆 . Note that by the defini-

tion of ExplicitAuth, sk𝑆 is not revealed to the adversary prior to

𝜋∗ violating ExplicitAuth and thus B3 does not need to answer a

RevSecretKey call on 𝑣∗. If K∗ is the real KEM key then B3
has exactly simulated G3.1 to A; else, if K∗ is random, then B3 has
exactly simulated G3.2 to A. Therefore:

Pr[¬ExplicitAuth in G3.1] − Pr[¬ExplicitAuth in G3.2]

≤ AdvIND-CCAOKEM (B3) .

Game 3.3 (Random ES). In GameG3.3, we replace ES with a uni-
formly random ES∗ in 𝜋∗. We bound the difference in this step by a

reduction to the swap-PRF security of F2. The reduction B4 instead
of sampling K̃𝑆 uses its oracle to compute F2 (·, K̃𝑆 ) in 𝜋∗. When

the output is real, reduction B4 exactly simulates G3.2, whereas

when the output is random, it simulates G3.3. Therefore,

Pr[¬ExplicitAuth in G3.2] − Pr[¬ExplicitAuth in G3.3]

≤ Advswap-PRFF2
(B4).

Game 3.4 (Random ES′). In Game G3.4, we replace evaluations

F1 (ES∗, ·) in 𝜋∗ with a random function. This in particular re-

places ES′ with a random value ES′∗. We bound the difference

in this step with the PRF security of F1, via a reduction B5 using
its oracle in place of F1 (ES∗, ·):

Pr[¬ExplicitAuth in G3.3]−Pr[¬ExplicitAuth in G3.4] ≤ AdvPRFF1
(B5).

Game 3.5 (Random FS). In Game G3.5, we replace evaluations

F2 (ES′∗, ·) in 𝜋∗ with a random function. This in particular re-

places FS with a random value FS∗. As in the previous hops, we can

bound the difference by PRF security of F2:

Pr[¬ExplicitAuth in G3.4]−Pr[¬ExplicitAuth in G3.5] ≤ AdvPRFF2
(B6).

8
Recall that for a keygen/encapsulate-then-encodeOKEM, IND-CCA is implied by the

underlying KEM’s IND-CCA security modulo the first-success probability of OKEM
(Theorem 2.12). This applies in particular to our obfuscatedML-Kemeleon.

Game 3.6 (Random auth). Finally, in Game G3.6, we replace

evaluations F1 (FS∗, ·) in 𝜋∗ with a random function. This in par-

ticular replaces auth with a random value auth∗, and again can be

bounded by PRF security of F1:

Pr[¬ExplicitAuth in G3.5]−Pr[¬ExplicitAuth in G3.6] ≤ AdvPRFF1
(B7).

Now, given that auth∗ is a uniformly random value unknown toA,

violating ExplicitAuth in 𝜋∗ requires that A correctly guesses the

fl1-bit value of auth∗. The probability of A guessing correctly is

Pr[¬ExplicitAuth in G3.6] ≤
1

2
fl1

.

This completes the branching, bounding

Pr[¬ExplicitAuth in G3] ≤

𝑛𝑠𝑛𝑟 ·
(
AdvIND-CCAOKEM (B3) + Advswap-PRFF2

(B4) + AdvPRFF2
(B5)

+ AdvPRFF1
(B6) + AdvPRFF1

(B7) +
1

2
fl1

)
.

We now continue with the main proof from Game G4, where

ExplicitAuth is never violated.

Game5 (Single-challenge selective security). Wenow restrict

the adversary to a single-challenge selective (sObfKE-1) version G5

of Game G4, where A has to commit upfront to winning either

(I) via a single Test query (A = Test) on the pre-determined

𝑠-th created session, or

(II) via a single ChallExec query (A = ChallExec) on the

pre-determined 𝑝-th created server.

Recall that in G4, Sound is never violated, Probed is never set, and

ExplicitAuth is never violated, hence A can only win via Test or

ChallExec queries. Applying the hybrid argument from Theo-

rem 4.3 (which holds analogously for the so-modified Game G4) we

have

AdvG4

pq-obfs
(A) ≤ (𝑛𝑠 + 𝑛𝑟 · 𝑞C) · AdvG5

pq-obfs
(A).

Let us write GT
5
and GC

5
for the game G5 restricted to the two

winning options of A (A ∈ {Test,ChallExec}). By the union

bound,

AdvG5

pq-obfs
(A) ≤ Adv

GT
5

pq-obfs
(A) + AdvG

C
5

pq-obfs
(A).

We will bound each term separately, through the following proof

cases I and II.

Case I. Win via Test In this proof case, A commits to winning

via a single Test query on a session 𝜋∗. For the test session to

satisfy Fresh, we must have that there is an honest partner—i.e., a

session 𝜋∗𝑝 holding the same cid or sid (“passive execution”)—or that

the responder peer is uncompromised upon acceptance of the initia-

tor session 𝜋∗ (“forward secrecy”). Note that since ExplicitAuth is

ensured to hold (by Game G4), the latter implies that there actually

must be an honest partner 𝜋∗𝑝 holding the same sid, so we can at

this point focus on such passive executions.
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Game I.0. This case begins with Game G5 conditioned on A =

Test, where the test session has an honest (sid or cid) partner:

AdvGI.0

pq-obfs
(A) = Adv

GT
5

pq-obfs
(A).

Game I.1 (Guess the partner session). In Game GI.1, we guess

the session 𝜋∗𝑝 that is the honest sid partner (if 𝜋∗ is an initiator)

or cid partner (else) of 𝜋∗. Aborting if the guess is incorrect, this

introduces a loss in the number of sessions:

AdvGI.0

pq-obfs
(A) = 𝑛𝑠 · AdvGI.1

pq-obfs
(A) .

Game I.2 (Ephemeral KEM IND-1CCA). Let

(c𝑒 ,K𝑒 , ĉ𝑒 ) $←− OKEM.Encap(pk𝑒 )

be the encapsulation computed at session 𝜋∗. If 𝜋∗ is an initiator

then this is the ephemeral public key pk𝑒 in sid, and otherwise,

it is the ephemeral public key in cid (which must necessarily be

determined by Game GI.1).

In Game GI.2, we replace the ephemeral KEM key K𝑒 with a

uniformly random K̃𝑒 in 𝜋∗. All values derived from K𝑒 in 𝜋∗ use
the randomized value K̃𝑒 .

We bound the adversary A’s difference in advantage by a re-

duction B8 to the IND-1CCA security of OKEM. B8 obtains the

IND-1CCA challenge (pk, c∗,K∗, ĉ∗) and simulates the game forA
as follows. In the protocol run between 𝜋∗ and 𝜋∗𝑝 , B8 uses pk as

the ephemeral public key of the initiator and c∗ as the ciphertext c𝑒
and its encoding ĉ∗ as the obfuscated ciphertext ĉ𝑒 of the responder.
If the initiator session receives a ciphertext ĉ𝑒 ≠ ĉ∗, then B8 queries
its IND-1CCA decapsulation oracle (once) and uses the response

as K𝑒 ; else, if ĉ𝑒 = ĉ∗, then B8 uses K∗ as K𝑒 . If K∗ is the real KEM
key then B8 has exactly simulated GI.1 to A; else, if K∗ is random,

then B8 has exactly simulated GI.2 to A. Therefore:

Pr[GI.1] − Pr[GI.2] ≤ AdvIND-1CCAOKEM (B8) .

Game I.3 (Random FS). In Game GI.3, we replace evaluations

F2 (·,K∗) with a random function. This in particular replaces FS
with a uniformly random value FS∗ in 𝜋∗. (Note that if 𝜋∗𝑝 received

the same ciphertext, then it will also use K∗.)
We bound the difference in this step by a reduction to the swap-PRF

security of F2. The reduction B9 uses its oracle in place of F2 (·,K∗),
simulating either GI.2 or GI.3, giving:

Pr[GI.2] − Pr[GI.3] ≤ Advswap-PRFF2
(B9) .

Game I.4 (Random skey). Finally, in GameGI.4, we replace eval-

uations F1 (FS∗, ·) with a random function. This in particular re-

places skey with a uniformly random value skey∗ in 𝜋∗. We again

bound this game hop by a reduction to the PRF security of F1:

Pr[GI.3] − Pr[GI.4] ≤ AdvPRFF1
(B10).

We now have in Game GI.4 that the real and random session key

output of the Test oracle are both randomly sampled. Also, any

non-partnered session keys are independent of 𝜋∗, since the context
input when deriving skey is precisely the session identifier sid.

Hence, A has no better chance than guessing the challenge bit b
and so

AdvGI.4

pq-obfs
(A) = 0.

Case II. Win via ChallExec In this proof case, A commits to

making a single ChallExec query on the 𝑝th-created server,

denoted 𝑣∗ here (and not making any Test queries). We assume

that A makes one ChallExec call, as otherwise its advantage

is 0, and hence never calls RevSecretKey on 𝑝 , as otherwise it

would violate ObfFresh and lose.

Game II.0. This case begins with Game G5 conditioned on A =

ChallExec:
Pr[GII.0] = Pr[GC

5
] .

Game II.1 (Long-term KEM SPR-CCA). Let

(c𝑆 ,K𝑆 , ĉ𝑆 ) $←− OKEM.Encap(pk𝑆 )
be the encapsulation computed by the initiator whenChallExec
is called.

In Game GII.1, we replace the ciphertext c𝑆 and its encoding ĉ𝑆 ,
as well as the long-term KEM key K𝑆 as follows. Instead of running

OKEM.Encap, the initiator samples ĉ𝑆
$←− {0, 1}cl and K𝑆

$←− K uni-

formly at random and derives the ciphertext as c𝑆 ← DecodeCtxt (̂c𝑆 ).
We bound the adversary A’s difference in advantage by a re-

duction B11 to the SPR-CCA security of OKEM.
9 B11 obtains the

SPR-CCA challenge (pk, c∗,K∗, ĉ∗) and simulates the game for A
as follows. It uses pk as the public key of the 𝑝th-created respon-

der 𝑣∗ committed to by the adversary. WhenChallExec is called,

B11 uses c∗ as the ciphertext c𝑆 and its encoding ĉ∗ as ĉ𝑆 . In any ses-
sion of 𝑣∗, if the ciphertext ĉ𝑆 received is not ĉ∗, then B11 queries
its SPR-CCA decapsulation oracle and uses the response as K𝑆 ;
else, if ĉ𝑆 = ĉ∗, then B11 uses K∗ as K𝑆 . If (c∗,K∗, ĉ∗) are the real
KEM values then B11 exactly simulates GII.0 to A; else, if they are

random, then B11 simulates GII.1. Therefore:

Pr[GII.0] − Pr[GII.1] ≤ AdvSPR-CCAOKEM (B11).

Game II.2 (Random ES). In Game GII.2, we replace ES with a

uniformly random ES∗ in the sessions created by the ChallExec
call. We bound the difference in this step by a reduction B12 to

the swap-PRF security of F2, using its oracle instead of computing

F2 (·,K𝑆 ). This yields

Pr[GII.1] − Pr[GII.2] ≤ Advswap-PRFF2
(B12)

Game II.3 (Random ES′ and MAC tags). In Game GII.3, we

replace the evaluation F1 (ES∗, ·) with a random function in the

sessions created by ChallExec. This replaces ES′ and the MAC

tags MACC , MC , MACS , and MS with uniformly random values

ES′∗,MACC∗,MC
∗
,MACS∗, andMS

∗
, respectively. We again bound

the difference in this by a reduction to the PRF security of F1:

Pr[GII.2] − Pr[GII.3] ≤ AdvPRFF1
(B13).

9
Recall that for a keygen/encapsulate-then-encodeOKEM, SPR-CCA is implied by the

underlying KEM’s SPR-CCA security for “unform-encapsulation” simulators, modulo

the first-success probability and ciphertext uniformity of OKEM (Theorem 2.13). This

applies in particular to our obfuscatedML-Kemeleon.

30



Obfuscated Key Exchange

Game II.4 (Random FS). In Game GII.4, we replace FS with a

uniformly random FS∗ in the sessions created by the ChallExec
call, again bounded by PRF security of F2:

Pr[GII.3] − Pr[GII.4] ≤ AdvPRFF2
(B14).

Game II.5 (Random skey and auth). In Game GII.5, we replace

evaluations F1 (FS∗, ·) with a random function in the sessions cre-

ated by the ChallExec call. This in particular replaces skey and

auth with uniformly random values skey∗ and auth∗, respectively.
Bounding again by PRF security of F1:

Pr[GII.4] − Pr[GII.5] ≤ AdvPRFF1
(B15).

Note that at this point, in the ChallExec sessions, the (unen-

coded) ephemeral KEMkey pair (sk𝑒 , pk𝑒 ), the unencoded ephemeral

KEM ciphertext c𝑒 , and the shared secret K𝑒 are not used anymore,

since the values FS, skey, and auth computed from them are sam-

pled at random as per Games GII.4 and GII.5. We will leverage this

to replace the ephemeral public key and ciphertext with random

strings in the transcript in the final game hops.

Game II.6 (Random 𝑝𝑘𝑒 ). First, in Game GII.6 we replace the

obfuscated ephemeral key 𝑝𝑘𝑒 in the ChallExec sessions with

a random string of the same length ol. This can be bounded by

the public key uniformity (pk-unif) of OKEM, having the reduc-

tion B16 embed the obtained obfuscated public key in place of 𝑝𝑘𝑒 .

Concretely, B16 does not sample an ephemeral KEM key in the

initiator session ofChallExec. In the receiver session, it decodes

the embedded obfuscated public key and uses the resulting public

key for encapsulation. (Recall that per Games GII.4 and GII.5 the

values FS, skey, and auth are sampled at random, so B16 does not
need to know c𝑒 or K𝑒 .) Depending on the pk-unif challenge bit,
B16 perfectly simulates either GII.5 or GII.6. We obtain

Pr[GII.5] − Pr[GII.6] ≤ Advpk-unifOKEM (B16) .

Game II.7 (Random ĉ𝑒 ). As the last step, in Game GII.7 we re-

place the ephemeral obfuscated ciphertext ĉ𝑒 with a uniform string

of same length cl. This replacement can be bounded by the cipher-

text uniformity (ctxt-unif) of OKEM, where the reduction B17 uses
the obtained challenge ciphertext in place of ĉ𝑒 . (Recall again that

per Games GII.4 and GII.5 the values FS, skey, and auth are sampled

at random, so B17 does not need to know c𝑒 or K𝑒 .) We obtain

Pr[GII.6] − Pr[GII.7] ≤ Advctxt-unifOKEM (B17) .
Now we have that the response to the ChallExec oracle is

distributed independent of the challenge bit b: In both cases, the

returned transcript consists of random strings of length correspond-

ing to the protocol messages and variable padding, exactly matching

the output of the simulator Spq-obfs (Section 7.2): 𝑝𝑘𝑒 is random

by GII.6, ĉ𝑆 by GII.1, ĉ𝑒 by GII.7, PC , PS are random padding by

definition, and MC , MACC , MS , MACS are replaced by uniformly

random values (by GII.3), as well as the auth tag and the session

key skey (by GII.5).

Hence A cannot win in this case anymore and we have

AdvGII.7

pq-obfs
(A) = 0.

Collecting the bounds yields the theorem statement. □
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