Protecting cryptographic code against Spectre-RSB
(and, in fact, all known Spectre variants)

Santiago Arranz Olmos'

, Gilles Barthe? © ' %

Chitchanok Chuengsatiansup® ¥, Benjamin Grégoire* ===~ Vincent Laporte’

Tiago Oliveira® ==, Peter Schwabe’

@, Yuval Yarom® M, Zhiyuan Zhang® ®

&) MPI-SP, Bochum, Germany
teeia— Inria, Sophia Antipolis, France
SandboxAQ, USA
& Radboud University, Nijmegen, The Netherlands
Ruhr University Bochum, Bochum, Germany
L% IMDEA Software Institute, Madrid, Spain
B University of Melbourne, Melbourne, Australia
== Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

Isantiago.arranz-olmos @ mpi-sp.org
3¢.chuengsatiansup @unimelb.edu.au

Svincent.laporte @inria.fr

2gilles.barthe @mpi-sp.org
“benjamin.gregoire @inria.fr

btiago.oliveira@sandboxquantum.com

"peter @cryptojedi.org 8yuval.yarom@rub.de °zhiyuanz5@student.unimelb.edu.au

Abstract—It is fundamental that executing cryptographic soft-
ware must not leak secrets through side-channels. For software-
visible side-channels, it was long believed that “constant-time”
programming would be sufficient as a systematic countermea-
sure. However, this belief was shattered in 2018 by attacks
exploiting speculative execution—so called Spectre attacks.
Recent work shows that language support suffices to protect
cryptographic code with minimal overhead against one class
of such attacks, Spectre v1, but leaves an open question of
whether this result can be extended to also cover other classes
of Spectre attacks.

In this paper, we answer this question in the affirmative:
We design, validate, implement, and verify an approach
to protect cryptographic implementations against all known
classes of Spectre attacks—the main challenge in this en-
deavor is attacks exploiting the return stack buffer, which
are known as Spectre-RSB. Our approach combines a new
value-dependent information-flow type system that enforces
speculative constant-time in an idealized model of transient
execution and a compiler transformation that realizes this
idealized model on the generated low-level code. Using the
Coq proof assistant, we prove that the type system is sound
with respect to the idealized semantics and that the compiler
transformation preserves speculative constant-time.

We implement our approach in the Jasmin framework for high-
assurance cryptography and demonstrate that the overhead
incurred by full Spectre protections is below 2% for most

cryptographic primitives and reaches only about 5-7% for
the more complex post-quantum key-encapsulation mechanism
Kyber.

1. Introduction

In this paper we present techniques to systematically
protect high-performance cryptographic software against
all known classes of Spectre attacks. Our work uses the
computer-aided cryptography paradigm [12], i.e., we employ
methodologies and tools from formal methods to build very
efficient and formally verified cryptographic software. More
specifically, we build our solution as part of Jasmin [4],
[7], a programming language and framework that has been
used to produce highly optimized and machine checked
implementations of symmetric cryptography [7], elliptic-
curve cryptography [4], hash functions [6] and very recently
also post-quantum cryptography [5]. The Jasmin compiler
is formally proven in Coq to preserve semantics, and offers
tools to ensure properties relating to implementation security
like memory safety, thread safety, and absence of secret-
dependent branches and secretly indexed memory access;
and furthermore offers an interface to the EasyCrypt [26]
interactive theorem prover for proofs of functional correct-
ness of implementations, that can be further connected to
computer-verified reductionist cryptographic proofs of secu-
rity, as, for instance, in [13], [14], [8].

An S&P 2023 paper [9] made an important first step
toward integrating systematic protections against Spectre at-
tacks into Jasmin. In short, that paper proposes a type system
to ensure that typable programs are secure against a specific
class of Spectre attacks, namely attacks exploiting misspec-
ulated conditional branches (aka Spectre-v1 or Spectre-PHT
attacks). Furthermore, it presents extensions to the Jasmin
language to protect programs (and thus make them typable).
These protections mostly consist of selectively employing
speculative load hardening (SLH) [21] as proposed in [39],
incurring a remarkably small overhead of (typically) below
1%.

However, as that paper addresses only one class of
Spectre attacks, the conclusion expresses hope that the work
may serve as “a starting point to upgrade the gold standard
of constant-time cryptography and will help deliver new
post-quantum implementations that are not only protected
against attacks by future large quantum computers, but also
against the most common classes of speculative attacks.”

Contributions. In this paper, we first show that Jasmin
programs are very easily, even naturally, protected against
other classes of Spectre attacks. We then identify one major
remaining challenge in protecting against a/l known classes
of Spectre attacks. This remaining class is Spectre-RSB, i.e.,
attacks exploiting the return stack buffer.

We then present the main contribution of our pa-
per, namely efficient and systematic protections against
Spectre-RSB and their integration into the Jasmin frame-
work. Our solution is a hybrid approach that combines
selective speculative load hardening (selSLH) with program
transformation. First, we replace calls and returns by con-
ditional direct jumps, a transformation we call return table
insertion. This transformation, which is inspired from prior
work on return-oriented programming (ROP) [36], removes
all Spectre-RSB gadgets. Second, we instrument programs
with (an enhanced set of) language constructs to enforce
selSLH on the source program (with calls). The combination
of program transformation and selective speculative load
hardening guarantees that transformed programs are spec-
ulative constant-time [23], i.e., do not leak secrets through
timing even during speculative execution.

The next step is to check that programs are correctly
instrumented. For this purpose, we define an information-
flow type system for source programs in the spirit of the
approach taken for Spectre vl in [9]. Being cognizant that
source programs will be transformed, the type system can
check that program instrumentation will be sufficient to
track misspeculation and to eliminate sources of speculative
leakage through masking. We use the Coq proof assistant to
formalize our approach for a core language: We define the
source language and its speculative operational semantics,
the return table insertion, and the type system. Our main
result is a proof that the compilation of a well-typed program
is speculative constant-time.

Next, we integrate our approach into the Jasmin frame-
work. We extend the Jasmin language with an annotation
for function calls and we modify the existing speculative

constant-time type system from [9] so that inserting return
tables in well-typed programs yields speculative constant-
time programs. Our implementation addresses practical is-
sues ignored by our core language in the setting of a full-
blown programming language. Last, we extend the Jasmin
compiler with a new return table insertion pass; we consider
different variants, allowing for instance return addresses to
be stored in MMX registers or on the stack.

Finally, we perform an in-depth evaluation of the impact
of our approach on cryptographic software. The evaluation
is carried on a set of Jasmin implementations of crypto-
graphic algorithms. These routines are derived from existing
implementations from [9] that are already protected against
Spectre-PHT. We use these routines to measure the over-
head of our approach, both in terms of programmer effort
and performance overhead. We show that the overhead for
full Spectre protections is below 2% for most primitives
and reaches only about 5-7% for the more complex post-
quantum scheme Kyber [18].

Artifacts. We produce three artifacts: the Coq formalization,
a new version of the Jasmin framework, and the libjade
implementations. All artifacts are submitted as supplemen-
tary material and will be made publicly available. Items
marked with can be found in the Coq formalization.
The artifacts are in https://artifacts.formosa-crypto.org/data/
rsbsecure.tar.bz2.

2. Background

As a starting point of this work we consider cryp-
tographic software following the “constant-time” (CT)
paradigm, i.e., software that, in sequential execution, sys-
tematically avoids data flow from secrets into memory ad-
dresses or branch conditions. The CT paradigm is widely
regarded as a standard baseline defense mechanism against
timing attacks [28]. The motivation for this paradigm is a
leakage model that captures most traditional timing attacks
by leaking the trace of all accessed memory locations and
the complete control flow of the program. The goal of this
paper is to systematically avoid leakage of secret data in
this leakage model also during speculative execution. We
specifically aim to protect cryptographic software in the
Jasmin framework for high-assurance cryptography [4].

In Jasmin, the constant-time paradigm is enforced
through an information-flow type system on source level.
In short, all variables are typed as either secret or public and
the type system enforces that operations taking secret inputs
also produce secret outputs. Memory addresses and branch
conditions have to be public. Preservation of the constant-
time property through compilation has been formally proven
in [15].

Spectre attacks, i.e., attacks that exploit leakage of se-
crets during speculative execution, are commonly classified
based on the type of speculation. Let us briefly recall the
nomenclature of Spectre attacks, based on [29] and [20], and
review how Jasmin implementations protect against them.

https://artifacts.formosa-crypto.org/data/rsbsecure.tar.bz2
https://artifacts.formosa-crypto.org/data/rsbsecure.tar.bz2

Spectre vl (PHT). Spectre vl attacks [29, Sec. IV]—

also called “Spectre-PHT” because they employ the Pattern

History Table—exploit speculative execution following a

mispredicted conditional branch. The simplest Spectre vl

gadget is a speculative bounds-check bypass, which results

in speculatively reading outside a buffer. An efficient ap-
proach to protect CT cryptographic code in Jasmin against

Spectre vl was recently proposed in [9]. The high-level

idea is to extend Jasmin’s CT type system to systematically

avoid secretly indexed memory access and secret branch
conditions even under speculative execution following a mis-
predicted conditional branch. The type system is extended
by an additional security level, transient, for variables that
are always public in sequential (non-mispredicted) execution
but may contain secret data in speculative execution after

a mispredicted branch. Variables typed as transient are not

allowed to influence memory addresses or branch condi-

tions, but they can be lowered to public through one of
two mechanisms: inserting an lIfence instruction introduces

a speculation barrier and thus turns all transient variables

to public; alternatively, a programmer can choose to lower a

single transient variable to public by masking the variable with

a misspeculation flag that is updated through arithmetic in-

structions at each branch. This second technique is selective

speculative load hardening [39]. It is supported in Jasmin
through three instructions:

o init_msf() inserts a speculation fence and sets a special
register msf to the neutral value of masking NOMASK.
We will use this register to track speculation and call it
the misspeculation flag (MSF).!

« update_msf(e) conditionally updates the misspeculation
flag msf to MASK, depending on the boolean expres-
sion e; it is essentially msf = e 7 msf : MASK, imple-
mented as an atomic conditional move instruction CMOV
(which is not subject to the PHT speculation mechanism).
We use this instruction after branches to check if execution
has proceeded sequentially (and therefore the MSF should
not be modified) or if the branch predictor has misspecu-
lated (and therefore the MSF should become MASK).

e x = protect(y) protects, i.e., masks, register z condi-
tioned on the value of the misspeculation flag msf; that
is, if the value of msf is NOMASK, register = receives
the value of y, but if it is MASK, it gets the default value
of the masking. This instruction is used to lower the type
of x from transient to public.

Spectre v2 (BTB). Spectre v2 attacks [29, Sec. V]—also
called “Spectre-BTB” because they employ the Branch Tar-
get Buffer—exploit speculative execution following a mis-
predicted indirect branch. A variant is BHI (for Branch
History Injection), also called Spectre-BHB [11].

The Jasmin language does not support indirect branches,
which means that Jasmin programs are inherently protected
against Spectre v2.

1. We will, for simplicity of presentation, assume that msf is a dis-
tinguished variable that does not occur in the program. This restriction
is unnecessary and not present in our Coq development or the Jasmin
language.

Spectre v4 (STL & PSF). We define the class of Spectre
v4 attacks as attacks where load instructions retrieve specu-
lative data. This can be the case either because not all earlier
store addresses have been resolved (speculative store bypass,
STL) [29, Sec. VI], or because the CPU wrongly predicted a
store-to-load forward (predictive store forwarding, PSF) [3].
These attacks are prevented by disabling the respective spec-
ulation, which, on Intel and AMD CPUgs, is accomplished
by setting the SSBD (speculative store bypass disable) flag
in the CPU. As we will see in Section 8, the performance
impact of setting this flag on cryptographic code is very
small.

The one remaining class of Spectre attacks exploits the
return stack buffer (RSB), so for the remainder of this paper
we will assume that Spectre v2 and v4 attacks are addressed
and focus on countermeasures against Spectre-RSB and their
integration with countermeasures against Spectre v1.

3. Overview

Spectre-RSB was discovered independently by [30]
and [32]. It exploits speculative execution when returning
from a function; this speculation uses entries in the return
stack buffer (RSB), hence the name. As the RSB is shared
between processes, it can be trained by an attacker to
direct speculative execution after a RET to anywhere in the
program. Consider, e.g., the program in Figure la, which
is vulnerable because when we call id (with sec as an
argument), speculative execution may return to the leak(x)
instruction and leak the secret.

Our countermeasure against Spectre-RSB uses two in-
gredients. The first is to use a program transformation
that replaces all calls with direct jumps and all returns
with return tables, i.e., nested conditional direct jumps. Fig-
ure 1b shows the transformation of the source program in
Figure la. The transformed program is trivially protected
against Spectre-RSB attacks, as there are no RET instruc-
tions.

However, after the transformation, the program is vul-
nerable to Spectre-PHT because the branch in id might
be mispredicted, and speculative execution after the sec-
ond invocation of id might proceed from the first call site
and thus leak sec. At first glance, it might look like we
have gained nothing. However, the transformation ensures
that speculative execution can no longer be directed to an
arbitrary location; instead, it can only be directed to a
well-defined, known set of possible locations: the set of
all call sites of the function we are “returning” from. This
idea of rewriting RET instructions to a sequence of direct
conditional jumps is not new; it was mentioned (but not
implemented) as a potential Spectre-RSB countermeasure
in [16, Sec. 7]. The second ingredient we use to protect
the program is selective speculative load hardening. For a
high-level description of selSLH and its implementation in
Jasmin, see Section 2; for an example of its application to
our simple example program, see Figure lc.

We combine these two ingredients in a way that inte-
grates well with the Jasmin workflow and is in spirit very

1id {

2 return
3}

4

5 main {

6 X = pub
7 call id
8 leak(x)
9 X = sec
10 call id
11 ... // do not leak x
12}

(a) This program leaks sec specula-
tively: an attacker can force the sec-
ond call to id to return to the leak(x)
instruction, thus leaking x which holds
the value sec.

1 id:

2 if ra =0 jump 4o
3 jump £1

4

5 main:

6 X = pub

7 ra=0

8 jump id

9 £p: leak(x)

10 X = sec

11 ra=1

12 jump id

13 £1: ... // do not leak x

(b) Compiled program using return ta-
bles. This program does not use RET
instructions. The second time the id block
executes, when x gets a secret value, an
attacker can mistrain the conditional jump
predictor to predict that the jump to o
will be taken, and speculatively leak x.

g

1

2 if ra =0 jump 4o

3 jump £

4

5 main:

6 init_msf()

7 X = pub

8 ra=0

9 jump id
10 £p: update_msf(ra = 0)
11 x = protect(x)
12 leak(x)

13 X = Sec

14 ra=1

15 jump id

16 ¢1: ... // do not leak x

(c) Compiled program with selSLH protections.
This program is protected because the value of x
is masked before leaking it. If the attacker mounts
the attack discussed in the previous snippet, only
a default masked value gets leaked.

Figure 1: (a) Source program, (b) program with return tables, (c) protected program with return tables.

similar to the type system presented in [9]: We perform secu-
rity typing on source level with function returns, and apply
the transform from RET instructions to nested conditional
jumps afterward, during compilation. This, however, means
that the speculative semantics and the type system from [9]
are insufficient to capture all effects of speculative execution.
Specifically, they only capture misspeculation of source level
conditionals (i.e., if/else constructions) and while loops. For
these, the control-flow graph of the program is the same for
sequential and for speculative execution. This is different for
function returns that have been transformed into sequences
of branch instructions: in sequential execution, the control-
flow graph has only one edge, to the actual call site, while
under speculative execution it has edges to every call site of
the function in the whole program. This is a situation that
the type system from [9] does not handle.

We therefore first define a language featuring calls and
returns in addition to conditional statements and loops, to-
gether with a speculative semantics that captures at source
level the protections offered by return tables (Section 4). We
then present a type system that enforces speculative constant-
time under these semantics (Section 5) and a compilation
scheme that realizes the semantics and preserves leakage
(Section 6). After this, Section 7 discusses how we imple-
ment this type system and compilation scheme in Jasmin,
and Section 8 how we use that to protect libjade with little
overhead. Lastly, we compare and contrast with related work
in Section 9, discuss limitations (Section 10) and conclude
(Section 11).

4. Language

In this section we introduce a core imperative language
with function calls and returns and primitives for selective

speculative load hardening. This language allows us to de-
fine our security model and notion of speculative constant-
time.

4.1. Security model

As stated in Section 2, we are considering Spectre-RSB
and Spectre-PHT attacks; however, as compilation trans-
forms function returns to return tables, our security model
does not aim to capture the full power of a Spectre-RSB
attacker at source level. Opting for a weaker security model
at source level is beneficial, because it minimizes the amount
of protections that programmers need to write in their code,
and leads to more efficient programs. Moreover, the choice
of a weaker model has no negative security implication,
as our method still ensures that compiled programs are
protected against all Spectre attacks.

4.2. Syntax

For simplicity, we consider function calls without local
variables, arguments, or return values. The syntax of expres-
sions, instructions and code is as follows:

ex=n|b|x]|opl(e)|op2(ee)
it=x=elx=ale]|ale] =x
| if e then ¢ else c¢|while e do ¢ | cally f
| init_msf() | update_msf(e) | x = protect(z)
cu=1]]4¢
where n is an integer, b a boolean, x a register variable, and

a an array variable. We assume that each array comes with
its size |a|. The definitions are standard, except for the call

g{
while x < 10 do {
call+ f
X=X+1

call, f
x=0

ONO O, WN =

—_

Figure 2: The function g has two continuations of f, one
after each call site.

instruction and the selSLH instructions (which are described
in Section 3). The cally f instruction calls f and performs
an MSF update on the register msf upon return. On the
other hand, the instruction call; f is a usual assembly
CALL f instruction, which does not update the misspeculation
flag. We need this MSF update in call instructions because
we will compile returns to tables of conditional branches,
which may trigger misspeculation. Instead of interleaving
several MSF updates in the table, as is usual in SLH, we
can perform just one at the return site.

A program is a set of pairs of function names and code,
ie., p:="P(f xc), where there is one distinguished pair
that is the entry point. The entry point has no callers, and
execution halts after reaching its return.

4.3. Semantics

To formalize our security model, we define for every
function f its set of continuations C(f), consisting of triples
(c,g,b), where g is a function that contains an instruction
call f and c is the code that remains to be executed after
returning from the call. Intuitively, if the code of g is of
the form ...;call, f;c then (c,g,b) is a continuation of
f; however, some care is needed to deal with function calls
within loops.

Let c be the body of function g in Figure 2. We note
that there are two continuations of f in c¢: the first one is
(x=x+1;¢, g, T), i.e., when returning from f to the first call
site we need to finish executing the loop body and then
reenter the loop, and the second one is (x=0, g, 1), ie.,
when returning from f to the second call site we only need
to execute the last assignment to x. We present the precise
definition of continuations in Appendix A.

Directives use continuations to model the attacker’s
power to influence execution. The directive step is a usual
sequential step, force b takes the b branch of a conditional,
mem a ¢ forces an unsafe memory access to read from or
write to the address (a,) instead, and return ¢ f b forces the
function to return to a continuation (c, f,b). On the other
hand, observations model execution leakage from control
flow and memory accesses. The observation e corresponds
to no observation, branch b indicates that the condition of
a conditional evaluated to b, and addr a ¢ that a memory
access to array a in position ¢ occurred.

Dir == step | force b | mem a i | return ¢ f b
Obs ::=e | branch b | addr a ¢

We define the single-step semantics of our language
with a judgment m % m’ that expresses that the directive d

makes the machine m step to m’ and produce an observation
0. Machines are 6-tuples (c, f, cs, p, i, ms) that consist
of the code being executed, the name of the function being
executed, the call stack, the register map, the memory, and
the misspeculation status. A call stack is a list of pairs
of code and function names, a register map maps register
names to values, a memory maps arrays and valid indices to
values, and a misspeculation status is a boolean. Since we
will only deal with one program at a time, we will always
leave the program implicit.

Figure 3 presents the semantics for loads, protects, condi-
tionals, calls and returns. The N-LOAD rule is the usual rule
for memory loads, where the expression needs to evaluate
to an integer that is in bounds for the array. This rule has
addr a ¢ as an observation because memory accesses leak
their addresses, and ignores its directive. On the other hand,
the S-LOAD rule only applies if the access is out of bounds,
and allows the attacker to read data from any array and
index. We require the misspeculation status to be T because
we assume the program to be sequentially safe.

The PROTECT rule shows how we can use the MSF to
mask a value. If the variable msf is set to MASK, the result
of a protection is a default value.

The COND rule shows that the attacker controls the
execution of conditionals via the force b directive. The con-
dition of the statement only plays a role in the observation,
branch [e],.

The CALL rule states that a function call puts the body
and name of the callee as the code and function name under
execution, and pushes the current code and function name
to the call stack.

The N-RET rule represents a normal return, during which
execution is transferred to the caller, i.e., the top of the call
stack. The S-RET rule forces execution to continue to a con-
tinuation (c, g, b) of f (of the adversary’s choosing, different
from the top of the call stack), sets the misspeculation status
to T, and, if b is T, sets msf to MASK. Note that the call
stack plays no role during speculative execution and hence is
discarded. This rule captures a misspeculation in the return
table of a compiled function.

Figure 3 also defines multi-step semantics as the reflex-
ive transitive closure of the single-step one, accumulating
the directives and observations. The rest of the rules are
similar, and shown in Appendix A.

4.4. Speculative constant-time

We now have all the ingredients to define speculative
constant-time. The definition is parameterized by an equiv-
alence relation on machines.

Definition 1 (Speculative constant-time, ¢-SCT). Let ¢
be an equivalence relation on machines. A program p is
speculative constant-time with respect to ¢, denoted ¢-SCT,
if and only if all executions of machines that are related
by ¢ following a given list of directives produce the same

el,=1 0<i<|a a,1) =0
L], Si<ll uo) Lors
<J? = CL[@];C, fa €S, P5 Ky ms> ar#) <C7 fa cs, P[x A U]7 s ms>
mem b j
el,=1 —~(0<i<|a 0<j5<1b b,j)=wv
e, Osi<l) _0Sj<Pl ubi=v (.,
(x=alelic, f, es, p, p T) 22000 (e, f es, plo ¢ o, . T)
mem b j
= if = MASK then MASK else
v = if p(msf) ! P(y) PROTECT
<I‘ = protect(y);c, f7 s, Py [y m5> t—> <Cv f7 cs, p[l’ A U]) Hy m5>
step
e], =0
[[HP COND

branch b’

(if e then c1 else cg;c, f, ¢s, p, p, ms) m (cvse, f, sy py b, msV (b#V))

(g, Cg) cp

CALL

<Ca11b 956 f7 €Sy Py m5> ﬁ <cg7 9, (C7f) -

CS, Py Ky ms)

([£, (. 9)

N-RET

CS, Py ms) —> <C7 g, €5, Py Iy m8>

return c g b

(c.9.b) €CU) es#(cg)es

= if b then p[msf < MASK] else p

S-RET

<H7 f7 CSy Py m5> % <C7 9, []7 p/7 Hs T>

return c g b

CONS

Figure 3: Selected rules of the small step operational semantics.

observations. That is, for every pair of related machines
my ¢ mo with executions m; ?i» m}, we get O1 = Oa.

5. Type system

In this section we introduce a type system for speculative
constant-time. We then prove that all initial machines of
a well-typed program that coincide in their public parts
produce the same observations under all sequences of ad-
versarial directives .

Our type system uses security types to track the confi-
dentiality of data and detect possible violations, both under
sequential and speculative execution. Concretely, we attach
security levels to data (in our case, a confidentiality lattice
{L,H} with L < H, corresponding to public and secret data)
and define types as either a level or a type variable « (this is
the case when the same register or memory location is used
to hold data of different levels at different times). Finally,
registers and memory locations get security types, which
consist of a type (that represents the confidentiality of the
data under sequential execution) and a level (that represents
the maximum confidentiality of the data under all possible
speculative executions)

level == H |L type == level | @ stype == (type, level)

update_msf(e)
init msf()

updated —————— outdated(e
ife

while e
init msf ife
while e
if e k
while e unknown

Figure 4: MSF type automaton.

and we write 7, to refer to the normal (first) component, and
7 for the speculative (second) component of the security
type 7. Thus, a public variable has type (L,L), a secret one
(H,H), and a transient one (L, H). Allowing polymorphism
in the speculative component of a security type makes
the type system unsound, see Appendix A for a detailed
explanation.

5.1. Misspeculation type

Our type system also needs to keep track of the misspec-
ulation flag to detect whether protections will be effective.

FV(S) = FV(e) if & 1s.outdated(e)

0 otherwise
L iftisL

to_lvl(t) :=

o_I(¢) {H otherwise

S outdated(e) if ¥ is updated
¢) unknown otherwise
Y C ¥ : =% =unknownVv ¥ =Y’

Figure 5: Auxiliary definitions for type rules. The free
variables of an MSF type are the free variables of its
condition if it is outdated, and empty otherwise. Note that
Y|, corresponds to the if e and while e arrows of the MSF
type automaton (Figure 4). The order for MSF types is flat
with unknown as the bottom element.

For this, we define the MSF type
3} == unknown | updated | outdated(e)

Figure 4 gives an intuition of the behavior of these
types. The MSF type unknown expresses that we do not
know whether the machine is misspeculating. The MSF
type updated means that the variable msf accurately tracks
speculation: msf holds the value NOMASK if execution has

been sequential, and MASK if there has been misspeculation.

Performing an init_msf() takes us to updated since this
instruction executes a speculation fence. Lastly, the MSF
type outdated(e) expresses that msf holds a value that
can be updated to track speculation accurately. After a
conditional jump on e in state updated, we transition to
outdated(e), and we need to execute an update_msf(e) to
recover the MSF.?

The typing judgment is of the form I') X Fc¢: TV, Y/,
where T' and IV are mappings from register and array
variables to security types (which have a normal and a
speculative component), ¥ and X’ are a MSF types, and
c is code. Figure 6 presents the typing rules, with some
auxiliary definitions in Figure 5.

Type checking requires a static signature for all functions
of the program, which associates each function name f with
a signature Xy, I'y — X% I} of input and output MSF types
and contexts. Signatures may contain type variables that get
instantiated at each call site. The purpose of the signature is
to fix the type of each function, as functions may be typable
with different types; they also allow modular verification.

The first three rules are straightforward. Firstly, the
ASSIGN rule assigns to z the type of the expression e. We
must ensure that the assigned variable does not occur in X
to be able to accurately update the MSF later on; however, if
we do not want to update the MSF, we can always choose to
weaken Y to unknown with the WEAK rule and make this
restriction vacuous. Secondly, the LOAD rule ensures that

2. For clarity, we depart from the notation in [9]: what that work denotes
ms we write as updated, and for ms|. we write outdated(e).

the array index is public, even speculatively. Variable x gets
its normal type from the array, but since the index might be
speculatively out of bounds, we need to overapproximate the
speculative type as H. Lastly, the STORE rule also ensures
that the index is public, and we update the normal type of
the array to the normal type of x, but similarly to the case
for load, the index might be out of bounds, so we need to
update the speculative types of all arrays.

Next come the rules for selSLH instructions. The INIT-
MSF rule sets the MSF type to updated, and sets the type
of each register and array variable to its sequential coun-
terpart, overapproximating polymorphic type variables with
H: (L,t) goes to (L,L), (H,t) goes to (H,H), and (a,t)
goes to {a, H). We define this to_Ivl(-) overapproximation
in Figure 5. Secondly, the UPDATE-MSF rule expects the
MSF type to be outdated, and updates it if the condition is
the same. Lastly, the PROTECT rule requires that the MSF
is updated, and sets the security type of y to the sequential
counterpart of the one for z, similarly to the INIT-MSF rule
but for one variable only.

The COND rule ensures that the condition of an if
instruction is public, and that each branch is typable with
an outdated MSF type w.r.t. the appropriate condition. We
define this, denoted X|., in Figure 5. This means that the
then-branch will need to perform an MSF update with
respect to e if it needs to use protect, and similarly for the
else-branch with !e. The WHILE rule is analogous.

The CALL rule ensures that before every call site of f,
the current MSF type and context are what f expects them
to be, according to its signature. The resulting MSF type
depends on the boolean parameter of the instruction: if we
want the type to be updated, we need the parameter to be
T and the output MSF type of the function to be updated.
This rule allows instantiating the type variables in I'" with 6.

The WEAK rule allows to compose typing judgments
by weakening them, and the NIL and CONS rules chain
judgments in the usual way. Finally, a program is well-typed
if the body of each function is typable with its signature.

5.2. Soundness

Our soundness theorem states that executions of a ty-
pable program depend only on public data. Recall that the
definition of SCT is parameterized by a relation. The relation
we need is indistinguishability of machines, which holds
when two machines coincide on their public values.

We interpret types as relations between values

r=ry=7=L = z=y

p=sp =Y. p(x) =) p'(2)

po=ru = Vai.p(a,i) = p'(a,i)
where 7 can be a type variable: we show that this is not
a problem since a program that is typable under I is also
typable under 6(I") for every instantiation 6, in particular
when 0(7) is L

We use these notions to define the indistinguishability

relation between machines, extending [9].

'ke:r x ¢ FV(X) ASSIGN IV ={v: (T(v)n,to_WI(T(v),)) | for each v } INIT-MSF
ETFz=e: X Tz« 7] >, T F init_msf() : updated, I”
: UPDATE-MSF
ST }_F e [I]' S l“x[# FV&}(:))] LOAD outdated(e), ' - update_msf(e) : updated, T’
Tz =ale]: X,z + ('(a)n,
) I'(z) <TI'(a) ™ = (L@)n, to_M(T'(@)n)) PROTECT
FFFS r L b+ I‘(i) <) updated,I' F y = protect(z) : updated, I'[y + 7]
e a. T)s > s
STFad=z:%1 STORE The:l 3 ,Tker: 30" Efe, e 3T COND
Che.L S.The ST Y,'Fif e then c1 else c; : X/, I
e: e Fe: X,
WHILE : _
>,T F while e do ¢: Bp, T Sig(f) =X, Ty — X5, T
STEi % T ST oS T if b then ¥’ = unknown else ¥’ = X, = updated
) s iy g is L1 .) CALL
ST Fic: Y, I CONS Ef,e(l“f) Fcally, f: Z/,G(F})
NIL SCY YOy, TI'<T, TI,<I' %,Tokc:3 T
: WEAK
ETE[]:%T ST Fe: Y, T

Figure 6: Type system. Here 6 : typeVar — level is an instanciation of type variables and Sig is the signature for functions

of the program. We define I" < I pointwise.

Definition 2 (Machine indistinguishability). Tivo
machines are indistinguishable under 1, denoted
<Cv fa CS, Py My m5> =r <C/7 f/7 CS/? p/7 MI7 m5/>) lf their

code, function name, call stack and misspeculation status
are the same

c=c f=f

they coincide on their speculatively public parts

cs =cs' ms=ms

p=r,p p=r, W

and they coincide on their sequentially public parts if they
are not misspeculating

msV (p=r, p' ANp=r, 1)

The relation we will use for our main theorem states
that the machines are indistinguishable and are executing
the entry point of the program

Definition 3 (Initial machine). An initial machine for a
program p is of the form {(c, f, [], p, i, ms), where c is
the code for the entry function and f its name.

Definition 4 (Initial SCT relation). We will say that two
machines are in the relation ¢r if they are initial and
indistinguishable under T'.

Theorem 1 (Soundness *). If a program is safe and typable,
and the initial type for its entry point is (unknown, T"), then
it is ¢p-SCT (that is, every pair of initial machines that coin-
cide on their public parts and their misspeculation statuses
produce the same observations, under the assumption that
the directives are the same).

Informally, the notion of safety is that any reachable
state (starting from an initial state of the program) is either
misspeculating, final (i.e., the program has been executed
fully), or there is a directive that allows a step of execution.

Remark that the notion imposes the usual conditions only
when the reached state is not misspeculating, i.e., under
sequential execution.

The proof of the soundness theorem needs two impor-
tant lemmas, for single and multi-step execution soundness.
These say that if a machine is well-typed, which intuitively
means that the code being executed and the contents of the
call stack are typable, the resulting machine after one (resp.
many) execution step (resp. steps) is also well-typed and the
observations are the same for all indistinguishable machines.
Naturally we also need to show that initial machines are
well-typed.

The definition of SCT states that both related machines
must step under the same directives. At first sight, if one
of the machines steps but the other one gets stuck, it is
not guaranteed that leakage is independent from secrets. We
prove that this is impossible: if a typable machine can step
under directives D, then all indistinguishable machines can
step under the same directives

6. Return table insertion

In this section we present return table insertion and
show that this transformation preserves speculative constant-
time. We compile our structured source language into an
unstructured linear language with the same base instructions
(assignments, loads, stores, and selSLH instructions) but
without the control flow primitives (i.e., conditional, while,
and function calls). The linear language has only two control
flow constructs, conditional and unconditional direct jumps,

(cally f) =
rar = é,-et
jump f
lret © update_msf(raf = lrer)

({¢} Drfettbl =

({6} U) = if ray = £, Jump £, (€5)L,

jump £,

Figure 7: Compilation of function calls and return tables.
We write (c|) for the compilation of ¢, and (£*)/,,,, for
the compilation of the return table of f whose entries are
£*. We omit the labels of instructions that do not need them.
The register ray is where the function f expects its return

address.

and programs are lists of labeled instructions:

liz=x=e|x=ale]|ale] =2z
| init_msf() | update_msf(e) | x = protect(z)
| jump ¢ | if e jump ¢

le==1]| (£:1li);le

Linear machines, while similar to source ones, are 4
tuples (¢, p, u, ms), where instead of code being executed
we have the program counter, which is a label pointing
to an instruction in the program. If ¢ is a linear machine,
tpe denotes its program counter. The operational semantics
of this language is standard, with similar directive and
observation behavior as the source. We show the precise
rules in Appendix B.

Figure 7 presents our compilation scheme for non-
recursive function calls. Compiling assignments, memory
and selSLH instructions is trivial since the two languages
coincide on these constructs. We compile conditionals and
loops in the standard way with a conditional jump. For
a non-recursive function f, we pass its return address in
a dedicated return address register ray; we discuss this
restriction in Section 7.

Figure 7 also shows the compilation of return tables as a
sequence of conditional direct jumps, given a non-empty set
of return labels. If the set has only one return label, we gen-
erate a direct jump to it. Otherwise, we generate conditional
branches comparing return addresses with each return label.
We show rigorous definitions for the compilation scheme,
including basic instructions, in Appendix B.

Compiling a program p, denoted (p, entails compiling
for each function f its body at a distinguished label ¢,
followed by its return table at £,..; ;- We derive the set of
return labels of a function from its set of continuations, that
is, the program points following a call to it. As mentioned in
Section 4, the entry point has no callers, and thus no return
table.

Preservation of SCT. We use a similar definition of SCT
to the one in Section 4.4 for linear programs and define a

similar relation ¢L which expresses the same indistinguisha-
bility relation between states. Note that while the source
relation requires that the code of the machines are equal,
the linear relation requires that the program counters point
to the same instruction. Our compilation scheme preserves
SCT for typable source programs.

Theorem 2 (Preservation of SCT). If p is typable then
(p) is ¢}-SCT.

We prove this theorem by showing that the leak-
age of an execution depends only on the public part
of the initial state and a corresponding source execution.
In order to do this, we define a directive transformer
Toir(+,) : label x Dir — Dir* that computes source direc-
tives given the program counter and a target directive, and
a leakage transformer Tops(-,) : label x Obs™ — Obs that
computes target leakage given the program counter and
source leakage. For single step executions, we prove

Lemma 1 (Single-step leakage transformation ©). For all
single-step executions t %Hf’, if there exists a typable

source machine s ~ t, then there exists s' and Og such that
s—2 4, Tobs(tpe, Os) = 01, and s’ ~ t'.
Toir (tpe,d)

Here the relation s ~ ¢ indicates that the linear machine
t is the compilation of the source machine s. Note that
Toir(tpe, d) can be empty, which corresponds to a silent
step in the source. It is usual that backward simulations for
compiler correctness proofs require showing that there are
a finite number of silent steps, but for security proofs like
ours this is not needed—silent steps do not leak secrets.

Extending this to multi-step executions allows us to
prove Theorem 2: given two target executions with leakages
O; and Oj, we know that there exist source executions
with leakages O, and O such that 7§, (t,c, Os) = O; and
TEps(tpe, OL) = O;. By soundness of the source type system
we know O, = O, and therefore O; = Oj.

Let us now give an intuition for the transformers for
directives and observations. Recall the example in Figure la
and its compilation in Figure 1b. In Figure 8 we present the
attack discussed before, showing the current instruction and
directive in the second and third columns. Recall that the
attack consists of executing sequentially until the second call
to id, and when we return for the second time, we mispredict
and go to the first call site (we mark sequential execution
with thin blue directives and misspeculating execution with
thick red directives). The transformers tell us how, from the
current program counter pc and the target directive d, we
can produce a list of source directives Tp; (pc, d), such that
their leakage Oy predicts the target observation o. We have
two interesting cases in this execution: first, instructions that
store return addresses are not present in the source, so the
source directives are [|, i.e., the source machine does not
step (we mark these with ~»). In these cases the target
observation is always e. Second, return tables consist of
conditional branches, so we need to translate force directives
into return directives (we mark these with —). The leakage
here depends on the value of ra, which we can compute since

pc (D d

main:1 X = pub step

~ main:2 ra=0 step
main:3 jump id step

— id:1 if ra = 0 jump £ force T
main:4 leak(x) step
main:5 X = sec step

~ main:6 ra=1 step
main:7 jump id step

— id:1 if ra =0 jump £ force T
main:4 leak(x) step

TObs(pC7 Os) =0

[[] .

[[.

[step] [o] .

[return K] [o] branch T
step] fpus] pub

[step] [o] .

[[.

[step] [o] .

[return k] [o] branch L
[step] [sec] sec

Figure 8: The attack from the example in Figure 1b. Here ~ is the continuation after the first call to id, that is

(leak(x); . . . , main, L).

the CFG is public. We present the precise definition of the
directive and observation transformers in Appendix B.

7. Implementation in the Jasmin compiler

In this section, we describe how we implemented the
type system and compilation scheme, presented in Sec-
tions 5 and 6, in Jasmin [4], [7], a low-level program-
ming language for high-assurance high-speed cryptography.
The Jasmin language is designed to write efficient and
verification-friendly assembly code. It directly exposes as-
sembly instructions to the programmer, except for jumps,
since control flow in Jasmin consists of if statements, while
loops, for loops (which are always unrolled), and function
calls. Jasmin also provides several zero-cost abstractions
over assembly, such as register and stack variables, that the
compiler allocates to architectural registers and stack offsets.

The Jasmin compiler consists of around thirty passes
and is written and verified in Coq; it outputs AMD64
(i.e., x86-64) assembly and has experimental support for
ARMV7-M. Some exemplary passes are: Inlining, which
removes function calls annotated as #inline by the bodies of
their functions; Unrolling, which unrolls all for loops; Stack
Allocation, which replaces operations on stack variables
by memory accesses; Register Allocation, which renames
and reuses variables to require only architectural registers;
and Linearization, which replaces structured control flow by
jumps. For the present work, we introduce a new pass after
Linearization that replaces all CALL and RET instructions
with direct jumps and return tables.

The Jasmin compiler can also produce a representation
of the program to reason in the EasyCrypt [26] proof
assistant. Finally, Jasmin comes with three static analyzers:
1) a safety checker that attempts to prove that a program
terminates, accesses only valid memory, and produces no
arithmetic errors like division by zero; 2) a constant-time
checker that ensures that a program does not leak secrets
through timing side-channels in sequential execution; and
3) a speculative constant-time checker that ensures that a
program is constant-time even under speculative execution.

Changes to the SCT checker. Jasmin provides an auto-
matic checker for Spectre-PHT vulnerabilities that takes
into account selSLH instructions. We extend this checker to
consider also Spectre-RSB, following the type system from
Section 5. We must now bridge the gap between the model
presented in this work and Jasmin. Firstly, function calls in
our model are nothing more than a transfer of control to
the body of the function, while in Jasmin, functions have
local variables, arguments, and results. Since, at the source
level, we do not know which variables of the callers of
a function will be allocated to which registers, we need
to be coarser than in Section 5 and consider all variables
as speculatively secret after a function call. Secondly, we
introduce an annotation for function calls corresponding to
the boolean parameter of call instructions, where L is the
default and T requires an annotation

call, f = x = f(y);

#update_after_call

calrt = X, msf = f(y, msf);

Note that in Jasmin, the MSF variable is explicit, and, as
mentioned in Section 2, in both the Coq development and
the Jasmin compiler, we can keep the MSF in any location
(registers, MMX registers, or on the stack), which allows us
to spill it when register pressure is high.

Changes to the compiler. We adapt the Jasmin compiler to
use direct jumps instead of CALL and RET instructions. As
discussed in Section 6, we compile unannotated function
calls as two instructions (to save the return address and
perform a direct jump). In contrast, calls annotated with
#update_after_call issue a third one, an MSF update.

We implement return tables as trees, which means that
the number of comparisons is logarithmic in the number of
callers of a function. Moreover, at return sites, in most cases,
we can reuse the flags that we set in the last comparison
before jumping. The most frequent instance of this is the one
depicted in Figure 9, where at the return site £ we can reuse
the EQ condition in the MSF update without performing
another comparison.

The compiler is flexible in passing return addresses

JMPIt LT_branch
// GT_branch

£: MOV MASK, tmp
CMOVne tmp, msf

1 callee 1 caller:

2 ... 2 ...

3 CMPra, ¢ 3 MQV ¢, ra
4 JMPeq ¢ 4 JMP callee
5 5

6 6

Figure 9: A return table implemented as a tree and a return
site that reuses the comparison made in the table.

19
1 f: 2 .
5 : 3 if rag = fo jump fo
a ray = fo 4 jump evilg
4 f Jump g 1 evil:
5 fo:
. . 2 ras = secret
6 if ra =,E jump £ 3 raf = evilp
7 jump ¢ 4 jufnp g
5 evilp:...

Figure 10: How a secret may leak as a return tag.

in different ways. For libjade, using MMX registers was
the best option. Cryptographic implementations seldom use
these registers. By modifying the type checker to ensure that
all writes to MMX registers are public, even speculatively,
we never need to protect them. This restriction is also
beneficial when we only need to protect a few values since
we can place them in MMX registers and thus avoid keeping
an MSF. Since using these registers can be expensive and
register pressure can be high in some of the programs in
libjade, the compiler also allows passing return addresses
on the stack or in general-purpose registers. This, however,
requires some care: when passing them in an arbitrary
location, we need to be mindful of speculative writes to
this location.

Figure 10 shows how naively passing the return address
is insecure. Remark that a return table leaks its return
address since it performs conditional branches on it. In this
example, the problem is that the return table in f leaks the
secret that evil puts into the register ra;. The function g
cannot modify register ra; because one of its callers, f, uses
it. However, a different caller, evil, can put a secret there,

and when it calls g, the attacker can force g to return to f.

The return table in f then leaks ra; as remarked.

Protecting the return address using an MSF mitigates the
problem: the leaked comparisons will be against a default
value instead of a secret. Note that there is no risk of a
speculative write to the return address forcing execution
to an invalid program point since the table will perform
comparisons on it, but the targets of all jumps are hard
coded valid labels. We can pass the return address on the
stack for recursive, or more generally reentrant, functions,
but this is unnecessary for Jasmin as it does not support
them. The drawback of protecting return addresses is that

we need an MSF at each return site that needs the protection.

This entails keeping an MSF updated, which means more
instructions and data dependencies, and, therefore, a greater

overhead. Fortunately MMX registers are free from this
drawback.

8. Evaluation

This section overviews the changes to libjade and
evaluates the computational cost of applying Spectre-RSB
countermeasures. Libjade is a high-assurance cryptographic
library written in Jasmin and extended by [9] to be
Spectre-PHT protected. The present work uses the arti-
fact from that work as our starting point, which con-
tains the constant-time implementations (without counter-
measures against any Spectre attack) and the corresponding
Spectre-PHT protected implementations.

8.1. Modifications to libjade

We started by updating these implementations to be
compatible with recent versions of the Jasmin compiler
and then added RSB protections to the Spectre-PHT pro-
tected version. Most of the changes were in the context of
Kyber, and no implementations other than Kyber required
the #update_after_call annotation. Kyber512 and Kyber768
share a significant part of the code, which is generic on
the algorithm’s parameters. We needed to annotate 49 out
of 51 call sites in Kyber512 with #update_after_call, and 56
out of 58 in Kyber768. The rejection sampling algorithm
is the main reason for the difference in the number of call
sites between Kyber512 and Kyber768 (it accounts for six
call sites). Very briefly and informally, Kyber512 samples
a 2 x 2 matrix of polynomials, while Kyber768 a 3 x 3
one. AVX2 256-bit registers and instructions work nicely
to perform four samplings at a time, which means that
Kyber768 follows the same pattern as Kyber512 for the first
eight polynomials and then needs to sample an extra one
separately.

Sometimes, we can avoid keeping an MSF by applying
one of four different strategies while still protecting our
code; Kyber, in both versions, has examples of all four. First,
we inline function calls when the code size penalty is minor;
this is the case for two function calls in Kyber. Second, we
spill public values to MMX registers—these are guaranteed
to remain public—when the performance penalty is minor;
this is the case for all calls to SHAKE in Kyber. Third,
we enforce that some function arguments are always public
since, in some cases, the type system (soundly) generalizes
too much and gives false positives. An example of this is
the id function in Figure la: the type system will greedily
assign a polymorphic type to this function, & — «, and thus
will we need to protect its result after calling it. If in our
program we notice that we only call it with public arguments,
we can annotate this function as id(#public x) -> #public, which
is a weaker type, but frees us from having to protect its
result after calling it. To justify the fourth and last strategy,
let us remark that if a function does not modify a particular
register, which is guaranteed to be public at every call site of
the function, we can safely assume that it is public at each
return site—this is an extension of the third strategy. We can

capitalize on this realization at the Jasmin level by making
such functions take extra arguments, annotating them as
public, and returning them unmodified. In this way, the type
system will enforce that these variables are always public
at every call site, even speculatively, and register allocation
will force these variables to the same architectural register
since they are an argument to a function.

We note that the keypair and enc functions of Kyber each
use a call to an external randombytes function that serves
as a wrapper around a getrandom system call. These calls
to external functions (with actual RET instructions) violate
the assumptions of our security arguments; they are currently
being replaced by a re-implementation of randombytes for an
upcoming Jasmin release. We expect no significant perfor-
mance difference from this upcoming change to Jasmin.

8.2. Performance of libjade

Table 1 reports benchmarks of highly optimized imple-
mentations of various cryptographic primitives in libjade
with different Spectre protections. The reported benchmarks
are median cycle counts of 10000 executions on a single
core of an Intel Core i7 11700K (Rocket Lake) CPU running
at 3600 MHz with TurboBoost and hyper-threading disabled.
The benchmarking machine is running Debian 6.1.76, and
we compiled our benchmarking code using GCC 12.2.

For each primitive, the leftmost (“plain”) cycle count
is the baseline CT implementation without any Spectre
protections. As a first step (“+SSBD”), we set the SSBD
CPU flag to protect against Spectre v4 attacks. In a next step
(“+SSBD+v1”), we additionally add the selSLH protections
against Spectre vl as described in [9]. Finally, we report
cycle counts with the full protections as described in this
paper (“+SSBD+v1+RSB”).

We see that for the symmetric primitives, i.e., ChaCha20,
Poly1305, and XSalsa20Poly1305, the overhead for full
Spectre protection is solidly below 1% when processing
sufficiently long messages. The rather large overhead for
short messages is due to the fixed cost of the initial Ifence;
this is consistent with the observations reported in [9].

For the elliptic-curve Diffie-Hellman key exchange
X25519 [17] we see a slightly larger overhead, which is
almost entirely due to Spectre-v4 protections, i.e., setting the
SSBD flag. This is not surprising, because the active data set
in the speed-critical main loop of X25519 is considerably
larger than in the symmetric primitives. The main loop thus
involves more loads and stores that potentially benefit from
speculative store bypass and may thus be slowed down by
SSBD.

The most interesting measurements are those for Ky-
ber512 and Kyber768. Kyber is the most complex scheme
in our benchmarks in terms of code size, number of function
calls, and size of the active data set throughout the speed-
critical computations. Consequently, it is not surprising to
see a slightly higher overhead from Spectre protections in
Kyber than, e.g., X25519. As explained above, given that
the generation of a 3 x 3 matrix in Kyber768 does not
vectorize quite as straightforwardly as the generation of

a 2 x 2 matrix in Kyber512, it is also expected that the
overhead for Kyber768 is higher than for Kyber512. The
keypair operation is surprising: it has the smallest overhead
in Kyber512 but the largest in Kyber768.

9. Related work

Return tables in optimizing compilers. Calder and Grun-
wald [19] show that return tables can improve perfor-
mance in object-oriented programs. Yang, Cooprider, and
Regehr [43] show that return tables can reduce RAM usage
in embedded code. Both transformations keep some indirect
jumps, since their goal is efficiency, and thus are inadequate
as mitigations against Spectre.

ROP countermeasures. Return-oriented programming
(ROP) [37] is an exploitation technique that targets return
instructions to force program execution to jump to arbitrary
program points. In contrast to Spectre-RSB, ROP does not
exploit speculative execution. There are many countermea-
sures against ROP. Our work is closely related to coun-
termeasures that remove calls and returns [35], [31] and
replace them with indirect jumps. Arthur et al. [10] is the
closest since it introduces only direct branches. The main
difference with our work is that we make this transformation
resistant to speculative execution attacks and compatible
with selective speculative load hardening. Other countermea-
sures harden return instructions by using return indirection
or randomizing return addresses. Unfortunately, these trans-
formations are ineffective in our scenario.

Spectre countermeasures. There is a large body of work
that proposes countermeasures and verification approaches
against Spectre. We refer the reader to two recent surveys
for background [20], [22] and focus on closely related work.

Swivel [34] is a software-only compiler framework (with
a hardware-assisted variant) for WebAssembly that tackles
Spectre-PHT, Spectre-BTB, and Spectre-RSB. Similarly to
Venkman [38], it enforces a coarse-grained CFI under spec-
ulation by starting from a clean BTB and RSB and restrict-
ing jumps to the beginning of basic blocks. It implements
various mitigations on top of this, including disjoint mem-
ory regions for blocks (enforced with masking), a Spectre-
protected shadow stack (using either guard pages or Intel
CET), masking of addresses, and flushes of the BTB (on
every transition into and out of the sandbox). In contrast
to our work, Swivel incurs significant overhead and lacks
formal guarantees.

Serberus [33] is a comprehensive approach to protect
programs against all known Spectre attacks. Serberus uses
control flow integrity (CFI) protections to constrain the at-
tacker’s power over speculative control flow, and a sequence
of program transformations to eliminate speculative leakage.
One main difference with our approach is that Serberus
requires hardware and operating system support. Specifi-
cally, Serberus derives its CFI protection from hardware
mechanisms, e.g., Intel CET [1] and DOIT [2], and requires
the operating system to perform RSB filling on context

TABLE 1: libjade benchmarks on Intel Core i7 11700K (most optimized implementation of each primitive). “plain”: cycles
without any Spectre protections; “+SSBD”: with SSBD CPU flag set; “+SSBD+v1”: with SSBD CPU flag set and vl
countermeasures from [9]; “+SSBD+v1+RSB”: with full Spectre protection as described in this paper; “increase”: relative
increase in CPU cycles between unprotected (“plain”) and fully protected (+SSBD+v1+RSB).

Primitive Impl. Op. plain +SSBD +SSBD+vl +SSBD+vI+RSB increase
avx2 128B 344 344 398 398 15.70%

avx2 128B xor 350 350 402 400 14.29%

avx2 1KiB 1198 1202 1244 1246 4.01%

ChaChao avx2 1KiB xor 1208 1212 1248 1250 3.48%
avx2 16KiB 19040 19052 19066 19068 0.15%

avx2 16KiB xor 19070 19086 19096 19110 021%

avx2 128B 138 142 182 180 3043%

avx2 128B verif 142 146 180 178 2535%

avx2 1KiB 670 672 720 718 7.16%

POV 1305 avx2 1KiB verif 674 676 726 24 742%
y avx2 16KiB 8942 8948 8990 8986 0.49%
avx2 16KiB verif 8942 8984 8984 8984 0.47%

avx2 128B 1206 1212 1250 1246 3.32%

avx2 128 B open 1964 1970 2044 2046 4.18%

avx2 1KiB 3140 3142 3190 3188 1.53%

avx2 1KiB open 3900 3904 3988 3988 2.26%

XSalsa20Polyl305 5 16KiB 32508 32574 32604 32602 0.01%
avx2 16KiB open 33292 33274 33358 33362 021%

X25519 mulx smult 102848 104150 104424 104428 1.54%
avx2 keypair 27676 28106 28040 28090 1.50%

Kybers12 avx2 enc 37050 38332 38876 38792 4.70%
avx2 dec 20302 30444 30590 30714 4.82%

avx2 keypair 43432 45708 45860 46548 7.17%

Kyber768 avx2 enc 57006 59316 60028 60674 6.43%
avx2 dec 46138 48418 48532 49294 6.84%

switches. Another main difference is that Serberus needs to
use fences and to spill all function arguments as its primary
protection mechanisms against speculative leaks, rather than
selective speculative load hardening. This is reflected in the
experimental evaluation, which reports a 21.3% overhead.
In contrast, our approach uses hardware support only for
Spectre-STL, and the overhead is minimal.

Retpoline [27] is a software-based countermeasure
against Spectre-BTB—and some variants of Spectre-RSB—
that replaces indirect jumps by return instructions. This
mitigation leverages knowledge of how the RSB is
implemented—as a LIFO buffer—to insert fences at the
points where execution would continue if the predictor is
wrong. Unfortunately, Wikner and Razavi [41] show that the
assumptions that retpoline relies on are incorrect. Switchpo-
line [16] is a software-based countermeasure that replaces
indirect jumps with direct ones, and a JIT compiler in some
cases. Although Switchpoline targets Spectre-BTB in ARM,
the transformation is very similar to ours. A critical differ-
ence between Switchpoline and our approach is that they
do not consider how to combine their transformation with
efficient countermeasures to protect programs. Furthermore,
our proof shows that return tables introduce leakage, which
needs mitigation.

Other attacks and countermeasures. There are many
micro-architectural attacks beyond Spectre, see e.g., [40],
[42], [24]. There exist initial efforts to develop formal foun-

dations, verification techniques and countermeasures against
these attacks, see e.g., [25]. Extending our approach to
integrate these attacks and countermeasures is an exciting
direction for future work.

10. Limitations

One limitation of our approach is that it applies only
to full programs, because an (unprotected) external function
call can exploit RSB to bypass protections. This limitation
is common to other approaches, including Serberus [33],
Switchpoline [16], Swivel [34], and Venkman [38].

Another limitation of our approach is that it does not
account for declassification. We are confident that our results
extend with declassification, at the cost of switching from
speculative constant-time to relative speculative constant-
time. In the future, we hope to leverage a formalization of
the type system in Coq to extend our results to declassifica-
tion.

11. Conclusion

We have proposed an approach to protect Spectre pro-
grams against all known forms of Spectre attacks. An im-
portant direction for future work is to reduce the Trusted
Computing Base of our extension by using the formalization
presented in this work to prove in Coq that the Jasmin type

system is sound, the return table insertion pass is correct, and
the Jasmin compiler preserves speculative constant-time.

Our approach is currently limited to Jasmin programs.
A pragmatic solution to carry our techniques to main-
stream languages would be to instrument existing compil-
ers with a pass for return table instructions and to de-
velop assembly-level type systems for checking speculative
constant-timeness.

Acknowledgments

This research was supported an ARC Discovery Early
Career Researcher Award (project number DE200101577);
an ARC Discovery Project (project number DP210102670);
by Deutsche Forschungsgemeinschaft (DFG, German re-
search Foundation) as part of the Excellence Strategy of the
German Federal and State Governments — EXC 2092 CASA
- 390781972; by the European Commission through the ERC
Starting Grant 805031 (EPOQUE); by the German Federal
Ministry of Education and Research (BMBF) in the course
of the 6GEM research hub under grant number 16KISKO038;
by the Agence Nationale de la Recherche (French National
Research Agency) as part of the France 2030 programme —
ANR-22-PECY-0006. Author Peter Schwabe is a member of
the advisory boards of Bitmark Inc., PQShield, Neutrality,
and SciEngines.

References

[1] https://www.intel.com/content/www/us/en/developer/articles/
technical/technical-look-control-flow-enforcement-technology.html.

[2] https://www.intel.com/content/www/us/en/developer/articles/
technical/software- security- guidance/best- practices/data-operand-
independent-timing-isa- guidance.html.

[3] “Security analysis of AMD predictive store forwarding,” AMD, Tech.
Rep., 2021, https://www.amd.com/system/files/documents/security-
analysis-predictive-store-forwarding.pdf.

[4] J. B. Almeida, M. Barbosa, G. Barthe, A. Blot, B. Grégoire, V. La-
porte, T. Oliveira, H. Pacheco, B. Schmidt, and P. Strub, “Jasmin:
High-assurance and high-speed cryptography,” in ACM CCS, 2017,
pp. 1807-1823, https://doi.org/10.1145/3133956.3134078.

[5S] J. B. Almeida, M. Barbosa, G. Barthe, B. Grégoire, V. Laporte,
J. Léchenet, T. Oliveira, H. Pacheco, M. Quaresma, P. Schwabe,
A. Séré, and P. Strub, “Formally verifying Kyber episode IV: im-
plementation correctness,” IACR Trans. Cryptogr. Hardw. Embed.
Syst., vol. 2023, no. 3, pp. 164-193, 2023, https://doi.org/10.46586/
tches.v2023.i3.164-193.

[6] J.B. Almeida, C. Baritel-Ruet, M. Barbosa, G. Barthe, F. Dupressoir,
B. Grégoire, V. Laporte, T. Oliveira, A. Stoughton, and P. Strub,
“Machine-checked proofs for cryptographic standards: Indifferentia-
bility of sponge and secure high-assurance implementations of SHA-
3 in ACM CCS, L. Cavallaro, J. Kinder, X. Wang, and J. Katz, Eds.,
2019, pp. 1607-1622, https://doi.org/10.1145/3319535.3363211.

[71 J. B. Almeida, M. Barbosa, G. Barthe, B. Grégoire, A. Koutsos, V. La-
porte, T. Oliveira, and P.-Y. Strub, “The last mile: High-assurance and
high-speed cryptographic implementations,” in /EEE S&P, 2020, pp.
965-982, https://doi.org/10.1109/SP40000.2020.00028.

[8] J. B. Almeida, S. A. Olmos, M. Barbosa, G. Barthe, F. Dupres-
soir, B. Grégoire, V. Laporte, J.-C. Léchenet, C. Low, T. Oliveira,
H. Pacheco, M. Quaresma, P. Schwabe, and P.-Y. Strub, “Formally
verifying Kyber episode V: Machine-checked IND-CCA security and
correctness of ML-KEM in EasyCrypt,” in JACR CRYPTO, 2024, p.
to appear, https://eprint.iacr.org/2024/843.

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

B. Ammanaghatta Shivakumar, G. Barthe, B. Grégoire, V. Laporte,
T. Oliveira, S. Priya, P. Schwabe, and L. Tabary-Maujean, “Typing
high-speed cryptography against Spectre v1,” in [EEE S&P, 2023, pp.
1094-1111, https://doi.org/10.1109/SP46215.2023.10179418.

W. Arthur, B. Mehne, R. Das, and T. Austin, “Getting in control
of your control flow with control-data isolation,” in [EEE/ACM
CGO, 2015, pp. 79-90, https://ieeexplore.ieee.org/abstract/document/
7054189.

E. Barberis, P. Frigo, M. Muench, H. Bos, and C. Giuffrida,
“Branch history injection: On the effectiveness of hardware mit-
igations against cross-privilege Spectre-v2 attacks,” in USENIX
Security, 2022, pp. 971-988, https://www.usenix.org/conference/
usenixsecurity22/presentation/barberis.

M. Barbosa, G. Barthe, K. Bhargavan, B. Blanchet, C. Cre-
mers, K. Liao, and B. Parno, “SoK: Computer-aided cryptogra-
phy,” in [EEE S&P, 2021, pp. 777-795, https://doi.org/10.1109/
SP40001.2021.00008.

M. Barbosa, G. Barthe, C. Doczkal, J. Don, S. Fehr, B. Grégoire,
Y. Huang, A. Hiilsing, Y. Lee, and X. Wu, “Fixing and mechanizing
the security proof of Fiat-Shamir with aborts and Dilithium,” in
IACR CRYPTO, 2023, pp. 358-389, https://doi.org/10.1007/978-3-
031-38554-4_12.

M. Barbosa, F. Dupressoir, B. Grégoire, A. Hiilsing, M. Meijers, and
P. Strub, “Machine-checked security for XMSS as in RFC 8391 and
SPHINCS™,” in IJACR CRYPTO, 2023, pp. 421454, https://doi.org/
10.1007/978-3-031-38554-4_14.

G. Barthe, B. Grégoire, V. Laporte, and S. Priya, “Structured leakage
and applications to cryptographic constant-time and cost,” in ACM
CCS, 2021, pp. 462-476, https://doi.org/10.1145/3460120.3484761.

M. Bauer, L. Hetterich, C. Rossow, and M. Schwarz, “Switch-
poline: A software mitigation for Spectre-BTB and Spectre-BHB
on ARMVS,” in ACM AsiaCCS, 2024, https://misc0110.net/files/
switchpoline_asiaccs24.pdf.

D. J. Bernstein, “Curve25519:
speed records,” in JACR PKC,
https://cr.yp.to/papers.html#curve25519.

J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.
Schanck, P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS-Kyber:
A CCA-secure module-lattice-based KEM,” in IEEE EuroS&P, 2018,
pp- 353-367, https://doi.org/10.1109/EuroSP.2018.00032.

new Diffie-Hellman
2006, pp. 207-228,

B. Calder and D. Grunwald, “Reducing indirect function call over-
head in C++ programs,” in ACM POPL, 1994, pp. 397408, https:
//dl.acm.org/doi/10.1145/174675.177973.

C. Canella, J. V. Bulck, M. Schwarz, F. Piessens, D. Evtyushkin,
and D. Gruss, “A systematic evaluation of transient execution at-
tacks and defenses,” in USENIX Security, 2019, pp. 249-266, https:
/Iwww .usenix.org/conference/usenixsecurity 19/presentation/canella.

C. Carruth, “Speculative load hardening — a Spectre variant #1
mitigation technique,” LLVM documentation, https://llvm.org/docs/
SpeculativeLoadHardening.html.

S. Cauligi, C. Disselkoen, D. Moghimi, G. Barthe, and
D. Stefan, “SoK: Practical foundations for software
spectre defenses,” in [EEE S&P, 2022, pp. 666-680,

https://doi.org/10.1109/SP46214.2022.9833707.

S. Cauligi, C. Disselkoen, K. von Gleissenthall, D. M. Tullsen,
D. Stefan, T. Rezk, and G. Barthe, “Constant-time foundations for
the new Spectre era,” in ACM PLDI, 2020, pp. 913-926, https:
//doi.org/10.1145/3385412.3385970.

B. Chen, Y. Wang, P. Shome, C. W. Fletcher, D. Kohlbren-
ner, R. Paccagnella, and D. Genkin, “GoFetch: Breaking constant-
time cryptographic implementations using data memory-dependent
prefetchers,” in USENIX Security, 2024, p. to appear, https://
gofetch.fail/files/gofetch.pdf.

https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.amd.com/system/files/documents/security-analysis-predictive-store-forwarding.pdf
https://www.amd.com/system/files/documents/security-analysis-predictive-store-forwarding.pdf
https://doi.org/10.1145/3133956.3134078
https://doi.org/10.46586/tches.v2023.i3.164-193
https://doi.org/10.46586/tches.v2023.i3.164-193
https://doi.org/10.1145/3319535.3363211
https://doi.org/10.1109/SP40000.2020.00028
https://eprint.iacr.org/2024/843
https://doi.org/10.1109/SP46215.2023.10179418
https://ieeexplore.ieee.org/abstract/document/7054189
https://ieeexplore.ieee.org/abstract/document/7054189
https://www.usenix.org/conference/usenixsecurity22/presentation/barberis
https://www.usenix.org/conference/usenixsecurity22/presentation/barberis
https://doi.org/10.1109/SP40001.2021.00008
https://doi.org/10.1109/SP40001.2021.00008
https://doi.org/10.1007/978-3-031-38554-4_12
https://doi.org/10.1007/978-3-031-38554-4_12
https://doi.org/10.1007/978-3-031-38554-4_14
https://doi.org/10.1007/978-3-031-38554-4_14
https://doi.org/10.1145/3460120.3484761
https://misc0110.net/files/switchpoline_asiaccs24.pdf
https://misc0110.net/files/switchpoline_asiaccs24.pdf
https://cr.yp.to/papers.html#curve25519
https://doi.org/10.1109/EuroSP.2018.00032
https://dl.acm.org/doi/10.1145/174675.177973
https://dl.acm.org/doi/10.1145/174675.177973
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html
https://doi.org/10.1109/SP46214.2022.9833707
https://doi.org/10.1145/3385412.3385970
https://doi.org/10.1145/3385412.3385970
https://gofetch.fail/files/gofetch.pdf
https://gofetch.fail/files/gofetch.pdf

[25]

[26]

(271

[28]

[29]

(30]

[31]

[32]

(33]

[34]

[35]

[36]

(371

(38]

[39]

[40]

M. Flanders, R. K. Sharma, A. E. Michael, D. Grossman, and
D. Kohlbrenner, “Avoiding instruction-centric microarchitectural tim-
ing channels via binary-code transformations,” in ACM ASPLOS,
2024, pp. 120-136, https://doi.org/10.1145/3620665.3640400.

G. Gilles Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin,
“Computer-aided security proofs for the working cryptographer,” in
IACR CRYPTO, 2011, pp. 71-90, https://iacr.org/archive/crypto2011/
68410071/68410071.pdf.

Intel Labs, “Retpoline: a software construct for preventing
branch-target-injection,” 2018, https://www.intel.com/content/
dam/develop/external/us/en/documents/retpoline-a-branch-target-
injection- mitigation.pdf.

J. Jancar, M. Fourné, D. D. A. Braga, M. Sabt, P. Schwabe, G. Barthe,
P-A. Fouque, and Y. Acar, ““They’re not that hard to mitigate”: What
cryptographic library developers think about timing attacks,” in JEEE
S&P, 2022, pp. 632-649, https://eprint.iacr.org/2021/1650.

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in IEEE S&P,
2019, pp. 1-19, https://spectreattack.com/spectre.pdf.

E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,”
in USENIX WOOT, 2018, https://www.usenix.org/conference/woot18/
presentation/koruyeh.

J. Li, Z. Wang, X. Jiang, M. C. Grace, and S. Bahram, “Defeating
return-oriented rootkits with "Return-Less" kernels,” in ACM EuroSys,
2010, pp. 195-208, https://doi.org/10.1145/1755913.1755934.

G. Maisuradze and C. Rossow, “ret2spec: Speculative execution using
return stack buffers,” in ACM CCS, 2018, pp. 2109-2122, https:/
dl.acm.org/doi/10.1145/3243734.3243761.

N. Mosier, H. Nemati, J. C. Mitchell, and C. Trippel, “Ser-
berus: Protecting cryptographic code from spectres at compile-time,”
in [EEE S&P, 2024, https://doi.ieeecomputersociety.org/10.1109/
SP54263.2024.00048.

S. Narayan, C. Disselkoen, D. Moghimi, S. Cauligi, E. Johnson,
Z. Gang, A. Vahldiek-Oberwagner, R. Sahita, H. Shacham, D. Tullsen,
and D. Stefan, “Swivel: Hardening WebAssembly against Spectre,”
in USENIX Security, 2021, pp. 1433-1450, https://www.usenix.org/
conference/usenixsecurity2 1/presentation/narayan.

K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda,
“G-free: defeating return-oriented programming through gadget-less
binaries,” in ACM ACSAC, 2010, pp. 49-58, https://doi.org/10.1145/
1920261.1920269.

R. Roemer, E. Buchanan, H. Shacham, and S. Savage, ‘“Return-
oriented programming: Systems, languages, and applications,” ACM
Transactions on Information and System Security, vol. 15, no. 1, pp.
2:1-2:34, 2012, https://dl.acm.org/doi/10.1145/2133375.2133377.

H. Shacham, “The geometry of innocent flesh on the bone: return-
into-libc without function calls (on the x86),” in ACM CCS, 2007, pp.
552-561, https://doi.org/10.1145/1315245.1315313.

Z. Shen, J. Zhou, D. Ojha, and J. Criswell, “Restricting control
flow during speculative execution with Venkman,” https://arxiv.org/
abs/1903.10651v1, 2019.

B. A. Shivakumar, J. Barnes, G. Barthe, S. Cauligi, C. Chuengsatian-
sup, D. Genkin, S. O’Connell, P. Schwabe, R. Q. Sim, and Y. Yarom,
“Spectre declassified: Reading from the right place at the wrong
time,” in IEEE S&P, 2023, pp. 1753-1770, https://doi.org/10.1109/
SP46215.2023.10179355.

J. R. S. Vicarte, P. Shome, N. Nayak, C. Trippel, A. Morrison,
D. Kohlbrenner, and C. W. Fletcher, “Opening Pandora’s box: A
systematic study of new ways microarchitecture can leak private data,”
in ACM/IEEE ISCA 2021, 2021, pp. 347-360, https://doi.org/10.1109/
ISCAS52012.2021.00035.

[41] J. Wikner and K. Razavi, “RETBLEED: Arbitrary speculative code
execution with return instructions,” in USENIX Security, 2022,
pp- 3825-3842, https://www.usenix.org/conference/usenixsecurity22/
presentation/wikner.

[42] J. Wikner, D. Trujillo, and K. Razavi, “Phantom: Exploiting decoder-
detectable mispredictions,” in IEEE/ACM MICRO, 2023, pp. 49-61,

https://doi.org/10.1145/3613424.3614275.

X. Yang, N. Cooprider, and J. Regehr, “Eliminating the call stack
to save RAM,” in ACM LCTES, 2009, pp. 60-69, https://doi.org/
10.1145/1542452.1542461.

[43]

Appendix
1. Source language and soundness

This appendix gives precise definitions of the source
language, semantics, type system, and soundness proof dis-
cussed in the main paper.

Continuations. Figure 11 defines the continuations C(f) of
a function f as the set of code that follows a call to f, along
with a boolean that indicates whether the MSF gets updated.

Source semantics. Figure 12 presents the rest of the seman-
tics. For speculative returns, that is the S-RET rule, we pin
down the whole continuation (cont, f,b) in the directive,
instead of just the code, because cont might come from
different program points, with different MSF updates. We
require cs # (f, cont) :: ¢s’ simply to make the semantics
deterministic: our approach does not need determinism, but
it makes presenting the rules and proofs easier.

Polymorphism. Our type system has polymorphism over
security types to allow function calls in contexts where
variables have different security types. It is critical in our
model where variables and memory are global since it is
unrealistic that calling a function requires that all registers
and memory locations have some fixed security type. Nev-
ertheless, we need some care when a function call occurs in
different contexts since we do not know to which call site it
will return. We need to distinguish between sequential and
speculative types, as we do not want to allow instantiating
as public a register that may, due to misspeculation, contain
secret data.

Recall the example in Figure la. If we assigned the type
{z : (o, 8)} = {z: (a,)} to id, with a polymorphic vari-
able in the speculative component, then we would be able to
type this program (by choosing as instantiations {«, 8 — L}
for the first call site and {«, 5 — H} for the second). What
we need is to ensure that under speculation, the output type
of the function is the maximum of all possible instantiations
we need for the program: (o, maxge,{6(5)}). Since we only
have two levels, this restriction means that if at any call site
we need to instantiate x as speculatively secret, we need to
assume that it could be secret in all return sites. Conversely,
if we guarantee that at all call sites x is speculatively public,
we can assume this at every return site. In this way, the
example is no longer typable: the type must be of the form
{z:(a,t)} = {z: (a/,¢')} where « < ' and t < t'. We

https://doi.org/10.1145/3620665.3640400
https://iacr.org/archive/crypto2011/68410071/68410071.pdf
https://iacr.org/archive/crypto2011/68410071/68410071.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/retpoline-a-branch-target-injection-mitigation.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/retpoline-a-branch-target-injection-mitigation.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/retpoline-a-branch-target-injection-mitigation.pdf
https://eprint.iacr.org/2021/1650
https://spectreattack.com/spectre.pdf
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://doi.org/10.1145/1755913.1755934
https://dl.acm.org/doi/10.1145/3243734.3243761
https://dl.acm.org/doi/10.1145/3243734.3243761
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00048
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00048
https://www.usenix.org/conference/usenixsecurity21/presentation/narayan
https://www.usenix.org/conference/usenixsecurity21/presentation/narayan
https://doi.org/10.1145/1920261.1920269
https://doi.org/10.1145/1920261.1920269
https://dl.acm.org/doi/10.1145/2133375.2133377
https://doi.org/10.1145/1315245.1315313
https://arxiv.org/abs/1903.10651v1
https://arxiv.org/abs/1903.10651v1
https://doi.org/10.1109/SP46215.2023.10179355
https://doi.org/10.1109/SP46215.2023.10179355
https://doi.org/10.1109/ISCA52012.2021.00035
https://doi.org/10.1109/ISCA52012.2021.00035
https://www.usenix.org/conference/usenixsecurity22/presentation/wikner
https://www.usenix.org/conference/usenixsecurity22/presentation/wikner
https://doi.org/10.1145/3613424.3614275
https://doi.org/10.1145/1542452.1542461
https://doi.org/10.1145/1542452.1542461

C @ c:={(cont;c, b) | (cont, b) € C'}
Cc(fv CT) Ucc(fv CL)

N JC(fic)Di if 7 is while e do ¢
Glf9) = {(,0)} if 7 is cally f
1% otherwise

e if ¢ is]
Celhe = {Ca(f,z‘) ©dUC(f,c) ifcis i

C(callee) = U

(caller, c)€p

if 7is if e then cT else c|

{ (cont, caller, b) | (cont,b) € Cc(callee,c)}

Figure 11: Continuations. Here Ci(f,1),
where f is a function name and ¢ an in-
struction, returns a set of pairs: the code
that follows (in the execution, not syntacti-
cally) each function call to f in ¢ and the
boolean argument of the call. The operation
@ takes a set of code and appends its second
argument to each element in the set. The
definition of C.(f,c) is analogous to the
one of Ci(f,i), where ¢ is code. Finally,
C(f) aggregates all the continuations of the
whole program, adding the name of the
caller.

S ASSIGN
<$ =€ f7 €S, Ps Ky m8> Q <Ca f7 Cs, p[.’lf A [[e]]P]7 My ms)
el, =1 0<i<|a
[el, A lal N-STORE
a ra? .
(a[e] = ;¢ fa Cs, P, W, ms> m <C7 fa Cs, P, N[(G»Z) «— p(x)]v m5>
el,=1 -0<i<|a 0<j5<1b
[el, (dd_ | lal) <j <ol S-STORE
a ra=? .
<CL[6} = I;C, fv CS, Ps Wy T> man—bj> <Ca f7 Cs, P, U[(bvj) < p(x)]a T>
le], =V ¢’ = if b then cp;while e do cp;c else ¢
— WHILE
(while e do co;c, f, cs, p, u, ms) % (c, f, cs, p, b, msV (b#D))
orce
INIT-MSF

(init_msf();c, f, cs, p, p, L) — (¢, f, cs, p[msf < NOMASK], p, L)

step

v=1if [e], then p(msf) else MASK

UPDATE-MSF

(update_msf(e);c, f, cs, p, p, ms) %) (e, f, cs, plmsf < v], u, ms)
step

Figure 12: Rest of the semantics.

need ¢’ to be L for the first call site to be typable since we
leak z after it, but we need ¢’ to be H for the second call
site to be typable since it is after the assignment of a secret
value to x. There is no way of typing this example ©. We
can type this example where we protect x after the first call
site because of subtyping: we can choose {a, H) — (a, H)
as the type of id and instantiate first with L and then with H

’. Doing so means that = is speculatively H after the first
call site, but the protect ensures we do not leak any secrets.

Soundness. To prove that typable programs are speculatively
constant-time, we show that pairs of single step executions
preserve a property that includes equality of observations.
This property entails the code of the machines and their
call stack being typable, the MSF being synchronized with
its type, and the machines being indistinguishable. Figure 13
presents the formal definitions of these properties. The pre-
cise statement of the lemma is as follows

Lemma 2 (Single-step soundness ©). If two machines mq
and my step under directive d to m/; and m/, respectively,
are typable under (X,T"), are synchronized with ¥, and
are indistinguishable under T, then the observation of both
steps are the same, and the resulting machines are typable,
synchronized, and indistinguishable. That is, we will prove
that there exist ¥', and I such that

01 12
mip — my

odz , 01 = 02
mo —> My

d AT F)
E,F F mi

= Asynced(¥, pl, ms})

synced (X, p1, ms1) Asynced (X, ply, msh)

synced (3, pa, mss) R -

my =r ma

We show an analogous property for multi-step execu-

T

CS-NIL

ST H] synced(X, p, ms) ==

E,TFe: X, T ¥, = es
5,TF (g,¢) ::cs

CS-CONS

ms <= p(msf) = MASK
-[el, V p(msf) = MASK
[el, A p(msf) = NOMASK

if ¥ is unknown

if ¥ is updated

if 3 is outdated(e) and ms
if ¥ is outdated(e) and —ms

E,IEc: X} 0(17%) Y 0(I) Foes
2’1—"_<C’ f’ Cs? p7 l’L’ m8>

MACH

Figure 13: A machine with registers p and misspeculation state ms is synchronized with an MSF type X, denoted
synced(X, p, ms), if the MSF accurately tracks misspeculation. A call stack cs is typable under ¥ and I if ¥, T" - ¢s holds. A
machine m is typable under ¥ and T, denoted X, I" F m, if there exists an instantiation 6 such that its code and its call stack
are typable as shown in the rule. For all functions f, we write ¥¢, I'¢, Z’f, and F} assuming Sig(f) =X;,Ty — ¥/ ,F}.

lLix=ec— 1V [el,=v

5 ASSIGN
£, p, p, ms) oo (', plx < v], u, ms)

step

0:] A

Jun:p ~ JUMP
<€7 Py m8> — <£la Py 1y ms>
step
£:if e jump — 41,/ el, =0
Jjump Ty bL [el, CJUMP

(£ py pt, ms) 2L (04, p, i ms V(b))

Figure 14: Selected rules of the semantics of the linear
language.

tions, which allows us to conclude Theorem 1.

2. Compilation and preservation

This appendix gives precise definitions of the compi-
lation scheme, directive and observation transformers, and
preservation proof discussed in the main paper.

Linear semantics. Figure 14 presents some rules of the
semantics of the linear language. The remaining rules, for
loads, stores, and the selSLH instructions, are similar to the
ones for the source language. We write ¢ : [i — ¢* when i
is at position ¢ and its successors are ¢*. All instructions
have exactly one successor except conditional jumps, which
have two.

Compilation. Figure 16 presents the compilation scheme
as a relation between source code an a linear program, de-
noted £ : (]c[)’: one — U/, that holds when the target program
contains compilation of ¢, starting at label ¢ and ending
at label ¢'. We keep track of a context which contains the
function name f and current continuation cont to be able
to compile function calls.

We compile basic instructions, conditionals, and loops
in the natural way. For function calls, that is the CALL-L
and CALL-T rules, we annotate the jumps to the callee;
this is just a jump instruction with a special annotation. We

(callee, cont, caller,b) <> £,
£ jump — L
£ ({ (cont, caller,b) } Drceiltlbﬁe

(callee, cont, caller,b) <1 L,

¢ if (racatice = 4r) jump, — Cr, b

60 . (]E* Dcallee

rettbl

£: ({ (cont, caller,b) } U £* Drceatltllje

Figure 15: Compilation relation for return tables.

introduce an MSF update only if the second argument of
the call is T.

To create the return table for each function we need to
label all its continuations. We model this with a relation
(callee, cont, caller,b) <>, £, which relates each continua-
tion of callee with a unique label. This means

(callee, cont, caller,b) <> £
= (cont, caller,b) € C(callee)

with ¢ unique per callee.

Figure 15 presents the compilation of return tables. We
need no rule for zero call sites since the only function with
no call sites is the entry point, which does not require a
return table.

Finally, the linear program is the compilation of the
source program, denoted (p]), if the bodies of all functions
are compiled at their labels, and internal functions have their
return tables. That is,

V(f,cy) € p.
i Qep)] = ooy A f# main = Lrer, = (C(F) Doguny
where the entry point is main.
Preservation. Figure 17 defines the directive and observa-

tion transformers. The directive transformer Tp;(¢,d) de-
termines what the source machine does given the current

O (i), = ASSIGN
LOAD
G (e = 0 t : A=B = ' groRE
NIL CONS
0V — ¢ 0 (e, = 0:(A=B)/,, —¢ INTMSF
(I Deons (45 ¢Deont (Veons UPDATE-MSF
. . PROTECT
¢ o ifejump — f1,46
T (]CTDJ:om — U £ ifejump — £yl
O : jump — w = while e do ¢ by : (]chU;COm — 4
€ (el) . =0 4y ¢ jump —
7 COND 7 WHILE
¢:(if e then ct elsecy |, — ¥ ¢:(while e do c¢)?,,,, — ¢
(callee, cont, f, T) <>p £
(callee, cont, f, L) <o € { : Taetee = 4y A
I TQcallee = v — 60 60 : jumpcall — gcallee
Ly @ jumpey = Leallee £, : update_msf(raceee = 4r) —
7 CALL-L 7 CALL-T
0:(cally callee)),,, — 0 (cally callee),,,, — V'
Figure 16: Compilation relation.
I if £: jump — ¢
I ifl:rap =4, =0
I if £ : update_msf(ray = £,) — ¢
Toir(4,d) == < [] if £:if ray = ¢, jump, — £,y and d = force L
returncg b if £: jump,, — ¢ and (f,c,g,b) <>z £y
returncgb if £:if ray = £, jump, — ¢, 0y and d = force T and (f,c,g,b) <32 {r
[d] otherwise

TObs(€7 P*, O) :

branch [ray = £,] -
head O

otherwise

if £:jump — ¢
ifl:rag =4, >0

if £ : update_msf(ray =4£,) = '
if £:jump,e — 4r

if €:if ray =4, jump, = €, 0o

Figure 17: Directive and observation transformers. The transformer are undefined in the cases not shown here.

instruction (at position ¢) and the target directive d. The
first four cases say that the source machine skips a step
when the target executes jumps, return address stores, MSF
updates after a function call, and entries of the return table
that are not taken. The next two cases are when an entry of
the return table entry is taken, and it produces a return c g b
directive, which is uniquely identified by (f, ¢, g,b) <> ;.
In all other cases, the source and target machines behave
identically.

On the other hand, the transformer for observations
Tobs(¢, p*,O) determines the observation of the target ma-
chine given the current instruction (at position £), the values
of the return addresses, and the source observations. For
the first four cases, which are intermediate steps in the

compilation of a source instruction, it predicts that the target
observation will be . The next case is an intermediate jump
in a return table: it uses the value of the return addresses to
determine the observation of this comparison. We are able
to provide the values of the return addresses because they
are uniquely determined from the public part of the initial
state and the directives executed until now. Similarly to the
directive transformer, in all other cases, the source and target
machines behave identically.

In order to prove Theorem 2, we need to extend the trans-
formers to multi-step executions. This is straightforward if
we note that from the current instruction and directive we
can predict the next instruction: it is the following label,
unless it is a conditional jump, in which case the directive

is force b and the label ¢, follows.

	Introduction
	Background
	Overview
	Language
	Security model
	Syntax
	Semantics
	Speculative constant-time

	Type system
	Misspeculation type
	Soundness

	Return table insertion
	Implementation in the Jasmin compiler
	Evaluation
	Modifications to libjade
	Performance of libjade

	Related work
	Limitations
	Conclusion
	References
	Appendix
	Source language and soundness
	Compilation and preservation

