
ELEKTRA: Efficient Lightweight multi-dEvice Key TRAnsparency∗

Julia Len†
Cornell Tech

New York, USA
jlen@cs.cornell.edu

Melissa Chase
Microsoft Research
Redmond, USA

melissac@microsoft.com

Esha Ghosh
Microsoft Research
Redmond, USA

esha.ghosh@microsoft.com

Daniel Jost
New York University

New York, USA
daniel.jost@cs.nyu.edu

Balachandar Kesavan
Zoom Video Communications

New York, USA
surya.heronhaye@zoom.us

Antonio Marcedone
Zoom Video Communications

New York, USA
antonio.marcedone@zoom.us

ABSTRACT
Key Transparency (KT) systems enable service providers of end-
to-end encrypted communication (E2EE) platforms to maintain a
Verifiable Key Directory (VKD) that maps each user’s identifier, such
as a username or email address, to their identity public key(s). Users
periodically monitor the directory to ensure their own identifier
maps to the correct keys, thus detecting any attempt to register
a fake key on their behalf to Meddler-in-the-Middle (MitM) their
communications.

We introduce and formalize a new primitive called Multi-Device
Verifiable Key Directory (MVKD), which strengthens both the se-
curity, privacy, and usability guarantees of VKD by leveraging the
multi-device setting. We formalize three properties for a MVKD
(completeness, extraction-based soundness, and privacy), striking a
non-trivial balance between strong guarantees and the limitations
imposed by a truly practical system. We then present a newMVKD
system called ELEKTRA. This system combines the core of the
Keybase KT system (running in production since 2014) with ideas
from SEEMless (Chase et. al., 2019) and RZKS (Chen et. al., 2022).
Our construction is the first to achieve the above multi-device guar-
antees while having formal security and privacy proofs. Finally, we
implement ELEKTRA and present benchmarks demonstrating its
practicality.

CCS CONCEPTS
• Security and privacy→ Cryptography; Key management;
Public key encryption; Privacy-preserving protocols.

KEYWORDS
key transparency; verifiable key directory; multi-device; PK; rotat-
able zero-knowledge set; post-compromise security

1 INTRODUCTION
End-to-end encrypted (E2EE) communication systems (such as
Signal [23], Keybase [12], Zoom [6], Teams [21], WhatsApp [29],
iMessage [3], and Webex [28]) are becoming increasingly ubiqui-
tous. E2EE systems typically require each user to generate a public
key pair and use their own on-device secret key, along with their
communication partner’s public key, to establish a secure commu-
nication channel between them. Notably, this process hinges on
∗This is the full version of the article with the same title published in the Proceedings
of ACM CCS ’23.
†Author contributed in part while an intern at Zoom Video Communications.

both parties receiving the correct key for their communication part-
ner. Existing E2EE systems have the service providers maintain a
directory that maps the user identifiers (such as a username, email
address, phone number, etc.) to their most recent public keys, dis-
tributing users’ keys on their behalf. This is great for usability, but
consequently creates the need for verifying the authenticity of these
keys. A malicious service provider (or one who is hacked or com-
pelled to act maliciously) can, for instance, replace an honest user’s
identity public key with another public key whose secret key is
known to the provider. The service provider could thus implement
a Meddler-in-the-Middle (MitM) attack without the communicating
users ever noticing. Most applications mitigate this risk by suggest-
ing that users compare key fingerprints (rendered as QR codes or
“security codes”) with their conversation partners out-of-band, but
this introduces high friction (see e.g. [9]) and can often be infeasible.

Key Transparency. An automated solution to this problem, and
one that is, therefore, more likely to provide guarantees for the
average user, is a Key Transparency (KT) system, which enables
service providers to maintain an auditable directory that maps each
user’s username1 to their identity public keys. Service providers
compute and advertise a short “commitment” com to the whole
directory, and update it (creating a new epoch) whenever users join
the directory or update their keys. When users query a particular
username, they get the corresponding public key and a proof that
the reply is consistent with com. Users periodically monitor the
directory to make sure their own user identifier maps to the correct
keys, thus detecting any attempt to MitM their communications by
associating a fake key with their identity.

However, as the landscape of E2EE messaging has evolved, prior
work on KT systems [2, 5, 7, 11, 15, 17, 19, 24–27] has not considered
or modeled important new features arising in practice. For instance,
prior KT systems have not explicitly accounted for cases where
a user can have multiple (trusted) devices (such as their laptop,
mobile phone, etc.), which more recently has become a standard
feature of E2EE messaging. One proposal for extending KT systems
to support multiple devices is to simply have the auditable key
directory map the user’s identifier to a list of their identity public
keys (one per device). In particular, this is the approach suggested
by Parakeet [18], which WhatsApp recently announced it plans to
deploy [16]. When a client queries for a username, a list of keys is
returned along with a proof attesting that the query response is
consistent with the posted commitment. However, this approach
1We will use username as the user identifier in the rest of the paper.

1

https://orcid.org/0000-0002-9625-6363
https://orcid.org/0009-0003-8333-3942
https://orcid.org/0009-0002-6937-9197
https://orcid.org/0000-0002-6562-9665
https://orcid.org/0009-0006-1424-4390
https://orcid.org/0000-0001-5109-1641

Len et al.

fails to capture the stronger security guarantee that a multi-device
setting can provide in practice. For example, if a user has multiple
trusted devices, they can sign a key update (e.g. adding a new
device’s public key or revoking an existing one’s) with one of the
existing device keys. This means that even a malicious service
provider (or one who is coerced to act maliciously) cannot put a
fake key on a user’s account easily – they would need to forge a
signature or compromise one of the user’s devices (assuming the
KT system is audited for consistency and users remember their
conversation partners’ keys).

This is the approach taken by Keybase, the only deployed KT
system to the best of our knowledge. Keybase offers an auditable
multi-device KT system that allows users to cryptographically link
their identity keys to their social media accounts and leverages
these keys for several applications, including E2EE chats.

Another important aspect to consider in a multi-device system is
what happens if a user loses access to all of their devices. Typically,
E2EE applications will issue an “account reset”: both Signal [22] and
Keybase [14], for instance, enable a user to register a new device
with their account that replaces their old device(s) and notifies
contacts about the change. Indeed, resets allow for the system
to be more user-friendly, enabling a user to keep their username.
While some may argue that allowing key resets might void the
additional guarantees of a multi-device KT system (e.g. an attacker
who compromises the service provider could simply reset a user’s
key and begin to impersonate them), the prevalence of reset features
in today’s E2EE messaging ecosystem points to the importance of
this functionality for end users. Furthermore, in practice, key resets
can be disabled in particularly sensitive deployments, and are often
executed only with extra security measures. For example, Keybase
only allows this under very stringent conditions: users need to
prove ownership of the account through the associated password,
email, or phone number and are forced towait a weekwhile Keybase
tries to notify the owner through those channels. Moreover, since
resets are rarer than a user just getting a new phone or re-installing
the app, all the user’s conversation partners are forced to actively
acknowledge an urgent warning that invites them to check in with
the user out-of-band. The server cannot suppress this notification
as clients remember their partners’ sets of keys and can thus detect
these changes. Key resets are therefore an integral and practical
feature of E2EE messaging that should be taken into consideration
when constructing and analyzing KT systems.

Importantly, the necessary functionalities we have described
thus far have not been considered in the formal literature on KT
systems, pointing to a gap between the theory of these systems
and the practice of what E2EE messaging requires. Furthermore,
while Keybase’s protocol does capture these practical requirements,
it lacks formal security guarantees and another important feature
that KT systems should target: privacy.

Privacy. Recent academic and industry proposals and the IETF
draft charter for KT have shed light on the importance of achieving
privacy [1, 6–8, 10, 18, 19]. In particular, the data stored by KT sys-
tems can be sensitive: users might want to hide the fact that they
are using a specific KT system or applications from unauthorized
parties, such as auditors and other users who would not otherwise
be able to query for those usernames. These systems can also leak

metadata, such as when a particular user first registered or when
and how often their keys change. In fact, Google, Zoom, and What-
sApp explicitly advocate for adding both content and metadata
privacy to KT systems [6, 10, 16]. Keybase, however, was originally
designed as an alternative solution for PGP key distribution and
therefore does not aim to achieve any user key privacy.

Moreover, while recent proposals for KT systems have consid-
ered privacy, none have considered the more difficult goal of re-
covering privacy even after a server state compromise, a notion
similar to post-compromise security for E2EE messaging. Given
the sensitivity of data stored in a KT system and the importance
given to post-compromise security in practice, a practical KT sys-
tem should have that any keys added to the system remain private
even if the server state had been leaked before those additions were
made. This property, first formalized in [8], is non-trivial because
KT systems typically achieve privacy through asymmetric crypto-
graphic primitives such as verifiable random functions (VRFs) [20].
If the server were temporarily compromised, the secret keys for
these primitives would be leaked, and therefore the protocol would
need a way to restore these privacy guarantees without compro-
mising auditability or security. We therefore argue, as in [8], that
a practical KT system must not only target security but also meet
the more complex goal of privacy with post-compromise security.

New Primitive: Multi-Device Verifiable Key Directory. To
support the multi-device setting discussed above, we define a new
cryptographic primitive called the Multi-Device Verifiable Key Di-
rectory (MVKD), which extends the Verifiable Key Directory (VKD)
primitive defined in [7]. Our primitive assumes three types of par-
ties: the server, the auditors, and the users. The server maintains
a key directory of users’ public keys. It updates the directory in
batches, periodically publishes a commitment to the current state
of the directory, and distributes public keys on a user’s behalf. Audi-
tors, which can be dedicated third parties or even users themselves,
then verify the consistency of successive versions of the directory
based on the posted commitments.

Each user has a username that uniquely identifies them within
the system. In our model, users can have several public key pairs
corresponding to multiple devices and can dynamically add new
keys and revoke old ones. Each change to a user’s set of keysmust be
authenticated by an existing key2, the obvious exceptions being the
user’s very first key and a full account reset. To simplify notation,
we henceforth assume there to be a one-to-one correspondence
between key pairs and devices, i.e., adding a new key corresponds
to adding a new device and revoking a key to revoking a device.3
Each device stores a secret key that only it knows, while the server
stores and distributes the associated public key on the user’s behalf.
Users can thus query for a specific username to get the history of
device updates (and key changes) on that user’s account.

MVKD provides twomajor improvements overVKD: (1) stronger
security guarantees for users with multiple devices, and (2) the

2Note that this means that our directory will store signing keys. While we will not
explicitly model encryption keys or formalize applications like E2EE, we provide
interfaces to allow the user to add additional externally generated keys, which makes
these extensions straightforward. We provide a discussion of how to support E2EE in
Section 2.
3This notation is not limiting any functionality since a device rotating their key can
be seen as the addition of a new device followed by the revocation of the old one.

2

ELEKTRA: Efficient Lightweight multi-dEvice Key TRAnsparency

ability to recover privacy guarantees after a server state leak. To
understand improvement (1), we highlight that VKD made a sim-
plifying assumption that each user has only one key pair. In their
model, clients could potentially post a new ephemeral one-time
public key each time they use the system and then immediately
delete the corresponding secret key without losing any security
guarantees. VKD thus treats clients as stateless. However, our set-
ting of multiple devices per user is significantly more complex. This
functionality fundamentally means we need to support a notion
of clients with persistent device state that contains secrets, which
must be used in the MVKD protocol for authorizing updates. This
forces us to model client corruptions as well as capture leakage
related to a client’s secret state. Furthermore, we require the addi-
tion of a new device to be authorized not only by the adding device
but also by the device being added itself. This implies that parties
cannot register other people’s keys under their own name — which
is a security property many real-world applications enforce, and a
slightly weaker variant of the key-registration with knowledge [4]
notion. Our model therefore not only allows for stronger security
but also better captures the E2EE setting, where users typically
have multiple devices, and those devices can be corrupted.

For improvement (2), while VKD targeted privacy as a security
goal, it did not consider post-compromise security (PCS), e.g. how
to recover privacy after a server state compromise. Our MVKD
primitive, however, offers two ways of updating the directory: a
more efficientUpdate algorithm to be used during regular intervals,
and a separate PCSUpdate algorithm that leverages PCS functional-
ity from Rotatable Zero-Knowledge Sets [8] (RZKS) to periodically
“rotate” the server key and thus restore privacy in case of a compro-
mise. This adds further complexity to our model, as now we must
capture server-state corruptions.

Rigorous Security Definitions. We formally define the security
properties ofMVKD through completeness, soundness, and privacy.
We stress that, in recent years, there has been a lot of progress in
building KT systems, but none of these systems simultaneously
support multiple devices (with the strong guarantees we discuss)
and formally prove security. For instance, SEEMless [7] and Para-
keet [18] have formally defined and proven security, but lack the
multi-device aspect as described above. Keybase and other more
recent academic works [11, 27], on the other hand, let client devices
sign new updates, but do not provide any formal security or privacy
guarantees for public keys.

To the best of our knowledge, ours is the first rigorous formaliza-
tion of a multi-device KT system, and given the interest in deploying
them [1, 6], we believe this to be of great significance. We have seen
time and again that attacks are discovered on deployed systems,
and not having rigorous security guarantees will only aggravate
this problem. It is incredibly difficult to fix or introduce new fea-
tures (such as privacy or multi-device support) to systems that are
already in production without breaking backward compatibility.
This is even harder for transparency systems, where such a change
would have to occur in a fully transparent way.

ELEKTRA: aMVKD system. We design ELEKTRA: a practical
multi-device key transparency system with PCS. Our construction
takes the core protocol of Keybase and uses ideas from SEEMless [7]
and RZKS [8] to add privacy. This results in a MVKD construction

based on verifiable random functions (VRFs) [20], hash functions,
and standard digital signature schemes. We show the protocol to
satisfy our formal completeness, soundness, and privacy definitions.

Our starting point is the core protocol of Keybase, where each
user has an associated hashchain of signed statements (referred
to as “sigchains”). Keybase maintains a sparse Merkle tree, which
maps each username to that user’s most recent sigchain tail: the
username corresponds to a leaf position in the sparse Merkle tree,
and the leaf contains the sigchain tail. When a user updates their
sigchain, the old tail is replaced with the new one at the same leaf
position, which thus remains the same through all updates for the
same user. The tree itself is publicly available (the server makes it
available through an unauthenticated channel), and the server signs
its root and posts it on the Stellar blockchain. Our protocol replaces
the sparse Merkle tree of Keybase with a RZKS [8], an authenticated
data structure that strengthens Merkle trees with stronger privacy
properties and enforces that updates are append-only (once added,
existing entries cannot be modified or deleted). We leverage the
RZKS using the same approach as SEEMless: we store every update
to a user’s keychain (an abstraction of Keybase’s sigchains) in a
“new location” in the tree (determined using a VRF) as opposed to a
fixed location. The RZKS allows an external auditor or third party
to verify that the append-only property is respected while limiting
leakage about which users updated their chains. The main novelty
of our construction is in combining these somewhat orthogonal
ideas into a cohesive and provably-secure protocol that retains the
advantages of each of them: the strong multi-device security of
Keybase with the extra privacy guarantees of SEEMless and the
PCS of RZKS.

Implementation and experiments. To show the practicality of
our system, we implemented ELEKTRA and measured its perfor-
mance by running the server on an AWS EC2 c5.4xlarge instance
(16 cores, 32 GB memory) and the client on a Google Pixel 6 (8
cores, 8 GB memory), interacting over the internet. Given aMVKD
containing 4M keychain updates (for example, 1M users who each
updated their set of keys/devices 4 times), a client can query for the
keychains of 10 of those users in less than 300ms. The server can
Update anMVKD of the same size with 10 new keychain updates
in less than 100ms (including verifying the signed updates, but not
including receiving them from clients). Performing a PCSUpdate
operation instead takes 37 minutes (an operation that we expect
to happen rarely, and that can almost completely happen in par-
allel with other queries and updates). Auditing the two update
operations would take strictly less time than performing them.

We stress that our implementation is an academic prototype, and
we expect significant performance improvements from applying
standard systems engineering techniques such as more sharding,
parallelization, and map-reduce-type workflows.

2 MULTI-DEVICE VERIFIABLE KEY
DIRECTORY (MVKD)

In this section, we define and formalize the Multi-Device Verifiable
Key Directory (MVKD), a new cryptographic primitive that extends
the VKD primitive from [7]. At a high level, MVKD implements an
auditable key directory, which allows each user to store a set of

3

Len et al.

multiple keys — including the history of how the set evolved — that
can then be queried by other users.

2.1 Keychains
Before formalizing ourMVKD primitive, we first introduce the data
structure thatMVKDs store, which we call a keychain. It captures
the evolution of a user’s public keys and is inspired by what Keybase
calls sigchains [13]4. It is composed of an ordered sequence of
individual statements, called keychain statements or links.

Definition 1. A keychain statement is a tuple of one of the
following types:

▶ (AddFirst, 𝑝𝑘𝑎, 𝑝𝑘𝑎, 𝑡)
▶ (Add, 𝑝𝑘𝑎, 𝑝𝑘, 𝑡)

▶ (Revoke, 𝑝𝑘𝑎, 𝑝𝑘, 𝑡)
▶ (Extra, 𝑝𝑘𝑎, 𝑑, 𝑡)

The first element is a constant representing the action to be performed,
the second element 𝑝𝑘𝑎 is the public key of the device authorizing the
statement, the third element is the public key or data on which the
action is performed, and the fourth element 𝑡 is either an integer (the
“epoch number” at which such statement is inserted in the keychain) or
the special symbol ⊥ (when this epoch has not yet been determined).

The AddFirst type represents when a user’s very first public key
is added or when a user’s account is reset (see Section 1 for why
we model account resets). Add is used to add additional keys, and
Revoke denotes public key revocation. Extra enables the addition
of user-specified data to a keychain. For example, this could be used
to add a signed link to a social media profile, as in Keybase, or to
include other externally generated keys to a user’s profile, such as
a cryptocurrency address.

We next define keychains and their validity, i.e., the sequence of
operations a user can issue that are considered valid.

Definition 2. A keychain consists of a string 𝑢 (representing
the username) and an ordered sequence of keychain statements that
describe the keys associated with 𝑢. We say that S is valid, denoted
ValidKeychain(S), iff the following requirements are met:
• The epochs of keychain statements must be strictly increasing,

except for the last statement which can have the epoch set to ⊥.
• Each public key can only be added once.
• A public key can only be revoked if it has been previously added

but not yet revoked (either via an explicit revoke or an AddFirst
statement acting as the revocation for all prior keys).

• For each statement except for AddFirst (which is self-certifying)
the authorizing key must be an unrevoked key (as defined above).

Below we show an example of keychains and how they can
capture data about public keys over time. We will use this as a
running example throughout this work.

Example: Bob, Charlie, and Diana chat with each other via an
E2EE communication platform, which stores users’ public keys
in its key directory using keychains. Bob registered his phone
which has key 𝑝𝑘𝐵1 at epoch 10 and then used his phone to register
his laptop which has key 𝑝𝑘𝐵2 at epoch 15. Charlie registered his

4For flexibility, we diverge from the notion of sigchains and do not include signatures
in our formalization of keychains. We will later see in Section 3 how our construction
adds signatures over updates in a way that captures Keybase’s protocol.

phone with key 𝑝𝑘𝐶1 at epoch 7, and Diana registered her phone
with key 𝑝𝑘𝐷1 at epoch 3.
Key Directory:
(Bob; (AddFirst, 𝑝𝑘𝐵1 , 𝑝𝑘

𝐵
1 , 10), (Add, 𝑝𝑘

𝐵
1 , 𝑝𝑘

𝐵
2 , 15))

(Charlie; (AddFirst, 𝑝𝑘𝐶1 , 𝑝𝑘
𝐶
1 , 7))

(Diana; (AddFirst, 𝑝𝑘𝐷1 , 𝑝𝑘
𝐷
1 , 3))

2.2 MVKD Definition
OurMVKD primitive offers algorithms for users to amend their key-
chain. These algorithms produce an output that we call a keychain
statement authenticator (auth) and represents the user device’s au-
thentication over the proposed change. These authenticators are
sent to the server alongside the description of each intended change,
where they are applied in batches to form the next epoch. For each
new epoch, the server publishes a commitment com′ to the direc-
tory. Users then employ VerExtension to update their commitment
andQuery to request data from the directory. Finally, auditors verify
the validity of each transition between two sequential commitments
com𝑡 and com𝑡+1. Such auditing could be performed by third par-
ties or other users. We envision that MVKD will be deployed as
part of a higher-level application that coordinates inputs to the
various parties (e.g., it takes care of transmitting the statement
authenticators from the clients to the server), and might perform
additional access control (i.e., restrict who is allowed to query for a
specific user’s keychain).

To reduce the need for synchronization, a keychain statement’s
epoch is not fixed by the time a user submits a change request but
rather filled in by the server upon processing it. Furthermore, clients
can make queries with respect to a prior commitment. This enables
a client to, e.g., only update their commitment once it has been
verified by an auditor of their trust, yielding upfront guarantees
rather than the after-the-fact detection offered by VerExtension.

Definition 3. AMulti-Device Verifiable Key Directory (MVKD)
scheme is a tuple of PPT algorithms MVKD.{GenPP, ServerInit,
DeviceSetup,AddFirstKey,AddKey,RevokeKey,AddExtra,Update,
PCSUpdate,Query,VerExtension,Audit, Sign,Verify} defined as fol-
lows:

⊲ pp ← MVKD.GenPP(1𝜆) : This algorithm takes the security
parameter as input and generates the public parameters for the
scheme. Its output is implicitly assumed to be given as input to all
other MVKD algorithms, even when not explicitly specified.
⊲ (𝑠𝑡𝑠0, com0) ← MVKD.ServerInit(pp) : Initializes the server state
and initial commitment to the (empty) key directory for epoch 0.
⊲ (𝑠𝑡, 𝑝𝑘) ← MVKD.DeviceSetup(pp, 𝑢) : Generates a new client
device state 𝑠𝑡 and public key 𝑝𝑘 to be used for username 𝑢. We
assume w.l.o.g. that 𝑠𝑡 stores a commitment com𝑡 defining the last
server epoch 𝑡 the client has seen.
⊲ auth← MVKD.AddFirstKey(𝑠𝑡) : Initiates a request to add the
public key associatedwith this device (i.e. as output byDeviceSetup)
to the user’s keychain. It takes as input the device’s state 𝑠𝑡 and
outputs the statement authenticator auth to be sent to the server.

Example: Alice joins the system. On her phone, she gener-
ates a new key pair (𝑠𝑘𝐴1 , 𝑝𝑘

𝐴
1) and calls AddFirstKey to start

4

ELEKTRA: Efficient Lightweight multi-dEvice Key TRAnsparency

her keychain. The first statement will be (AddFirst, 𝑝𝑘𝐴1 , 𝑝𝑘
𝐴
1 ,⊥),

where the epoch is ⊥ as the statement has not been added by the
server yet. AddFirstKey outputs authAlice which Alice sends to
the server.
Charlie loses his phone, his only device. He uses his new phone
to generate a new key pair (𝑠𝑘𝐶2 , 𝑝𝑘

𝐶
2) and calls AddFirstKey

to do a reset and register his new device using the statement
(AddFirst, 𝑝𝑘𝐶2 , 𝑝𝑘

𝐶
2 ,⊥). Once the server updates Charlie’s key-

chain, his first key 𝑝𝑘𝐶1 will be considered revoked.

⊲ (auth ; 𝑏) ← MVKD.AddKey(𝑠𝑡0, 𝑝𝑘1 ; 𝑠𝑡1, 𝑝𝑘0) : AddKey is an
interactive protocol for user 𝑢 to use their existing device 𝑑0 to
authorize a new device 𝑑1 and initiate a request to add the new
device’s public key to 𝑢’s keychain S. Each device 𝑑𝑖 takes as input
its own state 𝑠𝑡𝑖 and the other device’s public key 𝑝𝑘1−𝑖 for 𝑖 ∈ {0, 1}.
We assume that the public keys are exchanged out-of-band or by
the higher layer application. The adding device 𝑑0 outputs the
authenticator auth to be sent to the server, while the added device
outputs a bit 𝑏 indicating whether it accepted the operation.

Example: Diana uses her phone to add her laptop as a second
device. Her laptop has generated 𝑝𝑘𝐷2 . Both devices jointly au-
thenticate the keychain statement (Add, 𝑝𝑘𝐷1 , 𝑝𝑘

𝐷
2 ,⊥). Diana’s

phone then sends authDiana to the server.

⊲ auth← MVKD.RevokeKey(𝑠𝑡0, 𝑝𝑘1) : RevokeKey takes as input
the device’s state 𝑠𝑡0, and the public key 𝑝𝑘1 of the device to revoke.
It outputs the authenticator auth to be sent to the server. We note
that devices are permitted to revoke themselves.
⊲ auth← MVKD.AddExtra(𝑠𝑡, 𝑑) : AddExtra initiates a request to
add an Extra keychain statement to the user’s keychain. It takes as
input the device’s state 𝑠𝑡 and some arbitrary data 𝑑 which will be
included in the statement. This algorithm outputs the statement
authenticator auth to be sent to the server.

Example: Bob wants to include his bitcoin address 0xf3e. . . in
his keychain so that other users can send him money. He uses his
phone to call algorithm AddExtra and generate authBob on the
keychain statement (Extra, 𝑝𝑘𝐵1 , “BTC:0xf3e . . .”,⊥).

⊲ (𝑠𝑡𝑠𝑡 , com𝑡) ← MVKD.Update(𝑠𝑡𝑠
𝑡−1,M) : The server uses this al-

gorithm to update its internal state. It takes as input the current state
𝑠𝑡𝑠
𝑡−1 for epoch 𝑡 − 1 and a set of updatesM = {(𝑢𝑖 , s𝑖 , auth𝑖)}𝑛𝑖=1.

In each triple, 𝑢𝑖 represents a username, s𝑖 represents the new
keychain statement to be added to 𝑢𝑖 ’s keychain, and auth𝑖 is the
keychain statement authenticator that 𝑢𝑖 ’s device had output when
authorizing this change. For simplicity, we assume that each user
only submits one change request per epoch, ensuring that the or-
dering of keychain statements at the time of Update is obvious to
the server. The server updates to the new epoch 𝑡 and outputs its
updated state 𝑠𝑡𝑠𝑡 and the new commitment com𝑡 .

Example: Alice, Bob, Charlie, and Diana have all submitted up-
dates of their keychains to the server. It is the end of epoch 25
and the server is about to transition to epoch 26 with the respec-
tive update set M. The server updates its own internal state and
computes a commitment over the new epoch’s updated directory.
The directory now looks as follows.

Key Directory:
(Alice; (AddFirst, 𝑝𝑘𝐴1 , 𝑝𝑘

𝐴
1 , 26))

(Bob; (AddFirst, 𝑝𝑘𝐵1 , 𝑝𝑘
𝐵
1 , 10), (Add, 𝑝𝑘

𝐵
1 , 𝑝𝑘

𝐵
2 , 15),

(Extra, 𝑝𝑘𝐵1 , “BTC:0xf3e . . .”, 26))
(Charlie; (AddFirst, 𝑝𝑘𝐶1 , 𝑝𝑘

𝐶
1 , 7), (AddFirst, 𝑝𝑘

𝐶
2 , 𝑝𝑘

𝐶
2 , 26))

(Diana; (AddFirst, 𝑝𝑘𝐷1 , 𝑝𝑘
𝐷
1 , 3), (Add, 𝑝𝑘

𝐷
1 , 𝑝𝑘

𝐷
2 , 26))

⊲ (𝑠𝑡𝑠𝑡 , com𝑡) ← MVKD.PCSUpdate(𝑠𝑡𝑠
𝑡−1,M) : This works anal-

ogously to MVKD.Update, except that it trades off efficiency for
enhanced privacy guarantees (post-compromise security).
⊲ (𝑠𝑡 ′, S ; ⊥) ← MVKD.Query(𝑠𝑡,𝑢 ; 𝑠𝑡𝑠𝑡 , 𝑢, 𝑡

′) :Query is an inter-
active protocol between a user’s device and the server. During a
query, the device takes as input its state 𝑠𝑡 and the username 𝑢 for
which they want to learn the keychain. The server takes as input its
state 𝑠𝑡𝑠𝑡 , the username 𝑢 to look up, as well as the device’s current
epoch 𝑡 ′. The client outputs an updated keychain S for 𝑢 (including
all statements in the directory up to the epoch the client is in) and
an updated state 𝑠𝑡 ′ (which now includes the above S). The server
has no output. We assume that, before runningQuery, the higher
level application on the server performs some sort of access control
to ensure the client is allowed to learn this information.
⊲ (𝑠𝑡 ′, 𝑏 ; ⊥) ← MVKD.VerExtension(𝑠𝑡, com𝑡∗∗ ; 𝑠𝑡𝑠𝑡 , 𝑡 ′, 𝑡 ′′): This
algorithm is an interactive protocol between a user’s device and
the server. The device takes as input its state and a commitment
com𝑡∗∗ at epoch 𝑡∗∗, which it wants to verify is consistent with the
commitment from its state for epoch 𝑡∗. That is, if 𝑡∗ < 𝑡∗∗, then it
verifies that the directory committed to by com𝑡∗∗ extends the one
in the device’s current state, and vice versa if 𝑡∗ > 𝑡∗∗. The client
returns a bit 𝑏 which indicates whether the verification succeeded.
If 𝑡∗ < 𝑡∗∗, then the client also updates the stored commitment in
its state. The server takes as input its state 𝑠𝑡𝑠𝑡 , which is at epoch
𝑡 ≥ 𝑡 ′, 𝑡 ′′, and the two epochs 𝑡 ′, 𝑡 ′′ that should match 𝑡∗ and 𝑡∗∗,
respectively. (The protocol may fail otherwise.)

Example: Alice’s phone has stored the commitment com10 for
epoch 10, which means it is out-of-date. Alice has recently learned
the latest commitment com26 (we assume this happens through
some out-of-band mechanism) and now wants to update her
device to this commitment for epoch 26. Before Alice can do this,
she must check that com26 is consistent with and extends com10.
Alice’s phone thus initiates the interactive protocol VerExtension
with the server, at epoch 26.
Alice’s phone takes as input its own state 𝑠𝑡 and com26, while
the server takes as input its state 𝑠𝑡𝑠26 and epochs 10 and 26. The
server proves to Alice’s device that her state is consistent with
com26; her device verifies this proof and outputs the result of this
verification (e.g. 𝑏 = 1). Since the proof verifies, Alice’s device
also updates its state to store com26.

⊲ (𝑏 ; ⊥) ← MVKD.Audit(com𝑡∗ , com𝑡∗+1 ; 𝑠𝑡𝑠𝑡 , 𝑡
′) : This is an

interactive protocol between the auditor and the server. The (state-
less) auditor takes as input the two published commitments to the
directory for consecutive epochs 𝑡∗ and 𝑡∗ + 1. It outputs a bit 𝑏
indicating whether the audit is successful. The server takes as input
its state 𝑠𝑡𝑠𝑡 at epoch 𝑡 and the epoch 𝑡 ′. The server has no output.
We expect that 𝑡∗ = 𝑡 ′ and 𝑡 ′ + 1 ≤ 𝑡 for the protocol to work.

5

Len et al.

⊲ 𝜎 ← MVKD.Sign(𝑠𝑡,𝑚) : A client device can produce a signature
on any message𝑚.
⊲ 𝑏 ← MVKD.Verify(𝑝𝑘,𝑚, 𝜎) : Anyone can verify a signature on
a message𝑚 with respect to 𝑝𝑘 .

The algorithmsAddFirstKey,RevokeKey,AddExtra,Update, and
PCSUpdate can return a special error symbol ERROR, instead of the
above-described outputs, in case of erroneous inputs. For AddKey,
the first device can output ERROR, while for Query only the device
can.

Associated to a MVKD scheme is a set of functions. These func-
tions assume w.l.o.g. that the honest participants’ states have a
representation that lets us identify certain values.

Definition 4. For aMVKD scheme, we define the following func-
tions:
• u(𝑠𝑡), pk(𝑠𝑡), and sk(𝑠𝑡) map a device state to the associated user-

name, public key, and secret key, respectively, as determined by the
respective inputs and outputs to DeviceSetup. None must change
over the run of the protocol.

• com(𝑠𝑡) and com(𝑠𝑡𝑠) map the device and server states, respec-
tively, to the most recent commitment stored in the state.

• t(com) maps the commitment to its associated epoch number (or
ERROR if the commitment is malformed). We further define t(𝑠𝑡)
and t(𝑠𝑡𝑠) to be shorthands for t(com(𝑠𝑡)) and t(com(𝑠𝑡𝑠)), re-
spectively.

• S(𝑠𝑡,𝑢) maps a device state and username to a pair (𝑡 last, S) rep-
resenting the epoch 𝑡 last the device last queried 𝑢’s keychain and
the obtained keychain S. For any users that have not been queried,
the function returns 𝑡 last = 0, with an empty keychain S = (𝑢; ()).
If 𝑢 had no keychain, it returns an empty keychain as well (along
the proper 𝑡 last).

We refer to Appendix C for some additional definitions with
regard to keychains and MVKD schemes, which are used for the
formal security notions.

Design choices. Our formalization makes some implicit design
choices, both out of simplicity and in an attempt to capture real-
world systems like Keybase. For one thing, our model prohibits
re-adding revoked keys – we assume a setting where keys are not
expensive to regenerate or disseminate (which is true in most E2EE
systems). We also avoid the complications of reasoning about the
trustworthiness of signatures made by keys that were revoked in
the past but are now re-instated.

Furthermore, our design reveals which device authorized an ac-
tion (such as adding or revoking a device), which might be sensitive
to leak in some cases. While an alternative design that hides this
information (such as employing group signatures) would allow for
increased privacy, it would require a less standard primitive (com-
pared to digital signatures); it would also make it harder to detect
that a device that has since been revoked had made some specific
change to a keychain, thereby enabling other users to learn the
change might be less trustworthy.

Our model also enables account resets through our AddFirst al-
gorithm, which enhances the functionality ofMVKD in cases when
users lose all their devices. When a user’s account is reset, their
contacts’ clients will notice additional AddFirstKey statements in

the user’s keychain. As in Keybase, we recommend that any practi-
cal system deploying account resets only allow them after verifying
the user’s identity through additional access control mechanisms
(outside the scope of this paper), such as checking passwords or
verifying ownership of a phone number or email address. More-
over, KT client applications should notify users when they notice a
reset (e.g. through an urgent warning), explaining that this might
indicate an account compromise and suggesting that they might
seek additional assurances of the user’s identity. For example, the
application could check with the user out-of-band that they in-
tended to reset their account. If the possibility of malicious resets
is a concern, however, users or platforms could simply disable re-
sets. In particular, clients could reject keychains that have more
than one AddFirstKey statement. Assuming the consistency of the
key directory, this would disable resets in a way that could not be
circumvented by the server.

Integrating with E2EE. While we do not explicitly model end-to-
end encryption on top of MVKD, our formalization supports three
ways of bootstrapping secure channels (or similar applications re-
quiring authentication). One option is to use an AddExtra keychain
statement to add either an externally generated encryption public
key or an identity signing key to the user’s keychain (in case the
encrypted application requires specific key types or dedicated keys).
The second is to use the Sign algorithm as described above to sign
an encryption or identity signing key, analogous to a TLS certificate
(which is helpful if the user does not want to publicly reveal their
external key or that they are using a specific encryption app). The
third option is to use the Sign algorithm directly for identity signing
during the key exchange, which requires that the key exchange
protocol uses the same signing algorithm as MVKD, but avoids
having to introduce additional public keys. The best choice will be
application-specific.

3 MVKD CONSTRUCTION
In this section, we describe the ELEKTRA protocol. The protocol is
defined using a signature scheme SIG, a Rotatable Zero Knowledge
Set RZKS, and a hash function hash.

Rotatable Zero Knowledge Set. Our protocol makes use of the
RZKS primitive, introduced in [8], which implements a privacy-
preserving ordered append-only dictionary storing (label, val) pairs.
The server maintains the dictionary and publishes a commitment
com𝑡 after every update (epoch), producing a privacy-preserving
proof of the append-only property for auditors to verify. There is
a regular update and a PCS variant thereof. For a given label, the
server can then produce a proof that either the respective value
val is in the dictionary or that no pair for that label exists, at a
certain epoch, which can be verified by a user having com𝑡 . These
proofs are privacy-preserving and only reveal a well-specified leak-
age about other labels or values to the user. Finally, RZKS offers
extension proofs analogous toMVKD.VerExtension.

We refer to Appendix B for further details.

Construction Overview. At a high level, the protocol works us-
ing signed hash-chains which are analogous to Keybase sigchains.
That is, whenever a device appends a statement s= (Type, 𝑝𝑘𝑎, 𝑝𝑘, 𝑡)

6

ELEKTRA: Efficient Lightweight multi-dEvice Key TRAnsparency

to the respective user 𝑢’s keychain, they issue a signature authenti-
cating the entire keychain. More formally, the statement authenti-
cator auth𝑛 = (ℎ𝑛, 𝑧𝑛) for the 𝑛-th keychain statement consists of
a pair of values: the 𝑛-th element of a hash-chain ℎ𝑛 that binds to
the whole keychain prefix, and a signature 𝑧𝑛 to authenticate this
hash (0 is prepended for domain separation). This is computed as:

ℎ𝑛 ← hash(auth𝑛−1, 𝑡𝑛−1, 𝑢, Type, 𝑝𝑘𝑎, 𝑝𝑘)
𝑧𝑛 ← SIG.Sign(𝑠𝑘𝑎, 0∥ℎ𝑛) .

For AddKey statements (where an existing device adds a new one)
both of the involved devices sign the hash ℎ𝑛 , with 𝑧𝑛 consisting
of the pair of signatures. For AddExtra statements, 𝑑 is used in
lieu of 𝑝𝑘 . Note that 𝑡𝑛−1 refers to the epoch of the prior keychain
statement, which is not authenticated by 𝑧𝑛−1, given that it was
set by the server at update time after the signature was generated.
Finally, auth0 ← 𝜀 and 𝑡0 ← 0 are used to base the induction.

We refer to a sigchain as the augmented keychain that also
includes auth for each entry. Whenever either a device or the
server obtains new statements to add to a keychain — as part
of MVKD.Update or MVKD.PCSUpdate in case of the server or
MVKD.Query in case of the client, respectively — they also ob-
tain the corresponding authenticators, and verify both that the
resulting keychain is valid and that the authenticators match (by
recomputing the hash-chain and verifying the signatures).

To prevent the server from handing out stale or inconsistent
keychains to clients, the protocol directly leverages the RZKS: when
the server updates 𝑢’s keychain S with a new statement, it adds an
entry with the respective authenticator (received from the client)
to the RZKS under label = (𝑢, |S| + 1). This can either be done
using the regular RZKS.Update or, for healing from a compromise,
the RZKS.PCSUpdate algorithm. The MVKD commitments just
correspond to the RZKS commitments, allowing clients to check
the inclusion proofs when querying for keychains.

Protocol algorithms. We provide a high-level description of the
ELEKTRA protocol algorithms here. Please see Appendix D for the
detailed pseudo-code.

Each client’s state consists of the username of the intended user,
a pair of signature keys, the latest commitment to the RZKS the
client learned about, a dictionary Users that maps each username
to a keychain for that user, the authenticator of its last statement,
and the last epoch the client queried about that user’s chain. The
server state includes the server’s RZKS state, a dictionary mapping
each epoch to the corresponding commitment and update proof,
and a dictionary Users𝑆 mapping each user to their keychain.

⊲ pp← MVKD.GenPP(1𝜆): Generates public parameters for the
underlying RZKS and outputs them as parameters for theMVKD.

⊲ (𝑠𝑡𝑠0, com0) ← MVKD.ServerInit(pp): The server initializes a
new RZKS and empty directory Users𝑆 , and stores the RZKS
initial commitment in its state.

⊲ (𝑠𝑡, 𝑝𝑘) ← MVKD.DeviceSetup(pp, 𝑢): When a new device is
initialized, it first generates a new signing key pair. The device
stores its username and key pair in its (fresh) state. Since the
device has not yet communicated with the server, it leaves the
commitment, epoch, and Users dictionary empty.

⊲ auth← MVKD.AddFirstKey(𝑠𝑡): Let (𝑠𝑘, 𝑝𝑘) be the signing key
pair, S be the keychain for this client’s username, and auth𝑖 and

𝑡𝑖 be the authenticator and the epoch for the last statement in
S, as stored in the client’s state st. The algorithm checks that
adding a new statement s = (AddFirst, 𝑝𝑘, 𝑝𝑘,⊥) to S yields
a valid keychain, i.e., that the key has not been added to the
user’s keychain yet; otherwise it aborts. It then computes and
outputs the authenticator auth𝑖+1 for s, by computing the hash
as described above, and then signing over this hash.

⊲ MVKD.RevokeKey(𝑠𝑡, 𝑝𝑘) andMVKD.AddExtra(𝑠𝑡, 𝑑) bothwork
analogously to the MVKD.AddFirstKey, but using a Revoke or
Extra statement respectively.

⊲ (auth ; 𝑏) ← MVKD.AddKey(𝑠𝑡0, 𝑝𝑘1 ; 𝑠𝑡1, 𝑝𝑘0): This interac-
tive protocol also works similarly to the previous ones. But, in-
stead of outputting auth𝑖+1, the added device sends it to the
adding one, and outputs a bit 𝑏 = 1 (if adding 𝑝𝑘1 would yield an
invalid keychain the party aborts with 𝑏 = 0). The adding party
receives the authenticator (ℎ′, 𝑧′) from the added party, verifies
the signature 𝑧′ received from the added party, and that the hash
ℎ′ matches the ℎ they computed from their own view of the
keychain. Then, the adding party computes their own signature
𝑧 over ℎ and outputs (ℎ, (𝑧, 𝑧′)) as the combined authenticator.

⊲ (𝑠𝑡𝑠𝑡 , com𝑡) ← MVKD.Update(𝑠𝑡𝑠
𝑡−1,M): The update setM con-

tains tuples of the form (𝑢, s, auth), where auth is expected to
be an authenticator over statement s to be added to user 𝑢’s
keychain. The server aborts if either M contains two updates for
the same user, if for any tuple adding s to 𝑢’s chain (as stored by
the server) would lead to an invalid chain, or if the authenticator
does not verify (hash mismatch or signature verification failure).5
Otherwise, for each tuple, the server creates a new label-value
pair to be added to the RZKS. The label is label = (𝑢, 𝑖+1) and the
value is val = auth, where 𝑖 is the length of 𝑢’s current keychain.
The server then calls RZKS.Update to add all the pairs, getting
back a new RZKS state, commitment com, and update proof 𝜋 ,
all of which the server stores in its state. It further updates its
own keychain directory, appending the keychain statements but
filled in with the new epoch. It outputs its updated state and com.

⊲ (𝑠𝑡𝑠𝑡 , com𝑡) ← MVKD.PCSUpdate(𝑠𝑡𝑠
𝑡−1,M): This works analo-

gous to MVKD.Update, except for using RZKS.PCSUpdate in-
stead of RZKS.Update to add the authenticators to the RZKS.

⊲ (𝑠𝑡 ′, 𝑏 ; ⊥) ← MVKD.VerExtension(𝑠𝑡, com′ ; 𝑠𝑡𝑠𝑡𝑛 , 𝑡
′, 𝑡 ′′): In

this interactive protocol, the client holds commitment com in its
state and wants to check whether the commitment com’ given as
input is consistent with it. The server gets as input two epochs
𝑡 ′, 𝑡 ′′, calls the RZKS algorithm ProveExt with these epochs (or-
dered increasingly) to generate the extension proof and sends this
alongside com𝑡 ′′ to the client. In the special case of 𝑡 ′ = ⊥ (i.e., if
the client does not have any commitment yet), it sends an empty
proof. The client ensures that the received commitment equals
its input com′,6 and that RZKS.VerExt on input com, com′, and
the received proof succeeds. If the checks succeed and the com-
mitment in the client’s state is less recent, the client updates it

5We let the Update algorithm abort to simplify the definitions. In practice, the server
could accept just the valid updates, and only the first update request per chain. The
client submitting the simultaneous update could then be informed to wait until the
other update is completed, update their copy of the keychain, and retry the update.
6When interacting with an honest server, an honest client shall accept iff the commit-
mentsmatch.RZKS completeness guarantees that the client will accept if commitments
match, but RZKS soundness does not imply the other direction.

7

Len et al.

with com′. The client outputs its state, and whether the checks
have been successful.

⊲ (𝑠𝑡 ′, S ; ⊥) ← MVKD.Query(𝑠𝑡,𝑢 ; 𝑠𝑡𝑠𝑡 , 𝑢, 𝑡
′): To query the key-

chain S𝑢 of user 𝑢 at epoch 𝑡 ′, the client sends 𝑡 last to the server,
where 𝑡 last denotes the epoch it last queried for the user 𝑢. The
server verifies that 𝑡 last < 𝑡 ′ and 𝑡 ′ is at most equal to the current
epoch and returns an error otherwise. Then, for each keychain
statement added to 𝑢’s keychain between 𝑡 last and 𝑡 ′, the server
sends a triple (s𝑖 , auth𝑖 , 𝜋𝑖) consisting of the statement, its au-
thenticator, and an RZKS proof that the pair label = (𝑢, 𝑖) and
val = auth𝑖 is/has been in the RZKS for epoch 𝑡 ′. Here, 𝑖 denotes
the index of the keychain statement. Finally, the server sends
an RZKS non-inclusion proof for label = (𝑢, |S𝑢 | + 1), showing
that no further statement belongs to the keychain S𝑢 at 𝑡 ′. The
client verifies that the keychain obtained by appending those
statements to the one in its own state is valid, that the authen-
ticators are valid, and that all the received RZKS proofs verify
with respect to the client’s current commitment. If all checks
succeed, the client returns the amended keychain and stores the
keychain, authenticator, and current epoch in Users. Otherwise,
the client returns an error.

⊲ (𝑏 ; ⊥) ← MVKD.Audit(com𝑡 , com𝑡+1 ; 𝑠𝑡𝑠𝑡𝑛 , 𝑡
′): The server

simply sends to the auditor the RZKS update proof it stored in its
state when updating from epoch 𝑡 ′ to 𝑡 ′ + 1. The auditor checks
the received proof against the two input commitments using
RZKS.VerifyUpd and outputs the result.

⊲ 𝜎 ← MVKD.Sign(𝑠𝑡,𝑚): The client calls SIG.Sign(sk(𝑠𝑡), 1∥𝑚),
where it prepends 1 to𝑚 before signing for domain separation
from signing sigchain statements.

⊲ 𝑏 ← MVKD.Verify(𝑝𝑘,𝑚, 𝜎): The client calls SIG.Ver(𝑝𝑘, 1∥𝑚,𝜎)
and returns the resulting bit.

3.1 Complexity
The complexity of our protocol is overall dominated by its RZKS
operations. Below, we detail the concrete complexity obtained when
leveraging the RZKS construction from [8], ignoring the linear
dependency on the security parameter.

The RZKS from [8] is constructed using a Rotatable VRF (RVRF),
a hash-based commitment, an ordered accumulator (OA), and an
append-only vector commitment (AVC). Roughly speaking, the OA
and AVC are two authenticated data structures that implement a
dictionary and a vector respectively, and can both be instantiated
based on Merkle trees. To store a label/value pair in the RZKS, one
first "obfuscates" the label using the RVRF (for privacy reasons),
then stores the obfuscated label and a commitment to the value in
the OA dictionary. The AVC maintains an ordered list of the OA
commitments for all epochs. In particular, the PCSUpdate operation
involves picking a new RVRF key and recomputing a newOAwhere
the commitments to values remain the same, but obfuscated labels
are computed using the new VRF. In addition, the server computes
a RVRF rotation proof which guarantees that this operation was
performed honestly (without revealing any labels), and finally adds
any additional pairs to the new tree.

ELEKTRA operations related to initialization and clients modify-
ing their keychain take time 𝑂 (1), i.e. up to linear in the security

parameter, while Sign and Verify take time linear in the size of the
message. The complexity of the other operations is described below.

Query. In a directory with 𝑛 keychain links and 𝑒 epochs, aQuery
for a keychain of length𝑚 takes 𝑂 (𝑚 log(𝑛) + log(𝑒)) for both the
client and the server. Note that a single MVKD query results in
𝑚 + 1 RZKS.Query and RZKS.Verify operations, with each such
operation taking 𝑂 (log(𝑛) + log(𝑒)), as reported in [8]. Therefore,
when performing this operation naively, its complexity would be
𝑂 (𝑚 log(𝑛) +𝑚 log(𝑒)). However, looking at the specific RZKS in-
stantiation from [8], it is easy to see how to optimize this operation
to replace the 𝑚 log(𝑒) term with log(𝑒). In particular, an RZKS
query proof consists of three components: an 𝑂 (1) RVRF proof, an
𝑂 (log(𝑛)) OA query proof, and an 𝑂 (log(𝑒)) AVC query proof. To
understand why the OA and AVC both have logarithmic proof costs,
recall that both are constructed using Merkle trees. However, when
querying multiple labels with respect to the same RZKS root, the
AVC proof is the same and therefore only needs to be transmitted
and checked once.

Updates and auditing. An MVKD.Update adding 𝑠 new statements
takes𝑂 (𝑠 log(𝑛+𝑠) + log(𝑒)), whileMVKD.PCSUpdate takes𝑂 (𝑛+
𝑠 + log(𝑒)), again due to the calls to the corresponding RZKS algo-
rithms.MVKD.Audit has the same complexity as the operation that
generated the relevant proof, either Update or PCSUpdate. Finally,
the complexity ofMVKD.VerExtension is𝑂 (log(𝑒)) for a directory
with 𝑒 epochs.

4 MVKD SECURITY
We now describe the security and completeness properties we
require from a MVKD.

4.1 Completeness
Our completeness notion, at a high level, prescribes the desired
functionality for honest parties (user devices and auditors) interact-
ing with an honest server, keeping track of com𝑡 for each epoch 𝑡
as well as the current keychain Dir[𝑢] for each user𝑢. It also allows
other dishonest parties to interact with the server, to ensure this
cannot affect the interaction and execution between honest parties.
We provide the formal experiment for completeness in Appendix E.

The adversary A is provided access to oracles creating honest
users and having them modify their keychains as well as oracles to
instruct the server to apply those updates either using Update or
PCSUpdate. The adversary wins the game by violating one of the
properties described below. We say that a schemeMVKD satisfies
completeness if every PPT adversary A has negligible probability
of winning the experiment.

Extending the directory. When the adversary instructs the
server to extend the directory, the adversary gets to choose the set
of updates and, thus, can include maliciously generated updates
(to account for malicious devices). Correctness ensures that the
respective algorithm only rejects if either (a) there is at least one
update that has not been honestly generated by a device that was
up-to-date with respect to the corresponding user’s own keychain,
or (b) there exists a collision in updates for a user, meaning there is
more than one update for a user’s keychain in the update set.

8

ELEKTRA: Efficient Lightweight multi-dEvice Key TRAnsparency

Querying the directory. When a device queries another user’s
keychain, the game ensures that the keychain output by the device
matches the respective prefix of the keychain stored by the server
(up to the epoch in which the querying device is currently in). The
operation must only abort if there has been a mismatch between
the device’s and the server’s views, i.e., either the input usernames
do not match, the epoch input to the server does not correspond to
the client’s epoch, or the device uses a commitment that has never
been output by the server.

Updating the commitment. When a device updates to a later
commitment using VerExtension, the game verifies that the com-
mitment stored in the device’s state is updated as expected, and
that the algorithm only rejects if the device’s and server’s views or
inputs do not match.

Audits. The game verifies that external auditors can successfully
audit two consecutive commitments produced by the honest server.

Signatures. The game ensures that the produced signatures are
correct. That is, it verifies that any signature produced by Sign
actually verifies under the device’s public key.

4.2 Soundness
AMVKD protects against an active and fully compromised server
who can lie about users’ keychains and can also dictate which
commitment users will accept. It enforces the unforgeability of
keychain updates, that users holding the same commitment have
the same view of the directory, and provides additional assurances
when directory updates are audited. Auditing could be performed
by dedicated third parties, or even by users themselves (although
we do not expect this to happen in practice).

We formalize soundness as a real-ideal world indistinguishability
game. The ideal experiment involves a stateful extractor expected
to provide different functionality depending on its first input:

• pp, st ← Extract(Init, 1𝜆): Samples public parameters (meant
to be indistinguishable from honestly generated ones), and ini-
tializes its state.

• 𝑜𝑢𝑡, st← Extract(Ideal, st, 𝑖𝑛): Implements any ideal function-
alities (such as Random Oracles) that the scheme depends on,
and can also update its own state when answering these queries.

• Dcom,Ccom ← Extract(Extr, st, com): On input a commitment
com and its own state st, the extractor outputs a map Dcom
and a list Ccom. Dcom maps a username-integer pair (𝑢, 𝑒) to
a keychain for 𝑢 with 𝑒 > 0 statements. Intuitively, this map
restricts what an adversary can force an honest client who holds
com, for epoch 𝑡 , to output when querying for 𝑢, as we detail
later. Ccom is a list of 𝑡 commitments, meant to correspond to
previous epochs of the data structure that com commits to. Note
that, when answering these queries, the extractor cannot update
its state. If com is malformed, the extractor can output ERROR.

The soundness game provides oracles that allow A to interact
with honest clients, either in the role of the server or another client,
or to instruct them to runMVKD algorithms and obtain their out-
puts. However, before the adversary can ask any client to update its
commitment to com, the adversary has to “announce” it by invok-
ing the Commit oracle. This ensures that the extractor is executed

before clients can perform any queries and therefore that we can
test whether a client output matches the extractor output. When the
game itself executes one of theMVKD algorithms, that algorithm
can also (implicitly) make Ideal oracle queries (say, to evaluate a
Random Oracle hash). Guarantees are then phrased as assertions in
the ideal world experiment. For example, the query oracle enforces
that the output of a query from a client who holds commitment
com must be consistent with the output of the extractor on that
same commitment.

The real experiment is defined analogously to the ideal one,
except that all assertions are removed (hence, triggering one in the
ideal world makes the two worlds immediately distinguishable) and
there is no extractor. Instead, the public parameters pp are sampled
honestly at the beginning, and the Ideal oracle is implemented
according to the specification of each idealized functionality. Note
that formalizing the soundness game using indistinguishability
ensures that the extractor must sample the public parameters and
implement idealized functionalities in a way that is computationally
indistinguishable from the real world.

We now proceed to describe the soundness guarantees. We refer
to Appendix G for a formal definition of the soundness experiment.

Resiliency. Intuitively, interacting with an adversary (either pos-
ing as another client or the server) should not alter an honest client’s
state in unexpected ways. For example, the adversary should not
be able to eradicate a client’s ability to sign messages, confuse
them about their own username, or induce them to output an in-
valid/malformed keychain.

Unforgeability. An adversary should not be able to forge key-
chains or sign messages on behalf of uncorrupted devices. We cap-
ture unforgeability via (1) a Forgery oracle, which specifically en-
forces the unforgeability of signatures, and (2) the HonestKeychain
assertions run upon the adversary announcing a new commitment
com. The latter enforces that Dcom output by the extractor does
not contain forgeries and formalizes the following intuitive prop-
erty. Assume A publishes a commitment com today, expecting to
corrupt a device 𝑝𝑘 tomorrow. Even after the corruption, A can-
not convince an honest device holding com to output a “forged”
keychain statement allegedly from 𝑝𝑘 but that was not actually
authorized before its corruption. To this end, the game keeps track
of all keychains whose last statement has been authorized by the
appropriate honest device as well as all corrupted devices.

Consistency. At a high level, consistency ensures that when two
clients share the sameMVKD commitment com and query for the
same user, they should output the same keychain. Ideally, this would
be enforced by requiring that each client outputs Dcom [(𝑢, 𝑖)] as
the keychain S′ for 𝑢 where 𝑖 denotes the maximal number of state-
ments for whichDcom [(𝑢, ·)] is defined. However, our formalization
allows for constructions to leverage an efficiency optimization that
has clients cache keychains and only query for additional links.
As a result, we achieve a slightly weaker version. Upon a client
outputting S′ as the keychain for 𝑢 and having prior output S from
an earlier commitment, the game enforces the following properties.
First, for each new statement added to S to obtain S′, the prefix
of the keychain until that statement must match the output of the
extractor for that length, i.e., that for 𝑖 = |S| + 1, . . . , |S′ | we have

9

Len et al.

S′ [1 . . . 𝑖] = Dcom [(𝑢, 𝑖)]. Second, the client not receiving a state-
ment |S′ | + 1 must be consistent with the output of the extractor,
i.e., Dcom [(𝑢, |S′ | + 1)] is not defined.

This relaxation intentionally allows for the following attack
on our protocol (when no auditing is performed): The adversary
publishes a keychain for user 𝑢 with 2 statements at epoch 𝑡 , then
extends it with a 3rd statement at epoch 𝑡 + 1, while also replacing
the first statement with something malicious and erasing the 2nd
statement from the RZKS. Consequently, a client who queries for
𝑢 at epoch 𝑡 and then at epoch 𝑡 + 1 would output the chain with
all 3 honest statements. However, a different client who queries
for 𝑢 at epoch 𝑡 + 1 for the first time (with the same commitment)
would output a keychain with only the first statement, since, in our
protocol, the server can provide a non-membership proof for the
second statement, indicating in our protocol that the keychain only
has a single statement.

We remark that a trivial modification of our protocol without
caching (where all clients always query for all statements) would
satisfy the stronger notion and prevent the above attack. Moreover,
the two definitions offer the same guarantees if we assume all com-
mitments have been audited — more precisely, if we assume that for
each commitment com held by a client, there is a chain of successful
audits starting at a commitment for epoch 0 and ending at com. For
example, the above attack requires violating the append-only prop-
erty of RZKS, which would be caught by auditing. This relaxation
allows us to capture the weaker consistency exhibited by more
efficient protocols in situations when auditing is not performed,
but also enforces stronger consistency when auditing occurs.

As in any KT protocol, our notion requires users and auditors
to agree on the server’s published commitments to achieve the
strongest guarantees. Several approaches have been proposed for
achieving this, including running a gossip protocol between clients
and auditors, leveraging fully trusted auditors who will host com-
mitments, or posting the commitments on a blockchain. As a result,
our formalization is agnostic to the specific consensus mechanism
— with the consistency guarantees only meaningful for parties that
do have consensus. To make the aforementioned consensus require-
ments more practical, users run the (lightweight) VerExtension
algorithm whenever they learn of a new commitment com′ from
the server. Our formalization ensures consistency on the history
of commitments upon VerExtension. This also ensures that at any
point it is sufficient for parties to establish consensus, with the rel-
evant users and auditors, on the most recent commitment only. In
particular, as long as a user is satisfied with a-posteriori detection of
inconsistencies, they only need to establish consensus sporadically.

Finally, note that — unlike many other KT systems that do not
leverage keychains — our protocol provides some baseline security
properties (a stronger form of what is commonly referred to as
Trust-On-First-Use) even when there is no consensus. The game
ensures that if a device queries for user 𝑢’s keychain, the output
keychain S′ extends the keychain S previously stored as part of the
client’s state. Combined with the aforementioned unforgeability
guarantees, this implies that except if the keychain is reset by an
AddFirst statement (something that can be communicated to the
user with a very prominent warning, since it is rare), changes to the
set of keys in S′ must be authorized by the devices whose keys are
trusted in S, and the adversary cannot forge those authorizations.

In other words, assuming that users are distrustful of reset accounts,
compromising the server (but not the user’s devices) does not allow
an adversary to tamper with keychains of users who have already
interacted with each other at least once.

Persistency. If MVKD.Audit between two commitments com𝑎
and com𝑏 succeeds, then persistency ensures that all links in com𝑎
are also part of com𝑏 , and all newly added links in com𝑏 contain the
correct epoch. This, in particular, also implies strong consistency: in
the consistency attack above, we would have that Dcom𝑡

[(𝑢, 𝑖)] =
Dcom𝑡+1 [(𝑢, 𝑖)] for 𝑖 = 1, 2, and therefore the two devices would
have to output the same keychain. Note that auditing itself only
ensures the persistency of changes, i.e., the append-only property of
the directory. While other users will detect blatantly unauthorized
changes to a user’s keychain upon query, users are still required
to monitor their own keychain for account resets or unauthorized
changes enabled by one of their devices being compromised.

4.3 Privacy
We capture the privacy ofMVKD again using the real-ideal world
indistinguishability paradigm. Ideally, in MVKD, the commitments
and proofs from the server and interaction with the server should
leak no extra information about the server’s state (which includes
the key directory). In other words, the proofs for the queries and the
transcripts should be simulatable given the responses to the queries.
However, an efficient instantiation ofMVKDmay leak someminimal
information. To capture such schemes, our privacy definition is
parameterized with leakage functions. Overall, the high-level goal
of this definition is to express what information gets leaked from
the server to malicious clients when they interact with the server,
also accounting for a full server state leak.

More formally, we say that a MVKD scheme is Zero Knowl-
edge with respect to a leakage function L = (LAddKey0,LAddKey1,

LQuery,LUpdate,LPCSUpdate,LVerExt,LAudit,LCorr,LLeakState)
if there exists a simulator S such that any PPT A has negligi-
ble advantage in distinguishing between a real-world experiment
ZK-REALMVKD, in which A receives the outputs and transcripts
of the actual MVKD algorithms, from an ideal-world experiment
ZK-IDEALMVKD, in which A receives the outputs and transcripts
from S. The simulator S is given the output of the leakage function
L and the output of the queries. We remark that L is stateful with
all functions operating on a shared state.

This definition is similar in spirit to the VKD privacy definition
in [7]. However, there are some significant new challenges here, due
to clients being stateful and some of the algorithms inMVKD being
interactive. Recall that clients are not trusted for privacy. Thus, we
need to be able to capture what a client state can leak about other
users’ keychains, especially after they get compromised. Further, we
consider how privacy recovers after a compromise of the server’s
state. Our definition captures these subtleties as follows.

Handling interactionwith corrupt clients. Wewant to provide
privacy for honest client states even in the presence of malicious
clients. Since malicious clients can interact with the (honest) server
as well as with other honest clients through MVKD algorithms
(VerExtension, Audit,Query, and AddKey), we need to model any
possible leakage that can happen through these interactions. So, in

10

ELEKTRA: Efficient Lightweight multi-dEvice Key TRAnsparency

the privacy definition, the distinguishing adversary A can instruct
the game to create honest devices belonging to arbitrary users,
modify honest device keychains, or run queries.A can act as one of
the two devices of the AddKey protocol. It can also directly interact
with the server using VerExtension, Audit, andQuery.

However, inMVKD, the public keys of the honest devices should
not be visible toA (even if they instructed the game to create them)
unless they specifically queried for the keychain of the correspond-
ing user, or interacted with that honest device using the AddKey
oracle. Hence, wheneverA requests an honest device to be created
for a user 𝑢, a handle ℎ is drawn from the handle setH , with the
device being addressed as (𝑢,ℎ).

Yet another issue arises whenever A instructs an honest device
to modify its keychain: in the real-world experiment, this action
succeeds or fails depending on whether the action is valid given
the device’s view on its keychain. The ideal world needs to make
the analogous decision without involving the simulator (since this
is an interaction between the honest server and the honest client).
This, however, poses a challenge. To see why, let the (symbolic)
keychain of user 𝑢 be (𝑢; (AddFirstKey, ℎ, ℎ, 𝑡), (AddKey, ℎ, ℎ′, 𝑡 ′)).
We then may ask: is instructing device (𝑢,ℎ) to revoke public key
𝑝𝑘 a valid action? A moment of reflection reveals this is valid if and
only if 𝑝𝑘 is the public key of either (𝑢,ℎ) or (𝑢,ℎ′). (Observe that
the adversary could have learned a device’s public key viaQuery
from the server.) To allow the ideal-world experiment to make
this decision, we thus have the simulator S maintain a mapping
PK from username-handle pairs to public keys, for the devices it
is aware of. This correctly models real-world behavior since any
handles unknown to the simulator will have public keys that are
also unpredictable to the adversary.

Adaptive corruption of client devices. In our definition, we also
capture adaptive corruptions of client devices. This means a device
can start out as an honest device, and laterA can corrupt it and get
its state using the CorrDev oracle. When a device is corrupted, the
simulator S will need to simulate its correct state, which in practice
has information on the queries the device had made while it was
honest and their results. Likewise, for VerExtension. To capture
that, we giveA oracles HonQuery and HonVerExt. This essentially
lets A instruct honest devices to runQuery and VerExtension.

Updates produced by corrupt clients. Additionally, we guaran-
tee that any server update does not leak information on the honest
device states, but no privacy is guaranteed for malicious device
states and their respective updates. In our game, we model this
as follows. A provides two sets of keychain statements to be ap-
pended: 𝑀HonDev contains honestly generated statements using
the various oracles (for which the adversary does not know auth,
and refers to these updates using the corresponding device han-
dles), while𝑀CorrDev contains keychain statements alongside their
authenticators auth generated by the adversary.

Post-compromise security. Finally, a major improvement of our
privacy definition over that of VKD is that we consider leakage of
the server’s state. While this is expected to leak the entire directory,
we do guarantee that PCSUpdate restores privacy for newly made
changes to the directory from that point on. In our game, we model
this via the shared state of the various leakage functions. Upon

state corruption, in the ideal world, LLeakState not only can leak
the entire directory, but can modify the shared state, thus adversely
affecting the leakage provided by other leakage functions for their
respective operations. Conversely, upon A invoking PCSUpdate
in the real world, in the ideal world, LPCSUpdate can modify the
leakage functions’ shared state to restore the privacy guarantees.

We refer to Appendix I for a formal description of the zero-
knowledge with leakage experiment.

4.4 Security Analysis of Our Construction
In the following theorems, we demonstrate that our construction
satisfies completeness and soundness. The proofs are deferred to
Appendices F and H, respectively.

Theorem 1. The protocol from Section 3 satisfies completeness, if
the underlying RZKS scheme satisfies completeness and the signature
scheme satisfies correctness.

Theorem 2. Let RZKS be a Rotatable Zero Knowledge Set satisfy-
ing soundness, SIG be a strongly unforgeable signature scheme, and
hash be modeled as a Random Oracle. Then the MVKD construction
of Section 3 satisfies soundness, w.r.t. RZKS’s ideal objects and hash.

We prove privacy assuming the RZKS is instantiated using the
specific construction from [8], which allows us to prove our result
with respect to the following concrete leakage function LMVKD:

⊲ AddKey between an honest and a malicious device leaks the
honest device’s view of their own keychain.

⊲ Query leaks the answer, which is either the keychain of the
specified user𝑢 at epoch 𝑡 or ⊥. If 𝑡 is not the latest epoch,Query
moreover leaks the epoch 𝑡 ′ of the first statement on𝑢’s keychain
with 𝑡 ′ > 𝑡 , or ⊥ if no such statement exists.

⊲ Update, unless there has been a compromise of the server’s state,
leaks (1) the number of honestly generated updates applied, (2)
the set of users for which there is an honest update that is the
first one since the user’s keychain has been last leaked to the
adversary, and (3) for each maliciously generated statement in-
cluded in the update, whether the adversary knew that user’s
most recent keychain. If the server’s state has been compromised,
without PCSUpdate having been executed in the meantime, then
it leaks the entire set of updates.

⊲ PCSUpdate leaks parts (1) and (3) of the leakage of Update. Fur-
ther, the case of a state compromise never applies.

⊲ VerExtension leaks the two epochs for which the server computes
the extension proof, i.e., it leaks the inputs to the server algorithm.

⊲ Audit leaks which epoch numbers are being audited.
⊲ Corrupting a device leaks: (1) the keychains for the latest time
when any usernames were queried by that device as well as
the epochs during which they were queried, and (2) the latest
commitment known by that device.

⊲ Compromising the server’s state leaks the directory.

A more formal description of the above leakage, as well as a
proof of the following theorem, are deferred to Appendices J and K.

Theorem 3. Let RZKS be the Rotatable Zero Knowledge set con-
struction from [8], SIG be a strongly unforgeable signature scheme,

11

Len et al.

and hash be modeled as a Random Oracle. Then, theMVKD construc-
tion of Section 3 satisfies zero-knowledge with leakage LMVKD w.r.t.
RZKS’s ideal objects and hash.

5 IMPLEMENTATION AND PERFORMANCE
Here we describe our implementation and experimental results
for ELEKTRA.7 The performance of both updates and queries is
critical for practitioners, especially as we expect these to be blocking
operations in clients. For a practical example, we look at Keybase,
the only currently deployed KT system.When Keybase users update
their keychain, the app blocks until the server receives the update,
updates the KT directory, signs the new commitment, and proves
that the new commitment includes the client’s update. Similarly,
users do not consider another user’s device valid until it is reflected
in the KT directory. We conjecture that these operations (except for
PCSUpdate, which is rare) would need to run in under a second in
order for real-world systems to use anMVKD.

To implement our scheme, we instantiated the RZKS construc-
tion from [8] which, as detailed in Section 3.1, leverages a RVRF,
commitment, OA, and AVC. We used the NIST P-256 elliptic curve
for the RVRF, SHA256 with different context strings for all hash
functions, and Ed25519 for the signature scheme SIG. All experi-
ment results are averaged over 10 trials.

Our implementation is written in Go and relies on PostgreSQL
and LevelDB for persistence. LevelDB is used to store tree nodes
as it supports high write throughput and fast range queries. All
other data such as keychain links, VRF rotation proofs, and tree
roots are stored in PostgreSQL. We implemented the following
optimizations:

• If more than 100 links are built in a single epoch, the VRF image
of each label is computed concurrently.

• When building a new epoch, the server verifies all links concur-
rently.

• The first 29 levels of the Merkle tree are cached in-memory to
improve read performance.

• The VRF proof and image corresponding to each label is pre-
computed and stored in the database at the time the label is
inserted duringMVKD.Update orMVKD.PCSUpdate, in order
to speed up MVKD.Query and computing VRF rotation proofs
duringMVKD.PCSUpdate.

• The server stores keychain states for each user in the database
so when new links are added, it does not have to re-validate all
the previous links.

• The server offers an API to performMVKD.VerExtension as well
asMVKD.Query for multiple users at once, so network latency
is amortized.

• The exponentiations necessary to compute and verify VRF rota-
tion proofs are performed concurrently.

• InMVKD.Query, clients verify sigchains for each queried user
concurrently.

There are several other promising optimizations that we did not
implement, given the proof-of-concept nature of our prototype. In
particular, these optimizations include:

7The source code is available at https://github.com/zoom/elektra.

• Map-reduce: During a MVKD.Update operation, the tree could
be sharded into (for example) 16 disjoint subtrees, with each
subtree root being recomputed in parallel and possibly in a dis-
tributed way; after, the 16 subroots could be combined by a single
process to compute the final tree root.

• Parallelization on the server: Any operation that is being
parallelized could be improved using SIMD intrinsics and/or
distributed computing.

• Replication: All data in both PostgreSQL and LevelDB is append-
only, so it is straightforward to use distributed read replicas to
reduce query latency globally.

• Sharding: Sharding tree node storage could increase perfor-
mance as each individual database instance is smaller, but would
impose an increased coordination cost.

• Message compression: Many Merkle tree proofs requested by
the client for the same epoch would share the same hashes of
nodes closer to the root. Both general-purpose compression or
more ad-hoc techniques could eliminate this redundancy (for
example, by having clients cache the levels of the tree close to
the root), resulting in bandwidth savings.

In our experiments, the server runs on an AWS EC2 c5.4xlarge
instance with 16 3.00 GHz Intel Xeon Platinum CPU cores and 32
GB memory, and the client on a Google Pixel 6 (2021) Android
smartphone with 8 CPU cores (on average 2 GHz each) and 8 GB
memory connected over Wi-Fi.

We experiment with directories consisting of up to 64M key-
chain links. This could represent, for example, a system with 16M
users adding 4 links per year after one year. We believe that with
additional optimizations as listed above, our implementation will
easily scale to large real-world deployments.

Furthermore, for our experiments, we chose an epoch length
of 1 second per epoch. We choose this parameter to capture a
system larger than Keybase, which seems to generate new epochs
as updates are necessary rather than on a fixed schedule. More
concretely, Keybase begins a new epoch on average about every 15
seconds. The benefit of a smaller epoch length as we choose is that
users wait less time to see their updates reflected in the system.

Performance of Queries. In a typical messaging application
with MVKD, query performance significantly impacts actions such
as starting a conversation with users one has not interacted with
before, as it involves receiving and verifying proofs for their full key-
chain. Subsequent updates only require fetching any new links and
inclusion proofs (as well as an absence proof at the end). A user first
has to update their view of the MVKD using MVKD.VerExtension;
then, the user can perform MVKD.Query for their conversation
partners. Our implementation supports a single round-trip both for
the Query and VerExtension algorithms, which reduces latency.

In this experiment, we simulate the MVKD queries necessary
to join a small group conversation with 10 unknown users, each
with 10 keychain links (100 links in total). The client (a Google
Pixel 6 smartphone) is 300 epochs behind the server; assuming
one epoch per second, it is 5 minutes behind. Figures 1a and 1d
describe the performance and bandwidth ofMVKD.VerExtension
andMVKD.Query as theMVKD size grows. The entire operation
of requesting, serving, receiving, and verifying can be performed in

12

ELEKTRA: Efficient Lightweight multi-dEvice Key TRAnsparency

1M 4M 16M 64M0

50

100

150

200

𝑁 (links)

ba
nd

w
id
th

(K
iB
)

(a) MVKD.VerExtension and MVKD.Query proof
size by directory size 𝑁 .

1M 4M 16M 64M0

100

200

300

400

500

𝑁 (links)

tim
e
(m

s)

(b)MVKD.Update runtime with 10 links by direc-
tory size 𝑁 (measured in number of links).

0 1M 2M 3M 4M
0

10

20

30

40

𝑁 (links)

tim
e
(m

in
)

(c) MVKD.PCSUpdate runtime by directory size
𝑁 .

1M 4M 16M 64M0

200

400

600

𝑁 (links)

tim
e
(m

s)

Client
Latency
Server

(d) MVKD.VerExtension and MVKD.Query run-
time by directory size 𝑁 .

32 64 128 256 512 1,0200

1

2

3

4

𝑁 (links)

tim
e
(s
)

(e) MVKD.Update runtime with 𝑁 links in a di-
rectory of size 64M.

Directory
size

VRF time
(min)

Build time
(min)

250K 0.32 1.69

1M 1.31 6.97

4M 5.16 31.28

(f) Breakdown ofMVKD.PCSUpdate runtime.

Figure 1: Performance for querying and updating our MVKD construction ELEKTRA.

under a second at minimal bandwidth cost by a smartphone even
in a large directory containing 64M keychain links.

We divide the elapsed duration into three parts. Latency is the
network latency for sending the request and receiving the response.
Server is the time for the server to load keychains from the database
and compute proofs8; it loads each requested user’s data concur-
rently. Client is the time for the client to process the response from
the server, verifying RZKS inclusion and extension proofs as well as
checking the validity of the received keychains and their signatures;
the client validates each sigchain concurrently.

Note that the bandwidth and computation costs of VerExtension
are negligible with respect to the cost ofQuery operations; more-
over, they grow logarithmically in the number of epochs between
the client’s view and the server’s view. So, a larger period between
calls to VerExtension would not significantly affect our results.

Performance of Updates. The efficiency ofMVKD.Update oper-
ations is critical for users to quickly make changes to their keychain.
It is a blocking step when installing theMVKD-using application
on a new device: the user cannot communicate until their new
device is reflected in the MVKD.

Figures 1b and 1e demonstrate the runtime of MVKD.Update
in two ways. We assume the set of links to be added have already
been received (but not verified) by the server.

Figure 1b shows the time to create one epoch of 10 random
links in an MVKD of different sizes, where the x-axis is scaled
logarithmically. We can see that even a largeMVKD of 64M links
supports adding 10 links in well under a second. A server load of
10 links per second could occur in, for example, a system with 16M

8Merkle tree proofs are assembled for each query, while VRF proofs are precomputed
during updates and simply retrieved from the database during queries.

users creating 4 links per year, which averages to 2 links per second,
plus some buffer to support traffic bursts.

Conversely, Figure 1e shows the time to create one epoch of 𝑁
links in a tree of constant size. Our implementation manages to
add 128 links in about a second to a directory containing 64M links.
Build time for larger epochs could be improved by sharding the
tree into subtrees and computing each subtree root concurrently.

In an update, the server first validates the new links, checking
for keychain semantics (ValidKeychain) and verifying client signa-
tures (CheckAuth). For existing users, keychain states (i.e., the list
of valid devices and public keys) are cached in the database, so the
server does not need to revalidate previous links. The server then
performs the underlying RZKS.Update operation: it computes the
VRF image of each label (as well as precomputes the corresponding
proof, to speed up future queries) and then inserts the new label-
value pairs into the Merkle tree. While verifying signatures and
VRF exponentiations are expensive operations, in our implementa-
tion the cost of MVKD.Update is entirely dominated by LevelDB
database calls for reading and writing tree nodes.

Note that the time required to run MVKD.Audit when the com-
mitment and proofs are produced by Update (as opposed to by
PCSUpdate) is strictly smaller than the time required to compute
the update. A simple auditor implementation performs the same
hash computations that the server did to compute the new Merkle
tree root but does not have to compute or verify VRF proofs.

Performance of PCSUpdate. PCSUpdate is an important oper-
ation that allows the server to recover from any state leak, such
as the leak of the VRF secret key used by the underlying RZKS.
However, we expect this more expensive operation to be performed

13

Len et al.

infrequently in comparison with Update: it should be run regu-
larly over longer time intervals as a best practice, such as once
every month, and additionally when infrastructure breaches are
detected. The frequency of PCSUpdate could match or be chosen
using analogous considerations as that of TLS certificates and other
key rotations. Our implementation also incentivizes providers to
run this operation because it publicly reveals whenever a new epoch
is computed using PCSUpdate instead of Update. Thus, rotating
keys infrequently might adversely affect a provider’s reputation.

Figure 1c demonstrates that the time to compute a PCSUpdate
(where the secret key material is rotated but no new links are added)
is linear in the size of theMVKD, as it involves computing a new
VRF image for each label (in parallel) and a VRF rotation proof, as
well as building a new Merkle tree with the new labels. Note that
our implementation also precomputes the VRF proofs for all the
labels using the new key at this point in order to speed up future
queries, resulting in a total of 5 exponentiations per link during
the computation of the rotation proof. This computation could be
further parallelized or distributed across multiple servers. Figure 1f
shows that while computing the VRF rotation proof is a significant
cost, PCSUpdate execution time is dominated by the time it takes
to actually build the Merkle tree.

While the PCSUpdate operation takes a significant amount of
time and scales linearly with directory size, it does not require
halting regular updates for a significant period of time. The server
could start by picking a new VRF key and rebuilding the Merkle tree
while still accepting updates and creating epochs for the old VRF
key. Once the new tree is built, the server could briefly halt updates,
add any new links to the new tree, and then use the new tree for the
next epoch, after which updates could be enabled again. The VRF
rotation proof could be computed after-the-fact, though within a
time frame required by auditors. Strictly speaking, this optimization
is not captured in our privacy definition, where update operations
are atomic, in an effort to limit complexity. However, we believe
that in ELEKTRA, if the server state leaks after this PCSUpdate
process has started but before it has completed (i.e. while the next
VRF key has been selected, but updates are still using the old key),
this would be equivalent to the leakage in our model for PCSUpdate
completing at the epoch right before the corruption. This is due to
the fact that PCSUpdate essentially just recomputes the tree using
a new VRF key and that the old VRF secret key is still kept by the
server to allow it to generate absence proofs w.r.t. previous epochs.

Auditing a PCSUpdate proof is more expensive than a proof pro-
duced by Update. A PCSUpdate proof consists of 2 elliptic curve
group elements (i.e. the VRF images of each label under the old
and new key) and a 32-byte commitment per keychain link in the
directory, plus a constant factor of 2 elliptic curve group elements
and one scalar. If the auditor checks the whole directory from the
first epoch and holds on to the data received when auditing previ-
ous epochs, this can be reduced to 1 elliptic curve group element
per link (representing the image under the new VRF key), plus
the constant factor. This optimization is not explicitly captured by
our API, asMVKD.Audit is stateless for the auditor, but the exten-
sion is straightforward. In practice, in a directory with 64M links,
since P-256 elliptic curve points take 64 bytes to represent, this
amounts to approximately 4 GiB. In terms of computation, verify-
ing a PCSUpdate proof is cheaper than computing it, as verifying

the VRF rotation proof requires 2 instead of 5 exponentiations per
link (though both require building the tree from scratch). Imple-
menting a stateless auditor which does not rely on the data from
previous epochs would result in larger proof sizes and thus band-
width costs, but reduced computation time as the auditor will not
need to maintain a database of Merkle tree nodes.

6 RELATEDWORK
Our system directly builds off Keybase [12, 13], SEEMless [7], and
RZKS [8], as we describe in the introduction. CONIKS [19] was the
first KT system proposed in the academic literature and formally
introduced the notion of a system that periodically commits to a
set of public keys. CONIKS relied on users to be online every epoch
to monitor their keys and leaks the update histories of users, which
as we note in the introduction can be sensitive metadata. SEEM-
less improves on these drawbacks by providing stronger privacy
guarantees and by using an append-only sparse Merkle tree that
enables users to monitor their key history at any time with cost
related to the number of times their key has been updated.

Parakeet [18] is a KT system recently introduced that improves
over SEEMless by adding better scalability through a verifiable
append-only data structure that supports compaction and a consis-
tency protocol for broadcasting commitments. But, as noted earlier,
Parakeet does not capture the stronger security guarantees that our
device cross-signing system provides.

Merkle2 [11], VeRSA [26], and Verdict [27] do not target strong
privacy as a goal, thereby leaking update patterns. Moreover, VeRSA
and Verdict utilize RSA accumulators and SNARKs, which are more
expensive to deploy in practice. Meanwhile, Merkle2 also uses a
form of signature chains but does not formalize this primitive and
cannot provide soundness if key resets are allowed, which we stress
is an important feature used in practice that should be modeled.

ACKNOWLEDGMENTS
The first author would like to acknowledge support from the Na-
tional Science Foundation under awards CNS-2120651 and DGE–
2139899.

REFERENCES
[1] [n. d.]. IETF Key Transparency (keytrans). https://datatracker.ietf .org/wg/

keytrans/about/. Accessed: 2023-04-27.
[2] Shashank Agrawal and Srinivasan Raghuraman. 2020. KVaC: Key-Value Commit-

ments for Blockchains and Beyond. In Advances in Cryptology - ASIACRYPT 2020
(Lecture Notes in Computer Science), Shiho Moriai and Huaxiong Wang (Eds.).
Springer.

[3] Apple.com. [n. d.]. Apple Privacy. https://www.apple.com/privacy/features.
Accessed: 2022-08-03.

[4] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. 2004. Universally
Composable Protocols with Relaxed Set-Up Assumptions. In Proceedings of the
45th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’04).
IEEE Computer Society, USA. https://doi.org/10.1109/FOCS.2004.71

[5] David A. Basin, Cas Cremers, Tiffany Hyun-Jin Kim, Adrian Perrig, Ralf Sasse,
and Pawel Szalachowski. 2014. ARPKI: Attack Resilient Public-Key Infrastructure.
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communi-
cations Security. ACM.

[6] Josh Blum, Simon Booth, Brian Chen, Oded Gal, Maxwell Krohn, Julia Len, Karan
Lyons, Antonio Marcedone, Mike Maxim, Merry Ember Mou, Jack O’Connor,
Surya Rien, Miles Steele, MatthewGreen, Lea Kissner, and Alex Stamos. 2022. E2E
Encryption for Zoom Meetings. White Paper – Github Repository zoom/zoom-
e2e-whitepaper, Version 3.2, https://github.com/zoom/zoom-e2e-whitepaper/
blob/master/zoom_e2e.pdf.

14

https://datatracker.ietf.org/wg/keytrans/about/
https://datatracker.ietf.org/wg/keytrans/about/
https://www.apple.com/privacy/features
https://doi.org/10.1109/FOCS.2004.71
https://github.com/zoom/zoom-e2e-whitepaper/blob/master/zoom_e2e.pdf
https://github.com/zoom/zoom-e2e-whitepaper/blob/master/zoom_e2e.pdf

ELEKTRA: Efficient Lightweight multi-dEvice Key TRAnsparency

[7] Melissa Chase, Apoorvaa Deshpande, Esha Ghosh, and Harjasleen Malvai. 2019.
SEEMless: Secure End-to-End Encrypted Messaging with less Trust. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security CCS. ACM.

[8] Brian Chen, Yevgeniy Dodis, Esha Ghosh, Eli Goldin, Balachandar Kesavan, An-
tonio Marcedone, and Merry Ember Mou. 2022. Rotatable Zero Knowledge Sets:
Post Compromise Secure Auditable Dictionaries with application to Key Trans-
parency. In Advances in Cryptology - ASIACRYPT 2022. Springer International
Publishing, Cham. Full version: https://eprint.iacr.org/2022/1264.

[9] Sergej Dechand, Dominik Schürmann, Karoline Busse, Yasemin Acar, Sascha
Fahl, and Matthew Smith. 2016. An Empirical Study of Textual Key-Fingerprint
Representations. In 25th USENIX Security Symposium, USENIX Security 2016.
USENIX Association.

[10] Google. [n. d.]. Key Transparency Overview. https://github.com/google/
keytransparency/blob/master/docs/overview.md. Accessed: 2022-10-06.

[11] Yuncong Hu, Kian Hooshmand, Harika Kalidhindi, Seung Jin Yang, and Raluca A.
Popa. 2021. Merkle2: A Low-Latency Transparency Log System. 2021 IEEE
Symposium on Security and Privacy (SP), 285–303.

[12] Keybase.io. [n. d.]. Keybase Chat. https://book.keybase.io/docs/chat. Accessed:
2022-08-03.

[13] Keybase.io. 2014. Meet your sigchain (and everyone else’s). https:
//book.keybase.io/docs/server#meet-your-sigchain-and-everyone-elses. Ac-
cessed: 2022-07-29.

[14] Keybase.io. 2019. Keybase is not softer than TOFU. https://keybase.io/blog/chat-
apps-softer-than-tofu. Accessed: 2019-05-05.

[15] Tiffany Hyun-Jin Kim, Lin-Shung Huang, Adrian Perrig, Collin Jackson, and
Virgil D. Gligor. 2013. Accountable key infrastructure (AKI): a proposal for
a public-key validation infrastructure. In 22nd International World Wide Web
Conference, WWW ’13. International World Wide Web Conferences Steering
Committee / ACM.

[16] Sean Lawlor and Kevin Lewi. 2023. Deploying key transparency at
WhatsApp. https://engineering.fb.com/2023/04/13/security/whatsapp-key-
transparency/. Accessed: 2023-04-27.

[17] Derek Leung, Yossi Gilad, Sergey Gorbunov, Leonid Reyzin, and Nickolai Zel-
dovich. 2022. Aardvark: An Asynchronous Authenticated Dictionary with Appli-
cations to Account-based Cryptocurrencies. In 31st USENIX Security Symposium,
USENIX Security 2022. USENIX Association.

[18] Harjasleen Malvai, Lefteris Kokoris-Kogias, Alberto Sonnino, Esha Ghosh,
Ercan Oztürk, Kevin Lewi, and Sean F. Lawlor. 2023. Parakeet: Practi-
cal Key Transparency for End-to-End Encrypted Messaging. In 30th An-
nual Network and Distributed System Security Symposium, NDSS 2023, San
Diego, California, USA, February 27 - March 3, 2023. The Internet Soci-
ety. https://www.ndss-symposium.org/ndss-paper/parakeet-practical-key-
transparency-for-end-to-end-encrypted-messaging/

[19] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Edward W. Felten, and
Michael J. Freedman. 2015. CONIKS: Bringing Key Transparency to End
Users. In 24th USENIX Security Symposium, USENIX Security 2015. USENIX As-
sociation, Washington, D.C., 383–398. https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/melara

[20] SilvioMicali, Salil Vadhan, andMichael Rabin. 1999. Verifiable Random Functions.
In Proceedings of the 40th Annual Symposium on Foundations of Computer Science
(FOCS ’99). IEEE Computer Society.

[21] microsoft.com. 2022. Teams End-to-End Encryption. https://docs.microsoft.com/
en-us/microsoftteams/teams-end-to-end-encryption. Accessed: 2022-05-26.

[22] Signal. [n. d.]. What do I do if my phone is lost or stolen? https:
//support.signal.org/hc/en-us/articles/360007062452-What-do-I-do-if-
my-phone-is-lost-or-stolen-. Accessed: 2023-02-13.

[23] signal.org. 2016. Technical information. https://www.signal.org/docs. Accessed:
2022-08-03.

[24] Alin Tomescu, Vivek Bhupatiraju, Dimitrios Papadopoulos, Charalampos Papa-
manthou, Nikos Triandopoulos, and Srinivas Devadas. 2019. Transparency Logs
via Append-Only Authenticated Dictionaries. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2019, London,
UK, November 11-15, 2019. ACM.

[25] Alin Tomescu, Yu Xia, and Zachary Newman. 2020. Authenticated Dictionaries
with Cross-Incremental Proof (Dis)aggregation. Cryptology ePrint Archive,
Paper 2020/1239. https://eprint.iacr.org/2020/123. https://eprint.iacr.org/2020/
123

[26] Nirvan Tyagi, Ben Fisch, Andrew Zitek, Joseph Bonneau, and Stefano Tessaro.
2022. VeRSA: Verifiable Registries with Efficient Client Audits from RSA Au-
thenticated Dictionaries. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security. ACM.

[27] Ioanna Tzialla, Abhiram Kothapalli, Bryan Parno, and Srinath Setty. 2022. Trans-
parency Dictionaries with Succinct Proofs of Correct Operation. In Proceedings
of the ISOC Network and Distributed System Security Symposium (NDSS).

[28] Webex.com. 2022. Webex End-to-End Encryption. https://help.webex.com/en-
us/article/WBX44739/What-Does-End-to-End-Encryption-Do?. Accessed: 2022-
05-26.

[29] Whatsapp.com. 2021. WhatsApp Encryption Overview. White Paper – https:
//www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf. Accessed:
2022-08-03.

15

https://eprint.iacr.org/2022/1264
https://github.com/google/keytransparency/blob/master/docs/overview.md
https://github.com/google/keytransparency/blob/master/docs/overview.md
https://book.keybase.io/docs/chat
https://book.keybase.io/docs/server#meet-your-sigchain-and-everyone-elses
https://book.keybase.io/docs/server#meet-your-sigchain-and-everyone-elses
https://keybase.io/blog/chat-apps-softer-than-tofu
https://keybase.io/blog/chat-apps-softer-than-tofu
https://engineering.fb.com/2023/04/13/security/whatsapp-key-transparency/
https://engineering.fb.com/2023/04/13/security/whatsapp-key-transparency/
https://www.ndss-symposium.org/ndss-paper/parakeet-practical-key-transparency-for-end-to-end-encrypted-messaging/
https://www.ndss-symposium.org/ndss-paper/parakeet-practical-key-transparency-for-end-to-end-encrypted-messaging/
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/melara
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/melara
https://docs.microsoft.com/en-us/microsoftteams/teams-end-to-end-encryption
https://docs.microsoft.com/en-us/microsoftteams/teams-end-to-end-encryption
https://support.signal.org/hc/en-us/articles/360007062452-What-do-I-do-if-my-phone-is-lost-or-stolen-
https://support.signal.org/hc/en-us/articles/360007062452-What-do-I-do-if-my-phone-is-lost-or-stolen-
https://support.signal.org/hc/en-us/articles/360007062452-What-do-I-do-if-my-phone-is-lost-or-stolen-
https://www.signal.org/docs
https://eprint.iacr.org/2020/123
https://eprint.iacr.org/2020/123
https://eprint.iacr.org/2020/123
https://help.webex.com/en-us/article/WBX44739/What-Does-End-to-End-Encryption-Do?
https://help.webex.com/en-us/article/WBX44739/What-Does-End-to-End-Encryption-Do?
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

Len et al.

A PRELIMINARIES
We denote with 𝜆 the security parameter. We represent maps as sets of label-value pairs 𝐷 = {(𝑎, 𝑏), (𝑐, 𝑑), . . . } with unique labels. We
write 𝐷 [𝑥] to access the value 𝑦 assigned to label 𝑥 , and use the special symbol ⊥ in case 𝐷 does not contain such a label, i.e., the check
𝐷 [𝑥] ≠ ⊥ returns true iff there exists some 𝑦 such that (𝑥,𝑦) ∈ 𝐷 . Similarly, for a finite list 𝐶 = (𝑎, 𝑏, 𝑐, . . .), we use 𝐶 [𝑖] to denote the 𝑖-th
element of list 𝐶 (1-indexed), last(𝐶) for its last element, and 𝐶 ∥𝑥 for appending an element 𝑥 to a list.

For algorithms with multiple inputs, we assume that there is a well-defined way to serialize and deserialize such a tuple, and we use
“parse 𝑎 as (𝑎1, . . . , 𝑎𝑛)” to denote that an algorithm tries to unpack a tuple (producing a special symbol ERROR if this is not possible). Given
a boolean 𝑏, we use “ensure b” as shorthand for “if not 𝑏, return ERROR”. In a security game, we use “require b” as a shorthand to denote
that if 𝑏 is false the oracle call by the adversary is immediately ended without output, and “assert b” to denote that if 𝑏 is false, the security
experiment is immediately terminated with ERROR. When involving the special symbol ERROR in arithmetic expressions, we assume them
to evaluate to false.

For an interactive (two-party) algorithm Alg, we denote its execution by (𝑦1;𝑦2) ← Alg(𝑥1;𝑥2), where 𝑥1 and 𝑥2 are the two parties’
inputs, and 𝑦1 and 𝑦2 the outputs. The parties can interact using the send and receive keywords. In a security game, when executing the
algorithm between one honest party and the adversary A (who in turn invoked the oracle) we denote this by (𝑦1;⊥) ← Alg(𝑥1;A) or
(⊥;𝑦2) ← Alg(A;𝑥2). Here, control is returned to the adversary whenever the honest party waits for input from the other party. At this
point, the adversary may either provide this input — in which case the execution continues — or to start (or continue) a concurrent oracle
execution.

B ROTATABLE ZERO KNOWLEDGE SET
In this section, we recall the formal definition and security properties of Rotatable Zero Knowledge Sets (RZKS), introduced in [8]. We first
begin with a summary of the primitive and its security definitions. The more formal description and figures in this section are almost
verbatim from [8]; see that paper for additional details and discussion, including a description of an efficient and practical instantiation of
this primitive.

Summary: Rotatable Zero Knowledge Sets. Our protocol makes use of the RZKS primitive, which implements a privacy-preserving
and authenticated append-only dictionary that employs three parties: a server (maintaining the dictionary), users (querying the dictionary),
and auditors (ensuring the append-only property).
⊲ RZKS.Init produces a commitment com to an empty datastore and an initial server state st. A datastore is a map from labels label to

values (val, 𝑡), where 𝑡 is an integer indicating that the tuple has been added to the as part of the 𝑡-th Update operation (called epoch).
⊲ RZKS.Update and RZKS.PCSUpdate append a set of new (label, value) pairs to the datastore. The algorithms output an updated

commitment com′ and server state st′, as well as a proof 𝜋𝑆 , which is then verified using RZKS.VerifyUpd. The former variant is more
efficient while the latter variant provides PCS, i.e., guarantees after a server compromise.

⊲ RZKS.Query is run by the server to answer a query for label by a user at epoch 𝑡𝑢 . If the datastore contains a tuple (label, val, 𝑡), with
𝑡 ≤ 𝑡𝑢 , it returns (val, 𝑡) and a proof 𝜋 thereof. Else, it returns a non-membership proof. Either proof can then be verified against the
commitment com𝑡𝑢 using RZKS.Verify.

⊲ RZKS.ProveExt produces a so-called extension proof, which can then be verified using RZKS.VerExt. Such a proof enable users to reduce
the number of interactions with the auditors: if the auditor has the same commitment com𝑡1 for epoch 𝑡1 as the user, it assures the
user, a-posteriori, that it also has had the same sequence of commitments com𝑖 , for 0 ≤ 𝑖 < 𝑡1, as the auditor.

Our construction, on a high-level, assumes the following security properties from a RZKS; see below for formal definitions thereof.

Completeness. Intuitively, all updates and queries should behave as expected by their descriptions above. Furthermore, all proofs produced
by various updating or querying algorithms should verify when properly queried to the corresponding verification algorithms.

Soundness. The RZKS soundness guarantees that a (malicious) prover is unable to produce two verifying proofs for two different values for
the same label with respect to the same commitment, and that it knew the entire collection of (label, value) pairs at the time it produced
the commitment (i.e., the entire datastore can be extracted from the commitment). Additionally, RZKS guarantees consistency among the
RZKS commitments produced over the epochs: each commitment to an epoch also binds the server to all previous commitments (i.e. they
can be extracted from the former), and a valid extension proof between two commitments ensure that they bind to the same set of previous
commitments (up to the earlier of the two epochs). Moreover, the server cannot produce an update proof between commitments that do
not respect the append-only property.

Privacy. The privacy definition of RZKS models zero-knowledge with leakage in the real world/ideal world paradigm, and is parameterized
over an instantiation-specific leakage function. Informally, this means the commitments and proofs generated by any sequence of calls
to RZKS algorithms can be simulated given any (label, value) pair which is part of the answer to the calls and the output of the leakage
function.

B.1 Formal Definition
For reference, we provide the formal description of RZKS; the following is almost verbatim from [8].

Definition 5 (Def. 1 from [8]). A Rotatable Zero Knowledge Set (RZKS) consists of algorithms RZKS = (RZKS.GenPP, RZKS.Init,
RZKS.Update, RZKS.PCSUpdate, RZKS.VerifyUpd, RZKS.Query, RZKS.Verify, RZKS.ProveExt, RZKS.VerExt) defined as follows:

⊲ pp← RZKS.GenPP(1𝜆): This algorithm takes the security parameter and produces public parameter pp for the scheme.
16

ELEKTRA: Efficient Lightweight multi-dEvice Key TRAnsparency

⊲ (com, st) ← RZKS.Init(pp): This algorithm produces a commitment com to an empty datastore D0 = {} and an initial server state st. A
datastore D is a map from labels to values (val, 𝑡), where 𝑡 is an integer indicating that the tuple has been added to the datastore as
part of the 𝑡-th Update or PCSUpdate operation (this is called epoch). Each server state st will contain a datastore and a digest, which
is referred to as D(st) and com(st). Similarly, each commitment will include the epoch t(com) of the datastore to which it is referring.
(Alternatively, these can be thought of as deterministic functions which are part of the scheme).

⊲ (com′, st′, 𝜋𝑆) ← RZKS.Update(pp, st, 𝑆), (com′, st′, 𝜋𝑆) ← RZKS.PCSUpdate(pp, st, 𝑆):
Both algorithms update the datastore with a set 𝑆 = {(label1, val1), (label2, val2), . . . , (label𝑛, val𝑛)} of new (label, value) pairs to
insert. The algorithm outputs an updated commitment to the updated datastore, a modified internal state st′, and a proof 𝜋𝑆 that the
update has been done correctly and only appended new label-value pairs. Intuitively, com′ is a commitment to the updated datastore
D(st′) at epoch t(com′) = t(com) + 1, which extends D(st) by also mapping each label𝑖 in 𝑆 to the pair (val𝑖 , t(st′)).

⊲ 0/1 ← RZKS.VerifyUpd(pp, com𝑡−1, com𝑡 , 𝜋𝑆): This deterministic algorithm takes in two commitments to the datastore output at
successive invocations of Update, and verifies the above proof.

⊲ (𝜋, val, 𝑡) ← RZKS.Query(pp, st, 𝑢, label): This algorithm takes as input a state st, an epoch𝑢 ≤ t(st), and a label. If a tuple (label, val, 𝑡) ∈
D(st) and 𝑡 ≤ 𝑢, it returns val, 𝑡 and a proof 𝜋 . Else, it returns val = ⊥, 𝑡 = ⊥ and a non-membership proof 𝜋 . In both cases, proofs are
meant to be verified against the commitment com𝑢 output during the 𝑢-th update.

⊲ 1/0← RZKS.Verify(pp, com, label, val, 𝑡, 𝜋): This deterministic algorithm takes a (label, val, 𝑡) tuple, and verifies the proof 𝜋 with respect
to the commitment com. If val = ⊥ and 𝑡 = ⊥, this is considered a proof that label is not part of the data structure at epoch t(com).

⊲ 𝜋𝐸 ← RZKS.ProveExt(pp, st, 𝑡0, 𝑡1): This algorithm takes the state of the prover and two epochs 𝑡0, 𝑡1, and returns a proof 𝜋𝐸 that the
datastore after the 𝑡1-th update is an extension of the datastore after the 𝑡0-th update. Proofs are meant to be verified against the
commitments com𝑡0 and com𝑡1 output by Update during the 𝑡0-th and 𝑡1-th update. Here, “extension” means that the respective digest
com𝑡1 binds to com𝑡0 and all other prior commitments, such that a user currently storing com𝑡0 can safely update to com𝑡1 after
checking the proof, knowing that the server cannot prove that any commitment for epoch 𝑡0 other than com𝑡0 is consistent with com𝑡1 .

⊲ 1/0← RZKS.VerExt(pp, com𝑡0 , com𝑡1 , 𝜋𝐸): This deterministic algorithm takes two datastore commitments and a proof (generated by
ProveExt) and verifies it.

RZKS has to satisfy the following security properties:

Completeness. A RZKS satisfies completeness if for all PPT adversaries A, the probability that the game described in Figure 2 outputs 0
is negligible in 1𝜆 .

Intuitively, all updates and queries should behave as expected by their descriptions in the definition. Furthermore, all proofs produced by
various updating or querying algorithms should verify when properly queried to the corresponding verification algorithms. More formally,
an adversary only breaks completeness if it is able to construct a sequence of queries such that one of the assertions in Figure 2 fails. For
example, the assertion D(st′) = D(st) ∪ {(label𝑖 , val𝑖 , 𝑡 + 1)}𝑖∈[𝑗] in Update(𝑆) will only fail if the elements added in 𝑆 are not correctly
added to the state of the datastore. Similarly, in Query(label, 𝑢) completeness assert that RZKS.Verify(com𝑢 , label, val′, 𝑡 ′, 𝜋) succeeds,
where (val′, 𝑡 ′, 𝜋) are those produced by the corresponding call to RZKS.Query.

Soundness. A RZKS satisfies soundness if there exists an extractor Extract such that for all PPT adversaries A, the advantage of A in
distinguishing the two experiments described in Figure 3 is negligible in 1𝜆 . Note that all the algorithms executed in the experiment get
implicit access to the Ideal oracle, as they might need to make, i.e., random oracle calls.

The extractor Extract is required to provide various functionalities based on its first input:

• pp′, st ← Extract(Init): Samples public parameters indistinguishable from honestly generated public parameters such that
extraction will be possible. Also generates an initial state.

• Dcom ← Extract(Extr, st, com): Takes in the internal state and a commitment to the datastore. Outputs the set of (label, val, 𝑖)
committed to.

• 𝐶com ← Extract(ExtrC, st, com): Takes in the internal state and a commitment to the datastore. Outputs the set of previous
commitments, indexed by epoch.

• 𝑜𝑢𝑡, st← Extract(Ideal, st, 𝑖𝑛): Simulates the behavior of some ideal functionality (for example a random oracle or generic group).
Takes in any input and produces an output indistinguishable from the output the ideal functionality would have on that input.

One small subtlety of the definition here is that it does not allow the extractor to update its state outside of Ideal calls. The only
advantage that the extractor gets over an honest party, is its control over the ideal functionality. This allows for easier composition, since a
larger primitive utilizing RZKS will not need to simulate extractor state.

An adversary breaks soundness if it either distinguishes answers to Ideal queries in the real game from those produced by the extractor,
or if it causes some assertion to be false in the ideal game. Each assertion in the ideal game captures some way in which the extractor could
be caught in an inconsistent state. For example, consider the assertion D[com] [label] = (val∗, 𝑖∗) in CheckVerD. This will be false if the
adversary can provide a proof that (label, val∗, 𝑖∗) is in the datastore with digest com, but the extractor expects this datastore to either not
contain label or to contain (label, val, 𝑖) for some different (val, 𝑖).

This soundness definition strengthens the aZKS [7] one by providing extractability. aZKS soundness already guarantees that a (malicious)
prover is unable to produce two verifying proofs for two different values for the same label with respect to an aZKS commitment it has
already produced. However, that definition does not guarantee that the malicious prover knew the entire collection of (label, value) pairs
at the time it produced the commitment. Extractability requires that by mandating that the entire datastore can be extracted from the
commitment, except with negligible probability.

17

Len et al.

CompletenessARZKS :

pp′ ← RZKS.GenPP(1𝜆)
(com′, st′) ← RZKS.Init(pp′)
assert com(st′) = com′ and t(com′) = 0 and D(st′) = {}
com0 ← com′ , st← st′, 𝑡 ← 0, pp← pp′

AO... (pp, com0)
return 1

Oracles Update(𝑆) and PCSUpdate(𝑆) :
parse 𝑆 as (label1, val1), . . . , (label𝑗 , val𝑗)
require label1, . . . , label𝑗 are distinct and do not already appear in D(st)
(com′, st′, 𝜋) ← RZKS.Update(st, 𝑆) // resp. RZKS.PCSUpdate(st, 𝑆)
assert com(st′) = com′, t(com′) = 𝑡 + 1 and D(st′) = D(st) ∪ { (label𝑖 , val𝑖 , 𝑡 + 1) }𝑖∈ [𝑗]
assert 𝑦 ← RZKS.VerifyUpd(com𝑡 , com′, 𝜋) ; 𝑦 = 1
com𝑡+1 ← com′ , st← st′ , 𝑡 ← 𝑡 + 1

OracleQuery(label,𝑢) :
require 0 ≤ 𝑢 ≤ 𝑡
(𝜋, val′, 𝑡 ′) ← RZKS.Query(st,𝑢, label)
If label ∈ D(st), (valD,𝑢D) ← D(st) [label] and𝑢D ≤ 𝑢:

assert (val′, 𝑡 ′) = (valD,𝑢D)
Else

assert (val′, 𝑡 ′) = (⊥,⊥)
assert 𝑦 ← RZKS.Verify(com𝑢 , label, val′, 𝑡 ′, 𝜋) ; 𝑦 = 1

Oracle ProveExt(𝑡0, 𝑡1) :
require 0 ≤ 𝑡0 ≤ 𝑡1 ≤ 𝑡
𝜋𝐸 ← RZKS.ProveExt(st, 𝑡0, 𝑡1)
assert 𝑦 ← RZKS.VerExt(com𝑡0 , com𝑡1 , 𝜋𝐸) ; 𝑦 = 1

Figure 2 (Fig. 1 from [8]): Completeness for RZKS. In this experiment, the adversary can read all the game’s state and the oracle’s intermediate
variables, such as 𝑐𝑜𝑚𝑖∀𝑖, st, 𝑦. The experiment returns 1 unless one of the assertions is triggered. These checks enforce that the data structure
is updated consistently, that the outputs of query reflect the state of the data structure, and that honestly generated proofs pass verification
as intended.

RZKS also explicitly guarantee consistency among the RZKS commitments produced over epochs. Informally, consistency guarantees
that each commitment to an epoch also binds the server to all previous commitments (i.e. these can be extracted from the former). In
particular, when the client swaps a commitment com𝑎 with a more recent one com𝑏 by verifying an extension proof, and then checks with
an auditor that com𝑏 is legitimate, the client can be sure that any auditor who checked all consecutive audit proofs up to com𝑏 must also
have checked the same com𝑎 for epoch 𝑎. This is modeled in the security game by the assertions in the ExtractC, CheckVerUpdC, and
CheckVerExt oracles.

Zero Knowledge. A RZKS is zero-knowledge for leakage function L = (LUpdate,LPCSUpdate,LQuery,LProveExt,LLeakState) if there exists
a simulator S such that every PPT malicious client algorithmA has negligible advantage in distinguishing the two experiments of Figure 4.

The stateful simulator S is required to provide various functionalities:
• com′, pp′ ← S(Init): samples public parameters and an initial commitment indistinguishable from honest public parameters

such that it will be possible to simulate proofs.
• (com′, 𝜋) ← S((PCS)Update, 𝑙): Takes in some leakage 𝑙 about an Update (or, analogously, PCSUpdate) query on input 𝑆 , i.e. in

the experiment 𝑙 ← LUpdate (𝑆) (or 𝑙 ← LPCSUpdate (𝑆)). Outputs a commitment com′ indistinguishable from a commitment to
the previous datastore with the elements of 𝑆 appended. Furthermore, it simulates a proof 𝜋 that the update was done correctly.

• (𝜋, val′, 𝑡 ′) ← S(Query, 𝑙): Takes in leakage 𝑙 ← LQuery (𝑢, label) about the entry indexed by (𝑢, label) in the datastore. Outputs
val′, 𝑡 ′ which would have been returned by an honest query. Also simulates a proof 𝜋 that D[label] = (val′, 𝑡 ′), or an absence proof
if label ∉ D.

• 𝜋 ← S(ProveExt, 𝑙): Takes in partial information 𝑙 ← LProveExt (𝑡0, 𝑡1) from a ProveExt query the between epochs 𝑡0 and 𝑡1.
Outputs an extension proof that the commitment provided at epoch 𝑡1 binds to the one at epoch 𝑡0.

• st← S(Leak, 𝑙): Takes in partial information 𝑙 ← LLeakState () about the datastore and outputs a simulated state consistent with
the information given.

• 𝑜𝑢𝑡 ← S(Ideal, 𝑖𝑛): Simulates the behavior of some ideal functionality. Takes in any input and produces an output indistinguishable
from the output the ideal functionality would have on that input.

Note that the particular leakage given will be construction specific, but should be designed to be as minimal as possible. The choice of
leakage in the RZKS construction [8] will be described in detail in Section B.2. In the experiment, the only information the simulator has
access to is the output of the leakage function, as well as the queries made to the Ideal oracle. The simulator’s ability to control the ideal
oracle is crucial for security proofs to go through.

Informally, zero knowledge means, that the proofs generated by any sequence of calls to RZKS algorithms can be simulated given
access to minimal information about the queries made. The adversary breaks zero knowledge if it is able to generate a sequence of queries
such that it can distinguish the output of the simulator from honestly generated outputs and proofs. For example, if the simulator is

18

ELEKTRA: Efficient Lightweight multi-dEvice Key TRAnsparency

Soundness-IDEALA,Extract
RZKS :

pp′, st← Extract(Init)
D← {},𝐶 ← [], pp← pp′

𝑏 ← A𝐼𝑑𝑒𝑎𝑙 (·),... (pp)
return b

Oracle Extract(com) :
Dcom ← Extract(Extr, st, com)
If com ∈ D assert D[com] = Dcom
D[com] ← Dcom
assert ∀ (label, val, 𝑖) ∈ D[com] : 0 < 𝑖 ≤ t(com)

Oracle ExtractC(com) :
𝐶com ← Extract(ExtrC, st, com)
If com ∈ 𝐶 assert𝐶 [com] = 𝐶com
𝐶 [com] ← 𝐶com
assert |𝐶 [com] | = t(com) and
𝑙𝑎𝑠𝑡 (𝐶 [com]) = com

Oracle CheckVerD(𝑐𝑜𝑚, 𝑙𝑎𝑏𝑒𝑙, 𝑣𝑎𝑙∗, 𝑖∗, 𝜋) :
require RZKS.Verify(pp, com, label, val∗, 𝑖∗, 𝜋) = 1

and com ∈ D
If val∗ = ⊥ or 𝑖∗ = ⊥

assert label ∉ D[com] ∧ val∗ = 𝑖∗ = ⊥
Else assert D[com] [label] = (val∗, 𝑖∗)

Oracle CheckVerUpdD(com𝑎 , com𝑏 , 𝜋) :

require RZKS.VerifyUpd(pp, com𝑎 , com𝑏 , 𝜋) = 1 and
com𝑎 , com𝑏 ∈ D

assert D[com𝑎] ⊆ D[com𝑏], and
t(com𝑏) = t(com𝑎) + 1, and
∀(label, val, 𝑡) ∈ D[com𝑏] \ D[com𝑎] :
𝑡 = t(com𝑏) , and

(t(com𝑎) ≠ 0 or D[com𝑎] = {})

Oracle CheckVerUpdC(com𝑎 , com𝑏 , 𝜋) :

require RZKS.VerifyUpd(pp, com𝑎 , com𝑏 , 𝜋) = 1 and
com𝑎 , com𝑏 ∈ 𝐶

assert t(com𝑏) = t(com𝑎) + 1, and
∀ 𝑗 ≤ t(com𝑎) : 𝐶 [com𝑎] [𝑗] = 𝐶 [com𝑏] [𝑗]

Oracle CheckVerExt(com𝑎 , com𝑏 , 𝜋) :

require RZKS.VerExt(pp, com𝑎 , com𝑏 , 𝜋) = 1 and
com𝑎 , com𝑏 ∈ 𝐶

assert ∀ 𝑗 ≤ t(com𝑎) : 𝐶 [com𝑎] [𝑗] = 𝐶 [com𝑏] [𝑗]

Oracle Ideal(𝑖𝑛) :
𝑜𝑢𝑡, st← Extract(Ideal, st, 𝑖𝑛)
return 𝑜𝑢𝑡

Figure 3 (Fig. 2 from [8]): Soundness for RZKS. In the ideal world, the map D stores, for each commitment com, the datastore that the Extract
algorithm output for that commitment. In addition the map𝐶 stores, for each commitment, the (ordered) list of commitments to previous
epochs. When the adversary provides proofs, one requires that the proofs are consistent with such data structures. In the real world (not
pictured), the public parameters are generated as pp← RZKS.GenPP(1𝜆) , and all the oracles do nothing and return no output, except for the
Ideal oracle, which implements the ideal objects (such as random oracles) that the authors of [8] abstract to prove security of the primitives
(and that are controlled by the extractor in the ideal world). In both cases, RZKS’s algorithms implicitly get access to the Ideal oracle as needed.

unable to simulate query proofs, then an adversary could succeed by calling the Update({label, val}) oracle for some (label, val), then the
(𝜋, val, 1) ←Query(label, 1) oracle, and running RZKS.Verify on 𝜋 . Since the simulator can’t simulate query proofs, 𝜋 generated in the
ideal world will not verify and so will be distinguished from 𝜋 generated in the real world.

Post-compromise security is modeled by allowing for LeakState calls, which reveal the state in its entirety. When the adversary queries
this oracle, the simulator is required to output a state that appears consistent with whatever proofs it has revealed before. Healing from
compromise is modeled by having a dedicated leakage function for PCSUpdate (different from Update). Note that since all the leakage
functions share state, calling LeakState or PCSUpdate might affect the leakage of other future queries.

B.2 Leakage for the RZKS construction in [8]
In [8], a practically efficient instantiation of this primitive is provided that satisfies correctness, soundness, as well as zero knowledge with
respect to the following leakage function:

• The shared state consists of a set of labels 𝑋 , a datastore D, a counter 𝑡 for the current epoch (initialized to 0), a counter 𝑔 for the
current generation (i.e. the number of PCSUpdate operations performed, also starting at 0), a map 𝐺 that matches each epoch to
the respective generation, and a boolean leaked (initially false).

• LQuery (label, 𝑢): If ∃(label, val, 𝑡 ′) ∈ D such that 𝑡 ′ ≤ 𝑢, the function returns (label, val, 𝑡 ′, 𝑢). If ∃(label, val, 𝑡 ′) ∈ D such that
𝐺 [𝑡 ′] = 𝐺 [𝑢], the function returns (label,⊥, 𝑡 ′, 𝑢). Otherwise, it returns (label,⊥,⊥, 𝑢) and, if 𝐺 [𝑢] = 𝑔, adds label to 𝑋 .
• LUpdate (𝑆): Parse 𝑆 = {(label𝑖 , val𝑖)}. If 𝑆 contains any duplicate label, or any label which appears in D, this function returns ⊥.

Else, it increments 𝑡 , sets𝐺 [𝑡] ← 𝑔, and adds the pairs from 𝑆 to the datastore D at epoch 𝑡 . If leaked, it returns the labels in 𝑆 . Else,
it returns |𝑆 | and the set of labels from 𝑆 which are also in 𝑋 .

• LPCSUpdate (𝑆): Parse 𝑆 = {(label𝑖 , val𝑖)}. If 𝑆 contains any duplicate label, or any label which appears in D, this function returns
⊥. Else, it increments 𝑡 , adds the pairs from 𝑆 to the datastore D at epoch 𝑡 , and updates 𝑋 ← {}, leaked ← false, and 𝑔← 𝑔 + 1,
𝐺 [𝑡] ← 𝑔. It returns |𝑆 |.
• LLeakState (): Set leaked ← true. return 𝐷 .
• LProveExt (𝑡0, 𝑡1): return (𝑡0, 𝑡1).

The security of the construction depends on the random oracle model, the generic group model, and the Decisional Diffie Hellman
assumption. See [8] for intuition on the leakage and further details.

C ADDITIONAL DEFINITIONS
In this section, we introduce some additional definitions and notation used for the formalMVKD security notions.

Keychain statements. First, associated to a keychain statement is a set of functions.

Definition 6. For a keychain statement s, we define the following functions:
• type(s) returns the statement type representing the action to be performed (first component),

19

Len et al.

ZK-REALARZKS :

pp′ ← RZKS.GenPP(1𝜆)
(com′, pp′, st′) ← RZKS.Init(pp′)
st← st′, 𝑡 ← 0, pp← pp′

𝑏 ← AUpdate(·),... (com′, pp)
return 𝑏

ZK-IDEALARZKS :

com′, pp′ ← S(Init)
𝑡 ← 0
𝑏 ← AUpdate(·),... (com′, pp′)
return 𝑏

Update(𝑆) : // analogous for PCSUpdate
parse 𝑆 as (label1, val1), . . . , (label𝑗 , val𝑗)
require label1, . . . , label𝑗 are distinct and do not already

appear in D(st)
(com′, st′, 𝜋) ← RZKS.Update(st, 𝑆)
st← st′ ; 𝑡 ← 𝑡 + 1
return (com′, 𝜋)

Update(𝑆) : // analogous for PCSUpdate
parse 𝑆 as (label1, val1), . . . , (label𝑗 , val𝑗)
require label1, . . . , label𝑗 are distinct and do not already

appear in any of the 𝑆1, . . . , 𝑆𝑡
(com′, 𝜋) ← S(Update, LUpdate (𝑆))
𝑡 ← 𝑡 + 1;𝑆𝑡 ← 𝑆

return (com′, 𝜋)

Query(label,𝑢) :
require 0 ≤ 𝑢 ≤ 𝑡
(𝜋, val′, 𝑡 ′) ← RZKS.Query(pp, st,𝑢, label)
return (𝜋, val′, 𝑡 ′)

Query(label,𝑢) :
require 0 ≤ 𝑢 ≤ 𝑡
(𝜋, val′, 𝑡 ′) ← S(Query, LQuery (𝑢, label))
return (𝜋, val′, 𝑡 ′)

ProveExt(𝑡0, 𝑡1) :
require 0 ≤ 𝑡0 ≤ 𝑡1 ≤ 𝑡
𝜋 ← RZKS.ProveExt(pp, st, 𝑡0, 𝑡1)
return 𝜋

ProveExt(𝑡0, 𝑡1) :
require 0 ≤ 𝑡0 ≤ 𝑡1 ≤ 𝑡
𝜋 ← S(ProveExt, LProveExt (𝑡0, 𝑡1))
return 𝜋

LeakState() :
return st

LeakState() :
return S(Leak, LLeakState ())

Ideal(𝑖𝑛) :
return Ideal(𝑖𝑛)

Ideal(𝑖𝑛) :
return S(Ideal, 𝑖𝑛)

Figure 4 (Fig. 3 from [8]): Zero Knowledge (with leakage) security experiments for RZKS. S is a stateful algorithm (whose state is omitted here
to simplify the notation). The leakage functions LUpdate, LQuery, . . . also share state among each other.

• pka (s) returns the public key of the device authorizing the statement (second component),
• data(s) returns the public key or data on which the action is performed (third component),
• t(s) returns the epoch the statement was inserted in the keychain (fourth component). The latter can be the special symbol ⊥, in case

the epoch has not yet been determined.
Finally, we define the function AddEpoch(s, 𝑡) that takes a keychain statement with t(s) = ⊥ and an epoch number 𝑡 and returns the

modified statement with the same components except for the epoch set to 𝑡 .

Keychains. Similar to keychain statements, we associate with a keychain the function u(S) which returns the keychain’s username. The
length of keychain S, i.e. its number of statements, is denoted with |S|. For a statement s, we refer to S∥s as the new keychain resulting
from adding s to the end of S. We denote with S[𝑖] the 𝑖-th statement in the list and with S[1 . . . 𝑖] the keychain that consists of the first 𝑖
statements of S and has the same associated username. For an epoch 𝑡 , let prefix(S, 𝑡) be the prefix of all statements up to epoch 𝑡 , i.e.,
prefix(S, 𝑡) = S[1 . . . 𝑖𝑡] when 𝑖𝑡 denotes the largest index such that t(S[𝑖𝑡]) ≤ 𝑡 . For convenience, we sometimes treat S as a set and write
s ∈ S to denote that s is a keychain statement in S. When iterating over S in a loop, we assume this to happen in sequential order. We
define an empty keychain for username 𝑢, meaning the keychain that has no statements, as (𝑢; ()).

In the following, we provide a more formal definition for the validity of a keychain.

Definition 7 (Formal version of Definition 2). We say that a keychain S is valid, denoted ValidKeychain(S), iff the following
requirements are met:

• The epoch component of each keychain statement s in a keychain must be an integer and strictly monotonically increasing for successive
statements, except for the last statement, which can have t(s) = ⊥.

• A public key can only be added once: For each public key 𝑝𝑘 , there can exist only one s ∈ S with data(s) = 𝑝𝑘 and type(s) ∈
{AddFirst,Add}.

• A public key can only be revoked if it has been previously added but not yet revoked (with an AddFirst statement acting as the revocation
for all previously unrevoked keys): For each public key 𝑝𝑘 , S can have a statement s with data(s) = 𝑝𝑘 and type(s) = Revoke only if
there was a previous statement s′ with data(s′) = 𝑝𝑘 and type(s′) ∈ {AddFirst,Add}, but no other statement s′′ between s′ and s
with type(s′′) = AddFirst, or data(s′′) = 𝑝𝑘 and type(s′′) = Revoke.

• For each statement (except for AddFirst, which is self-certifying) the authorizing key must be an unrevoked key of the keychain: For
each keychain statement s in S, if type(s) ≠ AddFirst, pka (s) must have been previously added but not yet revoked (as defined above).

MVKD scheme. As with keychains, we define a set of functions that expose certain values from aMVKD state. Alternatively, one can
think w.l.o.g. that the honest participants’ states have a representation that lets us identify certain values, and these functions are just
notation to denote those values.

Definition 8. For aMVKD scheme, we define the following functions:
20

ELEKTRA: Efficient Lightweight multi-dEvice Key TRAnsparency

• u(𝑠𝑡) and pk(𝑠𝑡) map a device state to the associated username and public key, respectively, as determined by the respective inputs and
outputs to DeviceSetup. Neither must change over the run of the protocol.

• com(𝑠𝑡) and com(𝑠𝑡𝑠) map the device and server states, respectively, to the most recent commitment stored in the state.
• t(com) maps the commitment to its associated epoch number (or ERROR if the commitment is malformed). We further define t(𝑠𝑡) and

t(𝑠𝑡𝑠) to be shorthands for t(com(𝑠𝑡)) and t(com(𝑠𝑡𝑠)), respectively.
• S(𝑠𝑡,𝑢) maps a device state and username to a pair (𝑡 last, S) representing the epoch 𝑡 last the device held when it last queried 𝑢’s

keychain, and the obtained keychain S. For any users that have not been queried, the function returns 𝑡 last = 0, with an empty keychain
S = (𝑢; ()). If 𝑢 had no keychain, it returns an empty keychain as well (along with the proper 𝑡 last).

D ELEKTRA PROTOCOL DETAILS
ELEKTRA is defined using a signature scheme SIG, a Rotatable Zero Knowledge Set RZKS, and a hash function hash. The state of each
client is a tuple st = (𝑢, 𝑠𝑘, 𝑝𝑘, com,Users) with the following components:

• The RZKS public parameters pp (which we omit from the description and implicitly pass to all the RZKS algorithms)
• 𝑢 is the username of the user this device is assigned to
• 𝑠𝑘, 𝑝𝑘 are this client’s keys for SIG
• com stores the latest commitment that the client knows about
• Users is a dictionary that maps each username 𝑢′ to a tuple (S, auth, 𝑡 last), where S is the latest version of this username’s keychain

the client knows about, auth is the authenticator for the last link of this keychain (helpful to validate future extensions to the
chain), and 𝑡 last is the epoch of the last time this username’s chain was successfully queried for.

Note that if the client queries for a user that is not part of the directory and receives a valid non-inclusion proof, it will store an empty
keychain for this user.
The server state stS = (stRZKS,Com,Users𝑆) consists of the following components:

• The RZKS public parameters pp (which we omit from the description and implicitly pass to all the RZKS algorithms)
• stRZKS is the server state of the RZKS instance
• Com is a dictionary that maps each epoch to the corresponding RZKS commitment and the audit proof that validates that

commitment
• Users𝑆 is a dictionary that maps each 𝑢 to its keychain.

We refer to each component of the states either using functional notation, e.g. com(st), or “class member” notation, e.g. st.com. In
addition, S(st, 𝑢) returns (𝑡 last, S) if st.Users[𝑢] = (S, auth, 𝑡 last), or (0, (𝑢; ())) if st.Users[𝑢] =⊥. For the server state, com(stS) is defined
as com(stS .stRZKS). Recall that for both states, t(st) is a shorthand for t(com(st)).

The protocol is described in Figure 5.

E MVKD COMPLETENESS
In this section, we provide a formal definition of our completeness notion, which prescribes the desired functionality for the honest users
interacting with an honest server. The game is presented in Figure 6. It also allows other dishonest parties to send malicious updates to the
server to ensure this cannot indirectly affect the honest parties’ output and state (beyond updating the relevant keychains). We make a few
restrictions on what malicious clients may do, either because it is redundant or already addressed by other definitions. In more detail,
Query and VerExtension do not modify the server state, so there is no gain from allowing malicious parties to execute these algorithms
with the server in the definition. Furthermore, guarantees about direct interactions between honest and malicious clients as part of AddKey
are covered by the soundness definition, and so are not covered by this definition.

The game maintains the current server state ServerState and device states ClientStates, a mapping Com from epoch numbers 𝑡 to the
respective commitment com𝑡 , and the directory Dir. Here, Dir[𝑢] represents the keychain of user 𝑢 according to the latest update by the
server. The adversary A is provided access to the specified oracles and is given as input security parameter 1𝜆 , public parameters pp, the
initial server state, and the initial commitment. It wins the experiment if the game returns ERROR when the game initialization or an oracle
call by A triggers an assertion. We define the advantage of A as the probability of winning the experiment, and we say that a scheme
MVKD meets our completeness notion if every PPT adversary A has negligible such advantage.

Extending the keychains. Honest devices are created using the DeviceSetup oracle, which verifies basic consistency properties of the
initialized state. A device can then be instructed to extend their keychain using the AddFirstKey, AddKey, RevokeKey, and AddExtra oracles.
These oracles first verify that the operation is valid, with respect to the device’s local view on their own user’s keychain, and then execute
the operation. If the device has an up-to-date view of their keychain, the resulting authenticator auth is added to PendingUpdates[𝑢],
registering it as an honestly generated update the server can execute.

The server is instructed to apply a given set of updates via either the Update or PCSUpdate oracle, which have the same effect in terms
of functionality. It is noteworthy that the set of updates is chosen by the adversary and, thus, can include maliciously generated updates
(to account for malicious devices). The respective algorithm might reject in such a case, but only if either (a) there is at least one update
that has not been honestly generated and hence is not in PendingUpdates, or (b) there exists a collision in updates for a user, meaning
that there is more than one update for a single user’s keychain. If the algorithm accepts, the game updates its directory Dir, and clears
PendingUpdates for the affected users, as concurrently generated updates are no longer applicable.

Querying the directory. A device can query another user’s keychain. The Query oracle ensures the keychain output by the device
matches the prefix of the keychain stored by the server that corresponds to the device’s stored commitment. The operation aborts with an

21

Len et al.

CheckAuth∗ (auth𝑖−1, 𝑡𝑖−1,𝑢, s, auth𝑖) :
parse (ℎ, 𝑧) ← auth𝑖
parse (Type, 𝑝𝑘𝑎 , 𝑑, 𝑡) ← s
If type(s) = Add:

parse 𝑧 ← (𝑧0, 𝑧1)
ensure SIG.Ver(pka (s), 0∥ℎ, 𝑧0) = 1 and SIG.Ver(data(s), 0∥ℎ, 𝑧1) = 1

Else:
ensure SIG.Ver(𝑝𝑘, 0∥ℎ, 𝑧) = 1

ensure ℎ = hash(auth𝑖−1, 𝑡𝑖−1,𝑢, Type, 𝑝𝑘𝑎 , 𝑑)
return 1

AuthStatement∗ (𝑠𝑡, Type, 𝑝𝑘,𝑑) :
(S, auth, 𝑡) ← 𝑠𝑡 .Users[u(𝑠𝑡)]
If (S, auth, 𝑡) =⊥:

S← (u(st) ; ()), auth← 𝜀

𝑒 ← t(last(S)) (or 𝑒 ← 0 if |S | = 0)
ensure ValidKeychain(S∥ (Type, 𝑝𝑘,𝑑,⊥)) = 1
ensure pk(𝑠𝑡) = 𝑝𝑘 ∨ (Type = Add ∧ pk(𝑠𝑡) = 𝑑)
ℎ ← hash(auth, 𝑒, u(st), Type, 𝑝𝑘,𝑑)
𝑧 ← SIG.Sign(sk(𝑠𝑡), 0∥ℎ)
return (ℎ, 𝑧)

MVKD.GenPP(1𝜆) :

return RZKS.GenPP(1𝜆)

MVKD.ServerInit(pp) :
(com0, stRZKS) ← RZKS.Init(pp)
Users𝑆 ← {}; Com← {(0, (com0,⊥)) }
stS ← (stRZKS,Com,Users𝑆)
return (stS, com0)

MVKD.DeviceSetup(pp,𝑢) :
(𝑠𝑘, 𝑝𝑘) ← SIG.KeyGen()
com←⊥;Users← {}
𝑠𝑡 ← (𝑢, 𝑠𝑘, 𝑝𝑘, com,Users)
return (𝑠𝑡, 𝑝𝑘)

MVKD.AddFirstKey(𝑠𝑡) :

return AuthStatement∗ (𝑠𝑡,AddFirst, pk(st), pk(st))

MVKD.RevokeKey(𝑠𝑡, 𝑝𝑘) :

return AuthStatement∗ (𝑠𝑡,Revoke, pk(st), 𝑝𝑘)

MVKD.AddExtra(𝑠𝑡, 𝑑) :
return AuthStatement∗ (𝑠𝑡, Extra, pk(st), 𝑑)

MVKD.AddKey(𝑠𝑡0, 𝑝𝑘1 ; 𝑠𝑡1, 𝑝𝑘0) :
Adding Client:
(ℎ, 𝑧) ← AuthStatement∗ (st0,Add, pk(st0), 𝑝𝑘1) .
receive (ℎ′, 𝑧′)
ensure ℎ = ℎ′ and SIG.Ver(𝑝𝑘1, 0∥ℎ, 𝑧′) = 1
return (ℎ, (𝑧, 𝑧′))

Added Client:
(ℎ′, 𝑧′) ← AuthStatement∗ (st1,Add, 𝑝𝑘0, pk(st1)) .
If (ℎ′, 𝑧′) = ERROR, return 0
send (ℎ′, 𝑧′)
return 1

MVKD.Update(stS,M) andMVKD.PCSUpdate(stS,M) :
ensure ∀(𝑢0, s0, auth0), (𝑢1, s1, auth1) ∈ M :

(𝑢0, s0, auth0) ≠ (𝑢1, s1, auth1) ⇒ 𝑢0 ≠ 𝑢1
𝑡 ← t(stS) + 1
𝑆 ← {}; For (𝑢, s, auth′) ∈ M:

S← stS .Users𝑆 [𝑢]
If S =⊥: S← (𝑢; ()), auth← 𝜀, 𝑒 ← 0
Else : (auth, 𝑒) ← D(stS .stRZKS) [(𝑢, |S |)]
s← (type(s), pka (s), data(s), 𝑡)
ensure ValidKeychain(S∥s)
ensure CheckAuth∗ (auth, 𝑒,𝑢, s, auth′) = 1
stS .Users𝑆 [𝑢] ← S∥s
label← (𝑢, |S | + 1) ; 𝑆 ← 𝑆 ∪ { (label, auth′) }

(com, stS .stRZKS, 𝜋) ← RZKS.Update(pp, stS .stRZKS, 𝑆) //MVKD.Update
or (com, stS .stRZKS, 𝜋) ← RZKS.PCSUpdate(pp, stS .stRZKS, 𝑆) //MVKD.PCSUpdate

stS .Com[𝑡] ← (com, 𝜋)
return (stS, com)

MVKD.Query(𝑠𝑡,𝑢 ; stS,𝑢, 𝑡) :
Client:
(S, auth𝑗 , 𝑡 last) ← 𝑠𝑡 .Users[𝑢]
If S =⊥:

S← (𝑢, []) , 𝑗 ← 0, auth𝑗 ← 𝜀 , 𝑡 last ← 0
Else:

𝑗 ← |S |
send 𝑡 last

receive a list of tuples T← {(s𝑖 , auth𝑖 , 𝜋𝑖) }𝑛+1𝑖=𝑗+1 . If T = ERROR or |T | = 0, return ERROR.
If |T | > 1:

ensure t(s𝑗+1) > 𝑡 last
For 𝑖 = 𝑗 + 1, . . . , 𝑛 + 1:

label𝑖 ← (𝑢, 𝑖) ; 𝑡𝑖 ← t(s𝑖)
If 𝑖 = 𝑛 + 1:

ensure auth𝑖 = ⊥, s𝑖 = ⊥
Else:

ensure t(s𝑖−1) ≤ t(s𝑖) (with t(s0) = 0)
ensure CheckAuth∗ (auth𝑖−1, 𝑡𝑖−1,𝑢, s, auth𝑖) = 1

ensure RZKS.Verify(pp, com(𝑠𝑡), label𝑖 , auth𝑖 , 𝑡𝑖 , 𝜋𝑖) = 1
S′ ← S∥s𝑗+1 ∥ . . . ∥s𝑛
ensure ValidKeychain(S′)
𝑠𝑡 .Users[𝑢] ← (S′, auth𝑛 , t(𝑠𝑡))
return (𝑠𝑡, S′)

Server:
S← stS .Users𝑆 [𝑢]
receive 𝑡 last

ensure 𝑡 last ≤ 𝑡 and 𝑡 ≤ t(stRZKS) , else send ERROR and return ERROR.
𝑗 ′ ← |{s : s ∈ S ∧ t(s) ≤ 𝑡 last } |
𝑛 ← |{s : s ∈ S ∧ t(s) ≤ 𝑡 } |
For 𝑖 = 𝑗 ′ + 1, . . . , 𝑛 + 1:

label𝑖 ← (𝑢, 𝑖)
(𝜋𝑖 , val𝑖 , 𝑡𝑖) ← RZKS.Query(pp, stS .stRZKS, 𝑡, label𝑖)

send { (S[𝑖], val𝑖 , 𝜋𝑖) }𝑛+1𝑖=𝑗 ′+1 (with S[𝑛 + 1] =⊥)

MVKD.VerExtension(𝑠𝑡, com ; stS, 𝑡 ′, 𝑡 ′′) :
Client:
receive (com′, 𝜋)
If com(st) =⊥:

𝑏 ← 1
Else if t(𝑠𝑡) < t(com) :

𝑏 ← RZKS.VerExt(pp, com(𝑠𝑡), com, 𝜋)
Else:

𝑏 ← RZKS.VerExt(pp, com, com(𝑠𝑡), 𝜋)
If com′ ≠ com:

𝑏 ← 0
If 𝑏 = 1 and (t(𝑠𝑡) < t(com) or com(𝑠𝑡) =⊥):

com(𝑠𝑡) ← com
return (𝑠𝑡, 𝑏)

Server:
If 𝑡 ′ =⊥:

𝜋 ←⊥
Else if 𝑡 ′ < 𝑡 ′′ :

𝜋 ← RZKS.ProveExt(pp, stS .stRZKS, 𝑡 ′, 𝑡 ′′)
Else:

𝜋 ← RZKS.ProveExt(pp, stS .stRZKS, 𝑡 ′′, 𝑡 ′)
Retrieve (com, ·) ← stS .Com[𝑡 ′′]
send (com, 𝜋)

MVKD.Audit(com𝑡 , com𝑡+1 ; stS, 𝑡 ′) :
Auditor:
receive 𝜋
return RZKS.VerifyUpd(pp, com𝑡 , com𝑡+1, 𝜋)

Server:
(com, 𝜋) ← stS .Com[𝑡 ′ + 1]
send 𝜋

MVKD.Sign(𝑠𝑡,𝑚) :
return SIG.Sign(sk(𝑠𝑡), 1∥𝑚)

MVKD.Verify(𝑝𝑘,𝑚, 𝜎) :
return SIG.Ver(𝑝𝑘, 1∥𝑚,𝜎)

Figure 5 (MVKD Protocol): DetailedMVKD protocol description. Procedures marked by an asterisk are internal predicates.

22

ELEKTRA: Efficient Lightweight multi-dEvice Key TRAnsparency

CompletenessAMVKD :

epno← 0
For all𝑢: Dir[𝑢] ← (𝑢; ())
Com[·],ClientStates[·] ← ⊥; PendingUpdates[·] ← {}
pp← MVKD.GenPP(1𝜆)
(ServerState,Com[0]) ← MVKD.ServerInit(pp)
assert:

(1) t(Com[0]) = 0
(2) com(ServerState) = Com[0]

ADeviceSetup,...,Sign (1𝜆, pp, ServerState,Com[0])
return 1

DeviceSetup(𝑢) :

(𝑠𝑡, 𝑝𝑘) ← MVKD.DeviceSetup(pp,𝑢)
assert:

(1) ClientStates[𝑝𝑘] = ⊥
(2) u(𝑠𝑡) = 𝑢

(3) pk(𝑠𝑡) = 𝑝𝑘

(4) com(𝑠𝑡) = ⊥
(5) ∀𝑢′ : S(𝑠𝑡,𝑢′) = (0, (𝑢′ ; ()))

ClientStates[𝑝𝑘] ← 𝑠𝑡

return (𝑠𝑡, 𝑝𝑘)

AddFirstKey(𝑝𝑘) :

𝑠𝑡 ← ClientStates[𝑝𝑘] ;𝑢 ← u(𝑠𝑡)
(𝑡 last, S) ← S(𝑠𝑡,𝑢) ; s← (AddFirst, 𝑝𝑘, 𝑝𝑘,⊥)
require:

(1) 𝑠𝑡 ≠ ⊥
(2) ValidKeychain(S∥s)

auth← MVKD.AddFirstKey(𝑠𝑡)
If Dir[𝑢] = S:

PendingUpdates[𝑢] ← PendingUpdates[𝑢] ∪ {(𝑢, s, auth) }
return auth

AddKey(𝑝𝑘0, 𝑝𝑘1) :

𝑠𝑡0, 𝑠𝑡1 ← ClientStates[𝑝𝑘0],ClientStates[𝑝𝑘1]
𝑢 ← u(𝑠𝑡0) ; s← (Add, 𝑝𝑘0, 𝑝𝑘1,⊥)
(𝑡 last0 , S0) ← S(𝑠𝑡0,𝑢) ; (𝑡 last1 , S1) ← S(𝑠𝑡1,𝑢)
require:

(1) 𝑠𝑡0 ≠ ⊥ and 𝑠𝑡1 ≠ ⊥
(2) u(𝑠𝑡0) = u(𝑠𝑡1)
(3) S0 = S1
(4) ValidKeychain(S0 ∥s)

(auth ; 𝑏) ← MVKD.AddKey(𝑠𝑡0, 𝑝𝑘1 ; 𝑠𝑡1, 𝑝𝑘0)
assert:𝑏 = 1
If Dir[𝑢] = S0 :

PendingUpdates[𝑢] ← PendingUpdates[𝑢] ∪ {(𝑢, s, auth) }
return auth

RevokeKey(𝑝𝑘, 𝑝𝑘′) :

𝑠𝑡 ← ClientStates[𝑝𝑘] ;𝑢 ← u(𝑠𝑡)
(𝑡 last, S) ← S(𝑠𝑡,𝑢) ; s← (Revoke, 𝑝𝑘, 𝑝𝑘′,⊥)
require:

(1) 𝑠𝑡 ≠ ⊥
(2) ValidKeychain(S∥s)

auth← MVKD.RevokeKey(𝑠𝑡, 𝑝𝑘′)
If Dir[𝑢] = S:

PendingUpdates[𝑢] ← PendingUpdates[𝑢] ∪ {(𝑢, s, auth) }
return auth

AddExtra(𝑝𝑘,𝑑) :

𝑠𝑡 ← ClientStates[𝑝𝑘] ;𝑢 ← u(𝑠𝑡)
(𝑡 last, S) ← S(𝑠𝑡,𝑢) ; s← (Extra, 𝑝𝑘,𝑑,⊥)
require:

(1) 𝑠𝑡 ≠ ⊥
(2) ValidKeychain(S∥s)

auth← MVKD.AddExtra(𝑠𝑡,𝑑)
If Dir[𝑢] = S:

PendingUpdates[𝑢] ← PendingUpdates[𝑢] ∪ {(𝑢, s, auth) }
return auth

Update(M) and PCSUpdate(M) :

(ServerState′, com′) ← MVKD.Update(ServerState,M)
// resp.MVKD.PCSUpdate(ServerState,M)

If (ServerState′, com′) = ERROR:
assert: ∃(𝑢, s, auth) ∈ M :(

s ∉ PendingUpdates[𝑢] or
∃(𝑢′, s′, auth′) ∈ M \ {(𝑢, s, auth) } : 𝑢 = 𝑢′

)
Else:

assert:
(1) ∀(𝑢, s, auth) ∈ M,�(𝑢′, s′, auth′) ∈ M \ (𝑢, s, auth) :

𝑢 = 𝑢′
(2) t(com′) = epno + 1
(3) com(ServerState′) = com′
ServerState← ServerState′ ; epno← epno + 1
Com[epno] ← com′
For (𝑢, s, auth) ∈ M:

Dir[𝑢] ← Dir[𝑢] ∥AddEpoch(s, epno)
PendingUpdates[𝑢] ← {}

return (ServerState′, com′)

Audit(𝑡) :

require: 0 ≤ 𝑡 < t(ServerState)
(𝑏;⊥) ← MVKD.Audit(Com[𝑡],Com[𝑡 + 1]; ServerState, 𝑡)
assert:𝑏 = 1
return𝑏

Query(𝑝𝑘,𝑢′,𝑢′′, 𝑡 ′′) :

𝑠𝑡 ← ClientStates[𝑝𝑘];𝑢 ← u(𝑠𝑡) ; 𝑡 ← t(𝑠𝑡)
require 𝑠𝑡 ≠ ⊥
(𝑠𝑡 ′, S′ ;⊥) ← MVKD.Query(𝑠𝑡,𝑢′ ; ServerState,𝑢′′, 𝑡 ′′)
If (𝑠𝑡 ′, S′) = ERROR:

assert𝑢′ ≠ 𝑢′′ or 𝑡 ′′ ≠ 𝑡

or 𝑡 > epno or com(𝑠𝑡) ≠ Com[𝑡]
Else:

assert:
(1) S′ = prefix(Dir[𝑢′], 𝑡)
(2) S(𝑠𝑡 ′,𝑢′) = (t(𝑠𝑡 ′), S′)
(3) u(𝑠𝑡 ′) = 𝑢

(4) pk(𝑠𝑡 ′) = 𝑝𝑘

(5) com(𝑠𝑡 ′) = com(𝑠𝑡)
(6) ∀𝑢∗ ≠ 𝑢′ : S(𝑠𝑡 ′,𝑢∗) = S(𝑠𝑡,𝑢∗)

ClientStates[𝑝𝑘] ← 𝑠𝑡 ′
return (𝑠𝑡 ′, S′)

VerExtension(𝑝𝑘, com, 𝑡, 𝑡 ′) :

𝑠𝑡 ← ClientStates[𝑝𝑘]
require:

(1) 𝑠𝑡 ≠ ⊥
(2) 0 ≤ 𝑡, 𝑡 ′ ≤ epno

(𝑠𝑡 ′,𝑏;⊥)←MVKD.VerExtension(𝑠𝑡,com; ServerState,𝑡,𝑡 ′)
assert:

(1) u(𝑠𝑡 ′) = u(𝑠𝑡)
(2) pk(𝑠𝑡 ′) = 𝑝𝑘

(3) ∀𝑢′ : S(𝑠𝑡 ′,𝑢′) = S(𝑠𝑡,𝑢′)
If𝑏 = 0:

If com(𝑠𝑡) ≠ ⊥, 𝑡curr ← t(𝑠𝑡) ; else 𝑡curr ← 0.
assert:
(1) 𝑡curr ≠ 𝑡 or com ≠ Com[𝑡 ′]
(2) com(𝑠𝑡 ′) = com(𝑠𝑡)

Else if t(𝑠𝑡) < t(com) or com(𝑠𝑡) = ⊥:
assert: com(𝑠𝑡 ′) = com
assert: Com[t(com)] = com

Else:
assert: com(𝑠𝑡 ′) = com(𝑠𝑡)

ClientStates[𝑝𝑘] ← 𝑠𝑡 ′
return (𝑠𝑡 ′,𝑏)

Sign(𝑝𝑘,𝑚) :

𝑠𝑡 ← ClientStates[𝑝𝑘]
require: 𝑠𝑡 ≠ ⊥
𝜎 ← MVKD.Sign(𝑠𝑡,𝑚)
assert:MVKD.Verify(𝑝𝑘,𝑚,𝜎) = 1
return 𝜎

Figure 6: TheMVKD completeness experiment. The advantage of A is defined as the probability of the experiment returning ERROR by A
triggering an assertion.

ERROR only if there has been a mismatch with the server’s view, i.e., either the input usernames do not match, the epoch input to the server
does not correspond to the client’s epoch, the client’s epoch is greater than the server’s current epoch, or the device uses a commitment
that has never been output by the server. The device can further be instructed to update to the latest commitment using the VerExtension
oracle. The game ensures that the algorithm only rejects if the device’s and server’s states or inputs mismatch. If the algorithm accepts, the
game verifies that the commitment in the device’s state is updated as expected.

Audits. The Audit oracle verifies that external auditors can successfully audit two consecutive commitments produced by the honest
server.

Signatures. Finally, the game ensures that the associated signature is correct. That is, the Sign oracle verifies that a signature produced
by the respective algorithm verifies under the device’s public key.

F PROOF OF THEOREM 1
Sketch. The proof mainly follows by inspection. For instance, for the initial server state we observe that com(ServerState) = Com[0]

and t(ServerState) immediately follow by completeness of the RZKS scheme. Analogously, the assertions in DeviceSetup mostly follow by
inspection of the protocol, with the freshness of the public key following by correctness and unforgeability of the signature scheme. In
the same vein, the assertion in Sign follows by correctness of the signature scheme and the signing key staying constant throughout the
execution of the protocol.

Consider now Update (and PCSUpdate). Here, observe that the server accepts iff there is at most one update per user, all resulting
keychains are valid (ValidKeychain), and their authenticators form a valid sigchain (CheckAuth). Hence, to conclude that Update (or
PCSUpdate) does not erroneously abort, we observe that whenever PendingUpdates stores a keychain statement it is guaranteed that
appending this statement does lead to a valid keychain (by definition of the game) and that the authenticator is valid (by correctness of the
signature scheme and for the user’s keychain not having changed since the statement having been produced). Next, observe that at the
end of Update (or PCSUpdate) the game’s Dir[·] dictionary matches the server’s protocol state and that the authenticators validated by
the Update (and PCSUpdate) algorithm are stored in the RZKS. Whenever a device executes theQuery algorithm to query for a user 𝑢′,

23

Len et al.

we are, thus, guaranteed that the returned keychain is valid and matches prefix(𝑢′, 𝑡) (the prefix up to the queried epoch 𝑡), and that the
authenticators sent to the device — which by correctness of the RZKS scheme are the same ones as the server stored — check out. Hence,
the device will output the keychain stored in Dir, and all remaining assertions fromQuery follow by simple inspection of the protocol.

Finally, for VerExtension, as long as the device’s and server’s input match, the completeness directly follows by the completeness of
RZKS with respect to the RZKS.ProveExt and RZKS.VerExt algorithms, and analogously for Audit.

□

G MVKD SOUNDNESS
In this section, we provide a formal description of theMVKD soundness experiment. In particular, we give a formal descriptions of the four
properties (introduced in Section 4.2) that our soundness definition captures: resiliency, unforgeability, consistency, and persistency.

Recall that we formalize soundness as a real-ideal world indistinguishability game. The ideal experiment Soundness-IDEALA,ExtractMVKD is
depicted in Figure 7 and uses a stateful extractor Extract for the ideal world, providing the following functionality:

Soundness-IDEALA,Extract
MVKD :

HonKeys,KS, PS, Sigs← {}
D[·],C[·],ClientStates[·] ← ⊥
pp, st← Extract(Init, 1𝜆)
𝑏 ← ADeviceSetup,Compromise,...,AddExtra (1𝜆, pp)
return𝑏

Commit(com) :

Dcom,Ccom ← Extract(Extr, st, com)
assert:

(1) D[com] ≠ ⊥ ⇒ D[com] = Dcom , C[com] = Ccom
(2) ∀((𝑢, 𝑖), S) ∈ Dcom :

(a) |S| = 𝑖 , u(S) = 𝑢

(b) t(com) ≥ t(last(S)) > 0
(c) ValidKeychain(S)
(d) HonestKeychain(S)

(3) |Ccom | = t(com) or t(com) = ERROR

(4) last(Ccom) = com
D[com] ← Dcom,C[com] ← Ccom

HonestKeychain(S) : // helper function, not an oracle

return ∀𝑖 ∈ {1, . . . , |S|}:
(1) pka (S[𝑖]) ∈ HonKeys⇒ S[1 . . . 𝑖] ∈∗ KS
(2) (type(S[𝑖]) = Add and data(S[𝑖]) ∈ HonKeys)

⇒ S[1 . . . 𝑖] ∈∗ PS

DeviceSetup(𝑢) :

(𝑠𝑡, 𝑝𝑘) ← MVKD.DeviceSetup(pp,𝑢)
assert:

(1) ClientStates[𝑝𝑘] = ⊥
(2) u(𝑠𝑡) = 𝑢 and pk(𝑠𝑡) = 𝑝𝑘

(3) com(𝑠𝑡) = ⊥
(4) ∀𝑢′ : S(𝑠𝑡,𝑢′) = (0, (𝑢′ ; ()))

ClientStates[𝑝𝑘] ← 𝑠𝑡

HonKeys← HonKeys ∪ {𝑝𝑘}
return 𝑝𝑘

Query(𝑝𝑘,𝑢) :

𝑠𝑡 ← ClientStates[𝑝𝑘] ; com← com(𝑠𝑡)
require: 𝑠𝑡 ≠ ⊥
(𝑡 last, S) ← S(𝑠𝑡, u(𝑠𝑡))
(𝑠𝑡 ′, S′ ; ⊥) ← MVKD.Query(𝑠𝑡,𝑢 ; A)
If (𝑠𝑡 ′, S′) = ERROR: return ERROR

assert:
(1) extends

(
t(𝑠𝑡 ′), S′, 𝑡 last, S

)
(2) u(𝑠𝑡 ′) = u(𝑠𝑡) and pk(𝑠𝑡 ′) = pk(𝑠𝑡)

and com(𝑠𝑡 ′) = com
(3) S(𝑠𝑡 ′,𝑢) = (t(𝑠𝑡 ′), S′) and u(S′) = 𝑢

(4) ∀𝑢′ ≠ 𝑢 : S(𝑠𝑡 ′,𝑢′) = S(𝑠𝑡,𝑢′)
(5) For 𝑖 = |S|+1, . . . , |S′ |:
S′ [1 . . . 𝑖] = D[com] [(𝑢, 𝑖)]

(6) D[com] [(𝑢, |S′ | + 1)] = ⊥
ClientStates[𝑝𝑘] ← 𝑠𝑡 ′
return S′

Compromise(𝑝𝑘) :

HonKeys← HonKeys \ {𝑝𝑘}
return ClientStates[𝑝𝑘]

Audit(com𝑎, com𝑏) :

(𝑏 ; ⊥) ← MVKD.Audit(com𝑎, com𝑏 ; A)
require:𝑏 = 1 and D[com𝑎] ≠ ⊥ and D[com𝑏] ≠ ⊥
assert:

(1) t(com𝑎) ≠ ERROR and t(com𝑏) = t(com𝑎) + 1
(2) C[com𝑏] = C[com𝑎] ∥com𝑏
(3) D[com𝑎] ⊆ D[com𝑏]
(4) ∀((𝑢, 𝑖), S) ∈ D[com𝑏]\D[com𝑎] :

t(last(S)) = t(com𝑏)
(5) t(com𝑎) > 0 or D[com𝑎] = {}

AddFirstKey(𝑝𝑘) :

require: 𝑝𝑘 ∈ HonKeys
𝑠𝑡 ← ClientStates[𝑝𝑘] ; (𝑡 last, S) ← S(𝑠𝑡, u(𝑠𝑡))
auth← MVKD.AddFirstKey(𝑠𝑡)
If auth ≠ ERROR: KS← KS ∪ {S∥ (AddFirst, 𝑝𝑘, 𝑝𝑘,⊥)}
return auth

AddKey-Left(𝑝𝑘0, 𝑝𝑘1) :

require: 𝑝𝑘0 ∈ HonKeys
𝑠𝑡0 ← ClientStates[𝑝𝑘0] ; (𝑡 last, S) ← S(𝑠𝑡0, u(𝑠𝑡0))
auth← MVKD.AddKey(𝑠𝑡0, 𝑝𝑘1 ; A)
If auth ≠ ERROR : KS← KS ∪ {S∥ (Add, 𝑝𝑘0, 𝑝𝑘1,⊥)}
return auth

AddKey-Right(𝑝𝑘1, 𝑝𝑘0) :

require: 𝑝𝑘1 ∈ HonKeys
𝑠𝑡1 ← ClientStates[𝑝𝑘1] ; (𝑡 last, S) ← S(𝑠𝑡1, u(𝑠𝑡1))
𝑏 ← MVKD.AddKey(A ; 𝑠𝑡1, 𝑝𝑘0)
If𝑏 = 1 : PS← PS ∪ {S∥ (Add, 𝑝𝑘0, 𝑝𝑘1,⊥)}
return𝑏

RevokeKey(𝑝𝑘, 𝑝𝑘𝑅) :

require: 𝑝𝑘 ∈ HonKeys
𝑠𝑡 ← ClientStates[𝑝𝑘] ; (𝑡 last, S) ← S(𝑠𝑡, u(𝑠𝑡))
auth← MVKD.RevokeKey(𝑠𝑡, 𝑝𝑘𝑅)
If auth ≠ ERROR : KS← KS ∪ {S∥ (Revoke, 𝑝𝑘, 𝑝𝑘𝑅,⊥)}
return auth

AddExtra(𝑝𝑘,𝑑) :

require: 𝑝𝑘 ∈ HonKeys
𝑠𝑡 ← ClientStates[𝑝𝑘] ; (𝑡 last, S) ← S(𝑠𝑡, u(𝑠𝑡))
auth← MVKD.AddExtra(𝑠𝑡,𝑑)
If auth ≠ ERROR : KS← KS ∪ {S∥ (Extra, 𝑝𝑘,𝑑,⊥)}
return auth

VerExtension(𝑝𝑘, com′) :

𝑠𝑡 ← ClientStates[𝑝𝑘] ; com← com(𝑠𝑡)
require: 𝑠𝑡 ≠ ⊥ and D[com′] ≠ ⊥
(𝑠𝑡 ′,𝑏 ; ⊥) ← MVKD.VerExtension(𝑠𝑡, com′ ; A)
assert:

(1) u(𝑠𝑡 ′) = u(𝑠𝑡) and pk(𝑠𝑡 ′) = pk(𝑠𝑡)
(2) ∀𝑢 : S(𝑠𝑡 ′,𝑢) = S(𝑠𝑡,𝑢)

If𝑏 = 1 and (t(com′) > t(com) or com = ⊥) :
assert: com(𝑠𝑡 ′) = com′

Else:
assert: com(𝑠𝑡 ′) = com

If𝑏 = 1 and com ≠ ⊥:
For 𝑗 = 1, . . . ,min(t(com), t(com′))

assert:𝐶 [com] [𝑗] =𝐶 [com′] [𝑗]
ClientStates[𝑝𝑘] ← 𝑠𝑡 ′

Sign(𝑝𝑘,𝑚) :

𝑠𝑡 ← ClientStates[𝑝𝑘]
require: 𝑠𝑡 ≠ ⊥
𝜎 ← MVKD.Sign(𝑠𝑡,𝑚)
assert:MVKD.Verify(𝑝𝑘,𝑚,𝜎) = 1
Sigs← Sigs ∪ {(𝑝𝑘,𝑚,𝜎) }
return 𝜎

Forgery(𝑝𝑘,𝑚,𝜎) :

require:MVKD.Verify(𝑝𝑘,𝑚,𝜎) = 1
assert: 𝑝𝑘 ∉ HonKeys or (𝑝𝑘,𝑚,𝜎) ∈ Sigs

Ideal(𝑖𝑛) :

𝑜𝑢𝑡, st← Extract(Ideal, st, 𝑖𝑛)
return 𝑜𝑢𝑡

Figure 7: The ideal MVKD Soundness experiment.

• pp, st← Extract(Init, 1𝜆): Samples public parameters (meant to be indistinguishable from honestly generated ones) to be given as
input to the adversary, and initializes the extractor’s state.

• 𝑜𝑢𝑡, st← Extract(Ideal, st, 𝑖𝑛): Implements any ideal functionalities (such as Random Oracles) that the scheme depends on, and
can also update its own state when answering these queries.

• Dcom,Ccom ← Extract(Extr, st, com): On input a commitment com and its own state st, the extractor outputs a map Dcom and a
list Ccom. Dcom maps a username-integer pair (𝑢, 𝑒) to a keychain for 𝑢 with 𝑒 > 0 statements. Intuitively, this map restricts what
an adversary can force an honest client who holds com to output when querying for 𝑢, as we detail later. Ccom is a list of |t(com) |
commitments, meant to correspond to previous epochs of the data structure that com commits to. Note that, when answering

24

ELEKTRA: Efficient Lightweight multi-dEvice Key TRAnsparency

these queries, the extractor cannot update its state. If com is malformed, Dcom can be an empty set and Ccom (or some of its list
elements) can be ERROR.

The real experiment Soundness-REALAMVKD (not pictured) is defined similarly to the ideal one, with the following modifications: all
assertions are removed (hence, triggering one in the ideal world makes the two worlds immediately distinguishable) and there is no
extractor. Instead, the public parameters pp are sampled honestly at the beginning, the Ideal oracle is implemented according to the
specification of each idealized functionality, and Commit queries on input com simply set D[com] ← 𝜀 so that require statements have
analogous behavior in both experiments. If no assertions are triggered,A can terminate its execution by outputting a bit, which is taken as
the output of the experiment.

Definition 9. We say that aMVKD satisfies Soundness (w.r.t. a set of idealized functionalities), if for any PPT adversary A,���Pr[Soundness-IDEALA,ExtractMVKD = 1
]
− Pr

[
Soundness-REALAMVKD = 1

] ��� ≤ negl (𝜆) .

Formalizing the soundness game using indistinguishability ensures that the extractor must sample the public parameters and implement
idealized functionalities in a way that is computationally indistinguishable from the real world. When the game itself executes one of the
MVKD algorithms, that algorithm can also (implicitly) make Ideal oracle queries (say, to evaluate a Random Oracle hash). We limit A to
not make more than one oracle call at a time involving the same honest device; this is acceptable as an honest device will only participate
in one procedure at a time in practice.

Honest Devices. As in the completeness game, the adversary is allowed to create (honest) devices using the DeviceSetup oracle. Here,
however, the adversary does not directly learn those devices’ states, but instead can later corrupt them (using the Compromise oracle),
with the game keeping track of all uncompromised keys in the HonKeys set. Whenever A uses an oracle to interact with an honest device
in a way that updates the device’s state, the game asserts that the components of the state which are not expected to change stay constant
(which formalizes part of resiliency). Examples include assertions 2 and 4 inQuery or 1 and 2 in VerExtension.

Signatures. The adversary can request honest devices to sign arbitrary messages𝑚 using the Sign oracle. The oracle verifies that the
resulting signature is actually valid, enforcing that a malicious server cannot eradicate a device’s ability to use their key (also part of
resiliency). At the same time, the game also ensures that such signatures cannot be forged, allowing the adversary to win by submitting a
valid forgery for an honest device’s key to the Forgery oracle (unforgeability of signatures).

Commit oracle. Before the adversary can ask any client to update their commitment to com, the adversary has to “announce” it by
invoking the Commit oracle (VerExtension requires D[com′] ≠ ⊥). This ensures that the extractor is executed before clients can perform
any queries (or update their commitments), and therefore that we can test whether what the clients output matches the output of the
extractor. As specified above, the extractor outputs a map Dcom of keychains, and a list of commitments to the previous epochs that com
binds to. This oracle enforces some basic consistency properties of the extracted values: that the output is the same when the extractor is
called on the same input com (but a potentially different state) more than once; that all keychains9 in Dcom are valid and have the expected
length; that the list C[com] has the appropriate length and ends with com.

Querying the directory. The Query oracle formalizes the main guarantees of the soundness property. The adversary wins if, when
interacting with an honest client in aQuery for user 𝑢’s keychain, it causes the client to either:

• output a keychain which does not extend the one priorly stored as part of the client’s state, addressing persistency from a client’s
point of view, or

• output a keychain which does not match the output of the extractor, except for the following caveats, addressing consistency.
To formalize consistency, theQuery oracle uses the following definition.

Definition 10. Let S1, S2 be two keychains. We say that S2 extends S1, denoted extends(S2, S1), if u(S2) = u(S1), and there exist statements
s1, . . . , s𝑛 such that S2 = S1∥s1∥ . . . ∥s𝑛 . We further say that keychain S2 extends S1 between epochs 𝑡1 and 𝑡2, denoted extends(𝑡2, S2, 𝑡1, S1)
iff extends(S2, S1) and for each 𝑗 ∈ {|S1 | + 1, . . . , |S2 |} it holds that t(last(S1)) ≤ 𝑡1 < t(S2 [𝑗]) ≤ 𝑡2.

Recall from Section 4.2 that we formalize a slightly weakened consistency property that accommodates the efficiency requirements of
practical protocols. Simply put, we want protocols to have complexity that scales linearly in the number of changes to S since it was last
queried given that, for most users, keychain updates are infrequent compared to queries.

Our protocol (cf. Section 3) for instance caches the keychain and only requests newly added links from the server, plus a proof that
no further statement with index |S′ | + 1 exists. This protocol is, however, susceptible to the following attack: The adversary publishes a
keychain for user 𝑢 with 2 statements at epoch 𝑡 , then extend it with a 3rd statement at epoch 𝑡 + 1, while also replacing the first statement
with something malicious and completely removing the 2nd statement from the RZKS.10 Consequently, a client who queries for 𝑢 at epoch
𝑡 and then at epoch 𝑡 + 1 would output the chain with all 3 honest statements. However, a different client who queries for 𝑢 at epoch 𝑡 + 1
for the first time (with the same commitment) would output a keychain with only the first malicious statement since, in our protocol,
the server could provide an inclusion proof for that first statement and a non-membership proof that the directory contains no second
statement.

As a consequence, we formalize the following weaker guarantees. Consider two users 𝑢1 and 𝑢2 that both query for 𝑢’s keychain
successfully (i.e., do not output an error) while holding the same commitment com. Let 𝑘 and ℓ denote the length of their cached keychains
for 𝑢, respectively.
9We provide more intuition for assertion 2 on HonestKeychain in the paragraph about keychain authentication.
10Note that this update is removing and altering existing data from the directory, so the adversary couldn’t make Audit succeed between the two epochs. We, however, wish to
formalize guarantees even if auditing is not performed.

25

Len et al.

• If 𝑘 = ℓ , then we enforce that either both users output the same keychain.
• Otherwise, if without loss of generality 𝑘 < ℓ , the adversary has two options: Either both users can output the same keychain, or
𝑢1 can output one of length at most ℓ − 1 that is inconsistent, i.e. not even necessarily a prefix with what 𝑢2 outputs (or has output
in prior queries).

To this end, the Query oracle enforces that for each new 𝑖-th statement output by a user (𝑘 < 𝑖 ≤ |S′ |, where 𝑘 is the length of the
cached keychain as above), the full prefix of the keychain until that statement must match the output of the extractor for that length, i.e.,
that S′ [1 . . . 𝑖] = Dcom [(𝑢, 𝑖)]. Moreover, the oracle asserts that Dcom [(𝑢, |S′ | + 1)] =⊥, which confirms that the server isn’t hiding any
extensions (and matches the absence proof requested by clients in our protocol).

These assertions capture the property described above: if 𝑢1 outputs a new link with index 𝑖 > ℓ , then that link must match the extractor
and therefore 𝑢2’s output, and thus both oracle queries will execute the same checks on the entire prefixes, ensuring consistency.

Remark 1. A trivial modification of our protocol without caching (where all clients always query for all statements until the first one which
is proven not to be part of the directory) would satisfy the stronger consistency notion. Moreover, the two definitions offer the same guarantees if
we assume all commitments have been audited (more precisely, if we assume that for each commitment com held by a client, there is a chain of
successful audits starting at a commitment for epoch 0 and ending at com) as discussed below.

Auditing. The Audit oracle ensures that, if A makes theMVKD.Audit on input com𝑎 and com𝑏 succeed, then persistency is satisfied.
This, in particular, also ensures a stronger notion of consistency: By the time 𝑢1 verifies that S′ [1 . . . 𝑖] = Dcom [(𝑢, 𝑖)], even for 𝑖 < ℓ ,
persistency ensures that this is equal to Dcom′ [(𝑢, 𝑖)] where com′ refers to the commitment 𝑢2 had when retrieving and caching the 𝑖-th
statement.

Keychain authentication. Again, akin to the completeness game, the adversary can instruct honest devices to authorize extending their
keychain (through oracles AddFirstKey, RevokeKey, AddExtra, AddKey-Left and AddKey-Right). Importantly, for soundness the game
does not sanitize inputs and requires the protocol to not violate security (but e.g. reject those inputs) even when instructed to perform
bogus actions. If the device does accept the action, we then append the resulting keychain (obtained by appending the new action to the
keychain currently in the device’s state) to the KS set that tracks all keychains whose last statement has been authorized by the appropriate
honest device. Note that the last statement in these chains has no epoch, as the server is expected to fill those in during an update.

Some comments are due for the AddKey algorithm. Since AddKey statements need to be authorized by both the device being added to a
chain, and the one doing the addition (interacting with each other), the game exposes two oracles: AddKey-Left and AddKey-Right. In the
former, the honest device 𝑝𝑘0 interacts with the adversary (for adding 𝑝𝑘1 which may or may not be honest) while in the latter the client
𝑝𝑘1 interacts in the role of the device being added with the adversary. We record approval of the device doing the addition in KS (as in all
other cases), and the approval of the device being added in a dedicated set PS. We stress that since the adversary can interleave those oracle
calls — whenever the interactive algorithm requires input from the adversary, they might instead call another oracle — the adversary can
simply forward the respective messages. We do not make any assumption on the network model and account for the adversary potentially
tampering with the messages or even trying to completely impersonate one of the parties. In addition, the game does not enforce that the
two interactions happened in lockstep or even at the same time — which we consider to be outside the scope of this work. Such stronger
liveness properties are conceivable and could e.g., be achieved by a protocol first establishing a secure channel between the two involved
devices using their respective public keys.

During Commit oracle calls, the HonestKeychain assertion enforces that all keychains output by the extractor and whose last statement
is expected to be authorized by a device which is honest at that point in time are part of KS and/or PS. The assertion uses a special ∈∗
operator, which accounts for the fact that the adversary can choose the epoch on which updates in KS and PS are published, defined as
follows:

Definition 11. Two keychains S1, S2 are weakly equal, also denoted S1 =∗ S2, if u(S1) = u(S2); |S1 | = |S2 | = ℓ for some non-zero
integer ℓ ; ∀𝑖 ∈ [ℓ − 1], S1 [𝑖] = S2 [𝑖]; and S1 [ℓ] and S2 [ℓ] are equal except for the last component 𝑡 . A keychain weakly belongs to a set S of
keychains, denoted S ∈∗ S, if there exists S′ ∈ S such that S =∗ S′.

Observe thatHonestKeychain formalizes a strong unforgeability property, and is one of the main advantages of stating a single soundness
definition combining extractability and authorization. Checking unforgeability at the time of a commitment being announced — rather than
upon the first use a keychain by an honest party — allows to formalize the following intuitive property: assumeA publishes a commitment
com today, expecting to corrupt a device 𝑝𝑘 tomorrow. Even after the corruption, A cannot convince an honest device holding com to
output a forged keychain statement from 𝑝𝑘 .

Updating client commitments. The VerExtension oracle ensures that, if MVKD.VerExtension succeeds, then the list C[com𝑛] extends
C[com𝑜], where com𝑜 and com𝑛 are respectively the commitments with the least and most recent epoch among the input com and the
client state com(st). If the client state has no commitment, the check is skipped.

This ensures that the client can safely forget the old commitment, and keep only the most recent one, without losing the option to audit
any past commitments. More in detail, by comparing com with an auditor who has audited the directory since its inception, the client
implicitly ensures that every other older commitment they have been given must also match what the auditor checked. (Obviously, the
client can also ask the server for all previous commitments and perform this audit themselves.) This ensures that properties enforced by
Audit (such as that the server never removed anything from the directory) would hold for all those past commitments.

H PROOF OF THEOREM 2
Proof. This proof is partially adapted from the proof of RZKS Soundness (Theorem 4) in [8]. Let RZKS.Extract be the extractor from

the RZKS soundness definitions. We can construct an extractorMVKD.Extract for the MVKD soundness game as follows:
26

ELEKTRA: Efficient Lightweight multi-dEvice Key TRAnsparency

MVKD.Extract :
• Internally run an instance of RZKS.Extract (with state RZKS.st). Set MVKD.st = (RZKS.st, 𝐻), where 𝐻 is a map used to lazily

implement the random oracle hash. If 𝐻 ever contains collisions, i.e. for any two distinct 𝑥, 𝑥 ′, we have (𝑥,𝑦), (𝑥 ′, 𝑦) ∈ 𝐻 , the
simulator will abort (i.e. it returns ERROR to all further queries). Therefore, when (𝑥,𝑦) ∈ 𝐻 , we can write 𝑦 = 𝐻 (𝑥) and 𝑥 = 𝐻−1 (𝑦).

• To facilitate the security analysis, we describe the extractor as keeping track of an additional set CO, which is updated both during
Ideal and Extr queries. Note that, according to the definition, the extractor is not allowed to update its state (and therefore the set
CO) during Extr queries. However, the extractor actually never reads from this set, so this detail can be ignored until it is leveraged
in the analysis. Looking ahead, CO will contain all the values which we do not want hash to sample.

• To handle Extract(Ideal, st, 𝑖𝑛):
– parse st as (RZKS.st, 𝐻)
– If 𝑖𝑛 encodes a query for one of the RZKS ideal objects, then invoke the RZKS extractor to compute (𝑜𝑢𝑡,RZKS.st′) ←

RZKS.Extract(Ideal,RZKS.st, 𝑖𝑛). Afterwards, output 𝑜𝑢𝑡, (RZKS.st′, 𝐻)
– Otherwise, if 𝑖𝑛 encodes a hash query on input 𝑥 :

∗ If 𝐻 (𝑥) is already defined, return it.
∗ If 𝑥 can be parsed as (auth′, 𝑡 ′, 𝑢′, Type, 𝑝𝑘, 𝑑), and auth′ can be parsed as (ℎ, 𝑧), then CO← CO ∪ {ℎ}
∗ Sample 𝑦←$ {0, 1}𝜆 uniformly at random. (If the same value was previously sampled, abort.)
∗ Add (𝑥,𝑦) to 𝐻 , 𝑦 to CO.
∗ return 𝑦, (RZKS.st, 𝐻).

• Define the helper function UnrollChain(𝐻, auth, 𝑢, 𝑙, 𝑡) :
– 𝑆 ← ()
– While auth ≠ 𝜀:

∗ parse auth as (ℎ, 𝑧); add ℎ to CO.
∗ parse 𝐻−1 (ℎ) as (auth′, 𝑡 ′, 𝑢′, Type, 𝑝𝑘, 𝑑)
∗ ensure 𝑢′ = 𝑢; let s← (Type, 𝑝𝑘, 𝑑, 𝑡)
∗ ensure CheckAuth(auth′, 𝑡 ′, 𝑢, s, auth) = 1
∗ 𝑆 ← s∥𝑆, auth← auth′, 𝑡 ← 𝑡 ′

– ensure |𝑆 | = 𝑙 and 𝑡 = 0
– S← (𝑢; 𝑆)
– ensure ValidKeychain(S) = 1
– return S

• To handle Extract(Extr, st, com):
– parse st as (RZKS.st, 𝐻)
– D′com ← RZKS.Extract(Extr,RZKS.st, com)
– Ccom ← RZKS.Extract(ExtrC,RZKS.st, com)
– Dcom = {}; For each (lbl, auth, 𝑡) ∈ D′com:

∗ parse lbl as (𝑢, 𝑙), else continue.
∗ S← UnrollChain(𝐻, auth, 𝑢, 𝑙, 𝑡).
∗ If S ≠ ERROR, set Dcom [(𝑢, 𝑙)] ← S

– return Dcom,Ccom

We want to prove that for all adversaries, the two SoundMVKD games instantiated withMVKD.Extract are computationally indistin-
guishable for any adversary A. To do so, let’s consider a sequence of hybrids:

• Hyb0. This is defined as Soundness-IDEALA,MVKD.Extract
MVKD .

• Hyb1. Defined as Hyb0, but we substitute HonestKeychain with a function that always returns 1 (i.e., it never triggers the assertion
in Commit), remove all assertions from the Forgery and Sign oracles, and remove assertion 1 from DeviceSetup.

• Hyb2. Defined as the previous hybrid, but we remove all the assertions which are already checked by the MVKD algorithms in our
construction, or those that cannot be triggered (information theoretically) because of how our extractor is defined. More precisely:
– In the Commit oracle, we remove assertions 2a, 2c.
– In DeviceSetup, we remove all (remaining) assertions.
– In Query, we remove assertions 1 to 4.
– In VerExtension, we remove all assertion except for the last one (i.e. C[com] [𝑗] = C[com′] [𝑗])

• Hyb3. Defined as Hyb2, but the extractor keeps an additional map DRZKS to track the output of the RZKS extractor and make sure
it is consistent across multiple calls (we stress that in Hyb2 the extractor is not allowed to update its state during Extr queries).
More in detail:
– During a Commit oracle call, let D′com ← RZKS.Extract(Extr,RZKS.st, com) be the output of the MVKD extractor (as

in Hyb2). We add an assertion 1′: DRZKS [com] ≠⊥⇒ DRZKS [com] = D′com,C[com] = Ccom. We also add assertion 2𝑏′:
∀((𝑢, 𝑖), (auth𝑖 , 𝑡𝑖)) ∈ D′com, it must be 𝑡𝑖 ∈ N and t(com) ≥ 𝑡𝑖 > 0. Then, at the end of the oracle query, we also set
DRZKS [com] ← D′com.

– DuringQuery oracle calls we add two extra assertion 5′ and 6′. Assertion 5′ requires that for 𝑖 = |S|+1, . . . , |S′ |:DRZKS [com] [(𝑢, 𝑖)]=
(auth𝑖 , t(s𝑖)), where auth𝑖 , s𝑖 are the values sent by the adversary to the honest client (controlled by the game) as part of the
execution ofMVKD.Query. Assertion 6′ enforces that DRZKS [com] [(𝑢, |S′ | + 1)] =⊥.

27

Len et al.

– During Audit queries, we add two extra assertion 3′ and 5′, which are analogous to 3 and 5 but with DRZKS [com] instead of
D[com]. Moreover, we add an assertion 4′: ∀((𝑢, 𝑖), (auth𝑖 , 𝑡)) ∈ D[com𝑏]\D[com𝑎] : 𝑡 = t(com𝑏)

• Hyb4. Defined as the previous hybrid, except:
– Ideal queries for hash are answered with a “real” implementation of a random oracle (i.e., this oracle no longer aborts in case

of collisions). The game no longer keeps track of the map D (but still keeps DRZKS), so all assertions related to it are removed,
as detailed below.

– During Commit oracle calls,MVKD.Extract ignores the output of UnrollChain, and we remove assertion 1 and 2𝑏 (but keep
1′ and 2𝑏′).

– During Query oracle calls, we remove assertions 5 and 6 (but keep 5′ and 6′).
– During Audit queries, we remove assertions 3 to 5 (but keep 3′ to 5′).

• Hyb5. This is defined as Soundness-REALAMVKD.

Any adversary distinguishing the first from the last game with non-negligible advantage must also have non-negligible advantage in
distinguishing a couple of consecutive hybrids.

Hyb0 ≈ Hyb1. Any adversary who can distinguish Hyb0 from Hyb1 must trigger one of the assertions in Hyb0 which have been removed
in Hyb1, and can therefore be used to break the correctness or unforgeability of the underlying signature scheme, with a straightforward
reduction.

In particular, the assertion in Sign simply mandates that honestly generated signatures pass verification, which follows from the
correctness of the signature scheme (note that in our scheme there is no way that an interaction with the adversary would cause an honest
client to alter their signing keys after they are honestly generated).

Assume by contradiction that the adversary A can cause either the Forgery oracle to trigger an assertion, or the HonestKeychain
function to return 0 in Hyb0, with better than negligible probability. We will show how to build an adversary B that leverages A to break
the unforgeability of SIG.

Assume A triggers an assertion as a result of a Forgery query (𝑝𝑘∗,𝑚∗, 𝜎∗). Since 𝑝𝑘∗ ∈ HonKeys, this key must have been returned to
A as part of a DeviceSetup query. B runsA, simulating an execution of the soundness game. B guesses which of the (polynomially many)
setup queries will lead to the public key that A will use in its forgery, and instead of generating it honestly, B uses the one received from
its unforgeability challenger. Accordingly, whenever a query from the adversary would require the game to produce a signature w.r.t. 𝑝𝑘∗
(either as part of Sign, AddKey-Left, AddKey-Right, AddFirstKey, RevokeKey or AddExtra queries), B uses its signing oracle to generate
this signature. If A makes a compromise query for 𝑝𝑘∗, or otherwise halts without making a forgery, B aborts. Otherwise, B can output
the forgery (0∥𝑚∗, 𝜎∗) to its own challenger and win the unforgeability game. Note that A’s view in the simulation is the same as in an
honest execution of the game, and moreover the B’s output will be a valid forgery: the signature has to verify by construction, and it
cannot have been returned to B by its own Sign oracle because all such signatures of messages which begin with 0 are part of the Sigs set
(they are produced as a result of Sign queries), while the ones produced as part of other oracle calls begin with 1.

A similar argument can be used for the case where A causes HonestKeychain to return 0 in Commit. Our extractor guarantees that
all prefixes of keychains which the extractor outputs come with valid signatures from the appropriate keys. In particular, CheckAuth
(executed as part of UnrollChain by the extractor) ensures that the hash of the keychain prefix ℎ has a valid signature from the appropriate
(honest) public keys. Given that honest devices will only sign a keychain statement after having checked the whole keychain up until that
statement (ensuring that all the ℎ values inside auth have well defined preimages), and that hash is implemented without collisions by
the extractor, if the adversary hasn’t queried the appropriate honest oracles to obtain those signatures (which would cause the keychain
prefixes to be added to KS or PS, contradicting the fact that the assertion is triggered), then those signatures must be forgeries, and we can
construct an adversary B similar to the one of the previous case to exploit this.

Last, the assertion in DeviceSetup is only triggered if SIG.KeyGen can return the same public key twice. It is straightforward to see that
if this happens with greater than negligible probability, then the signature scheme either cannot be correct or unforgeable: an adversary
can just run the key generation algorithm multiple times. If the algorithm produces the same public key received from the challenger,
either signatures simply don’t verify under those keys or the adversary can use the corresponding secret key to trivially forge.

Hyb1 ≈ Hyb2. These two hybrids are perfectly indistinguishable, as the assertions that we are removing cannot actually be triggered in
Hyb1:

• During Commit queries, the extractor checks internally that its output satisfies assertions 2a and 2c.
• In our construction, the state output by MVKD.DeviceSetup always satisfies the conditions asserted in the DeviceSetup oracle

query.
• InQuery, it must be that the first assertion extends

(
t(𝑠𝑡 ′), S′, 𝑡 last, S

)
cannot be triggered (or that, if it were to be triggered, assertion

5 would also be triggered simultaneously). Indeed, in our protocolMVKD.Query always outputs a keychain which extends the one
in its state, ensuring that the epochs in each statement are monotonically increasing. In addition,MVKD.Query checks that the
first new keychain link has an epoch greater than 𝑡 last. Finally, it must be that either the epoch of the last statement is ≤ t(𝑠𝑡 ′), or
assertion 5 is triggered: if assertion 5 is not triggered, it must be that S′ = D[com] [(𝑢, |S′ |)]. Consider the Commit oracle query
that A made on input com before this one (if com(st) = com, A must have made a successful query on input pk(st), com to
VerExtension, and thus it must be D[com] ≠⊥). Either assertion 2b was triggered during that Commit query for ((𝑢, |S|), S) (in
which case the game would have been halted earlier), or it must have been t(com) ≥ t(last(S)) with com(st) = com, which is
what we wanted.
• It is easy to check by inspection that assertions 2 to 4 inQuery, as well as all assertions in VerExtension except for the last one, are

never triggered by our instantiation of the protocol.
28

ELEKTRA: Efficient Lightweight multi-dEvice Key TRAnsparency

Hyb2 ≈ Hyb3. Assume by contradiction that there exists A that can distinguish Hyb2 from Hyb3. By construction, A needs to trigger
one of the new assertions in Hyb3 with better than negligible probability. We can leverage A to build an adversary B that breaks the
soundness of the RZKS. To do so, it is enough to construct B such that, if A triggers the new assertions in Hyb3, then B also triggers an
assertion in Soundness-IDEALRZKS with at least the same probability. B’s advantage in the RZKS soundness game bounds the probability
that this assertion is triggered, which implies the former must also be negligible.
B runs A, simulating for it an execution of Hyb3, with the following modifications:

• B does not keep track of the RZKS extractor’s state RZKS.st, but uses its own oracles instead. B does not enforce any assertions
(beyond the ones its challenger might trigger as a result of B’s queries), and keeps as internal state a set D′ which keeps track of
which commitments have been submitted to the Commit oracle. In addition, B does not keep track of the sets D and C, and all
statements of the form “require D[com] ≠⊥” or “require C[com] ≠⊥” are replaced with “require com ∈ D′”

• Queries to the Ideal oracle for objects related to the RZKS are forwarded by B to its own challenger, while queries for hash are
answered uniformly at random (aborting on collisions), and stored in a table 𝐻 for consistency, as MVKD.Extract would.

• Commit oracle queries are handled by adding com to D′, and making an ExtractD(com) and an ExtractC(com) oracle calls to its
own challenger for the same value com, and returning.

• Query oracle calls are handled byB as inHyb3, except that ifMVKD.Query doesn’t return ERROR, instead of the assertions,B makes
a CheckVerD(com(st), label𝑖 , auth𝑖 , 𝑡𝑖 , 𝜋𝑖) query to its challenger for each RZKS.Verify(pp, com(𝑠𝑡), label𝑖 , auth𝑖 , 𝑡𝑖 , 𝜋𝑖) operation
performed duringMVKD.Query as part of this oracle call.

• DuringAudit oracle queries, ifMVKD.Audit returns𝑏=1, instead of the assertionsB queries its own challengerCheckVerUpdD(com𝑎,
com𝑏 , 𝜋), where 𝜋 is the proof received from the adversary duringMVKD.Audit. Then B returns.

• DeviceSetup, Compromise, AddFirstKey, AddKey-Left, AddKey-Right, RevokeKey, AddExtra, Sign, and Forgery oracle queries are
handled by B as in Hyb2, but skipping all the assertions and replacing require statements as detailed above.

• When A halts, B halts with the same output.

Note that, when B is executed in Soundness-IDEALRZKS,A’s view up until the point where the game halts has the same distribution as
in an execution of Hyb3. Indeed, ideal oracle queries for the RZKS idealized functionalities are answered by RZKS.Extract in both cases,
either executed by the RZKS game in Soundness-IDEALRZKS, or by theMVKD game (as part ofMVKD.Extract) in Hyb3. Moreover, the
state of the RZKS extractor has the same distribution (since it answers the same Ideal queries, while other queries do not change its state),
and so its outputs are equally distributed too. Similarly, outputs of ideal oracle queries for hash have the same distribution, as they are
sampled following the same algorithm, either by B orMVKD.Extract. Moreover, until the game is halted, all the answers given to A in
response to its other oracle queries are sampled from exactly the same distribution. It is possible, since we are removing some assertions
in B’s simulation compared to Hyb3, that A might trigger an assertion there that is not enforced by B, after which A might behave
arbitrarily. However, here we only need to focus on those executions where one of the new assertions introduced in Hyb3 is triggered
(which implies that none of the other assertions can be, since triggering an assertion ends the game).

It remains to show that if A triggers one of the newly added assertions in Hyb3, then B also triggers one in Soundness-IDEALRZKS.
To this end, first note that, by construction, the map DRZKS described in Hyb3 has the same content as the map D maintained by B’s
challenger, given that each map stores the output of RZKS.Extract queries in each game. If during a Commit query A triggers assertions
1′ (but not 1) or 2𝑏′, then B’s ExtractD query will cause the same assertion to be triggered in its game. Now, assume assertions 5′ or
6′ are triggered during a Query oracle call for some index 𝑖 . By construction, since MVKD.Query doesn’t return ERROR, it must be that
RZKS.Verify succeeds in Hyb3. For each call to RZKS.Verify, B makes a call CheckVerD with analogous parameters, which causes the
game to check if D[com] [(𝑢, 𝑖)] = (auth𝑖 , t(s𝑖)) (or D[com] [(𝑢, |S| + 1)] =⊥). Similarly, assertions 3′, 4′, and 5′ in Audit queries would
trigger analogous assertions during B’s CheckVerUpdD call.

Hyb3 ≈ Hyb4. Denote with E the event that, during an execution of Hyb3 or Hyb4 and while answering an Ideal query for hash, we
have that 𝑦 ∈ CO (where 𝑦 is the value sampled as an answer to the query, and CO is the set defined as part of MVKD.Extract). By basic
probability, one can check that ��� Pr [Hyb3(A) = 1

]
− Pr

[
Hyb4(A) = 1

] ��� ≤��� Pr [Hyb3(A) = 1|¬E
]
− Pr

[
Hyb4(A) = 1|¬E

] ��� + Pr[E]
We have that Pr[E] is negligible. Indeed, the set CO has polynomial size, since it starts empty and grows by an (amortized) constant

number of elements for each of the polynomially many queries that A can make: Ideal queries grow CO by at most 2 elements, and Extr
queries by at most the number of repetitions of the while loop in UnrollChain, which is bounded by the size of 𝐻 up to that point (and 𝐻
itself grows by a constant size per oracle query). Since each 𝑦 is sampled from an exponentially large space, the probability that a single
sampled value falls in a polynomial size set is negligible. The games sample at most one 𝑦 value per Ideal query, and the number of queries
is again polynomially bounded, from which the result follows by a union bound.

To prove that the advantage in distinguishing the two hybrids is negligible, it is then enough to do so conditioned on ¬E. As in the
previous hybrids, one can argue that, conditioned on not having random oracle collisions, A’s view in both experiments has the same
distribution until the point where an assertion is triggered, and therefore its output is the same if it returns without triggering an assertion.
Therefore, it is enough to show that the probability of triggering an assertion in Hyb3 and in Hyb4 (conditioned on ¬E) is the same.

First note that, in either hybrid and conditioned on ¬E, UnrollChain always returns the same output when called multiple times on the
same inputs. Indeed, UnrollChain is a deterministic algorithm whose output only depends on the inputs and the content of the 𝐻 table
internal to the extractor’s state. We have that, once UnrollChain is called on a specific set of inputs, subsequent additions to 𝐻 do not alter
the output of the algorithm on those inputs. This is because, every time the extractor samples a value 𝑦 to add a record to 𝐻 , it also adds 𝑦

29

Len et al.

to CO, which will prevent it from being sampled again (and ensures that 𝐻−1 (ℎ) is well defined). Moreover, the extractor also adds ℎ to CO
whenever it checks if 𝐻−1 (ℎ) is defined, preventing ℎ from being sampled in the future and thus preventing UnrollChain’s answer from
changing.

Given the above, it is easy to check that the two games throw assertions with exactly the same probability. In particular, assertions that
are checked in both games are obviously triggered with the same probability, as the parts of the state that are shared between the two
games have the same distribution (the only difference is that Hyb4 doesn’t keep track of D). During Commit queries, Hyb4 doesn’t enforce
assertion 1. However, both games enforce assertion 1′. If assertion 1′ is not triggered, it must be that C[com] = com and D′ [com] = D′com.
But since D[com] is obtained by applying UnrollChain to all elements in D′com, and we argued that UnrollChain always returns the same
results, it follows thatD[com] = Dcom, and therefore assertion 1 cannot be triggered. Similarly, if assertion 2𝑏′ is not triggered in Hyb3, then
assertion 2𝑏 can’t be triggered either: by construction of our extractor ∀((𝑢, 𝑖), S) ∈ Dcom, t(last(S)) = 𝑡𝑖 , where D′com [(𝑢, 𝑖)] = (auth𝑖 , 𝑡𝑖),
and therefore t(com) ≥ t(last(S)) > 0. Similarly, duringQuery oracle calls, Hyb4 does not enforce assertion 5 (but enforces 5′). Assume
assertion 5 (but not assertion 5′) is triggered in Hyb3, and let 𝑖∗ be the smallest index for which this happens. Observe that since assertion 5′
isn’t triggered, 𝐷RZKS [com] [(𝑢, 𝑖∗)] must equal the value (auth, 𝑡) that the client received from the adversary as part of the MVKD.Query
execution. Since the execution did not return an error, it must also be that CheckAuth returned 1, and therefore that the hash of the 𝑖∗-th
keychain statement computed by the client matched the one contained in auth. Since we are conditioning on no hash collisions, this
implies that the output of the honest client must match the value D[com] [(𝑢, 𝑖∗)] output by the extractor, contradicting that assertion 5 is
triggered. We stress that assertions 5 and 6 imply that the output of the extractor matches the one of honest clients during Query, which is
at the core of our extractability-based soundness. The proofs that assertion 6 inQuery, and the other assertions removed from Audit oracle
calls in Hyb4, cannot be triggered in Hyb3 are analogous.

Hyb4 ≈ Hyb5. We can prove that the two hybrids are indistinguishable with a straightforward reduction to the soundness of the RZKS.
Assume by contradiction that there exists A that can distinguish Hyb4 from Hyb5. We can leverage A to build an adversary B that breaks
the soundness of the RZKS. Our adversary B is defined exactly as the one used to argue that Hyb2 ≈ Hyb3, except that:

• To implement hash oracle queries, B no longer aborts on collisions (thus honestly implementing an ideal random oracle).
• During Audit queries from A, in addition to the CheckVerUpdD(com𝑎, com𝑏 , 𝜋) query to its own challenger, B also makes an

additional CheckVerUpdC(com𝑎, com𝑏 , 𝜋) query.
• During VerExtension oracle queries, if MVKD.VerExtension returns 𝑏 = 1, then instead of the assertions B queries to its own

challenger CheckVerExt(com𝑎, com𝑏 , 𝜋), where (com𝑎, com𝑏 , 𝜋) are the inputs to the RZKS.VerExt call performed by B as part of
MVKD.VerExtension. Then B returns.

As in the previous cases, we can argue that when B is executed in Soundness-IDEALRZKS, A’s view up until the point where the game
halts has the same distribution as in an execution of Hyb4.

Moreover,A triggers an assertion in Hyb4 with the same probability that the analogous assertion is triggered in Soundness-IDEALRZKS.
Indeed, since the set D′RZKS in Hyb4 contains the same values as the set D in Soundness-IDEALRZKS, we have that:

• The conditions asserted during a Commit query in Hyb4 are 1′, 2𝑏′, 3, 4: assertions 1′ and 2𝑏′ are analogous to those performed
during an Extract query by Soundness-IDEALRZKS, while 3 and 4 match those in ExtractC queries. (We assume here that the error
handling of RZKS.Extract matches the one we need in case of completely malformed commitments.)

• Assertions 5′ and 6′ in Query oracle calls are analogous to those performed during a CheckVerD query.
• Assertions 1, 3′, 4′, 5′ in Audit oracle calls are analogous to those performed during a CheckVerUpdD query, and assertion 2 is

analogous to that in CheckVerUpdC.
• The last assertion in VerExtension is analogous to that in CheckVerExt.

In short we have
Pr[Hyb4(A) = 1] = Pr

[
Soundness-IDEALB,RZKS.ExtractRZKS = 1

]
.

Similarly, when B is executed in Soundness-REALRZKS, A’s view until the game is halted has the same distribution as in Hyb5, and
neither of the experiments throws any assertions, from which we have

Pr[Hyb5(A) = 1] = Pr[Soundness-REALBRZKS = 1] .
This implies that A’s advantage in distinguishing the two hybrids can be bounded by B’s advantage in the RZKS soundness game,

which is negligible. □

I DETAILS ON PRIVACY
Here we provide the full details of the zero-knowledge with leakage game described in Section 4.3. We provide the detailed pseudocode of
games ZK-REALMVKD and ZK-IDEALMVKD in Subsection I.3, with details on helper functions and predicates used in the games, and an
overview of the tasks of the simulator, provided in Subsection I.1 and Subsection I.2, respectively.

Definition 12. We say that a MVKD satisfies zero-knowledge with respect to a leakage function L = (LAddKey0,LAddKey1,LQuery,

LUpdate,LPCSUpdate,LVerExt,LAudit,LCorr,LLeakState), if there exists an efficient simulator S, such that for any PPT adversary A���Pr [ZK-IDEALA,SMVKD = 1
]
− Pr

[
ZK-REALAMVKD = 1

] ��� ≤ negl (𝜆) .

I.1 Helper functions and predicates
Before defining the oracles, we define some helper functions and predicates that will simplify notation. Recall from Section 4.3 that our
zero-knowledge game makes use of handles to refer to public keys, with devices being addressed by username-handle pairs. We assume
in the following that ValidKeychain works for keychains involving handles, by treating handles as separate public keys. For example,

30

ELEKTRA: Efficient Lightweight multi-dEvice Key TRAnsparency

ValidKeychain would return 0 if a handle ℎ gets added twice, but not detect if first a handle ℎ and then the respective public key 𝑝𝑘 gets
added.

The first helper algorithm SubstituteHandles canonicalizes symbolic keychain statements, which may contain a mixture of handles and
public keys. (By symbolic we mean that the keychains can contain statements with handles in lieu of public keys.) It replaces known handles
with their respective public keys for keychain statement s associated with username 𝑢, taking a mapping PK from known username-handle
pairs to public keys as an argument and returning the updated statement s′. This mapping will be produced by the simulator, as described
in the next section.

s′ ← SubstituteHandles(PK, 𝑢, s)
(1) Let s′ be a copy of s.
(2) If pka (s) ∈ H and PK[𝑢, pka (s)] ≠ ⊥, then set pka (s) ← PK[𝑢, pka (s)].
(3) If type(s) ∈ {Add,AddFirst,Revoke}, data(s) ∈ H , and PK[𝑢, data(s)] ≠ ⊥, then set data(s) ← PK[𝑢, data(s)].
(4) Return s′.

For a keychain S, we further define S′ ← SubstituteHandles(PK, S) to be the algorithm that creates a copy S′ of S and sets S′ [𝑖] ←
SubstituteHandles(PK, u(S), S[𝑖]) for every 𝑖 = 1, . . . , |S|.

The helper predicate Consistent is used in the ideal world game ZK-IDEALMVKD to check whether a list of proposed updates can in
principle by applied to the directory by the server. It takes as input set𝑀HonDev of honest device updates, set𝑀CorrDev of malicious updates,
directory Dir which maps usernames to keychains, and the mapping PK as described above. The first two checks ensure that all statements
are well-formed. The third one ensures that each user has at most one update, while the fourth check ensures that no updates can lead to
an invalid keychain. (Note that a protocol, by a combination of completeness and soundness, must reject an update failing the third or
fourth checks anyway.)

𝑏 ← Consistent(𝑀HonDev, 𝑀CorrDev,Dir, PK)
(1) If ∃𝑚 ∈ 𝑀HonDev s.t.𝑚 ≠ (𝑢, s,⊥) for some username 𝑢 and keychain statement s, return 0.
(2) If ∃𝑚 ∈ 𝑀CorrDev s.t.𝑚 ≠ (𝑢, s, auth) for some username 𝑢, keychain statement s, and keychain statement authenticator auth,

return 0.
(3) If ∃ (𝑢, s, ·), (𝑢′, s′, ·) ∈ 𝑀HonDev ∪𝑀CorrDev s.t. (𝑢, s, ·) ≠ (𝑢′, s′, ·) ∧ 𝑢 = 𝑢′, return 0.
(4) ∀(𝑢, s, ·) ∈ 𝑀HonDev ∪𝑀CorrDev, let S′ ← SubstituteHandles(PK,Dir[𝑢] ∥s) and verify that ValidKeychain(S′), else return 0.
(5) Return 1.
The helper predicate ValidAction is used in the ideal world game ZK-IDEALMVKD to decide whether an honest user can propose a given

modification, encoded as keychain statement s, to their keychain. This is with respect to the honest device’s current view on their keychain.
The predicate takes as input the username 𝑢 for which to apply the proposed modification and the keychain statement s which captures
the proposed update. It also takes as input a table T used by game ZK-IDEALMVKD to map username-handle pairs to an ordered list of
successful actions performed by the device. In particular, it looks for the last honest query entry made by the device for its own username,
which reveals the device’s latest view of its own keychain.

𝑏 ← ValidAction(T, 𝑢, s, PK)
(1) Let ℎ = pka (s) and retrieve in T(𝑢,ℎ) the latest entry of the form (HonQuery, 𝑢, qepno, S) for some qepno and S. If no such entry

exists, assign S← (𝑢; ()).
(2) Let S′ ← SubstituteHandles(PK, 𝑢, S∥s).
(3) Return ValidKeychain(S′).
Finally, the following function applies a set of updates to the directory, initiating the new epoch epno. It takes in a directory Dir that

maps usernames to keychains, a set𝑀 of updates to be applied to Dir, and the new epoch epno.

Dir′ ← Expand(Dir, 𝑀, epno)
(1) Initialize Dir′ ← Dir
(2) ∀(𝑢, s, auth) ∈ 𝑀 :

(a) If 𝑢 ∉ Dir, initialize new keychain S← (𝑢;AddEpoch(s, epno)) and assign Dir′ [𝑢] ← S.
(b) Else let S← Dir[𝑢] and create new keychain S′ ← S∥AddEpoch(s, epno). Then update the directory Dir′ [𝑢] ← S′.

(3) Return Dir′

I.2 Simulator
The simulator S is given the output of the leakage function L and the output of the queries. It produces the values to be output to the
adversary in the ideal-world experiment depicted in the next section, as well as an updated PK mapping that assigns public keys to
username-handle pairs. More concretely, it provides the following functionality:
▶ (com0, pp) ← S(Init, 1𝜆) is invoked at the beginning of the ideal-world experiment to provide the initial commitment com0 as well as

the scheme’s public parameter pp.
▶ (𝜎, PK) ← S(Sign, 𝑢, ℎ,𝑚) is invoked whenever the adversary instructs an honest device, identified by (𝑢,ℎ) to sign the message𝑚,

outputting the signature 𝜎 , as well as the current mapping from username-handle pairs to public keys.
31

Len et al.

▶ (auth, PK ; .) ← S(AddKey0, (𝑢,ℎ), 𝑝𝑘,L ; A) is invoked whenever an honest device (𝑢,ℎ) adds an adversarial public key 𝑝𝑘 . Here,
the simulator acts on behalf of the honest adding device (which outputs auth) and interacts with the adversary acting as the device to
be added.

▶ (. ; PK) ← S(A ; AddKey1, 𝑝𝑘, (𝑢,ℎ),L) is invoked whenever the adversary A adds an honest device (𝑢,ℎ). S thus simulates an
honest device being added and interacts with the adversary acting as a malicious device performing the addition.

▶ (𝑠𝑡, PK) ← S(Corr, 𝑢, ℎ,L) is invoked whenever a device (𝑢,ℎ) is being corrupted. In this case, S must output the device’s state 𝑠𝑡 .
▶ (com, PK) ← S(Update, 𝑀CorrDev,L) is invoked upon each server update. It takes the set of all adversarially generated updates

𝑀CorrDev (and the subsequent specified leakage about honest updates) and outputs either the new commitment or error message
com = ERROR to indicate that the updates should be rejected.

▶ (com, PK) ← S(PCSUpdate, 𝑀CorrDev,L) is invoked upon each update with post-compromise security. It works analogously to the
previous case.

▶ (. ; PK) ← S(A ; Query, 𝑢, 𝑡,L) is invoked whenever the adversary A wants to run the interactive Query algorithm with the server,
using as the server’s input some user 𝑢 and epoch 𝑡 . S thus simulates the server’s protocol messages towards the adversary A.

▶ (. ; PK) ← S(A ; Audit,L) is invoked whenever the adversary A audits the directory, with S simulating the server’s protocol
messages.

▶ (. ; PK) ← S(A ; VerExt,L) is invoked whenever the adversary A runs VerExtension, with S simulating the server’s protocol
messages.

▶ 𝑠𝑡𝑠 ← S(A ; LeakState,L) is invoked whenever the adversary A compromises the server state.
▶ 𝑜𝑢𝑡 ← S(Ideal, 𝑖𝑛) is invoked whenever the adversary invokes the ideal oracle.

I.3 Oracle definitions

ZK-REALAMVKD :

epno← 0
𝑇HonDev ← {};𝑇CorrDev ← {};𝑇com ← {}
qepno← {}; T← {}; st←⊥
pp← MVKD.GenPP(1𝜆)
(𝑠𝑡𝑠0 , com0) ← MVKD.ServerInit(pp)
𝑏 ← ADeviceSetup,AddFirstKey,... (com0, pp)
return 𝑏

ZK-IDEALA,S
MVKD :

epno← 0;Dir← {};PK← {}
𝑇HonDev ← {};𝑇CorrDev ← {};𝑇com ← {}
qepno← {}; T← {}
(com0, pp) ← S(Init, 1𝜆)
𝑏 ← ADeviceSetup,AddFirstKey,... (com0, pp)
return 𝑏

DeviceSetup(𝑢) :
ℎ←$ H
(𝑠𝑡, 𝑝𝑘) ← MVKD.DeviceSetup(pp,𝑢)
qepno(𝑢,ℎ) ← 0; st(𝑢,ℎ) ← 𝑠𝑡

𝑇HonDev ← 𝑇HonDev ∪ (𝑢,ℎ)
return ℎ

DeviceSetup(𝑢) :
ℎ←$ H
qepno(𝑢,ℎ) ← 0
𝑇HonDev ← 𝑇HonDev ∪ (𝑢,ℎ)
return ℎ

AddFirstKey(𝑢,ℎ) :
require (𝑢,ℎ) ∈ 𝑇HonDev
auth← AddFirstKey(st(𝑢,ℎ))
require auth ≠ ERROR

s← (AddFirst, ℎ,ℎ,⊥)
T(𝑢,ℎ) .add((s, auth))

AddFirstKey(𝑢,ℎ) :
require (𝑢,ℎ) ∈ 𝑇HonDev
s← (AddFirst, ℎ,ℎ,⊥)
require ValidAction(T,𝑢, s, PK) = 1
T(𝑢,ℎ) .add(s)

RevokeKey(𝑢,ℎ0, ℎ1) :
require (𝑢,ℎ0), (𝑢,ℎ1) ∈ 𝑇HonDev
𝑠𝑡0 ← st(𝑢,ℎ0) ; 𝑠𝑡1 ← st(𝑢,ℎ1)
auth← MVKD.RevokeKey(𝑠𝑡0, pk(𝑠𝑡1))
require auth ≠ ERROR

s← (Revoke, ℎ0, ℎ1,⊥)
T(𝑢,ℎ0) .add((s, auth))

RevokeKey(𝑢,ℎ0, ℎ1) :
require (𝑢,ℎ0), (𝑢,ℎ1) ∈ 𝑇HonDev
s← (Revoke, ℎ0, ℎ1,⊥)
require ValidAction(T,𝑢, s, PK) = 1
T(𝑢,ℎ0) .add(s)

RevokeKey((𝑢,ℎ), 𝑝𝑘) :
require (𝑢,ℎ) ∈ 𝑇HonDev
auth← MVKD.RevokeKey(st(𝑢,ℎ) , 𝑝𝑘)
require auth ≠ ERROR

s← (Revoke, ℎ, 𝑝𝑘,⊥)
T(𝑢,ℎ) .add((s, auth))

RevokeKey((𝑢,ℎ), 𝑝𝑘) :
require (𝑢,ℎ) ∈ 𝑇HonDev
s← (Revoke, ℎ, 𝑝𝑘,⊥)
require ValidAction(T,𝑢, s, PK) = 1
T(𝑢,ℎ) .add(s)

AddExtra((𝑢,ℎ), 𝑑) :
require (𝑢,ℎ) ∈ 𝑇HonDev
auth← MVKD.AddExtra(st(𝑢,ℎ) , 𝑑)
require auth ≠ ERROR

s← (Extra, ℎ,𝑑,⊥)
T(𝑢,ℎ) .add((s, auth))

AddExtra((𝑢,ℎ), 𝑑) :
require (𝑢,ℎ) ∈ 𝑇HonDev
s← (Extra, ℎ,𝑑,⊥)
require ValidAction(T,𝑢, s, PK) = 1
T(𝑢,ℎ) .add(s)

Sign(𝑢,ℎ,𝑚) :
require (𝑢,ℎ) ∈ 𝑇HonDev
𝜎 ← MVKD.Sign(st(𝑢,ℎ) ,𝑚)
return 𝜎

Sign(𝑢,ℎ,𝑚) :
require (𝑢,ℎ) ∈ 𝑇HonDev
(𝜎, PK) ← S(Sign,𝑢,ℎ,𝑚)
return 𝜎

32

ELEKTRA: Efficient Lightweight multi-dEvice Key TRAnsparency

HonVerExt(𝑢,ℎ, com) :
require (𝑢,ℎ) ∈ 𝑇HonDev
𝑠𝑡 ← 𝑠𝑡 (𝑢,ℎ) ; 𝑡 ← t(com(𝑠𝑡)) ; 𝑡 ′ ← t(com)
(𝑠𝑡 ′, 𝑏 ; ⊥) ← MVKD.VerExtension(𝑠𝑡, com ; 𝑠𝑡𝑠epno, 𝑡, 𝑡 ′)
require 𝑏 ≠ 0
st(𝑢,ℎ) ← 𝑠𝑡 ′ ; qepno(𝑢,ℎ) ← t(𝑠𝑡 ′)

HonVerExt(𝑢,ℎ, com) :
require (𝑢,ℎ) ∈ 𝑇HonDev
require qepno(𝑢,ℎ) < t(com)
require𝑇com [t(com)] = com
qepno(𝑢,ℎ) ← t(com)
T(𝑢,ℎ) .add((HonVerExt, qepno(𝑢,ℎ)))

HonQuery(𝑢,ℎ,𝑢′) :
require (𝑢,ℎ) ∈ 𝑇HonDev
(𝑠𝑡, S ; ⊥) ← MVKD.Query(st(𝑢,ℎ) ,𝑢′ ; 𝑠𝑡𝑠epno,𝑢′, qepno(𝑢,ℎ))
require (𝑠𝑡, S) ≠ ERROR

st(𝑢,ℎ) ← 𝑠𝑡

HonQuery(𝑢,ℎ,𝑢′) :
require (𝑢,ℎ) ∈ 𝑇HonDev
require qepno(𝑢,ℎ) ≤ epno
T(𝑢,ℎ) .add((HonQuery,𝑢′, qepno(𝑢,ℎ) ,Dirqepno(𝑢,ℎ) [𝑢

′]))

AddKey(𝑢,ℎ, 𝑝𝑘) :
require (𝑢,ℎ) ∈ 𝑇HonDev
(auth ; .) ← MVKD.AddKey(st(𝑢,ℎ) , 𝑝𝑘 ; A)
return auth

AddKey(𝑢,ℎ, 𝑝𝑘) :
require (𝑢,ℎ) ∈ 𝑇HonDev
(auth, PK ; .) ← S(AddKey0, (𝑢,ℎ), 𝑝𝑘, LAddKey0 (T(𝑢,ℎ)) ; A)
return auth

AddKey(𝑢, 𝑝𝑘,ℎ) :
require (𝑢,ℎ) ∈ 𝑇HonDev
(. ; 𝑏) ← MVKD.AddKey(A ; st(𝑢,ℎ) , 𝑝𝑘)

AddKey(𝑢, 𝑝𝑘,ℎ) :
require (𝑢,ℎ) ∈ 𝑇HonDev
(. ; PK) ← S(A ; AddKey1, 𝑝𝑘, (𝑢,ℎ), LAddKey1 (T(𝑢,ℎ)))

AddKey(𝑢,ℎ0, ℎ1) :
require (𝑢,ℎ0), (𝑢,ℎ1) ∈ 𝑇HonDev
𝑠𝑡0 ← st(𝑢,ℎ0) ; 𝑠𝑡1 ← st(𝑢,ℎ1)
(auth; 𝑏) ← MVKD.AddKey(𝑠𝑡0, pk(𝑠𝑡1) ; 𝑠𝑡1, pk(𝑠𝑡0))
require auth ≠ ERROR and 𝑏 = 1
s← (Add, ℎ0, ℎ1,⊥)
T(𝑢,ℎ0) .add((s, auth))

AddKey(𝑢,ℎ0, ℎ1) :
require (𝑢,ℎ0), (𝑢,ℎ1) ∈ 𝑇HonDev
s← (Add, ℎ0, ℎ1,⊥)
require ValidAction(T,𝑢, s, PK) = 1
Let ℓ0 be the last HonQuery for𝑢 in T(𝑢,ℎ0)
Let ℓ1 be the last HonQuery for𝑢 in T(𝑢,ℎ1)
(HonQuery,𝑢, ·, S0) ← ℓ0
(HonQuery,𝑢, ·, S1) ← ℓ1
require S0 = S1
T(𝑢,ℎ0) .add(s)

CorrDev(𝑢,ℎ) :
require (𝑢,ℎ) ∈ 𝑇HonDev
𝑇CorrDev = 𝑇CorrDev ∪ (𝑢,ℎ)
𝑇HonDev = 𝑇HonDev \ (𝑢,ℎ)
return st(𝑢,ℎ)

CorrDev(𝑢,ℎ) :
require (𝑢,ℎ) ∈ 𝑇HonDev
𝑇CorrDev = 𝑇CorrDev ∪ (𝑢,ℎ)
𝑇HonDev = 𝑇HonDev \ (𝑢,ℎ)
𝐿 ← LCorr (𝑢,ℎ, qepno(𝑢,ℎ) , T(𝑢,ℎ) , PK,Dir, epno)
(𝑠𝑡, PK) ← S(Corr,𝑢,ℎ, 𝐿)
return 𝑠𝑡

Update(𝑀HonDev, 𝑀CorrDev) : // analogous for PCSUpdate

𝑀 ← 𝑀CorrDev
∀(𝑢, s, ·) ∈ 𝑀HonDev :
ℎ0 ← pka (s) ;ℎ1 ← data(s)
require (s, ·) ∈ T(𝑢,ℎ0)
// Replace handles with keys

PK← {}
if ℎ0 ∈ H then PK[ℎ0] ← pk(𝑠𝑡 (𝑢,ℎ0))
if ℎ1 ∈ H then PK[ℎ1] ← pk(𝑠𝑡 (𝑢,ℎ1))
s′ ← SubstituteHandles(PK,𝑢, s)
// Retrieve authenticator

Retrieve (s, auth) ∈ T(𝑢,ℎ0)
𝑀 ← 𝑀 ∪ { (𝑢, s′, auth) }

(𝑠𝑡𝑠 , com) ← MVKD.Update(𝑠𝑡𝑠epno, 𝑀)
require (𝑠𝑡𝑠 , com) ≠ ERROR

epno← t(com) ; 𝑠𝑡𝑠epno ← 𝑠𝑡𝑠 ;𝑇com [𝑡] ← com

Update(𝑀HonDev, 𝑀CorrDev) : // analogous for PCSUpdate

require Consistent(𝑀HonDev, 𝑀CorrDev,Direpno, PK) = 1
𝑀 ← 𝑀CorrDev ∪𝑀HonDev
∀(𝑢, s, ·) ∈ 𝑀HonDev :
ℎ0 ← pka (s)
require s ∈ T(𝑢,ℎ0)

𝐿 ← LUpdate (𝑀HonDev, 𝑀CorrDev,Direpno)
(com, PK) ← S(Update, 𝑀CorrDev, 𝐿)
require com ≠ ERROR

Dirt(com) ← Expand(Direpno, 𝑀, t(com))
epno← t(com) ;𝑇com [𝑡] ← com

Query(𝑢, 𝑡) :
MVKD.Query(A ; 𝑠𝑡𝑠epno,𝑢, 𝑡)

Query(𝑢, 𝑡) :
(. ; PK) ← S(A ; Query,𝑢, 𝑡, LQuery (𝑢, 𝑡,Dir, epno))

Audit(𝑡) :
MVKD.Audit(A ; 𝑠𝑡𝑠epno, 𝑡)

Audit(𝑡) :
(. ; PK) ← S(A ; Audit, LAudit (𝑡))

VerExtension(𝑡, 𝑡 ′) :
MVKD.VerExtension(A ; 𝑠𝑡𝑠epno, 𝑡, 𝑡 ′)

VerExtension(𝑡, 𝑡 ′) :
(. ; PK) ← S(A ; VerExt, LVerExt (𝑡, 𝑡 ′))

LeakState() :
return 𝑠𝑡𝑠epno

LeakState() :
return S(LeakState, LLeakState (Direpno))

Ideal(𝑖𝑛) :
return Ideal(𝑖𝑛)

Ideal(𝑖𝑛) :
return S(Ideal, 𝑖𝑛)

33

Len et al.

In the following, we provide some intuition on the above privacy game.

Game variables. Both experiments keep a number of state variables. First, they maintain 𝑇HonDev and 𝑇CorrDev as the set of honest and
corrupted devices, respectively, storing pairs (𝑢,ℎ). Second, they store a mapping qepno, where qepno(𝑢,ℎ) tracks the epoch the honest
device (𝑢,ℎ) is currently in. For the server, epno stores the current epoch and 𝑇com [𝑡] stores the commitment output by the server (or
the simulator) for epoch 𝑡 . The real-world experiment ZK-REALMVKD further tracks honest device’s current state in st(𝑢,ℎ) , while in the
ideal-world experiment ZK-IDEALMVKD the directory Dir𝑡 stores the (symbolic) directory of epoch 𝑡 . Additionally, ZK-IDEALMVKD stores
a mapping PK from username-handle pairs to public keys chosen by the simulator.

Furthermore, both experiments maintain a mapping T(𝑢,ℎ) storing the list of actions (successfully) performed by the device (𝑢,ℎ). In the
real world it contains entries of the following format:

• ((AddFirst, ℎ, ℎ,⊥), auth)
• ((Revoke, ℎ0, ℎ1,⊥), auth)
• ((AddExtra, ℎ, 𝑑,⊥), auth)
• ((Add, ℎ0, ℎ1,⊥), auth)
• ((Add, ℎ, 𝑝𝑘,⊥), auth)

while in the ideal world it contains the same entries but without auth, and the following additional entry types:
• (HonVerExt, 𝑡)
• (HonQuery, 𝑢′, 𝑡, S)

Update. When the adversary instructs the server to update its directory, A provides two sets of keychain statements to be appended:
𝑀HonDev contains honestly generated ones using the various oracles (for which the adversary does not know auth) while𝑀CorrDev contains
keychain statements generated by the adversary. The former ones contain handles instead of public keys. Hence, for the server to be able
to process them in the real world, the game first needs to substitute the handles with public keys. To this end, the game looks up the
respective public key in the device’s state. Further, it retrieves the keychain authenticator auth in T(𝑢,ℎ) .

In the ideal world the simulator is only given the maliciously generated updates (and some leakage on the honest ones). Hence, the
experiment has to ensure itself that invalid updates are rejected, which it does using the Consistent helper predicate. After the simulator
produces the updated commitment, and if it does not reject, the experiment updates its directory Direpno.

Post-compromise security. PCS is modeled by allowing for LeakState calls that reveal the current server state. Upon the adversary
querying this oracle, the simulator must output an indistinguishable state, based on the leakage of LLeakState. Note that since the leakage
functions share a common state, this further can affect the leakage — and thus the privacy guarantees — of different operations.

Healing from compromise is then modeled by having a PCSUpdate oracle that works analogously to the Update one, except for the
real world calling the respective algorithm instead and the ideal world using the dedicated leakage function LPCSUpdate. Again, calling
this function might affect other leakage functions via their shared state. In particular, observe that the more stringent privacy guarantees
obtained by PCSUpdate compared to Update are formalized purely as part of the respective leakage functions LPCSUpdate and LUpdate,
and their effect on the other subsequent leakage function calls.

AddKey. Finally, observe that the game offers three different AddKey oracles, depending on which non-empty subset of the involved
devices is honest. In the variant with two honest devices, the action gets recorded in T(𝑢,ℎ) for the adding party if and only if both devices
accept. (Recall that soundness mandates that otherwise the update anyway cannot be applied.) In contrast, if either the added party or
adding party is malicious, then the update also counts as malicious. Notice that this is because interacting with a malicious party during
AddKey enables the adversary to affect the outcome and learn auth.

J LEAKAGE IN OURMVKD CONSTRUCTION
We now provide a formal definition of our protocol’s leakage function L = (LAddKey0,LAddKey1,LQuery,LUpdate,LPCSUpdate,LVerExt,

LAudit,LCorr,LLeakState). See Section 4.4 for an intuitive description of the leakage.
The leakage function is described in Figure 8. The shared state consists of a boolean flag leaked (initialized to false), and a set 𝐾 of

username-keychain pairs which the adversary knows (initially empty). Note that 𝐾 is irrelevant and not maintained while leaked = true,
but patched up in LPCSUpdate.

K PROOF OF THEOREM 3
Let SRZKS be the simulator from the RZKS zero knowledge property. In the following, we construct a simulator SMVKD for theMVKD
zero knowledge game.

Note that the simulator SMVKD makes use of the protocol helper algorithms CheckAuth (for checking the keychain authenticator) and
AuthStatement (for computing keychain authenticators) which are defined in Appendix D. Note that the hash function used by those
algorithms is implemented as a random oracle by the simulator, in an honest manner. In other words, SMVKD samples new values at random
and stores them in a table D so that repeated values get back the same response. We assume this is handled implicitly by CheckAuth and
AuthStatement. The simulator will use the same table D to handle random oracle queries by the adversary.

We make use of the following helper algorithm that takes a symbolic keychain, that potentially contains handles, and transforms it into
a sigchain by (1) replacing all handles with actual public keys, and (2) computing the keychain authenticators auth𝑖 for each statement
𝑖 . The algorithm directly accesses the simulator’s directory Dir (to store the result), the mapping Keys from username-handle pairs to
public/secret key pairs, and the mapping PK from username-handle pairs to public keys, returning the updated results. Note that Dir maps
an epoch and username, using notation Dir𝑡 [𝑢], to a (keychain statement, authenticator) pair.

34

ELEKTRA: Efficient Lightweight multi-dEvice Key TRAnsparency

LAddKey0 (T(𝑢,ℎ)) and LAddKey1 (T(𝑢,ℎ)) :

Retrieve the latest entry in T(𝑢,ℎ) of the form (HonQuery,𝑢, qepno, S) for some qepno and S.
𝐾 ← 𝐾 ∪ { (𝑢, S) }
Return S

LQuery (𝑢, 𝑡,Dir, epno) :

S← Dir𝑡 [𝑢], 𝑛 ← |S |
S′ ← Direpno [𝑢]
If |S′ | > 𝑛:

𝑡next ← t(S′ [𝑛 + 1])
Else:

𝑡next ← ⊥
𝐾 ← 𝐾 ∪ { (𝑢, S) }
Return (S, 𝑡next)

LUpdate (𝑀HonDev, 𝑀CorrDev,Direpno) :

// In the event of server compromise, leak all honest updates
If leaked:

return𝑀HonDev
Else:

𝑈HonDev ← {}
// Leak which keychains of honest clients the simulator knows that are now getting updated
For (𝑢, s,⊥) ∈ 𝑀HonDev :

S← Direpno [𝑢]
If (𝑢, S) ∈ 𝐾 :

𝑈HonDev ← 𝑈HonDev ∪ {𝑢}
// Leak for which maliciously updated keychains the adversary knew the most recent one
For (𝑢, s, auth) ∈ 𝑀CorrDev :

S← Direpno [𝑢]
If S = ⊥ or (𝑢, S) ∈ 𝐾 then

𝐾CorrDev ← 𝐾CorrDev ∪ {𝑢}
If S = ⊥, set S← (𝑢; ())
S′ ← S∥AddEpoch(s, epno)
𝐾 ← 𝐾 ∪ { (𝑢, S′) }

Return (|𝑀HonDev |,𝑈HonDev, 𝐾CorrDev)

LPCSUpdate (𝑀HonDev, 𝑀CorrDev,Direpno) :

If leaked = true:
𝐾 ← 𝐾 ∪ { (𝑢,Direpno [𝑢]) | 𝑢 ∈ Direpno }

leaked ← false
(𝑛,𝑈HonDev, 𝐾CorrDev) ← LUpdate (𝑀HonDev, 𝑀CorrDev,Direpno)
Return (𝑛,𝐾CorrDev)

LVerExt (𝑡, 𝑡 ′) :
Return (𝑡, 𝑡 ′)

LAudit (𝑡) :
Return 𝑡

LCorr (𝑢,ℎ, qepno(𝑢,ℎ) , T(𝑢,ℎ) , PK,Dir, epno) :

Queries← {}
For each element of T(𝑢,ℎ) of the form (HonQuery,𝑢′, qepno, S) :

Queries[𝑢′] ← (S, qepno)
For (𝑢′, (S, qepno)) ∈Queries:

𝐾 ← 𝐾 ∪ { (𝑢′, S) }
Return (Queries, qepno(𝑢,ℎ))

LLeakState (Direpno) :

leaked ← true
Return Direpno

Figure 8 ELEKTRA’s Leakage. Note that during Update queries, we leak usernames for all the keychains of honest clients that the adversary
knew which are getting updates as part of𝑀HonDev. For the proof to go through, we would strictly need only those updates which the adversary
learned through a query (and not those learned through AddKey or corruptions), but we define it this way for simplicity.

(Dir,Keys, PK) ← ComputeSigchain(Dir,Keys, PK, S, 𝑡)
• Let 𝑛 ← |S| and 𝑢 ← u(S). If 𝑛 = 0 or Dir𝑡 [𝑢] ≠ ⊥, then return Dir,Keys, PK.
• Let 𝑡 ′ ← t(last(S)). If 𝑡 ′ < 𝑡 , then (Dir,Keys, PK) ← ComputeSigchain(Dir,Keys, PK, S, 𝑡 ′), set Dir𝑡 [𝑢] ← Dir𝑡 ′ [𝑢], and return
(Dir,Keys, PK).

• If 𝑛 > 1:
(1) S𝑛−1 ← S[1 . . . 𝑛 − 1]
(2) 𝑡𝑛−1 ← t(last(S𝑛−1))
(3) (Dir,Keys, PK) ← ComputeSigchain(Dir,Keys, PK, S𝑛−1, 𝑡𝑛−1)
(4) (S′

𝑛−1, auth𝑛−1) ← Dir𝑡𝑛−1 [𝑢].
• Else define S′

𝑛−1 ← (u(S); ()) and auth𝑛−1 ← 𝜀

// Replace handles by public keys in last link
• s𝑛 ← S[𝑛]
• ℎ0 ← pka (s𝑛), ℎ1 ← data(s𝑛)
• If ℎ0 ∈ H and Keys[𝑢,ℎ0] = ⊥:

– (𝑠𝑘, 𝑝𝑘) ← SIG.KeyGen()
– Keys[𝑢,ℎ0] ← (𝑠𝑘, 𝑝𝑘)
– PK[𝑢,ℎ0] ← 𝑝𝑘

• If ℎ1 ∈ H and Keys[𝑢,ℎ1] = ⊥:
– (𝑠𝑘, 𝑝𝑘) ← SIG.KeyGen()
– Keys[𝑢,ℎ1] ← (𝑠𝑘, 𝑝𝑘)
– PK[𝑢,ℎ1] ← 𝑝𝑘

• s′𝑛 ← SubstituteHandles(PK, 𝑢, s𝑛)
// Create fake client state to create authenticator
• Retrieve (𝑠𝑘, 𝑝𝑘) from Keys such that 𝑝𝑘 = pka (s′𝑛)
• Users[𝑢] ← (S′

𝑛−1, auth𝑛−1, ·)
• 𝑠𝑡 ← (𝑢, 𝑠𝑘, 𝑝𝑘, ·,Users)
// Compute authenticator

35

Len et al.

• auth𝑛 ← AuthStatement(𝑠𝑡, type(s′𝑛), 𝑝𝑘, data(s′𝑛))
• If type(s′𝑛) = Add:

– Retrieve (𝑠𝑘′, 𝑝𝑘′) from Keys such that 𝑝𝑘′ = data(s′𝑛)
– 𝑠𝑡 ′ ← (𝑢, 𝑠𝑘′, 𝑝𝑘′, ·,Users)
– auth′𝑛 ← AuthStatement(𝑠𝑡 ′,Add, 𝑝𝑘, 𝑝𝑘′)
– (ℎ, 𝑧) ← auth𝑛 ; (ℎ′, 𝑧′) ← auth′𝑛
– auth𝑛 ← (ℎ, (𝑧, 𝑧′))

• S′ ← S′
𝑛−1∥s

′
𝑛

• Dir𝑡 [𝑢] ← (S′, auth𝑛)
• Return Dir,Keys, PK

Finally, we introduce the following helper algorithm to fetch a user’s sigchain from the directory (as known to the simulator) as of
epoch 𝑡 . If the simulator stored no sigchain for 𝑢 up to epoch 𝑡 , then the algorithm returns an empty keychain and the authenticator 𝜖 .

(S, auth) ← LatestSigchain(Dir, 𝑢, 𝑡)
• If Dir𝑡 [𝑢] ≠ ⊥, return Dir𝑡 [𝑢]
• Else if 𝑡 = 1, return ((𝑢; ()), 𝜖)
• Else, return LatestSigchain(Dir, 𝑢, 𝑡 − 1)

Using the above helper algorithms, we now can define the actual simulator as follows.

SMVKD :
▶ The simulator SMVKD maintains the following state:

– The state for the RZKS simulator (implicit)
– leaked: a bit which is set when the server state is leaked to the adversary (and unset upon PCSUpdate calls).
– Dir𝑡 : a dictionary mapping usernames to the keychain known to the simulator at epoch 𝑡
– epno: the current epoch of the system
– Keys: a dictionary mapping a username-handle pair to the key pair (𝑠𝑘, 𝑝𝑘) for the corresponding device
– Com: a dictionary mapping the epoch to the commitment and update proof for that epoch
– 𝑔: the current generation, i.e., the number of PCSUpdate operations performed so far
– G: a dictionary mapping epochs to their respective generation
– 𝑄 : the set of RZKS labels that have been queried to the RZKS simulator before having been added to the RZKS data store
– PK: a dictionary mapping a username-handle pair to the public key 𝑝𝑘 for the corresponding device
– D: a table used by the simulator to implement the random oracle hash

▶ (com0, pp) ← SMVKD (Init, 1𝜆):
– Dir0 ← { }; epno← 0; Keys← []; Com← []; 𝑔← 0; G← []; 𝑄 ← {}; PK← []; D← []
– (com, pp) ← SRZKS (Init)
– Com[0] ← (com,⊥)
– Return (com, pp)

▶ (com, PK) ← SMVKD (Update, 𝑀CorrDev, 𝐿)
– If leaked, set𝑀HonDev ← 𝐿. Else, parse 𝐿 as (𝑛HonDev,𝑈HonDev, 𝐾CorrDev).
// Check validity of updates in 𝑀CorrDev
– For (𝑢, s′, auth′) ∈ 𝑀CorrDev:

// If the adversary has not compromised the server and does not know this username’s keychain, then
it cannot forge an update so return error

(1) If leaked = false and 𝑢 ∉ 𝐾CorrDev, then return (ERROR, PK).
(2) (S, auth) ← LatestSigchain(Dir, 𝑢, epno)
(3) If |S| ≥ 1, set 𝑡 ← t(last(S)), else 𝑡 ← 0
(4) If CheckAuth(auth, 𝑡, 𝑢, s′, auth′) = 0 or ValidKeychain(S∥s′) = 0, then return (ERROR, PK).

// Update the directory
– epno← epno + 1
– Direpno ← {}
– For each (𝑢, s′, auth′) ∈ 𝑀CorrDev:

(1) (S, auth) ← LatestSigchain(Dir, 𝑢, epno − 1)
(2) S′ ← S∥AddEpoch(s′, epno)
(3) Direpno [𝑢] ← (S′, auth′)

– If leaked, for each (𝑢, s′,⊥) ∈ 𝑀HonDev:
(1) (S, ·) ← LatestSigchain(Dir, 𝑢, epno − 1)
(2) S′ ← S∥AddEpoch(s′, epno)
(3) (Dir,Keys, PK) ← ComputeSigchain(Dir,Keys, PK, S′, epno)

// Compute RZKS leakage
– If leaked:

(1) 𝑆 ← {}
36

ELEKTRA: Efficient Lightweight multi-dEvice Key TRAnsparency

(2) For (𝑢, s, ·) ∈ 𝑀HonDev ∪𝑀CorrDev:
(a) (S, ·) ← Direpno [𝑢]
(b) 𝑆 ← 𝑆 ∪ {(𝑢, |S|)}

(3) 𝐿Update ← 𝑆

– Else:
(1) 𝑛 ← 𝑛HonDev + |𝑀CorrDev | // |𝑆 |
(2) 𝐶 ← {}
(3) For 𝑢 ∈ (𝑈HonDev ∪ {𝑢′ | (𝑢′, ·, ·) ∈ 𝑀CorrDev}):

(a) (S, ·) ← LatestSigchain(Dir, 𝑢, epno − 1)
(b) label← (𝑢, |S| + 1)
(c) If label ∈ 𝑄 , then 𝐶 ← 𝐶 ∪ {label}

(4) 𝐿Update ← (𝑛,𝐶)
// Invoke RZKS simulator
– (com′, 𝜋 ′) ← SRZKS (Update, 𝐿Update)
– Com[epno] ← (com′, 𝜋 ′)
– G[epno] ← 𝑔

– Return (com′, PK)
▶ (com, PK) ← SMVKD (PCSUpdate, 𝑀CorrDev, 𝐿)

– Set leaked ← false, 𝑔← 𝑔 + 1
– Set 𝑄 ← {}
– Parse 𝐿 as (𝑛HonDev, 𝐾CorrDev), set𝑈HonDev ← {}, and define 𝐿′ ← (𝑛HonDev,𝑈HonDev, 𝐾CorrDev)
– Proceed analogous to SMVKD (Update, 𝑀CorrDev, 𝐿

′), except that SMVKD invokes SRZKS (PCSUpdate, 𝐿PCSUpdate) instead of
SRZKS (Update, 𝐿Update) (i.e., the respective RZKS simulator) with 𝐿PCSUpdate ← 𝑛, where 𝐿Update = (𝑛,𝐶).

▶ (. ; PK) ← SMVKD (A ; Query, 𝑢, 𝑡, 𝐿)
– Set (S, 𝑡next) ← 𝐿 and 𝑛 ← |S|
– Receive 𝑡 last
– If 𝑡 > epno or 𝑡 last > 𝑡 , then send ERROR and return PK
– (Dir,Keys, PK) ← ComputeSigchain(Dir,Keys, PK, S, 𝑡)
– 𝑗 ′ ← |{s : s ∈ S ∧ t(s) ≤ 𝑡 last}|
– For 𝑖 = 𝑗 ′ + 1, . . . , 𝑛 + 1:

(1) label𝑖 ← (𝑢, 𝑖)
// Create RZKS leakage

(2) If 𝑖 ≤ 𝑛:
(a) 𝑡𝑖 ← t(S[𝑖])
(b) (·, auth𝑖) ← Dir𝑡𝑖 [𝑢]
(c) 𝐿𝑖 ← (label𝑖 , auth𝑖 , 𝑡𝑖 , 𝑡)

(3) Else If 𝑡next ≠ ⊥ and G[𝑡next] = G[𝑡]:
(a) 𝐿𝑖 ← (label𝑖 ,⊥, 𝑡next, 𝑡)

(4) Else:
(a) 𝐿𝑖 ← (label𝑖 ,⊥,⊥, 𝑡)
(b) If G[𝑡] = 𝑔: 𝑄 ← 𝑄 ∪ {label𝑖 }

// Simulate RZKS proof
(5) (𝜋𝑖 , val𝑖 , 𝑡𝑖) ← SRZKS (Query, 𝐿𝑖)

– (S′, auth𝑛) ← Dir𝑡 [𝑢]
– Send {(S′ [𝑖], val𝑖 , 𝜋𝑖)}𝑛+1𝑖=𝑗 ′+1 (with S

′ [𝑛 + 1] =⊥) to adversary
– Return PK

▶ (. ; PK) ← SMVKD (A ; Audit, 𝐿)
– Parse 𝑡 ← 𝐿

– (com, 𝜋) ← Com[𝑡 + 1]
– Send 𝜋 to the adversary
– Return PK

▶ (. ; PK) ← SMVKD (A ; VerExt, 𝐿)
– Parse (𝑡, 𝑡 ′) ← 𝐿

– If 𝑡 =⊥, set 𝜋 ←⊥
– Else if 𝑡 < 𝑡 ′: set 𝜋 ← SRZKS (ProveExt, (𝑡, 𝑡 ′))
– Else: set 𝜋 ← SRZKS (ProveExt, 𝑡 ′, 𝑡)
– Retrieve (com, ·) ← Com[𝑡 ′]
– Send (com, 𝜋) to the adversary
– Return PK

▶ (𝜎, PK) ← SMVKD (Sign, 𝑢, ℎ,𝑚)

37

Len et al.

– If Keys[𝑢,ℎ] ≠ ⊥, (𝑠𝑘, 𝑝𝑘) ← Keys[𝑢,ℎ]. Else sample (𝑠𝑘, 𝑝𝑘) ← SIG.KeyGen() and set Keys[𝑢,ℎ] ← (𝑠𝑘, 𝑝𝑘) as well as
PK[𝑢,ℎ] ← 𝑝𝑘 .

– Compute 𝜎 ← SIG.Sign(𝑠𝑘, 1∥𝑚)
– Return (𝜎, PK)

▶ (auth′, PK ; .) ← SMVKD (AddKey0, (𝑢,ℎ), 𝑝𝑘, 𝐿 ; A)
– Set S← 𝐿, 𝑛 ← |S|, 𝑡 ← t(last(S))
– (Dir,Keys, PK) ← ComputeSigchain(Dir,Keys, PK, S, 𝑡)
– (S, auth) ← LatestSigchain(Dir, 𝑢, 𝑡)
– If (S, auth) = ⊥, return (ERROR, PK)
– If Keys[𝑢,ℎ] = ⊥:

(1) (𝑠𝑘, 𝑝𝑘) ← SIG.KeyGen()
(2) Keys[𝑢,ℎ] ← (𝑠𝑘, 𝑝𝑘)
(3) PK[𝑢,ℎ] ← 𝑝𝑘

– (𝑠𝑘0, 𝑝𝑘0) ← Keys[𝑢,ℎ] ; 𝑝𝑘1 ← 𝑝𝑘

// Create fake client state to create authenticator
– Users[𝑢] ← (S, auth, ·)
– 𝑠𝑡 ← (𝑢, 𝑠𝑘0, 𝑝𝑘0, ·,Users)
// Compute authenticator
– (ℎ, 𝑧) ← AuthStatement(𝑠𝑡,Add, 𝑝𝑘0, 𝑝𝑘1)
– If (ℎ, 𝑧) = ERROR, return (ERROR, PK)
– Receive (ℎ′, 𝑧′) from the adversary
– If ℎ ≠ ℎ′ or SIG.Ver(𝑝𝑘1, 0∥ℎ, 𝑧′) = 0, return (ERROR, PK)
– auth′ ← (ℎ, (𝑧, 𝑧′))
– Return (auth′, PK)

▶ (. ; PK) ← SMVKD (A ; AddKey1, 𝑝𝑘, (𝑢,ℎ), 𝐿)
– S← 𝐿, 𝑛 ← |S|, 𝑡 ← t(last(S))
– (Dir,Keys, PK) ← ComputeSigchain(Dir,Keys, PK, S, 𝑡)
– (S, auth) ← LatestSigchain(Dir, 𝑢, 𝑡)
– If (S, auth) = ⊥, return PK
– If Keys[𝑢,ℎ] = ⊥:

(1) (𝑠𝑘, 𝑝𝑘) ← SIG.KeyGen()
(2) Keys[𝑢,ℎ] ← (𝑠𝑘, 𝑝𝑘)
(3) PK[𝑢,ℎ] ← 𝑝𝑘

– 𝑝𝑘0 ← 𝑝𝑘 ; (𝑠𝑘1, 𝑝𝑘1) ← Keys[𝑢,ℎ]
// Create fake client state to create authenticator
– Users[𝑢] ← (S, auth, ·)
– 𝑠𝑡 ← (𝑢, 𝑠𝑘1, 𝑝𝑘1, ·,Users)
// Compute authenticator
– (ℎ′, 𝑧′) ← AuthStatement(𝑠𝑡,Add, 𝑝𝑘0, 𝑝𝑘1)
– If (ℎ′, 𝑧′) = ERROR, return PK
– Send (ℎ′, 𝑧′) to the adversary
– Return PK

▶ (𝑠𝑡, PK) ← SMVKD (Corr, 𝑢, ℎ, 𝐿)
– (Queries, qepno) ← 𝐿

– If Keys[𝑢,ℎ] = ⊥:
(1) (𝑠𝑘, 𝑝𝑘) ← SIG.KeyGen()
(2) Keys[𝑢,ℎ] ← (𝑠𝑘, 𝑝𝑘)
(3) PK[𝑢,ℎ] ← 𝑝𝑘

– (𝑠𝑘, 𝑝𝑘) ← Keys[𝑢,ℎ]
– (com, 𝜋) ← Com[qepno]
– Initialize Users← []. For 𝑢′ ∈Queries:

(1) (S′, qepno′) ←Queries[𝑢′]
(2) (Dir,Keys, PK) ← ComputeSigchain(Dir,Keys, PK, S′, qepno′)
(3) (S′, auth′) ← Dirqepno′ [𝑢′]
(4) Users[𝑢′] ← (S′, auth′, qepno′)

– 𝑠𝑡 ← (𝑢, 𝑠𝑘, 𝑝𝑘, com,Users)
– Return (𝑠𝑡, PK)

▶ (stS, PK) ← SMVKD (LeakState, 𝐿)
– Set leaked ← true
– Users𝑆 ← {}
– For 𝑢 ∈ 𝐿

(1) (Dir,Keys, PK) ← ComputeSigchain(Dir,Keys, PK, 𝐿[𝑢], epno)
38

ELEKTRA: Efficient Lightweight multi-dEvice Key TRAnsparency

(2) (S, auth) ← Direpno [𝑢]
(3) Users𝑆 [𝑢] ← S

// Compute RZKS leakage
– D← {}
– For 𝑢 ∈ Direpno

(1) Let (S, ·) ← Direpno [𝑢] and 𝑛 ← |S|
(2) For 𝑖 = 1, . . . , 𝑛

(a) 𝑡𝑖 ← t(S[𝑖])
(b) (·, auth𝑖) ← Dir𝑡𝑖 [𝑢]
(c) D← D ∪ {((𝑢, 𝑖), auth𝑖 , 𝑡𝑖)}

– stRZKS ← SRZKS (Leak,D)
– stS ← (stRZKS,Com,Users𝑆)
– Return (stS, PK)

▶ 𝑜𝑢𝑡 ← SMVKD (Ideal, 𝑖𝑛)
– Queries to ideal objects related to the RZKS are answered by making the analogous query to SRZKS.
– The random oracle hash is implemented by checking if an answer to the query was previously asked and is stored in table D.

If so, that value is returned; otherwise, a value is sampled at random, stored in D and then returned.

Assume there exists an adversaryAMVKD that can distinguish between games ZK-REALAMVKD
MVKD and ZK-IDEALAMVKD

MVKD with non-negligible
probability (when ELEKTRA is instantiated with the RZKS from [8]). We provide the following adversary ARZKS that can distinguish
between games ZK-REALARZKS

RZKS and ZK-IDEALARZKS
RZKS with non-negligible probability for scheme RZKS.

AUpdate(·),Query(·,·),ProveExt(·,·),LeakState(),Ideal(·)
RZKS (com′, pp′)
• ARZKS runs AMVKD and simulates oracle calls made by AMVKD according to how the ZK-REALMVKD game responds to oracle

calls. This means ARZKS makes calls to theMVKD protocol directly, except for the following oracles:
– Initialization: Instead of callingMVKD.GenPP() andMVKD.ServerInit(), ARZKS follows what the ServerInit protocol does

but uses com′ and pp′, which were given as input, in place of calling RZKS.GenPP() and RZKS.Init(). For the server state stS,
ARZKS only stores Com and Users𝑆 and modifies Users𝑆 to map the username to the keychain and the authenticator for the
keychain.

– HonVerExt(𝑢,ℎ, com): Instead of callingMVKD.VerExtension(),ARZKS verifies that the input com equals𝑇com [t(com)], which
is the commitment generated by a call to Update for the epoch associated with com. If this is true and qepno(𝑢,ℎ) < t(com),
then ARZKS updates the device state itself by updating the commitment in the state to com.

– HonQuery(𝑢,ℎ,𝑢′): Instead of calling MVKD.Query(), ARZKS gets the keychain and authenticator from the server state
(S, auth) ← stS .Users𝑆 [𝑢], forms the keychain S′ with statements up until the epoch qepno(𝑢,ℎ) stored by the device, and
updates Users[𝑢′] ← (S′, auth, epno) in the device state for (𝑢,ℎ).

– Query(𝑢): Instead of calling MVKD.Query(), ARZKS follows what the Query protocol does but calls its Query oracle in place
of calling RZKS.Query().

– VerExtension(𝑡, 𝑡 ′): Instead of callingMVKD.VerExtension(), ARZKS follows what the VerExtension protocol does but calls
its ProveExt oracle in place of calling RZKS.ProveExt().

– Update(𝑀HonDev, 𝑀CorrDev): Instead of calling MVKD.Update(), ARZKS follows what the Update protocol does but calls its
Update oracle in place of calling RZKS.Update(). When updating stS .Users𝑆 , it also stores the authenticator in addition to
the keychain.

– PCSUpdate(𝑀HonDev, 𝑀CorrDev): Instead of calling MVKD.PCSUpdate(), ARZKS follows what the PCSUpdate protocol does
but calls its PCSUpdate oracle in place of callingRZKS.PCSUpdate().When updating stS .Users𝑆 , it also stores the authenticator
in addition to the keychain.

– LeakState: Instead of returning 𝑠𝑡𝑠epno, ARZKS computes its own state 𝑠𝑡𝑠 ← (stRZKS,Com,Users𝑆) and returns 𝑠𝑡𝑠 . ARZKS

computes stRZKS by querying its own oracle LeakState, Com from its own state it keeps track of, and Users𝑆 also from its
own state but only mapping username to the keychain instead of username to the keychain and authenticator.

– Ideal(𝑖𝑛): If 𝑖𝑛 is an object related to the RZKS, then ARZKS answers with the response from the RZKS oracle Ideal(𝑖𝑛).
Otherwise, ARZKS simulates a random oracle via table D: it returns the value stored in D for 𝑖𝑛 if available and otherwise
samples a random output to return, which it also stores in D.

• ARZKS then returns whatever AMVKD returns.

When ARZKS is playing game ZK-REALRZKS, the oracles return outputs from the RZKS protocol. It is therefore easy to see that the
view of AMVKD is identical to that in the ZK-REALMVKD game, where the RZKS protocol is called when applicable, except for oracles
HonVerExt, HonQuery, and Ideal. We argue that the view of AMVKD when calling these oracles is the same as in game ZK-REALMVKD:

• HonVerExt: Notice that MVKD.VerExtension() only fails for an honest device and server if the input commitment differs from
the commitment stored by the server for the associated epoch. Furthermore, the algorithm only updates the device state to the
input commitment if the commitment stored by the device is either ⊥ or behind the input commitment. ARZKS therefore correctly
simulates this behavior and updates the device state accordingly.

39

Len et al.

• HonQuery: Notice thatMVKD.Query() only fails for an honest device and who has always interacted with the same honest server
if the epoch the device sends to the server is greater than the epoch stored by the device or the epoch stored by the device is greater
than the epoch stored by the server. Since the device is honest, neither case can occur. Furthermore, the algorithm updates the
device state by updating Users for the queried username.ARZKS therefore correctly simulates this behavior and updates the device
state accordingly.

• Ideal: For objects related to the RZKS, the RZKS oracle responds with the output from its own ideal object, just as it would in the
real game. For simulating the hash function, ARZKS implements a random oracle; since we model the hash function as a random
oracle, this is indistinguishable to AMVKD.

We thus have that ARZKS returns 1 in game ZK-REALRZKS when AMVKD returns 1 in game ZK-REALMVKD.

We now argue that when ARZKS is playing game ZK-IDEALRZKS, the view of AMVKD is the same as that in the ZK-IDEALMVKD game,
which we describe in more detail below.

• In the ZK-IDEALMVKD game during initialization, theMVKD simulator SMVKD calls the RZKS simulator SRZKS to get the public
parameters pp′ and the initial commitment com′, whichAMVKD expects to receive. When simulating this game,ARZKS gets com′
and pp′ from the RZKS simulator as input, so AMVKD will get back the commitment it expects.

• When simulating the DeviceSetup oracle for AMVKD, ARZKS actually calls MVKD.DeviceSetup() to create the device key, while
the ZK-IDEALMVKD game records in a table that a device was created. The view of AMVKD is the same, since it gets back the
randomly-generated string that represents the device handle in both games.

• For the oracles AddFirstKey(𝑢,ℎ), RevokeKey(𝑢,ℎ0, ℎ1), RevokeKey((𝑢,ℎ), 𝑝𝑘), and AddExtra((𝑢,ℎ), 𝑑), the ideal-world game
ZK-IDEALMVKD checks that these requests are valid by calling the ValidAction helper predicate and then records that these queries
took place. Notice that AMVKD is not returned anything and the only action taken by the game is to record whether the algorithm
succeeds. When ARZKS simulates this game, it calls the MVKD protocols, which also abort if there is an invalid request, and then
records these queries took place. The MVKD protocols specified succeed when the submitted update is a valid keychain, which is
the same as the check done by ValidAction.

• In the ZK-IDEALMVKD game oracle Sign(𝑢,ℎ,𝑚), SMVKD is given the username 𝑢, device handle ℎ, and message𝑚 to sign. The
simulator stores a table Keys that maps a username and device handle to a key pair. If (𝑢,ℎ) already has a key pair, then that is used
to sign𝑚; otherwise, a new key pair is generated, stored, and used to sign. WhenARZKS simulates this game, it callsMVKD.Sign(),
which uses the key stored by the device. Since the keys remain consistent, the view of AMVKD is the same in both games.
• For oracleHonVerExt, it is clear by inspection thatAMVKD performs the same checks as in ZK-IDEALMVKD and updates the honest

device state when ZK-IDEALMVKD updates the epoch qepno for the device.
• For oracle HonQuery, it is clear by inspection that AMVKD performs the same checks as in ZK-IDEALMVKD. It also updates the

honest device state when ZK-IDEALMVKD updates the table T, with both updates storing the keychain stored in the directory
updated during calls toQuery. This ensures that, if the device is later corrupted, its state will be consistent.

• For oracle AddKey(𝑢,ℎ, 𝑝𝑘), the honest device is the adding device while AMVKD acts as the device to be added. In order for what
AMVKD sees when it plays this game to be consistent with what ARZKS returns from a call to MVKD.AddKey(), the simulator
will need to ensure the following: (1) that the adding key is not revoked and (2) that 𝑝𝑘 is not a key already in the keychain for
𝑢. The leakage given to the simulator is the keychain from when the device last made a query, so the simulator can perform
the above checks itself. Furthermore, ZK-IDEALMVKD views this as a malicious change and AMVKD gets the authenticator from
ZK-IDEALMVKD — with SMVKD providing it to the game — so that it can submit the change as a malicious update to Update. This
means that SMVKD does not need to later keep track of the authenticator computed byAMVKD. Thus, the view ofAMVKD remains
the same in both games.

• For oracle AddKey(𝑢, 𝑝𝑘, ℎ), the honest device is the new device getting added while AMVKD simulates the existing device doing
the adding. Again, for what AMVKD sees when it plays this game to be consistent, the simulator will need to ensure the two
properties the same as for oracle AddKey(𝑢,ℎ, 𝑝𝑘) and additionally that the signature over the hash of the keychain statement that
AMVKD receives is consistent with what the device to be added knows about its keychain. Since the leakage given to the simulator
is the keychain from when the device last made a query, the simulator can perform these checks itself. Thus, the view of AMVKD
remains the same in both games.

• WhenARZKS simulates the oracle AddKey(𝑢,ℎ0, ℎ1), it callsMVKD.AddKey and, if the operation succeeds, it records this in T(𝑢,ℎ0) .
Note thatMVKD.AddKey() succeeds if AuthStatement successfully creates the authenticator for both devices, the hashes in the
authenticators match, and the signature over the hash provided by the added device verifies. Since only honest devices are used in
this oracle, the hash is modeled as a Random Oracle, and the signature scheme SIG is strongly unforgeable, these checks should
pass only if both devices have the same view of the keychain for 𝑢. Notice that this is precisely what the ZK-IDEALMVKD game
checks for, so that ARZKS correctly simulates the view for AMVKD.

• When ARZKS simulates the oracle CorrDev(𝑢,ℎ), it simply returns the state of device (𝑢,ℎ) to AMVKD. Note that the state of the
device has the username, secret key, public key, the most recent commitment stored by the device, and the Users dictionary, which
maps each username that the device knows about to the keychain, authenticator, and the epoch from when the device last queried
for this user.
The ZK-IDEALMVKD game simulates this by having theMVKD simulator SMVKD simulate the state using the leakage it is given.
The key pair stored on the device is either generated if it has not been before, meaning AMVKD would not have seen anything
from this key pair before, or it is looked up in the table Keys. The most recent commitment stored by the device is looked up since

40

ELEKTRA: Efficient Lightweight multi-dEvice Key TRAnsparency

part of the leakage is the epoch associated with the device by the game. Finally, Users can be simulated from the set Queries. Since
both games are consistent, the view for AMVKD in each game is indistinguishable.

• When ARZKS simulates theMVKD oracle Update(𝑀HonDev, 𝑀CorrDev), ARZKS callsMVKD.Update(), but substitutes the call to
RZKS.Update() with its own Update oracle, which in the ZK-IDEALRZKS game returns the new commitment and update proof
from the RZKS simulator. Before the Update oracle is called, ARZKS verifies that the update is valid by ensuring there is no
more than one update per username, that each update results in a valid keychain, and that the authenticators verify according to
CheckAuth.
Notice that, assuming that ZK-IDEALMVKD (1) simulates the same checks performed inMVKD.Update and (2) causes SMVKD to
provide SRZKS with the same leakage as in game ZK-IDEALRZKS, then the view for AMVKD as simulated by ARZKS is indistin-
guishable to that in ZK-IDEALMVKD. We now argue that both conditions are met when the server state has not been leaked. For
Condition 1:
– ZK-IDEALMVKD calls Consistent to verify that there are no duplicate updates for a single username and that all updates would

result in a valid keychain.
– For every malicious update in 𝑀CorrDev, SMVKD checks whether it and AMVKD know the latest keychain for that user, by

looking at 𝐾CorrDev which it receives as part of the leakage. If it does not know the keychain, AMVKD does not know the
keychain for the username either and is therefore submitting a fake update for which it must forge the authenticator. However,
AMVKD cannot do this because of the strong unforgeability of SIG, so SMVKD can reject the update in this case. If SMVKD does
know the latest keychain, then it verifies the update is valid by running CheckAuth and ValidKeychain and rejects otherwise.

– Lastly, honest updates in𝑀HonDev are honestly generated and therefore would have correct authenticators that verify, so they
do not need to be checked.

For Condition 2, recall that the leakage provided to the RZKS simulator in game ZK-IDEALRZKS in the case where the server state
has not been leaked is the number of elements to be added to the data structure and the set of labels in this update set which
have previously been queried to the RZKS simulator when they had not yet been added to the data structure. For our MVKD
protocol, labels that are not in the RZKS are queried each time a keychain is queried, sinceMVKD.Query() returns a non-inclusion
proof for the next statement in the keychain to prove the server returns the complete keychain. SMVKD therefore keeps track of
such labels in calls to Query through its set 𝑄 , which includes any labels that were queried after the last PCSUpdate, but were
not present in the RZKS data structure at that time. ZK-IDEALMVKD leaks to SMVKD the set𝑈HonDev of usernames which receive
honest updates and whose keychains SMVKD has previously seen. At this point, SMVKD also knows that it has the latest keychain
for each malicious update since it checked for this earlier. For each username in the set of malicious updates and honest updates to
keychains it knows, SMVKD can check whether the label to be added is in 𝑄 and, if so, add it to set 𝐶 . We then have that SMVKD
can call SRZKS with the total number of updates to be applied and the labels in 𝐶 , which is the same leakage given to the RZKS
simulator in game ZK-IDEALRZKS when played by ARZKS. We therefore have that both conditions are met in the case that the
server state has not been leaked.
We also highlight that SMVKD keeps track of which keychains both it and AMVKD know to simulate responses. Notice that since
SMVKD does not know the honest statements added, it now has an outdated view of the keychains for all usernames in𝑈HonDev. For
the malicious updates, SMVKD can update Direpno with the new keychains, since the update would only pass if SMVKD previously
knew the up-to-date keychains. This allows future queries to also be consistent with what ARZKS would respond with.
When the server state has been leaked, the simulator knows the current directory and receives the honest device updates as leakage,
so the simulator can easily simulate the update algorithm itself. It verifies the malicious updates are valid as before. Recall that
honest updates do not need to be checked because they must be valid by consequence of being honest updates. The expected
leakage provided to the RZKS simulator in this case is the set of labels to be added to the data structure, which SMVKD can provide
since it knows all the updates. Finally, SMVKD keeps track in the set 𝐾 of which keychains both it and AMVKD know in order to
simulate future responses.

• When ARZKS simulates theMVKD oracle PCSUpdate(𝑀HonDev, 𝑀CorrDev), it callsMVKD.PCSUpdate(), but it replaces the call
to RZKS.PCSUpdate() with its own PCSUpdate oracle. As for Update, notice that when ZK-IDEALMVKD (1) simulates the same
checks performed inMVKD.PCSUpdate and (2) provides the same leakage to the RZKS simulator as in game ZK-IDEALRZKS, then
the view for AMVKD as simulated by ARZKS is indistinguishable to that in ZK-IDEALMVKD.
Since PCSUpdate functions nearly identically to Update except for the RZKS leakage, we only argue that Condition (2) is met. The
RZKS leakage used in the game played by ARZKS is simply the number of updates. This number is directly leaked to and used by
SMVKD in ZK-IDEALMVKD, thereby showing that the necessary condition is met.

• When ARZKS simulates oracle Query(𝑢), it calls the interactive protocol MVKD.Query(), where AMVKD acts as the querying
client, but it replaces the calls to RZKS.Query() with its ownQuery oracle. Notice that before calling itsQuery oracle it receives
𝑡 last from AMVKD and verifies that 𝑡 last ≤ 𝑡 and 𝑡 ≤ t(stRZKS) (or otherwise it halts and returns ERROR). When ARZKS does call its
Query oracle for keychain statement S[𝑖] for which it needs to retrieve the authenticator, the RZKS simulator is called with the
leakage being:
– ((𝑢, 𝑖), val𝑖 , 𝑡𝑖 , 𝑡) if 𝑡𝑖 ≤ 𝑡 , where val𝑖 is the associated auth for statement S[𝑖] and 𝑡𝑖 is the epoch when the statement was

added
– ((𝑢, 𝑖),⊥, 𝑡𝑖 , 𝑡) if 𝐺 [𝑡𝑖] = 𝐺 [𝑡], meaning 𝑡𝑖 and 𝑡 are epochs during the same generation according to PCSUpdate
– ((𝑢, 𝑖),⊥,⊥, 𝑡) otherwise

41

Len et al.

Finally, ARZKS returns the keychain statement, authenticator, and proof for each statement added after the requested epoch by the
client. We now show that SMVKD in ZK-IDEALMVKD simulates this exact behavior so that the view for AMVKD as simulated by
ARZKS is indistinguishable to that in ZK-IDEALMVKD.
SMVKD performs equivalent checks to verify the epochs 𝑡, 𝑡 last are valid as ARZKS does. It next forms the RZKS leakage before
querying the RZKS simulator on each label it needs to query. Note that it forms this leakage in the same way as does ARZKS and
thus in either game AMVKD receives back the same outputs from the RZKS simulator since the leakage is consistent in either
game. For the label not yet added, it adds the label to the set 𝑄 so that this can be used as part of the leakage for Update. Finally, it
returns the keychain statement, authenticator, and proof for each statement added after the requested epoch by the client. Thus,
the view for AMVKD in each game is indistinguishable.

• WhenARZKS simulates oracle Audit(𝑡), it callsMVKD.Audit(), whereAMVKD acts as the auditor interacting with an honest server
simulated by ARZKS. ARZKS follows the MVKD protocol by sending AMVKD the update proof for the requested epoch. Since
ARZKS is in the ZK-IDEALRZKS game, this update proof was generated by the RZKS simulator.
The ZK-IDEALMVKD game calls SMVKD, with the leakage being the epoch to be audited. SMVKD sends AMVKD the update proof
for the requested epoch. Recall that this update proof also came from the RZKS simulator during Update. Thus, the view for
AMVKD is the same in both games.

• WhenARZKS simulates oracle VerExtension(𝑡, 𝑡 ′), it callsMVKD.VerExtension(), whereAMVKD acts as the client interacting with
an honest server simulated byARZKS.ARZKS follows theMVKD protocol by sending the result of ProveExt toAMVKD, but instead
of calling RZKS.ProveExt() it calls its own oracle ProveExt. Notice that this means the oracle verifies that the epochs queried are
valid. Furthermore, since ARZKS is in the ZK-IDEALRZKS game, the resulting proof was generated by the RZKS simulator, where
the provided leakage is the queried epochs. This is identical to what the ZK-IDEALMVKD game does, so that the view for AMVKD
is the same in both games.

• When ARZKS simulates oracle LeakState, it returns the simulated server state 𝑠𝑡𝑠 as described above. We now show that when
ARZKS is in the ZK-IDEALRZKS game, the simulated state provided toAMVKD byARZKS is indistinguishable to the state provided
by the ZK-IDEALMVKD game. In particular, 𝑠𝑡𝑠 computed by ARZKS contains three parts: stRZKS,Com,Users𝑆 .
ARZKS computes stRZKS by querying its own oracle LeakState, which calls the RZKS simulator with the entire datastore D being
the leakage. Notice that SMVKD in game ZK-IDEALMVKD computes this in the same way by calling SRZKS with the same datastore,
which SMVKD can compute because it is given the entire directory as leakage.
ARZKS returns Com from its own state it keeps track of, which are the list of RZKS commitments computed by the RZKS simulator
for each update. Since SMVKD is called for each update, it also knows and stores the same Com.
Finally, ARZKS computes Users𝑆 also from its own state but only mapping username to the keychain instead of username to the
keychain and authenticator. Since SMVKD is given the entire directory as leakage, it can compute this same set Users𝑆 . Therefore,
the view for AMVKD is the same in both games.

• It is clear to see by inspection that when ARZKS is playing game ZK-IDEALRZKS and simulates Ideal, the view of AMVKD is the
same as that in the ZK-IDEALMVKD game.

We thus have that ARZKS returns 1 in game ZK-IDEALRZKS when AMVKD returns 1 in game ZK-IDEALMVKD.

42

	Abstract
	1 Introduction
	2 Multi-Device Verifiable Key Directory (MVKD)
	2.1 Keychains
	2.2 MVKD Definition

	3 MVKD Construction
	3.1 Complexity

	4 MVKD Security
	4.1 Completeness
	4.2 Soundness
	4.3 Privacy
	4.4 Security Analysis of Our Construction

	5 Implementation and Performance
	6 Related Work
	Acknowledgments
	References
	A Preliminaries
	B Rotatable Zero Knowledge Set
	B.1 Formal Definition
	B.2 Leakage for the RZKS construction in RZKS

	C Additional definitions
	D ELEKTRA Protocol Details
	E MVKD Completeness
	F Proof of Theorem 1
	G MVKD Soundness
	H Proof of Theorem 2
	I Details on Privacy
	I.1 Helper functions and predicates
	I.2 Simulator
	I.3 Oracle definitions

	J Leakage in our MVKD construction
	K Proof of Theorem 3

