
Aitia: Efficient Secure Computation of Bivariate Causal Discovery
Truong Son Nguyen
Arizona State University

snguye63@asu.edu

Lun Wang
UC Berkeley

wanglun@berkeley.edu

Evgenios M. Kornaropoulos
George Mason University

evgenios@gmu.edu

Ni Trieu
Arizona State University

nitrieu@asu.edu

ABSTRACT

Researchers across various fields seek to understand causal relation-
ships but often find controlled experiments impractical. To address
this, statistical tools for causal discovery from naturally observed
data have become crucial. Non-linear regression models, such as
Gaussian process regression, are commonly used in causal infer-
ence but have limitations due to high costs when adapted for secure
computation. Support vector regression (SVR) offers an alternative
but remains costly in an Multi-party computation context due to
conditional branches and support vector updates.

In this paper, we propose Aitia, the first two-party secure com-
putation protocol for bivariate causal discovery. The protocol is
based on optimized multi-party computation design choices and
is secure in the semi-honest setting. At the core of our approach
is BSGD-SVR, a new non-linear regression algorithm designed for
MPC applications, achieving both high accuracy and low computa-
tion and communication costs. Specifically, we reduce the training
complexity of the non-linear regression model from approximately
from O(𝑁 3) to O(𝑁 2) where 𝑁 is the number of training samples.
We implement Aitia using CrypTen and assess its performance
across various datasets. Empirical evaluations show a significant
speedup of 3.6× to 340× compared to the baseline approach.

1 INTRODUCTION

Many researches in social, medical and natural sciences aim to
answer questions with the following format: “What is the cause of
X?” or “What is the effect of X?” Although some of these questions
can be answered by controlled experiments, these trials are usually
expensive or even impossible to conduct. To address this challenge,
people turn to developing statistical tools to discover causal re-
lationships between variables from naturally observed data. This
category of tools is referred to as causal inference.

Causal Inference is intrinsically data-hungry. The more data
is fed to the algorithm, the more accurate the result will be. As
a result, causal inference usually requires rich datasets collected
from different parties. However, this raises privacy concerns. For
example, suppose that two hospitals want to collaboratively run
a causal inference algorithm on their combined dataset so as to
determine if a new medicine is effective on diabetes. However, due
to HIPAA regulations, they are reluctant to share medical records
with one another.

Multi-party computation (MPC) is a promising approach to ad-
dressing the above privacy concern. Generally, MPC allows multi-
ple parties to jointly compute a function on shared inputs without

Work presented at CCS’24.

revealing more information than the function output. However,
general-purpose MPC protocols, such as garbled circuit [50, 51] or
GMW [13], typically introduce large performance overhead due to
extra computation and communication. Therefore, one would like
to develop a customized and efficient protocol for privacy-preserving

causal inference between the combined dataset of multiple parties.

Non-linear Regression Approaches and Their Limitations. The core
component of bivariate causal inference is a non-linear regression
algorithm. In the community of causal inference, one of the most
widely used non-linear regression isGaussian process regression [35].
However, as pointed out in [35], Gaussian process regression suffers
from slow training time and the disadvantage is further exacerbated
as the number of training samples increases. Besides, Gaussian
process regression is an one-off regression algorithm. Its training
and testing happen at the same time and once there is a small
change in the dataset the whole process needs to be re-run, which
makes it less preferred in a dynamic setting where data changes
rapidly. To address the issue, we turn to another standard non-
linear regression model namely support vector regression (abbrev.
SVR). There are many variants of SVR and in this paper we mainly
focus on 𝜖-SVR [7]. Although SVR partially overcome the defects
of Gaussian process regression, it contains many if-branches which
is costly (i.e., not friendly) in the MPC setting. Besides, the model
of SVR stores some training examples for future prediction, known
as support vectors. For obliviousness in the MPC setting, if trivially
adapted, the SVR model needs to contain all the training samples,
which leads to slow training and huge memory consumption.

Our Proposed MPC-friendly Approach. To overcome the above
challenges, we propose a new training algorithm for SVR based
on the well-known stochastic gradient descent (SGD). There have
been systematic efforts to apply SGD on support vector machine
(SVM) [44, 55], a close relative of SVR but there are no such efforts
for SVR. Hence, we propose the first SGD-based training for SVR,
following the same design pattern of P-packSVM [55], a SGD-based
SVM training algorithm. To suppress the number of support vectors,
we adopt the idea of budgeting [48] to impose an upper bound on
the number of support vectors. Putting it all together, our new
training algorithm employs a Budgeted Stochastic Gradient Descent
approach for Support Vector Regression (BSGD-SVR).

From SVR to Secure Protocol. Although our BSGD-SVR algorithm
is designed to beMPC-friendly, it is far from trivial to adapt the algo-
rithm to the privacy-preserving context. The main reason is that the
BSGD-SVR contains many conditional branching operators while
modifying the training model. The secure version of the BSGD-SVR

1

algorithm should not reveal which branch was evaluated. Thus,
it is inefficient to directly apply generic secure computation tech-
niques (such as garbled circuit [14, 52]) to the non-secure algorithm
without customized optimizations. To build a secure and efficient
version of BSGD-SVR that we call Aitia1, we propose a series of
optimizations that: speed up the initialization process, make the
budgeting technique oblivious, eliminate conditional branches, and
vectorize the algorithm.

Our Contribution. In summary, we make the following contribu-
tions in this paper.
• We propose BSGD-SVR, an MPC-friendly non-linear regression

model and design an efficient secure protocol for it. Compared
to the baselines, BSGD-SVR has lower computation and commu-
nication complexity.

• We propose Aitia, the first secure bivariate causal inference
protocol, designed for the semi-honest setting, with a straight-
forward extension to the malicious setting.

• We implement Aitia in the Crypten framework [9] and evaluate
it empirically. The results show that Aitia achieves a 3.6 − 340×
speedup compared to the baseline. Our implementation can be
found at https://github.com/asu-crypto/Aitia

2 BACKGROUND AND RELATEDWORK

In this section, we discuss the concepts and relevant literature from
causal discovery and cryptography used in our protocol Aitia.

2.1 Causal Inference

Let𝑋,𝑌 be two random variables, and Pr(𝑋,𝑌) be the joint probabil-
ity distribution, i.e., the observational distribution after measuring
both quantities without any intervention. In a causality study, e.g.,
drug effects, the designer applies an external intervention that
forces variable𝑋 to take value 𝑥 ; this action is denoted as “do(𝑥)”. If
this intervention has an effect, it is reflected in the interventional dis-
tribution, i.e., Pr(𝑌 |do(𝑥)). Variable 𝑋 causes 𝑌 , denoted as 𝑋 → 𝑌 ,
holds when Pr(𝑌 |do(𝑥)) ≠ Pr(𝑌 |do(𝑥 ′)) for 𝑥 ≠ 𝑥 ′.

Even though there are several possible outcomes when analyzing
the causal relation between 𝑋 and 𝑌 , in this work, we focus on
the following well-studied case: we assume that (1) 𝑋 and 𝑌 are
dependent and that (2) there is no selection bias, no confounding,
no feedback relation between them. Under these assumptions, the
study of bivariate causal discovery reduces to deciding whether
𝑋 → 𝑌 or 𝑌 → 𝑋 , i.e., the direction of the causal relation.

Bivariate Causal Inference. In this work, we are interested in
the setting where the direction of causality must be inferred purely

from observational data. That is, we assume that the data analyst
does not have access to intervention data and does not have the
resources to run a new intervention to test a hypothesis, which,
in the medical field, has high costs in recruiting new participants,
designing the experiment, and getting IRB approval. Our goal is
to focus on the most practical and realistic scenario for causal
discovery, which is a data-driven approach. Due to its practicality,
this approach has attracted a lot of attention in themachine learning
community [11, 17, 18, 23, 28, 33, 38, 45, 57].

1pronounced e-tee’-a: the Greek word for cause or reason.

Unfortunately, it is not always possible to decide the direction
of the causality from observational data. On a high level, there has
to be a certain asymmetry between the two variables so that the
causality can be inferred purely through observational data. A series
of works analyzed potential relations between the variables 𝑋,𝑌
that permit such a causal discovery. Hoyer et al. [17] proved that it is
possible to discover causality when the relation between𝑋,𝑌 is non-
linear as long as the latent causes of the system can be modeled
as an additive noise, i.e., the Additive Noise Model. A rigorous
definition of the relation among the random variables is presented
in Definition 2.1, and an illustration of the relation between the
conditional and joint distributions is depicted in Figure 1.

Definition 2.1. We define as Additive Noise Model (ANM) with
causal relation 𝑋 → 𝑌 the model in which (𝑖) the r.v. 𝑋 follows
the density 𝑝𝑋 , (𝑖𝑖) the noise is captured by r.v. 𝑁 and follows
the density 𝑝𝑁 , (𝑖𝑖𝑖) 𝑋 and 𝑁 are independent, and (𝑖𝑣) there is a
(potentially non-linear) 𝑓𝑌 such that 𝑌 = 𝑓𝑌 (𝑋) + 𝑁 .

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
Observed Data Joint Dist. P(X,Y)

-2 -1 0 1 2
-2

-1

0

1

2

Conditional Dist. P(Y|X)

-2 -1 0 1 2
-2

-1

0

1

2
Conditional Dist. P(X|Y)

-2 -1 0 1 2
-2

-1

0

1

2

Figure 1: Illustration where causality 𝑋 → 𝑌 in the ANM is

identifiable.𝑋 -axis (resp.𝑌 -axis) represents the domain of the

random variable. We have 𝑌 = cos(𝑋) + 𝑍 where 𝑋 ∼ 𝑁 (0, 1)
and the noise is 𝑍 ∼ 𝑁 (0, 0.32). The upper-left subplot shows

that data sampled from the joint distribution. The rest show

the contour lines for the joint and conditional distributions.

Specifically, Figure 1 illustrates why the direction of causality
𝑋 → 𝑌 is identifiable in ANM. Interestingly, when 𝑋 → 𝑌 in ANM,
the mean of the conditional distribution Pr(𝑌 |𝑋) depends on 𝑋 , i.e.,
the contour lines of Pr(𝑌 |𝑋) shift as 𝑋 changes (lower-left subplot).
Whereas the conditional distribution Pr(𝑋 |𝑌) depends on 𝑌 in a
less obvious way. This asymmetry enables us to discover causality.

In a realistic scenario we only have access to a sample from
the joint distribution, i.e., the observational data. Mooji et al. [33]
proposed an approach (see Algorithm 1) uses the insights from
Figure 1 to discover causality using only observational data. The

2

https://github.com/asu-crypto/Aitia

observational data is split into two datasets𝐷1 and𝐷2. Dataset𝐷1 is
used to estimate the two regression functions 𝑓 : 𝑥 → 𝐸 (𝑌 |𝑋 = 𝑥)
and 𝑔 : 𝑦 → 𝐸 (𝑋 |𝑌 = 𝑦). After finalizing the regression functions
𝑓 and 𝑔, the dataset 𝐷2 is used to calculate the dependence score
between the residual and the corresponding input variable. If the
dependence score of pair (𝑌 − 𝑓𝑌 (𝑋)) and𝑋 is higher than the score
of (𝑋 − 𝑓𝑋 (𝑌)) and 𝑌 then the direction of causality is 𝑌 → 𝑋 ,
otherwise the direction is 𝑋 → 𝑌 .

Algorithm 1: Causal Discovery in ANM.
Input: Observational data 𝐷1: {𝑥𝑖 , 𝑦𝑖 }𝑛𝑖=1, 𝐷2: {𝑥 ′𝑖 , 𝑦

′
𝑖
}𝑚
𝑖=1,

chosen of regression model, chosen dependence
score 𝑠 (·, ·).

1 Fit non-linear regression models 𝑓 , 𝑔 such that 𝑓 (x) ≈ y and
𝑔(y) ≈ x, where (𝑥,𝑦) ∈ 𝐷1

2 Define the dependence scores 𝑠𝑋→𝑌 = 𝑠 (x′, y′ − 𝑓 (x′)),
and 𝑠𝑌→𝑋 = 𝑠 (y′, x′ − 𝑔(y′)), where (𝑥 ′, 𝑦′) ∈ 𝐷2

3 if 𝑠𝑋→𝑌 < 𝑠𝑌→𝑋 then return 𝑋 → 𝑌

4 else return 𝑌 → 𝑋

Jumping ahead, the superior performance of our approach comes
from co-designing (𝑖) the machine learning models, i.e., the training
of the regression model, and the dependence score, as well as (𝑖𝑖)
the cryptographic protocols, so that the overall protocol is orders of
magnitude faster than a direct implementation of the state-of-the-
art causal discovery algorithm [33] using a standard and efficient
secure computation library such as CrypTen [9].

Causality Dataset.We evaluate our new MPC-friendly train-
ing method as well as the proposed secure protocol on dataset
CauseEffectPairs (CEP), which is a standard dataset [35] for causal
discovery. CEP contains pairs of random variables that are statisti-
cally dependent, where one variable is known to cause the other.
The CEP collection, version 1.0, consists of pairs from 37 different
datasets across various domains and is available at [34]. For more
details about the chosen datasets, see Appendix D.

2.2 Secure Computation

Secret Sharing. Our Aitia construction makes usage of secret
sharing schemes for computing on private data. Values of the com-
putation are split into two randomly looking values that are held
by a two non-colluding servers. To additively share an ℓ-bit value 𝑥 ,
the data owner chooses two random values 𝑥1, 𝑥2 ← {0, 1}ℓ such
that 𝑥1 + 𝑥2 = 𝑥 mod {0, 1}ℓ . For simplicity, we omit the subscript
of the share and the mod operation and denote the share by J.K.
To reconstruct shared value J𝑥K, one party sends its share to the
other, who reconstructs the secret 𝑥 = 𝑥1 + 𝑥2 locally.

Addition, subtraction, and multiplication-by-constant can be
directly applied to the shares as they can be done locally by the par-
ties without communication, for example, J𝑥 + 𝑦K = J𝑥K + J𝑦K. For
secure multiplication between two ℓ-bit values, we use the Beaver
triple [3] approach. The main idea of Beaver triple is to shift most
of the communication and computation cost into a preprocessing
phase which can be done offline since it does not require knowledge
of the inputs. The offline phase outputs the secret shared values
(J𝑎K, J𝑏K, J𝑐K) such that 𝑐 = 𝑎𝑏. In the online phase, parties compute

locally the values J𝛼K = J𝑥K− J𝑎K and J𝛽K = J𝑦K− J𝑏K, where 𝑥 and
𝑦 indicate the sensitive inputs. As a next step the two parties jointly
reconstruct 𝛼 and 𝛽 by exchanging the shares J𝛼K, J𝛽K. The secret
shared product J𝑥𝑦K is equal to J𝑐K + 𝛼J𝑏K + 𝛽J𝑎K + 𝛼𝛽 , which can
be locally evaluated by each party. Boolean sharing can be seen as
additive sharing in the field Z2. The addition operation is replaced
by XOR, and multiplication is replaced by AND.

Garbled Circuits. Garbled Circuits (GC) [14, 52] is currently
the most common generic technique for practical two-party secure
computation. The ideal functionality of GC is to take the parties’
inputs 𝑥 and𝑦, respectively, and compute 𝑓 on them without reveal-
ing the secret parties’ inputs. In our design for Aitia, we use “less
than” and “equal” GC where inputs are secretly shared amongst two
parties (i.e., each party holds the shares J𝑥K and J𝑦K). We denote this
garbled circuit by J𝑧K ← GC(J𝑥K, J𝑦K, 𝑓). To evaluate a function
𝑓 on shared values, GC first reconstructs the shares, performs 𝑓
on the top of obtained values, and then secret shares the result
𝑓 (𝑥,𝑦) to parties. The garbled circuit technique has seen dramatic
improvements in recent years. The most notable optimized tech-
niques are point-and-permute [5], Free-XOR [22], the half-gate [53],
and fixed-key AES garbling optimizations [4].

2.3 Privacy-Preserving Machine Learning

The emerging MPC-based privacy-preserving machine learning
(PPML) paradigm [8, 12, 16, 26, 27, 30, 32, 40, 43] enables differ-
ent entities to jointly and privately train and evaluate various ML
models over their joint data. Existing literature on PPML mainly
focused on linear regression, logistic regression, neural network
(NN), and transformer [8, 12, 16, 26, 32, 43]. Most PPML schemes
follow a server-aided setting where data owners outsource the
computation to a small number of non-trusted and non-colluding
servers. Mohassel and Zhang [32] introduced the first practical
PPML systems based on a two-server setting. Three-server [30]
and four-server [40] designs achieve a weaker security guarantee
in which collusion between any pair of these servers reveals the
private data of the data owners. Therefore, the two-server PPML
model is still preferable in many applications.

While causal inference plays a crucial role in modern data anal-
ysis, particularly in healthcare applications, there is relatively less
emphasis on developing a secure protocol for causal inference,
despite the extensive body of work in the broader field of PPML.
Recent works applied differential privacy (DP) on top of the causal
inference algorithm [25, 37]. Applying DP-noise significantly re-
duces model accuracy, an important factor in causal discovery. More
significantly, noise-driven methods reveal sensitive information
that a cryptographic approach like Aitia can completely hide.

2.4 Server-Aided Architecture

In this work, we follow the server-aided framework using two non-
trusted and non-colluding servers. The goal is to train a causal
discovery model on a joint dataset shared by multiple data own-
ers. To achieve this, the data owners secret-share their sensitive
data among two servers which then train models directly on the
secret-shared data. This approach offers several benefits. Firstly,
it involves minimal participation by the data owners, who only
distribute their inputs once in the setup phase and are not involved

3

Algorithm Training Testing
Time-Complexity # Exponentiations #Sqrt # Divisions # Comparisons # Multiplications Asym

GP Regression [49] O(𝑁 3) 𝑁 (𝑁 + 1)/2 + 𝑛𝑁 𝑁 𝑁 (𝑁 + 1) 0 𝑁 3/2 + 𝑁 2 (𝑛 +𝑚/2 + 3/2) + 𝑁 (𝑛𝑚 +𝑚/2 + 𝑛 + 7/3) N/A
SMO-SVR [7] O(𝑇SMO𝑁

2) 𝑁 (𝑁 + 1)/2 0 𝑇SMO 𝑇SMO (5𝑁 + 7) 𝑁 (𝑁 + 1)𝑚/2 +𝑇SMO (2𝑁 2 + 𝑁) O(𝑛𝑁)
BSGD-SVR O(𝑇BSGD𝐵 + 𝑁 2) 𝑁 (𝑁 + 1)/2 0 0 𝑇BSGD (𝐵𝑚 + 𝐵 + 2) 𝑁 (𝑁 + 1)𝑚/2 +𝑇BSGD𝐵 O(𝑛𝐵)

Table 1: Detailed counting of fundamental operations for training/testing non-linear regression models. We assume the Radial

Basis Function (RBF) kernel is used in all three algorithms and Cholesky decomposition is used for matrix inversion. We have

listed the operations in decreasing order of cost for MPC implementation.

in any future computation. Secondly, it utilizes efficient two-party
secure computation techniques that require less communication
and computation when deployed between a small number of par-
ticipants. In Aitia, all intermediate values, such as the output of
causal inference, are secret-shared between the two servers.

3 A NEWMODEL-TRAINING APPROACH

FOR EFFICIENT SECURE COMPUTATION

In this section, we rethink the causal discovery model originally
proposed in the influential work from Hoyer et al. [17]. We revisit
the choice of the model and training algorithm with the goal of
significantly accelerating performance when translated to a 2PC
protocol. As we show in this section, an efficient MLmodel on plain-
text data does not always translate to an efficient 2PC protocol. In
the next section, we develop additional cryptographic optimizations
tailored to the newly proposed training algorithm.

Notation Explanation
𝑁 Number of training samples
𝑛 Number of testing samples
𝑚 Number of features
𝐵 The support vector budget (See Section 3.3)

𝑇alg Number of iterations of algorithm alg, e.g., BSGD, SMO.
Table 2: Notation Table.

3.1 Notations and Problem Setup

We use bold lowercase letters to denote vectors (e.g., x) and bold
uppercase letters to denote matrices (e.g., X). The sequence 1, . . . , 𝑛
is denoted as [𝑛]. Suppose we have a training set (Xtrain ∈ R𝑁×𝑚,
y
train ∈ R𝑁) with 𝑁 samples. Each sample has𝑚 features and a

target value. For a testing dataset Xtest ∈ R𝑛×𝑚 with true target
y
test ∈ R𝑛 , we consider a non-linear regressionmodelA that makes

a prediction ŷ. The accuracy of the prediction by the regression
model is measured by the mean squared error (MSE):

∑
𝑖 (ytest𝑖

−ŷ𝑖)2.
With the term x

∗
𝑖
(resp. 𝑦∗

𝑖
) to denote the 𝑖𝑡ℎ sample (resp. target)

in the ∗ dataset. For simplicity, we omit the superscript when the
dataset being used is clear from the context. An overview of the
notation is presented in Table 2. A non-linear regression modelM
can call two algorithms:

• Train: takes as input (Xtrain, ytrain) and outputs a set of
parameters for a non-linear regression modelM.

• Predict: takes as inputXtest as well asM and outputs the
prediction ŷ.

3.2 On Choosing Non-linear Regression

According to Hoyer et al. [17], any non-linear regression model
can be used for bivariate causal discovery (see Algorithm 1). In the
following, we review two existing options for the ANM model.

OnGaussian Process Regression. Thework ofMooij et al. [35]
uses Gaussian Process (GP) Regression [41, 42] as the non-parametric
regression model. Typically, Gaussian processes are presented ei-
ther through the weight-space view or function-space view (see
Chapter 2 in [42]). According to the function-space view, a Gaussian
process is a collection of random variables (each associated with a
function) where any finite number of the variables define a joint
Gaussian distribution. GP is characterized by its mean function and
its covariance function defined among pairs of random variables. In
practice, to train a GP regression, one needs to choose a covariance
function, e.g., squared exponential covariance, and use this function
to compute the inversion (or the Cholesky decomposition) of an
𝑁 -by-𝑁 matrix. A detailed version of the algorithm is presented in
Algorithm 4 in the Appendix.

Overhead in the 2PC Setting. Given that matrix inversion
takes O(𝑁 3) time, translating the above computation in a 2PC set-
ting between two servers requires O(𝑁 3) rounds of interaction.
Furthermore, matrix inversion can lead to numerical stability chal-
lenges that need to be addressed within the 2PC protocol. This
illustrates that computational methods efficient in non-secure set-
tings may not necessarily be efficient in secure computation settings
due to the need for interaction in the 2PC setting.

It is known in the PPML community that different fundamental
computation steps, e.g., exponentiation, division, comparison, addi-
tion, multiplication, incur different cost when translated to a secure
protocol. Table 1 presents a detailed breakdown of the number of
fundamental operations in GP. The operation that introduces the
highest overhead in an MPC protocol is exponentiation, typically
simplified to multiplication through approximate computation, al-
beit at the expense of accuracy loss.

On Support Vector Regression (SVR). In the following, take a
different approach than [35] and propose a new non-linear regres-
sion model for ANM. Our candidate substitute for GP regression
is called support vector regression (SVR) [2], see Algorithm 5 in
the Appendix . SVR expands the support vector machine method
to handle regression. A kernel SVR is parameterized by a weight
vector w and a bias term 𝑏. To make a prediction for an unseen
data point x, kernel SVR first maps the feature vector x to a high-
dimensional space using function 𝜙 (·) and then outputs the inner
product added with a bias term: ⟨w, 𝜙 (x)⟩+𝑏. Note that the range of
mapping 𝜙 (·) has infinite dimensions. Thus, the inner product can-
not be trivially calculated. The above computational challenge can
be solved efficiently by the kernel trick. Intuitively, we can rewrite
the weight vector as w =

∑𝑁
𝑖=1 𝛼𝑖𝜙 (x𝑖) where x𝑖 , 𝑖 ∈ [𝑁] are train-

ing samples and 𝛼𝑖s are weights for the training samples. Hence,
the prediction formula for input x becomes 𝑏+∑𝑁

𝑖=1 𝛼𝑖 ⟨𝜙 (x𝑖), 𝜙 (x)⟩.
Then the inner product can be calculated using the kernel trick

4

⟨𝜙 (x′), 𝜙 (x)⟩ = K(x′, x) where K(·, ·) is a tractable kernel func-
tion. Only a small number of training points will have 𝛼𝑖 ≠ 0, ,
which are referred to as the support vectors.

Challenges of Training SVR via 2PC. The textbook approach
[54] for training a kernel SVR is called sequential minimal opti-
mization (SMO). SMO solves the dual of the regularized SVR op-
timization problem. It works by iteratively choosing a pair of 𝛼
parameters, deciding whether they satisfy optimality conditions
namely Karush-Kuhn-Tucker (KKT conditions) [24], and if not, up-
dating the two 𝛼 . The above SMO approach does not translate to
an efficient 2PC protocol. First, it has an asymptotic complexity of
O(𝑇SGD𝑁 2) where𝑇SGD is the upper bound on the number of itera-
tions (typically at least 𝑁). Second, it is unclear how many training
points will become support vectors after training. Consequently,
while translating this approach to a secure 2PC protocol, one has
to introduce oblivious computation to hide not only the identity
but also the number of support vectors. Treating all training points
as potential support vectors incurs significant computation and
communication cost.

3.3 Rethinking SVR with MPC training in Mind

In the following, we sidestep the inefficiencies of GP and SMO-SVR
by designing a new SVR training algorithm that we call Budgeted
Stochastic Gradient Descent SVR or simply BSGD-SVR. Our objective
is to modify SVR so that we simultaneously (𝑖) maintain compara-
ble accuracy of previously proposed training approaches, and (𝑖𝑖)
ensure that the resulting model translates to an efficient training
and testing as a 2PC protocol. We use two algorithmic adjustments
to create a novel variation of SVR that has not been previously
explored, potentially making it of independent interest:
• The first algorithmic insight is to train SVR with Stochastic Gra-

dient Descent (SGD) instead of SMO, an approach inspired by
Zeyuan et al. [55] and Shalev et al. [44] where SGD was used
for Support Vector Machines. This adjustments allows a sim-
pler update rule for the parameters of the model (as opposed to
optimality testing via the KKT conditions).

• The second algorithmic insight to control the number of support
vectors using budgeting. A similar technique was used by Wang
et al. [48] to suppress the number of support vectors for SVM.
We perform a detailed experimental analysis under standard

benchmarks for causal inference (see Table 3) and confirm that our
approach has comparable accuracy to GP and SMO-SVR for every
tested dataset. In Figure 5 in Appendix C, we show additional illus-
trative examples (similar to those in [10]) demonstrating the close
performance of our newly proposed model to previous approaches.

Training SVR via Stochastic Gradient Descent. First, we
propose replacing SMO with SGD to train SVR. To the best of our
knowledge, the only application of SGD to SVR considers non-
kernel based formulation [44]. Trivially applying SGD on SVR will
lead to a gradient vector of infinite dimensions. To control the
length of the gradient, we follow the intuition from [55] which
trains kernel SVMs using SGD by dynamically maintaining a set of
support vectors as shown in Algorithm 2 in Appendix.

The Role of Budgeting in Managing Support Vectors. The
SGD training strategy lowers the time complexity of training from
O(𝑇SMO𝑁

2) to O(𝑇BSGD𝐵 + 𝑁 2). However, much like SMO, we do

not know beforehand how many training points will act as support
vectors. To address the issue, we replicate the adjustment from [48]
and explicitly enforce a budget 𝐵 for the number of support vectors.
Roughly speaking, when the number of support vectors is smaller
than the budget 𝐵 , we maintain a set of fake support vectors so as
to always have 𝐵 members; when the number exceeds the threshold,
we remove the appropriate number of support vectors.

Specifically, when training, we initialize a dictionary D to store
the support vectors, their weights (which are denoted as x𝑖 and 𝛼𝑖 ,
respectively, in SVR algorithm) and the bias value (line 8-9).

Then in each training round, we pick a random sample indexed
by 𝑖 and run the prediction function on it (line 11-12). If the pre-
diction is accurate enough, we continue to the next loop (line 13).
Otherwise, we either insert the sample into the dictionary or update
its weight depending on whether it is already in the dictionary (line
14-23). Last, if the dictionary is overflowed, we remove the support
vector with the smallest weight (line 24-25). This way, we manage
to control the number of support vectors and obtain a SVR protocol
with an efficient training under MPC setting.

Algorithm 2: BSGD-SVR.
1 Function Predict(Xtest

, D, b):
2 Initialize ŷ[𝑖] = 𝑏, ∀𝑖 ∈ [𝑛𝑡𝑒𝑠𝑡]
3 for 𝑖 ∈ 1, 2, · · · , 𝑛𝑡𝑒𝑠𝑡 do
4 for x𝑗 ∈ D .𝑘𝑒𝑦𝑠 () do
5 ŷ[𝑖] = ŷ[𝑖] + D[x𝑗] · K (x𝑗 , x𝑖)
6 return ŷ

7 Function Train(Xtrain
, ytrain, params = {𝐵,𝑇BSGD, 𝜂, 𝜉 }):

8 Initialize a dictionary D for support vectors and their
corresponding weights

9 Initialize a bias value 𝑏 = 0
10 for 𝑡 = 1, 2, · · · ,𝑇BSGD do

11 Randomly pick a training index 𝑖 ∈ [𝑁]
12 Run the prediction procedure 𝑦̂𝑖 ← Predict(x𝑖 ,D, b)

13 if prediction and true value differ too much: |𝑦𝑖 − 𝑦̂𝑖 | > 𝜉

then

14 if the sampled point is already in D: x𝑖 is in D.keys()

then

15 if 𝑦̂𝑖 > 𝑦𝑖 then

16 D[x𝑖] = D[x𝑖] − 𝜂K(𝑥𝑖 , 𝑥𝑖)
17 𝑏 = 𝑏 − 𝜂
18 else if 𝑦̂𝑖 < 𝑦𝑖 then

19 D[x𝑖] = D[x𝑖] + 𝜂K(𝑥𝑖 , 𝑥𝑖)
20 𝑏 = 𝑏 + 𝜂
21 else

22 if 𝑦̂𝑖 > 𝑦𝑖 then D[x𝑖] = −𝜂K(𝑥𝑖 , 𝑥𝑖)
23 else if 𝑦̂𝑖 < 𝑦𝑖 then D[x𝑖] = 𝜂K(𝑥𝑖 , 𝑥𝑖)
24 if there are more than 𝐵 support vectors in D then

25 Remove the minimum weight absolute value
from D

26 return D

SVRwithBudgeted StochasticGradientDescent.Combining
the above ideas, we obtain BSGD-SVR, an 2PC-friendly non-linear
regression model shown in Algorithm 2. The training function
takes data as input and has four hyperparameters: 𝐵 for budget size,
𝑇𝐵𝑆𝐺𝐷 for number of iterations, 𝜂 for the learning rate to update
the weight, and 𝜉 as the prediction-threshold. When predicting, we

5

Dataset Feature→Target Mean Squared Error (MSE) Causal Direction
GP SMO-SVR BSGD-SVR via BSGD-SVR

Liver Disorder(345)

pair0033: alcohol→corpuscular volume 2.31 × 10−2 1.98 × 10−2 (2.40 ± 0.06) × 10−2 ✓
pair0034: alcohol→alkaline phosphotase 2.72 × 10−2 2.16 × 10−2 (2.45 ± 0.26) × 10−2 ✓
pair0035: alcohol→alanine aminotransferase 2.90 × 10−2 2.36 × 10−2 (2.70 ± 0.21) × 10−2 ✓
pair0036: alcohol→aspartate aminotransferase 3.27 × 10−2 2.10 × 10−2 (2.17 ± 0.10) × 10−2 ✓
pair0037: alcohol→gamma-glutamyl transpeptidase 3.78 × 10−2 1.99 × 10−2 (2.21 ± 0.06) × 10−2 ✓

Arrhythmia(452)
pair0022: age→height 1.35 × 10−4 1.67 × 10−4 (2.44 ± 0.50) × 10−4 ✓
pair0023: age→weight 5.98 × 10−3 4.62 × 10−3 (5.32 ± 0.50) × 10−3 ✓
pair0024: age→heart rate 10.4 × 10−3 9.19 × 10−3 (10.3 ± 0.9) × 10−3 ✓

Income(3000) pair0012: age→wage per hour 6.10 × 10−4 6.17 × 10−4 (6.09 ± 0.18) × 10−4 ✓
pair0017: age→dividends from stocks 13.6 × 10−5 14.8 × 10−5 (8.70 ± 1.54) × 10−5 ✓

NCEP-NCAR(3000)

pair0043: temperature (t)→temperature (t+1) 6.48 × 10−4 6.52 × 10−4 (7.50 ± 0.52) × 10−4 ✓
pair0044: pressure (t)→pressure (t+1) 6.76 × 10−5 6.77 × 10−5 (10.1 ± 1.0) × 10−5 ✓
pair0045: sea level pressure (t)→sea level pressure (t+1) 4.80 × 10−3 4.89 × 10−3 (4.92 ± 0.19) × 10−3 ✓
pair0046: rel. humidity (t)→rel. humidity (t+1) 1.24 × 10−2 1.48 × 10−2 (1.51 ± 0.08) × 10−2 ✓

Abalone(4177)

pair0005: age→length 1.20 × 10−2 1.32 × 10−2 (1.58 ± 0.10) × 10−2 ✓
pair0006: age→shell weight 1.24 × 10−2 1.35 × 10−2 (1.66 ± 0.20) × 10−2 ✓
pair0007: age→diameter 5.56 × 10−4 5.68 × 10−4 (7.82 ± 1.16) × 10−4 ✓
pair0008: age→height 1.61 × 10−2 1.74 × 10−2 (1.90 ± 0.05) × 10−2 ✓
pair0009: age→whole weight 1.35 × 10−2 1.47 × 10−2 (1.63 ± 0.08) × 10−2 ✓
pair0010: age→shucked weight 1.17 × 10−2 1.26 × 10−2 (1.35 ± 0.04) × 10−2 ✓
pair0011: age→viscera weight 9.63 × 10−3 10.1 × 10−3 (11.1 ± 0.7) × 10−3 ✓

Table 3: Mean Square Error under different causality inference datasets for models trained with (1) Gaussian Process (GP)

Regression; (2) SMO-SVR; (3) BSGD-SVR. Deviation is calculated over 10 independent runs. As the GP and SMO-SVR imple-

mentations are deterministic, we only show the standard deviation for BSGD-SVR. The “Causal Direction” column compares

whether the predicted causality direction of the model trained with BSGD-SVR matches the ground truth for each pair.

calculate the weighted average of the kernel between each support
vector and the testing data, much like standard SVR.

3.4 On Choosing Dependence Score

As our last step, we need to choose a dependence score that is
suitable for the 2PC setting. According to Mooij et al. [35], the
main candidates for dependence score are (1) HSIC-based scores;
(2) entropy-based scores; (3) Gaussian scores; (4) empirical-Bayes
scores; (5) minimum message length scores. We choose Gaussian
score (see Definition 3.1) because it only requires two variance
computation and two logarithm operations. This choice would
competitive performance in a 2PC setting due to its simplicity.

Definition 3.1 (Gaussian Score). The Gaussian score between two
vectors u and v is defined as

logVar(u) + log Var(v)

3.5 Evaluation of BSGD-SVR

In this section, we would like to answer the following questions:
• How should we choose the support vector budget in BSGD-SVR?
• What is the trade-off between accuracy loss and performance

improvement in BSGD-SVR?
• How do the number of fundamental operations in BSGD-SVR

compare to those in other approaches?
We emphasize that the evaluation in this section concerns the

accuracy of the SVR model trained with the newly proposed BSGD-
SVR algorithm on plaintext/unencrypted data. Section 5 presents
the performance of the (optimized) privacy preserving version.

Setup. To answer these questions, we use five datasets from
the causality dataset CEB [34] to test the proposed non-linear re-
gression model and compare its accuracy to GP and SMO-SVR.
For Gaussian process regression, we use the implementation from
scikit-learn [39] with the default hyper-parameters. For SMO-
SVR, we use the implementation from LibSVM [7] with the default
hyper-parameters. We implement BSGD-SVR in slightly above 100
lines of Python code. We use the Gaussian score as the dependence
score for all the causal inference experiments.

(1) - Parameter Selection. When selecting the budget size 𝐵
and the number of training iterations 𝑇BSGD, four aspects should
be taken into account:
• Memory cost: Higher budget means we need to store more data

support vectors in dictionary D
• Generalization: If the budget size 𝐵 is too small, the support vec-

tors stored in dictionaryD might need to be more representative
to cover all data distribution.

• Accuracy: If 𝑇BSGD is too small, the protocol has not “learned
enough” about the dataset to correctly predict future inputs.

• Runtime: If 𝑇BSGD is too large, the protocol runs longer.
In Figure 2, we study the budget size v.s. accuracy trade-off. The
mean squared error (MSE) is being compared against various budget
sizes for different numbers of training data points. The MSE de-
creases rapidly as we increase the budget size from 0.2𝑁 to 0.4𝑁 in
all datasets. However, when we increase the budget size to 0.6𝑁 , the
MSE either decreases at a slower rate or remains the same. Finally,
when we increase the budget size from 0.6𝑁 to 1.0𝑁 , the trend
shows that MSE decreases in some datasets, while it increases in
others. Overall, although the budget that provides the lowest MSE
varies based on the dataset, the assignment of𝐵 = 0.5𝑁 balances our

6

objectives for high accuracy and a small budget. Additionally, our
preliminary experiments showed that the assignment 𝑇BSGD = 2𝑁
is small enough while providing a competitive accuracy. We choose
learning rate 𝜂 = 0.01 and 𝜉 = 0.01 for all datasets. More impor-
tantly, we verified (last column of Table 3) that our parameterization
led to the correct direction of causality in all datasets.

0.2 0.4 0.6 0.8 1
1.4

1.6

1.8

2

2.2

·10−2

Budget / Training size

M
SE

BSGD-SVR

(a) Abalone.

0.2 0.4 0.6 0.8 1
0.6
0.7
0.8
0.9
1

1.1
1.2
1.3
·10−3

Budget / Training size

M
SE

BSGD-SVR

(b) NCEP-NCAR.

0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

·10−4

Budget / Training size

M
SE

BSGD-SVR

(c) Arrhythmia.

Figure 2: MSE vs. Budget Divided by Training Set Size (𝐵/𝑁)

To choose the remaining parameters (learning rate 𝜂 and small
threshold 𝜉), one approach is for a single party (e.g., a hospital) to
tune parameters locally on their private dataset before the secure
protocol. The party then shares the best hyperparameters (𝜂 and 𝜉)
with all others to start BSGD-SVR training.

(2) - Accuracy Evaluation. The results are shown in Table 3.
For most tested pairs, the accuracy of the model is very similar to
the accuracy of both GP and SMO-SVR. In several datasets, our
experiments show that the accuracy of BSGD-SVR is higher than
both GP and SMO-SVR. For example, BSGD-SVR reduces the MSEs
of GP and SMO-SVR by around ∼36% and ∼41% respectively for
the age→dividends pair in the Income dataset. Overall, our ex-
periments on 21 real-world datasets show that the newly proposed
BSGD-SVR offers a competitive accuracy across all tested data.

(3) - Number of Fundamental Operations.We also analyze
the computation cost of the three non-linear regression training
algorithms with respect to different fundamental operations so as
to extrapolate their performance once integrated with MPC. Our
analysis is shown in Table 1. The operations in the first row are
ordered in descending order with respect to performance overhead
in an MPC setting. One important observation is that BSGD-SVR
algorithm doesn’t involve any square root or division operation, and
it has the smallest number of exponentiations as well as the smallest
number of multiplications. Overall, the newly proposed BSGD-SVR
performs the smallest number of fundamental operations both in
training and testing compared to SMO-SVR.

4 AITIA: SECURE CAUSAL DISCOVERY

In this Section we present a series of optimizations for Algorithm 2
so as to make the computation steps more efficient in an MPC
setting. These optimizations neither affect security nor change the
final computation result but: (𝑖) eliminate conditional branches, and
(𝑖𝑖) perform oblivious computation when handling the dictionary of
support vectors. Finally, we present the 2PC design of the optimized
BSGD-SVR that we call Aitia. The protocol is accompanied by a
formal security proof and the corresponding threat model.

4.1 Modifying BSGD-SVR for Efficiency,

Obliviousness, and Branch Removal

To ensure Obliviousness and become “MPC-friendly,” we propose a
series of adjustments to our algorithmic steps of BSGD-SVR. In the
following, we describe the changes and the rationale behind them,
and in Algorithm 3 in Appendix A.

Efficient Initialization of Support Vector DictionaryD. No-
tice that Line 8 of Algorithm 2 initializes a dictionary denoted by
D. For our efficiency-driven optimization, we take into account
the context in which the dictionary is used. That is, D stores the
support vectors. A first approach would be to initialize D with a
collection of randomly chosen training datapoints. Such an action
introduces the following inefficiencies: (1) Suppose we happen to
initialize with a datapoint that has a large-weight absolute value.
In that case, because the removal rule (see Line 25 in BSGD-SVR)
prioritizes the elimination of low-weight absolute value entries,
the model is “stuck” with the large-absolute-value-weight support
vector, a consequence that can affect its accuracy and convergence.
(2) Suppose we happen to initialize with a significant number of
datapoints that need to be removed from D throughout the first
rounds of training. In that case, we introduce a significant overhead
because every removal needs to store the new support vector in
a temporary buffer, identify the minimum weight absolute value
entry, and swap between them. Because of the above inefficiencies
(which we identified through micro-benchmarks), we propose ini-
tializing the dictionary D in an empty state. This way, we will not
have to remove unlucky large-weight absolute value initializations
(point (1)) and will eliminate many unnecessary computational
steps from the first 𝐵 iterations of the algorithm (point (2)). We
introduce two matrices wgt and V to represent the weights and
the support vectors respectively, which replace the use of D. V
contains all the support vectors as its rows while wgt contains the
weight (that is, 𝛼𝑖 in the SVR notation of Section 3.2) of the support
vectors in the corresponding position. Formally, wgt = D .values()
while V = D .keys(). Initially, as D is empty, we initiate both wgt

and V to zero. Overall, the above optimization helps the model
to converge faster (so that 𝑇BSGD remains low) and speeds up the
computation by avoiding unnecessary removals from D.

Oblivious Membership Test inD. Notice that Line 14 of Algo-
rithm 2 checks if the sampled datapoint is already in the dictionary
D. To make this computational step oblivious, we introduce vectors
fnd and ID, each of them of length 𝐵 + 1. Vector ID stores the index
of the datapoints from X

train that serve as support vectors in no
particular order. Vector fnd is a binary vector which is populated as
follows: to check if sampled datapoint 𝑖 (see Line 11 of Algorithm 2
) is inD, our oblivious analog performs a linear scan on ID; during
the 𝑗-th iteration we run the following comparison ID[𝑗] ?

= 𝑖 and
store the output bit of the comparison to fnd[𝑗]. Thus, after the
(𝐵 + 1)-th iteration, if any of the entries of fnd is 1, the sampled
datapoint is in D. The above modification makes the membership
test oblivious by scanning the entire vector. Also, the proposed
computation uses only comparison operations, which are efficient
in an MPC setting. Finally, the comparisons ID[·] ?

= 𝑖 can be run
in parallel for multiple positions of ID, i.e., highly parallelizable
code. For completeness, we note that other oblivious membership

7

approaches [47, 56] could work just as well. We opted for a sim-
ple approach (the linear scan on 𝐵 location is fast for the tested
datasets) that can also be parallelized.

Conditional Branch & Prediction Threshold. Notice that
Line 13 of Algorithm 2 performs a conditional branch. To make this
step oblivious, we instead introduce a bit-flag 𝑏𝜉 that takes value 1
if the difference |𝑦𝑖 −𝑦𝑖 | − 𝜉 is positive, and value 0 otherwise. This
bit-flag 𝑏𝜉 will be used in the computation of the next modification
steps and will encode the result of this comparison, e.g., if we
multiply a vector with 𝑏𝜉 then it is zeroed in case |𝑦𝑖 − 𝑦𝑖 | < 𝜉 .

Oblivious Insertion & Update in D. Lines 15-25 in Algo-
rithm 2 perform an insertion of a new support vector in dictionary
D. Recall that D operates under the budgeted setting so it can
hold at most 𝐵 support vectors. To accommodate an insertion we
introduce the (𝐵 + 1)-th position in D that is used as a buffer to
temporarily host the newly inserted support vector. We have a loop
invariant that states that at the start of each iteration in Line 10, the
buffer position ofD should be empty. Thus, in case we are inserting
a new support vector, during the iteration, the buffer must swap its
content with another entry of D.

Locating the Min-Weight Position. Notice that the insertion takes
place when both (1) the membership test fails, i.e., bit-flag 𝑏fnd = 0,
and (2) the prediction threshold 𝜉 is surpassed, i.e., bit flag 𝑏𝜉 =

1. Jumping ahead, we rely on the optimized code of CrypTen to
identify the argmin of |wgt|, so in the following we assume that
vector mloc has 0 everywhere except the location where wgt has
the minimum (absolute) value. To encode the conditional branching
in our computation we introduce the following bit-wise operation

mlocCond = mloc · 𝑏𝜉 (1 ⊕ 𝑏fnd),

so thatmlocCond is 0 everywhere except for when 𝑏fnd = 0 and
𝑏𝜉 = 1, in which case, mlocCond has value 1 in the location of the
minimum absolute value of wgt. We note that the initialization of
mloc and the assignment of mlocCond need to happen regardless
of the values of 𝑏fnd and 𝑏𝜉 for the computation to be oblivious.

A Single Position Vector for Swap & Update. In the next step, we
create a bit-vector called editPos. If we are inserting a new support
vector that is temproarily stored in the buffer-location of D then
the entry editPos(𝐵 + 1) will be set to 1. On the other hand, if the
sampled datapoint 𝑖 is already a support vector in position 𝑘 of D,
the entry editPos[𝑘] will be set to 1. Notice that the initialization
of editPos depends on the datapoint we sampled, to capture this
conditional intialization we use again bit operations with the bit-
flags 𝑏fnd and 𝑏𝜉 to get

editPos = 𝑏𝜉 (fnd ⊕ ((1 ⊕ 𝑏fnd)1𝐵+1)),

where 1𝐵+1 is a (𝐵 + 1)-dimensional vector with 0 everywhere
except location (𝐵 + 1) that has value 1.

Weight Adjustment. Next, we use the newly computed editPos

that identifies the position that needs to be updated (either an
existing support vector or the buffer-location) to update the corre-
sponding entry of the weight vector wgt. As for the type of weight
update listed in Lines 16, 17, 22, and 23 of Algorithm 2, we opt for
the RBF kernel 𝐾 . This kernel has a property that K(𝑥𝑖 , 𝑥𝑖) = 1, so
the update for each weight can be computed by simply adding or
subtracting the learning rate 𝜂. Thus, we define 𝑢𝑝𝑑 = sign(𝑦 −𝑦)𝜂

to capture both the sign and the change of the weight. The operation

wgt = wgt − 𝑢𝑝𝑑 · editPos
will leave all weights untouched except (1) in case of a new support
vector, the (𝐵+1)-th weight is updated, and (2) in case of an existing
support vector the corresponding weight is updated.

Swap in Case of Insertion. The final step performs a swap between
the (𝐵+1)-location of wgt and the corresponding minimum-weight
support vector, but only if we are inserting a new support vector.
The above requirement is capture already in the way that we com-
puted mlocCond. That is, mlocCond is all 0s when there is no
insertion of a new support vector and it has value 1 in location
the support vector that needs to be removed. Thus, the following
operation performs a swap to move the newly inserted support
vector to its correct location if necessary:

wgt = wgt −mlocCond(wgt −wgt[𝐵 + 1]).
The swap needs to address the change not only in vector wgt but
also in vector ID that holds the identifiers of support vectors and
matrix V used to express the support vectors x𝑗 as a matrix

V = V −mlocCond(V − 𝑥𝑖)

ID = ID −mlocCond(ID − 𝑖) .
Efficiency via Vectorization. Another more generic optimiza-

tion (as opposed to the above customized modifications in which
the context was important) is to vectorize the computation steps.
For example, the Predict function in Line 1 of BSGD-SVR, has a
double loop; one loop for the set of test vectors and one for the list of
support vectors (see Line 3,4 in Algorithm 2). The final closed-form
expression of this calculation is

𝑏 +
∑︁

x𝑗 ∈D .𝑘𝑒𝑦𝑠 ()
D[x𝑗] · K(x𝑗 ,X𝑡𝑒𝑠𝑡 [𝑖])

but can be equivalently represented using linear algebra as

𝑏 + ⟨wgt,K(V,X𝑡𝑒𝑠𝑡 [𝑖])⟩,
where we usewgt instead ofD[x𝑗] and useV as the matrix version
of support vectors. Vectorized computation is highly optimized,
parallelizable in CrypTen.

4.2 The Aitia Protocol

Threat Model. As described in Section 2.3, our Aitia follows the
server-aided framework using two non-trusted and non-colluding
servers 𝑃1 and 𝑃2. Specifically, we assume that there are a set of
data owners 𝑈1, . . . ,𝑈𝑁 , each holding a private dataset Ψ𝑗 . The
data owners securely distribute their sensitive dataset among the
two non-colluding servers 𝑃1 and 𝑃2 using a secret sharing scheme
described in Section 2.2. At the end of this distribution, each server
holds the secret-shared union of the dataset Ψ𝑗 as JΨK where Ψ =

{(𝑥𝑖 , 𝑦𝑖) |𝑥𝑖 ∈ R𝑚, 𝑦𝑖 ∈ R}𝑖∈[𝑛] . Our threat model assumes that the
servers are semi-honest as we rely on the semi-honest two-party
secure computation (2PC) tool, CrypTen [9], for implementation.
Thus, the servers follow the protocol description but may attempt to
extract sensitive information from the execution transcript. When
any server (either 𝑃1 or 𝑃2) colludes with a set of data owners𝑈 𝑗 ,
the coalition of corrupt parties learns nothing about the dataset
Ψ𝑗 of other non-corrupt parties (due to the underlying security

8

Parameters:
• Two parties: 𝑃1 and 𝑃2
• 𝜂,𝑇BSGD, 𝜉 , 𝐵, security parameter 𝜅
• Kernel function K
• A pseudorandom generator 𝑃𝑅𝐺 : {0, 1}𝜅 → {0, 1}∗

Input of 𝑃𝑖∈ [2] : Secret-shared dataset JΨK where Ψ = { (𝑥𝑖 , 𝑦𝑖) |𝑥𝑖 ∈ R𝑚, 𝑦𝑖 ∈ R}𝑖∈ [𝑛]
Protocol:

I. Initialization:

1. 𝑃1 chooses a random seed 𝑠 ← {0, 1}𝜅 , and sends it to 𝑃2.
2. Each party locally generate shares of 4 matrices JVK ∈ R(𝐵+1)×𝑚, JwgtK, ID, 1𝐵+1 ∈ R𝐵+1 such that for party 𝑃𝑖 : JVK𝑖 = 0, JwgtK𝑖 = JIDK𝑖 = 0,

and

J1𝐵+1K𝑖 [𝑘] =
{
1, if 𝑘 = 𝐵 + 1, 𝑖 = 1
0 otherwise

3. Each party locally initiate bias value J𝑏K1 = J𝑏K2 = 0
II. Secure SVR training: Repeat the following𝑇BSGD times:

1. Each party computes an index 𝑖 = 𝑃𝑅𝐺 (𝑠) , and define JxK := Jx𝑖K
2. The parties jointly compute the prediction J𝑦′K : 𝑦′ ← 𝑏 + ⟨wgt,K(V, x) ⟩
3. Each party locally computes JΔK← J𝑦′K − J𝑦𝑖K
4. The parties jointly computes J𝑏𝜉 K as:

𝑏𝜉 =

{
1, if Δ > 𝜉 or Δ < −𝜉
0 otherwise

5. For 𝑗 ∈ [𝐵], parties jointly computes Jfnd[𝑗]K in parallel such that: fnd[𝑗] =
{
1, if ID[𝑗] = 𝑖

0 otherwise
6. Each party locally computes J𝑏fndK as 𝑏fnd =

⊕𝐵
𝑗=1 fnd[𝑗]

7. The parties jointly compute the updated positions vector JeditPosK such that editPos = 𝑏𝜉 (fnd ⊕ ((1 ⊕ 𝑏fnd)1𝐵+1))
8. Each party locally computes J𝑢𝑝𝑑K : 𝑢𝑝𝑑 ← sign(Δ)𝜂
9. The parties jointly update JwgtK : wgt = wgt − 𝑢𝑝𝑑 · editPos
10. Each party locally update bias value J𝑏K: J𝑏K = J𝑏K − J𝑢𝑝𝑑K
11. The parties jointly compute JmlocK such that:

mloc[𝑗] =
{
1, if 𝑗 = argmin |wgt |
0 otherwise

12. The parties jointly compute mlocCond = mloc · 𝑏𝜉 (1 ⊕ 𝑏fnd)
13. The parties jointly update wgt = wgt −mlocCond(wgt − wgt[𝐵])
14. The parties jointly update V = V −mlocCond(V − x)
15. The parties jointly update ID = ID −mlocCond(ID − 𝑖)
16. Each party locally set wgt[𝐵 + 1] = 0,V[𝐵 + 1] = 0, ID[𝐵 + 1] = 0

III. Output: A party sends its secret-shared causal inference’s parameters JVK, JwgtK to another party who outputs model by reconstructing the shares
locally.

Figure 3: Our Aitia Protocol.

guarantee of secret sharing scheme). This threat model of Aitia
has been formalized and used in various PPML scheme [31, 32, 40].

Note that our Aitia protocol can be extended to work with
multiple non-colluding and malicious servers if implemented using
MPC libraries that are secure against malicious adversaries like
SPDZ [20]. Such an extension may allow additional optimizations
to scale better in the MPC setting, as opposed to 2PC. We leave this
direction as an open problem.

Main Protocol.We now describe the main protocol of Aitia
which closely follows the modified BSGD-SVR algorithm presented
in Section 4.2. We assume that the training samples Ψ are additively
secret-shared amongst two parties. Figure 3 formally presents our
Aitia protocol, which consists of two phases: initialization and
secure BSGD-SVR training. The first phase is to implement Line 8-9
of Algorithm 2 in a privacy-preserving way. To ensure that both

parties chooses similar training samples, the party 𝑃1 can choose
an arbitrary random seed 𝑠 and broadcasts it to 𝑃2. The party 𝑃1 can
also generate two shares of each of the 4 matrices V,wgt, ID, 1𝐵+1
as well as two shares of the bias 𝑏 such that they ensure the value
indicated in line 2-3 of Figure 3.

The second phase consists of 𝑇BSGD iterators. Each iteration
starts with choosing a random index 𝑗 ← 𝑃𝑅𝐺 (𝑠) which is the
same across both parties, where 𝑠 is a PRG’s seed obtained in the
first phase. All the computation is performed on secret-shared ver-
sions of the matrices/vectors. After each iterator, the shares of
V,wgt, 𝑏𝜉 , 𝑏fnd, ID, 1𝐵+1 are either refreshed by new shares or up-
dated with a new value. Note that XOR (and addition) can be locally
computed by the party. We implement multiplication based on
Beaver-triple. For equality test (e.g. to learn whether 𝑗 = ID[𝑖]) we
use the Crypten’s comparison operator, which evaluate 𝑗 ≤ ID[𝑖]

9

and 𝑗 < ID[𝑖] in parallel. Note that the two comparison operators
consists of one arithmetic-to-binary conversion and evaluating the
sign of the first bit of 𝑗 − ID[𝑖]. Hence, the complexity of this opera-
tor is linear in the length of the input’s value. As the value of index
in the dataset is bounded by number of data points in the dataset,
the length of the index will not be very large. For example, if the
dataset consists of 1 million data points, the length of the index is
20. Thus, this operator is efficient.

Theorem 4.1. Aitia in Figure 3 securely computes the BSGD-SV

described in Algorithm 3 in the semi-honest setting, given the ideal

Garbled Circuit (GC) primitive and pseudo-random generator (PRG).

The security proof of our Aitia construction is presented in
Appendix A.1. It follows the security of Aitia’s building blocks
(e.g., secure comparison) and the fact that all intermediate values
are under a secret-shared form.

Additional Optimization for Aitia. In the following, we de-
tail one last optimization not depicted in Figure 3 for the sake of
simplicity. In Figure 4, the red-colored bars show the breakdown of
the training performance of the original Aitia design (as presented
in Figure 3), while the blue-colored bars the breakdown after the
optimization. The recorded operations are “Weight Update”, “Pre-
diction”, “Swap”, and “ArgMin”. The shade of the blue (resp. red)
changes to indicate a different operation from the above list.

Based on our experiments the operation “ArgMin”, i.e., finding an
entrywith the smallest absolute weight, which is colored light-red is
an expensive step which takes 66% of the total computation cost. To
improve efficiency, we only perform the argmin function after the

first 𝐵 iteration. At the first 𝐵 iterations, due to the fact that all wgt

are initialized at 0, we can explicitly choose the minimum position
to be equal to iteration number 𝑖 and gradually add new vectors
to the 𝑖-th column of V. By doing this, we achieve 15% speedup
since the optimized version performs only 𝑇BSGD − 𝐵 operations of
argmin compared to 𝑇BSGD operations in the original version.

Figure 4: Runtime breakdown in Aitia across datasets. Left

and right column refers to runtime before and after removing

argmin computation from the first 𝐵 iterations, respectively.

5 EVALUATION OF AITIA

This section describes the specifics of our implementation of Aitia.
We also present an empirical evaluation of its performance in dif-
ferent causality benchmark datasets. The main goal of this Section
is to answer the following question:

Does Aitia provide faster training and lower com-

munication cost compared to GP and SMO-SVR im-

plemented with PPML libraries?

5.1 Implementation

We implement our Aitia protocol using CrypTen [9, 21], a frame-
work for privacy-preserving machine learning built on PyTorch.
We additionally employ CrypTen to implement GP and SMO-SVR.
The outcomes present their secure versions, which we utilize as
baselines for comparison. Below, we briefly explain how we use
CrypTen in our implementation (see [21] for more details).

Data type conversion. CrypTen works with real numbers by
multiplying each of them to a big number 𝐵 and round the resulted
number to the closest integer in the integer group Z𝑞 . In other
words, it converts from 𝑥 ∈ R to ⌊𝐵𝑥⌉ ∈ Z𝑞 . Later on, to get back
the real number, CrypTen divide by 𝐵 the integer number:

𝑥 =
⌊𝐵𝑥⌉
𝐵

.

Exponentiation. CrypTen has multiple options for doing ex-
ponentiation approximation. In our experiment, we use the limit
approximation

lim
𝑛→∞

(1 + 𝑥

2𝑛
)2

𝑛

.

We set 𝑛 = 8 in our experiment. This value is recommended by
CrypTen as it provides a favorable balance between accuracy and
efficiency. The exponentiation computation then consists of 8 mul-
tiplications (square operation) along with 1 truncation operation.

Comparison. CrypTen calculates secure comparison, i.e., 𝑥 >

𝑦 given 2 numbers 𝑥,𝑦 by securely evaluate the left-most bit of
𝑥 − 𝑦, which gives information about sign of the number, leading
to evaluation of J(𝑥 − 𝑦) < 0K which is equivalent to J𝑥 < 𝑦K.

Argmin.We use tree-reduction with log-reduction algorithm
of CrypTen. Given an input list of 𝑁 elements, the algorithm has a
round complexity of O(log𝑁), communication of O(𝑁 2) bits, and
O(𝑁) comparisons.

Reciprocal. CrypTen evaluates J 1
𝑥 K by using Newton-Rhapson

iterations. This method uses an initial guess, 𝑦0, for the reciprocal
and repeats the following update:

𝑦𝑛 = 𝑦𝑛 (2 − 𝑥𝑦𝑛)
In our experiment, we use 𝑛 = 10, which means we implement 20
secure multiplication operations per secure reciprocal evaluation.

5.2 Evaluation

We utilize the datasets introduced in Section 3.5, employing a
train/test split ratio of 8:2. We evaluation the performance of our
Aitia, secure GP and secure SMO-SVR on a local machine with 11th
Gen Intel(R) Core(TM) i9-11900KF Processor with an all-core CPU
frequency of 3.50GHz, 16 vCPU, 32GB RAM. Unfortunately, due to
extensive computation time, the runtime for secure SMO-SVR is
estimated based on the runtime of their first 10 updates.

10

Dataset Pair Training Time (s) Comm (GB) Comm (M Rounds)
GP SMO-SVR Aitia GP SMO-SVR Aitia GP SMO-SVR Aitia

Liver Disorder(345)

pair0033 282.53 (3.77×) 2945 (39.26×) 75.01

0.63
(3.50×)

0.87
(4.83×) 0.18 0.16

(2.05×)
3.44

(44.10×) 0.078
pair0034 271.62 (3.57×) 3100 (40.72×) 76.13
pair0035 276.44 (3.61×) 3053 (39.88×) 76.56
pair0036 270.96 (3.61×) 3165 (42.12×) 75.15
pair0037 275.03 (3.62×) 3025 (39.83×) 75.95

Arrhythmia(452)
pair0022 474.57 (4.75×) 4928 (49.29×) 99.97 1.40

(4.83×)
1.50

(5.17×) 0.29 0.27
(2.45×)

5.67
(51.55×) 0.11pair0023 467.12 (4.69×) 4904(49.44×) 99.60

pair0024 467.01 (4.74×) 4924 (49.94×) 98.60

Income(3000) pair0012 21171 (27.49×) 188901 (245×) 770 412.07
(32.60×)

63.37
(5.01×) 12.64 11.61

(14.70×)
223.84
(283×) 0.79pair0017 21168 (27.35×) 188066 (243×) 774

NCEP-NCAR(3000)

pair0043 21234 (27.66×) 197850 (258×) 768
412.07
(32.60×)

63.37
(5.01×) 12.64 11.61

(14.70×)
223.84
(283×) 0.79pair0044 21243 (27.38×) 197280 (254×) 776

pair0045 21204 (27.61×) 196560 (256×) 768
pair0046 21328 (27.59×) 197177 (255×) 773

Abalone(4177)

pair0005 41546 (37.36×) 378603 (340×) 1112

1111.59
(45.20×)

121.03
(4.92×) 24.59 22.45

(20.41×)
431.19
(392×) 1.10

pair0006 41560 (38.09×) 379104 (347×) 1091
pair0007 41846 (38.32×) 361227 (331×) 1092
pair0008 41853 (38.29×) 380608 (348×) 1093
pair0009 41894 (38.58×) 379606 (350×) 1086
pair0010 41710 (38.20×) 379558 (348×) 1092
pair0011 41730 (37.90×) 381006 (346×) 1101

Table 4: System Performance of (1) Privacy-Preserving Gaussian Process (GP) Regression; (2) SMO-SVR; (3) Aitia. Training

dataset pair are assigned in Appendix D. Number of rounds are in millions. Training time of SMO-SVR are estimated based on

the average of the first 10 updates.

In the evaluation, we choose the parameters as follow: 𝐵 =

0.5,𝑇BSGD = 2𝑁,𝜂 = 0.01 for all dataset, and 𝜉 = 0.01 for Abalone,
Arrhythmia and NCEP-NCAR dataset, 𝜉 = 0.05 for liver disorder
dataset, and 𝜉 = 0.001 for the income dataset.

Table 4 and Table 5 report the training and testing performances
of all protocols across various datasets. As expected, our Aitia
demonstrates superior running time and communication cost ef-
ficiency across all datasets, with the difference becoming more
noticeable as the size of the training dataset increases.

Performance of Secure Training. According to our experi-
ments, the training time of our Aitia is significantly faster compared
to the baselines. In particular, for the Liver Disorder dataset, which
consists of 345 data points, our Aitia training is approximately 3.6×
faster than GP and 40× faster than SMO-SVR. In terms of concrete
numbers, training with GP takes over 4 minutes, and training with
SMO-SVR takes nearly an hour, while Aitia achieves the same
convergence in just over 1 minute.

As the dataset size increases, the performance gap become more
pronounced. Specifically, when training on the Abalone dataset,
consisting of 4177 datapoints, GP and SMO-SVR require 37.36× and
340× more time for training than Aitia, respectively. To provide a
concrete comparison: GP takes over 41500 seconds (approximately
11.5 hours) for one pair of variables, while SMO-SVR takes 361227
seconds (approximately 100 hours) for the same pair. In contrast,
Aitia completes training in only about 1100 seconds, equating
to less than 20 minutes of computational time. The performance
gap between GP and Aitia increases linearly with the number of
data points, ranging from 3.6× in datasets with 345 data points
(Liver disorder) to 38× in datasets with 4177 data points (Abalone).

Similarly, the gap between SMO-SVR and Aitia grows from 39.26×
(Liver Disorder) to 350× (Abalone) as the dataset size increases.

The experiment illustrates that Aitia is both practical and scales
effectively as the number of data points increases to the thousands,
particularly in scenarios where causal inference across multiple
variables is necessary. For instance, when all 7 pairs of the Abalone
dataset are combined, Aitia requires only 2.13 hours, whereas GP
and SMO-SVR demand 81.15 hours and 733 hours, respectively.

When considering communication cost, Aitia demonstrates
notably reduced communication size and fewer communication
rounds compared to secure GP and SMO-SVR. Like the runtime
performance, there is also a noticeable linear trend in the communi-
cation gap. Specifically, the difference between secure GP and Aitia
ranges from 3.5×more communication size and 2.05×more rounds
when training on Liver disorder (345 data points) to 45× more com-
munication size and 20.41×more rounds when training on Abalone
(which has 12.11 times more data points than Liver disorder). Sim-
ilarly, while the gap in communication between SMO-SVR and
BSGD-SVR remains around 5×, the difference in the number of
rounds increases from 44.10× in Liver disorder to 392× in Abalone.

Performance of Secure Testing. Interstingly, from Table 5,
we can see that the gap between Aitia and the baselines decreases
as the dataset size increases. For instance, Aitia exhibits a speed
improvement of 31.43× compared to GP for Liver Disorder with 345
data points, but this figure reduces to only 8× for Abalone with 4177
data points. According to our micro-benchmarks, this phenomenon
is caused by the encoding function of CrypTen’s implementation,
which encodes small tensors. This explains why Aitia testing time
on Liver Disorder and Arrhythmia are much faster compared to

11

Dataset Pair Testing Time (s) Comm (MB) Comm (Rounds)
GP SMO-SVR Aitia GP SMO-SVR Aitia GP SMO-SVR Aitia

Liver Disorder(345)

pair0033 0.44 (31.43×) 0.35 (25.00×) 0.014

17.44
(10.90×)

14.82
(9.26×) 1.60 25

(1.92×)
22

(1.69×) 13
pair0034 0.45 (32.14×) 0.36 (25.71×) 0.014
pair0035 0.41 (29.29×) 0.34 (24.29×) 0.014
pair0036 0.43 (33.08×) 0.36 (27.79×) 0.013
pair0037 0.45 (32.14×) 0.36 (25.71×) 0.014

Arrhythmia(452)
pair0022 1.57 (104.67×) 1.46 (97.33×) 0.015 29.89

(10.87×)
25.41
(9.24×) 2.75 25

(1.92×)
22

(1.69×) 13pair0023 1.57 (104.67×) 1.28 (85.33×) 0.015
pair0024 1.54 (102.67×) 1.32 (88.00×) 0.015

Income(3000) pair0012 5.70 (6.79×) 3.81 (4.54×) 0.84 1318.41
(10.91×)

1120.66
(9.27×) 120.89 25

(1.92×)
22

(1.69×) 13pair0017 5.70 (8.64×) 3.81 (5.77×) 0.66

NCEP-NCAR(3000)

pair0043 5.65 (6.42×) 3.83 (4.35×) 0.88
1318.41
(10.91×)

1120.66
(9.27×) 120.89 25

(1.92×)
22

(1.69×) 13pair0044 5.68 (7.47×) 3.82 (5.03×) 0.76
pair0045 5.61 (7.38×) 3.81 (5.01×) 0.76
pair0046 5.66 (8.20×) 3.83 (5.55×) 0.69

Abalone(4177)

pair0005 9.05 (7.67×) 4.67 (3.96×) 1.18

2555.38
(10.90×)

2172.11
(9.27×) 234.39 25

(1.92×)
22

(1.69×) 13

pair0006 9.41 (8.40×) 4.71 (4.21×) 1.12
pair0007 9.27 (8.06×) 4.73 (4.11×) 1.15
pair0008 8.71 (7.38×) 4.68 (3.97×) 1.18
pair0009 9.42 (7.79×) 4.69 (3.88×) 1.21
pair0010 9.82 (8.77×) 4.69 (4.19×) 1.12
pair0011 9.77 (8.01×) 4.68 (3.84×) 1.22

Table 5: System Performance of (1) Privacy-Preserving Gaussian Process (GP) Regression; (2) SMO-SVR; (3) Aitia. Testing

dataset pair are assigned in Table 7 in Appendix D.

secure GP and SMO-SVR. However, when the set of support vec-
tors becomes sufficiently large, the encoding process slows down,
resulting in Aitia’s testing time being only 3-5× faster compared
to secure SMO-SVR and 6-9× faster compared to secure GP.

Regarding communication, the communication gap between
secure GP and Aitia remains approximately 10.90× for commu-
nication size and 1.92× for the number of rounds. Similarly, the
communication gap between secure SMO-SVR and Aitia stays at
9.26× for communication size and 1.69× for communication rounds.
When testing the Abalone dataset, Aitia incurs only 234.59 MB
in communication costs, whereas secure GP costs 2555.38 MB and
SMO-SVR costs 2172.11 MB. This demonstrates that Aitia is capa-
ble of significantly more efficient testing even in communication-
limited environments.

6 CONCLUSION & DISCUSSION

In this work, we proposed an efficient secure protocol called Aitia
for bivariate causal discovery. Our approach involves proposing
a new SVR model accompanied by a training algorithm with the
potential to accelerate significantly the secure implementation. We
proposed a series of optimizations and designed a 2PC protocol
that resulted in a training time speedup of up to 346×.

Discussion. Our proposed Aitia design shows significant im-
provement over textbook approaches implemented in CrypTen. Yet,
there are still exciting open problems to address:

• Alternative Libraries & Speedups: Our current implementation of
Aitia utilizes Crypten, meaning its performance is closely tied
to Crypten’s performance. For instance, during secure testing,
Aitia experiences a slowdown on large datasets, but this could be
improved if the encoding function issue in Crypten is resolved.

• GPU Acceleration: Utilizing GPUs for accelerating machine learn-
ing training is a widespread practice [46], and this trend can also
benefit our Aitia design. Fortunately, the algorithmic steps in
Aitia are designed for parallelization, enabling direct perfor-
mance enhancements through GPU acceleration. Additionally,
revisiting Algorithm 3 to optimize its execution on GPUs could
further improve efficiency, for example, exploring methods to
enhance the Oblivious Insertion & Update operation in Aitia.

• Malicious multiple-party Aitia: As discussed in Section 4.2, Aitia
has the capability to operate with multiple non-colluding and
malicious servers if implemented using MPC libraries that offer
security against malicious adversaries, such as SPDZ [20]. Future
optimization efforts are necessary to accelerate computations in
the malicious MPC setting.

ACKNOWLEDGMENTS.

We thanks Qi Pang for contributing helpful suggestions to our
protocol implementation. The first and the fourth authors were
partially supported by NSF awards #2101052, #2115075, and ARPA-
H SP4701-23-C-0074. The third author was partially supported by
the NSF award #2154732 and the Meta Security Research Award.

12

REFERENCES

[1] Website of the u.s. census bureau, 1994.
[2] Mariette Awad and Rahul Khanna. Support vector regression. In Efficient learning

machines, pages 67–80. Springer, 2015.
[3] Donald Beaver. Efficient multiparty protocols using circuit randomization. In

Joan Feigenbaum, editor, Advances in Cryptology — CRYPTO ’91, pages 420–432,
Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

[4] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Effi-
cient garbling from a fixed-key blockcipher. In 2013 IEEE Symposium on Security

and Privacy, pages 478–492. IEEE Computer Society Press, May 2013.
[5] Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: a system for

secure multi-party computation. In Peng Ning, Paul F. Syverson, and Somesh
Jha, editors, ACM CCS 2008, pages 257–266. ACM Press, October 2008.

[6] C. Williams C.E Rasmussen. Gaussian Process for Machine Learning. MIT Press,
2005.

[7] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector
machines. ACM transactions on intelligent systems and technology (TIST), 2(3):1–
27, 2011.

[8] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy. In Proceedings of the 33rd International

Conference on International Conference on Machine Learning - Volume 48, ICML’16,
pages 201–210. JMLR.org, 2016.

[9] Facebook. CrypTen: a framework for Privacy Preserving Machine Learning built
on PyTorch. https://github.com/facebookresearch/CrypTen.

[10] Gary Flake and Steve Lawrence. Efficient svm regression training with smo.
Machine Learning, 46, 03 2001.

[11] Nir Friedman and Iftach Nachman. Gaussian process networks. arXiv preprint
arXiv:1301.3857, 2013.

[12] Radhika Garg, Kang Yang, Jonathan Katz, and Xiao Wang. Scalable mixed-mode
mpc. Cryptology ePrint Archive, Paper 2023/1700, 2023. https://eprint.iacr.org/
2023/1700.

[13] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,
STOC ’87, pages 218–229, New York, NY, USA, 1987. Association for Computing
Machinery.

[14] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In Alfred
Aho, editor, 19th ACM STOC, pages 218–229. ACM Press, May 1987.

[15] H Altay Guvenir, Burak Acar, Gulsen Demiroz, and Ayhan Cekin. A supervised
machine learning algorithm for arrhythmia analysis. In Computers in Cardiology

1997, pages 433–436. IEEE, 1997.
[16] Xiaoyang Hou, Jian Liu, Jingyu Li, Yuhan Li, Wen jie Lu, Cheng Hong, and Kui

Ren. Ciphergpt: Secure two-party gpt inference. Cryptology ePrint Archive,
Paper 2023/1147, 2023. https://eprint.iacr.org/2023/1147.

[17] Patrik O Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard
Schölkopf. Nonlinear causal discovery with additive noise models. In Advances

in neural information processing systems, pages 689–696, 2009.
[18] Dominik Janzing, Joris Mooij, Kun Zhang, Jan Lemeire, Jakob Zscheischler, Povi-

las Daniušis, Bastian Steudel, and Bernhard Schölkopf. Information-geometric
approach to inferring causal directions. Artificial Intelligence, 182:1–31, 2012.

[19] Eugenia Kalnay, Masao Kanamitsu, Robert Kistler, William Collins, Dennis
Deaven, Lev Gandin, Mark Iredell, Suranjana Saha, Glenn White, John Woollen,
et al. The ncep/ncar 40-year reanalysis project. Bulletin of the American meteoro-

logical Society, 77(3):437–472, 1996.
[20] Marcel Keller. MP-SPDZ: A versatile framework for multi-party computation. In

Proceedings of the 2020 ACM SIGSACConference on Computer and Communications

Security, 2020.
[21] Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark

Ibrahim, and Laurens van der Maaten. Crypten: Secure multi-party computation
meets machine learning. Advances in Neural Information Processing Systems, 34,
2021.

[22] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR
gates and applications. In Proc. of the 35th ICALP, volume 5126 of Lecture Notes
in Computer Science, pages 486–498. Springer, 2008.

[23] Samory Kpotufe, Eleni Sgouritsa, Dominik Janzing, and Bernhard Schölkopf.
Consistency of causal inference under the additive noise model. In International

Conference on Machine Learning, pages 478–486, 2014.
[24] H W Kuhn and A W Tucker. Nonlinear programming proceedings of the 2nd

berkeley symposium on mathematical statistics and probability. In University of

California Press, Berkeley, pages 481–492, 1951.
[25] Matt J. Kusner, Yu Sun, Karthik Sridharan, and Kilian Q. Weinberger. Private

causal inference. In Arthur Gretton and Christian C. Robert, editors, Proceed-
ings of the 19th International Conference on Artificial Intelligence and Statistics,
volume 51 of Proceedings of Machine Learning Research, pages 1308–1317, Cadiz,
Spain, 09–11 May 2016. PMLR.

[26] Dacheng Li, HongyiWang, Rulin Shao, HanGuo, Eric Xing, andHao Zhang. MPC-
FORMER: FAST, PERFORMANT AND PRIVATE TRANSFORMER INFERENCE
WITHMPC. In The Eleventh International Conference on Learning Representations,
2023.

[27] Yun Li, Yufei Duan, Zhicong Huang, Cheng Hong, Chao Zhang, and Yifan Song.
Efficient 3PC for binary circuits with application to Maliciously-Secure DNN
inference. In 32nd USENIX Security Symposium (USENIX Security 23), pages
5377–5394, Anaheim, CA, August 2023. USENIX Association.

[28] David Lopez-Paz, Krikamol Muandet, Bernhard Schölkopf, and Iliya Tolstikhin.
Towards a learning theory of cause-effect inference. In International Conference

on Machine Learning, pages 1452–1461, 2015.
[29] Michael C. Mackey and Leon Glass. Oscillation and chaos in physiological

control systems. Science, 197(4300):287–289, 1977.
[30] Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for

machine learning. In Proceedings of the 2018 ACM SIGSACConference on Computer

and Communications Security, CCS ’18, pages 35–52, New York, NY, USA, 2018.
Association for Computing Machinery.

[31] Payman Mohassel, Mike Rosulek, and Ni Trieu. Practical privacy-preserving
k-means clustering. The 20th Privacy Enhancing Technologies Symposium, 2020.
https://eprint.iacr.org/2019/1158.

[32] Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable privacy-
preserving machine learning. In 2017 IEEE Symposium on Security and Privacy,
pages 19–38. IEEE Computer Society Press, May 2017.

[33] Joris MMooij, Dominik Janzing, TomHeskes, and Bernhard Schölkopf. On causal
discovery with cyclic additive noise models. In Advances in neural information

processing systems, pages 639–647, 2011.
[34] Joris M Mooij, Dominik Janzing, Jakob Zscheischler, and Bernhard Schölkopf.

CauseEffectPairs repository. http://webdav.tuebingen.mpg.de/cause-effect/,
2014.

[35] Joris M Mooij, Jonas Peters, Dominik Janzing, Jakob Zscheischler, and Bernhard
Schölkopf. Distinguishing cause from effect using observational data: methods
and benchmarks. The Journal of Machine Learning Research, 17(1):1103–1204,
2016.

[36] Warwick J Nash, Tracy L Sellers, Simon R Talbot, Andrew J Cawthorn, andWes B
Ford. The population biology of abalone (haliotis species) in tasmania. i. blacklip
abalone (h. rubra) from the north coast and islands of bass strait. Sea Fisheries
Division, Technical Report, 48:p411, 1994.

[37] Yuki Ohnishi and Jordan Awan. Locally private causal inference for randomized
experiments, 2023.

[38] Office on Smoking, Centers for Disease Control, Prevention, et al. How tobacco
smoke causes disease: The biology and behavioral basis for smoking-attributable
disease: A report of the surgeon general. 2010.

[39] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[40] Rahul Rachuri and Ajith Suresh. Trident: Efficient 4pc framework for privacy
preserving machine learning. CoRR, abs/1912.02631, 2019.

[41] Carl Edward Rasmussen and Hannes Nickisch. Gaussian processes for machine
learning (GPML) toolbox. J. Mach. Learn. Res., 11:3011–3015, 2010.

[42] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for

machine learning. Adaptive computation and machine learning. MIT Press, 2006.
[43] Deevashwer Rathee, Anwesh Bhattacharya, Divya Gupta, Rahul Sharma, and

Dawn Song. Secure floating-point training. Cryptology ePrint Archive, Paper
2023/467, 2023. https://eprint.iacr.org/2023/467.

[44] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pega-
sos: Primal estimated sub-gradient solver for svm. Mathematical programming,
127(1):3–30, 2011.

[45] Xiaohai Sun, Dominik Janzing, and Bernhard Schölkopf. Causal reasoning by
evaluating the complexity of conditional densities with kernel methods. Neuro-
computing, 71(7-9):1248–1256, 2008.

[46] Sijun Tan, Brian Knott, Yuan Tian, and David J. Wu. Cryptgpu: Fast privacy-
preserving machine learning on the gpu. In 2021 IEEE Symposium on Security

and Privacy (SP), pages 1021–1038, 2021.
[47] Xiao Wang, Kartik Nayak, Chang Liu, Elaine Shi, Emil Stefanov, and Yan Huang.

Oblivious data structures. IACR Cryptol. ePrint Arch., page 185, 2014.
[48] Zhuang Wang, Koby Crammer, and Slobodan Vucetic. Breaking the curse of

kernelization: Budgeted stochastic gradient descent for large-scale svm training.
The Journal of Machine Learning Research, 13(1):3103–3131, 2012.

[49] Christopher K Williams and Carl Edward Rasmussen. Gaussian processes for

machine learning, volume 2. MIT press Cambridge, MA, 2006.
[50] Andrew C Yao. Protocols for secure computations. In 23rd annual symposium on

foundations of computer science (sfcs 1982), pages 160–164. IEEE, 1982.
[51] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th Annual

Symposium on Foundations of Computer Science (sfcs 1986), pages 162–167. IEEE,
1986.

13

https://github.com/facebookresearch/CrypTen
https://eprint.iacr.org/2023/1700
https://eprint.iacr.org/2023/1700
https://eprint.iacr.org/2023/1147
https://eprint.iacr.org/2019/1158
https://eprint.iacr.org/2023/467

[52] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

[53] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole -
reducing data transfer in garbled circuits using half gates. In Elisabeth Oswald
and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages
220–250. Springer, Heidelberg, April 2015.

[54] Zhi-Qiang Zeng, Hong-Bin Yu, Hua-Rong Xu, Yan-Qi Xie, and Ji Gao. Fast train-
ing support vector machines using parallel sequential minimal optimization. In
2008 3rd international conference on intelligent system and knowledge engineering,
volume 1, pages 997–1001. IEEE, 2008.

[55] Allen Zhu Zeyuan, ChenWeizhu, Wang Gang, Zhu Chenguang, and Chen Zheng.
P-packsvm: Parallel primal gradient descent kernel svm. In 2009 Ninth IEEE

International Conference on Data Mining, pages 677–686. IEEE, 2009.
[56] Cong Zhang, Yu Chen, Weiran Liu, Min Zhang, and Dongdai Lin. Linear private

set union from Multi-Query reverse private membership test. In 32nd USENIX

Security Symposium (USENIX Security 23), pages 337–354, Anaheim, CA, August
2023. USENIX Association.

[57] Kun Zhang and Aapo Hyvarinen. On the identifiability of the post-nonlinear
causal model. arXiv preprint arXiv:1205.2599, 2012.

14

Algorithm 3: Oblivious BSGD-SVR without if-branches.

1 Function Train(Xtrain
, ytrain):

2 Initialize a bias value 𝑏 = 0.
3 Initialize 4 matrices: V of size (𝐵 + 1) ×𝑚 to store support vectors, wgt to store weights, ID to store the indices in the budget, and

1B+1 to indicate buffer position. wgt, ID, 1B+1 of size 𝐵 + 1. V,wgt, ID are initialized at 0, while 1B+1 are all 0 except for the last
position, i.e.

4 1B+1 [𝑖] =
{
1, if 𝑖 = 𝐵 + 1
0, otherwise

5 for 𝑡 = 0, 1, · · · ,𝑇BSGD do

6 Randomly pick a training index 𝑖 ∈ [𝑁]
7 Run the prediction procedure 𝑦𝑖 ← 𝑏 + ⟨wgt,K(V, 𝑥𝑖)⟩
8 Use a boolean variable 𝑏𝜉 to indicate whether the difference between the prediction and the true target exceeds the threshold:

𝑏𝜉 =

{
1, if 𝑦𝑖 − 𝑦𝑖 > 𝜉 or 𝑦𝑖 − 𝑦𝑖 < −𝜉
0 otherwise

9 Use a boolean variable 𝑏fnd to denote whether the picked sample is already in the support vectors and a boolean vector fnd to
locate it if the answer is yes:

10 for 𝑗 = 0, 1, . . . , 𝐵 do

11 fnd[𝑗] =
{
1, if 𝑖 = ID[𝑗]
0 otherwise

12 𝑏 𝑓 =
⊕𝐵

𝑗=1 fnd[𝑗]
13 Get the update position vector editPos: editPos = 𝑏𝜉 (fnd ⊕ ((1 ⊕ 𝑏fnd)1B+1))
14 Get the update value: 𝑢𝑝𝑑 = sign(𝑦 𝑗 − 𝑦 𝑗)𝜂
15 Update weight wgt, bias 𝑏, and find the minimum vectormloc:
16 wgt = wgt − 𝑢𝑝𝑑 · editPos
17 𝑏 = 𝑏 − 𝑢𝑝𝑑

18 mloc[𝑗] =
{
1, if 𝑗 = argmin |wgt|
0 otherwise

19 Swap the buffered position 𝐵 + 1 with the argmin position
20 mlocCond = mloc · 𝑏𝜉 (1 ⊕ 𝑏fnd)
21 wgt = wgt −mlocCond(wgt −wgt[𝐵 + 1])
22 Update V, ID
23 V = V −mlocCond(V − x𝑖)
24 ID = ID −mlocCond(ID − 𝑖)
25 Reset buffer position to 0:
26 V[𝐵 + 1] = wgt[𝐵 + 1] = ID[𝐵 + 1] = 0
27 return V,wgt

A OUR BSGD-SVR ALGORITHM

A.1 Security Proof of Aitia

Sketch of proof: In the first step of our Aitia construction, 𝑃1 chooses a random seed 𝑠 and sends it to 𝑃2. This simulation is elementary
as 𝑠 is random. Excepting Step (I,1), the two parties execute symmetric operations in which they execute the same code with their input and
obtain secret shares of the intermediate values and the final output. Thus, the role of both parties is the same, excluding Step (I.1). In the
following, we present a simulation for a corrupted 𝑃1. Simulating corrupted 𝑃2 is similar. We first formally describe the behavior of the
simulator:

(1) The simulator honestly plays the role of PRG at Steps (II,1). For every query 𝑃𝑅𝐺 (𝑠) made by the adversary, record outputs in a set
O1.

(2) Using garbled circuit, the simulator executes the below computations honestly.
– “if" conditions at Steps (II,4-5), and (II,11)
– Kernel function at Step (II,2)
– Bit operations, additions, and multiplications at Steps (II,7), (II,9), (II,12-15)

15

(3) Upon receiving the secret-shared parameters of the kernel, the simulator sends them to the ideal functionality of BSGD-SVR. This
causes the honest party 𝑃2 to obtain the final output.

Due to the security of the garbled circuit and secret-shared intermediate result, the simulation for (2) and (3) is perfect. We now prove
that this simulation and the real interaction are indistinguishable for (1) via the following sequence of hybrids.

Hybrid 0: The real interaction, with 𝑃2 running honestly with input JΨK and giving its output to the environment according to the protocol
description, namely the kernel’s parameters 𝐾 .

Hybrid 1: Same as the previous hybrid, except for how 𝑃𝑅𝐺 is simulated. A query to 𝑃𝑅𝐺 (𝑠) is answered with a uniformly random
response. Thus, the sets O1 can be replaced with random.

□

B BASELINE ALGORITHMS

This section provides pseudocode for Gaussian Process (GP) Regression and SMO-SVR algorithms that were used in the main paper. The GP
Regression algorithm is taken from [6], and SMO-SVR algorithm is taken from [10]. The algorithms are shown in Algorithm 4 and Algorithm
5 respectively.

Algorithm 4: Gaussian Process Regression.
Input: prior mean 𝜇𝜇𝜇, 𝜇𝜇𝜇∗, noise scale 𝜎 , training dataset (𝑋𝑋𝑋,𝑦𝑦𝑦), testing dataset𝑋𝑋𝑋∗

1 𝑦𝑦𝑦∗ = 𝜇𝜇𝜇∗ + 𝐾 (𝑋𝑋𝑋 ∗,𝑋𝑋𝑋) [𝐾 (𝑋𝑋𝑋,𝑋𝑋𝑋) + 𝜎2𝐼𝐼𝐼]−1 (𝑦𝑦𝑦 − 𝜇𝜇𝜇)

C REGRESSION PERFORMANCE

We conducted experiments similar to those described in [10] to evaluate the performance of our BSGD-SVR algorithm in approximating
various functions, including both linear and non-linear ones. Our results demonstrate that BSGD-SVR effectively learns to approximate a
wide range of complicated functions. The functions considered in this section are:

• Linear function: 𝑦 = 2.4𝑥 + 1.3
• Sinus function: 𝑦 = 𝑠𝑖𝑛(𝑥)
• 𝑦 = 𝑠𝑖𝑛(𝑥 ∗ 0.15)/𝑥
• Mackey Glass function [29] for 𝜏 = 17, 𝑎 = 0.2, 𝑏 = 0.1,Δ𝑡 = 1

The results of the approximation are depicted in Figure 5. These results indicate that BSGD-SVR performs comparably to conventional
SMO-SVR in approximating complex target functions.

D DATASET DETAILS

We provide more information about the dataset that we used in our experiments throughout this paper. The dataset’s reference and source
are presented in Table 6, while the assignments of pair numbers are outlined in Table 7.

16

Algorithm 5: SMO for 𝜖-SVR.
1 Hyperparameters: learning rate 𝜎 , training iteration upper bound 𝑇 , tolerance threshold 𝜖 , 𝐶 , 𝜏
Input: training dataset Ψ = {(𝑥𝑖 , 𝑦𝑖) |𝑥𝑖 ∈ R𝑚, 𝑦𝑖 ∈ R}𝑖∈[𝑛]

2 Function Train(Ψ):
3 𝛼𝛼𝛼 ← 0𝑛 , 𝑏 ← 0,𝐾𝐾𝐾 is a matrix,𝐾𝐾𝐾𝑖 𝑗 = 𝐾 (𝑥𝑖 , 𝑥 𝑗)
4 Indicator variable on whether we examine all vectors: 𝛾 = true
5 for 𝑘 ≤ 𝑇 do

6 𝛼𝛼𝛼𝑜𝑙𝑑 = 𝛼𝛼𝛼

7 if 𝛾 then

8 S = {1, 2, . . . , 𝑛}
9 else

10 S = {𝑖 ∈ [𝑛] : |𝛼𝛼𝛼 [𝑖] | ∉ {0;𝐶}}
11 for 𝑖 ∈ S do
12 for 𝑗 ∈ [𝑛], 𝑗 ≠ 𝑖 do
13 𝑠 ← 𝛼𝛼𝛼 [𝑖] +𝛼𝛼𝛼 [𝑗]
14 𝜂 = 𝐾𝐾𝐾 [𝑖, 𝑖] +𝐾𝐾𝐾 [𝑗, 𝑗] − 2𝐾𝐾𝐾 [𝑖, 𝑗]
15 Δ = 2𝜖/𝜂
16 𝑦∗

𝑖
= 𝑏 +∑𝑛

𝑘=1𝛼𝛼𝛼 [𝑘]𝐾𝐾𝐾 [𝑖, 𝑘]
17 𝑦∗

𝑗
= 𝑏 +∑𝑛

𝑘=1𝛼𝛼𝛼 [𝑘]𝐾𝐾𝐾 [𝑗, 𝑘]
18 𝛼𝛼𝛼 [𝑖] = 𝛼𝛼𝛼 [𝑖] + 1

𝜂 (𝑦𝑖 + 𝑦 𝑗 − 𝑦
∗
𝑖
− 𝑦∗

𝑗
)

19 𝛼𝛼𝛼 [𝑗] = 𝑠 −𝛼𝛼𝛼 [𝑖]
20 if 𝛼𝛼𝛼 [𝑖] ∗𝛼𝛼𝛼 [𝑗] < 0 then
21 if |𝛼𝛼𝛼 [𝑖] | ≥ Δ&&|𝛼𝛼𝛼 [𝑗] ≥ Δ| then
22 𝛼𝛼𝛼 [𝑖] = 𝛼𝛼𝛼 [𝑖] − sign(𝛼𝛼𝛼 [𝑖]) · Δ
23 else if |𝛼𝛼𝛼 [𝑖] | > |𝛼𝛼𝛼 [𝑗] | then
24 𝛼𝛼𝛼 [𝑖] = 𝑠
25 𝐿 = max(𝑠 −𝐶,−𝐶)
26 𝐻 = min(𝐶, 𝑠 +𝐶)
27 𝛼𝛼𝛼 [𝑖] = min(max(𝛼𝛼𝛼 [𝑖], 𝐿), 𝐻)
28 𝛼𝛼𝛼 [𝑗] = 𝑠 −𝛼𝛼𝛼 [𝑖]
29 𝑏𝑖 = 𝑦𝑖 − 𝑦∗𝑖 + (𝛼𝛼𝛼 [𝑖] −𝛼𝛼𝛼𝑜𝑙𝑑 [𝑖])𝐾𝐾𝐾 [𝑖, 𝑖] + (𝛼𝛼𝛼 [𝑗] −𝛼𝛼𝛼𝑜𝑙𝑑 [𝑗])𝐾𝐾𝐾 [𝑖, 𝑗] + 𝑏
30 𝑏 𝑗 = 𝑦 𝑗 − 𝑦∗𝑗 + (𝛼𝛼𝛼 [𝑗] −𝛼𝛼𝛼𝑜𝑙𝑑 [𝑗])𝐾𝐾𝐾 [𝑗, 𝑗] + (𝛼𝛼𝛼 [𝑖] −𝛼𝛼𝛼𝑜𝑙𝑑 [𝑖])𝐾𝐾𝐾 [𝑖, 𝑗] + 𝑏

31 𝑏 =
𝑏𝑖+𝑏 𝑗

2
32 if ∥𝛼𝛼𝛼𝑜𝑙𝑑 −𝛼𝛼𝛼 ∥ < 𝜏 && 𝛾 then

33 return 𝛼𝛼𝛼,𝑏

34 else

35 𝑘 = 𝑘 + 1
36 𝛾 =!𝛾
37 return 𝛼𝛼𝛼,𝑏

Dataset Size References URL

Abalone 4177 [35, 36] https://archive.ics.uci.edu/ml/datasets/Abalone
Arrhythmia 452 [15, 35] https://archive.ics.uci.edu/ml/datasets/Arrhythmia
Income 3000 [1, 35] https://archive.ics.uci.edu/ml/datasets/Census-Income+(KDD)

Liver Disorder 345 [35] https://archive.ics.uci.edu/ml/datasets/Liver+Disorders
NCEP-NCAR 3000 [19, 33] http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html

Table 6: Datasets.

17

https://archive.ics.uci.edu/ml/datasets/Abalone
https://archive.ics.uci.edu/ml/datasets/Arrhythmia
https://archive.ics.uci.edu/ml/datasets/Census-Income+(KDD)
https://archive.ics.uci.edu/ml/datasets/Liver+Disorders
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html

(a) 𝑦 = 2.4𝑥 + 1.3 (b) 𝑦 = sin𝑥

(c) 𝑦 = sin(𝑥 ∗ 0.15)/𝑥 (d) Mackey-Glass

Figure 5: Regression Performance of BSGD-SVR vs. standard SMO-SVR across four different functions.

18

Dataset Size Feature→ Label Pair

Liver Disorder 345

alcohol→ mean corpuscular volume pair0033
alcohol→ alkaline phosphotase pair0034
alcohol→ alanine aminotransferase pair0035
alcohol→ aspartate aminotransferase pair0036
alcohol→ gamma-glutamyl transpeptidase pair0037

Arrhythmia 452
age→ height pair0022
age→ weight pair0023
age→ heart rate pair0024

Income 3000 age→ weight per hour pair0012
age→ dividends from stock pair0017

NCEP-NCAR 3000

temperature (𝑡) → temperature (𝑡 + 1) pair0043
pressure (𝑡) → pressure (𝑡 + 1) pair0044
sea level pressure (𝑡) → sea level pressure (𝑡 + 1) pair0045
relative humidity (𝑡) → relative humidity (𝑡 + 1) pair0046

Abalone 4177

age→ length pair0005
age→ shell weight pair0006
age→ diameter pair0007
age→ height pair0008
age→ whole weight pair0009
age→ shucked weight pair0010
age→ viscera weight pair0011

Table 7: Dataset’s Feature→ Label associated pair number. The pair number are labelled in similar way as in [35]

19

𝑛servers Dataset Pair Training Time (s) Comm (GB) Comm (M Rounds)
GP SMO-SVR Aitia GP SMO-SVR Aitia GP SMO-SVR Aitia

3

Liver Disorder
(345)

0033 495.69 (3.43×) 7121 (49.32×) 144.39

1.93
(3.86×)

3.86
(7.72×) 0.50 0.49

(3.50×)
8.60

(61.43×) 0.14
0034 505.26 (3.57×) 7476 (52.85×) 141.45
0035 503.43 (3.52×) 7441 (52.02×) 143.05
0036 497.63 (3.46×) 7475 (52.09×) 143.49
0037 502.30 (3.50×) 7431 (52.70×) 143.71

Arrhythmia
(452)

0022 846.70 (4.20×) 12410 (61.51×) 201.75 4.29
(5.23×)

7.31
(8.91×) 0.82 0.82

(4.32×)
14.39

(75.74×) 0.190023 840.63 (4.17×) 12533 (62.23×) 201.39
0024 862.55 (4.30×) 12518 (62.39×) 200.63

Income
(3000)

0012 39656 (24.89×) 540341 (339×) 1593 1240
(33.86×)

924.94
(25.26×) 36.62 34.81

(24.51×)
386.53
(272×) 1.420017 39206 (24.66×) 536544 (337×) 1590

NCEP-NCAR
(3000)

0043 39332 (24.80×) 542692 (342×) 1586
1240

(33.86×)
924.94
(25.26×) 36.62 34.81 386.53

(272×) 1.420044 39352 (24.86×) 537471 (340×) 1583
0045 39586 (24.98×) 536797 (339×) 1585
0046 39377 (24.75×) 538459 (338×) 1591

Abalone
(4177)

0005 79729 (35.03×) 1071488 (471 ×) 2276

3342
(46.97×)

2605
(36.61×) 71.15 67.32

(34.00×)
1365
(689×) 1.98

0006 79425 (34.84×) 1073849 (471×) 2280
0007 80163 (35.14×) 1073041 (470×) 2281
0008 79604 (34.85×) 1076514 (471×) 2284
0009 79674 (34.98×) 1076248 (472×) 2278
0010 79529 (34.96×) 1075168 (473×) 2274
0011 79634 (34.90×) 1075184 (471×) 2282

4

Liver Disorder
(345)

0033 622.27 (3.26×) 9748 (51.13×) 190.65

2.57
(3.52×)

5.45
(7.47×) 0.73 0.49

(3.50×)
8.60

(61.43×) 0.14
0034 637.54 (3.37×) 9883 (52.29×) 189.02
0035 636.23 (3.34×) 9851 (51.84×) 190.04
0036 639.16 (3.35×) 9794 (51.34×) 190.76
0037 640.96 (3.36×) 9803 (51.37×) 190.84

Arrhythmia
(452)

0022 1054 (3.96×) 16534 (62.07×) 266.34 5.72
(4.76×)

10.27
(8.56×) 1.20 0.82

(4.32×)
14.39

(75.74×) 0.190023 1099 (4.16×) 16548 (62.65×) 264.13
0024 1067 (4.02×) 16571 (62.46×) 265.31

Income
(3000)

0012 49303 (23.01×) 705245 (329×) 2143 1653
(31.15×)

1251
(23.57×) 53.07 34.81

(24.51×)
386.53
(272×) 1.420017 48930 (22.82×) 710124 (331×) 2144

NCEP-NCAR
(3000)

0043 49061 (22.88×) 711857 (332×) 2144
1653

(31.15×)
1251

(23.57×) 53.07 34.81
(24.51×)

386.53
(272×) 1.420044 49148 (22.94×) 706524 (330×) 2142

0045 49200 (22.96×) 709064 (331×) 2143
0046 48926 (22.86×) 709180 (331×) 2140

Abalone
(4177)

0005 99165 (31.89×) 1438749 (463×) 3110

4455
(43.19×)

3531
(32.49×) 103.13 67.32

(34.00×)
1365
(689×) 1.98

0006 99252 (31.88×) 1411883 (454×) 3113
0007 99378 (31.99×) 1422002 (458×) 3107
0008 99475 (32.00×) 1413483 (455×) 3108
0009 99090 (31.93×) 1422113 (458×) 3103
0010 99147 (31.82×) 1415591 (454×) 3116
0011 99004 (31.86×) 1418585 (457×) 3107

Table 8: Multiparty System Performance of (1) Privacy-Preserving Gaussian Process (GP) Regression; (2) SMO-SVR; (3) Aitia.

𝑛servers indicates number of servers.

20

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Causal Inference
	2.2 Secure Computation
	2.3 Privacy-Preserving Machine Learning
	2.4 Server-Aided Architecture

	3 A New Model-Training Approach for Efficient Secure Computation
	3.1 Notations and Problem Setup
	3.2 On Choosing Non-linear Regression
	3.3 Rethinking SVR with MPC training in Mind
	3.4 On Choosing Dependence Score
	3.5 Evaluation of BSGD-SVR

	4 Aitia: Secure Causal Discovery
	4.1 Modifying BSGD-SVR for Efficiency, Obliviousness, and Branch Removal
	4.2 The Aitia Protocol

	5 Evaluation of Aitia
	5.1 Implementation
	5.2 Evaluation

	6 Conclusion & Discussion
	References
	A Our BSGD-SVR algorithm
	A.1 Security Proof of Aitia

	B Baseline Algorithms
	C Regression Performance
	D Dataset Details

