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Abstract. Many lattice-based crypstosystems employ ideal lattices for
high efficiency. However, the additional algebraic structure of ideal lat-
tices usually makes us worry about the security, and it is widely believed
that the algebraic structure will help us solve the hard problems in ideal
lattices more efficiently. In this paper, we study the additional algebraic
structure of ideal lattices further and find that a given ideal lattice in
a polynomial ring can be embedded as an ideal into infinitely many
different polynomial rings by the coefficient embedding. We design an
algorithm to verify whether a given full-rank lattice in Zn is an ideal
lattice and output all the polynomial rings that the given lattice can
be embedded into as an ideal with time complexity O(n3B(B + logn),
where n is the dimension of the lattice and B is the upper bound of the
bit length of the entries of the input lattice basis. We would like to point
out that Ding and Lindner proposed an algorithm for identifying ideal
lattices and outputting a single polynomial ring of which the input lat-
tice can be regarded as an ideal with time complexity O(n5B2) in 2007.
However, we find a flaw in Ding and Lindner’s algorithm, and it causes
some ideal lattices can’t be identified by their algorithm.
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1 Introduction

1.1 The Development of Ideal Lattices

The research on lattice-based cryptography was pioneered by Ajtai [1] in 1996. He
presented a family of one-way function based on the Short Integer Solution (SIS)
problem, which has the average-case hardness under the worst-case assumptions
for some lattice problems. In 1997, Ajtai and Dwork [2] introduced a public-
key cryptosystem, whose average-case security can be based on the worst-case
hardness of the unique-Shortest Vector Problem. In 2005, Regev [3] proposed
another problem with average-case hardness, the Learning with Errors problem
(LWE), and also a public-key encryption scheme based on LWE.
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lattice-based cryptosystems are widely believed to be quantum-resistant. Al-
though there have been many cryptographic schemes based on LWE and SIS, the
main drawback of such schemes is their limited efficiency, due to its large key size
and slow computations. Especially, with the development of research on quan-
tum computers, it becomes more urgent to design more practical lattice-based
cryptosystems.

To improve the efficiency, additional algebraic structure is involved in the
lattice to construct more practical schemes. Among them, ideal lattice plays an
important role.

In fact, as early as in 1998, Hoffstein, Pipher, and Silverman [4] introduced
a lattice-based public-key encryption scheme known as NTRU, whose security is
related to the ideal in the ring Z[x]/(xn − 1). Due to the cyclic structure of the
ideal lattice, the efficiency of NTRU is very high. Later, in 2010, Lyubashevsky,
Peikert and Regev [5] presented a ring-based variant of LWE, called Ring-LWE,
whose average-case hardness is based on worst-case assumptions on ideal lattices.
In 2017, Peikert, Regev and Stephens-Davidowitz [6] refined the proof of the
security of Ring-LWE for more algebraic number field. After the introduction of
Ring-LWE, more and more practical cryptosystems based on ideal lattices have
be constructed.

There are two different ways to define ideal lattices.
One is induced by the coefficient embedding from ring Z[x]/f(x) into Zn.

NTRU uses coefficient embedding to define its lattice. It is very convenient to
implement cryptosystems based on Ring-LWE with the coefficient embedding.
In fact, almost all the ideal lattice-based cryptosystems are implemented via
the coefficient embedding. However, it seems not easy to clarify the hardness of
problems for the coefficient-embedding ideal lattice in general.

The other one is defined by the canonical embedding from the algebraic in-
teger ring of some number field K into Cn. This type of ideal lattice is usually
employed in the security proof or hardness reduction in Ring-LWE based cryp-
tography.

It is widely believed that the additional algebraic structure of ideal lattice
will help us solve its hard problems more efficiently.

In 2016, Cramer, Ducas, Peikert and Regev [7] introduced a polynomial-
time quantum algorithm to solve 2

√
nlogn-SVP in principal ideal lattices in the

algebraic integer ring of Q(ζm), where m is a power of some prime. In 2017,
Cramer, Ducas and Wesolowski [8] extended the result to general ideals. In the
same year, Holzer, Wunderer and Buchmann [9] extended the field to be Q(ζm),
where m = paqb and p, q are different primes.

In 2019, Pellet-Mary, Hanrot and Stehlé [10] introduced a pre-processing
method (PHS algorithm) to solve γ-SVP for ideal lattices in any number field.
The pre-processing phasing takes exponential time. Let n be the dimension of
the number field K viewed as a Q-vector space. Pellet-Mary et al. showed that by
performing pre-processing on K in exponential time, their algorithm can, given
any ideal lattice I of OK , for any α ∈ [0, 1/2] output a exp(Õ((n log n)α+1/n))

approximation of a shortest none-zero vector of I in time exp(Õ((n log n)1−2α/n))+
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T . For the classical method, T = exp(Õ((n log n)1/2) if K is a cyclotomic field
or T = exp(Õ((n log n)2/3) for an arbitrary number field K.

In 2020, Bernard and Roux-Langlois [11] proposed a new “twisted” version
of the PHS algorithm. They proved that Twisted-PHS algorithm performs at
least as well as the original PHS algorithm and their algorithm suggested that
much better approximation factors were achieved. In 2022, Bernard, Lesavourey,
Nguyen and Roux-Langlois [12] extended the experiments of [11] to cyclotomic
fields of degree up to 210 for most conductors m.

In 2021, Pan, Xu, Wadleigh and Cheng [13] found the connection between
the complexity of the shortest vector problem (SVP) of prime ideals in number
fields and their decomposition groups, and revealed lots of weak instances of ideal
lattices in which SVP can be solved efficiently. In 2022, Boudgoust, Gachon and
Pellet-Mary [14] generalized the work of Pan et al. [13] and provided a simple
condition under which an ideal lattice defines an easy instance of the shortest
vector problem. Namely, they showed that the more automorphisms stabilize the
ideal, the easier it was to find a short vector in it.

As mentioned above, almost all the research on SVP is in the canonical-
embedding ideal lattices and the research on SVP in the coefficient-embedding
ideal lattices is few. However, in some rings, such as Z[X]/(xn+1) where n = 2k

for k ≥ 1, the SVPs induced by the two different embeddings are almost equal.
We refer to [15] for more details.

1.2 Our contribution

In this paper, our main contribution is to find that an ideal lattice in the ring
Z[x]/f(x) can be embedded into infinitely many rings Z[x]/g(x) as ideals, where
f(x) and g(x) are monic and f(x), g(x) ∈ Z[x] (Theorem 2). Besides, correspond-
ing to our finding, we show an efficient algorithm for computing all the rings that
an ideal lattice can be embedded into as ideals and also judging whether a given
integer lattice can be embedded as an ideal into a polynomial ring like Z[x]/f(x)
with time complexity O(n3B(B+ log n), where n is the dimension of the lattice
and B is the upper bound of the bit length of the entries of the input lattice
basis (Algorithm 1).

Although, in 2007, Ding and Lindner [16] proposed an algorithm for identi-
fying ideal lattice that output a single polynomial ring which the input lattice
can be embedded into as an ideal with time complexity O(n5B2), we find that
there is a flaw in Ding and Lindner’s algorithm. More exactly, some ideal lat-
tices can’t be identified by their algorithm and we give a non-trivial example in
Section 4. Besides, ignoring the flaw, our algorithm is more efficient and output
more polynomial rings than Ding and Lindner’s algorithm.

On one hand, our finding reveals that an ideal lattice in Z[x]/f(x) can be
viewed as an ideal lattice in Z[x]/g(x) for infinitely many different g(x) and it is
widely believed that some additional algebraic structures may lead a more effi-
cient algorithm to solve the hard problems in ideal lattice than general lattices,
such as [7], [10]. Hence, we may embed the given ideal lattice into a well-studied
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ring as an ideal lattice and use the algebraic structure of the well-studied ring
to solve the hard lattice problems more efficiently.

On the other hand, we test the proportion of ideal lattices in plain integer
lattices by our algorithm and find that the proportion decreases very fast with
the increase of the lattice dimension and upper bound of the bit length of the
entries of the input lattice basis. Our test data indicates that the ideal lattice is
actually very rare.

Finally, we provide an efficient open source implementation of our algorithm
for identifying ideal lattices in SageMath. The source code is available at:

https://github.com/fffmath/Identifying-Ideal-Lattice.

With this implementation, we conducted several experiments, and the experi-
mental results are presented in Appendix A.

1.3 Roadmap

The paper is organized as follows. In Section 2, some preliminaries are presented.
In Section 3, we show embedding relation between integer lattices and polynomial
rings, and the theoretic basis of Algorithm 1 is also presented. In Section 4,
we propose the algorithm for identifying a coefficient-embedding ideal lattice
together with the complexity analysis and the comparison to Ding and Lindner’s
algorithm. The appendix contains our experimental results and reference.

2 Preliminaries

2.1 Notation

In this paper we denote by C, R, Q and Z the complex number field, the real
number field, the rational number field and the integer ring respectively.

We denote a matrix by a capital letter in bold and denote a vector by a lower-
case letter in bold. To represent the element of a matrix, we use the lower-case
letter. For example, the element of matrix A at the i-th row and j-th column
is denoted by aij , while its i-th row is denoted by ai. Since we have the inner
products in Rn and Cn respectively, we can define the norm of vectors, that is,
∥v∥ :=< v,v > in Rn and ∥v∥ :=< v,v > in Cn.

For two integers a and b, a|b means that b is divisible by a. Otherwise, we
write a ̸ | b. For integer a and a matrix A, a|A means that every entry of A can
be divisible by a.

For a polynomial f(x) ∈ Z[x], denote by Z[x]/f(x) for simplicity the quotient
ring Z[x]/(f(x)Z[x]).

For a map σ, and a set S, denote by σ(S) the set {σ(x) : x ∈ S}.

https://github.com/fffmath/Identifying-Ideal-Lattice
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2.2 Lattice

Lattices are discrete subgroups of Rm, or equivalently,

Definition 1. (Lattice) Given n linearly independent vectors B =


b1

b2

...
bn

, where

bi ∈ Rm, the lattice L(B) generated by B is defined as follows:

L(B) = {
n∑

i=1

xibi : xi ∈ Z} = {xB : x ∈ Zn}.

We call B a basis of L(B), m and n the dimension and the rank of L(B) respec-
tively. When m = n, we say L(B) is full-rank.

When n > 1, there are infinitely many bases for a lattice L, and any two
bases are related to each other by a unimodular matrix, which is an invertible
integer matrix. More precisely, given a lattice L(B1), B2 is also a basis of the
lattice if and only if there exists a unimodular matrix U s.t. B1 = UB2.

Hard problems in lattices The shortest vector problem (SVP) is one of the most
famous hard problems in lattices.

SVP is the question of finding a nonzero shortest vector in a given lattice
L, whose length is denoted by λ1(L). The approximating-SVP with factor γ,
denoted by γ-SVP, asks to find a short nonzero lattice vector v such that

∥v∥ ≤ γ · λ1(L).

In fact, The hardness of γ-SVP depends on γ. When γ = 1, γ-SVP is exactly
the original SVP, and for constant γ, this problem is known to be NP-hard
under randomized reduction [17]. Many cryptosystems are based on the hardness
of (decision) γ-SVP when γ is in polynomial size. By now we have not found
any polynomial-time classical algorithm to deal with such cases. The existing
polynomial algorithms such as LLL [18], BKZ [19] can find the situation when
γ = exp(n).

2.3 Hermite Normal Form And Smith Normal Form

For the integer matrix, there is a very important standard form known as the
Hermite Normal Form (HNF). For simplicity, we just present the definition of
HNF for the non-singular integer matrix.

Definition 2. (Hermite Normal Form) A non-singular matrix H ∈ Zn×n is
said to be in HNF, if

– hi,i > 0 for 1 ≤ i ≤ n.
– hj,i = 0 for 1 ≤ j < i ≤ n.



6 Yihang Cheng, Yansong Feng, and Yanbin Pan (�)

– 0 ≤ hj,i < hi,i for 1 ≤ i < j ≤ n.

The Hermite Normal Form has some important properties. See [20,21,22] for
more details.

Lemma 1. For any integer matrix A, there exists a unimodular matrix U such
that H=UA is in HNF. Moreover, HNF can be computed in polynomial time.

For integer lattices, we have

Lemma 2. For any lattice L ⊂ Zn, there exists a unique basis H in HNF. We
call H the HNF basis of L.

Sometimes we do not need the whole HNF of an integer matrix. So we intro-
duce the Incomplete Hermite Normal Form of an integer matrix, which is also a
special basis of the integer lattice.

Definition 3. (Incomplete Hermite Normal Form) A non-singular matrix B ∈
Zn×n is said to be in Incomplete Hermite Normal Form, if

– bn,n > 0;
– bi,n = 0 for 1 ≤ i ≤ n− 1.

Given a full-rank integer matrix B,

B =


b1,1 b1,2 · · · b1,n
b2,1 b2,2 · · · b2,n
...

...
. . .

...
bn,1 bn,2 · · · bn,n

 ,

it is well known that by the Extended Euclidean Algorithm we can find a uni-
modular matrix U, such that

U


b1,n
b2,n
...

bn,n

 =


0
0
...
d

 ,

where d = gcd(b1,n, b2,n, ..., bn,n). Then we have

B′ = UB =

(
D 0
b′ d

)
is in Incomplete Hermite Normal Form, where D ∈ Z(n−1)×(n−1), b′ ∈ Zn−1.

About the Incomplete Hermite Normal Form, it is easy to conclude the fol-
lowing lemma. So we omit the proof.

Lemma 3. For any non-singular matrix B ∈ Zn×n, the following properties are
satisfied:
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– we can find a unimodular matrix U in polynomial time, such that B′ = UB
is in Incomplete Hermite Normal Form.

– For any unimodular matrix U and V such that B′ = UB and B′′ = VB
both in Incomplete Hermite Normal Form, B′ and B′′ are not necessarily
equal, but

b′n,n = b′′n,n = gcd(b1,n, b2,n, ..., bn,n).

Specially, notice that the HNF H of B is also in Incomplete Hermite Normal
Form. We immediately have

hn,n = gcd(b1,n, b2,n, ..., bn,n).

Definition 4. (Smith Normal form)Let A be nonzero m×n matrix over a prin-
cipal ideal domain R, there exist invertible m×m and n×n-matrices P,T (with
coefficients in R) such that the product

S = PAT =



α1 0 0 · · · 0
0 α2 0 · · · 0

0 0
. . . . . . 0

...
...

. . . αr

...
...

... 0 0
...

0 · · · · · · · · · 0


And the diagonal elements satisfy αi|αi+1 for all 1 ≤ i < r. S is the Smith
Normal Form of A, and the elements αi are unique up to multiplication by a
unit in R and are called the elementary divisors, invariants, or invariant factors.

Definition 5. (Smith Massager)Let A ∈ Zn×n be a non-singular integer matrix
with Smith Normal Form S. A matrix M ∈ Zn×n is a Smith Massager for A if

(i) it satisfies that AM ≡ 0 cmod S, and
(ii) there exists a matrix W ∈ Zn×n such that WM ≡ In cmod S.

Definition 6. (cmod) Given B ∈ Zm×n and S ∈ Zn×n, where

B =
(
b1 b2 · · · bn

)

S =


s1 0 · · · 0
0 s2 · · · 0
...

...
. . .

...
0 0 · · · sn


bi is the i-th column of B and S is a diagonal matrix.

B cmod S :=
(
b1 mod s1 b2 mod s2 · · · bn mod sn

)
The definitions of Smith Normal form and Smith Massager will only be used

in Theorem 3, Section 4.
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2.4 Ideal lattices

An algebraic number field K is an extension field of the rationals Q such that
its dimension [K : Q] as a Q-vector space (i.e., its degree) is finite.

An element x in the algebraic number field K is said to be integral over Z if
the coefficients of the minimal polynomial of x over Q are all integers. All the
elements which are integral over Z in K make up a set OK . OK is actually a
ring called the algebraic integer ring of K over Z.

OK is a finitely generated Z-module of dimension [K : Q]. The basis of OK

as a Z-module is called the integer basis, which is also a basis of K as a Q-vector
space.

Canonical-embedding ideal lattice If Ω ⊃ K is an extension field such that Ω is
algebraically closed over Q, then there are exactly [K : Q] field embeddings of
K into Ω. For convenience, we regard Ω as the complex field C.

Any ideal of OK is a full-rank submodule of OK . Let [K : Q] = n. This
structure induces a canonical embedding:

Σ : OK → Cn

a 7→ (Σi(a))i=1,...,n,

where Σi’s are the n different embeddings from K into C.

Definition 7. (Canonical-embedding Ideal Lattice) Given a number field K and
any ideal I of OK , Σ(I) is called the canonical-embedding ideal lattice.

Coefficient-embedding ideal lattice Denote by Z(n)[x] the set of all the polynomi-
als in Z[x] with degree ≤n− 1. We use the symbol σ to represent the following
linear map:

σ : Z(n)[x] → Zn

n∑
i=1

aix
i−1 7→ (a1, a1, ..., an),

where linear map means that

– For any f(x), g(x) ∈ Z(n)[x], σ(f(x) + g(x)) = σ(f(x)) + σ(g(x));
– For any f(x) ∈ Z(n)[x] and z ∈ Z, σ(zf(x)) = zσ(f(x)).

We can also define its inverse, which is linear too:

σ−1 : Zn → Z(n)[x]

(a1, a1, · · · , an) 7→
n∑

i=1

aix
i−1.

In what follows, we focus on ideal lattices induced by ideals of the ring
Z[x]/f(x), where f(x) is a monic polynomial of degree n. Any element in Z(n)[x]
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can be viewed as a representative in the ring Z[x]/f(x) with degree(f(x)) ≥ n
[16]. So we abuse the symbol σ to represent the the following coefficient embed-
ding.

σ : Z[x]/f(x) → Zn

n∑
i=1

aix
i−1 7→ (a1, a2, ..., an).

Therefore, under the coefficient embedding, any ideal of Z[x]/f(x) can be
viewed as an integer lattice.

Definition 8. (Coefficient-embedding Ideal Lattice) Given Z[x]/f(x), where f(x)
is a monic polynomial of degree n, and any ideal I of Z[x]/f(x), σ(I) is called
the coefficient-embedding ideal lattice, which is of course an integer lattice.

Roughly speaking, due to the abundant algebraic structures of the corre-
sponding algebraic integer domains, the hard lattice problems in canonical-
embedding ideal lattices are easier to analyse than that in coefficient-embedding
ideal lattices. However, as we’ve introduced in the introduction, in some cases,
the results in canonical-embedding ideal lattices can be converted to the results
in the coefficient-embedding ideal lattices with small loss.

The following is an important property of ideal lattices, it was proposed
by Zhang, Liu and Lin [23]. We present their proof detail for readers to check
conveniently.

Lemma 4 ([23]). Let H be the HNF basis of the full-rank coefficient-embedding
ideal lattice L(B) in the ring Z[x]/f(x).

H =


h1,1 0 · · · 0
h2,1 h2,2 · · · 0
...

...
. . .

...
hn,1 · · · · · · hn,n

 .

Then hi,i|hj,l, for 1 ≤ l ≤ j ≤ i ≤ n. Specially, hn,n|hi,j, i, j ≤ n.

Proof. By induction on i, it’s trivial for i = 1.
Assume the result holds for i ≤ k ≤ n − 1. It remains to show that for

i = k + 1, hk+1,k+1|hj,l where 1 ≤ l ≤ j ≤ k + 1 ≤ n.
Let hi be the i-th row of H. Note that for any ideal I of Z[x]/f(x) and

for all g(x) ∈ I, xg(x) ∈ I. Specially xσ−1(hk) ∈ I, where σ is the coefficient-
embedding. Since H is a basis of the ideal lattice, it is very simple to imply that
there must exist yi ∈ Z, for i = 1, 2, · · · , k + 1 such that:

(
0 hk,1 · · · hk,k 0 · · · 0

)
=

k+1∑
i=1

yihi.
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Hence,

hk,k = yk+1hk+1,k+1

hk,k−1 = ykhk,k + yk+1hk+1,k

...

hk,1 =

k+1∑
i=2

yihi,2

0 =

k+1∑
i=1

yihi,1

From the first equation, we get yk+1 =
hk,k

hk+1,k+1
∈ Z, and

hk+1,k =
hk,k−1 − ykhk,k

hk,k
hk+1,k+1

hk+1,k−1 =
hk,k−2 − yk−1hk−1,k−1 − ykhk,k−1

hk,k
hk+1,k+1

...

hk+1,2 =
hk,1 −

∑k
i=2 yihi,2

hk,k
hk+1,k+1

hk+1,1 =
−
∑k

i=1 yihi,1

hk,k
hk+1,k+1

From the induction hypothesis, we have hk,k|hj,l for 1 ≤ l ≤ j ≤ k ≤ n.
So the coefficient of hk+1,k+1 in each equation is in fact an integer. Therefore,
hk+1,k+1|hk+1,l, 1 ≤ l ≤ k+1. Since hk+1,k+1|hk,k, we know hk+1,k+1|hj,l, where
1 ≤ l ≤ j ≤ k + 1 ≤ n. Thus, the result holds for i = k + 1.

By induction, hi,i|hj,l, 1 ≤ l ≤ j ≤ i ≤ n. So hn,n|hi,j , 1 ≤ i ≤ j ≤ n. Lemma
4 follows.

2.5 Overview

In the third section, we first show and prove a naturally equivalent definition
(Lemma 5) of integer lattices. It’s a direct application of the definition of the
coefficient-embedding ideal lattice. Though the result of Lemma 5 may have been
used in some earlier research, we haven’t found a detailed description. Hence,
we rewrite and prove Lemma 5 formally.

Inspired by Lemma 4 proposed by Zhang, Liu and Lin [23], we propose The-
orem 1, another equivalent definition of ideal lattices in Section 3.2. Using this
equivalent definition, we design Algorithm 1 to verify whether an integer lattice
is an ideal lattice.
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In Section 3.3, Theorem 2 shows that a coefficient-embedding ideal lattice
can be embedded into another polynomial ring denoted by R as an ideal of
R, and for a fixed coefficient-embedding ideal lattice the number of such R is
infinite. The proof is also motivated by Lemma 4. Theorem 2 guarantees that
Algorithm 1 can output all the polynomial rings which the input integer lattice
can be embedded into as ideals.

In the fourth section, we propose Algorithm 1 to judge whether an integer
lattice can be embedded into a polynomial ring as ideals and compute all the
rings that the lattice can be embedded into as an ideal if the given lattice is a
coefficient-embedding ideal lattice. We analysis the time complexity of Algorithm
1 and also compare our algorithm to related work.

Finally, we give a brief conclusion. Out experimental data is presented in the
Appendix A.

3 An ideal lattice can be embedded into different rings

We stress that in the following, we focus on the coefficient-embedding ideal
lattice, and in this section, we’ll show how an coefficient-embedding ideal lattice
can be embedded into different rings.

3.1 Deciding an ideal lattice

We next present an easy way to tell if a given lattice is a coefficient-embedding
ideal lattice in Z[x]/f(x) or not.

Lemma 5. For any monic polynomial f(x) ∈ Z[x] with degree n, a lattice L(B)
with any basis B is a coefficient-embedding ideal lattice in Z[x]/f(x) if and only
if σ(xσ−1(bi) mod f(x)) ∈ L(B) for i = 1, · · · , n, where bi is the i-th row
vector of B, and σ is the map defined in Section 2.3.

Proof. If L(B) is a coefficient-embedding ideal lattice in Z[x]/f(x), then σ−1(bi)’s
are in the corresponding ideal. It is obvious that xσ−1(bi) mod f(x) must be
in the ideal too, which means that σ(xσ−1(bi) mod f(x)) ∈ L(B).

If there exists a monic polynomial f(x) ∈ Z[x] with degree n, such that
σ(xσ−1(bi) mod f(x)) ∈ L(B) for i = 1, · · · , n, we show that σ−1(L(B)) must
be an ideal in Z[x]/f(x). It is easy to check that σ−1(L(B)) is an additive
group, due to the fact that σ is an additive homomorphism. Since σ(xσ−1(bi)
mod f(x)) ∈ L(B), then for any lattice vector v =

∑n
i=1 zibi, zi ∈ Z, we have

σ(xσ−1(v) mod f(x)) =

n∑
i=1

ziσ(xσ
−1(bi) mod f(x)) ∈ L(B).

Applying the result on the lattice vector σ(xσ−1(v) mod f(x)), we will have

σ(x2σ−1(v)) = σ(xσ−1(σ(xv mod f(x)))) ∈ L(B).
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Hence, for any positive integer k, we know that

σ(xkσ−1(v)) ∈ L(B).

Then for any g(x) =
∑n

i=1 gix
i−1 ∈ Z[x]/f(x) and any lattice vector v,

σ(g(x)σ−1(v) mod f(x)) =

n∑
i=1

giσ(x
i−1σ−1(v) mod f(x)) ∈ L(B).

The lemma follows.

3.2 Equivalent condition

Inspired by Lemma 4, we find a new equivalent definition of coefficient-embedding
ideal lattices.

Theorem 1. Given a full-rank integer lattice L(B), let B′ =

(
D 0
b′ b′n,n

)
be any

Incomplete Hermit Normal Form of B. Then L(B) is an ideal lattice if and
only if there exists a T ∈ Z(n−1)×n, s.t.

(
0 D

)
= TB. Specially, if L(B) is an

ideal lattice, then taking any g(x) = xn+ gnx
n−1+ · · ·+ g1 with

(
g1 g2 · · · gn

)
∈

1
b′n,n

(
(
0 b′)+ L(B)), L(B) is also an ideal lattice in the ring Z[X]/g(x).

Proof. It can be easily check the “only if” part by Lemma 5, since for an ideal
lattice L(B) in Z[x]/g(x), there exists a T ∈ Z(n−1)×n, s.t.

(
0 D

)
= TB if and

only if σ(xσ−1(b′
i) mod g(x)) ∈ L(B) for i = 1, · · · , n− 1.

For “if” part, to indicate that L(B) is an ideal lattice, we need to find a
monic polynomial g(x) of degree n, s.t. L(B) can be embedded as an ideal into
Z[x]/g(x), or σ(xσ−1(b′

i) mod g(x)) ∈ L(B) for i = 1, · · · , n by Lemma 5.
Note that for any polynomial g(x) with degree n, σ(xσ−1(b′

i) mod g(x)) ∈
L(B) for i = 1, · · · , n− 1 since there exists a T ∈ Z(n−1)×n, s.t.

(
0 D

)
= TB.

It remains to show that there exists a monic polynomial g(x) of degree n,
such that σ(xσ−1(b′

n) mod g(x)) ∈ L(B).
We first present a lemma, which will be proven later.

Lemma 6. If
(
0 D

)
= TB, then B′/b′n,n ∈ Zn×n

By Lemma 6, 1
b′n,n

(
(
0 b′)+ L(B)) ⊂ Zn. Taking any

g =
(
g1 g2 · · · gn

)
∈ 1

b′n,n
(
(
0 b′)+ L(B)), (1)

the integer polynomial g(x) = xn + gnx
n−1 + · · ·+ g1 is what we want, since

σ(xσ−1(b′
n) mod g(x)) =

(
0 b′)− b′n,n

(
g1 g2 · · · gn

)
∈ L(B).

It remains to prove Lemma 6. Actually, the proof is exactly the same with
Lemma 4
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3.3 An ideal lattice can be embedded into infinitely many different
polynomial rings as ideals

Given a full-rank ideal lattice L(B) together with the Incomplete Hermit Normal

Form B′ =

(
D 0
b′ b′n,n

)
, Theorem 1 shows that for any g(x) = xn+gnx

n−1+· · ·+g1

with
(
g1 g2 · · · gn

)
∈ 1

b′n,n
(
(
0 b′)+L(B)), L(B) is also an ideal lattice in the ring

Z[X]/g(x). The following theorem proves that only if we take g(x) in this way,
L(B) can be viewed as an ideal lattice in the ring Z[X]/g(x). In other words,
the coset 1

b′n,n
(
(
0 b′)+L(B)) can represent the class of all the polynomial rings

which the given ideal lattice L(B) can be embedded into as ideals.

Theorem 2. For any full-rank coefficient-embedding ideal lattice L(B) in the
ring Z[x]/f(x), where f(x) is monic and deg(f(x)) = n, there exists infinitely
many monic g(x) ∈ Z[x] with degree n, s.t. L(B) is also a coefficient-embedding
ideal lattice in Z[x]/g(x).

More precisely, let d = gcd(b1,n, b2,n, ..., bn,n). Then L(B) is also a coefficient-
embedding ideal lattice in Z[x]/g(x), where g(x) ∈ Z[x] is a monic polynomial
with degree n, if and only if

σ(f(x)− g(x)) ∈ L(B
d
),

or equivalently,

g(x) ∈ f(x) + σ−1(L(B
d
)).

Proof. Consider the HNF basis of L(B),

H =


h1,1 0 · · · 0
h2,1 h2,2 · · · 0

...
...

. . .
...

hn,1 · · · · · · hn,n

 .

For convenience, we denote by hi the i-th row of H, and then hi is a vector in
Zn.

(i) If there is a monic g(x) ∈ Z[x] with degree n, s.t. L(B) is also a coefficient-
embedding ideal lattice in Z[x]/g(x), we next prove that σ(f(x)−g(x)) ∈ L(Bd ).

By Lemma 5, L(H) = L(B) is a coefficient-embedding ideal lattice in Z[x]/f(x),
then we have

σ(xσ−1(hn) mod f(x)) ∈ L(B).

Note that

xσ−1(hn) mod f(x) =

n−1∑
i=1

hn,ix
i − hn,n(f(x)− xn).

We have (
0 hn,1 ... hn,n−1

)
− hn,nσ(f(x)− xn) ∈ L(B). (2)
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Similarly, since L(B) is also a coefficient-embedding ideal lattice in Z[x]/g(x),
we have (

0 hn,1 ... hn,n−1

)
− hn,nσ(g(x)− xn) ∈ L(B). (3)

Subtracting the left side of (2) from the left side of (3), we immediately have

hn,nσ(f(x)− g(x)) ∈ L(B).

By Lemma 3, hn,n = d, we have

σ(f(x)− g(x)) ∈ L(B
d
).

(ii) We next prove that for any polynomial g(x), such that σ(f(x)− g(x)) ∈
L(Bd ), any full-rank coefficient-embedding ideal lattice L(B) in the ring Z[x]/f(x)
can also be viewed as a coefficient-embedding ideal lattice in Z[x]/g(x).

First, g(x) is obviously a monic polynomial with degree n. Note that by
Lemma 4, hn,n|hi,j , then d = hn,n divide all the components of every lattice
vector in L(B), which means that L(Bd ) is an integer lattice and once σ(f(x)−
g(x)) ∈ L(Bd ), g(x) ∈ Z[x].

By Lemma 5 again, L(H) = L(B) is a coefficient-embedding ideal lattice in
Z[x]/f(x), then we have

σ(xσ−1(hi) mod f(x)) ∈ L(B),

for i = 1, · · · , n.
To prove that L(B) is also a coefficient-embedding ideal lattice in Z[x]/g(x),

by Lemma 5 it is enough to show that σ(xσ−1(hi) mod g(x)) ∈ L(B), for
i = 1, · · · , n.

Note that for i = 1, · · · , n− 1,

σ(xσ−1(hi) mod g(x)) = σ(xσ−1(hi) mod f(x)) ∈ L(B).

Sinceσ(f(x)− g(x)) ∈ L(Bd ), there exists a lattice vector v ∈ L(B) such that
d(f(x)− g(x)) = hn,n(f(x)− g(x)) = σ−1(v). Then for i = n,

σ(xσ−1(hn) mod g(x)) = σ(

n−1∑
i=1

hn,ix
i − hn,n(g(x)− xn))

= σ(

n−1∑
i=1

hn,ix
i − hn,n(f(x)− xn) + σ−1(v))

= σ(xσ−1(hn) mod f(x)) + v ∈ L(B).

The theorem follows.

Remark 1. The HNF H in the proof can be replaced by any Incomplete Hermite
Normal Form.
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3.4 Applications

For most lattice-based cryptosystems, their security is guaranteed by the hard-
ness of lattice problems such as γ-SVP. Hence, the hardness of lattice problem in
ideal lattice is widely considered as the security foundation of Ring-LWE based
cryptosystems.

Due to the additional algebraic structure, the problem for the ideal lattice
is usually conjectured to be easier than that for generic integer lattices. Some
recent progress supports the argument well. Obviously, the algebraic structure
depends on the polynomial ring that the ideal belongs to.

However, Theorem 2 shows us that an ideal lattice can be embedded as
ideals into different polynomial rings, which means that an ideal lattice may have
different "algebraic structure" in different rings. We notice that these embeddings
won’t change the original lattice at all, and hence the hard lattice problems
remain the same.

This phenomenon inspires us to consider the following method to solve the
hard problems for a given ideal lattice. By changing the polynomial ring, is it
possible to transform the given ideal lattice as another ideal in which the lattice
problems can be solved more efficiently by using the new algebraic structure. It
seems hard to present a negative answer if the algebraic structure can indeed
help solve the hard problems, since we have to consider infinite ideals and hence
infinite algebraic structures. This no doubt increases the difficulty to show that
the lattice problem for some fixed ideal lattice is hard.

On the other hand, if we can utilize the algebraic structure to solve the lattice
problems in some ideal lattice, then we can solve the problems for infinite ideal
lattice in different rings. We would like to stress that as a lattice, these ideal
lattices are same. However, as ideals, they are different. It seems that a weak
ideal will spread as infinite weak ideals.

Next we present some concrete examples to show the potential risk inspired
by Theorem 1.

Pre-processing a fixed ring brings more. As we’ve mentioned in the in-
troduction that in some monogenic number fields, the γ-SVPs in ideal lattices
induced by two different embeddings of the same ideal are connected closely.
Hence, in such number fields we can make use of the research on γ-SVP in
the canonical embedding ideal lattices to deal with the γ-SVP in coefficient-
embedding ideal lattices.

In [10], Pellet-Mary et al. showed pre-processing the number field can help
solve γ-SVP in canonical-embedding ideal lattices more efficiently. However, pre-
processing usually costs too much time. One may think for different number
fields, we have to do different pre-processing. By Theorem 1, we know that pre-
processing a fixed number field will also help us solve γ-SVP more efficiently in
ideals that is not in the algebraic integer ring of the fixed number field.

Consider the ring Z[x]/(xn+1), where n = 2k, which is one of the most used
rings in cryptosystems. It is well known that the lengths of vectors induced by
the same element under the coefficient embedding and the canonical embedding
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are the same up to a fixed factor, which means the hardness of SVP in such
two embedding ideal lattices are equivalent. Hence, by the method in [10], we
can pre-process the ring Z[x]/(xn + 1), and then can solve γ-SVP in its any
coefficient-embedding ideal lattice more efficiently.

Below we give a simple example to show how to apply the pre-processing on
the ideal in other polynomial ring.

Example 1. Given a coefficient-embedding ideal lattice in the ring Z[x]/(xn +
xn−1 + 2xn−2 + 1) induced by the ideal < x+ 2 >, where n = 2k, the basis has
the form

B =


2 1 0 · · · · · · 0
0 2 1 · · · · · · 0
...

...
...

...
...

...
0 0 · · · 0 2 1
−1 0 · · · 0 −2 1

 .

Note that the greatest common divisor d of the entries in the last column is 1.
To verify that L(B) can be embedded as an ideal into the ring Z[x]/(xn + 1),
according to Theorem 2, it’s sufficient to verify the following relation:

σ((xn + xn−1 + 2xn−2 + 1)− (xn + 1)) =
(
0 0 · · · 0 2 1

)
∈ L(B),

which is obvious.
Therefore, by pre-processing the field Q[x]/(xn + 1), we can also handle the

hard problems on the ideal lattice L(B) in Z[x]/(xn + xn−1 + 2xn−2 + 1).

By the discussion above, our theorem has a good chance to amplify the results
of the research on the ideal lattice of certain rings.

Remark 2. In fact, this argument can be extended to all cyclotomic fields. As
we all know, there exists irreducible polynomial f(x) over Z[x], s.t. O(Q(ζ)) ∼=
Z[x]/f(x), where ζ is a primitive unit root. Similarly to the ring Z[x]/(xn + 1),
it’s possible to handle the ideal lattices in the algebraic integer rings of any
cyclotomic fields. But the norm relation between the two embeddings in any
cyclotomic field is slightly complex. In fact, there is a linear transformation
between the two embeddings in cyclotomic field. We refer to [15] for more details.
Then our theory can extend Pellet-Marry’s [10] method to any integer lattice
that’s in the same class of the algebraic integer ring of some cyclotomic field.

Changing the ring may be not enough for the security. Sometimes, we
want to choose a special ring for the cryptosystems to resist some potential
attacks. This may work in general. However, for some fixed ideal lattices, this
may be not enough to obtain the desired security.

For example, NTRUPrime [24] uses the ring Z[x]/(xp − x − 1) to resist the
potential subfield attacks against NTRU, where p is an odd prime. We next
present a simple example to show that some ideals generated by polynomials
with small coefficients in the ring Z[x]/(xp − x− 1) can also be embedded as an
ideal into some Z[x]/f(x), where f(x) is reducible. However, a reducible f(x)
may cause some potential security risk.
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Example 2. For convenience, we assume that p is large enough. Consider the
coefficient-embedding ideal lattice induced by the principal ideal < xp−1 − x2 −
x > in the ring Z[x]/(xp−x−1). We show that such ideal lattice can be embedded
as an ideal into the ring Z[x]/f(x), where f(x) = (x+1)(xp−1−x−1) is reducible.

The lattice basis of is

B =


0 −1 −1 0 0 · · · 1
1 1 −1 −1 0 · · · 0
...

...
...

...
...

...
...

· · · · · · · · · · · · · · · · · · · · ·

 .

Note that the greatest common divisor d of the entries in the last column is
1. According to Theorem 2, it’s sufficient to verify the following relation:

σ((x+ 1)(xp−1 − x− 1)− (xp − x− 1)) = (0,−1,−1, 0, · · · , 1) ∈ L(B),

and (0,−1,−1, 0, · · · , 1) is exactly the first row of B.

4 Identifying an Ideal Lattice

4.1 Algorithm

According to Theorem 1 and Theorem 2, we propose an algorithm to identify
whether a given integer lattice is an ideal lattice or not (Algorithm 1).

Algorithm 1 Identifying an ideal lattice

Input: B ∈ Zn×n, rank(B) = n.
Output: False if L(B) is not a coefficient-embedding ideal lattice; Otherwise output

a set S ⊂ Zn s.t. for any (g1, g2, ..., gn) ∈ S, L(B) can be embedded as an ideal
into Z[x]/(g1 + g2x

1 + ...+ gnx
n−1 + xn).

1: Compute any Incomplete Hermit Normal Form B′ =

(
D 0
b′ b′n,n

)
of B by unimodular

transformation;
2: if b′n,n ̸ | B then return False;
3: end if
4: if

(
0 D

)
B−1 /∈ Z(n−1)×n then return False;

5: end if
6: Output S = 1

b′n,n
(
(
0 b′)+ L(B)).

Remark 3. In Step 1, we can also compute the HNF of L(B), and then use the
divisibility relation described in Lemma 4 to rule out some integer lattices that
can’t be embedded as an ideal into any polynomial ring. This may speedup the
algorithm in practice, since many "random" integer lattices can not pass such
check.

The correctness of Algorithm 1 is guaranteed by Theorem 1 and Theorem 2



18 Yihang Cheng, Yansong Feng, and Yanbin Pan (�)

4.2 Complexity

For Step 1, we can use Algorithm 2 to compute an Incomplete Hermite Normal
Form for B ∈ Zn×n with a unimodular transformation, whose idea has already
been described in Section 2.3.

Algorithm 2 Computing an Incomplete Hermite Normal Form

Input: B ∈ Zn×n, rank(B) = n.
Output: An Incomplete Hermit Normal Form of B by unimodular transformation.
1: for i from 1 to n− 1 do
2: Use Extended Euclidean Algorithm with input (bi,n, bi+1,n) to find x, y, d s.t.

xbi,n + ybi+1,n = gcd(bi,n, bi+1,n) = d;

3: Update
(

bi

bi+1

)
:=

(
−bi+1,n/d bi,n/d

x y

)(
bi

bi+1

)
;

4: end for
5: Output B.

It is easy to check that the integer matrix
(
−bi+1,n/d bi,n/d

x y

)
is unimodular

since its determinant is −1. Hence, the transformation in Step 3 will not change
the lattice L(B). After Step 3 for each i, we have bi,n = 0 and bi+1,n = d
computed by Step 2, which means that the output is in Incomplete Hermite
Normal Form.

For the time complexity, we assume that for the input B, the absolute value
of its every entry is bounded by 2B .

It is easy to conclude that for the i-th loop, at the beginning, we have

– |bi,j | < 2i∗B+1, |bi+1,j | < 2B for j = 1, · · · , n, especially we have |bi,n| < 2B ;
– |x| < 2B , |y| < 2B , d < 2B .

Note that the Extended Euclidean Algorithm takes O(log|a|log|b|) bit operations
on input (a, b). Then for the i-th loop, with the plain integer multiplication we
have:

– Step 2 costs O(B2) bit operations;
– Step 3 costs O(i ∗ nB2) bit operations;

Hence, for the total n loops, Algorithm 2 needs O(n3B2) bit operations, and we
have the following result.

Lemma 7. For a non-singular matrix B ∈ Zn×n, the absolute value of whose
entries is bounded by 2B, Algorithm 2 takes O(n3B2) bit operations to compute
an Incomplete Hermite Normal Form of B by a unimodular transformation.

The most time-consuming part of Algorithm 1 is to judge whether
(
0 D

)
B−1 ∈

Z(n−1)×n or not. In fact, there is an equivalent description for this and we refer
to the results of Birmpilis et al [25].
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Theorem 3 (See Theorem 4 of [25] ). Let B ∈ Zn×n be nonsingular with
Smith form S and Smith massager M. Let s be the largest invariant factor of S.
The following lattices are identical:

L1 = {v|vB−1 ∈ Z1×n}
L2 = {v|vM ≡ 01×n cmod S}

By Theorem 3, L1 = L2, which means to judge whether
(
0 D

)
B−1 ∈

Z(n−1)×n or not , it’s sufficient to verify
(
0 D

)
M ≡ 0(n−1)×n cmod S. S is

the Smith Norm Form of B, and it’s diagonal. The following theorem is also
proposed by Birmpilis et al [25] to compute the Smith Normal Form S and a
reduced Smith Massager M of the input matrix (M is reduced cmod S)

Theorem 4 (See Theorem 19 of [25]). There exists a Las Vegas algorithm
that takes as input a nonsingular A ∈ Zn×n, and returns as output the Smith
Normal Form S ∈ Zn×n and a reduced Smith Massager M ∈ Zn×n of the input
matrix. The cost of the algorithm is O(nωB(log n + log ∥A∥)(log n)2) bit opera-
tions. The algorithm returns Fail with probability at most 1/2.

B(d) = O(M(d) log d) and M(d) bounds the number of bit operations re-
quired to multiply two integers bounded in magnitude by 2d. We take M(d) =
O(d2). ω is a valid exponent of matrix multiplication: two n × n matrices can
be multiplied in O(nω) operations from the domain of the entries, and the best
known upper bound is ω < 2.37286 by Alman and Williams [26].

After computing M and S, it remains to compute
(
0 D

)
M cmod S. It’s easy

to check that the entries of the output of Algorithm 2
(
0 D

)
are bounded by 23B .

We first consider the computation of the remainder modulo Y of the product of
two integers. Recall that Rem(ab, Y ) has cost bounded by O((log ab/Y )(log Y )),
so the cost of computing the i-th element of

(
0 D

)
M cmod S is bounded by

O(n(3B)(log si)). Hence, the cost of computing
(
0 D

)
M cmod S is bounded by

O(3nB log |det(B)|) = O(3n2B(B + log n))
Combining Lemma 7, Theorem 4 and the discussion above, we have

Theorem 5. Given B ∈ Zn×n, rank(B) = n, and the absolute value of the
entries of B is bounded by 2B, then there is a Las Vegas algorithm with expected
complexity O(n3B(B+log n)) to identify whether L(B) is an ideal lattice or not.

4.3 Related research

In 2007, Ding and Lindner [16] already proposed an algorithm for identifying
ideal lattices, but we find that there is a flaw in their algorithm. More exactly,
some ideal lattices can’t be identified by their algorithm.

We find some non-trivial ideal lattices which can’t be identified by Ding and
Lindner’s algorithm. The following is an example:

B =

6 −8 −5
3 −7 −4
6 1 −1
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The row vectors of B span a full-rank ideal lattice in the ring Z[x]/x3+3x2+
x1 − 3. However, with the input B, Ding and Lindner’s algorithm return false.

More exactly, in their algorithm, the lattice is spanned by column vectors, so
the input matrix should be BT . They first transform BT into an upper-triangular
Hermite Normal Form H.

H =

9 6 0
0 1 0
0 0 1


Then they compute the adjugate matrix A of H.

A =

1 −6 0
0 9 0
0 0 9


Let In be the unit matrix of dimension n, and M be a matrix only related to
the dimension n (For this example, the dimension is 3).

M =

(
0 0

In−1 0

)
In step 4 of their algorithm, they need to verify whether only the last column
AMH mod det(B) is equal to 0 or not. If the input lattice basis B spans an
ideal lattice, they believe by default only the last column AMH mod det(B) is
not equal to 0. However, AMH ≡ 0 mod det(B), which causes their algorithm
to return "false". Apparently, they ignore the situation that all the column of
AMH mod det(B) is equal to 0.

Ignoring the flaw above, our algorithm still performs better than theirs in
two aspects:

– Our algorithm outputs more. Ding and Lindner’s algorithm outputs a single
polynomial ring of the ring class if the input lattice is an ideal lattice but
ours outputs the entire ring class.

– The time complexity of our algorithm is lower. It is claimed in [16] that the
algorithm presented by Ding and Lindner to identify an ideal lattice costs
O(n4B2) bit operations. However, we have to point out that there is also a
flaw in the complexity analysis in O(n4B2). The algorithm in [16] needs to
compute n − 2 powers of B, that is, Bk for k = 2, · · · , n − 1. It is claimed
this can be done within O(n4B2) bit operations. However, when k grows
bigger, the bit size of the entries in Bk will be O(kB) instead of B. Hence
the correct time complexity should be

n−1∑
k=2

O(n3 ∗ k ∗B2) = O(n5B2).

4.4 Experiment

Using our algorithm, we conducted several experiments, and the experimental
results are presented in Appendix A.
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5 Conclusion

In this paper, we explore the connection between integer lattices and coefficient-
embedding ideal lattices. We have three main contributions:

Firstly, we find and proof an ideal lattice can be viewed as an ideal lattice
in infinitely many different polynomial rings. This interesting phenomenon may
contribute to the solution to hard ideal lattice problems as mentioned in Section
3.4.

Secondly, we propose an efficient algorithm for identifying ideal lattices, and
compared to related work, our algorithm has more advantages.

Finally, we provide an efficient open source implementation of our algorithm
for identifying ideal lattices in SageMath. Our experimental results are presented
in Appendix A.
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A Experiments

In this section, we present our experimental results and some intersting findings
about density of ideal lattice. The experiments were conducted in the SageMath
9 environment on a personal computer equipped with an Intel Core i7-13700KF
3.40 GHz processor. The source code for the experiments is open-sourced and
available at

https://github.com/fffmath/Identifying-Ideal-Lattice.

It allows simulations of experiments with input dimensions, bounds, and the
number of experiments.

We compared our algorithm with the one proposed by Ding and Lindner [16].
Under the same parameters, our algorithm demonstrated a significant advantage
in terms of runtime.

https://github.com/fffmath/Identifying-Ideal-Lattice
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Regarding algorithm runtime, we conducted multiple experiments with dif-
ferent variables. For input parameters dim and bound, we randomly generated a
dim-dimensional matrix within the specified bound as the lattice basis. In other
words, this results in the generation of a dim × dim matrix, where each element
of the matrix falls within the range of −2bound to 2bound.

Two scenarios were considered:

– Fixing the dimension (dim): We kept dim constant and recorded the runtime
as bound increased gradually.

– Fixing the bound (bound): We kept bound constant and recorded the runtime
as dim increased.

The relevant experimental results can be found in Figure 1.
For parameters with dim less than 300, we conducted 100 experiments for

each parameter and recorded the average time consumption as the time record.
We observed that these data have very low variance, with each data point closely
approaching the mean.

For parameters with large dim, due to the longer individual runtime, we
performed five experiments for each group and used the average of these five
values as the time consumption.

(a) dim fixed (b) bound fixed

Fig. 1: Cost time for our algorithm using random lattice as input

Note that as dimensions or bounds increased, the proportion of ideal lattices
became very small. Therefore, most of the generated lattices in the former ex-
periments weren’t ideal lattice, resulting in runtime data just be not suitable for
ideal lattice input.

To further explore ideal lattices, we conducted additional experiments using
ideal lattice as input. We randomly selected polynomials f with coefficients in
{-1,0,1} and g with coefficients in (−2bound, 2bound) and computed the lattice
basis of the principal ideal generated by g in Z[x]/f(x), ensuring it is an ideal
lattice. In such case, we take the coefficient vectors of xig(x)modf(x) as the
lattice basis, and the reason why we limit the coefficients of f(x) in {-1,0,1} is
to decrease the exploration of the coefficients of ideal lattice basis generated by
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g. Similarly as former experiments, we also performed experiments with fixed
dimensions, recording the runtime as bound varied, and fixed bounds, recording
the runtime as dim varied. The relevant experimental results can be found in
Figure 2.

(a) dim fixed (b) bound fixed

Fig. 2: Cost time for our algorithm using Ideal lattice as input

To facilitate the comparison of different parameters and the runtime under
various inputs, you can refer to the data table in Table 1.

Finally, although finding an ideal lattice in high dimensions is challenging, we
conducted experiments in lower dimensions to estimate the reduction factor. We
investigated the density of ideal lattices in low dimensions and small bounds. We
performed 100,000 experiments for each parameter dim = 3, bound = 3, 4, 5, 6, 7
and bound = 3, dim = 2, 3, 4, 5, 6, recording the quantity of ideal lattices under
different parameters. We observed a rapid decrease in the proportion of ideal
lattices in Figure 3.

(a) bound fixed (b) dim fixed

Fig. 3: Density of ideal lattice
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(dim, bound) lattice (s) ideal lattice (s)

(100, 5) 0.406 0.467
(100, 10) 0.555 0.598
(100, 15) 0.713 0.759
(100, 20) 0.894 0.934
(200, 5) 3.999 5.538
(200, 10) 5.607 7.503
(200, 15) 7.494 8.203
(200, 20) 9.365 11.140
(300, 5) 16.426 30.870
(300, 10) 23.916 37.507
(300, 15) 30.485 44.475
(300, 20) 39.398 57.703
(400, 5) 46.075 93.985
(400, 10) 61.436 103.909
(400, 15) 87.487 136.954
(400, 20) 115.221 153.318
(500, 5) 110.583 192.532
(500, 10) 144.965 297.249
(500, 15) 204.832 313.888
(500, 20) 270.002 393.900

Table 1: Experimental results for cost time when using random lattice/ideal
lattice as input.
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