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ABSTRACT

Garbled circuits (GC) are a secure multiparty computation protocol that enables two parties to jointly
compute a function using their private data without revealing it to each other. While garbled circuits
are proven secure at the protocol level, implementations can still be vulnerable to side-channel
attacks. Recently, side-channel analysis of GC implementations has garnered significant interest from
researchers.
We investigate popular open-source GC frameworks and discover that the AES encryption used in
the garbling process follows a secret-dependent sequence. This vulnerability allows private inputs to
be exposed through side-channel analysis. Based on this finding, we propose a side-channel attack
on garbled circuits to recover the private inputs of both parties. Our attack does not require access
to any plaintexts or ciphertexts in the protocol and is single-trace, adhering to the constraint that a
garbled circuit can be executed only once. Furthermore, unlike existing attacks that can only target
input non-XOR gates, our method applies to both input and internal non-XOR gates. Consequently,
the secrets associated with every non-XOR gate are fully exposed as in an open book.
We comprehensively evaluate our attack in various scenarios. First, we perform the attack on single-
platform software implementations of standard AES and interleaved AES on a 32-bit ARM processor,
achieving a 100% success rate in both cases. Next, we target a hardware implementation on a Xilinx
Artix-7 FPGA, where the resolution of power consumption measurements and the number of samples
are significantly limited. In this scenario, our attack achieves a success rate of 79.58%. Finally, we
perform a cross-platform attack on two processors with different microarchitectures representing
the two parties. The differing execution cycles and power sensors across the platforms increase the
difficulty of side-channel analysis. Despite these challenges, our point-of-interest (POI) selection
method allows our attack to achieve a 100% success rate in this scenario as well. We also discuss
effective countermeasures that can be readily applied to GC frameworks to mitigate this vulnerability.

Keywords Secure multi-party computation, Garbled Circuits, Side-channel analysis, Single-trace attack, Cross-platform
attack, FPGA

1 Introduction

Secure Multi-Party Computation (MPC), a trending research area in modern cryptography, allows multiple parties
to jointly compute a function f while safeguarding the privacy of their respective inputs. MPC protocols enable
multiple parties to evaluate f by exchanging their information without reliance on additional trusted parties. The
goal of MPC can be achieved through techniques like secret sharing [14, 21], homomorphic encryption [28, 72], or
garbled circuits [48, 6, 75], etc. MPC protocols have a wide range of privacy-preserving applications, such as data
analysis [22, 12, 27], outsourcing computation [36], and federated learning [78, 66].

The two-party setting of MPC, known as secure two-party computation (2PC), has received vast attention from
researchers. Garbled circuit (GC) protocol [79, 30] is used in the first 2PC implementation [48]. The GC protocol
can evaluate any functions that can be represented by a Boolean circuit while providing security against semi-honest
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Figure 1: Adversarial model.

adversaries. There are two parties in the GC protocol: a garbler and an evaluator. The garbler encodes a Boolean circuit
into a garbled circuit, where the bit value 0 or 1 of each wire in the original circuit is represented by a random label
(e.g., a 128-bit random bit-string). Then, the garbled circuit and the labels corresponding to the garbler’s input are sent
to the evaluator. The evaluator gets the labels corresponding to its own input through oblivious transfer and uses all
the available input labels to evaluate the garbled circuit till getting the final output value. By encoding the real values
as random labels for circuit evaluation, the evaluator cannot infer the real value of a wire label observed during the
evaluation, and thus, the privacy of each party’s private input is preserved. Due to the flexibility of implementing any
functions as Boolean circuits, the GC protocol is widely adopted in real-world applications [54, 57, 56, 63].

To further reduce the computation, memory, and communication costs of the GC protocol, researchers have introduced
a variety of optimizations, such as [5, 55, 40, 6, 81, 62]. These optimizations make the GC more efficient and practical
while not sacrificing security. Hence they have been implemented in a series of GC frameworks [6, 69, 33, 23, 60, 53,
80, 75, 9].

Although GC and their related optimizations are theoretically secure at both the primitive and protocol levels, practical
implementations may introduce additional vulnerabilities. A class of attacks known as Side-channel attack (SCA)
exploits side-channel information, such as power consumption [52], timing [11], or electromagnetic emissions [34], to
recover secrets from a target system. Two studies [42] and [32] published at TCHES 2023 and ACNS 2024 demonstrated
that GC implementations can suffer from SCA. The former uses power analysis to attack a GC implementation to
get the global offset R, which is used in a popular optimization, FreeXOR; the latter utilizes timing information to
extract the garbler’s input directly. Despite the considerable research on the theoretical security and performance of GC
implementations, their side-channel resistance still requires thorough investigation.

In this paper, we investigate and review the code of seven open-source GC frameworks and find that the order of AES
execution in each gate’s garbling process is secret-dependent. Also, in popular GC constructions, the evaluator needs to
perform one of the four/two AES operations performed by the garbler with exactly the same key and plaintext in order
to evaluate a garbled gate. Hence, by figuring out which AES operation among the four/two performed by the garbler is
repeated on the evaluator side, we can interpret the position of the operation in a sequence as private input of the gate
due to the secret-dependent AES sequencing. We propose an attack that uses side-channel information to distinguish
which plaintext in the garbling process is also used by the evaluator. Fig. 1 illustrates how an attacker can obtain private
information x and y from a side channel on a garbled circuit implementation. It is worth noting that, unlike the former
SCA attack [42], our attack targets the gate encryption scheme widely used in popular GC frameworks.

We assess the effectiveness of our attack on multiple implementations. First, as a proof of concept, we attack a software
implementation on a 32-bit ARM processor, achieving a 100% success rate. Next, we evaluate our attack on a hardware
accelerator implementation of AES; we deploy AES hardware implementations and self-built on-chip sensors on two
FPGA boards, mimicking a remote SCA that attacks a hardware accelerator within a cloud FPGA [35]. In this scenario,
the number of samples per trace is extremely low due to the short execution time of an AES hardware accelerator
and the low sampling rate of a self-built FPGA sensor. Still, our attack achieves a success rate of 79.58% under
these challenging conditions. Finally, we demonstrate our attack in a more general setting where the garbler and the
evaluator are implemented on processors with different microarchitectures. In this cross-platform scenario, different
AES execution times and architectural leakage models make it more challenging for attackers to discover similarities
between the traces of the two parties. However, under these tough conditions, our attack still manages to achieve a
100% success rate, leveraging our point-of-interest (POI) selection method. The high success rate of the cross-platform
attack shows the wider applicability and severity of our attack in practical scenarios.
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The main contributions of our work include:

• We propose a single-trace blind SCA on widely used GC frameworks. This method can extract the private
input values of all non-XOR gates, including both input gates and internal gates within a GC, irrespective of
whether they are the garbler’s inputs or the evaluator’s inputs.

• We evaluate our attack on both software and hardware implementations, achieving high success rates of 100%
and 79.58%, respectively.

• To show the wide applicability of our attack in practice, we develop a novel cross-platform attack between
two software implementations on two processors with different microarchitectures and still achieve a 100%
success rate.

• We review the code of seven open-source GC frameworks and find that the vulnerability exists in all of them.

• We discuss potential countermeasures against the proposed attack with almost no performance overhead.

The paper is organized as follows. Sec. 2 introduces the background knowledge about GC and SCA. Sec. 3 defines the
adversarial model and provides a detailed description of the proposed attack. In Sec. 4, we evaluate the proposed attack
in three different scenarios. Sec. 5 discusses some potential countermeasures. Finally, Sec. 6 delves into the related
works, and Sec. 7 concludes this work and suggests future research. Appendix A provides an additional evaluation of
the attack on an interleaved AES implementation.

2 Background

2.1 Garbled Circuits

2.1.1 Overview

We recall the abstraction of a garbling scheme introduced in [7]. A garbling scheme is defined as a tuple of algorithms
GS = (Gb,En,Ev,De) where Gb is probabilistic and the rest are deterministic. The garbling algorithm Gb takes input
1k and a Boolean circuit f and outputs a tuple (F, e, d), where F is a garbled circuit, and e and d are encoding and
decoding information, respectively. The encoding algorithm En uses e to encode a suitable input x for f into a garbled
input X . The evaluation algorithm Ev takes (F,X) as above and outputs a garbled output Y . Finally, the decoding
algorithm De takes (d, Y ) to obtain the plaintext output y. The correctness condition of the garbling scheme is that
if (F, e, d) ← Gb(1k, f), then De(d,Ev(F,En(e, x))) = f(x). For the security analysis of GC, readers can refer
to [7, 43].

The classic setting of the garbling scheme for 2PC has two parties: a garbler and an evaluator. The garbler executes
Gb and En algorithm. Two random bit-strings called wire labels are chosen to represent the semantic 0 or 1 on each
wire in the Boolean circuit. Then, the truth table of each gate is garbled, i.e., each output wire label is encrypted by the
combination of two corresponding input wire labels, according to the input-output relationship in the truth table. Hence,
a two-input Boolean gate will be converted to a garbled truth table with four entries. The concrete encryption scheme
can be realized with pseudo-random functions (PRF), pseudo-random permutation (PRP), or correlation robust hash
function [81]. The evaluator runs the Ev algorithm. It receives the wire labels corresponding to the garbler’s private
input and uses oblivious transfer to get the wire labels corresponding to its own input, which means the evaluator only
knows one label per wire. To evaluate a gate in GC, only one correct entry of the garbled truth table is decrypted using
the only combination of input labels known by the evaluator. Then, the evaluator uses the generated output labels as
input labels of the following gates and evaluates the gates one by one according to the circuit topology. In the end,
the De algorithm decodes the final output wire label into its plaintext. The De can be run by either the garbler or the
evaluator, depending on the application, and the result is typically shared with the other party. Informally, the privacy
guarantee provided by a GC protocol is that the collection (f, F,X, d) does not reveal any more information
about x than the final result f(x). Later, we will demonstrate how we attack the privacy guarantee of GC protocols
and recover x from side-channel information directly.

2.1.2 Gate Encryption Schemes

The encryption scheme in a garbling process hides an output wire label C in a ciphertext produced by two input wire
labels A and B.1 The gate encryption scheme keeps evolving in the prior works [55, 44, 41, 6]. In [55], the encryption

1This process is also called Garbling Scheme in some literature. In this paper, we follow the naming convention in [81] and call it
Encryption Scheme.
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is realized as PRFA(∗)⊕ PRFB(∗)⊕ C. Lindell, Pinkas, and Smart reduced the number of calls to the PRF per gate
from two to one [44] as H(A∥B,C)⊕C, where H is a hash function. [41] proposed a scheme H(A∥B∥T )⊕C where
a publicly known tweak T is introduced, and the hash function is instantiated as H(A ∥B ∥ T ) = AES256A∥B(T ).
Inspired by previous work, Bellare et al. [6] proposed the following scheme:

Eπ(A,B, T,C) = ρ(2A⊕ 4B ⊕ T )⊕ C

ρ(x) = π(x)⊕ x
(1)

where a fixed-key AES acts as the primitive π as a pseudo-random permutation. A fixed-key AES means that
the AES uses the same key for garbling and evaluating every gate, and the key is publicly known by both parties
and attackers. This scheme’s security is proved in [6], and since then, it has been widely adopted in popular GC
frameworks [6, 69, 33, 23, 80, 75]. In the gate encryption scheme, each combination of values A and B corresponds
to one entry in the truth table; thus, the term “entry” is used in this paper to denote a single ciphertext in the garbling
process.

2.1.3 Popular Optimizations

To improve the performance of GC implementations, researchers proposed a series of optimization techniques to reduce
the computation or communication cost while not sacrificing the security of the protocol.

The point-and-permute (P&P) optimization, proposed in [5], introduced a select bit to each wire label. The value of a
select bit is independent of the wire’s semantic value, so the secret is not revealed by the select bit. The select bit can
point out the correct entry of the garbled truth table, allowing the evaluator to decrypt one correct entry at each gate
instead of decrypting all four entries one by one and looking for the correct one.

The garbled row reduction (GRR3) optimization reduces the size of transferred ciphertext per gate. The idea of GRR3
is to set one of the four output encrypted entries of a gate to be all-zero, meaning set C = H(A ∥B) [55]. Thus, the
garbler only needs to send three ciphertexts instead of four per gate.

In the FreeXOR optimization, a global offset R is introduced, and the two complementary labels of a wire can be written
as A and A⊕R [40]. Hence, an XOR gate can be computed as the XOR result of the two input labels and does not use
a garbled truth table.

The half-gate optimization further reduces the transferred ciphertext size of the non-XOR gates from three to two [81].
Taking an AND gate as an example, an AND gate is split into two "half gates." The garbler generates two ciphertexts
for one half gate as:

PRF (B)⊕ C

PRF (B ⊕R)⊕ C ⊕ aR
(2)

Similarly, the garbler generates two ciphertexts for the other half gate:

PRF (A)⊕ C

PRF (A⊕R)⊕ C ⊕B
(3)

Applying GRR3 on each half gate, we can reduce the number of transferred ciphertexts per AND gate to just two.

Some optimizations further improved the performance of GC, like fleXor[39] and three halves[62]. However, they are
less common in popular GC frameworks.

The effects of optimizations on our attack. The optimizations described above, except FreeXOR and half-gate,
reduce the amount of ciphertext transmitted or the computational load on the evaluator. Our attack focuses on the
secret-dependent order of operations issue when the garbler generates garbled truth tables, so these optimizations do not
affect our attack. The FreeXOR optimization method eliminates the need for a garbled truth table for XOR gates, so our
attack cannot work on XOR gates if FreeXOR is used. The half-gate optimization transforms every non-XOR gate into
two half gates, and thus the encryption scheme becomes Eq. 2 and 3, instead of Eq. 1. However, within each half gate,
the vulnerability still exists, so our attack can adapt and still work.

2.1.4 Popular GC Frameworks

Various open-source GC frameworks are developed to realize the GC protocol and incorporate the above optimizations.
JustGarble is the first GC framework that adopts a fixed-key AES as PRF and demonstrates high efficiency [6]. Based
on JustGarble, TinyGarble adds the half-gate optimization and proposes a flow from circuits described in Verilog
HDL to garbled circuits, which facilitates its adoption in practice [69]. Obliv-C is a GCC wrapper that allows people
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Table 1: The PRF and optimizations used in popular GC frameworks.

Framework PRF FreeXOR Half-gate
JustGarble [6] fixed-key AES ✓ ×

TinyGarble [69] fixed-key AES ✓ ✓
ABY [23] fixed-key AES ✓ ×
ABY3 [53] fixed-key AES ✓ ✓

Obliv-C [80] fixed-key AES ✓ ✓
EMP-toolkit [75] re-keying AESa ✓ ✓

MOTION [9] fixed-key AES ✓ ×b

a EMP-Toolkit uses a re-keying AES for better concrete secu-
rity [31], i.e., the key is different per gate. This does not affect
the effectiveness of our attack because all the keys are publicly
known, and each gate is attacked independently.

b MOTION adopts the three halves variance in [62], but the
secret-dependent order of operations issue also exists.

to embed MPC inside regular C programs [80]. ABY combines secret sharing and GC together to achieve a solution
in the 2PC scenario [23], and ABY3 extends the framework to the three parties setting [53]. EMP-toolkit is an
efficient multi-party computation toolkit that contains GC and zero-knowledge proof protocols [75]. TinyGarble2 is
a C++ framework privacy-preserving computation based on EMP-toolkit [33]. MOTION is a generic open-source
framework for mixed-protocol MPC that achieves excellent communication efficiency [9]. Table. 1 summarizes the PRF
instantiation and optimization techniques relevant to our attack in these popular GC frameworks. Since all frameworks
use AES as the PRF, the targets of the attacks in this paper also employ AES as the PRF primitive. For each gate, the
key for the AES is the same on both the garbler’s and the evaluator’s sides, regardless of whether it is a fixed-key AES
or a re-keying AES.

2.2 Power Side Channel Attacks

2.2.1 Overview

Side-channel attack is an effective and non-invasive attack method against implementations of mathematically strong
cryptographic algorithms. Power analysis is an important class of SCA where attackers can derive secret information
by analyzing the power consumption of hardware devices. In a power SCA, attackers usually use a sensor, e.g., an
oscilloscope, to capture the power information that varies over time called power trace and then statistically analyze the
trace to extract the leakage.

The idea of power analysis was first introduced to cryptographic researchers publicly as differential power analysis
(DPA) in 1998 [37]. Following DPA, Eric et al. proposed correlation power analysis (CPA) [10], which is more stable
and efficient. The CPA scheme calculates the Pearson correlation coefficient between the actual and the hypothesized
values as the likelihood metric. The Pearson correlation coefficient corr(x, y) between two traces x and y with the
same length is defined as

corr(x, y) =

∑n−1
i=0 (xi − x̄)(yi − ȳ)√∑n−1

i=0 (xi − x̄)2
√∑n−1

i=0 (yi − ȳ)2
(4)

where xi and yi are the i-th samples in the trace x and trace y, respectively. DPA and CPA are model-based attacks
where the attacker is required to have some basic knowledge of the implementation. Typically, the attacker uses a
leakage model, e.g., hamming weight, to estimate the power consumption of the hypothesized intermediate value and
compares it with the collected traces. Finally, the key is extracted from the noisy trace via a distinguisher.

The power SCA has been shown feasible to attack various cryptographic implementations [59, 50, 64]. Given the
limited amount of work on SCA on GC implementations, research in this area deserves broader attention to enhance the
implementation security.
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3 Proposed Attack

3.1 Observation

Power side-channel leakage is generally due to data-dependent power consumption patterns. Most existing power SCAs
focus on discovering the relationship between the secret key and the power traces, but we focus on the data-dependent
execution patterns in the implementation and discover the following insights:

• When the P&P optimization is implemented, the evaluator decrypts only one entry per gate, as indicated by
the P&P select bits, out of the four entries (or two entries in the case of half-gate optimization) encrypted by
the garbler.

• As shown in Eq. 1, 2, and 3, decrypting the output label C requires calling the same PRF (AES encryption)
with the exact same key and data (A and/or B) as in its corresponding encryption.

Hence, by checking which PRF call happens on both the garbler’s and the evaluator’s sides with the same data, we can
discover the semantic values of the two input wires of the gate. This is because the order of the four/two PRF calls for a
(half-)gate is determined by the semantic values of the input wires in the garbling process. Hence, one just needs to use
side-channel information to find the same PRF call that happens on both sides. Our attack is applicable to all gates
implemented as garbled truth tables. This also means that our attack only works on non-XOR gates if XOR gates are
not implemented as garbled truth tables in the case of FreeXOR.

Based on the insights above, we review the code of seven popular open-source GC frameworks [6, 69, 23, 53, 80, 75, 9]
to investigate their vulnerability to our attack. All the frameworks use the same gate encryption scheme (Eq. 1) with
P&P, GRR3, and FreeXOR optimization. Half-gate optimization is absent in JustGarble and ABY, though it is included
in other frameworks. We notice that the garbler’s encryption of entries is performed in a secret-dependent order within
every gate. Take the following code snippet from the garbling procedure in ABY3 framework as an example:

1 hash[0] = (a << 1) ^ tweaks[0];
2 hash[1] = ((a ^ mGlobalOffset) << 1) ^ tweaks[0];
3 hash[2] = (b << 1) ^ tweaks[1];
4 hash[3] = ((bNot)<< 1) ^ tweaks[1];
5 mAesFixedKey.ecbEncBlocks<4>(hash, temp);
6 hash[0] = hash[0] ^ temp[0]; // H( a0 )
7 hash[1] = hash[1] ^ temp[1]; // H( a1 )
8 hash[2] = hash[2] ^ temp[2]; // H( b0 )
9 hash[3] = hash[3] ^ temp[3]; // H( b1 )

The ABY3 framework employs half-gate optimization, two complementary wire labels a and a^mGlobalOffset are
encrypted in a "half gate," and a full gate consists of two half gates. The wire labels are copied into an array hash
after multiplying with constants and adding tweaks [6]. Then, a fixed-key AES cipher is called to encrypt all the labels
sequentially in line 5. If the attacker can determine which label’s AES operation was also performed by the evaluator in
the evaluation process, he/she can determine which item in the array hash is used in the circuit, thereby outputting the
corresponding index as the private input information of the gate. Essentially, the attack boils down to whether one
can distinguish a repeated AES execution from three/one AES executions with random inputs only based on
their side-channel information.

Another observation is that in all frameworks, the garbling and evaluation processes are executed in the order of gate
indexes, meaning that attackers can easily divide the power trace of the whole garbling or evaluation process into
sub-traces associated with each gate using public information about the circuit.

We examine all seven open-source GC frameworks in Table 1 and find that the secret-dependent order of
operations issue exists in all the frameworks2.

3.2 Adversarial Model

Fig. 1 illustrates the adversarial model in our attack. We assume that the adversary A has the following capabilities:

2We found the yaoGenerateGate function in Obliv-C does not have the secret-dependent order of operations, which will be
discussed later in Sec. 5. The more frequently used yaoGenerateHalfGatePair function still suffers from this issue.
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Attacking Phase 1 Profiling the POIs.
1: Prepare: collect two groups of traces pg and pe of AES execution with the same inputs from the attacker’s devices

that have the same architecture as the victims’. pgi or pei represents a vector composed of the points with the same
index i on all the traces in pg or pe, arranged in the order of the traces.

2: Choose POIs of the evaluator: divide the traces into small segments of length ls, select kPOI points with the
highest variance in each segment.

3: Choose POIs of the garbler: for each POI of the evaluator, calculate the correlations between it and every pgi in
the garbler’s trace and choose the index i with the highest absolute value of the correlation as the corresponding
POI on the garbler’s trace.

4: Filter POIs: only keep the POIs with absolute correlation values greater than a threshold tPOI .

• A has access to both the garbler’s and the evaluator’s side-channel traces during the garbling and evaluation
process either physically [58] or remotely [67].3

• A knows the function f computed in the garbled circuit, which is public in a GC protocol. This allows A to
partition a long trace into small traces corresponding to the AES encryptions for each gate.

• A is supposed to have basic knowledge of the two parties’ devices and get hold of some devices with the same
architecture to profile the POIs. Note that the profiling process does not need the victim’s devices and can be
done completely offline.

Due to the properties of the GC protocol, A is also subject to the following constraints:

• A can obtain only one trace for each garbled circuit since classical garbled circuits cannot be reused.

• A can not eavesdrop on or manipulate any data and, therefore, can only launch a blind attack.

In practical scenarios, A could be a cloud service provider with physical access to the servers hosting the two parties,
allowing for the acquisition of side-channel information of both parties. Also, in an application where both parties
of GC run on the same processor to provide a confidential Function-as-a-Service platform [15], the platform owner
can easily get the side-channel traces of both parties. Alternatively, recent studies have shown that remote SCAs
are feasible [35, 46, 38, 47, 25], so A can capture side-channel information on both parties remotely. We will also
demonstrate one cloud FPGA-based remote attack in our experimental evaluation.

3.3 Detailed Description of the Attack

In our attack, the attacker aims to obtain the input value of all non-XOR gates in a garbled circuit. We assume the
victim GC implementation executes AES encryption according to the order of the actual values on the input wires and
using P&P optimization,4 as in all the reviewed seven GC frameworks.

The steps of the offline profiling stage and online attacking stage of our attack are listed in Attack Phase (AP) 1 and 2,
respectively. They target a garbled circuit with N non-XOR gates.

The first part is offline profiling of POIs. As shown in AP 1, the attacker generates kpre random inputs for a fixed-key
AES and captures two groups of power traces, pg and pe, from AES executions with these random inputs on devices
that share the same architecture as the garbler’s and the evaluator’s, respectively. Then, the attacker first selects the
POIs on the evaluator’s trace. It can be done either manually or by dividing the traces into small segments of length
ls and choosing the kPOI points with the highest variance in each segment. Afterward, for each vector, pep of a POI
index p, calculate its Pearson correlation with all pgi vectors and take the index i with the highest absolute correlation
value as the corresponding POI on the garbler’s trace. As we will show later, the profiling stage makes our attack more
efficient and adaptable to more general scenarios, including the cross-platform scenario.

Next, in AP 2, the adversary performs the online attack and captures two power traces from the garbler’s and evaluator’s
devices, respectively, when they are running GC with their private inputs. The traces are aligned and divided into
sub-traces associated with each gate. The sub-traces are further condensed into feature vectors based on the selected
POIs. If the sign of the correlation of a pair of POIs on both sides is negative, the sign of the garbler’s value at the
POI is inverted. This guarantees that all pairs of points at the same positions on the two feature vectors are positively

3The side-channel information here can be power, electromagnetic emission, cache access, etc., as long as the attacker can
distinguish AES executions with different plaintexts. In this paper, we demonstrate our attack using power side-channel leakage.

4Note that even without P&P optimization, our attack may still work if the attacker can figure out when the evaluator has found
the correct output label. However, since P&P is adopted by all GC frameworks, we do not investigate the scenario without P&P.
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Attacking Phase 2 Attacking N non-XOR gates.
1: Capture traces: obtain one power trace each from the garbler and the evaluator running a GC protocol together

using their private inputs.
2: Partition: divide the traces into sub-traces t_garbi and t_evali associated with each gate, where i denotes the gate

index.
3: Condense the traces: according to the index of the POIs, select feature points to create a feature vector from each

sub-trace. For every gate i, the garbler has four (or two in the case of half-gate) feature vectors of AES execution
f_garbi,j and the evaluator has only one feature vector of AES execution f_evali.

4: Calculate the means: calculate the mean of f_garbi,j for all i, j and get avg_garb. Similarly, calculate the mean
of f_evali for all i and get avg_eval.

5: for each i ∈ [0, N) do
6: Compare the traces: calculate corri,j = corr(f_garbi,j − avg_garb, f_evali − avg_eval) for every j and

find the index of the maxima ki,max.
7: Extract the input value: based on the execution order of AES in the garbling process, convert ki,max into the

input values xi and yi of gate i.
8: end for

Table 2: Comparison between our attack and two related attacks.
Attack Side-channel Data required Process being attacked Target Vulnerability in Avg. SR

[42] Power Garbler’s labels Garbling Global offset R Input non-XOR gates ≈ 70%
Goblin [32] Timing None Wire label generation Garbler’s input Input wire labels > 90%
Our attack Power None Garbling & Evaluation Both parties’s input All non-XOR gates 100%/79.58%

correlated. For each gate i, the garbler has four (or two in the case of half-gate) feature vectors of AES execution
f_garbi,j , and the evaluator only has one vector f_evali.

Finally, the attacker uses the feature vectors from two parties to extract private information. For gate i, the Pearson
correlation coefficient is calculated between every f_garbi,j and f_evali after each of them subtracting the average
trace, and the index ki,max of the largest correlation is found. Based on the secret-dependent execution order of
AES, the two input values xi and yi of the gate can be inferred from ki,max. When the gate is an input gate, the
leaked input values tell both parties’ input. Additionally, a confidence value αi for each gate can be calculated as
αi = max_corri−second_max_corri, where the max_corri and second_max_corri are the largest and the second
largest correlation between the garbler’s trace and the evaluator’s trace for gate i. αi can help the attacker evaluate the
reliability of the attacking result on a particular gate.

Possible Improvements. Because our attack can attack both input gates and internal gates, the adversary can exploit the
known circuit and the confidence values αi of every gate to cross-validate and correct the wrong guesses. For example,
the attacker can start with the guesses with a high confidence value αi and use an SAT solver to help cross-validate the
low confidence guesses. We will show a strong correlation between high confidence values and high success rates in the
experimental evaluation.

Comparison with related attacks. To the best of our knowledge, there are only two prior works on SCA on GC [42, 32].
For more description of them, readers can refer to Sec. 6. Table 2 compares the two attacks and our attack. The two
existing attacks can only attack the input non-XOR gates or the input wire label generations, whereas our attack can
target all non-XOR gates within the circuit, including the internal ones. When the success rate cannot achieve 100%,
only our attack can validate and correct the results by inferring the circuit inputs from the internal values and the circuit.

3.4 Performance Metric

The success rate metric is used to measure the performance of the proposed attack. We adapt the success rate definition
in [71] to our setting. In an attack against a garbled circuit with nentry AES executions per gate, we assume the actual
input of a gate as s, the sorted guess of the adversary from the highest to the lowest as g = [g1, g2, .., gnentry ]. The
successful rate of order o, SRo, is defined as:

SRo = Pr(s ∈ [g1, g2, ..., go]) (5)

In a simple term, SRo is the likelihood of the correct result among the top o most likely guesses. SR1 is assumed when
o is not specified.
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Furthermore, we also calculate the average significance avg_sig of the attack results, which is defined as:

avg_sig =

∑ngate

i=1 (corrcorrect −max_corrincorrect)
ngate

(6)

where corrcorrect denotes the correlation corresponding to the correct pair of traces and max_corrincorrect represents
the maximum correlation of the other incorrect pairs of traces. This quantifies the difficulties of distinguishing a correct
pair from all the other incorrect ones.

4 Implementation and Evaluation

4.1 Attack Modeling

The essence of the proposed attack relies on a secret-dependent order of AES executions in the garbler. By matching
the AES execution in the evaluator with that in the garbler, we can determine which entry is being evaluated, obtain the
inputs to the gate, and finally infer the private information of both the garbler and the evaluator. This indicates that the
core of the attack is to find the same AES encryption on the two parties based on power consumption.

We use real power traces measured on devices to verify the feasibility of the proposed attack. The two encryption
schemes we will attack include a standard implementation with four entries per gate (as in Eq. 1) and an implementation
of half-gate optimization with two entries per half-gate respectively referred to as the circuit with full gates and the
circuit with half gates, which covers all popular encryption schemes except three halves in one framework.

Using public information about the circuit, attackers can divide the obtained power traces into segments corresponding
to each AES operation in each gate. As the same in [42], we assume that the trace segments corresponding to each gate
and each AES operation are synchronized and aligned for simplicity.

For every gate, we first generate nentry random plaintexts as the input wire labels, where nentry = 4 in the standard
implementation and nentry = 2 in the half-gate implementation. Then, we use a fixed-key AES to encrypt all the
plaintexts on the garbler’s device and encrypt a randomly selected plaintext out of the nentry plaintexts on the evaluator’s
device. During the execution of AES, we measure the power consumption of both parties. Next, we find the POIs and
distinguish which one of nentry garbler’s trace corresponds to the evaluator’s trace.

4.2 Evaluation on Software Implementation

We first consider a scenario where both the garbler and the evaluator run a software implementation of AES on
processors with the same architecture. This allows the attacker to easily align the collected power traces and use the
same POIs for both parties.

Experimental Setup. The attack is first performed on a software implementation on the 32-bit ARM processor. As
a proof of concept, we use the ChipWhisperer-Lite platform to conduct our experiments.5 A Tiny-AES C program
is loaded on an STM32F303RBT6 processor with a randomly selected fixed key. On the same board, an ADC chip
samples the voltage once every clock cycle.

Attack Details. We first collect 200 power traces of the fixed-key AES executed by the two parties. Note that the
traces for profiling are independent of the traces for the subsequent attack. Fig. 2a, 2b, 2c, 2d, and 2e show five traces
corresponding to four AES calls on the garbler and one AES call on the evaluator, respectively. Despite having different
AES plaintexts among Fig. 2a, 2b, 2c, and 2d, the matched trace with that in Fig. 2e cannot be directly found by
observing the trace as in simple power analysis (SPA).

A straightforward comparing method that uses all 7000 points across the entire trace turns out to be redundant and
inefficient; therefore, we calculate the variance of each point in the collected traces and select POIs based on step 2
in AP 1. The variance is shown in Fig. 2f. In this setting, the garbler’s and the evaluator’s devices have the same
architecture, so we can attack both parties with the same set of POIs rather than choosing POIs separately for the garbler
as step 3 in AP 1. If we set ls = 500 and kPOI = 1, the chosen POIs are represented as the orange × symbols in Fig.
2f.

5Due to chip shortage, we only have one board, which acts as both the garbler’s and the evaluator’s device. However, as we will
demonstrate later, we achieve a 100% success rate even in the cross-platform attack. We expect the results from single-platform
cross-device attacks to be similar to the results we get in single-device attacks.
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Figure 2: The power consumption and variance of the garbler’s and evaluator’s fixed-key AES executions at one gate on
a 32-bit ARM processor: (a) Power consumption of the garbler’s entry0 (b) Power consumption of the garbler’s entry1
(c) Power consumption of the garbler’s entry2 (d) Power consumption of the garbler’s entry3 (e) Power consumption of
the evaluator (f) Variance of the power consumption and the chosen POIs.

Table 3: The attack results of the single-platform evaluation on ChipWhisperer-Lite.

ls kPOI nPOI SR(%) avg_sig
1 1 7000 92.35 0.303
50 1 140 100 0.635
50 5 700 100 0.626
500 1 14 98.7 0.541
500 10 140 100 0.670
1000 1 7 89.9 0.417

Experimental Result. We generate data for 2000 full gates and collect the power consumption data from the
ChipWhisperer-Lite. Following AP 1 and 2, we perform attacks with different ls and kPOI in the same data set. The
attack results6 are given in Table 3.

We successfully achieve a 100% success rate in three parameter sets, which means all the inputs of every non-XOR
gate in a garbled circuit are correctly recovered by us. In these sets, the average significance reaches up to 0.670,
which indicates that the correlation values between the matched traces are significantly higher than the unmatched ones,
making the distinction quite clear.

The SR and avg_sig drop if we reduce the number of POIs aggressively. However, if we simply use the whole trace
for the attack, the SR and avg_sig also worsen. This is because not all the points in a trace are data-dependent, and
including the data-independent points introduces noise and leads to poorer results. This suggests the necessity of the
profiling stage in our attack.

4.3 Evaluation on FPGA Implementation

Remote power SCA allows the attacker to perform power analysis without physical access to the target devices.
Hardware accelerators are typically used to enhance the performance of GC protocols. In the following experiment,
we evaluate the proposed attack as a remote power analysis attacking an AES hardware accelerator on FPGAs. In
particular, we mimic the cloud-FPGA scenario, where an attacker can implement malicious hardware logic (e.g., a
power sensor) on a cloud-FPGA to attack another tenant on the cloud [35].

6Given the high success rate (100%) of attacks on full gate software implementations, we omit the results on half-gate
implementations since it is always easier to attack half gates than full gates.
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Garbler Evaluator

Figure 3: Two FPGA boards corresponding to the garbler and the evaluator.
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Figure 4: Functional schematic of a delay-line-based TDC.

Experimental Setup. The attack is performed on two Digilent Nexys 4 DDR development boards based on the Xilinx
Artix-7 FPGA platform. We deploy the logic of the garbler and evaluator on two separate FPGA boards, as shown in
Fig. 3.

An open-source hardware AES core in Project Vault written by Google is implemented at 50 Mhz in the user logic on
both FPGAs. The AES core computes each round in one clock cycle, with a total of ten cycles for one encryption.

We implement a delay line (DL)-based Time-to-Digital Converter (TDC) as a power sensor, running at 25 MHz in
the attacker’s logic on both FPGAs. As illustrated in Fig. 4, the DL-based TDC mainly consists of three parts: (1) A
delay-line driven by clk1, in which CARRY4s are used as delay units. (2) A TDC register that captures the signal
from the delay line at the rising edge of clk2. (3) A TDC encoder that is implemented through a priority encoder to
calculate the index of the most significant activated bit of the delay-line state stored in the TDC register. The phase
shift between the synchronized clk1 and clk2 enables the clk1 signal to propagate through the delay line, and the TDC
captures the state register at each clock cycle. The signal propagation speed is influenced by the voltage on the board,
so the fluctuation of the TDC encoder results represents the voltage variations of the targeted AES accelerator.

Attack Details. We run the experiment and collect the sensor data traces from the FPGAs. Five traces corresponding to
the garbler and evaluator are overlaid in Fig. 5. The samples from the ten rounds of AES are within the red interval.
Since the frequency of the TDC is half that of the AES core, we can only capture 20 sample points per AES execution.
The dynamic range of the TDC we implemented is around 50, which is better than the results reported in [67]. However,
the significantly lower resolution and shorter power traces, compared to those captured by a dedicated ADC in previous
experiments, still pose a major challenge for the attack.

Similar to the software implementation, the sensor values across the traces are very close, making it hard to directly
distinguish which trace of the garbler matches that of the evaluator by SPA. The possible choice for POIs is also limited,
so we select POIs manually. During the execution of AES, the decrease in sensor values is due to the slight drop in
chip voltage caused by register flipping each time the values are updated. Therefore, we select the 10 points where the
voltage drops as POIs, as marked by the blue × in Fig. 5. Moreover, to mitigate the device variations between the two
boards, we calculate an average trace on each board. In the attack, we subtract their respective average power trace
from the measured traces.
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AES execution

Figure 5: The TDC sensor values of the garbler’s and the evaluator’s fixed-key AES executions at one gate on an Artix-7
FPGA board.

Table 4: The attack results of the single-platform evaluation on the Xilinx Artix-7 FPGA.

nPOI SR1(%) SR2(%) avg_sig SRhalf_gate(%)
10 79.58 94.49 0.263 90.83

Experimental Result. We generate random wire labels for 20000 gates and collect the power traces from the FPGAs.
Due to the limited choice of POIs, we conduct experiments under only one parameter set. The attack result is given in
Table 4.

When attacking the circuit with full gates, the SR1 achieves 79.58%, and the SR2 reaches 94.49%. The success rate
for attacking half gates SRhalf_gate is 90.83%. Due to the shorter execution time of the hardware AES implementation,
fewer feature points can be sampled and used for the attack, resulting in a lower success rate compared with attacks on
software implementations.

When the success rate of our attack is not 100%, we can potentially cross-validate and correct results by utilizing the
circuit and the confidence values of each guess. The confidence value can inform the attacker of the reliability of a
given guess. Fig. 6 shows that a higher confidence value correlates with higher reliability of the results, which can
provide additional hints in solving for the correct inputs of the circuit.
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Figure 6: Success rates when confidence exceeds a certain value in the attack experiment on FPGAs.
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Garbler Evaluator

Figure 7: ChipWhisperer-Lite and ChipWhisperer-Nano corresponding to the garbler and the evaluator.

Figure 8: The ADC sensor values on both parties’ devices: (a) ChipWhisperer-Lite corresponding to the garbler, (b)
ChipWhisperer-Nano corresponding to the evaluator.

4.4 Evaluation on Cross-platform Implementation

In practice, the garbler and the evaluator may use processors with different microarchitectures, which makes it difficult
for attackers to align the traces and use the same POIs on both sides. However, we can still select paired POIs between
the garbler’s and the evaluator’s traces, according to AP 1. In the following experiment, we assess the effectiveness of
our attack in a cross-platform setting.

Experimental Setup. We use the ChipWhisperer-Lite as the garbler’s device and the ChipWhisperer-Nano as
the evaluator’s device, as shown in Fig. 7. The ChipWhisperer-Nano is equipped with a lighter processor, the
STM32F042F6P6, based on ARM Cortex-M0 architecture. The STM32F3 on the ChipWhisperer-Lite is based on
ARM Cortex-M4 architecture. Unlike Cortex-M0, which only supports the Thumb instruction set, Cortex-M4 supports
the Thumb2 extended instruction set and offers better performance, so we use it as the garbler’s device.

We still use the same Tiny-AES C program as before. However, the program is compiled separately using compilers
corresponding to the different hardware platforms we use. The ADCs on both platforms sample once every clock cycle.

Attack Details. We run the fixed-key AES on two platforms. Fig. 8a and 8b show the traces corresponding to the
garbler and the evaluator, respectively. Due to the differences in the supported instruction set and microarchitecture,
ChipWhisperer-Nano takes more clock cycles per AES execution. In this situation, we cannot use the same POIs on
both sides, as we did in the single-platform evaluation described earlier. Therefore, we use steps 2 and 3 in AP 1 to
determine the POIs. We collect 1000 traces using the same plaintext on each device for the profiling stage. Note that
the profiling traces are independent of the traces for the real attacks. First, we select the POIs on the evaluator’s trace
by variance. For instance, when ls = 500 and kPOI = 1, we get 23 POIs. Then, according to step 3, we select a
corresponding POI on the garbler’s trace for each evaluator’s POI and calculate the correlation values associated with
each pair of POIs. We filter the POI pairs with tPOI = 0.6, excluding some points with low correlation. The number of
the remaining POIs is 20. The blue crosses in Fig. 8 indicate the positions of the selected POIs on both platforms. After
the POIs are selected, the rest of the attack steps are carried out as usual.

Experimental Result. We generate 5000 groups of random wire labels and capture the power traces from the two
platforms. We perform the attacks with various parameters. The results are given in Table 5. Four sets of parameters
achieve a 100% success rate, indicating that after identifying the corresponding POIs, a successful attack can still
be performed across different processor architectures. Because of the differences in microarchitecture, instructions,
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Table 5: The attack results of the cross-platform evaluation on ChipWhisperer-Lite and ChipWhisperer-Nano.

ls kPOI nPOI SR(%) avg_sig
1 1 1485 100 0.533
50 1 211 100 0.534
50 5 841 100 0.553
500 1 20 99.28 0.510
500 10 223 100 0.591
1000 1 10 94.88 0.448

and sensors between the two platforms, the average significance of the cross-platform attack is less than that of the
single-platform attack with the same parameters.

5 Possible Countermeasures

The root cause of our attack is that the secret-dependent order of AES execution can be decoded by side-channel
information. Based on this, we discuss possible countermeasures against our attack.

Random permutations in the garbling procedure. Within the garbling procedure of every gate, one can execute
AES operations in a random order. Actually, we can reuse some of the randomness that already exists in the garbling
procedure to randomize the execution order of the AES. For example, the yaoGenerateGate function in the Obliv-C
framework encrypts four entries in the order of the P&P select bits instead of the actual value of each label. Since
the select bit is random and independent of the semantic values, the proposed attack will not work on this particular
implementation. This countermeasure incurs almost no overhead compared with the vulnerable implementations.

SCA resilient primitive implementations. One can also implement SCA resilient AES, such as [65, 20], to make the
power traces less data-dependent. The randomness introduced by masking techniques can possibly prevent attackers
from matching the power traces of the AES executions on the same plaintext performed by the garbler and the evaluator.
However, this countermeasure may require additional hardware overhead or execution time.

6 Related Work

Existing SCA on GC. Since SCA on GC is still an emerging area, to the best of our knowledge, there are only two
prior works on this topic. Levi et al. first proposed SCA on GC in [42]. Their attack functions similarly to a traditional
horizontal power SCA, requiring knowledge of the processed data (garbler’s labels) and a power trace. They can recover
the global offset R in their attack. However, the method is specific to certain encryption schemes and does not work on
the most popular encryption scheme (Eq. 1) adopted by all major GC frameworks. In contrast, our attack is effective on
the most widely used encryption scheme and one of the most popular optimizations, half-gate.

In [32], Hashemi et al. introduced a machine learning-assisted timing side-channel attack (SCA) that exploits imbalanced
if-branches in the garbler’s wire label generation process, enabling the recovery of the garbler’s input. This timing
leakage was identified in TinyGarble, JustGarble, and Obliv-C, but it is not as pervasive as the order of execution issues
found across all GC frameworks.

Single-Trace attacks. Classic SCAs like DPA and CPA require many traces from the target. In some cases, attackers
can only capture a single trace, so various single-trace attacks were proposed [17, 4, 8, 1].

Blind attacks. When the plaintexts or ciphertexts of a cryptographic algorithm are unknown to the adversary, one can
only launch blind SCA. Linge et al. used joint distributions for blind SCA [45]. Clavier and Reynaud improved the
exploitation of joint distributions with the maximum likelihood approach [19].

Horizontal attacks. Horizontal attacks have become an important and popular methodology in power side-channel
attacks (SCAs) in recent years [18, 61, 24]. These attacks select multiple intermediate values as points of interest (POIs)
within a single trace and analyze them jointly to reduce the number of traces required [2, 3, 16]. The selection of POIs
is crucial in horizontal attacks, as it significantly impacts the effectiveness and efficiency of the analysis. Among the
existing POI selection schemes in [13, 2, 29, 49, 51, 74, 77], we adopt the CPA method [26] for POI selection in our
attack.
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Remote side-channel attack. Unlike the classical SCAs that require physical access to the target devices, various
remote attacks are proposed to obtain power side-channel leakages from a distance [67, 76, 70, 46, 38, 47, 25]. For
example, in a multi-tenant cloud FPGA scenario, the attacker can remotely obtain the power consumption data by
implementing on-chip voltage sensors [67].

7 Conclusion and Future Work

GC is a practical MPC protocol due to its ability to efficiently evaluate Boolean circuits without revealing the private
inputs of either party. Many frameworks have been developed to make GC more practical and easier to use. This
paper proposes a single-trace blind power SCA against all existing GC frameworks, exploiting the secret-dependent
order of operation issue we discovered. We evaluate our attack in multiple scenarios, including standard AES software,
interleaved AES, hardware, and cross-platform implementations. According to the experiment results, the proposed
attack can reveal the private input of the gates with a 100% success rate in some cases. For future research, one may
enhance our attack by utilizing side-channel simulators [73, 68] to select POIs instead of profiling with actual hardware,
and one can also extend our attack to target a GC protocol running between a software implementation and a hardware
implementation.
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A Evaluation on Interleaved AES Implementation

In JustGarble, TinyGarble, and EMP-toolkit frameworks, the fixed-key AES is implemented by specific instructions for
higher performance. The following code snippet of TinyGarble shows the AES calls in the garbling scheme of a gate:

1 for (i = 0; i < nblks; ++i) //first round
2 blks[i] = _mm_xor_si128(blks[i], sched[0]);
3 for (j = 1; j < rnds; ++j) //intermediate rounds
4 for (i = 0; i < nblks; ++i)
5 blks[i] = _mm_aesenc_si128(blks[i], sched[j]);
6 for (i = 0; i < nblks; ++i) //last round
7 blks[i] = _mm_aesenclast_si128(blks[i], sched[j]);

where the array blks stores the plaintexts for the AES calls. The variable nblks represents the number of the plaintexts,
which equals 2 when using half-gate optimization and 4 in other cases. Though the order of encryption is also
secret-dependent, the AES execution is interleaved among a group of executions, necessitating more segmentation
and classification of the traces by attackers. However, our proposed attack method for identifying points of interest
(POIs) can effectively locate four distinct groups of POIs within the intermingled traces. We evaluate this attack under
conditions where AES executions are interleaved.

Experimental Setup. We modified the TinyAES C code to interleave each round of the four AES executions to create
an interleaved implementation of AES. The modified program is loaded on ChipWhisperer-Lite to capture the power
consumption as in the previous experiments. In each gate, the garbler executes one interleaved AES on four entries,
obtaining only a longer trace, while the evaluator still performs a single standard AES operation.

Attack Details. To attack the interleaved AES trace, we separate the feature points corresponding to different entries in
the trace by identifying the POIs. Each POI in the evaluator’s trace corresponds to four POIs in the garbler’s interleaved
trace. Therefore, during the profiling phase, we generated four sets of plaintexts and collected the corresponding four
sets of standard AES traces and one interleaved AES trace. Using step 2 in AP 1, we select the POIs in the standard
AES based on the variance. With the four sets of traces, we locate four corresponding sets of POIs in the longer trace
through step 3 and filter them with tPOI = 0.6. Fig. 9 shows the corresponding relationships of POIs in the evaluator’s
and the garbler’s traces. Since the garbler’s AES is executed in an interleaved manner, one POI in the evaluator’s trace
corresponds to four POIs in the garbler’s trace. Finally, we condense the garbler’s trace into four feature vectors using
the selected four sets of POIs and perform the attack.

Experimental Result. We generate data for 2000 gates, and the power traces are collected from the ChipWhisperer-Lite.
We successfully achieved a 100% success rate with parameters ls = 50 and kPOI = 1. Table 6 gives the detailed attack
results.
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Figure 9: Segments of the power consumption of the AES operation on the evaluator and the garbler, along with the
corresponding relationships between two POIs on the traces: (a) a trace of the evaluator’s standard AES execution (b) a
trace of the garbler’s interleaved AES execution.

Table 6: The attack results of the interleaved AES implementation on ChipWhisperer-Lite.

ls kPOI nPOI SR(%) avg_sig
50 1 13 84.95 0.308
50 5 87 100 0.478

This result indicates that the way of selecting POIs in AP 1 remains effective in the context of interleaved AES. Due to
the addition of the process to separate the interleaved sections, the number of POIs retained after filtering is reduced in
the attack, and the average significance of the attack is lower compared to that of a normal AES scenario.
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