
Competitive Policies for Online Collateral
Maintenance

Ghada Almashaqbeh1, Sixia Chen2, and Alexander Russell1,3

1 University of Connecticut, {ghada, acr}@uconn.edu
2 Adelphi University, schen@adelphi.edu

3 IOG

Abstract. Layer-two blockchain protocols emerged to address scalability
issues related to fees, storage cost, and confirmation delay of on-chain
transactions. They aggregate off-chain transactions into fewer on-chain
ones, thus offering immediate settlement and reduced transaction fees. To
preserve security of the underlying ledger, layer-two protocols often work
in a collateralized model; resources are committed on-chain to backup
off-chain activities. A fundamental challenge that arises in this setup is
determining a policy for establishing, committing, and replenishing the
collateral in a way that maximizes the value of settled transactions.
In this paper, we study this problem under two settings that model
collateralized layer-two protocols. The first is a general model in which a
party has an on-chain collateral C with a policy to decide on whether
to settle or discard each incoming transaction. The policy also specifies
when to replenish C based on the remaining collateral value. The second
model considers a discrete setup in which C is divided among k wallets,
each of which is of size C/k, such that when a wallet is full, and so
cannot settle any incoming transactions, it will be replenished. We devise
several online policies for these models, and show how competitive they
are compared to optimal (offline) policies that have full knowledge of the
incoming transaction stream. To the best of our knowledge, we are the
first to study and formulate online competitive policies for collateral and
wallet management in the blockchain setting.

1 Introduction

Distributed ledger technology has provided a financial and computational plat-
form realizing an unprecedented combination of trust assumptions, transparency,
and flexibility. Operationally, these platforms introduce two natural sources of
“friction”: settlement delays and settlement costs. The Bitcoin protocol, for ex-
ample, provides rather lackluster performance in both dimensions, with nominal
settlement delays of approximately one hour and average fees of approximately 1
USD per transaction. Layer-two protocols have been the ready response to these
complaints as they can provide instant settlement and, furthermore, can signifi-
cantly reduce transaction costs by aggregating related off-chain transactions so
that they ultimately correspond to fewer underlying ledger, or on-chain, transac-
tions. Examples of such protocols include payment channels and networks [9, 16],



probabilistic micropayments [5, 7, 14], state channels and networks [6, 10, 13], and
rollups [12,15].

However, in order for layer-two protocols to provide these remarkable ad-
vantages without sacrificing the security guarantees of the underlying ledger,
they must collateralize their activities. In particular, there must be resources
committed on-chain that provide explicit recourse to layer-two clients in the
event of a malicious or faulty layer-two peer or server. Moreover, the total value
of the on-chain collateral must scale with the value of “in flight” transactions
supported by the layer-two protocol.

These considerations point to a fundamental challenge faced by layer-two
protocols: determining a policy for establishing, committing, and replenishing
the collateral. Such a policy must ensure sufficient available collateral to set-
tle anticipated transaction patterns while minimizing the total collateral and
controlling the resulting number of on-chain transactions. Of course, any fixed
collateralization policy can be frustrated by the appearance of an individual
transaction—or a sudden burst of transactions—that exceeds the total current
collateral. More generally, it would appear that designing a satisfactory policy
must rely on detailed information about future transaction size and frequency,
i.e., transaction distribution. From a practical perspective, this poses a serious
obstacle because real-world transaction patterns are noteworthy for their unpre-
dictability and mercurial failure to adhere to a steady state. Analytically, this
immediately calls in to question the value of distribution-specific solutions. These
considerations motivate us to elevate distribution independence as a principal
design consideration for collateral policies.

We formulate a distribution-independent approach by adapting to our setting
the classical framework of competitive analysis. In particular, we study two
natural models: the k-wallet model in which the total collateral C is divided
among k wallets of fixed size, and a general model in which C is viewed as
one wallet that allows replenishment of any portion of C. After fixing only two
parameters of the underlying system—the total collateral C and the size T of the
largest transaction that we wish to support—we measure the performance of a
given collateral policy against the performance of an optimal, omniscient policy.
This optimal policy utilizes the same total collateral, but has full knowledge
of the future sequence of transactions as it commits and replenishes collateral.
Naively, this would appear to be an overly ambitious benchmark against which
to measure an algorithm that must make choices on the fly based only on the
past sequence of transactions. Our principal contribution is to show that the
natural policies for these two models perform well, even when compared against
this high bar.

1.1 Contributions

Our formal modeling is intended to reflect the challenges faced by standard
layer-two protocols. The most immediate of the models we consider arises as
follows: Consider a layer-two protocol with a total of C collateral that must
serve an unknown transaction sequence Tx = (tx1, tx2, . . .). As each transaction

2



arrives, the policy may either commit a corresponding portion of its available
collateral to settle this transaction or simply discard it; in particular, in any
circumstances where there isn’t sufficient uncommitted collateral to cover a given
transaction, the transaction must be discarded. The policy may also—whenever
it chooses—replenish its currently committed collateral. This “flush” procedure
returns the committed collateral to the available pool of collateral after a fixed
time delay F and involves a fixed cost τ (so transactions arriving during F will
be discarded if no other sufficient collateral is available). Thus, the challenge is
to schedule the flush events so as to minimize the total cost while simultaneously
maximizing the total value of settled transactions.

We remark that transactions “discarded” in the model above would typi-
cally be handled by some other fallback measure in a practical setting. The
flush operation, in practice, corresponds to on-chain settlement of a family of
transactions that releases the associated collateral so that it can be reused as
surety for additional transactions. While we assume that the flush procedure is
associated with a fixed, constant cost for simplicity, in practice this cost may scale
with the complexity of the aggregated transactions. We remark that a fixed cost
directly models Lightning-like payment channels and networks, or escrow-based
probabilistic micropayments, where the total number of participants is bounded.4

In this general setting, we study the natural family of policies determined by
a parameter η ∈ (0, 1) that settle transactions as they arrive until an η-fraction
of all collateral is consumed; at this point the committed collateral is flushed and
the process is continued with the remaining collateral. Our analytic development
first focuses on a simpler variation—of interest in its own right—that we call the
k-wallet problem. As above, the policy is challenged to serve a sequence Tx of
transactions with a total of C collateral; however, the collateral is now organized
into k wallets, each holding C/k collateral, with the understanding that an entire
wallet must be flushed at once. When a wallet is flushed it becomes entirely
unavailable for settlement—regardless of how much of the wallet was actually
committed to settled transactions—until the end of the flush period F , when the
collateral in the wallet is again fully available for future settlement. As above,
the policy may settle a transaction by committing a portion of collateral in one
of the wallets corresponding to the size of the transaction. This version of the
problem has the advantage that performance is captured by a single quantity:
the total value of settled transactions.

1.2 A Survey of the Results

Continuing to discuss the k-wallet model, we consider a sequence Tx of transac-
tions, each of value no more than T . We focus on the natural FlushWhenFull
policy, which maintains a single active wallet (unless all wallets are currently

4On-chain transaction cost also varies based on network conditions; during periods
of high activity or congestion, transaction issuers may resort to increasing transaction
fees to incentivize miners to prioritize their transactions. As such, τ above is viewed as
the average transaction cost.

3



unavailable) that is used to settle all arriving transactions; if settling a transaction
would leave negative residual committed collateral in the active wallet, the wallet
is flushed and a new wallet is activated as soon as one becomes available. We
prove that this simple, attractive policy settles at least a fraction

1− kT/C

1 + 1/k

of the total value settled by an optimal, offline strategy with C collateral, even
one that is not restricted to a k-wallet policy but can flush any portion of its
collateral at will. We remark that this tends to optimality for large k and small
T < C/k. This result also answers a related question: that of how many wallets
one should choose for a given total collateral C and maximum transaction size T .
We find that optimal k in this case is ≈

√
1 + C/T − 1.

As for the more flexible setting—under the general C collateral model—where
the policy may flush any portion of its collateral at will by paying a transaction
fee τ , recall that this poses a bicriteria challenge: maximizing settled transactions
while reducing settlement fees. We study this by establishing the natural figure of
merit that arises by assuming that each settled transaction yields positive utility
to the policy that scales with its value (e.g., a “profit margin”). Thus, the policy
seeks to maximize pV − τf , where V is the total value of settled transactions,
f is the total number of flushes, and p is the profit margin. Here we study the
family of policies that flush when currently committed (but unflushed) collateral
climbs to an η-fraction of C (η is a policy parameter). We find that this policy
achieves total utility of at least 1/α fraction of that achieved by the optimal
omniscient policy, where

α =
1

1− η − T/C
· p/τ − 1/C

p/τ − 1/(ηC)
.

In this case, we are also able to determine the optimal constant η∗ (as a function
of C, p, and τ) that maximizes the policy utility:

η∗ =
√
(1− T/C) · τ/(pC) .

We remark that our results in the k-wallet setting can also be applied to directly
yield results with this accounting that assigns a flush cost and a profit margin.

We study some additional questions that arise naturally. For example, we show
that no deterministic, single wallet policy can be competitive if the maximum
transaction size can be as large as the wallet size and show that, on the other
hand, a natural randomized algorithm is O(1)-competitive.

1.3 Applications

Online collateral management arises in various layer-two protocols, as well as in
Web 3.0 and decentralized finance (DeFi) applications. For layer-two protocols,

4



payment networks are an emblematic example: A relay party creates payment
channels with several parties, allowing her to relay payments over multi-hop
routes. Each payment channel is tied to a collateral C such that the relay cannot
accept a transaction to be relayed if the remaining collateral cannot cover it. This
applies as well to state channels, where transactions created off-chain—while the
channel is active—are accepted only if their accumulated value does not exceed
the initial fund committed when the channel was created. These configurations
adhere to the general collateral model discussed above.

Probabilistic micropayments follow a slightly different setting. Micropayments
are usually used to permit service-payment exchange without a trusted party to
reduce financial risks in case of misbehaving entities. A client creates an escrow
fund containing the collateral backing all anticipated payments to a set of servers.
A server provides a service to the client (e.g., file storage or content distribution)
in small chunks, so that the client pays a micropayment for each chunk. For any
incoming service exchange, the client cannot take it unless her collateral can
pay for it. The client can decide to replenish the escrow fund to avoid service
interruption, thus this also follows the general collateral model. The client may
also choose to divide her collateral among several escrows, each of which has a
different or similar setting with respect to, e.g., the set of servers who can be
paid using an escrow and the total service payment amount. This configuration
follows the k-wallet model.

Apart from layer-two scalability solutions, online collateral management
captures scenarios related to Web 3.0 and DeFi applications. The framework of
decentralized resource markets build systems that provide digital services, e.g.,
file storage, content distribution, computation outsourcing or video transcoding,
in a fully decentralized way [1–3]. Due to their open-access nature, where anyone
can join the system and serve others, these systems usually involve some form of
collateral. In this case, a collateral represents the amount of service a party wants
to pledge in the system. For example, in Filecoin [1]—a distributed file storage
network—a storage server commits collateral proportional to the amount of
storage she claims to own. This server cannot accept more file storage contracts,
and subsequently more storage payments, than what can be covered by the
pledged storage (or alternatively collateral).

In the DeFi setting, online collateral management is encountered in a variety
of applications. Loan management is a potential example [11, 17]; incoming loan
requests cannot be accepted unless the loan funding pool can support them. The
loan DeFi application then has to decide a policy for loan request accept criteria
(to favor some requests over others under the limited funding constraint) and
when to replenish the loan pool balance.

Another potential application, of perhaps an extended version of our models
and policies, that we believe to be of interest is the case of automated market
makers (AMMs) [19]. Here, a liquidity pool trades a pair of tokens against each
other, say token A and token B, such that a trade buying an amount of token A
pays for that using an amount of token B, and vice versa. Incoming trades are
accepted only if the liquidity pool can satisfy them, so in a sense having tokens

5



that can serve the requested trades is the collateral. Replenishing the pool fund,
or liquidity, can be done organically based on the trades. That is, a particular
trade, say to buy A tokens, reduces the backing fund of token A while increasing
it for token B. Another approach for pool replenishment is via liquidity providers;
particular parties provide their tokens to the pool to serve incoming trades (or
token swaps) in return for some commission fees. These providers can configure
when their offered liquidity can be used, i.e., at what trading price range, under
what is called concentrated liquidity as in Uniswap [4]. An interesting open
question is to develop competitive collateral policies that capture this setting
where settling a transaction does not only depend on whether the remaining
collateral C (i.e., pool liquidity) can cover it, but also on transaction-specific
parameters to meet certain collateral-related conditions. Even the replenishment
itself, i.e., providing liquidity, could be subject by other factors such as the
resulting price slippage, so an incoming mint transaction (in the language of
AMMs) that provides liquidity may not be accepted immediately. We leave these
questions as part of our future work directions.

In general, our work lays down foundations for wallet management to address
issues related to robustness, availability, and profitability of the wallet(s) holding
the collateral. Maintaining one wallet may lead to periods of interruption; a
party must wait for a while before a new wallet is created to replace an older
expired one. Maintaining several wallets may help, but given the cost of locking
currency in a wallet or renewing it, the number of active wallets and their
individual balances must be carefully selected. Moreover, under this multi-wallet
setting, it is important to consider how incoming transactions are matched to the
wallets, and whether factors such as payment amount or frequency may impact
this decision. A potential extension to our model is considering adaptive policy
management, where the size of the collateral and the number of wallets can be
adjusted after each flush decision to account for these varying factors.

2 The Model; Measuring Policy Quality

As discussed above, we consider the problem of designing an online collateral
management policy in which a collateral fund of initial value C is used to settle
transactions—each with a positive real value no more than T—chosen from
a sequence Tx = (tx1, tx2, . . .). Operationally, the policy is presented with the
transactions one-by-one and, as each transaction arrives, it must immediately
choose whether to settle the transaction or discard it. Settling a transaction
requires committing a portion of the collateral equal to the value of the transaction;
such committed collateral cannot be used to settle future transactions. Of course, if
there isn’t sufficient uncommitted collateral remaining to settle a given transaction
when it arrives, the transaction must be discarded. Committed collateral may
be returned to service by an operation we call a flush; we focus on two different
conventions for the flush operation, described below, but in either case the
collateral only becomes available for use after a fixed time delay F .

6



We assess the performance of a particular online policy A against that of
an optimal offline policy OPT that knows the full sequence Tx and can make
decisions based on this knowledge.

Below, we describe two models for the collateral: the discrete k-wallet model
and the general collateral model.

2.1 The Discrete k-Wallet Model

The k-wallet model calls for the collateral to be divided into k wallets, each
with C/k collateral value. Wallets support two operations: (i) a wallet with
uncommitted collateral R may immediately settle any transaction tx of value
v ≤ R; this reduces the available collateral of the wallet to R−v, and (ii) a wallet
may be flushed, which takes the wallet entirely offline for a flush period F after
which the available collateral R is reset to C/k. As a matter of bookkeeping, we
mentally organize time into short discrete slots indexed with natural numbers:
we then treat the transaction txt as arriving at time(slot) t, and set txt = 0 for
times t when no transactions arrive. We treat the flush period as a half-open and
half-closed interval: if a wallet flushes at time t, then it is offline during the time
interval (t, t+ F ]. In this model, the figure of merit is the total value of settled

transactions. We let DiscC,k
T denote this discrete k-wallet model with maximum

transaction size T .

Settlement algorithms, settled value, and the competitive ratio. A k-
wallet settlement algorithm A is an algorithm that determines, for any transaction
sequence Tx, whether to settle each transaction, which wallet to use, and when to
flush each wallet. For such an algorithm A and a sequence Tx = tx1, tx2, . . . , txn
we let A[DiscC,k

T ;Tx] denote the total value of all transactions settled by the
algorithm. In general, we use the notation A[M;Tx] to denote the value achieved
by algorithm A in model M with input sequence Tx. When the model is clear
from context, we simply write A[Tx].

We say that an algorithm A is online if, for every N , any decisions made by
the algorithm at time N depend only on tx1, tx2, . . . , txN , i.e., transactions seen
so far. We let OPT denote the optimal (offline) policy; thus OPT[DiscC,k

T ;Tx]
denotes the maximum possible value that can be achieved by any policy, even
one with a full view of all (past and future) transactions.

Definition 1. We say that an algorithm A is α-competitive in the k-wallet model
if, for any sequence Tx = tx1, . . . , txn with maximum value no more than T ,

OPT[DiscC,k
T ;Tx] ≤ α ·A[DiscC,k

T ;Tx] +O(1) ,

where the constant in the asymptotic notation may depend on the model parameters
(C, k, and T ), but not the sequence Tx or its length n.

Remark 1 (Relation to the bin packing problem). We remark on the relationship
between our problem and the well-studied online bin packing problem [8, 18],
where an algorithm must pack arriving objects into bins of constant size, while

7



opening a new bin any time a newly arriving object does not fit into any of the
current bins. In this context, the k-wallet model calls for a bounded number of
bins (a.k.a., wallets) that can only be reset with the flush operation. Also, we
measure the total settled value rather than the number of utilized bins. In any
case, we adopt the standard classical paradigm of competitive analysis to study
our algorithms, as described previously.

2.2 The General Collateral Model

In contrast to the discrete k-wallet model, where each wallet must be flushed as
a whole, the general setting permits any portion of the collateral to be flushed
at any time. The basic framework is identical: the policy is presented with a
sequence of transactions tx1, tx2, · · · and must decide whether each transaction
will be settled or discarded; the total collateral C and the maximum transaction
size T are parameters of the problem. Settling a transaction requires committing
collateral of value equal to the transaction; however, any portion of the committed
collateral can be flushed at any time. As before, each flush period is F and is
defined to be a half-open and half-closed time interval. We denote this model as
GenCT .

Since there is no penalty for flushing collateral in this model, it is clear that
any algorithm may as well immediately flush any committed collateral. Despite
the simple appearance of the model, it is still useful to consider this setting as a
comparison reference point for k-wallet policies, and we define A[GenCT ;Tx] to be
the total value of transactions settled by algorithm A in this general model for a
transaction sequence Tx (with total collateral C and maximum transaction size
T ).

Definition 2. We say that an algorithm A is α-competitive in the general col-
lateral model if, for any sequence Tx = tx1, . . . , txn with maximum value T ,

OPT[GenCT ;Tx] ≤ αA[GenCT ;Tx] +O(1) .

where the O(1) term may depend on model parameters but not on Tx or n.

Note that for any algorithm A defined in the k-wallet model the following is
always true:

A[DiscC,k
T ;Tx] ≤ OPT[DiscC,k

T ;Tx] ≤ OPT[GenCT ;Tx] .

A more natural model arises by introducing a cost for flushes. In order to
reflect the relative cost of flushes in the context of settled transactions, we
introduce two additional parameters:

1. Profit margin p: a profit p · v is gained when a transaction with value v is
settled.

2. Flush cost τ : each flush operation costs τ .

8



Table 1: Summary of our results. Here r = kT/C, τ is the flush cost, p is the
profit margin, and f is the number of flushes.

Discrete k-wallet model

r < 1
Theorem 1: FlushAll is (2− r)/(1− r)-competitive
Theorem 2: FlushWhenFull is (k + 1)/(k(1− r))-competitive

r = 1
k = 1 Theorem 3: No competitive deterministic settlement algorithm

k > 1
Theorem 4: FlushAll is 3-competitive
Theorem 5: FlushTwoWhenFull is 2(k + 1)/k-competitive

General collateral model

maximize V Corollary 1: FlushWhenFull is (k + 1)/(k(1− r))-competitive

maximize
pV − τf

Theorem 7: Aη is (1− β)/(
√

1− T/C −
√
β)2-competitive,

where η =
√

β(1− T/C) and β = τ/pC

We assume throughout that pC > τ ; otherwise there is no value to settling
transactions because the cost of even single flush exceeds the total profit that
can be accrued from the flushed collateral.

We let GenC;τ
T ;p denote this model, observing that GenCT and GenC;0

T ;1 coincide.

In keeping with the notation above, we let A[GenC;τ
T ;p ;Tx] denote the total profit

minus flush cost by applying algorithm A in the general model with total collateral
C, maximum transaction size T , profit margin p, flush cost τ , and transaction
sequence Tx. Then, we have the following.

Definition 3. We say that an algorithm A is α-competitive in the general collat-
eral model with flush costs if, for any sequence Tx = tx1, . . . , txn with maximum
value T ,

OPT[GenC;τ
T ;p ;Tx] ≤ α ·A[GenC;τ

T ;p ;Tx] +O(1) ,

where the O(1) term may depend on the model parameters but not Tx or n.

Transaction size. Our analysis identifies two regimes of interest regarding
transaction costs (for both of the previous models): the “micro-transaction”
setting, where T ≪ C (arising in micropayment applications) and “arbitrary”
transaction size when T ≈ C (arising in more general settings).

In the next two sections, we analyze policy competitiveness under each model;
the discrete k-wallet model can be found in Section 3 and the general collateral
model can be found in Section 4. Table 1 summarizes our results.

3 The Discrete k-Wallet Setting

We now formally consider the k-wallet setting. Our focal points are two natural
policies described next: FlushAll and FlushWhenFull.

9



3.1 The FlushAll Algorithm

We begin with the simple FlushAll algorithm, which uses k wallets placed in
(arbitrary, but fixed) order W1, . . . ,Wk. The algorithm packs transactions into its
wallets using the first fit algorithm: each transaction is settled by the first wallet
(in the established order) that can fit the transaction until a transaction arrives
that cannot fit into any wallet. At that time, all k wallets are simultaneously
flushed (and so during the flush period F all incoming transactions will be
discarded).

In the following theorems, we use r to denote kT/C, which is the ratio between
the maximum transaction size and the wallet size. Note that r ≤ 1.

Theorem 1. FlushAll is (2 − r)/(1 − r)-competitive in the DiscC,k
T model,

where r = kT/C.

Proof. For a sequence Tx of transactions, subdivide time into epochs according
to the behavior of the FlushAll algorithm. The first epoch begins at time 0
and continues through the first flush of the k wallets; the epoch ends in the last
timeslot of this flush period. Each subsequent epoch begins in the timeslot when
the wallets come back online (that is, in the timeslot just after the previous epoch
ends) and continues through the next flush to the end of the flush period. In
general, there may be a final partial epoch at the end of the transaction sequence;
other epochs are referred to as full. Any full epoch can be further broken into two
phases: the accumulation phase when all transactions are settled by FlushAll,
and the flush phase, during which no transactions can be settled (as all wallets
are offline).

For any particular full epoch, let V be the total value packed by FlushAll
into its wallets in the accumulation phase. We note that V ≥ k(C/k−T ) = C−kT ,
since every wallet will clearly be filled to at least C/k−T . As for OPT, during the
accumulation phase it can settle at most V (as this is the value of all transactions
appearing in that phase) and during the flush phase it can settle at most C (as
a unit of collateral can settle at most one transaction unit in any F period).
Therefore, the ratio between the value settled by OPT and FlushAll in a full
epoch is no more than

max
C−kT≤V≤C

V + C

V
≤ C − kT + C

C − kT
=

(2− kT/C)

(1− kT/C)
=

2− r

1− r
.

Moreover, the same formula above can be said for any partial epoch, since
the accumulation phase comes first.

Thus, the competitive ratio is α = (2 − r)/(1 − r). Observe that when r
decreases, the competitive ratio approaches 2.

Aside from the simplicity of the analysis, FlushAll may have an advantage
for certain sequences of transactions in practice: keeping all k wallets open during
the epoch (rather than optimistically flushing some earlier so as to bring new
collateral online earlier) may permit higher density packing of transactions into
the wallets. Indeed, one could consider leveraging an approximation algorithm for

10



bin packing for the purposes of optimizing this. On the other hand, in situations
where some of the wallets may become nearly full early in an epoch it seems
wasteful to wait to flush these wallets until all others are full. This motivates the
FlushWhenFull algorithm, which attempts to more eagerly flush wallets so
as to bring them online sooner.

3.2 The FlushWhenFull Algorithm

We now consider the FlushWhenFull algorithm, which fills wallets in a round-
robin order. Specifically, transactions are settled by a particular wallet until a
new transaction arrives that cannot fit; at that point the wallet is immediately
flushed, and the algorithm moves on to the next wallet in cyclic order. (In cases
where the next wallet is offline, the algorithm waits for the wallet to finish its
flush before processing further transactions, so all transactions arriving during
this wait period will be discarded.)

Theorem 2. For k > 1, FlushWhenFull is (k + 1)/(k(1− r))-competitive in

the DiscC,k
T model, where r = kT/C.

Proof. Assume, for the purpose of contradiction, that there is a time t for which
the interval I = (0, t] satisfies

VOPT(I) > (k + 1)/(k(1− r)) · VFWF(I) ,

where VOPT(I) and VFWF(I) are the total values of transactions OPT and
FlushWhenFull settle during I, respectively; let te be the earliest such t.

Since te is the earliest such time, there must be a transaction tx at te that
is not settled by FlushWhenFull. As FlushWhenFull does not take tx, it
must be the case that either all wallets are offline at te or k − 1 wallets are
already offline at te and the remaining wallet goes offline at te after failing to fit
tx. Therefore, every wallet flushes during If = (te − F, te]. Suppose, without loss
of generality, that they do so in order W1,W2, · · · ,Wk.

If te ≤ F , then OPT settles transaction value at most C in the interval (0, te]
since each wallet settles at most C/k. In the same interval, FlushWhenFull
settles at least k(C/k − T ) since each wallet settles at least C/k − T . Therefore,

VOPT(I)

VFWF(I)
≤ C

k(C/k − T )
=

C

C − kT
<

kC

kC − k2T
+

C

kC − k2T
=

k + 1

k(1− r)
,

which would contradict our assumption.
Otherwise te − F > t0. Observe that of the k wallets, at least W2,W3, · · ·Wk

began taking transactions during If since, if a wallet Wi’s transaction activity
before its last flush starts at a time before If for any i = 2, · · · , n, then Wi−1’s
last flush time must also be before If which contradicts the earlier conclusion
that all the k wallets’ last flush times are during If . Therefore, those k−1 wallets
together contribute (k − 1)(C/k − T ) to VFWF(If ). The only wallet that may
have started taking transactions before If is W1. Let ts denote the last time

11



before te that W1 came back online and ts′ denote the time W1 flushes. Note
that ts′ ∈ If , while ts may or may not be in the interval. Let Is = (ts, ts′ ] and
Is′ = (ts′ , te]; then we have VFWF(Is ∪ Is′) ≥ k(C/k − T ) since each wallet starts
to take transactions and then flushes within the interval Is ∪ Is′ . We also have
VOPT(Is) ≤ VFWF(Is) < C/k since wallet W1 is active during Is.

Additionally, we have VOPT(Is′) ≤ C since the length of Is′ is no more than
F , leading to VOPT(Is ∪ Is′) ≤ C/k + C. Therefore,

VOPT(Is ∪ Is′)

VFWF(Is ∪ Is′)
≤ C/k + C

k(C/k − T )
=

k + 1

k
· C

C − kT
=

k + 1

k(1− r)
.

But this contradicts our initial assumption; we conclude that there is no such
t.

3.3 Optimal Wallet Number

When k is large and r is small, FlushWhenFull approaches optimality. For
a given total collateral C and maximum transaction size T , it is natural to
ask how many wallets one should choose so as to optimize the competitive
ratio of FlushWhenFull. This amounts to determining a k that minimizes
(k + 1)/(k(1− kT/C)). By computing

∂

∂k

(
k + 1

k(1− kT/C)

)
= 0 ,

we find that the optimal value k∗ for k is
√
1 + C/T − 1. Of course, the actual

number of wallets must be an integer. We remark that if k ≈
√
C/T , then each

wallet has size ≈
√
CT and the competitive ratio is approximately

√
C +

√
T√

C −
√
T

.

3.4 Remarks on the profit margin–transaction cost setting

We remark that the competitive analyses above focusing on total settled value
immediately give rise to a bound for the setting that introduces a profit margin
p and a flush cost τ . Observe that, for any algorithm constrained to the k-wallet
framework that settles total value V , the maximum profit is V (p − τk/C), as
only C/k value can be settled in any single flush. Thus the profit of OPT is no
more than VOPT(p− τk/C). On the other hand, the profit of FlushWhenFull
is at least VFWF(p− τk/(C − kT ))−O(1), as each wallet is flushed with at least
C/k−T value (except for the last wallet, which may introduce a O(1) additional
penalty). It follows that the competitive ratio in the profit model is inflated by a
factor

p/τ − k/C

p/τ − k/(C − kT )

12



over that of the “value-only” k-wallet setting.
Note that the same argument can be applied to FlushAll because each

wallet is likewise flushed with at least C/k− T value (except perhaps for the last
flush event).

3.5 Remarks on the Case r = 1

If the maximum transaction size can be as large as the wallet size, we make a
few additional observations:

1. No deterministic algorithm can be competitive if there is only one wallet.
2. FlushAll is 3-competitive.
3. FlushWhenFull is not competitive, but a variation on the scheme that

groups wallets into pairs can solve the problem.

We prove these in the following.

Theorem 3. There is no competitive, deterministic 1-wallet settlement algorithm
if r = 1.

Proof. For the sake of simplicity, we assume the wallet size and maximum
transaction size are both 1. Fixing an online algorithm A, consider the following
schedule of transactions:

– Begin with a rapid succession of one or more microtransactions each having
size ϵ, terminating with the first microtransaction that the algorithm chooses
to settle.
1. If the algorithm does not choose to settle any of the microtransactions,

end the succession after 1/ϵ transactions.
2. If the algorithm does choose to settle one, follow it immediately with a

transaction of size 1.
– Allow an interval of length F to pass without any transactions.
– Repeat indefinitely.

In any iteration of the above, either case 1 or case 2 applies. In case 1, the
online algorithm settles no transactions, while the optimal offline algorithm settles
a total value of 1. In case 2, the online algorithm settles a single transaction
worth ϵ while the optimal offline algorithm settles a single transaction of size
1. Therefore, the competitive ratio is no better than 1/ϵ. As ϵ can be chosen
arbitrarily, it follows that the algorithm cannot achieve any fixed ratio.

Remark 2. A simple randomized algorithm can achieve constant competitive
ratio when both k and r are 1. We first show that FlushAll with 2 wallets is
2-competitive against OPT with one wallet. During each epoch, which extends
from the time the two wallets come back online after the previous flush until the
end of the next flush period, FlushAll settles total value V ≥ 1. On the other
hand, OPT can settle at most V + 1, that is, during the time FlushAll settles
transactions, OPT settles V , and during the flush time period of FlushAll,

13



OPT packs 1. Therefore, the competitive ratio is (V + 1)/V ≤ 2. Now we will let
our randomized algorithm that uses one wallet to simulate one of the wallets in
the FlushAll algorithm with 2 wallets. At each time when the wallet comes
back online, we flip a coin, if it is heads, it simulates the first wallet in FlushAll,
and if it is tails, it simulates the second wallet in FlushAll. That is, the wallet
in the randomized algorithm only settles the transactions that are taken by
the chosen wallet and ignores the other transactions. The expected value the
randomized algorithm can pack in each epoch is half of what FlushAll can
pack. Hence the competitive ratio against one-wallet OPT is 4.

Theorem 4. For any number k > 1 of wallets FlushAll is 3-competitive if
r = 1.

Proof. We use a similar analysis as the proof in Theorem 1. Time is divided into
epochs, each of which contains the accumulation phase and the flush phase. For
any particular full epoch, let V be the total value packed by FlushAll into its
wallets in the accumulation phase. We note that V ≥ C/2. To see this, observe
that for any pair of wallets Wi and Wj with i < j the final transaction values
vi and vj of the wallets must satisfy vi + vj > C/k—otherwise the transactions
in the later wallet j would have been placed in the earlier wallet i by first fit.
Summing these constraints∑

i<j

(vi + vj) ≥
∑
i<j

C

k
⇒ (k − 1)

∑
i

vi ≥
k(k − 1)

2

C

k
⇒

∑
i

vi ≥
C

2
.

OPT can settle at most V + C in this epoch. Considering that V ≥ C/2, the
quantity V + C ≤ 3V , as desired. It follows that the competitive ratio is α ≤ 3
as desired.

Unfortunately, when r = 1, the competitive ratio for FlushWhenFull is
unbounded. To see that, again, assume the maximum transaction size and wallet
size are both 1. The adversary can produce a series of suitably spaced transactions
alternating in value between ϵ and 1. FlushWhenFull will be forced to take all
the ϵ-valued transactions and forgo the high-value transactions, while OPT can
decline to process the low-value transactions in order to process all the high-value
ones. Therefore, the competitive ratio would be 1/ϵ. This problem can be solved
if we pair consecutive wallets and flush each pair when a transaction can not be
settled by either of the two wallets. Within each pair, the second wallet takes a
transaction when it is too large for the first wallet. We denote this algorithm as
FlushTwoWhenFull, for which we have the following result.

Theorem 5. When k > 1, FlushTwoWhenFull is 2(k + 1)/k-competitive if
r = 1.

Proof. The proof is similar to the proof of Theorem 2. We use the same nota-
tions as before. Between time interval (t0, t], FlushTwoWhenFull can settle
transaction value at least C/2 since each pair settles at least C/k before they
flush, while OPT settles at most C + C/k. Therefore, the competitive ratio is
2(k + 1)/k.

14



4 The General Collateral Setting

In this section, we study the general model where the entire collateral C is held
in a single pool. A collateral maintenance policy can replenish any portion of
committed collateral (used to settle a transaction) at any time. Even with this
additional flexibility, a unit of collateral can only be used for settlement once in
a time period of length F ; it follows that the total settled value of transactions
in any time period of length F is no more than C. Thus, using the same proof as
in Theorem 2, we conclude the following, which shows that FlushWhenFull
is competitive even when compared against an adversary who may use the full
power of the general model (while FlushWhenFull continues to be constrained
operate in the k-wallet discrete model).

Corollary 1. Setting r = kT/C,

OPT[GenCT ;Tx] ≤
k + 1

k(1− r)
· FlushWhenFull[DiscC,k

T ;Tx] .

The above result concerns the total transaction value V settled by an algorithm.
As mentioned in the introduction, without further constraints on the adversary
it’s clear that the optimal approach (in the general model) is to immediately
flush any collateral used to settle a transaction. In practice, this is unattractive
as there is, in fact, a cost associated with the (typically on-chain) transaction
used to refresh collateral. To study this, we introduce two new parameters: (i.)
p, the profit margin: the algorithm is provided a reward of p · v for settling a
transaction of value v, (ii.) τ , the cost of any flush (regardless of the amount of
collateral involved in the flush operation).

We seek to maximize the total profit with flush cost deducted. Formally, we
would like to find an algorithm that selects transactions to settle so that p ·V −τf
is maximized, where V is the total value of settled transactions and f is the
total number of flushes. (Note that by scaling the figure of merit by 1/τ , this is
equivalent to maximizing (p/τ)V − f and it follows that the single parameter
p/τ suffices; we separate these merely for the purpose of intuition.) Recall that

we use A[GenC;τ
T ;p ;Tx] to denote pV − τf for an algorithm A.

Inspired by the algorithm FlushWhenFull, we consider a family of policies
that flush when the currently committed collateral has reached a specified fraction
of C.

4.1 The Threshold Algorithm Aη

This algorithm is parameterized by a threshold η for which T/C ≤ η ≤ 1. The
behavior of the algorithm is determined by the running quantity R, the current
total collateral that has been committed to settle transactions, but not (yet)
flushed. The algorithm proceeds as follows: When a new transaction tx arrives, it
is settled if and only if there is sufficient remaining collateral. Immediately after
settling a transaction, if R ≥ ηC (so that there is at least ηC committed but
unflushed collateral), then it flushes exactly ηC collateral.

15



The following analysis derives the competitive ratio of Aη and then computes
the optimal value of η, denoted by η∗, that minimizes this competitive ratio.

Lemma 1. OPT[GenCT ;Tx] ≤
C

C − ηC − T
Aη[Gen

C
T ;Tx].

Proof. The proof is similar to the proof of Theorem 2, so we are somewhat more
brief. For contradiction, assume there is a (first) time te for which the interval
I = (0, te] satisfies

VOPT(I) > C/(C − ηC − T ) · VAη
(I) ,

where VOPT(I) and VAη(I) are the total values of transactions OPT and Aη

settle during I, respectively.
Since te is the earliest such time, there must be a transaction tx at te that

is not settled by Aη. As Aη does not take tx, there are two possibilities: 1) all
collateral is offline at te; 2) the remaining uncommitted collateral is insufficient
to settle tx. Let If = (te − F, te]. Recall that collateral is flushed sequentially in
portions of size ηC, and that any such portion will only start to take transactions
after (or at the same time that) the previous portion has been flushed. Let Wk,
refer to the remaining portion of unflushed collateral at time te, if any, and to
the last-flushed portion of collateral otherwise. Let W1,W2, · · · ,Wk−1 refer to
the portions of collateral flushed during all prior flush events throughout If . We

have
∑k

i=1 Wi = C.
If te ≤ F , then OPT settles transaction value at most C in the interval (0, te].

In the same interval, Aη settles at least C − T since the uncommitted collateral
is no more than T . Therefore,

VOPT(I)

VAη
(I)

≤ C

C − T
<

C

C − ηC − T
,

which would contradict our assumption.
Otherwise te − F > t0. Observe that of the k portions, W2,W3, · · · , and Wk

began settling transactions during If since if a portion Wi’s transaction activity
before its last flush starts at a time before If for any i = 2, · · · , n, then Wi−1’s
last flush time must also be before If .

The only portion that may have started settling transactions before If is W1.
Since W1 has size equal ηC and the uncommitted collateral in Wk is at most T ,
VAη (If ) ≥ C − ηC − T .

Again, we have VOPT(If ) ≤ C since the length of If is F . Therefore,

VOPT(If )

VAη
(If )

≤ C

C − ηC − T
.

This contradicts our initial assumption so we conclude that there is no such te.

Theorem 6. Let p ∈ (0, 1) and τ > 0 be a profit margin and flush cost. For a

threshold η ∈ (0, 1] the algorithm Aη is α-competitive in the GenC;τ
T ;p model for

α =
1

1− η − T/C
· p/τ − 1/C

p/τ − 1/(ηC)
.

16



Proof. For simplicity, assume that at the end of the sequence Tx any committed
but unflushed collateral is flushed in both algorithms. Note then that the algorithm
Aη flushed total collateral equal to the total settled value and, furthermore,
that each flush processes exactly ηC collateral with the exception of the last
which may be smaller. It follows that the total number of flushes is exactly
⌈Aη[Gen

C
T ;Tx]/(ηC)⌉. We conclude that

Aη[Gen
C;τ
T ;p ;Tx] = p ·Aη[Gen

C
T ;Tx]− τ ·

⌈
Aη[Gen

C
T ;Tx]

ηC

⌉

≥ p ·Aη[Gen
C
T ;Tx]− τ ·

(
Aη[Gen

C
T ;Tx]

ηC
+ 1

)

= Aη[Gen
C
T ;Tx]

(
p− τ

ηC

)
−O(1) .

(1)

OPT flushes at least once when it commits C collateral, therefore

OPT[GenC;τ
T ;p ;Tx] ≤ p·OPT[GenCT ;Tx]−τ ·OPT[GenCT ;Tx]

C
= OPT[GenCT ;Tx](p−τ/C) .

(2)
We combine these to conclude that

OPT[GenC;τ
T ;p ;Tx] ≤ OPT[GenCT ;Tx](p− τ/C) ≤ Aη[Gen

C
T ;Tx]

C

C − ηC − T
(p− τ/C)

≤ Aη[Gen
C;τ
T ;p ;Tx]

C

C − ηC − T
· p− τ/C

p− τ/(ηC)
+O(1) ,

as desired. The second inequality holds because of the inequality in Lemma 1.

Optimal value of η. The optimal value of η (which we denote η∗) satisfies:

∂

∂η

(
1

1− η − T/C
· p/τ − 1/C

p/τ − 1/(ηC)

)
= 0 ,

which leads to the optimal value η∗, where β = τ/(pC):

η∗ =
√
(1− T/C) · β .

Intuitively, as β approaches 0, the flush fee becomes negligible, and the
algorithm should flush as often as possible. Using this optimal η∗, the competitive
ratio is (1− β)/(

√
1− T/C −

√
β)2, which approaches 1 as β approaches 0. As a

final result, we have the following theorem.

Theorem 7. Choosing η =
√
β(1− T/C), the competitive ratio for Aη is

1− β

(
√
1− T/C −

√
β)2

.

17



5 Conclusion

We constructed a modeling framework for collateral management policies of
layer-two protocols in the blockchain setting. This framework targets two natural
models encountered in practice: the k-wallet model in which the collateral C is
divided among k wallets, and the general model in which C is viewed as one wallet
(or collateral pool). We adopt the standard classical paradigm of competitive
analysis in which an online algorithm A, that only knows the transactions
encountered so far, is compared against an optimal algorithm OPT that has full
knowledge of the transaction stream including future transactions. Our analysis
is agnostic to transaction distribution and only requires knowing the maximum
transaction size (i.e., value). Given the dynamic nature of blockchain applications
and the unpredictable behavior of their transactions and workload, developing
transaction distribution-independent techniques is highly desirable.

Using our framework, we study natural collateral management policies for
the k-wallet and the general models, and we show how competitive they are
compared to OPT. This is measured in terms of the total transaction value
that can be settled and when to replenish the collateral to allow settling future
transactions. The general model also studies the replenishment cost and how
this affects the utility of the policy. We also derive the optimal configuration for
the policy parameters, in terms of the number of wallets and the fraction of the
committed collateral to be replenished.

To the best of our knowledge, this work is the first to study the collateral
management problem for layer-two protocols. Our future work include extending
this model to account for more factors, e.g., transaction specific conditions rather
than just a transaction value, and develop dynamic policies in which the number
of wallets, and even the collateral value itself, can change over time based on the
experienced transaction stream.

Acknowledgements

We thank Mathias Fitzi for conversations that led to the original formulation of
these questions. The work of G.A. is supported by NSF Grant No. CNS-2226932.

References

1. Filecoin. https://filecoin.io/.
2. Golem. https://golem.network/.
3. Livepeer. https://livepeer.com/.
4. Uniswap protocol. https://uniswap.org/.
5. Ghada Almashaqbeh, Allison Bishop, and Justin Cappos. Microcash: Practical

concurrent processing of micropayments. In International Conference on Financial
Cryptography and Data Security, pages 227–244. Springer, 2020.

6. Manuel MT Chakravarty, Sandro Coretti, Matthias Fitzi, Peter Gazi, Philipp Kant,
Aggelos Kiayias, and Alexander Russell. Hydra: Fast isomorphic state channels.
Cryptology ePrint Archive, 2020.

18



7. Alessandro Chiesa, Matthew Green, Jingcheng Liu, Peihan Miao, Ian Miers, and
Pratyush Mishra. Decentralized anonymous micropayments. In Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
pages 609–642. Springer, 2017.

8. Yoga Jaideep Darapuneni. A survey of classical and recent results in bin packing
problem. 2012.

9. Christian Decker and Roger Wattenhofer. A fast and scalable payment network
with bitcoin duplex micropayment channels. In Symposium on Self-Stabilizing
Systems, pages 3–18. Springer, 2015.

10. Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. General state chan-
nel networks. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 949–966, 2018.

11. Rundong Gan, Le Wang, Xiangyu Ruan, and Xiaodong Lin. Understanding flash-
loan-based wash trading. In Proceedings of the 4th ACM Conference on Advances
in Financial Technologies, pages 74–88, 2022.

12. Alex Gluchowski. Zk rollup: scaling with zero-knowledge proofs. Matter Labs, 2019.
13. Andrew Miller, Iddo Bentov, Surya Bakshi, Ranjit Kumaresan, and Patrick McCorry.

Sprites and state channels: Payment networks that go faster than lightning. In
International conference on financial cryptography and data security, pages 508–526.
Springer, 2019.

14. Rafael Pass and Abhi Shelat. Micropayments for decentralized currencies. In CCS,
pages 207–218. ACM, 2015.

15. Joseph Poon and Vitalik Buterin. Plasma: Scalable autonomous smart contracts.
White paper, pages 1–47, 2017.

16. Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain
instant payments. Technical Report (draft), 2015.

17. Kanis Saengchote. Decentralized lending and its users: Insights from compound.
Journal of International Financial Markets, Institutions and Money, 87:101807,
2023.

18. Steven S Seiden. On the online bin packing problem. Journal of the ACM (JACM),
49(5):640–671, 2002.

19. Jiahua Xu, Krzysztof Paruch, Simon Cousaert, and Yebo Feng. Sok: Decentralized
exchanges (dex) with automated market maker (amm) protocols. ACM Computing
Surveys, 55(11):1–50, 2023.

19


