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Differential Fault Attack on HE-Friendly Stream
Ciphers: Masta, Pasta and Elisabeth

Weizhe Wang , Deng Tang

Abstract

In this paper, we propose the Differential Fault Attack (DFA) on three Homomorphic Encryption (HE) friendly stream ciphers
Masta, Pasta, and Elisabeth. Both Masta and Pasta are Rasta-like ciphers with publicly derived and pseudorandom affine
layers. The design of Elisabeth is an extension of FLIP and FiLIP, following the group filter permutator paradigm. All these
three ciphers operate on elements over Zp or Z2n , rather than Z2. We can recover the secret keys of all the targeted ciphers
through DFA. In particular, for Elisabeth, we present a new method to determine the filtering path, which is vital to make the
attack practical. Our attacks on various instances of Masta are practical and require only one block of keystream and a single
word-based fault. By injecting three word-based faults, we can theoretically mount DFA on two instances of Pasta, Pasta-3 and
Pasta-4. For Elisabeth-4, the only instance of the Elisabeth family, we present two DFAs in which we inject four bit-based
faults or a single word-based fault. With 15000 normal and faulty keystream words, the DFA on Elisabeth-4 can be completed
in just a few minutes.

Index Terms

Differential fault attack, Masta, Pasta, Elisabeth

I. INTRODUCTION

HOMOMORPHIC Encryption (HE) was initially introduced by Rivest et al. in 1978 [1] and quickly emerged as a notable
technology in the realms of privacy preservation, cloud computing, and other areas. Recently, there has been an observation

that symmetric-key primitives with low multiplicative depth can offer a notable improvement in communication efficiency for
HE protocols. As a result, the development of tailored symmetric-key ciphers like those with low multiplicative depth, has
emerged as a recent trend in research. In 2015, Albrecht et al. [2] introduced LowMC, marking the first design of a block
cipher targeted for HE. Meanwhile, for the realm of HE-friendly stream ciphers, Kreyvium, proposed by Canteaut et al. [3],
stands as the pioneer design. Derived from the Trivium cipher, Kreyvium relies on nonlinear feedback shift registers. The FLIP
family ciphers were first proposed in 2015 and the updated design was presented at EUROCRYPT 2016 [4]. The design of
FLIP is innovative, as its state is updated by a pseudorandom generator (PRG) instead of a feedback function. Subsequently,
Méaux et al. introduced FiLIP [5], a new family of stream ciphers that aligns with the filter permutator paradigm of FLIP
but employs a more intricate PRG. At CRYPTO 2018, Dobraunig et al. introduced another novel family of stream ciphers
named Rasta [6]. The design of Rasta adopts the SPN structure commonly employed in block ciphers, which also differs
significantly from the other stream ciphers. These new ciphers have attracted the attention of the community, leading to an
emergence of security analysis studies [7]–[11]. In this work, we will study three recent HE-friendly stream ciphers, Masta
[12], Pasta [13], and Elisabeth [14].

Masta, the first Zp variant of Rasta proposed by Ha et al. in 2020 [12], utilizes modular arithmetic to support HE schemes
over a non-binary plaintext space and employs finite field multiplication to establish the affine layers. Consequently, the
implementation is significantly more efficient than that of Rasta. Though Masta achieved good results at client-side runtime,
its homomorphic runtime is slow in many settings. Pasta is another Zp variant of Rasta proposed by Dobraunig et al. at
TCHES 2023 [13]. The designers of Pasta proposed a relatively cheap way to generate random matrices and used truncation
to prevent the inverse of the last layer. Moreover, Pasta also applies the Feistel χ function and cubic function as its nonlinear
layers, which are more complicated than that of Masta. Recently, Grassi et al. [15] proposed a method to reduce the randomness
in Rasta-like Designs and presented a modified version of Pasta called Pastav2. To the best of our knowledge, while the
algebraic attack is applied to Rasta [7], there is currently no similar attack on Masta and Pasta.

Elisabeth is a family of HE-friendly stream ciphers introduced by Cosseron et al. at ASIACRYPT 2022 and Elisabeth-4
is the only fully specified instance. Instead of using feedback functions, Elisabeth updates its state with an extendable output
function (XOF) like FLIP. In particular, Elisabeth operates in an additive group Z2n rather than a binary extension field F2n ,
which plays an important role in achieving the goals of designers. The design of Elisabeth extends FiLIP and applies a more
intricate filter function. Instead of using the direct sum of monomials or the Xor-Threshold function, Elisabeth’s nonlinear
component consists of eight negacyclic look-up tables. At ASIACRYPT 2023, Gilbert et al. [16] proposed a linearization
attack in classical setting for Elisabeth-4 with 288 elementary operations. This is the first and the only third-party attack on
Elisabeth.
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The differential fault attack (DFA) was first proposed by Boneh et al. [17] in 1997. The first DFA on stream ciphers was
introduced by Hoch and Shamir [18] at CHES 2004. The attacker of DFA is more powerful than that of classical attacks. In
DFA, the attacker can inject faults into the state of ciphers and collect the normal and faulty outputs to recover the secret
key. The faults can be injected by some specific tools, such as laser shots, clock glitches, electromagnetic waves, unsupported
voltage, etc. After the fault injection, the attacker can notice a distinguishable impact of the introduced difference in the
generated keystream. Generally, the attacker does not know the exact location of injected faults. One potential method to
pinpoint the fault locations is statistical testing, with the most famous technique being signature-based fault identification [19].
In situations where the statistical data exhibits random, the statistical test may prove ineffective, as is often observed in the
context of most HE-friendly ciphers. Recently, Méaux and Roy [20] introduced an additional approach for identifying fault
locations in DFA aimed at FLIP and FiLIP. When the location of an injected fault cannot be identified using any technique,
the attacker may guess the location to recover the state. This approach would be feasible if the number of injected faults is
minimal and the state size of the cipher is small. In our DFA, we will guess the location of faults for Masta and Pasta, and
use a simple method to locate the faulty word for Elisabeth.

In the context of DFA on HE-friendly ciphers, there exist several works. In 2020, Roy et al. [21] applied DFA to two stream
ciphers: Kreyvium and FLIP, which was the first try of DFA on HE-friendly ciphers. In 2023, Radheshwar et al. [22] mounted
DFA on Rasta and FiLIPDSM. Generally, for DFA over Z2, the attacker will construct Boolean equations and employ the SAT
solver to solve them. However, this approach is unsuitable for DFA over Zp or Z2n . In 2024, Jiao et al. [23] introduced DFA
on RAIN [24] and HERA [25], where RAIN is a secure multi-party computation (MPC) friendly block cipher and HERA is an
HE-friendly stream cipher. The work of Jiao et al. is notable as it is the first DFA over Zp. Their approach involved injecting
a word-based fault and constructing a system of quadratic equations for HERA. How to analyze the security of ciphers over
Zp or Z2n against DFA requires further investigation.

A. Our Contributions and Organization of the Article

TABLE I
SUMMARY OF OUR RESULTS

Cipher Scope Parameters Type of fault # Faults # Keystreams Time complexity

Masta
Z216+1

n = 32, r = 4, s = 80

word-based
1

32 235

n = 16, r = 5, s = 80 16 231.2

n = 32, r = 6, s = 128 32 235

n = 16, r = 7, s = 128 16 231.2

Pasta
n = 256, r = 3, s = 128

3
128 297.2

n = 64, r = 4, s = 128 32 285.6

Elisabeth Z24 N = 256, n = 60, s = 128
bit-based 4

15000
60 sec

word-based 1 150 sec

In this paper, we analyze three recent HE-friendly stream ciphers, Masta, Pasta, and Elisabeth. The main contributions of
this paper are as follows:

• We first propose the DFA on Masta in Section II. By injecting a word-based fault into the internal state of Masta, we can
construct a system of linear equations regarding the internal state and solve it with Gaussian elimination. Subsequently,
the secret key can be recovered by a partial encryption. In particular, we can reveal the secret keys of all the common
instances of Masta in a practical time (< 240 elementary operations).

• In Section III, we propose the DFA on Pasta. A system of quadratic equations can be constructed by injecting a word-
based fault into the internal state of Pasta. According to the characteristic of the equations, we apply linearization and
Gaussian elimination for solving them. We observed that apart from the difference between normal and faulty keystreams,
we can also construct equations using the differences between different faulty keystreams. Ultimately, we mount the DFA
by injecting 3 word-based faults. With our DFA, we can recover the secret key of both two common instances of Pasta
theoretically.

• We propose two DFAs on Elisabeth in Section IV. In the case of Elisabeth-4, the secret key of the cipher can be
recovered by injecting 4 bit-based faults or a word-based faults. Rather than constructing and solving equations, we use
a table to iteratively filter the candidate keys for Elisabeth-4. To effectively recover the key, we present a simple method
to locate the fault. To reduce the time and memory complexities, we carefully analyze the structure of Elisabeth-4 and
employ a greedy algorithm to generate filtering paths. This is crucial for our DFA as a random path could make the attack
impractical. Experimentally, we show that the secret key of Elisabeth-4 can be recovered in a few minutes.

The summary of our contributions is provided in Table I. All the experiments are completed with our personal computer (Intel
Core i5-10400 CPU with 6 cores, 2.90 GHz clock, 16 GB memory, Windows 11).
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The rest of the article is organized as follows. Section I-B, Section I-C and Section I-D describe the design of Masta,
Pasta, and Elisabeth respectively. The common process of DFA is described in Section I-E. The article is finally concluded
in Section V.

B. Design Specification of Masta
Masta [12] is an HE-friendly family of stream ciphers. For each block, Masta would first generate a pseudo-random

permutation πnc using nonce nc and an XOF, and then take a secret key k ∈ Zn
p as input to produce a block of keystream

knc ∈ Zn
p . The r-round Masta construction is shown in Fig. 1.

XOF𝑛𝑐

Public

𝑘 𝐴𝑓𝑓𝑖𝑛𝑒0 𝜒 𝐴𝑓𝑓𝑖𝑛𝑒𝑟𝜒 𝑘𝑛𝑐
…

…

Key dependent

Fig. 1. Design specification of Masta

For an r-round Masta, the permutation πnc consists of r + 1 affine layers and r non-linear layers. All the affine layers
Affinei, i = 0, . . . , r are generated by XOF which can be instantiated with AES in the counter mode or a sponge-type hash
function. Each affine layer is decomposed as Affinei = ARC i ◦ FMul i, i = 0, . . . , r. Namely,

FMul i(x) = a(i)x,

ARC i (x) = x+ b(i),

where x, b(i) ∈ Zn
p ,a

(i) ∈ Zpn . The field multiplication element a(i) can also be represented by an n × n invertible matrix
M (i). The non-linear layer of Masta is a Zp-variant of the χ-transformation. Let x = (x0, . . . , xn−1),y = (y0, . . . , yn−1),
where xi, yi ∈ Zp, i = 0, . . . , n− 1. Then y = χ(x) consists of

yi = xi + xi+2 + xi+1xi+2,

where all the indices taken modulo n. After the permutation πnc, the secret key k is added. The designers choose p = 216 +1
and the parameters n and r are given in the Table II. For simplicity, we will use sr to denote the r-th round state. This notation
will also be used for Pasta.

TABLE II
PARAMETERS n FOR r-ROUND MASTA

Security (bit)
80 128 192 256

r

4 32 128 512 2048
5 16 64 128 256
6 16 32 64 128
7 8 16 32 64

C. Design Specification of Pasta
Pasta is an HE-friendly cipher [13] that is thoroughly optimized for integer hybrid HE use cases. The workflow of Pasta

is the same as Masta, while Pasta employs a completely different permutation. The r-round Pasta construction is shown in
Fig. 2.

The permutation Pasta-π(x) operates on a vector x = xL||xR ∈ Z2t
p where || represents concatenation, and is defined as:

Pasta-π(x) = Ar ◦ Scube ◦Ar−1 ◦ Sfeistel ◦ · · · ◦ Sfeistel ◦A0(x).
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XOF𝑛𝑐

Public

𝐴0,𝐿

𝐴0,𝑅

2𝐼 𝐼
𝐼 2𝐼

𝑆′

𝑆′

𝐴1,𝐿

𝐴1,𝑅

𝑆′

𝑆′

𝑆

𝑆

𝑆

𝑆

⋮

𝐴𝑟,𝐿

𝐴𝑟,𝑅

2𝐼 𝐼
𝐼 2𝐼

2𝐼 𝐼
𝐼 2𝐼

⋯

⋯

𝑘𝑛𝑐𝑘𝐿

𝑘𝑅

𝑘 = 𝑘𝐿||𝑘𝑅

⋯

⋯

Key dependent

Fig. 2. Design specification of Pasta

For an r-round Pasta, the permutation consists of r+1 affine layers, r−1 Sfeistel and one Scube. For i = 0, . . . , r, the affine
layer Ai is define as

Ai(x) =

[
2I I
I 2I

] [
Ai,L(xL)
Ai,R(xR)

]
=

[
2I I
I 2I

] [
Mi,LxL + ci,L
Mi,RxR + ci,R

]
,

where I ∈ Zt×t
p is the identity matrix. Here, Mi,L,Mi,R ∈ Zt×t

p and ci,L, ci,R ∈ Zt
p are generated from an XOF seeded with

nonce nc. Sfeistel is an S-box layer defined as Sfeistel(x) = S′(xL)||S′(xR). S′ is a Feistel structure over Zt
p defined as

S′(y)l =

{
yl, if l = 0

yl + y2l−1, otherwise
,∀l ∈ {0, 1, . . . , t− 1},

where y = y0|| · · · ||yt−1 ∈ Zt
p. Scube is another S-box layer defined as Scube(x) = S(x0)|| · · · ||S(xn−1) = x3

0|| · · · ||x3
n−1,

where n = 2t is the length of the block. In [13], the designers provide two instances with 128 bit security: Pasta-3 with (r, t) =
(3, 128) and Pasta-4 with (r, t) = (4, 32). For the characteristic p of prime field, it requires p > 216 and gcd(p− 1, 3) = 1.

D. Design Specification of Elisabeth
Elisabeth [14] is an HE-friendly stream cipher proposed at ASIACRYPT 2022. The design of Elisabeth extends FLIP

family stream ciphers [4], [5] and follows the group filter permutator paradigm. Elisabeth-4 is an instance with 128 bits
security level of the Elisabeth family. It is parameterized by a 1024-bit key and an IV of unspecified length. The overall
structure of Elisabeth-4 is displayed in Fig. 3.

𝐼𝑉 XOF

Subset 𝜏𝑖

Perm. 𝜎𝑖

Whitening 𝑚𝑖

Key register

𝑓

𝑧𝑖

𝜋𝑖

Fig. 3. Overall structure of Elisabeth-4.

Elisabeth-4 operates on elements over Z24 . The key register can be viewed as an array of length N = 256, k =
(k1, . . . , k256) ∈ Z256

24 . At each moment i, an ordered arrangement πi = (πi
1, . . . , π

i
60) of length r · t = 60 would be selected

by XOF. The arrangement can be seen as the composition of a selection of 60-subset τ i of {1, . . . , N} and a permutation
σi of its elements. Besides, the XOF also generates a whitening vector mi = (mi

1, . . . ,m
i
60) ∈ Z60

24 . The keystream element
zi ∈ Z24 at moment i is obtained by

zi = f(kπi
1
+mi

1, . . . , kπi
60

+mi
60),

where f is the filtering function.
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𝑆1

𝑆2

𝑆4

𝑆3

𝑆5 𝑆6 𝑆7 𝑆8

𝑥1

𝑥2

𝑥4

𝑥3

𝑥1 𝑥2 𝑥3 𝑥4

ℎ(𝑥1, 𝑥2, 𝑥3, 𝑥4)

Fig. 4. The function h of Elisabeth-4

The filtering function f internally uses t = 12 parallel calls to a function g applied on r = 5 elements. The t outputs would
be summed together to produce the output of f . Specifically, we have

f(x1, . . . , x60) =

t−1∑
i=0

g(xir+1, xir+2, . . . , xir+5).

The 5-to-1 function is constructed as the sum of a nonlinear 4-to-1 function h and the remaining variable. That is,

g(x1, x2, x3, x4, x5) = h(x1, x2, x3, x4) + x5.

The construction of function h is shown in Fig. 4. All the eight look-up tables S1, . . . , S8 over Z24 are selected at random by
the designers. An instance of these Sboxes can be found in the Appendix A of [16].

E. Underlying Assumptions and Main Steps for DFA

In DFA, faults are intentionally injected into the state of cipher to observe the distinctions between the normal and faulty
keystreams. The underlying assumptions of this fault attack model are outlined as follows:
(1) The attacker can repeatedly restart the cipher using the same key and other public parameters (e.g., nonce and IV).
(2) The attacker can inject faults at specific timings during the keystream generation phase and monitor both the normal and

faulty keystreams.
(3) The attacker has the required tools (such as laser shots, electromagnetic waves, etc.) for injecting faults.
(4) The number of injected faults must be kept minimal to prevent potential damage to the device.
In the case of a bit-based fault, the value of the faulty state bit would simply flip. For a word-based fault, the value of the
faulty state word would turn into a random value. Following the injection of faults, the attacker proceeds with the following
steps to recover the secret key:
(1) Identify the location of the injected faults if possible. If the identification of the location of the fault is infeasible, then

guess the location.
(2) Recover the state using information from both the normal and faulty keystreams. This process may involve constructing

and solving equations or employing truth tables to iteratively filter.
(3) Derive the secret key from the obtained state.

II. DFA ON MASTA

In this section, we will present our DFA on Masta. To mount the DFA on Masta, we need to inject a word-based fault into
the internal state sr−1. As we cannot identify the location of the fault and the value of the faulty state word is unknown, we
need to exhaustively try all n words and all possible values in Zp. The process of our DFA on Masta is shown in Algorithm 1.
Our DFA requires only one block of keystream. The line 6 is the most vital part of DFA. Therefore, we will give a detailed
description of constructing the system of linear equations.
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Algorithm 1 DFA on Masta
1: Collect a block of normal keystream z for an unknown key k on a nonce nc
2: Inject a word-based fault at random position in the register of the internal state sr−1

3: Collect a block of faulty keystream z′ for the same key and nonce
4: for each possible faulty position i do
5: for each possible value of the difference ∆sr−1,i ∈ Zp do
6: Construct n linear equations over Zp on the normal input x of the last χ function
7: Solve the equations via Gaussian elimination
8: k′ = z −Affiner ◦ χ(x)
9: if Masta(k′) = z then

10: return k′

11: end if
12: end for
13: end for

Given the fault location i and the value of difference ∆sr−1,i, we have

sr−1,i − s′r−1,i = ∆sr−1,i,

sr−1,j − s′r−1,j = 0, j = 0, . . . , n− 1, j ̸= i,

where sr and s′r denotes the normal and faulty internal states respectively. Moreover, according to the expression of Masta,
we have the relation

z = k +Affiner ◦ χ ◦Affiner−1(sr−1).

The relation also holds for z′ and s′r−1. Let x and x′ represent the normal and faulty inputs, while y and y′ denote the
corresponding normal and faulty outputs of the nonlinear function χ, respectively. We have the following equations:

x = Affiner−1(sr−1) = ARC r−1 ◦ FMulr−1(sr−1),

z = k +Affiner(y) = k +ARC r ◦ FMulr(y).

Moreover, the relations about the differences are:

∆x = FMulr−1(∆sr−1), ∆y = FMul−1
r (∆z).

Because ∆sr−1,∆z are known and FMul i are linear operations, the value of ∆x and ∆y are determined. For each component
i = 0, . . . , n− 1 of the χ function, we have the following equations:

yi = xi + xi+2 + xi+1xi+2,

y′i = x′
i + x′

i+2 + x′
i+1x

′
i+2,

x′
i = xi +∆xi.

Furthermore, a linear equation regarding x over Zp is derived:

∆yi = ∆xi +∆xi+2 + xi+1∆xi+2 + xi+2∆xi+1, (1)

where ∆yi,∆xi,∆xi+1 and ∆xi+2 are all known. In total, we can obtain n linear equations like Equation (1) with n variables
x0, . . . , xn−1. Next, we can solve the equations by Gaussian elimination. The complexity of Gaussian elimination on an n×n
matrix is O(nω). The straightforward way to perform Gaussian elimination will result in ω = 3. In [26], ω is reduced to
log2 7 ≈ 2.8 with Strassen’s divide-and-conquer method. In recent decades, many efficient algorithms have been proposed,
and the upper bound of ω has been decreasing [27]–[29]. Recently, the upper bound on ω has been updated to 2.371552
[30]. However, these algorithms may not be easy to implement and have a large hidden constant. In this paper, we will use
ω = 2.8. The cost of checking candidate keys is negligible. Therefore, the time complexity of Algorithm 1 is pnω+1 = pn3.8.
For Masta, we have p = 216 +1, and then the time complexities of our DFA under different lengths of block n are shown in
Table III.

TABLE III
THE TIME COMPLEXITIES OF DFA ON MASTA UNDER DIFFERENT n

n 8 16 32 64 128 256 512 2048

Cost 227.4 231.2 235.0 238.8 242.6 246.4 250.2 257.8

By comparing Table II and Table III, it can be observed that our DFA is effective for all instances of Masta.
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III. DFA ON PASTA

This section presents our DFA on Pasta. To mount DFA on Pasta, we need to inject more than one word-based faults in
the internal state sr−1 in total. For all the faults, we need to exhaustively try all possible positions and values. The process of
our DFA on Pasta is displayed in Algorithm 2. Like the DFA on Masta, our DFA on Pasta also requires only one block of
keystream. The equation construction is similar in both DFA, while the number of faults and equations solving are completely
different. In the following context, a detailed description of constructing and solving equations will be given.

Algorithm 2 Our DFA on Pasta
1: Collect a block of normal keystream z for an unknown key k on a nonce nc
2: Inject 3 word-based faults at random position in the register of the internal state sr−1

3: Collect a block of faulty keystream (z(1), z(2), z(3)) for the same key and nonce
4: for each possible faulty position (i1, i2, i3) do
5: for (∆s

(1)
r−1,i1

,∆s
(2)
r−1,i2

,∆s
(3)
r−1,i3

) ∈ Z3
p do

6: Construct 3t quadratic equations over Zp on the normal input x of Scube using (z, z(j)) and ∆s
(j)
r−1,ij

, j = 1, 2, 3

7: Construct another t quadratic equations over Zp on the normal input x of Scube using (z(1), z(2)) and
(∆s

(1)
r−1,i1

,∆s
(2)
r−1,i2

)
8: Solve the 4t quadratic equations via linearization and Gaussian elimination
9: Recover the candidate key k′ using the inverse of r − 1 round Pasta-π

10: if Pasta-π(k′) = z then
11: return k′

12: end if
13: end for
14: end for

In particular, we will focus on how to derive t quadratic equations for the first fault. Then the process will be repeated for
the remaining faults. Suppose the fault location is i1 and the value of difference is ∆s

(1)
r−1,i1

, we have

∆s
(1)
r−1,j =

{
s
(1)
r−1,j − sr−1,j , j = i1

0, j = 0, 1, . . . , n− 1, j ̸= i
.

Let x,x(1) represent the normal and faulty inputs, while y,y(1) denotes the normal and faulty outputs of the Scube, respectively.
Then the difference ∆x(1) can be computed as

∆x(1) = x(1) − x = Ar−1(∆s
(1)
r−1).

Because Ar−1 is a linear operation, the value of ∆x can be obtained based on ∆s
(1)
r−1. For each component i = 0, . . . , n− 1

of the Scube, we have the following relation:

∆yi = 3∆x
(1)
i x2

i + 3(∆x
(1)
i )2xi + (∆x

(1)
i )3. (2)

Because the output of Pasta is truncated, we cannot obtain the value of ∆y by inverting the final linear layer. However,
Equation (2) still indicates that the output difference ∆yi of the Scube is quadratic concerning xi and the only quadratic term
is x2

i . By propagating the difference forward, we have

∆z(1) = Ar(∆y)L = 2Mr,L∆yL +Mr,R∆yR. (3)

Therefore, according to Equation (2) and Equation (3), t quadratic equations on n variables x0, . . . , xn−1 can be obtained.
Specifically, there are exactly n quadratic terms x2

0, . . . , x
2
n−1.

To solve the system of equations efficiently, we employ the linearization technique and Gaussian elimination. Considering
every monomial appearing in the system as an independent variable, the system can be viewed as a linear system. As we
mentioned above, the only quadratic term in Equation (2) is x2

i . If we use the linearization technique, the number of independent
variables is 2n, i.e., 4t in total. To get a unique solution, we need at least 4t equations.

As mentioned above, we can obtain t quadratic equations for each pair of normal and faulty keystream blocks. Besides, by
using a pair of different faulty keystream blocks, we can also obtain t quadratic equations. For example, for the first two faulty
keystream blocks (z(1), z(2)), the input difference of Scube can be computed as

∆x′ = x(2) − x(1) = ∆x(2) −∆x(1) = Ar−1(s
(2)
r−1 − s

(1)
r−1).

Based on ∆x′ and z(2) − z(1), t new quadratic equations can be derived. Specifically, when the number of injected faults is
m, we can acquire m2+m

2 quadratic equations for Pasta in total. To collect more than 4t equations, we only need to inject 3
faults, instead of 4 faults.
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For each guess of faults, we need to solve the equations and validate the solution. The complexity of Gaussian elimination is
(2n)2.8, and the time of recovering and verifying candidate keys is negligible. Therefore, the time complexity of Algorithm 2 is
(np)3(2n)2.8 = 28.6p3t5.8. In particular, the costs of our first DFA on Pasta-3 and Pasta-4 are 237.6p3 and 249.2p3 respectively.
In other words, we can mount theoretical DFA on Pasta-3 and Pasta-4 when p < 226.2 and p < 230.1 with Algorithm 2,
respectively. When p ≈ 216, the costs of our DFA on Pasta-3 and Pasta-4 are 297.2 and 285.6.

IV. DFA ON ELISABETH

In this section, we will describe how to mount the DFA on Elisabeth. We propose a total of two different DFAs and
implement them on the only instance, Elisabeth-4. For the DFA on Elisabeth-4, we present a simple method to locate the
faulty word. With our method, we no longer need to exhaustively test all possible word positions for the injected fault, greatly
reducing the time complexity of the DFA. Due to the completely different structures of Elisabeth and Rasta-like ciphers, the
DFA on Elisabeth also differs significantly from those on Masta and Pasta.

A. DFA on Elisabeth-4 using bit-based faults

For our first DFA on Elisabeth-4, we need to inject 4 bit-based faults in the secret key register k on average. The process
of our DFA on Elisabeth-4 is shown in Algorithm 3. In our key recovery process, we need to ensure that the faulty bit is the
most significant bit (MSB) of the key word, hence we will first judge the position of the faulty bit and repeatedly inject faults
until the faulty bit meets the condition. The probability that the faulty bit is the MSB of a word for Elisabeth-4 is 1

4 , so we
need to inject 4 faults on average to complete our first DFA. We will describe our DFA in detail below.

Algorithm 3 Our first DFA on Elisabeth-4
1: Compute and store T = {(x1, x2, x3, x4, j,∆h)} for all (x1, x2, x3, x4) ∈ Z4

24 and j ∈ {1, 2, 3, 4}, where j is the word
position of flipped bit

2: Collect L normal keystream words z for an unknown key k on an initial vector IV
3: while correct key is not found do
4: Inject a bit-based fault at random position in the the register of the secret key k
5: Collect L faulty keystream words z′ for the same IV and compute ∆z = z′ − z
6: tmp← Identify(∆z, IV,XOF )
7: if the faulty bit is the MSB of a key word then
8: Path← GenPath(tmp, L, IV,XOF )
9: S ← Filter(∆z, Path, T, tmp, IV,XOF )

10: for sol ∈ S do
11: if Elisabeth(sol, IV ) = z then
12: return sol
13: end if
14: end for
15: end if
16: end while

As described in Section I-E, the first step of DFA is to inject and identify the faults. For DFA on traditional stream ciphers,
the signature-based identification technique [19] would be a good choice. The attacker will precompute the patterns, called
signatures, for different faults in the offline phase and use it the identify the injected faults in the online phase. However, the
structure of Elisabeth is completely different from the traditional stream ciphers like Kreyvium. There is no feedback function
for Elisabeth and it updates the state according to the subset, permutation, and whitening vector produced by XOF. Therefore,
if a single fault is injected into the key register of Elisabeth, it would affect only one word of state at a moment. Due to the
unpredictable movement of faults in the state, we cannot apply the signature-based identification technique to Elisabeth. In
[20], Méaux and Roy proposed an identification technique for FLIP-like ciphers using influence. In our work, we will employ
a similar but more simple method to identify the position of the state word where the faulty bit is located. According to the
workflow of Elisabeth-4, 60 out of 256 key words will be selected at each moment. If the injected fault is not included, the
difference between normal and faulty keystream words at this moment will be zero. In other words, if the difference ∆zi at
moment i is non-zero, then the fault must belong to the subset τ i. Based on this rule, we can filter the possible position of
the injected fault by using non-zero difference iteratively. The details of our identification method are given in Algorithm 4.

We implemented the Algorithm 4 on our personal computer and tested it with 100,000 random IVs and faults. The
experimental results show that, on average, only 22 keystream words are required and the cost of time is less than 0.01
seconds for each identification. Therefore, the cost of identification is negligible. With Algorithm 4, we can detect the word
position of the injected fault.
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Algorithm 4 Identify the word where the faulty bit locates
1: procedure Identify (The difference of keystream words ∆z, initial vector IV , XOF )
2: PosCan← {1, . . . , 256}
3: i = 0
4: while |PosCan| > 1 do
5: Generate the subset τ i ← XOF (IV, i)
6: if ∆zi ̸= 0 then
7: PosCan← PosCan ∩ τ i

8: end if
9: i← i+ 1

10: end while
11: return the only element of PosCan
12: end procedure

The second step of DFA is to recover the state or key using the normal and faulty keystream words. A straightforward
approach is to gather a sufficient number of equations and then proceed with solving them. We attempt to use the least
significant bit (LSB) of g as [16] and form the polynomial equations over Z2.1 The resulting differential Boolean equation is
complex and hard to solve. In other words, we cannot solve the system of equations in practical time. The intricate design of
g and the group Z24 make it impossible to construct a system of simple equations for Elisabeth-4 like FLIP-family ciphers.

Instead of constructing and solving equations, it is feasible to directly store all the solutions in a table, given the small input
space of h. Between the input of function g and key word, there is a whitening step, i.e., a whitening vector will be added to
the state. Modular addition is a non-linear operation over F2n , which means it will affect the XOR difference. Therefore, the
table will become too large to store. In order to eliminate the impact of modular addition and simplify the stored table, we
need to deeply study how the XOR difference propagates in modular addition and try to turn it to the difference over Z24 in
the attack.

By observing the propagation of XOR difference in modular addition, we can get the following results:

TABLE IV
PROPAGATION OF XOR DIFFERENCE IN MODULAR ADDITION

Input difference Possible output difference
0001 0001, 0011, 0111, 1111
0010 0010, 0110, 1110
0100 0100, 1100
1000 1000

From Table IV, we see that when the input XOR difference is 1000, the output XOR difference will remain unchanged.
This is because flipping of the MSB of a is equivalent to a+8. Therefore, if the injected fault is located at the MSB, we can
analyze the XOR difference as the difference over Z24 and the whitening step will not affect the difference. Without loss of
generality, we suppose the injected bit-based fault locates at the first key word k1:

k′1 − k1 = ∆k = 8, k′i = ki, i = 2, . . . , 256,

where k′ = (k′1, . . . , k
′
256) is the faulty key. For a certain moment j, if k1 does not belong to the subset τ j , the output

difference will be zero and this cannot help us recover the key. Therefore, we focus on the moments that k1 is used to generate
the keystream word. For a pair of normal and faulty keystream words (zj , z

′
j), the difference can be represented as

∆zj =

t−1∑
i=0

∆g(xir+1, . . . , xir+5)

=

t−1∑
i=0

∆h(xir+1, . . . , xir+4) + ∆xir+5.

According to the structure of Elisabeth-4, at most one state word will be affected at each moment. As a result, only one
function g will have an output difference. Suppose the faulty word is in (x1, . . . , x5), we have

∆zj = ∆g(x1, . . . , x5) = ∆h(x1, . . . , x4) + ∆x5.

If the faulty word is x5, ∆zj is equal to ∆k. This can help us to judge whether the faulty bit is the MSB or not. When the
faulty bit is the MSB, the output difference will equal 8. Thus, after identifying the position of faulty word, we can judge the

1The LSB of the addition in Z24 behaves linearly in Z2.
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type of the faulty bit by observing the output difference when the faulty word appears at x5. This is what line 7 in Algorithm 3
does.

For key recovery, we utilize the moments when the faulty word lies at the input of nonlinear function h. In this case, the
output difference of h is equal to ∆zj . Because the whitening vector is known when initial vector IV and moment j are given,
the value of k can be simply computed if x is known. Now, the problem has been converted to recovering the secret key with
many ∆h.

For each possible fault, we compute the output difference of h and then store the result in table T offline. In particular, the
size of T is 4 × (24)4 = 218. This is because the input space of h is (24)4 and there are 4 possible faulty word positions.
During the online phase, we only need to look up the table T according to the position of fault j and the actual value of
difference ∆h. Looking up a table is essentially still a form of equation solving, which is a trade-off between time and memory
complexity. It is more advantageous than directly solving an equation when the equation is complex but has a few variables.
On average, each equation about difference can reduce the value space of (x1, x2, x3, x4) from 216 to 212. In other words, an
equation can compress the space of the key to at most 2−4 of its original size. Given many equations, the correct key must
satisfy all equations simultaneously. Assuming the candidate key sets derived from equations are S1, S2, . . . , Sn, we need to
continuously take the intersection until filtering out the unique correct key. This corresponds to lines 8-14 in Algorithm 3.
It is obvious that the entire process includes n − 1 intersection operations in total, and the cost of an intersection operation
is closely related to the sizes of input sets. Since the positions of the keys in each candidate key set Si are not the same,
the order of intersection will have a significant impact on the sizes of sets. For example, suppose S1 and S2 relate to keys
(ki1 , ki2 , ki3 , ki4) and (kj1 , kj2 , kj3 , kj4) respectively, and |S1| = |S2| = 212. When S1 and S2 involve completely different key
positions2, the size of the set after taking the intersection will become 224. However, if the related four key positions are the
same, the size of the set after taking the intersection will shrink to around 28. Specifically, we have the following proposition.

Proposition 1. Let S1 ⊆ Zm
24 , S2 ⊆ Zn

24 and |S1| = M, |S2| = N . If they have t common related key positions, then the size
of the set after taking the intersection is MN

24t .

Proof. Suppose the corresponding key positions for S1 and S2 are (ki1 , . . . , kim), (kj1 , . . . , kjm) respectively. Without loss of
generality, suppose the first t positions are the same, i.e., ki1 = kj1 , . . . , kit = kjt . Denote Z = {(s1, s2)|s1 ∈ S1, s2 ∈ S2},
then the size of Z is MN .

The probability of a collision over Z24 is 1
24 , and that of t collisions is 1

24t . Hence, the size of the set after taking the
intersection is

|Z| · Prob(t collisions) =
MN

24t
.

This completes the proof.

According to Proposition 1, the more common key positions there are, the smaller the size of the intersection will be.
Therefore, to lower time complexity, we prefer to a set with the most common key positions with the current set each time
we intersect. This leads to Algorithm 5, which is a greedy algorithm.

According to Proposition 1, we can infer that when |S2| = 212 and the number of common key positions is 3, the size of
the set after intersection will be |S1| ·212 ·2−4×3 = |S1|. In other words, the size of the sets is very likely to remain unchanged
after the intersection. Therefore, if we can ensure that each selected set has 3 or 4 common key positions with the existing
set, then the size of our set can always be controlled within a reasonable range. That is the basis of our greedy algorithm and
what is accomplished in lines 24-30 of Algorithm 5. Lines 13-23 of Algorithm 5 is the process of selecting a good starting
point, which may help us reduce the runtime of DFA. If we can find a pair of sets with identical key positions, then the size
of our initial set will be reduced to around 28. Otherwise, it will be around 212. By rough estimation, the solving time for
the former is only 2−8 of the latter. After obtaining the path of intersection, we can proceed to recover the secret key with
Algorithm 6. We implemented the first DFA on our personal computer. Given 15000 keystream words, the entire process took
about 60 seconds.

B. DFA on Elisabeth-4 using word-based faults

In the previous section, we introduced a DFA on Elisabeth-4 with single bit flip model. However, flip a single bit in an
actual micro-controller may require strong attacker assumptions such as decapsulation or laser fault injection are required. A
random word error fault model is more relaxed and easier to implement in a realistic environment. In this section, we will
present our second DFA on Elisabeth-4 using word-based faults.

For our second DFA on Elisabeth-4, we need to inject a single word-based fault in the secret key register k. The process
of the second DFA is similar to that of the first one, which is described as Algorithm 7.

2This situation will never happen during our DFA. The number of common key positions will be at least 1, since the faulty key word must be included in
each set.
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Algorithm 5 Find the (sub-)optimal merged path
1: procedure GenPath (The position of faulty word tmp, the length of keystream L, initial vector IV , XOF )
2: TF ← []
3: PA← []
4: RR← []
5: tS ← ∅
6: for i = 0, . . . , L− 1 do
7: τ i,πi ← XOF (IV, i)
8: if tmp ∈ τ i and tmp is a input of h then
9: TF.add(i)

10: PA.add(the input set of h that includes tmp)
11: end if
12: end for
13: if there exist i and j such that PA[i] = PA[j] then
14: tS ← PA[i]
15: Add TF [i] and TF [j] to RR
16: Remove TF [i] and TF [j] from TF
17: Remove PA[i] and PA[j] from PA
18: else
19: tS ← PA[0]
20: RR.add(TF [0])
21: TF.remove(TF [0])
22: PA.remove(PA[0])
23: end if
24: while |tS| < 256 and TF ̸= ∅ do
25: new ← maxi |PA[i] ∩ tS|
26: tS ← tS ∪ PA[new]
27: RR.add(TF [new])
28: TF.remove(TF [new])
29: PA.remove(PA[new])
30: end while
31: RR← RR+ TF
32: return RR
33: end procedure

Algorithm 6 Filter the solution space with the output
1: procedure Filter (The difference of keystream words ∆z, merged path Path, guessed bit position pos, filtering table T ,

initial vector IV , XOF )
2: t← Path[0]
3: τ t,πt,mt ← XOF (IV, t)
4: Determine the exact position ind of faulty bit and adding mask w with tmp, τ t,πt and mt

5: S ← {x−w|(x, ind,∆zt) ∈ T} ▷ S ← {x−w|(x, δ, ind,∆zt) ∈ T} for second DFA
6: for i = 1, . . . , |Path| − 1 do
7: t← Path[i]
8: τ t,πt,mt ← XOF (IV, t)
9: Determine the exact position ind of faulty bit and adding mask w with tmp, τ t,πt and mt

10: H ← {x−w|(x, ind,∆zt) ∈ T} ▷ H ← {x−w|(x, δ, ind,∆zt) ∈ T} for second DFA
11: S ← Intersect(S,H) ▷ Intersect at the common indexes of S and H
12: end for
13: return S
14: end procedure
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Algorithm 7 Our second DFA on Elisabeth-4
1: Compute and store T ′ = {(x1, x2, x3, x4, δ, j,∆h)} for all (x1, x2, x3, x4) ∈ Z4

24 , j ∈ {1, 2, 3, 4} and δ ∈ {1, 2, . . . , 15},
where j is the position of faulty word and δ is the value of input difference

2: Collect L normal keystream words z for an unknown key k on an initial vector IV
3: Inject a word-based fault at random position in the the register of the secret key k
4: Collect L faulty keystream words z′ for the same IV and compute ∆z = z′ − z
5: tmp← Identify(∆z, IV,XOF )
6: Path← GenPath(tmp, L, IV,XOF )
7: for δ from 1 to 15 do
8: S ← Filter(∆z, Path, T ′, tmp, δ, IV,XOF ) ▷ Adjust the way to look up table
9: for sol ∈ S do

10: if Elisabeth(sol, IV ) = z then
11: return sol
12: end if
13: end for
14: end for

The first step of our second DFA is to compute and store a new table T ′ for filtering in advance. Then, a word-based fault
is injected and we can locate the position of the fault with Algorithm 4. Given the fault location i and the value of difference
∆ki, we have

k′i − ki = ∆ki, k
′
j = kj , j ̸= i,

As in the previous analysis, the output difference ∆z will be equal to the output difference of one g(x1, . . . , x5). When the
faulty word is x5, the moment will be discarded immediately because the difference equation does not involve any key variable.
Conversely, if the faulty word lies at one of x1, x2, x3, x4, we can use the table T ′ to filter the candidate keys. In a random
word error model, the value of faulty word is unknown. Therefore, we need to compute the difference for all possible faults.
Since there are 4 word positions and 15 non-zero difference, the size of table T ′ is 4× 15× (24)4 ≈ 222.

Next, we can utilize Algorithm 5 to find an effective path for filtering and filter the solution space with Algorithm 6. It
is important to note that the index of the table T ′ has changed; it now includes one additional column for the value of the
difference compared to table T . Thus, we need to make some adjustments when looking up entries in the table. This change
has little impact on the overall performance of the attack.

We also implemented the second DFA on our personal computer using a total of 15,000 keystream words. In our attack, we
need to guess the exact value of difference and then filter the keys accordingly. When the guess is incorrect, the time spent
on setting up and solving equations can be the same as, or even longer than, when the guess is correct. However, our filtering
process terminates more quickly when the guess is wrong, as the set of candidate keys becomes empty after a few intersection
operations. This feature highlights the advantage of our lookup table method for deriving the secret key. For each difference δ,
the filtering process took approximately 10 seconds. The entire process of our second DFA took about 150 seconds. Although
the second DFA requires more time than the first, it demands fewer faults to inject and is easier to implement in practical
applications. Thus, The attacker can select an appropriate attack based on practical conditions and complete the attack on
Elisabeth-4.

V. CONCLUSION

In our study, we introduce DFA against three recent HE-friendly stream ciphers: Masta, Pasta, and Elisabeth. Our results
demonstrate that the secret keys of Masta and Elisabeth can be efficiently recovered within a practical time by introducing a
random word-based fault into the state or key registers. Notably, the DFA of Elisabeth can also be completed with 4 bit-based
faults. Furthermore, in the case of Pasta, injecting three random word-based faults enables the application of a theoretical DFA,
showcasing a significant advantage over brute force attacks. With our DFA, the secret key of Elisabeth-4 can be recovered
within several minutes. From our experimental results, it can be observed that complex round functions, truncated outputs,
large finite fields, and long lengths of block all contribute to enhancing the resistance of cryptographic algorithms against DFA.
Our comprehensive analysis reveals the vulnerabilities of HE-friendly stream ciphers to DFA, highlighting the need for closer
scrutiny in the design of ciphers in this category.
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