
Laconic Function Evaluation, Functional Encryption and
Obfuscation for RAMs with Sublinear Computation

Fangqi Dong*

IIIS, Tsinghua University
Zihan Hao†

IIIS, Tsinghua University
Ethan Mook‡

Northeastern University

Daniel Wichs§

Northeastern University and NTT Research

June 5, 2024

Abstract

Laconic function evaluation (LFE) is a “flipped” version of fully homomorphic encryption,
where the server performing the computation gets the output. The server commits itself to
a function f by outputting a small digest. Clients can later efficiently encrypt inputs x with
respect to the digest in much less time than computing f , and ensure that the server only
decrypts f(x), but does not learn anything else about x. Prior works constructed LFE for circuits
under LWE, and for Turing Machines (TMs) from indistinguishability obfuscation (iO). In this
work we introduce LFE for Random-Access Machines (RAM-LFE). The server commits itself to a
potentially huge database y via a short digest. Clients can later efficiently encrypt inputs x with
respect to the digest and the server decrypts f(x, y) for some specified RAM program f (e.g., a
universal RAM), without learning anything else about x. The main advantage of RAM-LFE is
that the server’s decryption run-time only scales with the RAM run-time T of the computation
f(x, y), which can be sublinear in both |x| and |y|. We consider a weakly efficient variant, where
the client’s run-time is also allowed to scale linearly with T , but not |y|, and a fully efficient
variant, where the client’s run-time must be sublinear in both T and |y|. We construct the
former from doubly efficient private information retrieval (DEPIR) and laconic OT (LOT), both
of which are known from RingLWE, and the latter from an additional use of iO. We then show
how to leverage fully efficient RAM-LFE to also get (many-key) functional encryption for RAMs
(RAM-FE) where secret keys are associate with big databases y and the decryption time is
sublinear in |y|, as well as iO for RAMs where the obfuscated program contains a big database
y and the evaluation time is sublinear in |y|.

*dfq20@mails.tsinghua.edu.cn
†haozh20@mails.tsinghua.edu.cn
‡mook.e@northeastern.edu
§wichs@ccs.neu.edu Research supported by NSF grant CNS-1750795, CNS-2055510 and the JP Morgan Faculty

Research Award.

Contents

1 Introduction 1
1.1 Our Techniques . 5

2 Preliminaries 8
2.1 Oblivious RAM . 8
2.2 DEPIR . 11
2.3 Puncturable PRFs . 12
2.4 Laconic OT . 12
2.5 Functional Encryption . 14

3 Laconic Function Evaluation for RAM Programs 15
3.1 RAM Model . 15
3.2 Definition . 16

4 RAM-LFE with Unprotected Memory and Access 18
4.1 UMA RAM-LFE with Weak Efficiency . 19
4.2 UMA RAM-LFE with Full Efficiency . 21

5 Upgrading to Full Security 23
5.1 The Weak Efficiency Case . 24
5.2 The Full Efficiency Case . 27

i

1 Introduction

Laconic Function Evaluation. Laconic function evaluation (LFE), introduced by Quach, Wee and
Wichs [QWW18], can be seen as a “flipped” version of fully homomorphic encryption (FHE).
Consider a powerful server who has some function f and a weak client who holds an input x, but
does not have the computational power to run f . They want to run a 2-round protocol to compute
f(x) without revealing x to the server. FHE provides a solution where the client learns f(x), while
LFE provides one where the server learns f(x).

In more detail, in an LFE scheme, the server computes a short digest digf that commits it to
the function f . The client encrypts an input x using the digest digf , and the server decrypts the
ciphertext to recover f(x). Security ensures that the server does not learn anything about x beyond
f(x). This is formalized by requiring the ciphertext to be simulatable given only f(x). Efficiency
requires that the encryption time is smaller than simply computing f .1

For example, consider a scenario where the FBI has a database of most-wanted suspects. There
are many security cameras in public spaces, and we want to allow the FBI to learn when one of
the suspects passes in front of one of the cameras, but not to learn anything else about what the
cameras are observing. LFE gives a simple non-interactive solution to this problem. The FBI
publishes a digest digf for the function f that contains a hard-coded database of suspects and, on
input an image x, it outputs whether x has a match in the database. The cameras have the digest
digf , periodically capture images x of their surroundings, encrypt them using this digest, and send
the ciphertexts to the FBI.

LFE has many applications, such as MPC where the online run-time of the parties is sublin-
ear in the complexity of the function being computed. Furthermore, as shown in [QWW18], it
implies 1-key succinct functional encryption, which in turn implies succinct reusable garbled cir-
cuits [GKP+13] as a special case.

Prior Work on LFE. The prior work of [QWW18] constructed leveled LFE for circuits under the
LWE assumption. In particular, if the function f is represented by a boolean circuit of size |f |
and depth d, then the server’s run-time (to generate the digest and to decrypt) is |f | · poly(d),
the size of the digest is O(1), and the client’s run-time (to encrypt) is |x| · poly(d). A recent work
of [DGM23] constructed LFE for Turing Machines assuming indistinguishability obfuscation and
somewhere statistically binding hash functions. The main advantage is that computing the digest
is more efficient than computing the function. In particular, for a function f represented as a
Turing Machine of size |f | and run-time T , the server’s run-time to generate a digest is O(|f |), the
size of the digest is O(1), the client’s run-time (to encrypt) is O(|x|), and the server’s run-time to
decrypt is O(T).2

1It is known that LFE schemes require a common reference/random string (CRS); for simplicity we largely omit it
from the discussion in the introduction. Also, by default we require that the digest is derived deterministically given
f , which is a crucial feature for some applications. In this case, the digest cannot fully hide f , and we do not require
any “function hiding” security. However, [QWW18] showed a generic transformation to achieve function hiding at the
cost of having a randomized procedure to generate the digest. The security guarantee implicitly assumes a semi-honest
server that computes digf correctly. If the function f is public, anyone can audit the digest by re-computing it to check
that it is correct, or the server can provide a SNARG (for P) that it was computed correctly. If f is secret, the server can
still provide a SNARK (for NP) that f belongs to some restricted class of functions deemed safe.

2Throughout the introduction we omit fixed polynomial factors in the security parameter or polyogarithmic terms.
We also restrict to boolean functions with 1-bit output.

1

RAM Computation and RAM-FHE. A major limitation, affecting prior LFE and FHE construc-
tions, is that the server’s run-time scales with the circuit size of the computation, which may
potentially be much larger than the natural run-time of the computation in the random-access
machine (RAM) model. In particular, consider a function fy(x) = f(x, y) that depends on some
large database y held by the server. Then the server’s run-time in FHE/LFE for fy will be at least
linear in y (and in x), even if the function can be computed in vastly smaller sublinear time in the
RAM model. For example, in the FBI scenario mentioned above, the FBI’s computation to decrypt
each LFE ciphertext would be linear in the database of suspects, even though more efficient sublin-
ear time algorithms for image comparison are possible [Gra10]. The recent work of Lin, Mook and
Wichs [LMW22] (see also [HHWW19]) showed how to get around this limitation in the context
of FHE, by constructing a RAM-FHE scheme where the server preprocesses the database y once
ahead of time, but can then homomorphically evaluate f(x, y) over various encrypted inputs x in
time that only scales with the (worst-case) RAM run-time of f . The main tool in their construction
is doubly efficient private information retrieval (DEPIR), which allows the server to deterministically
preprocess a database y into some data structure ỹ and later run (2-round) PIR protocols with var-
ious clients, where both the server and client run-times are only polylogarithmic in the database
size. Constructions of both RAM-FHE and DEPIR were given under the RingLWE assumption.

RAM-LFE and Our Results. In this work we extend LFE to the RAM setting, and define the new
notion of RAM-LFE, analogously to RAM-FHE. In a RAM-LFE scheme, the server holds some
large database y and produces a short digest digy that commits it to y, along with a large data-
structure ỹ that it holds locally and uses during decryption. The client encrypts x using the digest
digy and the server decrypts the ciphertext using the data-structure ỹ to recover f(x, y), where
f is some fixed RAM program (e.g., a universal RAM) with boolean output.3 As with standard
LFE, security ensures that the ciphertext hides everything about x beyond the output f(x, y), as
formalized via the simulation paradigm.

For efficiency, we assume the client knows some upper-bound on the RAM run-time T of the
computation at encryption time, and we denote the actual RAM run-time of f(x, y) by t ≤ T . We
consider two notions of efficiency that we call weak efficiency and full efficiency. Roughly speaking
weak efficiency allows the client’s run time to scale with T but not with |y|, while full efficiency
doesn’t allow it to scale with either T or |y|. Our results are as follows:

• Weak Efficiency: Assuming DEPIR and laconic OT [CDG+17] (both of which follow from
RingLWE), we construct a RAM-LFE scheme where, for any constant ε > 0:

– The size of the common random string is O(1).

– The server’s run-time to generate digy, ỹ is O(|y|1+ε). The size of digy is O(1) and the
size of ỹ is O(|y|1+ε).

– The client’s encryption run-time and the ciphertext size is O(|x|+ T).

– The server’s decryption run-time given random-access to ỹ and to the ciphertext is just
O(t).

3We rely on the above formulation for simplicity in the intro, but it is equivalent to formulations where the client or
the server chooses the program f since we can always embed the code of the actual program to be executed inside either
x or y. Our technical definition allows the client to choose the program, but this is just for notational convenience. We
also require the procedure that maps y to (digy, ỹ) to be deterministic and do not require digy to fully hide y. However,
we can generically apply the transformation of [QWW18] to fully hide y at the cost of having a randomized procedure.

2

• Full Efficiency: Assuming DEPIR, laconic OT, and iO, we construct a RAM-LFE scheme with
the same parameters as above, except that the client’s encryption run-time and the ciphertext
size is just O(|x|).

We remark that we assume the RAM program f can have random-access to both x and y as well as
to any additional read/write random access memory. In particular, T, t can both be sublinear in |x|
and |y|. Note that, in the full efficiency setting, we can remove the restriction that the client knows
an upper bound on the computation run-time T at encryption time, and instead have the client
try all possible powers of 2: T = 2, 4, . . . , 2ω(log λ) up to some super-polynomial upper bound, and
the server tries each one in order until the first that completes. However, this comes at the cost of
needing to assume slightly super-polynomial security level of the underlying assumptions since
our reduction has a security loss of O(T). Also, the above results hold for boolean functions f that
output 1 bit. We can generically extend this to arbitrary output size m by incurring a multiplicative
factor in m for the encryption time and the decryption time. (We also sketch at how to optimize
this to only incur an additive factor in m with some additional effort.)

Remarks on RAM-LFE. We note that RAM-LFE implies 3-round DEPIR (in the CRS model), and
therefore it is not surprising that we need to rely on DEPIR as a building block.4

RAM-LFE with weak efficiency is conceptually similar to garbled RAM [LO13, GHL+14]. In a
garbled RAM scheme, the client garbles a database y and sends the garbled version ỹ to a server.
Later the client garbles some program f(x, ·) and sends the garbled program to the server who
can evaluate the garbled program over the garbled database to recover f(x, y), but cannot learn
anything else about x, y. In both garbled RAM and RAM-LFE with weak efficiency, the client’s run
time to garble f(x, ·) (resp. encrypt x) and the server’s run-time to evaluate the garbled program
(resp. decrypt) scale with the RAM run-time of the computation T . The main difference is that, in
garbled RAM, the database y belongs to a single client and only that designated client can create
garbled programs f(x, ·) that the server can execute over this database to learn f(x, y), while in
RAM-LFE the database y belongs to the server and once the server publishes digy, any client can
encrypt inputs x to allow the server to learn f(x, y). One can think of the difference between
garbled RAM and RAM-LFE with weak efficiency as the difference between ORAM and DEPIR;
the former only allows a single designated client to privately access her own remotely stored data,
while the latter allows any arbitrary client to privately access the server’s data. Note that RAM-
LFE with weak efficiency is a generalization that implies garbled RAM as a special case.5

Analogously, RAM-LFE with full efficiency is conceptually similar to succinct garbled RAM
[GHRW14,CHJV15,CH16,BCG+18,JLL23], which requires the client’s run-time to garble f(x, ·) to

4In particular, consider the RAM program f(x, y) that interprets x = (i, b) as an index i and a bit b and outputs
y[i]⊕ b denoting the i’th location of y one-time padded with b. This program runs in time T = O(1). Using a RAM-LFE
for f we can construct a 3-round DEPIR as follows. The server preprocesses y to derive digy, ỹ. To privately retrieve
y[i], the server/client run the following 3 round protocol: In the first round, the server sends digy to the client, in the
second round the client encrypts x = (i, b) with b ← {0, 1} chosen uniformly at random under the LFE and sends the
ciphertext, and in the third round the server decrypts the ciphertext and sends y[i]⊕b to the client who removes the pad
to recover y[i]. LFE security ensures that the servers view can be simulated given y[i] ⊕ b, which is uniformly random
and therefore reveals no information about the client’s index i.

5Garbled RAM has weaker functionality in that the database y must be preprocessed by the client, but then provides
stronger security by ensuring that y is hidden from the server. However, it is easy to also use RAM-LFE to achieve the
stronger security guarantee by having the client encrypt the database y via one-time pad derived from a PRF, and then
include the PRF key as part of the encrypted input x and have the program execution use the PRF to decrypt each bit it
reads from the database.

3

be independent of the RAM run-time T . The main difference is that RAM-LFE allows for compu-
tations over the server’s data y, while succinct garbled RAM only allows for computations over
the designated client’s previously garbled data y. It is again easy to show that RAM-LFE with
full efficiency is a generalization that implies succinct garbled RAM as a special case. All known
construction of succinct garbled RAM rely on iO and therefore it is not surprising that we need to
rely on iO as a building block.

Application: Functional Encryption for RAMs. LFE is also very related to (1-key) functional
encryption (FE). The main difference is that FE requires some trusted third party to create a master
public key mpk for the client and a secret key skf for the server: the client encrypts x under mpk
and the server decrypts with skf to recover f(x). In contrast, LFE allows the server itself to create
the digest digf that the client uses to encrypt x; the server does not need any secret key to decrypt
the ciphertext and can recover f(x) using only knowledge of f . The work of [QWW18] showed
that LFE generically implies succinct 1-key FE and the construction there directly extends to the
RAM setting and preserves weak/full efficiency.

What about multi-key FE? Two recent works [ACFQ22, JLL23] constructed variants of multi-
key FE for RAMs from functional encryption for circuits (which is equivalent to iO up to a sub-
exponential security loss) and, in the case of [ACFQ22], DEPIR. This may appear highly related to
our notion. However, beyond the distinction of FE vs LFE, there is an even more crucial distinction
between our work and [ACFQ22, JLL23] in the type of RAM setting considered. The latter thinks
of the server (decryptor) as having a short RAM program f and only the client has some large
data x that is encrypted such that the server can decrypt f(x), where f has random access to x.
In particular, the notion in [ACFQ22] does not allow the program f to have random-access to a
large server input y, and in [JLL23] the decryption time is at least linear in the description size of
f(·, y) and hence linear in y itself. In contrast, our RAM-LFE setting envisions the server as also
having some potentially large y and the computation f(x, y) has random-access to both x and y.
Arguably, allowing the decryption run-time to be sublinear in the server’s input y is more crucial
than making it sublinear in the client’s input x, since anyway the server needs to spend linear time
in x just to download the ciphertext from the client. We define a notion of FE for RAMs (RAM-
FE), analogous to our notion of RAM-LFE, where the server gets a secret key sky tied to some
potentially large input y, the client encrypts an input x, and the server decrypts f(x, y) where f is
some fixed RAM program (e.g., a universal RAM) with random-access to both x and y. We then
show how to use RAM-LFE with full efficiency together with FE for circuits to construct multi-key
RAM-FE.

Application: iO for RAMs. We also explore the notion of indistinguishability obfuscation for
RAM programs with huge data (RAM-iO). In this setting, we consider obfuscating a RAM pro-
gram f(·, y) containing some potentially huge data y and having worst-case run-time T for some
fixed input length n. The obfuscated program f̃(·, ỹ) contains obfuscated data ỹ.6 On any input
x ∈ {0, 1}n it should be possible to evaluate f̃(x, ỹ) = f(x, y) in time that scales proportionally to
T but can be sublinear in |y|.7 Indistinguishability security requires that for any two functionally
equivalent program/data tuples f(·, y), f ′(·, y′) such that f(x, y) = f ′(x, y′) for all x ∈ {0, 1}n, the

6We can simply think of f as just being a universal RAM and all the actual code as being contained in y.
7Note that we cannot achieve sublinear run-time in |x| since it is not preprocessed in this setting. Hence if evaluation

reads only a subset of the positions of x that would reveal additional information about the computation.

4

obfuscation of f(·, y) is computationally indistinguishable from that of f ′(·, y′). We show how to
generically construct iO for RAMs using iO for circuits and RAM-LFE with full efficiency (both
with sub-exponential security).

We compare to the prior work of [BCG+18] on iO for RAMs. In that work, the obfuscated
program f does not contain any large data y and there is no attempt to achieve sublinear run-time.
Instead, the goal is just to (1) minimize the size of the obfuscated program to be proportional to the
RAM/TM description length rather than circuit size of f and (2) to achieve the potential quadratic
savings of evaluating f(x) in the RAM model with random access to read/write memory over
thinking of f as TM or circuit. While our work achieves (1) and (2), our main focus is sublinear
run-time.

1.1 Our Techniques

As our starting point, we want to take prior (succinct / not succinct) garbled RAM schemes and
transform them into (resp. fully efficient / weakly efficient) RAM-LFE. The main difficulty is how
to incorporate the server’s input y into the computation. The constructions of garbled RAM consist
of 2 steps: (1) construct a scheme with unprotected memory and access (UMA), where the memory
data and the access pattern of the computation are revealed to the server, but the program remains
hidden, (2) hide the data and the access pattern using oblivious RAM (ORAM) [GO96]. The first
issue is that, already in step (1), even though the data and the access pattern are not protected,
many garbled RAM constructions still need to garble all the data using a secret key held by the
client. Therefore these constructions don’t allow us to incorporate the server’s input y, which
is preprocessed publicly by the server, into the computations. However, it turns out that some
of the more recent constructions of garbled RAM based on laconic OT do achieve UMA security
while allowing the data to be preprocessed publicly. In fact, the preprocessing simply computes
a “laconic OT digest” of the data. Therefore such schemes give us RAM-LFE with unprotected
memory and access. The second issue comes from step (2), which protects the memory access
pattern via ORAM. Unfortunately, ORAM can only be used to protect client data that is encoded
using a secret key held by the client, and therefore cannot be used to protect the access pattern
to the server’s data y. Instead, we replace ORAM by DEPIR to protect the access pattern to y.
While this is the high-level template, instantiating it correctly is quite subtle. One of the bigger
difficulties that comes up is that, in the case of succinct garbled RAM needed for fully efficient
RAM-LFE, part (1) only achieves an indistinguishability-based notion of UMA security, where
the server cannot distinguish between two garbled programs with the same output and the same
access pattern. Upgrading such schemes into simulation-secure ones with full security requires
a complex hybrid argument using a special type of ORAM with “localized randomness” [CH16].
We show how to adapt this type of argument using DEPIR as well. Our techniques borrow heavily
from recent prior works on garbled circuits, garbled RAMs, succinct garbled TMs, FE for RAMs
and succinct garbled RAMs; see e.g., [CDG+17, GS18a, GOS18, GS18b, ACFQ22, DGM23]. These
schemes are quite involved and combine many different elements (laconic OT, garbled circuits,
pebbling games, ORAM, and iO) via a subtle and brittle security proofs. Essentially, we show how
to correctly combine these techniques together with DEPIR to upgrade the prior results into RAM-
LFE schemes. Part of our contribution is to find the right abstractions for how to encapsulate prior
results in a way that allows us to extend them to our setting. We sketch some of our techniques for
RAM-LFE with weak efficiency and full efficiency respectively. Then we discuss our applications
to FE and iO.

5

RAM-LFE with Weak Efficiency. This case turns out to be relatively simple. The scheme of
[CDG+17] for “non-interactive secure computation in RAM Setting (RAM-NISC)” can already
almost be thought of as a RAM-LFE with weak efficiency and with unprotected memory access
(UMA) security. In particular, it allows the server to publish a short digest digy of y, the client to ef-
ficiently encrypt x using this digest, and the server to decrypt f(x, y). The efficiency requirements
are similar to RAM-LFE with weak-efficiency (except for one caveat mentioned below). Security
states that the server learns nothing more than the output f(x, y) and the memory access pattern
of the computation. The construction of [CDG+17] works by combining updatable laconic obliv-
ious transfer (LOT) and garbled circuits. At a high level the digest is an LOT digest of the data
y. For a computation of f with run-time T , the client’s ciphertext is a sequence of O(T) garbled
circuits that have x hard-coded and perform the computation of f while using LOT for random-
access to the data y as well as any additional read/write memory. The main differences between
RAM-NISC and our notion of RAM-LFE with UMA security are as follows:

• A minor difference is that in the RAM-NISC scheme the computation of the digest is random-
ized and the digest hides y. As discussed earlier, we chose to make our default definition
require a deterministic digest generation and not require hiding security (and rely on the
fact that the latter can be generically upgraded to the former).

To bridge this gap, we simply remove the part of their scheme that implicitly performs this
upgrade.

• While the RAM-NISC scheme allows f to have random-access to y, it thinks of x as a short
input and does not allow random access to it. In particular, x is hard-coded in the garbled
circuits and therefore decryption scales linearly in |x|.
To bridge this gap, we can think of the client’s input x as being treated similarly to y. The
client encrypts x via a symmetric-key encryption and computes an LOT digest of it. The
garbled circuits use LOT to make random-access queries to the encrypted x and decrypt the
resulting bits.

With the above modifications, we get RAM-LFE with UMA security, where the server’s view
can be simulated given the output and the memory access pattern of the computation. To up-
grade to full security, we simply use DEPIR to hide the access pattern to y and ORAM to hide the
access pattern to x and any read/write memory. In particular the server initially applies DEPIR
preprocessing on its input y to get ỹ and computes the digest of ỹ using the UMA scheme. The
client initially puts its input x inside an ORAM x̃ and we then run a UMA scheme for the function
f̃(x̃, ỹ) that runs f but uses ORAM queries to x̃ to privately access x and any read/write memory,
and DEPIR queries on ỹ to privately access y.

RAM-LFE with Full Efficiency. As in the previous case, we start by constructing RAM-LFE with
UMA security and then upgrade to full security. Our idea is to start with a construction of succinct
garbled RAM that has a very similar structure to the above RAM-NISC scheme, but gets a succinct
ciphertext size and efficient encryption using iO: instead of the client computing the sequence of
O(T) garbled circuits, the client creates an obfuscated program that on input i outputs the i’th
garbled circuit. Analyzing security using iO is however quite involved and requires a careful
sequence of hybrids making small local changes to the garbled circuits. While the ideas to do so
appeared in several prior works, (e.g.,) [BCG+18, GS18a, GOS18, GS18b, ACFQ22], we cannot use

6

these results as a black box. Instead, we start with the work of [ACFQ22], which gets the closest to
what we need, and modify it. In particular, that work constructs a succinct garbled RAM, where a
client holds a database x and RAM program P . The client first processes the database x into some
garbled database x̃ and stores some associated secret key sk. Then the client can use sk to garble
the program. A server can then recover P (x) by evaluating the garbled program on the garbled
database. The work of [ACFQ22] first constructs this in the UMA setting and then upgrades to
full security. In the UMA model of security, the server learns nothing about P other than its access
pattern and output when evaluated on x. We observe that in the UMA setting, the prepocessing
of x is actually public/deterministic and the “secret key” sk is just an LOT digest. Therefore, the
server can apply the same preprocessing on its input y and and we can think of the program
P (x, y) as having random-access to both the client’s value and the server’s value as an input.

To upgrade from UMA security to full security is conceptually similar to the weakly effi-
cient case: we encrypt the client’s database and hide the access patterns to x and y under an
ORAM and DEPIR respectively. However, analyzing security is significantly more complicated.
The main reason is that the fully efficient RAM LFE with UMA security can only achieve an
indistinguishability-based notion of UMA, where the server cannot distinguish between cipher-
texts that yield the same output and the exact same access pattern. This is in contrast to the weakly
efficient case, which allowed for simulation security where the ciphertext can be simulated given
the output and the access pattern. Using the indistinguishability based notion of UMA is more
difficult. Essentially we need a sequence of hybrids that make only local changes to the access
pattern. We use the techniques of [CH16] using “ORAM with localized randomness” along with
punctured programming. We do so in two steps. In the first step we upgrade to a security notion
where we hide the content of the client’s database x and the contents of read/write memory, but
where the pattern of addresses accessed are still unprotected. Then we show how to go from this
intermediate notion to full (simulation-based) RAM-LFE security. The main observation is that
the use of DEPIR works well with these techniques – since every access uses fresh/independent
random coins, it essentially already satisfies a notion akin to the “localized randomness” needed
in ORAM.

Application to FE. We show how to use fully efficient RAM-LFE to also construct RAM-FE
where secret keys are associated with large databases y and the decryption time is sublinear in y.
In particular, a key generation authority generates a master public key mpk and a master secret key
msk. Using msk it can generate secret keys sky corresponding to some potentially large databases y
for various servers. A client uses the master public-key to encrypt an input x and any server with
secret key sky should only decrypt the output f(x, y) for some fixed RAM program f (e.g., the
universal RAM). We consider security against an adversary that can see many keys sky1 , . . . , skyq .
In this setting simulation-based security is unachievable [AGVW13], and instead we must opt for
indistinguishability based security where the adversary cannot distinguish between encryptions
of x vs x′ as long as f(x, yi) = f(x′, yi) for all i ∈ [q]. Assuming standard functional encryption for
circuits and fully efficient RAM-LFE (with some augmentations supported by our construction, as
discussed below) we get a RAM-FE scheme where, for any constant ε > 0, generating (mpk,msk)
takes O(1) time, generating sky takes time |y|1+ε encrypting x takes time |x|1+ε and decrypting
f(x, y) takes time O(t) where t is the RAM run-time of f . The high-level idea is to use FE for cir-
cuits for the circuit that, on input x, generates the RAM-LFE encryption of x under the digest of y.
One issue is that the circuit FE only satisfies indistinguishability based security and we overcome

7

this via relatively standard (but non-trivial) output-programming tricks. This gives a scheme that
achieve sublinear efficiency in y but not in x. To get sublinear efficiency in x we also observe that
in our fully efficient RAM-LFE, the encryption of x can be split into two components: a digest-
independent component that’s at least linear in x, and a short digest-dependent component that’s
sublienar in x. We therefore have the client compute the digest-independent component as part of
the RAM-FE ciphertext, and only use the circuit FE to compute the digest-dependent component.

Application to iO. We show how to use fully efficient RAM-LFE to also construct iO for RAMs
(RAM-iO). Here we want to obfuscate a RAM program f(·, y) containing some large database y.
We assume the program has some fixed input sizes and run-time T . The obfuscation procedure
should run in time linear in y, but sublinear in T , while evaluating the obfuscated program should
run in time linear in T but sublinear in y. We want standard indistinguishability security guaran-
teeing that the obfuscations of any functionally equivalent f(·, y) ≡ f ′(·, y′) are computationally
indistinguishable. We construct such RAM-iO using iO for circuits and RAM-LFE. The high-level
idea is to encrypt y using a symmetric-key encryption with key k, and preprocess the ciphertext
using DEPIR to get digy, ỹ. The we use iO for circuits that on input x generates a RAM-LFE en-
cryption of (k, x) for the modified function f ′((k, x),Enck(y)) that computes f(x, y) by making
random-access to the bits of the ciphertext and decrypting the answers. The obfuscated RAM
program consists of ỹ and the obfuscated circuit. Again, this high-level idea does not work as
is since the iO for circuits only provides indistinguishability based security. We show to how
make it work by using puncturing/programming tricks. Unfortunately, we need a sequence of
2|x| hybrids, where we reprogram the output of the obfuscated circuit for every input x one by
one. This comes at the cost of relying on sub-exponential security of the underlying components.
However, iO constructions from falsifiable assumptions anyway already rely on sub-exponential
assumptions [JLS21, JLS22] and hence this cost was needed already anyway.

2 Preliminaries

Define N = {0, 1, 2, . . .} to be the set of natural numbers. For any integer n ≥ 1, define [n] =
{1, . . . , n}. For an array A ∈ {0, 1}n, we index the array from 1, and A[i] denotes the bit in position
i ∈ [n]. By default, all our logarithms are base 2 and log n stands for log2 n. A function ν : N → N
is said to be negligible, denoted ν(n) = negl(n), if for every positive polynomial p(·) and all
sufficiently large n it holds that ν(n) < 1/p(n). We use the abbreviation PPT for probabilistic
polynomial time. For a finite set S, we write a ← S to mean a is sampled uniformly randomly
from S. For a randomized algorithm A, we let a ← A(·) denote the process of running A(·) and
assigning the outcome to a; when A is deterministic, we write a := A(·) instead. We denote the
security parameter by λ. For two distributions X,Y parameterized by λ we say that they are
computationally indistinguishable, denoted by X ≈c Y if for every PPT distinguisher D we have
|Pr[D(X) = 1]− Pr[D(Y) = 1]| = negl(λ).

2.1 Oblivious RAM

In the setting of ORAM [GO96], a client has a database D ∈ {0, 1}N that it wants to store on an
untrusted server. The client wishes to preserve (read/write) random access to D while hiding its
access pattern from the server. To do so, the client encodes D into an oblivious database D∗ that is

8

sent to the server. Then each “logical accesses” the client may want to make to D can be emulated
by making poly log(N) “physical accesses” to D∗. The goal is that the sequence of physical accesses
reveals nothing about the client’s logical access pattern on D.

For our use cases, we wish to consider the slightly non-standard scenario where the client
wishes to allocate an oblivious database of a large size (fixed in advance), but only has some
smaller amount of initial data. We allow the client to initialize a database D which can be truncated
into two parts: the former contains the initial memory content we want to store and the latter
consists of empty cells. Specifically, for D ∈ {0, 1}N , let D0 ∈ {0, 1}n for some n ≤ N be its former
part that stores the initial memory content, and let cells with address larger than n be initially
empty.

Definition 2.1 (ORAM). An Oblivious RAM scheme ORAM consists of procedures (ORAM.Setup ,
ORAM.Access), with following syntax:

• (ck0, D
∗) ← ORAM.Setup(1λ, D0, N): Given a security parameter λ, an initial memory content

D0 ∈ {0, 1}n and size N , it outputs an initial client secret key ck0 and oblivious database D∗.

• (ck′, val′) ← ORAM.AccessD
∗
(ck, op, addr, val): It takes as input the current client secret key ck,

an operation op ∈ {read,write}, an address addr ∈ [N] and a value val(if op = read, then val is
ignored). With random access to oblivious database D∗, it emulates the logical access (op, addr, val)
that the client wants to make, and outputs the updated client secret key ck′ and the result val′ of the
logical access(if op = write, then val′ =⊥).

Correctness. Let λ ∈ N, D ∈ {0, 1}N with initial content D0 ∈ {0, 1}n, t ∈ N, and {(opi, addri, vali)}ti=1

be t sequential logical accesses. Let (ck0, D∗)← ORAM.Setup(1λ, D0, N), and let
(cki, val

′
i) ← ORAM.Access(cki−1, opi, addri, vali) for each i = 1 to t. On the other hand, if the user

directly makes the logical accesses {(opi, addri, vali)}ti=1 sequentially on D, it obtains (val∗1, · · · , val∗t) as
results. Then, with probability 1, (val′1, · · · , val′t) = (val∗1, · · · , val∗t).

Efficiency. Given security parameter λ, initial content size n and entire database size N , we require that:

• ORAM.Setup runs in time n · poly(λ, logN).

• There is a function η : N → N satisfying η(N) = poly log(N), such that ORAM.Access accesses at
most η(N) physical addresses each time.

Security. There exists a PPT algorithm ORAMSim such that for any stateful PPT adversary A, we have∣∣∣Pr [RealORAM(1λ) = 1
]
− Pr

[
IdealORAM(1λ) = 1

]∣∣∣ = negl(λ),

where the experiments RealORAM and IdealORAM are defined as follows:

9

RealORAM(1λ) :

1. N,D0 ← A(1λ)

2. (ck0, D
∗)← ORAM.Setup(1λ, D0, N)

3. for i = 1 to t:
(opi, addri, vali)← A(Addrsi−1, val

′
i−1),

(cki, val
′
i)← ORAM.AccessD

∗
(cki−1, opi, addri, vali),

with Addrsi ⊂ {read,write} × [|D∗|] being the set of
physical accesses that ORAM.Access makes.

4. Output A(Addrst, val′t)

IdealORAM(1λ) :

1. N,D0 ← A(1λ)

2. (ck0, D
∗)← ORAM.Setup(1λ, D0, N)

3. for i = 1 to t:
(opi, addri, vali)← A(Addrsi−1, val

′
i−1),{

val′i = D[addri] opi = read

val′i =⊥, D[addri] = vali opi = write

Addrsi ← ORAMSim(1λ, N)

4. Output A(Addrst, val′t)
Remark 2.1 (Setup efficiency). We note that our requirement of the running time of ORAM.Setup
is linear in the initial content size n, which is stronger than normal definition which only requires
the time to be linear in the entire database size N . However, this property can be achieved by
simply combining two normal ORAM schemes. Basically, for D ∈ {0, 1}N with initial content
D0 ∈ {0, 1}n and the latter part E0 ∈ {0, 1}N−n, we use two separate ORAM schemes for D0 and
E0. We initialize one ORAM with D0 and we initialize a separate empty ORAM of size N − n to
hold E0. We assume initializing an empty ORAM can be done in logarithmic time in N (as in,
e.g., [CP13]). Thus with D∗ = D∗

0||E∗
0 , we obtain a n · poly(λ, logN) total setup time. For each

access q = (op, addr, val) on D, no matter which part of database it is accessing, we emulate both
an access to D∗

0 and an access to E∗
0 . The one on the database corresponding to q is a valid access

that achieves functionality of q, and the other one is a dummy access. Therefore, the security
and localized randomness (later defined in Definition 2.3) of our scheme directly follows the same
property of two component ORAM schemes.

Remark 2.2. The ORAM scheme we defined above only aims to make sure that physical addresses
does not reveal any information, i.e. only guarantee that the adversary cannot extract any infor-
mation if it only sees physical addresses. Therefore, the type of physical accesses, the written
value of physical accesses and oblivious database may still divulge information about the logical
accesses.

Theorem 2.2 ([GO96]). Assuming only the existence of one way functions, there exists a standard ORAM
scheme with poly log(N) overhead (as in Definition 2.1).

2.1.1 ORAM with Localized Randomness

The notion of localized randomness was introduced by [CH16], which describes the property of
an ORAM scheme to emulate each logical access in an independent way, so that the physical
addresses correlated to this step is determined only by a relatively small subset of the entire ran-
domness. We also require that the subsets of randomness corresponding to different steps should
be disjoint, so that the physical addresses of different steps are independent random variables.

Let D ∈ {0, 1}N , η = η(N), {qi}ti=1 be t logical accesses where qi = (opi, addri, vali). Under an
ORAM scheme, consider the deterministic function AddrGen:

AddrGenD,{qi} : {0, 1}
M → ([N]× {read,write})ηt

AddrGenD,{qi}(R) = {Addrsi}ti=1

10

where M = poly(λ, t, logN) is an upper bound on the number of random bits used in ORAM.Setup
and a sequence of t calls to ORAM.Access, R ∈ {0, 1}M is the entire random tape used in the calls to
ORAM.Setup and ORAM.Access, and Addrsi = {Addri,1, · · · ,Addri,η} is the set of physical accesses
made by ORAM.Access when emulating (opi, addri, vali), the i-th logical access, given random tape
R.

Definition 2.3 (Localized Randomness). An ORAM scheme ORAM = (ORAM.Setup,ORAM.Access)
is said to have localized randomness, if there is a deterministic simulator LRSim such that for any λ,N, t,
for any D ∈ {0, 1}N and t sequential logical accesses {qi}ti=1 = {(opi, addri, vali)}ti=1, there exists sets
S1, · · · , St ⊆ [M] such that,

• For each i, |Si| ≤ poly log(N) · poly(λ).

• For each i ̸= j, Si ∩ Sj = ∅.

• For each i,

Pr

[
Addrsi = LRSim(RSi)

∣∣∣∣∣ R← {0, 1}M

{Addrsj}tj=1 ← AddrGenD,{qj}(R)

]
≥ 1− negl(λ).

Theorem 2.4 ([CH16]). There exists an ORAM scheme with localized randomness, without relying on
any cryptographic hardness assumptions.

2.2 DEPIR

In this subsection, we define doubly efficient private information retrieval (DEPIR). In the setting
of DEPIR, a server holds a large database DB ∈ {0, 1}N and a client holds an index i ∈ [N]. The
goal is for the client to learn DB[i] while hiding i from the server. The server performs a one-time
offline preprocessing on its database, and then later the client can make queries using independent
randomness and without maintaining any state. We give the formal definition below.

Definition 2.5 (DEPIR). A doubly efficient private information retrieval scheme (DEPIR) is a tuple of
algorithms (Prep,Query,Dec) with the following syntax and correctness and security properties.

• D̃B := Prep(1λ,DB): Given the security parameter and a database DB ∈ {0, 1}N , it deterministi-
cally outputs a preprocessed database D̃B ∈ {0, 1}Ñ .

• (Q, s) ← Query(1λ, N, i): Given the security parameter λ, database size N and a location i ∈ [N],
it outputs a query given by a small set of indices Q ⊆ [Ñ] to locations in D̃B and a query-specific
decryption key s. Without loss of generality, we assume that all queries Q are the same size. For a set
of locations I ⊆ [N] we also write Query(1λ, I) to indicate running Query(1λ, i) on each i ∈ I and
aggregating the results.

• b := Dec(s, V): Given the decryption key s and a small set V of values from D̃B, it outputs a bit
b ∈ {0, 1}.

Correctness. Let λ ∈ N and DB ∈ {0, 1}N . Let D̃B := Prep(1λ,DB). Then for any i ∈ [N], if we
sample a query (Q, s)← Query(1λ, i), then Dec(s, D̃B[Q]) = DB[i] with probability 1.

11

Security. For any i0, i1 ∈ [N], the queries Q0 and Q1 output by Query on indices i0 and i1 are computa-
tionally indistinguishable.

The recent work of [LMW22] shows the existence of DEPIR assuming only the hardness of
RingLWE.

Theorem 2.6 ([LMW22]). Under the Ring LWE assumption, for any ε > 0, there is a DEPIR in which
Prep runs in time N1+ε · poly(λ, logN) and Query and Dec each run in time poly(λ, logN).

We remark that the definition we give above is slightly modified from the one that appears
in [LMW22] in that it requires that the DEPIR queries are themselves sets of locations in the prepro-
cessed database, and the server can respond to a query simply by looking up those locations. This
implicitly requires that a query can be answered by reading locations from D̃B non-adaptively.
However, the DEPIR construction in [LMW22] satisfies this requirement and thus fits our defini-
tion.

2.3 Puncturable PRFs

Definition 2.7. A puncturable PRF is a PRF family F = {F : {0, 1}n → {0, 1}m}λ of functions
satisfying the following additional conditions.

Puncturability. There exists an efficient procedure that, given any F ∈ F and a set S ⊂ {0, 1}n of
inputs, produces a punctured function that we denote F ′ = F{S}. The function F ′ is efficiently computable
and has description size |F ′| = poly(|S| , |F |).

Functionality. For any PPT adversary A(1λ) that outputs S ⊆ {0, 1}n and for all inputs x ̸∈ S, we
have F ′(x) = F (x) with probability 1, where the probability is over F ← F and F ′ = F{S}.

Pseudorandomness at punctured points. For any PPT adversary A = (A1,A2) such that A1(1
λ)

outputs a set S ⊂ {0, 1}n and a state st, consider the experiment where we sample F ← F and F ′ = F{S}.
Then ∣∣Pr[A2(st, F

′, S, F (S)) = 1]− Pr[A2(st, F
′, S, U)]

∣∣ = negl(λ),

where here we abuse notation to write F (S) = {F (s) : s ∈ S} (sorted in some fixed order, e.g., lexico-
graphical) and U = {us : s ∈ S} where each us ← {0, 1}m is uniformly and independently sampled.

2.4 Laconic OT

In this subsection, we define laconic oblivious transfer [CDG+17] (laconic OT, also LOT). It allows
a server to commit to a large database D via a short digest. Then the client can respond with a
single short message to the server depending on dynamically chosen two messages m0,m1 and
a location L in D, so that the server can only recover mD[L], without learning anything about
m1−D[L]. We give the formal definition below.

Definition 2.8 (Laconic OT, [CDG+17]). A laconic oblivious transfer scheme (Laconic OT) is a tuple
of algorithms LOT = (LOT.crsGen, LOT.Hash, LOT.Send, LOT.Receive) with the following sytax and
correctness, security and efficiency properties.

12

• crs← LOT.crsGen(1λ): Given the security parameter, it samples a common reference string crs.

• (dig, D̃) := LOT.Hash(crs, D): Given the database D ∈ {0, 1}∗ and the common reference string
crs, it outputs a digest dig for the database and a state D̃.

• e ← LOT.Send(crs, dig, L,m0,m1): Given the crs, the digest dig, a database location L, two mes-
sages m0,m1 of length L, it outputs a ciphertext e.

• m := LOT.ReceiveD̃(crs, e, L): Given the crs, a ciphertext e, a database location L, and with random
access to D̃, it outputs a message m.

Correctness. Let λ ∈ N and D ∈ {0, 1}N . For any location L ∈ [N] and any pair of messages
(m0,m1) ∈ {0, 1}λ × {0, 1}λ,

Pr

m = mD[L]

∣∣∣∣∣∣∣∣∣∣
crs← LOT.crsGen(1λ)

(dig, D̃) = LOT.Hash(crs, D)

e← LOT.Send(crs, dig, L,m0,m1)

m = LOT.ReceiveD̃(crs, e, L)

 = 1.

Security. (Against Semi-honest receiver, simulation-based security) There exists a PPT algorithm LOTSim
such that for any D ∈ {0, 1}N , L ∈ [N] and any pair of messages (m0,m1) ∈ {0, 1}λ × {0, 1}λ, let
crs← LOT.crsGen(1λ), (dig, D̃) := LOT.Hash(crs, D), there is

(crs, LOT.Send(crs, dig, L,m0,m1)) ≈c (crs, LOTSim(crs, D, L,mD[L])).

In the proof of security in [CDG+17], it reaches adaptive security. That is, a PPT adversary A can
choose (D,L,m0,m1)← A(crs), while A still cannot distinguish the two distributions above.

Efficiency. The length of the digest dig is a fixed polynomial of λ and is independent of the size of the
database N . The algorithm LOT.Hash runs in time N · poly(logN,λ), and LOT.Send, LOT.Receive run
in time poly(logN,λ).

In [CDG+17], they also handle with writes to the database D, and they put forward a ver-
sion of laconic OT that can update the digest quickly, which is called updatable laconic OT. At a
high level, updatable laconic OT has two additional algorithms LOT.SendWrite, LOT.ReceiveWrite,
which send keys for an updated digest dig∗ to the receiver.

Definition 2.9 (Updatable Laconic OT, [CDG+17]). An updatable laconic oblivious transfer scheme
(updatable LOT) consists of a tuple of algorithms of laconic OT, and additionally has two algorithms with
the following syntax, correctness, security and efficiency properties.

• ew ← LOT.SendWrite(crs, dig, L, b, {mj,0,mj,1}|dig|j=1): Given the crs, the digest dig, the written

location L ∈ [N], a bit b ∈ {0, 1} to be written, and |dig| pairs of messages {mj,0,mj,1}|dig|j=1), it
outputs a ciphertext ew.

• {mj}|dig|j=1 := LOT.ReceiveWriteD̃(crs, L, b, ew): Given the crs, the written location L, a written bit

b, a ciphertext ew, and with random read/write access to D̃, it outputs messages {mj}|dig|j=1 .

13

Correctness. Let λ ∈ N and D ∈ {0, 1}N . For any location L ∈ [N] and b ∈ {0, 1}, define D∗ to be
identical to D except D∗[L] = b. For all pairs of messages {mj,0,mj,1}|dig|j=1 ,

Pr

m′

j = mj,dig∗j

∀j ∈ [|dig|]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

crs← LOT.crsGen(1λ)

(dig, D̃) = LOT.Hash(crs, D)

(dig∗, D̃∗) = LOT.Hash(crs, D∗)

ew ← LOT.SendWrite(crs, dig, L, b, {mj,0,mj,1}|dig|j=1)

{m′
j}

|dig|
j=1 = LOT.ReceiveWriteD̃(crs, L, b, ew)

= 1.

It is also required that LOT.ReceiveWriteD̃ will update D̃ to D̃∗.

Security. (With regard to write, simulation-based security) There exists a PPT algorithm LOTSimWrite

such that for any D ∈ {0, 1}N , L ∈ [N], b ∈ {0, 1} and all pairs of messages {mj,0,mj,1}|dig|j=1 , let crs ←
LOT.crsGen(1λ), (dig, D̃) := LOT.Hash(crs, D), and (dig∗, D̃∗) := LOT.Hash(crs, D∗), where D∗ is
identical to D except D∗[L] = b, there is

(crs, LOT.SendWrite(crs, dig, L, b, {mj,0,mj,1}|dig|j=1))

≈c (crs, LOTSimWrite(crs, D, L, b, {mj,dig∗j
}|dig|j=1)).

Efficiency. Algorithms LOT.SendWrite and LOT.ReceiveWrite run in time poly(logN,λ).

2.5 Functional Encryption

Definition 2.10 (Functional Encryption for Circuits). A public-key functional encryption for circuits
(circuit-FE) over message space M and circuit space C is a tuple of algorithms cFE = (cFE.Setup,
cFE.Keygen, cFE.Enc, cFE.Dec) with the following syntax and correctness, security and efficiency proper-
ties:

• (msk, pk) ← cFE.Setup(1λ): Given the security parameter 1λ, output a pair of a master secret key
and a public key.

• skC ← cFE.Keygen(msk, C): Given the master secret key and a circuit C ∈ C, output a functional
key skC for circuit C.

• ctx ← cFE.Enc(pk, x): Given the public key pk and a message x ∈M, output a ciphertext ctx for x.

• z ← cFE.Dec(ctx, skC): Given a ciphertext ctx and a functional key skC , output the result z.

Correctness. For any x ∈M and any C ∈ C, it holds that

Pr[cFE.Dec(cFE.Enc(pk, x), cFE.Keygen(msk, C)) = C(x)] = 1− negl(λ),

where (pk,msk)← cFE.Setup(1λ) and the probability is taken over the randomness of all of the algorithms.

14

Security. A functional encryption scheme satisfies the indistinguishability-based selective security,
if for all PPT adversaries A,∣∣∣Pr[ExptAcFE(1λ, 0) = 1]− Pr[ExptAcFE(1

λ, 1) = 1]
∣∣∣ ≤ negl(λ),

where the experiment ExptAcFE(1
λ, b) is defined as follows:

1. The challenger computes (msk, pk)← cFE.Setup(1λ).

2. A chooses two messages x0, x1 of the same size and sends them to the challenger. The challenger
replies with pk and ctb ← cFE.Enc(pk, xb).

3. A may adaptively request arbitrarily many keys in the following way: A chooses a circuit C ∈ C and
sends it to the challenger. The challenger checks that C(x0) = C(x1). If the check fails, the challenger
aborts; otherwise it sends skC ← cFE.Keygen(msk, C) to A.

4. Finally, A outputs a bit b′, and the output of the experiment is b′.

Efficiency ([GGH+13]). We require that the algorithms satisfy the following efficiency requirements.

• cFE.Setup(1λ) runs in time poly(λ).

• cFE.Keygen(msk, C) runs in time poly(λ, |C|).

• cFE.Enc(pk,m) runs in time poly(λ, s, |m|), where s is the maximum size of the circuit.

• cFE.Dec(ctm, skC) runs in time s+ poly(λ).

3 Laconic Function Evaluation for RAM Programs

In this section we define Laconic Function Evaluation for RAM Programs (RAM-LFE). At a high
level, a RAM-LFE is a protocol between a server who holds a public database y and a client who
holds a private database x and a private RAM program P . The protocol begins with the server
committing itself to y by compressing it down to some short digest that it sends to the client.
Then, the client is able to use this digest to encrypt its inputs P and x and produce a ciphertext
ct, in a process that doesn’t depend on the size of y. Finally using its database and the ciphertext,
the server can decrypt the ciphertext to recover the output of the RAM program P (x, y) without
learning anything else about P or x. Moreover, this decryption process should run in time that
is roughly linear in the RAM run time of evaluating P (x, y) in the clear. We note that during the
protocol we do not allow P to make updates to the server’s database that would persist to later
executions of the protocol.

3.1 RAM Model

Before we can formally define RAM-LFE, we first specify the model we use for RAM computation
in this work. We consider RAM programs P that take two inputs x and y. Because we will
ultimately model y as the server’s database and we don’t permit persistent updates to y, we think
of y as being stored in read-only memory, and x is stored in read/write enabled memory which has

15

a larger size to include both the data content and some additional empty cells at the end portion
of database. We note that we make this choice without loss of generality because any program
that makes updates to y can be converted into one that stores its edits in a working memory that
is located in the end portion of x with only little overhead. Evaluation of a RAM program consists
of a sequence of steps, where in each step the program reads one memory cell each from x and y
and writes one cell to x.

Formally, a RAM program P is defined by a tuple (C,Q, T, nx, ny,Σ, Z), where C is a binary
circuit called the step circuit that defines a transition function C : Q×Σ2 → (Q× [nx]× [ny]× (Σ×
[nx])) ∪ Z, Q is a set of states, T ∈ N is an upper bound on the number of steps the computation
will take, nx and ny are upper bounds on the sizes of the inputs x and y respectively, Σ is a set
defining the alphabet of symbols that can appear in a memory cell, and Z is the set of possible
outputs. Throughout this work we exclusively consider Z = {0, 1}. Unless otherwise specified,
we identify Q with a set of binary strings having length polynomial in the security parameter, and
we assume that Σ = {0, 1}.

Evaluation of a RAM program P = (C,Q, T, nx, ny,Σ, Z) on inputs x and y proceeds iteratively
as follows. We begin by initializing st0 ∈ Q to the all zeros string and arbitrarily initializing
v0x, v

0
y ∈ Σ. For each t ∈ [T]:

1. Evaluate the step circuit to obtain out = C(stt−1, vt−1
x , vt−1

y).

2. If out = z ∈ Z, halt and output z. Otherwise, parse out = (stt, itx, i
t
y, j

t
x, w

t) and continue.

3. Write x[jtx] = wt to x.

4. Read values vtx = x[itx] and vty = y[ity] from x and y respectively.

If the computation halts in step 2 after t steps, then we write P (x, y) = z and say its run time is t,
otherwise we write P (x, y) = ⊥ and the program has run time T .

For a RAM program P = (C,Q, T, nx, ny,Σ, Z) we define md(P) = (|C|, Q, T, nx, ny,Σ, Z)
to denote all of the metadata associate with a RAM program. We write |P | = |C|, and unless
otherwise specified, we assume that |P | = poly(λ, log T, log nx, log ny).

Remark 3.1 (Uniform vs non-uniform computation). We note that the above is a non-uniform
model of computation, where the size and description of the step circuit necessarily depend on
the lengths |x| and |y|. We can implicitly assume that the step circuit C and time upper bound T
are efficiently computable by a Turing machine that is given the database sizes as input. This fits
our setting as we can assume without loss of generality that the digest of the servers input contains
the length |y| and thus the client knows both |x| and |y|when it needs to specify the description of
the RAM program.

3.2 Definition

Definition 3.1 (RAM-LFE). A laconic function evaluation for RAM programs (RAM-LFE) is a tuple
of algorithms (LFE.Gen, LFE.Hash, LFE.Enc, LFE.Dec) that has the following syntax:

• crs ← LFE.Gen(1λ) : Given the security parameter 1λ , the generation algorithm returns a common
reference string crs.

16

• (dig, ỹ) := LFE.Hash(crs, y) : Given the common reference string crs and the database y, the com-
pression algorithm deterministically outputs a short digest dig and a preprocessed database ỹ.

• ct← LFE.Enc(crs, dig, P, x) : Given the common reference string crs, the digest dig, a RAM program
P , and a secret input database x, the encoding algorithm returns a ciphertext ct.

• z := LFE.Dec(crs, ỹ, ct) : Given the common reference string crs, the preprocessed database ỹ, and a
ciphertext ct, the decoding algorithm returns a RAM program output z ∈ {0, 1}.

We require the algorithms to satisfy the following correctness and security properties.

Correctness: We require that for all λ ∈ N, for databases D ∈ {0, 1}N , and all messages input x ∈ {0, 1}n
it holds that

Pr

z = P (x, y)

∣∣∣∣∣∣∣∣∣
crs← LFE.Gen(1λ)

(dig, ỹ) := LFE.Hash(crs, y)

ct← LFE.Enc(crs, dig, P, x)

z := LFE.Dec(crs, ỹ, ct)

 = 1.

Security: There exists a PPT algorithm LFESim such that for any stateful PPT adversary A, we have∣∣∣Pr [RealLFE(1λ) = 1
]
− Pr

[
IdealLFE(1

λ) = 1
]∣∣∣ = negl(λ),

where the experiments RealLFE and IdealLFE are defined as follows:

RealLFE(1
λ) :

1. Sample crs← LFE.Gen(1λ)

2. (P, x, y)← A(crs)

3. (dig, ỹ) := LFE.Hash(crs, y);
ct← LFE.Enc(crs, dig, P, x)

4. Output A(ct)

IdealLFE(1
λ) :

1. Sample crs← LFE.Gen(1λ)

2. (P, x, y)← A(crs)

3. ct← LFESim(crs, y, P (x, y), t,md) where t
is the run time of P (x, y) and md = md(P)

4. Output A(ct)

Efficiency. In the above definition, we don’t explicitly define desired efficiency properties for a
RAM-LFE. Thus the trivial scheme where the server simply sends the entire database y to the client
who then computes P (x, y) and sends it back to the server does satisfy the definition. However,
our goal will be to achieve a RAM-LFE where the decryption run time is nearly linear in the RAM
run time of P (x, y) and the encryption run time is independent of the size of y.

Additionally, we consider two broad classes of efficiency within this goal. If a RAM-LFE sat-
isfies the above efficiency requirements and has encryption run time that is at least linear in the
worst case complexity T of P (x, ·), then we say it is weakly efficient. On the other hand, if the
encryption run time is sublinear in T (or, ideally, polylogarithmic) we say it is fully efficient.

Remark 3.2 (Universal programs). In the above definition, we adopt the convention that the client
chooses the RAM program P that is to be evaluated. We make this choice merely for notational
convenience and conceptual clarity throughout security arguments. This definition is equivalent

17

to an alternate version where the server chooses the program or where the program is fixed in
advance. These equivalences can be seen by viewing the program P as a universal RAM program
that reads instructions from either the server’s database y or the client’s private database x (or
both).

Remark 3.3 (Known upper bound on P). Implicit in our formulation of the RAM model, we
assume that the client knows an a priori upper bound T on the run time of P . In the weakly
efficient setting, this is unavoidable because the client’s run time is proportional to T . In the
strongly efficient setting, we can set T = 2ω(log λ) to be super-polynomial without affecting the
efficiency of our scheme. However, simply setting T this way requires us to assume slightly super-
polynomial security of the underlying assumptions because the security reduction has a security
loss linear in T .

It is possible to generically transform the scheme to avoid this super-polynomial security
loss using a trick from [AL18]. The client samples a sequence of keys sk4, sk8, . . . , sk2ω(log λ) for a
symmetric-key encryption scheme, then it produces a sequence of LFE ciphertexts ct2, ct4, . . . , ct2ω(log λ)

respectively encrypting the pairs (P2, x), (P4, x), . . . , (P2i , x), . . . , (P2ω(log λ) , x), where the program
P2i runs P for 2i steps. If P halts in the first 2i steps, P2i halts and returns the output of P , other-
wise P2i returns sk2i+1 . The final ciphertext consists of symmetric-key encryptions of each of the
LFE ciphertexts after the first under corresponding keys, that is, (ct2,Encsk4(ct4), . . . ,Encsk2i (ct2i), . . . ,Encsk2ω(log λ)

(ct2ω(log λ))).
The server can then work its way up the chain using LFE decryption to learn exactly the secret keys
necessary to recover the ciphertext that can fully evaluate P .

Remark 3.4 (Larger output lengths). The above definition restricts the client’s program to having
single bit output. We can somewhat ease this restriction generically by permitting RAM programs
P with longer output lengths. However, in that case, the step circuit (and hence the description
size |P |) must necessarily have size that is at least linear in |z|. Therefore we incur an additional
cost of |z| · T in the server’s decryption time. Later in Remark 5.1 we sketch how to achieve only
additive cost in |z|, but this transformation will require going under the hood of our construction.

4 RAM-LFE with Unprotected Memory and Access

As a stepping stone toward RAM-LFE, we define and construct a notion of RAM-LFE with a
weaker security guarantee which we call RAM-LFE with unprotected memory and access. In
this notion, the client’s long input x is not hidden, and neither is the memory access pattern the
program makes to x and y throughout the computation. Instead we’re only attempting to hide the
short RAM program description P . We give the formal definition below.

Definition 4.1 (RAM-LFE with Unprotected Memory and Access). A RAM-LFE with unprotected
memory and access (UMA RAM-LFE) is a tuple of algorithms (LFE.Gen, LFE.Hash, LFE.Enc, LFE.Dec)
that satisfies the same syntax and correctness properties as in Definition 3.1, but only satisfies the following
weaker notion of security: There exists a PPT algorithm SimUMA such that for any PPT adversary A, we
have ∣∣∣Pr [RealUMA

LFE (1λ) = 1
]
− Pr

[
IdealUMA

LFE (1λ) = 1
]∣∣∣ = negl(λ),

where the experiment RealUMA
LFE is the same as RealLFE, and IdealUMA

LFE is the same as IdealLFE except for the
third step, which is changed to 3′ as follows:

18

3’. ct← SimUMA(crs, x, y, P (x, y), t,md,MemAccess) where t is the run time of P (x, y), md = md(P)
and MemAccess = (itx, v

t
x, i

t
y, v

t
y, j

t
x, w

t)t∈[T] is the memory access pattern of P (x, y).

It turns out that full simulation based UMA security is not achievable in the full efficiency
setting. To get around this, we define an analogous version of UMA security that is indistin-
guishability based as follows.

Definition 4.2 (RAM-LFE with Indistinguishability-based UMA Security). A RAM-LFE with in-
distinguishability based UMA security (indUMA RAM-LFE) is a tuple of algorithms (LFE.Gen, LFE.Hash,
LFE.Enc, LFE.Dec) that satisfies the same syntax and correctness properties as in Definition 3.1, but only
satisfies the following game-based security notion. For all PPT adversaries A,∣∣∣Pr[ExptAindUMA(1

λ, 0) = 1]− Pr[ExptAindUMA(1
λ, 1) = 1]

∣∣∣ ≤ negl(λ),

where the experiment ExptAindUMA(1
λ, b) is defined as follows:

1. The challenger samples crs← LFE.Gen(1λ) and sends it to A.

2. A chooses the public database y and a pair of private inputs (P0, x0), (P1, x1) and sends them to the
challenger.

3. The challenger checks that md(P0) = md(P1), that P0(x0, y) = P1(x1, y) and that each execution
runs for the same number of time steps. Then it additionally checks that x0 = x1 and both computa-
tions access memory in an identical manner (i.e. each program would write the same bit to the same
location in every step, and similar for reads).

4. If either of the checks fail, the challenger aborts the experiment; otherwise, it computes (dig, ỹ) :=
LFE.Hash(crs, y) and the ciphertext ctb ← LFE.Enc(crs, dig, P, xb) and sends it to A.

5. A outputs b′. The output of the experiment is b′.

In this section, we give two constructions of RAM-LFE with unprotected memory and ac-
cess. In Section 4.1, we construct a scheme that is weakly efficient and satisfies simulation-based
UMA security. Then in Section 4.2, we show how combining the same techniques and addi-
tionally using indistinguishability obfuscation can yield a fully efficient RAM-LFE but only with
indistinguishability-based UMA security.

4.1 UMA RAM-LFE with Weak Efficiency

In the weak efficiency setting where we allow the running time of LFE.Enc and the size of the
ciphertext to scale proportionally to the running time of the RAM program, we can build UMA
secure RAM-LFE based on laconic oblivious transfer and garbled circuits. Our construction is
adapted from the construction of non-interactive secure computation for RAM computation (RAM-
NISC) from [CDG+17], so we begin by summarizing it below.

19

The [CDG+17] RAM-NISC. The setting of RAM-NISC is very similar to that of (UMA) RAM-
LFE. A RAM NISC is a protocol between a server that holds a large database private y and a
client that holds a RAM program P (potentially with short private data hardcoded into it). Like
RAM-LFE, the protocol consists of two messages: first the server deterministically preprocesses
the database y into a digest dig and preprocessed database ỹ, then the client can use dig to encrypt
P into a ciphertext ct that can be decrypted by the server to recover P (y). Client security states
that the server learns nothing more than P (y) and its memory access pattern MemAccess. The
main differences from RAM-NISC and our model of RAM-LFE are that the [CDG+17] RAM-NISC
does not permit random accesses to a client input database x and it additionally requires security
for the server’s database.

The construction of [CDG+17] works by combining updatable laconic oblivious transfer (LOT),
standard oblivious transfer (OT) and garbled circuits. At a high level the construction works as
follows.

• The server uses the LOT hash function to compute dig and ỹ. For each bit in dig, the server
sends a OT receiver message to the client.

• To encrypt P , the client garbles each of the T -many step circuits that may need to be eval-
uated to compute P (·). However, before each step circuit is garbled, it is modified in the
following way so that it hides the intermediate states of the computation.

– Instead of outputting the local state, it outputs labels corresponding to that state to be
used as the input to the next garbled step circuit.

– When the step circuit would read from the database in position i, it instead outputs an
LOT message with respect to dig encrypting the label corresponding to the value of the
bit y[i].

– When the step circuit would write to the database, it instead outputs an LOT update
message along with the labels for the updated LOT digest.

The client sends these garbled circuits along with the labels for the first step circuit and OT
sender messages encrypting the labels corresponding to the bits of dig.

• The server can then evaluate P (y) by evaluating each garbled step circuit in sequence. Any
time the server needs to access at a location i in y, it will use the LOT message from the step
circuit to recover (only) the garbled circuit labels corresponding to y[i].

In order to adapt this construction to our setting, we make the following modifications. First,
we observe that, since we don’t require security for the server’s input y, we can remove the OT
and have the server simply send dig to the client. Second, we can use LOT to permit random access
to the client’s input x in addition to y. While this modification does reveal x to the server, this is
fine for UMA security, and we note that any secret information stored in the description of P will
still be hidden from the server.

Theorem 4.3 (Adapted from [CDG+17], Section 6). Assuming the existence of updatable laconic obliv-
ious transfer, there exists a UMA RAM-LFE with the following efficiency properties:

• LFE.Hash(crs, y) runs in time |y| · poly(λ, log |y|)

• LFE.Enc(crs, dig, P, x) runs in time T · poly(λ, |P |) + |x| · poly(λ, log |x|)

20

• LFE.Dec(crs, ỹ, ct) runs in time t · poly(λ, |P |)

where T is the maximum running time of P , and t is the actual running time of P (x, y).

Proof sketch. After performing the modifications to the [CDG+17] construction as described above,
we obtain the following construction of UMA RAM-LFE.

• LFE.Gen(1λ): Sample an LOT CRS corresponding to each database x and y and output crs =
(crsx, crsy).

• LFE.Hash(crs, y): Run the LOT hash on the server’s database y, and output the resultant
digest digy and preprocessed database ỹ.

• LFE.Enc(crs, digy, P, x): First run the LOT hash on the client’s database x, obtaining the digest
digx and preprocessed state x̂. Then garble the step circuits of P as in [CDG+17], handling
accesses to x in an analogous way as accesses to y. Output a ciphertext ct containing the
garbled step circuits and preprocessed state x̂.

• LFE.Dec(crs, ỹ, ct): Evaluate the garbled circuits step by step with the labels from decrypting
the LOT messages (for both x and y) that are output by the previous step circuit. Ultimately
recover the RAM program output z from the final step circuit.

It is easy to see that the modifications we made to the [CDG+17] construction do not affect
the hiding property on P . We provide a sketch of the proof of security here and refer the reader
to [CDG+17] for the full details.

It suffices to define a simulator that when given the output of P (x, y) along with the databases
x, y and the memory access pattern MemAccess, outputs a simulated sequence of garbled step
circuits. Since the simulator is give the databases and the access pattern, it can use the LOT send
and update simulators to simulate the LOT messages output by each garbled step circuit over
the course of the computation. Then, using the garbled circuit simulator and the final output of
the computation, we can produce a sequence of simulated garbled step circuit that output the
simulated LOT messages and labels that eventually lead to the final circuit outputting P (x, y).

We argue that this simulated ciphertext distribution is indistinguishable from the real world
ciphertext distribution over a sequence of hybrid experiments where we gradually switch each
garbled step circuit to a simulated one, one at a time beginning with the first. The indistinguisha-
bility of consecutive hybrids follows from the garble circuit security and LOT sender security.

4.2 UMA RAM-LFE with Full Efficiency

In this section we show how to build on the techniques of the previous section to build UMA
RAM-LFE with full efficiency where the running time of LFE.Enc scales only polylogarithmically
with the worst case run time of the RAM program P . However, we recall that simulation based
security is not achievable in this setting, so we instead construct UMA RAM-LFE with indistin-
guishability based security (see Definition 4.2). Our construction relies on updatable laconic OT
and garbled circuits as before, along with the additional assumption of indistinguishability ob-
fuscation (iO). Our construction is adapted from the construction of UMA-secure garbled RAM
(UMA GRAM) from [ACFQ22], which we summarize below.

21

The [ACFQ22] UMA GRAM. The construction of UMA GRAM from [ACFQ22] is in the model
of garbled RAM, which is slightly different than our model of RAM-LFE. In the GRAM setting, the
client holds a database x and RAM program P . The client first processes the database into some
garbled database x̂ and stores some associated secret key sk. Then the client can use sk to garble
the program. A server can then recover P (x) by evaluating the garbled program on the garbled
database. In the UMA model of security, the server learns nothing about P other than its access
pattern and output when evaluated on x.

At its core, the [ACFQ22] GRAM construction follows the same rough template as the [CDG+17]
RAM-NISC (see Section 4.1): The database is compressed into a digest using the LOT hash, then
the RAM program is encrypted and evaluated as a sequence of garbled step circuits that pass
along labels for database accesses through LOT send and update messages. The main conceptual
difference here is the use of iO to reduce the encryption time and compress the ciphertext. Instead
of garbling each step circuit individually, the encryptor outputs an obfuscated program that, when
evaluated on a step t, outputs the t-th garbled step circuit. At a high level the construction works
as follows.

• To garble the database x, the client samples an LOT CRS crs and uses the LOT hash func-
tion to compute a digest dig and preprocessed database x̂. It then outputs x̂ as the garbled
database and sk = (crs, dig) as the secret key.

• To garble the program P , the client generates a “program generator” circuit PG that, on
input a step t ∈ [T], outputs the t-th garbled step circuit that has been modified in the same
way as in [CDG+17] (see Section 4.1). The program generator PG uses a (puncturable) PRF
evaluated on its input as the source for the randomness of the circuit garbling. The client
outputs the obfuscation P̃G = iO(PG) as the garbled program.

• Finally, to evaluate the garbled program, in each step the server runs the obfuscated program
P̃G to recover the next garbled step circuit to evaluate, and uses the LOT to handle database
accesses.

In order to cast the [ACFQ22] UMA GRAM as a UMA RAM-LFE, we need only make a few
modifications. First, we observe that in the UMA setting, all of the information stored in the
garbled database secret key can actually be made public. Indeed, LOT security holds when the
CRS is public, and the digest dig can be computed deterministically from the CRS and x. For this
reason, we can have the server also produce a “garbled” database and send its digest to the client
so that it can garble the program. This leads naturally into our second modification that, as in the
previous section, we can modify the protocol to handle both client and server databases x and y.

Theorem 4.4 (Adapted from [ACFQ22], Theorem 5.6). Assuming the existence of updatable laconic
oblivious transfer and iO with log-sized inputs, there exists a UMA RAM-LFE scheme LFE = (LFE.Gen,
LFE.Hash, LFE.Enc, LFE.Dec) with the following efficiency:

• LFE.Hash(crs, y) runs in time |y| · poly(λ, log |y|)

• LFE.Enc(crs, dig, P, x) runs in time poly(λ, |P |) + |x| · poly(λ, log |x|)

• LFE.Dec(crs, ỹ, ct) runs in time t · poly(λ, |P |)

where t is the running time of P (x, y).

22

Proof Sketch. After performing the modifications to the [ACFQ22] UMA GRAM construction as
described above, we obtain the following construction of UMA RAM-LFE with full efficiency.

• LFE.Gen(1λ): Sample an LOT CRS corresponding to each database x and y and output crs =
(crsx, crsy).

• LFE.Hash(crs, y): Run the LOT hash on the server’s database y using crsy, and output the
resultant digest digy and preprocessed database ỹ.

• LFE.Enc(crs, dy, P, x): First, run the LOT hash on the client’s database x using crsx, obtaining
digest digx and state x̂. Then construct the program generator circuit PG as in [ACFQ22],
hardcoding inside of it both digests digx and digy, as well as a puncturable PRF key. The
program generator PG handles accesses to y in an analogous manner to accesses to x. Finally,
output the preprocessed client database x̂, the obfuscation of the program generator P̃G =
iO(PG) as well as labels for the first step circuit.

• LFE.Dec(crs, ỹ, c): For each t ∈ [T], evaluate the obfuscated the program generator to recover
the t-th garbled step circuit. Then evaluate the step circuit and use the LOT to recover the la-
bels corresponding to the memory accesses to x and y. Ultimately recover the RAM program
output z from the final step circuit.

It is clear that the modifications we described above do not affect the security of the client’s
chosen RAM program P . We modified the protocol so that the LOT CRS for the client’s input x is
revealed to the adversary rather than being hidden in the garbled database secret key. However,
that CRS is only used in performing LOT operations, and LOT sender and update security still
holds when the CRS is made public. Therefore the security argument from [ACFQ22], simply
adjusted to account for the two independent LOT schemes for x and y, will still apply to prove
security of our construction. We briefly outline the proof of security below, and we refer the reader
to [ACFQ22] for the full details.

To show security of the construction it suffices to show that an encryption of (P0, x) under
the digest of some y is indistinguishable from the encryption of (P1, x) under the same digest, so
long as P0(x, y) and P1(x, y) have the same output, running time and memory access pattern. We
begin by switching to a hybrid world where the obfuscated program generator has both P0 and P1

hardcoded into it, however it always outputs garbled step circuits for P0. Then we will gradually
switch the program generator to output garbled step circuits for P1 by hardcoding randomness in
the generator for specific steps of the computation using the puncturable PRF, and appealing to
the security of the garbled circuit and LOT schemes. This strategy of hardcoding at specific steps
of the computation must be done carefully via a pebbling argument so as to avoid hardcoding too
much data at any one time.

5 Upgrading to Full Security

In this section we upgrade the UMA RAM-LFE constructions of the previous section to achieve
full security. We consider the weak efficiency and full efficiency setting separately.

23

5.1 The Weak Efficiency Case

In this section we show how to upgrade the weakly efficient UMA RAM-LFE from Section 4.1 to
full security. Recall that in the weak efficiency setting we allow the client’s run time to be propor-
tional to the running time of P . In this case we can upgrade from UMA RAM-LFE by hiding the
program’s memory and access pattern by additionally using symmetric-key encryption, DEPIR
and ORAM, all of which follow from RingLWE.

At a high level, we will use a symmetric-key encryption scheme to encrypt the client’s database
together with the memory contents, and use ORAM and DEPIR to hide the memory address in
the access pattern. Simulation security of the construction will follow from CPA-security of the
encryption scheme and the simulation security of UMA RAM-LFE and ORAM and security of the
DEPIR.

Theorem 5.1. Assuming the existence of a (simulation-secure) UMA RAM-LFE and DEPIR, there exists
a fully-secure RAM-LFE scheme. In particular, assuming the RingLWE assumption holds there exists a
weakly efficient RAM-LFE scheme with the following efficiency properties: for any constant ϵ > 0

• LFE.Hash(crs, y) runs in time |y|1+ϵ · poly(λ)

• LFE.Enc(crs, dig, P, x) runs in time T · poly(λ, |P |) + |x| · poly(λ, log |x|, log T)

• LFE.Dec(crs, y, ct) runs in time t · poly(λ, |P |)

where T is the maximum running time of P , and t is the actual running time of P (x, y).

Construction. We construct a fully-secure RAM-LFE scheme with weak efficiency. We use the
following building blocks

• A CPA-secure symmetric-key encryption scheme SKE = (SKE.Gen, SKE.Enc, SKE.Dec)

• A DEPIR scheme: DEPIR = (Prep,Query,Dec)

• An ORAM scheme: ORAM = (ORAM.Setup,ORAM.Access)

• A UMA RAM-LFE scheme uLFE = (uLFE.Gen, uLFE.Hash, uLFE.Enc, uLFE.Dec)

At a high level our construction proceeds as follows. We use the encryption scheme to encrypt the
client’s input x bit by bit. Then we compile P into an oblivious program P ∗ that accesses x under
the encryption and hides the access pattern of P by accessing x through ORAM and y through
DEPIR. Because making one logical access via DEPIR or ORAM takes multiple physical accesses,
each logical step in evaluating P will be compiled into η steps in P ∗ where η is the number of
physical accesses it takes to make an ORAM or DEPIR query. For convenience we assume that
the value η is the same for the ORAM and DEPIR schemes. This is without loss of generality
because we can simply pad the shorter one with dummy accesses without affecting security. We
additionally note that the encryption scheme, the ORAM and the DEPIR all necessarily require
randomness for security. We provide this by hardcoding randomness into P ∗ to serve as the
random tapes. We formally define our RAM-LFE = (LFE.Gen, LFE.Hash, LFE.Enc, LFE.Dec) as
follows:

• LFE.Gen(1λ) does the same as uLFE.Gen, generating crs = (crsx, crsy) for the two LOT scheme.

24

• LFE.Hash(crs, y) outputs the digest of DEPIR preprocessed database.

1. Run DEPIR preprocessing ŷ := Prep(1λ, y).

2. Compute (dig, ỹ) := uLFE.Hash(crsy, ŷ) and output it.

• LFE.Enc(crs, dig, P, x):

1. Sample a secret key sk← SKE.Gen(1λ) and encrypt the database x to get x′ ← SKE.Enc(sk, x).
Then run (ck0, x

∗)← ORAM.Setup(1λ, x′, |x|+T). Here T is the maximum running time
of P (x, ·).

2. Sample PRFs FO, FD, FE . Construct the oblivious program P ∗ as described in Algo-
rithm 5.2, hardcoding the program P , the encryption key sk, the ORAM client key ck
along with the PRFs.

3. Run ct← uLFE.Enc(crs, dig, P ∗, x∗) and output ct to the server.

• LFE.Dec(crs, ỹ, ct) simply evaluates uLFE.Dec(crs, ỹ, ct) and outputs the result.

Algorithm 5.2: The oblivious program P ∗

Hardcoded: The step circuit C for P , secret key sk for symmetric-key encryption, an ORAM client
secret key ck0, pseudorandom functions FO, FE , FD.

Inputs: The encrypted database x∗ and the preprocessed database ỹ

Algorithm: Initialize st∗,0 = (st0, ck0), v
0
x = 0, v0y = 0, where st0 is the initial state for the first step

circuit C of P . For τ ∈ [T], run the following:

1. Parse st∗,τ−1 = (stτ−1, ckτ−1). Run (stτ , iτx, i
τ
y , j

τ
x , w

τ) := C(stτ−1, vτ−1
x , vτ−1

y).

2. Encrypt wτ
e ← SKE.Enc(sk, wτ), and FE(τ) is the randomness used for encryption. Then

run the following two ORAM access in order as a subroutine:

(a) Run (ckτ−1
1 ,⊥)← ORAM.Accessx

∗
(ckτ−1, write, jτx , w

τ
e).

(b) Run (ckτ , vτx∗)← ORAM.Accessx
∗
(ckτ−1

1 , read, iτx,⊥).
Where here we use FO(τ) as the random tape used in the ORAM.Access function.

3. Run DEPIR encryption (Qτ , sτ) ← Query(1λ, |y|, iτy), and make read access to ŷ at the
locations in set Qτ , obtaining V τ

ŷ = {ŷ[qτ] : qτ ∈ Qτ}. Here we use FD(τ) as the
randomness used for DEPIR query.

4. Decrypt vτx := SKE.Dec(sk, vx∗) and vτy := Dec(sτ , V τ
ŷ). Update st∗,τ = (stτ , ckτ)

Proof. We prove that the above construction gives us a fully-secure RAM-LFE scheme with weak
efficiency. We give the following proofs of correctness, efficiency, and full security.

Correctness. The proof of correctness follows from the correctness of the UMA RAM-LFE and
the correctness of constructing P ∗, and, in turn, the correctness of P ∗ follows from the correctness
of the DEPIR, ORAM and SKE schemes.

25

Efficiency. The running time of LFE.Hash(crs, y) is dominated by the DEPIR preprocessing which
runs in time |y|1+ϵ · poly(λ, log |y|)

The running time of LFE.Enc(crs, dig, P, x) is dominated by the time it takes to initialize an
ORAM of size |x| + T and run uLFE.Enc for P ∗. Thus the encryption time is given by |x| ·
poly(λ, log (|x|+ T)) + η · T · poly(λ, η, log |x|, log |ŷ|, log T). Since η = poly log(|x|, |y|), we have
encryption time |x|· poly(λ, log |x|, log T) + T · poly(λ, log |x|, log |y|, log T).

The LFE.Dec(crs, ỹ, ct) decryption time follows from the efficiency in UMA RAM-LFE, which
is given by t · poly(λ, η, log |x|, log |ŷ|) = t · poly(λ, log |x|, log |y|, log T), where t is the running time
of P (x, y).

Security. To argue security, we begin by defining a sequence of hybrids.

• Hyb0 = RealLFE(1
λ) corresponds to the real world experiment as defined in Definition 3.1.

• Hyb1 is the same as RealLFE(1λ) except for the third step. In Hyb1, ct will be generated by

ct← SimUMA(crs, x
∗, ŷ, z, t′,md,MemAccess)

where z = P (x, y) = P ∗(x∗, ŷ) according to correctness, t′ is the run time of P ∗(x∗, ŷ), md =
md(P ∗), and according to our definition, t′ = η · T ′, where T ′ is the running time of P (x, y).
MemAccess = (itx∗ , vtx∗ , itŷ, v

t
ŷ, j

t
x∗ , wt

∗)t∈[ηT ′] is the memory access pattern of P ∗(x∗, ŷ).

• Hyb2 is the same as Hyb1 except we replaces the memory accesses MemAccess to the memory
accesses that would be made by P ∗(x∗, ŷ) if we replace the hardcoded PRFs FO, FE , FD with
truly random function RO, RE , RD.

• Hyb3 is the same as Hyb2 except that we replace (x∗,MemAccess) with

(Simx∗(1|x
∗|, 1ηT , {itx∗ , jtx∗}t∈[ηT ′]), (i

t
ŷ, v

t
ŷ)t∈[ηT ′])

where Simx∗(1|x
∗|, 1ηT

′
, {itx∗ , jtx∗}t∈[ηT ′]) is defined as follows:

1. Run uniformly random sampling x∗ ← [0, 1]|x
∗| and {wt}t∈[ηT ′] ← [0, 1]ηT

′

2. Run memory access on x∗ by the modified memory access pattern (itx∗ , jtx∗ , wt)t∈[ηT ′],
updating the database x∗ to x∗t after step t. Define vtx∗ as the itx∗ entry of database x∗t .
This will make the memory access pattern consistent.

3. Output (x∗, (itx∗ , vtx∗ , jtx∗ , wt)t∈[ηT ′]).

That is, we simulate the memory contents of x∗ and ORAM memory.

• Hyb4 is the same as Hyb3 except that we replace {(itŷ, vtŷ)}t∈[ητ−η+1,ητ] with {(iτ , ŷ[iτ]) : iτ ∈
Qτ

0}, ∀τ ∈ [T ′]. Here Qτ
0 is a set that is generated by (Qτ

0 , s
τ) ← Query(1λ, |y|, 1), which is a

dummy DEPIR query set on a fixed index.

• Hyb5 is the same as Hyb4 except that we replace (itx∗ , jtx∗)τ∈[ητ−η+1,ητ] with ORAMSim(1λ, |x|),
for all τ ∈ [T ′]. We can see that Hyb5 is a fully simulated world, so we define LFESim(crs, y, P (x, y), t,md(P))
as the following, and observe Hyb5 = IdealLFE(1

λ).

1. Run ŷ := Prep(1λ, y).

26

2. Run (itx∗ , jtx∗)t∈[ητ−η+1,ητ] ← ORAMSim(1λ, |x|) for all τ ∈ [T ′]. Then generate Qτ
0 and

{(iτ , ŷ[iτ]) : iτ ∈ Qτ
0}, ∀τ ∈ [T ′] as in Hyb3. Parse them as (itŷ, v

t
ŷ)t∈[ηT ′].

3. Run (x∗, (itx∗ , vtx∗ , jtx∗ , wt)t∈[ηT ′])← Simx∗(1|x
∗|, 1ηT

′
, {itx∗ , jtx∗}t∈[ηT ′]).

4. Output ct′ ← SimUMA(crs, x
∗, ŷ, P (x, y), t′,md(P ∗),MemAccessSim), where MemAccessSim =

(itx∗ , vtx∗ , itŷ, v
t
ŷ, j

t
x∗ , wt)t∈[ηT ′].

We show the indistinguishability between the hybrid experiments.

• Hyb0 ≈c Hyb1 follows from the simulation security of UMA RAM-LFE, as defined in 4.1.

• Hyb1 ≈c Hyb2 follows from the pseudorandomness of the PRFs FO, FE and FD.

• Hyb2 ≈c Hyb3 follows from the security of CPA-secure private-key encryption scheme, which
gives that SKE.Enc(sk,m) is indistinguishable from a uniformly random string that has the
same length as SKE.Enc(sk,m).

• Hyb3 ≈c Hyb4 follows from the security of DEPIR, which gives that queries on indices (which
can also be the same) are computationally indistinguishable.

• Hyb4 ≈c Hyb5 follows from the standard simulation-based security of ORAM.

Remark 5.1 (Larger outputs with additive cost). The RAM-LFE we constructed above only han-
dles RAM programs that have one-bit output. Here we briefly sketch how to remove this con-
straint while only incurring an additive cost in the output length, however we omit the precise
details for the sake of brevity. We notice that our construction can actually be modified to allow
the client to send a batch of multiple encrypted programs for the server to evaluate in sequence on
the same inputs (and hence consistent working memory). This can be done by having the final
garbled step circuit output one bit in the clear in addition to the labels that would be required to
begin evaluating another garbled circuit on the updated database. Using this observed property,
the client can construct a program P that writes its desired output to working memory and then
follow that program with a sequence of programs that simply read one bit each from memory and
output it. In this way, the server can decrypt the output z in time proportional to T + |z|.

5.2 The Full Efficiency Case

In this section we construct fully efficient RAM-LFE by upgrading the fully efficient UMA RAM-
LFE from Section 4.2. Ultimately the construction we use will be conceptually very similar to
that of the weakly efficient case in the previous section: we encrypt the client’s database and
hide the access patterns to x and y under an ORAM and DEPIR respectively. However, because
Theorem 4.4 only gives indistinguishability-based UMA security in the full efficiency setting, the
security proof for this construction requires significantly more care. We use the techniques of
punctured programming and follow the outline of [CH16], working in two steps. In the first step
we upgrade to a security notion where we hide the content of the client’s database and memory
accesses, but where the addresses accessed are still unprotected. Then we show how to go from
this intermediate notion to full (simulation-based) RAM-LFE security.

27

5.2.1 Hiding Database Content

Definition 5.3 (RAM-LFE with Unprotected Access). A RAM-LFE with unprotected access (UA
RAM-LFE) is a tuple of algorithms (LFE.Gen, LFE.Hash, LFE.Enc, LFE.Dec) that satisfies the same syntax
and correctness properties as in Definition 3.1, but only satisfies the following weaker notion of security.
For all PPT adversaries A,∣∣∣Pr[ExptAUA(1λ, 0) = 1]− Pr[ExptAUA(1

λ, 1) = 1]
∣∣∣ ≤ negl(λ),

where the experiment ExptAUA(1
λ, b) is defined as follows:

1. The challenger samples crs← LFE.Gen(1λ) and sends it to A.

2. A chooses the public database y and a pair of private inputs (P0, x0), (P1, x1) and sends them to the
challenger.

3. The challenger checks that md(P0) = md(P1), that P0(x0, y) = P1(x1, y) and that each execution
runs for the same number of time steps. Then it only checks that both computations access the same
sequence of memory addresses (i.e. the locations read from and written to, not the content).

4. If either of the checks fail, the challenger aborts the experiment; otherwise, it computes (dig, ỹ) :=
LFE.Hash(crs, y) and the ciphertext ctb ← LFE.Enc(crs, dig, Pb, xb) and sends it to A.

5. A outputs b′. The output of the experiment is b′.

Theorem 5.4. Assuming the existence of an indistinguishability-based UMA RAM-LFE, there exists an
indistinguishability-based UA RAM-LFE. In particular, assuming the existence of updatable laconic oblivi-
ous transfer and indistinguishability obfuscation, there exists a UA RAM-LFE with the following efficiency:

• LFE.Hash(crs, y) runs in time |y| · poly(λ, log |y|)

• LFE.Enc(crs, dig, P, x) runs in time poly(λ, |P |) + |x| · poly(λ, log |x|, log T)

• LFE.Dec(crs, ỹ, ct) runs in time t · poly(λ, |P |),

where T is the maximum running time of P and t is the actual running time of P (x, y).

Construction. Our two building blocks are an indistinguishability-based UMA RAM-LFE uLFE
and a puncturable PRF family F . At a high level, the construction works by compiling the clients
input (P, x) into an encrypted database x′ and a transformed program P ′ that operates over the
encrypted x′, but leaves all of its accesses to y unchanged. Then we simply use uLFE.Enc on (P ′, x′)
to produce the final ciphertext. We make the following modifications to compile P into P ′. With-
out loss of generality, we assume that P has memory cell alphabet Σ = {0, 1}. First, P ′ executes
two copies of P in parallel, on two independent “tracks” of read/write memory which we call
the left and right tracks; at the end it will only output the result of the left-track computation,
meaning the right track is only used as a “dummy” computation. Second, each time P ′ would
write to memory, it additionally writes metadata containing the time step this memory cell was
last written to. We model these changes by setting the alphabet of P ′ to Σ′ = [T]× {0, 1}2, so each
memory cell of x contains a tuple (t, u, v) where t ∈ [T] is a time step and u and v are the values

28

in the left and right track of memory respectively at that location. Finally, we also modify P ′ to
use a pair of (puncturable) PRFs to mask each bit it writes to memory. We formally define the
encryption algorithm below; all other algorithms in the scheme simply invoke the corresponding
algorithms in the underlying UMA RAM-LFE.

• LFE.Enc(crs, dig, P, x):

1. Sample two puncturable PRFs F,G← F .

2. Construct the modified program P ′ as defined in Algorithm 5.5 by hardcoding PL =
PR = P and the two PRFs F and G.

3. Compute the encrypted database x′ using F and G to mask each bit of x and writing it
to both tracks of memory: x′[i] = (0, x[i]⊕ F (0, i), x[i]⊕G(0, i)).

4. Compute ciphertext ct← uLFE.Enc(crs, dig, P ′, x′) and output it.

Algorithm 5.5: The transformed RAM Program P ′

Hardcoded: Two RAM programs PL, PR and two puncturable PRFs F,G.

Algorithm: Takes as input the encrypted database x′ and the unaltered public database y. Let
CL, CR be the step circuits of PL and PR respectively. Evaluation of P ′ is defined by the
following loop. Initialize st = (stL, stR), vx = (t′, vx,L, vx,R) and vy with zeroes. For each
time step t ∈ [T]:

1. Evaluate both step circuits outL = CL(stL, vx,L, vy) and outR = CR(stR, vx,R, vy). If
the left track is in an output state (i.e. outL ∈ Z), halt and output outL. Otherwise
parse outL = (stL, ix, iy, jx, wL) and outR = (stR, ix, iy, jx, wR). If the memory addresses
accessed by the left and right tracks differ, abort and output ⊥.

2. Write each of wL and wR to their respective tracks, masked under independent PRFs,
along with metadata of the time step this write occurred: x′[jx] = (t, wL⊕F (t, jx), wR⊕
G(t, jx)).

3. Read (t′, cL, cR) = x′[ix] from the encrypted memory, and use the PRFs to unmask the
data: vx,L = cL ⊕ F (t′, ix) and vx,R = cR ⊕G(t′, ix).

4. Read from y to get vy = y[iy] and update the state st = (stL,= stR) to carry forward to
the next step.

Proof of Theorem 5.4. First we argue correctness. During encrytion, the program P ′ is constructed
with hardcoded the same RAM program on each track, PL = PR = P , therefore the addresses
accessed in each step will agree between the left and right tracks, and thus P ′ will not abort early.
Then, by inspection, we have P ′(x′, y) = P (x, y) and thus correctness follows from the correctness
of the underlying UMA RAM-LFE scheme.

29

Next we argue efficiency. We note that transformed program P ′ runs in the same amount
of time as the client’s original program P and has description size |P ′| = poly(λ, |P |).8 The en-
crypted database x′ is only larger than x by a log T factor. Applying the UMA RAM-LFE efficiency
properties to (P ′, x′) yields the desired efficiency.

Next we prove security. Let (P0, x0) and (P1, x1) be the two client inputs chosen by the ad-
versary in the security game. Assume without loss of generality, these two inputs satisfy the
conditions such that the UA security game will not abort. That is, we have P0(x0, y) = P1(x1, y),
both computations run in t∗ steps for some t∗ ∈ [T] and both computations access the same se-
quence of addresses in memory. We define the following sequence of hybrid experiments wherein
we change the way the challenger constructs the transformed program P ′ and initializes the en-
crypted database x′.

• Hyb0: This is the distribution on the LFE ciphertext ct in the real world UA-security experi-
ment ExptUA(1λ, 0). That is, the challenger constructs P ′ by hardcoding PL = PR = P0 and
initializes x′ by setting x′[i] = (0, x0[i]⊕ F (0, i), x1[i]⊕G(0, i)) for each i ∈ [N].

• Hyb1: This is the same as Hyb0, except we modify the way the challenger initializes x′.
Instead of writing x0 to both tracks of memory masked under the PRFs, the challenger
writes x0 to the main track and x1 to the dummy track (still masking each track under
the independent PRF keys). More formally, the challenger computes x′ by setting x′[i] =
(0, x0[i]⊕ F (0, i), x1[i]⊕G(0, i)) for each i ∈ [N].

• Hyb2: This is the same as Hyb1, except now we modify the way the challenger constructs the
transformed program P ′. Now the challenger hardcodes PL = P0 as the main program in P ′

and PR = P1 as the dummy program.

• Hyb3: This is the same as Hyb2, except we now modify P ′ so that it outputs the result of the
computation done on the right track of memory (thereby making the left track the dummy
track).

• Hyb4: Now we change the program P ′ so that PL = PR = P1 is evaluated on both tracks of
memory, but x′ is initialized with both x0 and x1 (as in Hyb1).

• Hyb5: This is the real world experiment ExptUA(1λ, 1).

The fact that Hyb2 ≈c Hyb3 follows immediately from security of the underlying RAM-LFE be-
cause we simply swap the output of the two tracks and it holds that P0(x0, y) = P1(x1, y). We
focus on proving Hyb0 ≈c Hyb1 and Hyb1 ≈c Hyb2 in the following claims. The indistinguishabil-
ity Hyb3 ≈c Hyb4 and Hyb4 ≈c Hyb5 follow in a symmetrical manner.

Claim 5.5.1. Hyb0 ≈c Hyb1.

Proof. We prove the indistinguishability of Hyb0 from Hyb1 through a further series of indistin-
guishable hybrids. Intuitively, we change the dummy track of the initial encrypted database to
contain an encryption of x1. We work one cell at a time by puncturing the PRF G at the appropri-
ate place. For each i ∈ [N] define the following hybrids.

8We note that P ′ must be padded to have description size equal to the largest program we encrypt as an intermedi-
ate hybrid in the security argument below. The largest program that appears in the security argument is P ′′ defined in
Algorithm 5.6, and it only ever contains constantly many hardcoded bits and PRF keys that are punctured in only one
location. Thus we have |P ′′| = poly(λ, |P |) as well.

30

• Hi
0: This is the same as Hyb0 except we modify x′ so that the first i memory cells contain data

from x1 on the dummy (i.e. right) track instead of x0. That is, the challenger computes x′ as
follows: for all j ∈ [N]

x′[j] =

{
(0, x0[j]⊕ F (0, j), x1[j]⊕G(0, j)) j < i

(0, x0[j]⊕ F (0, j), x0[j]⊕G(0, j)) j ≥ i.

• Hi
1: This is the same as Hi

0 except we replace the PRF G that is hardcoded into P ′ by the PRF
G′ which is the result of puncturing G at input (0, i). However, we still use the unpunctured
value G(0, i) as a mask in initializing the dummy track of x′[i].

• Hi
2: This is the same as Hi

1 except we initialize x′[i] = (0, x0[i]⊕ F (0, i), r) where r ← {0, 1}
is a uniformly random bit.

• Hi
3: This is the same as Hi

2 except we use data from x1 to initialize the dummy track of x′[i]
(masked with the unpunctured value G(0, i)). That is, we set x′[i] = (0, x0[i]⊕F (0, i), x1[i]⊕
G(0, i)).

It is clear that Hyb0 ≡ H1
0 and Hyb1 ≡ HN+1

0 . We claim that for all i ∈ [N], Hi
0 ≈c Hi

1 by UMA
security of the UMA RAM-LFE because puncturing G at (0, i) without changing how we initialize
x′ doesn’t affect the access pattern of P ′. Then by the pseudorandomness of the puncturable PRF
family at the punctured location, it follows that for all i ∈ [N] Hi

1 ≈c H
i
2 and similarly Hi

2 ≈c H
i
3.

Finally, we note that the only thing that changes between Hi
3 and Hi+1

0 is that we unpuncture G
in P ′. But this doesn’t change memory accesses of P ′, so Hi

3 ≈c Hi+1
0 follows again by UMA

security.

Claim 5.5.2. Hyb1 ≈c Hyb2.

Proof. We prove the indistinguishability of Hyb0 from Hyb1 through a further series of indistin-
guishable hybrids. Here, the intuition is that we change the computation done on the dummy
track to be an execution of P1 rather than P0. Here we work one step at a time by puncturing the
PRF G at the appropriate place. For each τ ∈ {0, . . . , T} define the following hybrids.

• Hτ
0 : This is the same as Hyb1 except we replace P ′ with the program P ′′ defined in Algorithm

5.6 with PL = P0, PR = P1 and the time step τ and ciphertext c = ⊥ hardcoded into it.
Intuitively, P ′′ will run P1 on the dummy track for the first t steps of the computation, and
afterwards it will only execute the main track which contains P0, and copy everything it
writes to the dummy track.

• Hτ
1 : This is the same as Hτ

0 , except we change P ′′ to only contain the PRF G′, the result
of puncturing G on (τ, jx) where jx is the address that is written to in step τ . Then we
additionally hardcode a ciphertext c = w0 ⊕ G(τ, jx) that P ′′ will write to the dummy track
in step τ , where w0 is the value that P0 would write to x in step τ .

• Hτ
2 : This is the same as Hτ

1 , except we change the hardcoded ciphertext to c = w1 ⊕G(τ, jx).

First observe that we have Hyb1 ≈c H0
0 by UMA security of the underlying RAM-LFE because

P ′′ with τ = 0 hardcoded runs P0 on each track in parallel. Additionally, we have Ht∗
0 ≡ Hyb2

31

by inspection. Fix τ ∈ {0, . . . , T}. We have Hτ
0 ≈c Hτ

1 again by UMA security because the hard-
coded ciphertext ensures that the same value is written to memory in both experiments. Then
the indistinguishability Hτ

1 ≈c Hτ
2 follows from the pseudorandomness of the puncturable PRF

family at the punctured location. Finally UMA security implies Hτ
2 ≈c Hτ+1

0 because we merely
unpuncture the PRF.

Algorithm 5.6: The hybrid RAM Program P ′′

Hardcoded: Two RAM programs PL, PR and two puncturable PRFs F,G. And additionally a time
step τ and a hardcoded ciphertext c.

Algorithm: Takes the same inputs and initializes variables the same as in Algorithm 5.5. We
describe the behavior of P ′′ in cases depending on the value of t ∈ [T]:

• If t < τ : Behave exactly as in Algorithm 5.5, that is evaluate both the left and write step
circuits and writes their updates independently to the two tracks of memory.

• If t = τ : Evaluate both step circuits as in Algorithm 5.5, halting as it would if outL ∈ Z.
Parse outL = (stL, ix, iy, jx, wL) and outR = (stR, ix, iy, jx, wR). Write

x′[jx] =

{
(t, wL ⊕ F (t, jx), c) c ̸= ⊥
(t, wL ⊕ F (t, jx), wR ⊕G(t, jx)) otherwise.

Read from memory as in Algorithm 5.5.
• If t > τ : Evaluate only the left step circuit outL = CL(stL, vx,L, vy). If it is in an output

state (i.e. outL ∈ Z), halt and output outL. Otherwise parse outL = (stL, ix, iy, jx, wL).
Write wL to both tracks of memory: x′[jx] = (t, wL ⊕ F (t, jx), wL ⊕G(t, jx)). Read from
memory exactly as Algorithm 5.5 does.

This completes the proof of Theorem 5.4.

5.2.2 Hiding the Access Pattern

In this section we show how to upgrade the indistinguishability-based UA RAM-LFE from the
previous section into a RAM-LFE with full (simulation-based) security using DEPIR and ORAM
to hide the addresses that are accessed.

Theorem 5.7. Assuming the existence of a UA RAM-LFE, an ORAM with localized randomness and
DEPIR, there exists a (fully simulation secure) RAM-LFE with full efficiency. In particular, assuming
RingLWE holds and the existence of indistinguishability obfuscation, there exists a RAM-LFE with the
following efficiency properties: for any constant ϵ > 0

• LFE.Hash(crs, y) runs in time |y|1+ϵ · poly(λ).

• LFE.Enc(crs, dig, P, x) runs in time poly(λ, |P |) + |x| · poly(λ, log |x|, log T)

• LFE.Dec(crs, y, ct) runs in time t · poly(λ, |P |).

where T is the maximum running time of P , and t is the actual running time of P (x, y).

32

Construction. The ingredients to our construction are as follows:

• An indistinguishability-based UA RAM-LFE uLFE = (uLFE.Gen, uLFE.Hash, uLFE.Enc, uLFE.Dec)

• An ORAM with localized randomness: ORAM = (ORAM.Setup, ORAM.Access)

• A DEPIR: DEPIR = (Prep,Query,Dec)

• Puncturable PRFs with various input and output sizes

At a high level, our construction here is analogous to the weakly efficient construction from Sec-
tion 5.1: Given a client’s input (P, x), we compile the program P into a new program P ∗ that hides
the access pattern of P by accessing x via the ORAM and y via DEPIR. Because making one log-
ical access via DEPIR or ORAM takes multiple physical accesses, each logical step in evaluating
P will be compiled into η steps in P ∗ where η is the number of physical accesses it takes to make
an ORAM or DEPIR query.9 Since accessing memory via ORAM and DEPIR are necessarily ran-
domized processes, we use (puncturable) PRFs as the source of the randomness for each access. In
DEPIR, each query uses independent contiguous blocks of randomness, so we model its random
tape as a PRF FD : [T] → {0, 1}λ. However in the ORAM with localized randomness, we think
of the access algorithm as having a global random tape that is consistent throughout all ORAM
accesses, thus we model the ORAM random tape as a PRF FO : [M]→ {0, 1}, where M is an upper
bound on the length of the random tape.

• LFE.Gen(1λ): Sample crs← uLFE.Gen(1λ) as in the UA RAM-LFE.

• LFE.Hash(crs, y): Use the DEPIR to preprocess ŷ := Prep(1λ, y), and use the UA RAM-LFE to
hash the preprocessed database: (dig, ỹ) := uLFE.Hash(crs, ŷ).

• LFE.Enc(crs, dig, P, x):

1. Sample two puncturable PRFs FO : [M]→ {0, 1} and FD : [T]→ {0, 1}λ.

2. Initialize an ORAM containing x, by computing (ck, x∗) ← ORAM.Setup(1λ, x,N + T)
using FO as the random tape of the computation. Here N = |x| and T is the upper
bound on the running time of P .

3. Compile P into the oblivious program P ∗ as defined in Algorithm 5.8 by hardcoding
into it the PRFs FO and FD as well as the ORAM client key ck.

4. Compute the ciphertext ct← uLFE.Enc(crs, dig, P ∗, x∗).

• LFE.Dec(crs, ỹ, ct): Simply evaluate z := uLFE(crs, ỹ, ct) and output the result.

Algorithm 5.8: The oblivious program P ∗

Hardcoded: A RAM program P , an ORAM client key ck and two puncturable PRFs FO : [M] →
{0, 1} and FD : [T]→ {0, 1}λ.

9As in Section 5.1, we assume without loss of generality that the value η is the same for both the ORAM and DEPIR
schemes, potentially padding the one that needs fewer accesses with arbitrary dummy accesses.

33

Algorithm: Takes as input the ORAM database x∗ and DEPIR preprocessed public database ŷ.
Let C be the step circuit of P . Initialize st∗ = (st, ck), vx = 0, vy = 0, where st is the initial
state for the step circuit C of P . For t ∈ [T], run the following:

1. Parse st∗ = (st, ck), and evaluate the step circuit yielding out := C(st, vx, vy). If out is an
output state (i.e. out ∈ Z), halt and output it. Otherwise parse out = (st′, ix, iy, jx, w)

2. Run the following two ORAM accesses in order as subroutines to handle the accesses
to x. We use the PRF FO : [M] → {0, 1} to function as the (global) random tape for
all ORAM accesses throughout the computation. Recall M is an upper bound on the
number of random coins the ORAM will use in making at most 2T logical accesses.

(a) Run (ck′,⊥)← ORAM.Accessx
∗
(ck,write, jx, w).

(b) Run (ck′′, vx)← ORAM.Accessx
∗
(ck′, read, ix,⊥).

3. Sample a DEPIR query (Q, s) ← Query(1λ, |y|, iy) using randomness given by FD(t),
and read Vŷ = ŷ[Q] = {ŷ[q] : q ∈ Q}. Decrypt to recover vy := Dec(s, Vŷ).

4. Update st∗ = (st′, ck′′) with the newly updated step circuit state and ORAM client key,
and carry st∗, vx and vy to the next step.

Proof of Theorem 5.7. First we argue correctness by observing that correctness of the ORAM and
DEPIR schemes implies that P ∗(x∗, ŷ) = P (x, y). Thus the overall correctness of the scheme fol-
lows from the correctness of the UA RAM-LFE.

Next we prove security. For a fixed crs← LFE.Gen(1λ), let (P, x) be the client input and let y be
the server input chosen by the adversary in the RAM-LFE security experiment. Let T be the upper
bound on the run time of P , let t∗ be the actual run time of P (x, y), and let N = |x|. For the fixed
sequence of 2t∗ logical memory accesses P ∗ makes using the ORAM and fixed PRF FO, let {Si}2t

∗
i=1

be the disjoint subsets of [M] that give the randomness used in each ORAM access. Additionally
let ℓ = maxi |Si| = poly(λ, logN) denote the “locality” of the localized randomness ORAM.

Our argument proceeds by the technique of punctured programming. We crucially rely on
the localized randomness of the ORAM and the property that DEPIR queries use independent
randomness. The unprotected access security of the UA RAM-LFE allows us to ingore the content
being written to/read from memory and focus on the addresses being accessed. We define the
following sequence of hybrids where we change the distribution of the ciphertext ct by gradually
simulating steps of the computation, starting from the end and working toward the beginning.

• Real: This is the distribution on ct that is sampled in the real security experiment RealLFE(1λ).
That is ct is sampled as ct ← uLFE.Enc(crs, dig, P ∗, x∗), where P ∗ and x∗ are defined as in
LFE.Enc above.

• For each τ ∈ {t∗, . . . , 1}, define Hybτ : This is the distribution on ct where it is sampled by
ct ← LFE.Enc(crs, dig, P ∗∗

τ , x∗). Here P ∗∗
τ is the hybrid program defined in Algorithm 5.10

that has the output z = P (x, y), and runtime t∗ hardcoded. Intuitively, in P ∗∗
τ we execute P

for the first τ steps, making accesses via ORAM and DEPIR as in P ∗, but then for the latter
steps, P ∗∗

τ makes only simulated ORAM and DEPIR accesses before finally outputting the
hardcoded output z after t∗ steps.

34

• Ideal: This is the distribution on ct where it is sampled by ct ← LFE.Enc(crs, dig, S∗, 0|x
∗|).

Here S∗ is the fully simulated program defined in Algorithm 5.9 that has the output z =
P (x, y) and run-time t∗ hardcoded, but otherwise contains no information about P .

Algorithm 5.9: The fully simulated program S∗

Hardcoded: The output z = P (x, y) and runtime t∗, as well as a puncturable PRF G : [T]→ {0, 1}ℓ
where ℓ is the locality of the ORAM and a puncturable PRF FD : [T]→ {0, 1}λ.

Algorithm: Takes as input the ORAM database x∗ and DEPIR preprocessed public database ŷ.
For t ∈ [t∗], run the following:

1. Simulate the two logical ORAM accesses using the local simulator LRSim(G(t)) given
randomness from the PRF G.

2. Sample a dummy DEPIR query to an arbitrary fixed address (Q, s) ← Query(1λ, |y|, 1)
using randomness given by FD(t), and read Vŷ = ŷ[Q] = {ŷ[q] : q ∈ Q}.

After t∗ steps, halt and output the hardcoded value z.

Algorithm 5.10: The hybrid oblivious program P ∗∗
τ

Hardcoded: A time step τ ∈ [t∗]. It has all the same hardcoded values as in P ∗ (Algorithm 5.8):
A RAM program P , an ORAM client key ck, two puncturable pseudorandom functions FO :
[M]→ {0, 1} and FD : [T]→ {0, 1}λ.

Additionally, it has all the values as hardcoded in S∗ (Algorithm 5.9): the output z = P (x, y)
and runtime t∗, as well as another puncturable PRF G : [T] → {0, 1}ℓ where ℓ is the locality
of the ORAM.

Algorithm: Takes the same input as in Algorithm 5.8 and initializes the state the same way. We
describe the behavior of P ∗∗

τ in two cases depending on the time step t ∈ [t∗].

• If t ≤ τ : Behave exactly as in the oblivious algorithm P ∗, that is, evaluate the step circuit
of P and make memory accesses via the ORAM and DEPIR.

• If t > τ : Behave as in the simulated algorithm S∗, that is, don’t evaluate the step circuit,
make dummy accesses to x∗ at the addresses computed using the ORAM local simula-
tor LRSim(G(t)), and read addresses from ŷ corresponding to a dummy DEPIR query
(Q, s)← Query(1λ, |y| , 1) sampled using randomness FD(t).

After t∗ steps, halt and output the hardcoded value z.

It is easy to see that the distribution on ct defined in Ideal can be sampled given only the crs,
the public database y, the client database size N = |x|, the output z = P (x, y), and the run time
t∗. Security of the UA RAM-LFE implies that Real ≈c Hybt∗ because P ∗∗t∗ has the same access
pattern as P ∗. Similarly security of the UA RAM-LFE also implies that Ideal ≈c Hyb0. It remains
to show the following claim.

35

Claim 5.10.1. For all τ ∈ {t∗, . . . , 1}, Hybτ ≈c Hybτ−1.

Proof of Claim 5.10.1. At a high level, we will swap the DEPIR query in step τ with a dummy DE-
PIR query to a fixed address and the ORAM access with a simulated access pattern that is simu-
lated with independent randomness (we use the PRF G as the independent source of randomness
for LRSim). Let Sτ ⊂ [M] be the subset of the ORAM random tape that is used by the ORAM.Access
algorithm in making the two logical accesses in step τ . We prove the claim by making a sequence
of indistinguishable changes to the way we sample ct by changing the definition of P ∗∗

τ .

• H0: This is the same as Hybτ except we instead construct P ∗∗
τ using F ′

O = FO{Sτ} that has
been punctured at the points in Sτ as the ORAM’s random tape. However, we additionally
hardcode the values F (Sτ) into P ∗∗τ , and, in step τ , we compute the ORAM accesses using
the localized randomness simulator: LRSim(FO(Sτ)).10

• H1: This is the same as H0 except instead of hardcoding the values F (Sτ) into P ∗∗τ , we
replace those values with uniformly sampled {bs}s∈Sτ .

• H2: This is the same as H1 except we now unpuncture the ORAM tape FO and instead
puncture the PRF G′ = G{τ}.

• H3: This is the same as H2 except we replace the hardcoded values {bs}s∈Sτ with random-
ness from the independent PRF G(τ).

• H4: This is the same as H3 except we now unpuncture G and instead puncture the DEPIR
random tape at input τ to get F ′

D = FD{τ}. And we additionally hardcode the value FD(τ)
to be used as the randomness for sampling the DEPIR query in step τ .

• H5: This is the same as H4 except we replace the hardcoded value FD(τ) with a uniformly
random string r ← {0, 1}λ for use as the randomness of the DEPIR query in step τ .

• H6: This is the same as H5 except instead of sampling the DEPIR query Query(1λ, |y|, iy) us-
ing the read address output by the step circuit, we sample a dummy DEPIR query Query(1λ, |y|, 1)
to the fixed address 1.

• H7: This is the same as H6 except we replace the hardcoded random string r with the PRF
evaluation FD(τ).

• H8: This is the same as H7 except we now replace the punctured F ′
D with the original un-

punctured PRF FD.

We argue the indistinguishability of the above hybrids as follows:

• Hybτ ≈c H0 follows by security of the UA RAM-LFE together with the localized randomness
property of the ORAM. This is because the simulated accesses output by LRSim(FO(Sτ)) are
equal to real ORAM accesses in Hybτ with all but negligible probability. Thus P ∗∗

τ has the
same access pattern in the two experiments.

• H0 ≈c H1 follows by pseudorandomness of the puncturable PRF FO at the punctured loca-
tions.

10Here we abuse notation to write FO(Sτ) to indicate the set {FO(s) : s ∈ Sτ}.

36

• H1 ≈c H2 follows by security of the UA RAM-LFE because the value G(τ) is never used
elsewhere in P ∗∗

τ , thus puncturing G at τ doesn’t affect the access pattern of P ∗∗
τ .

• H2 ≈c H3 follows by pseudorandomness of the puncturable PRF G at the punctured loca-
tion.

• H3 ≈ H4 follows by security of the UA RAM-LFE because in both experiments P ∗∗
τ uses

the same string as the randomness for the DEPIR query, and therefore it has the same access
pattern in both experiments.

• H4 ≈c H5 follows by pseudorandomness of the puncturable PRF FD at the punctured loca-
tion.

• H5 ≈c H6 follows by security of the DEPIR scheme.

• H6 ≈c H7 follows by pseudorandomness of the puncturable PRF FD at the punctured loca-
tion.

• H7 ≈c H8 follows by security of the UA RAM-LFE because the access pattern does not
change.

• H8 ≈c Hybτ−1 follows by security of the UA RAM-LFE because the only difference is that
in H8 P

∗∗
τ evaluates the step circuit in the τ th step, but otherwise they have the same access

pattern because they both fully simulate the accesses in the τ th step.

This completes the proof of security.
Finally we argue efficiency. Assuming RingLWE holds and the existence of indistinguishability

obfuscation, we instantiate the DEPIR from Theorem 2.6, the localized randomness ORAM from
Theorem 2.4 and the UA RAM-LFE from Theorem 5.4. The efficiency of LFE.Hash is implied by
the efficiency of the DEPIR Prep algorithm. It remains to argue that compiling P into the oblivious
program P ∗ doesn’t blow up the run time or description size by more than a poly(λ, log |x|, log T)
factor. Observe that the program P ∗ executes a single logical step of P in η steps where η is the
(max of the) query overhead of the ORAM and DEPIR schemes. However, both the ORAM and
DEPIR have η = poly(λ, log |x| , log |y|). Finally we note that in the security proof, we only ever
hard code one logical step’s worth of data at a time, so the total (padded) description size of
|P ∗| = η · |P | · poly(λ).

This completes the proof of Theorem 5.7.

Acknowledgements

We thank Ji Luo for helpful comments.

References

[ACFQ22] Prabhanjan Ananth, Kai-Min Chung, Xiong Fan, and Luowen Qian. Collusion-
resistant functional encryption for RAMs. In Shweta Agrawal and Dongdai Lin,

37

editors, Advances in Cryptology – ASIACRYPT 2022, Part I, volume 13791 of Lecture
Notes in Computer Science, pages 160–194. Springer, Heidelberg, December 2022. 4, 5,
6, 7, 21, 22, 23

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Func-
tional encryption: New perspectives and lower bounds. In Ran Canetti and Juan A.
Garay, editors, Advances in Cryptology – CRYPTO 2013, Part II, volume 8043 of Lecture
Notes in Computer Science, pages 500–518. Springer, Heidelberg, August 2013. 7

[AL18] Prabhanjan Ananth and Alex Lombardi. Succinct garbling schemes from functional
encryption through a local simulation paradigm. In Amos Beimel and Stefan Dziem-
bowski, editors, TCC 2018: 16th Theory of Cryptography Conference, Part II, volume
11240 of Lecture Notes in Computer Science, pages 455–472. Springer, Heidelberg,
November 2018. 18

[BCG+18] Nir Bitansky, Ran Canetti, Sanjam Garg, Justin Holmgren, Abhishek Jain, Huijia Lin,
Rafael Pass, Sidharth Telang, and Vinod Vaikuntanathan. Indistinguishability ob-
fuscation for ram programs and succinct randomized encodings. SIAM Journal on
Computing, 47(3):1123–1210, 2018. 3, 5, 6

[CDG+17] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and
Antigoni Polychroniadou. Laconic oblivious transfer and its applications. In
Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017,
Part II, volume 10402 of Lecture Notes in Computer Science, pages 33–65. Springer, Hei-
delberg, August 2017. 2, 5, 6, 12, 13, 19, 20, 21, 22

[CH16] Ran Canetti and Justin Holmgren. Fully succinct garbled RAM. In Madhu Sudan,
editor, ITCS 2016: 7th Conference on Innovations in Theoretical Computer Science, pages
169–178. Association for Computing Machinery, January 2016. 3, 5, 7, 10, 11, 27

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Succinct
garbling and indistinguishability obfuscation for RAM programs. In Rocco A. Serve-
dio and Ronitt Rubinfeld, editors, 47th Annual ACM Symposium on Theory of Comput-
ing, pages 429–437. ACM Press, June 2015. 3

[CP13] Kai-Min Chung and Rafael Pass. A simple oram. Cryptology ePrint Archive, Paper
2013/243, 2013. https://eprint.iacr.org/2013/243. 10

[DGM23] Nico Döttling, Phillip Gajland, and Giulio Malavolta. Laconic function evaluation
for turing machines. In Alexandra Boldyreva and Vladimir Kolesnikov, editors,
PKC 2023: 26th International Conference on Theory and Practice of Public Key Cryp-
tography, Part II, volume 13941 of Lecture Notes in Computer Science, pages 606–634.
Springer, Heidelberg, May 2023. 1, 5

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th Annual Symposium on Foundations of Computer Science, pages 40–49.
IEEE Computer Society Press, October 2013. 15

38

https://eprint.iacr.org/2013/243

[GHL+14] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel
Wichs. Garbled RAM revisited. In Phong Q. Nguyen and Elisabeth Oswald, editors,
Advances in Cryptology – EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer
Science, pages 405–422. Springer, Heidelberg, May 2014. 3

[GHRW14] Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Outsourcing private
RAM computation. In 55th Annual Symposium on Foundations of Computer Science,
pages 404–413. IEEE Computer Society Press, October 2014. 3

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption.
In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th Annual ACM
Symposium on Theory of Computing, pages 555–564. ACM Press, June 2013. 1

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on obliv-
ious rams. Journal of the ACM, 43(3):431–473, May 1996. 5, 8, 10

[GOS18] Sanjam Garg, Rafail Ostrovsky, and Akshayaram Srinivasan. Adaptive garbled RAM
from laconic oblivious transfer. In Hovav Shacham and Alexandra Boldyreva, edi-
tors, Advances in Cryptology – CRYPTO 2018, Part III, volume 10993 of Lecture Notes in
Computer Science, pages 515–544. Springer, Heidelberg, August 2018. 5, 6

[Gra10] Kristen Grauman. Efficiently searching for similar images. Commun. ACM,
53(6):84–94, jun 2010. 2

[GS18a] Sanjam Garg and Akshayaram Srinivasan. Adaptively secure garbling with near
optimal online complexity. In Jesper Buus Nielsen and Vincent Rijmen, editors, Ad-
vances in Cryptology – EUROCRYPT 2018, Part II, volume 10821 of Lecture Notes in
Computer Science, pages 535–565. Springer, Heidelberg, April / May 2018. 5, 6

[GS18b] Sanjam Garg and Akshayaram Srinivasan. A simple construction of iO for turing
machines. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018: 16th Theory
of Cryptography Conference, Part II, volume 11240 of Lecture Notes in Computer Science,
pages 425–454. Springer, Heidelberg, November 2018. 5, 6

[HHWW19] Ariel Hamlin, Justin Holmgren, Mor Weiss, and Daniel Wichs. On the plausibility
of fully homomorphic encryption for RAMs. In Alexandra Boldyreva and Daniele
Micciancio, editors, Advances in Cryptology – CRYPTO 2019, Part I, volume 11692 of
Lecture Notes in Computer Science, pages 589–619. Springer, Heidelberg, August 2019.
2

[JLL23] Aayush Jain, Huijia Lin, and Ji Luo. On the optimal succinctness and efficiency of
functional encryption and attribute-based encryption. In Carmit Hazay and Martijn
Stam, editors, Advances in Cryptology – EUROCRYPT 2023, Part III, volume 14006 of
Lecture Notes in Computer Science, pages 479–510. Springer, Heidelberg, April 2023. 3,
4

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. In Samir Khuller and Virginia Vassilevska Williams, editors,

39

53rd Annual ACM Symposium on Theory of Computing, pages 60–73. ACM Press, June
2021. 8

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN
over Fp, DLIN, and PRGs in NC0. In Orr Dunkelman and Stefan Dziembowski,
editors, Advances in Cryptology – EUROCRYPT 2022, Part I, volume 13275 of Lecture
Notes in Computer Science, pages 670–699. Springer, Heidelberg, May / June 2022. 8

[LMW22] Wei-Kai Lin, Ethan Mook, and Daniel Wichs. Doubly efficient private information
retrieval and fully homomorphic ram computation from ring lwe. Cryptology ePrint
Archive, Paper 2022/1703, 2022. https://eprint.iacr.org/2022/1703. 2, 12

[LO13] Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In Thomas Johansson
and Phong Q. Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, volume
7881 of Lecture Notes in Computer Science, pages 719–734. Springer, Heidelberg, May
2013. 3

[QWW18] Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation and ap-
plications. In Mikkel Thorup, editor, 59th Annual Symposium on Foundations of Com-
puter Science, pages 859–870. IEEE Computer Society Press, October 2018. 1, 2, 4

40

https://eprint.iacr.org/2022/1703

	Introduction
	Our Techniques

	Preliminaries
	Oblivious RAM
	DEPIR
	Puncturable PRFs
	Laconic OT
	Functional Encryption

	Laconic Function Evaluation for RAM Programs
	RAM Model
	Definition

	RAM-LFE with Unprotected Memory and Access
	UMA RAM-LFE with Weak Efficiency
	UMA RAM-LFE with Full Efficiency

	Upgrading to Full Security
	The Weak Efficiency Case
	The Full Efficiency Case

