Exploiting the Central Reduction
in Lattice-Based Cryptography

Tolun Tosun!, Amir Moradi? and Erkay Savas'

! Sabanci University, Istanbul, Tiirkiye
{toluntosun, erkays}@sabanciuniv.edu
2 Technische Universitdt Darsmtadt, Darmstadt, Germany
amir.moradi@tu-darmstadt.de

Abstract. This paper questions the side-channel security of central reduction
technique, which is widely adapted in efficient implementations of Lattice-Based
Cryptography (LBC). We show that the central reduction leads to a vulnerability
by creating a strong dependency between the power consumption and the sign
of sensitive intermediate values. We exploit this dependency by introducing the
novel absolute value prediction function, which can be employed in higher-order
non-profiled multi-query Side-Channel Analysis (SCA) attacks. Our results reveal
that — compared to classical reduction algorithms — employing the central reduction
scheme leads to a two-orders-of-magnitude decrease in the number of required SCA
measurements to exploit secrets of masked implementations. We particularly show
that our approach is valid for the prime moduli employed by Kyber and Dilithium,
the lattice-based post-quantum algorithms selected by NIST. We practically evaluate
our introduced approach by performing second-order non-profiled attacks against an
open-source masked implementation of Kyber on an ARM Cortex-M4 micro-processor.
In our experiments, we revealed the full secret key of the aforementioned masked
implementation with only 250 power traces without any forms of profiling or choosing
the ciphertexts.

Keywords: Side-Channel Analysis - Correlation Power Analysis - Post-Quantum
Cryptography - Kyber - Dilithium - Plantard - Montgomery - Arithmetic Masking
- Centered Reduction

1 Introduction

Shor’s algorithm [Sho94] violates the security of traditional public-key cryptography
including RSA and ECC through quantum computing. As the development of a larger
quantum computer in the number of qubits is being reported each year, the quantum
threat gradually becomes a reality. On the other hand, NIST’s post-quantum cryptography
contest is in the fourth round, with already selected algorithms. Among the winners, the
lattice-based algorithms form the majority: Kyber [SAB*22], Dilithium [LDK'22] and
Falcon [PFHT22]. Although the post-quantum algorithms can resist quantum computing
attacks, special attention should be paid to Side-Channel Analysis (SCA) attacks [KJJ99,
BCOO04] when these algorithms are implemented in both hardware and software.

The core operation in Lattice-Based Cryptography (LBC) is the polynomial mul-
tiplication. For an efficient implementation, the Number Theoretic Transform (NTT)
stands out as an excellent approach. NTT is indeed a special form of the Fast Fourier
Transform (FFT) that operates on a discrete space. An important building block that
significantly impacts the efficiency of the NTT algorithm is the modular reduction of
integers, concerning the arithmetic for coefficients of polynomials. Classical techniques such

mailto:toluntosun@sabanciuniv.edu,erkays@sabanciuniv.edu
mailto:amir.moradi@tu-darmstadt.de

2 Exploiting the Central Reduction in Lattice-Based Cryptography

as the Montgomery reduction [Mon85] and Barrett reduction [Bar87] are already applied
to LBC by the existing literature [AHKS22, GKS21, ABCG20, BKS19, Seil8]. The same
holds for the relatively new Plantard reduction scheme [Pla21, HZZ"22]. One important
distinction regarding the integer reduction in LBC compared to the RSA and ECC is the
bit-length of the number to be reduced. LBC requires a reduction of relatively smaller
numbers, that usually fit into a single computer word. For instance, Kyber employs a 12-bit
coefficient modulus and Dilithium a 23-bit one. Moreover, the signed representation of
integers over a modulus instead of the classical unsigned representation is more desired in
LBC [HZZ*t22, AHKS22, GKS21, ABCG20, BKS19]. That is to make a central reduction
(a.k.a centered reduction) to the range [—q/2,q/2] instead of [0,¢) for an odd modulus
q. The Plantard and Montomgery algorithms enable 2-cycle implementation of central
reduction on the ARM Cortex-M4 [HZZ 22, GKS21, ABCG20] while Plantard is superior
since the output of Montgomery reduction requires an additional subtraction or addition
to be correct.

Main Motivation. Overall, the central reduction improves the efficiency of LBC imple-
mentations; however, it also creates new possibilities for SCA attacks. A well-known fact
regarding the processors realized by CMOS technology is that the power consumption has
a relatively strong dependency on the Hamming weight (HW) of the processed data. Re-
spectively, the sign of a number in [—q/2, ¢/2] becomes the dominant factor influencing its
power consumption considering 2’s complement to represent negative numbers. Motivated
by this, we explore the characteristics of the central reduction in terms of SCA leakage
and exploit them, particularly in the presence of a masking countermeasure.

Related Work on Masking LBC. It is well known that masking countermeasures provide
a promising way of mitigating EM-/power-based SCA attacks. Accordingly, the existing
literature on masking LBC is already quite rich. Some examples applied on Kyber [HKL 22,
BGR*21, FBR*22, OY23], Dilithium [MGTF19, ABC*23b, CGTZ23], Saber (another
promising post-quantum lattice-based Key Encapsulation Mechanism (KEM)) [BDK 21,
KDVB*22] and generic lattice-based encryption [RRA*16, BC22, CGMZ23]. Indeed,
masking the polynomial arithmetic is considered trivial and is achieved by simply repeating
the operations. For instance, a polynomial multiplication a - b can be performed through
the random shares a® and o' individually while satisfy a = a® + a!, instead of accessing a
in plain. On the other hand, masking the non-linear components of algorithms involves
specialized techniques. One simple example is the compression operation in Kyber, which
aims to identify the interval each coefficient of a given polynomial a resides. It is easy to
see that such an operation cannot be performed independently on the arithmetic shares, as
it is the case with polynomial multiplication. A masked implementation of such non-linear
operations typically utilizes arithmetic-to-Boolean mask conversion [RRA"T16, BGR™21,
FBRT22, BC22, KDVBT22, BDK 21, HKL"22] while a Boolean masking scheme ensures
a = a’ ® a'. Overall, the existing work regarding masking LBC aims to achieve provable
first- or higher-order security by introducing more efficient solutions for masking the
non-trivial parts of the algorithms. Particularly, current masked implementations on the
ARM Cortex-M4 [HKL 122, BGR™21, ABC*23b, BDK 21, HDR23] inherit the polynomial
arithmetic from the well-known pqm4 library [KRSS19a], known for providing state-of-
the-art yet unprotected implementations of post-quantum algorithms. To the best of our
knowledge, there has been no work questioning the difficulty of possible SCA attacks on
the linear parts as long as the implementations are proven to be secure in the desired
security order.

Related Work on SCA Attacks against LBC. On the other hand, there exist many
SCA attacks in the literature that target implementations of LBC. They can be seen in

Tolun Tosun, Amir Moradi and Erkay Savas 3

two distinct classes: profiled SCA attacks such as [PPM17, KLH*20, XPRT21, BAET24,
BNGD23, DNGW23, MUTS22, KAA22, AAT*21] and non-profiled SCA attacks such
as [MWKT24, CKAT21, TS24, SLKG22]. The non-profiled attacks commonly target
polynomial multiplication for which a secret polynomial is multiplied with a publicly
known polynomial that changes based on the input given to the victim implementation.
In [MWK*24], the authors show that the performance of non-profiled attacks against the
polynomial multiplication directly depends on the employed multiplication algorithm as
well as on the parameters such as the coefficient modulus. While for some instances of
LBC, the non-profiled attacks can take a relatively long time to retrieve secret polynomials,
acceleration is possible in certain scenarios by collecting more measurements, e.g. as shown
in [CKAT21, TS24] for distinct implementations. The authors of [T'S24] particularly
focused on so-called incomplete NTT, a special case of NTT that is employed in efficient
implementations of both Kyber and Dilithium on the ARM Cortex-M4 [KRSS19a]. Besides,
it is shown in [SLKG22] that the polynomial multiplication can be also effectively targeted
in the case of hardware implementations. Except [TS24], the aforementioned non-profiled
attacks target unprotected implementations, i.e. not masked. On the other hand, profiled
attacks demand for a stronger adversary model. Particularly, a freely accessible device
for profiling that is identical to the victim must be available. Nevertheless, the majority
of published SCA attacks on LBC benefit from a profiling phase. To this end, several
operations of LBC have been selected as the target of these attacks. Among them, [PPM17,
XPR'21, KLH"20] focus on the NTT transformation. The attack presented in [PPM17]
is distinctive by revealing single-trace vulnerabilities of LBC. It should be emphasized
that if the masks during the profiling phase are known (i.e. they are also considered
in the profiles), single-trace profiling attacks cannot be avoided by masking, since SCA
leakage of a single execution is measured, whehre the masks can also be revealed via the
profiles. The authors of [BAET24] specifically focus on the multiplication of polynomials
with small coefficients. The works [BNGD23, DNGW23, MUTS22] present attacks on
encoding/decoding functions that transform binary input into a polynomial or vice versa.
We should highlight that [DNGW23] presents only a message recovery attack that aims to
retrieve the decapsulated message rather than the secret key. The target of [KAA22] is the
sampling of challenge polynomials, which have a limited number of non-zero coefficients
that are also small in magnitude. Table 1 formalizes the above discussion and positions
our study among the attacks existing in the literature.

Our Contributions. Below is a list of the contributions we have made in this work.

e To the best of our knowledge, we present the first study in the literature that is partic-
ularly developed to effectively exploit the leakage of SCA-protected implementations of
LBC without the need for profiling.

o We show that the central reduction techniques that are widely adapted in LBC lead
to a source of effectively exploitable SCA leakage. Particularly, information about the
sign of arithmetic shares would ease exploiting the leakage and conducting successful
key-recovery attacks.

e We show that the employed coefficient modulus as well as the reduction algorithm
and the machine word size affect the SCA leakage of masked implementations of LBC,
particularly making non-profiled attacks easier to be conducted. For the aforementioned
scenarios, we particularly present the so-called optimal correlation and the number of
traces required for different noise levels. Our study reveals that SCA attacks on masked
implementations with central reduction are significantly more noise-tolerant.

¢ We introduce a novel prediction function for non-profiled SCA attacks, namely the
absolute value prediction function that well predicts the leakage caused by the adaption

Exploiting the Central Reduction in Lattice-Based Cryptography

Table 1: Qualitative summary of state-of-the-art SCA attacks on implementations of LBC.

‘Work Class Algorithm Implementation Masked Target
Function
this work Non-Profiled Dilithium®, Cortex-M4* vV poly. mult.
Kyber
[MWK"24] | Non-Profiled Kbee;kS[?P T Cortex-M4* X poly. mult.
[CKA*21] | Non-Profiled Dilithium Ref. C X poly. mult.
[TS24] Non-Profiled Dilithium, Cortex-M4* 4 poly. mult.
Kyber
SLKG22 Non-Profiled Dilithium Hardware X oly. mult.
[poly
[PPM17] Profiled ¥ Cortex-M4* 4 NTT
[KLHT20] Profiled Dilithium Ref. C X NTT
[KLH+20] Profiled Dilithium Ref. C* v SPAISe
poly. mult.
[XPR*21] Profiled Kyber Ref. C X NTT
[XPR*T21]% Profiled Kyber Cortex-M4* X bin. to poly.
[BAE*24] Profiled Dilithium '3 X small
poly.mult
rofile er, daber ortex- oly. to bin.
[BNGD23] Profiled Kyber, Sab C M4* v poly. bi
rofile yber ortex- in. to poly.
DNGW23]” Profiled Kyb C M4* v bi |
/ rofile ilithium ef. X in. to poly.
MUTS22 Profiled Dilith Ref. C b 1
= Dilithium, NTRU! Ref. C small poly.
[KAA22] Profiled NTRU Prime? Cortex-M4* sampling

¢ attacks in the simulation

* from [KRSS19b]
< from [RRA™16]
@ from [HKLT22]

& from [BC22]

¥ generic to NTT applications in LBC
v/ presents a novel technique to tackle masking

* attacks through an implementation submitted for another project [BAAT19]
% not reported

= challenge polynomial/message-recovery attack

1 a post-quantum lattice-based KEM [CDH™20]

2 a post-quantum lattice-based KEM [BBC*20)

of central reduction in masked implementations of LBC. We show that our introduced
prediction function is optimal.

¢ We practice our approach against a first-order masked implementation of the lattice-
based post-quantum KEM Kyber. We experimentally show that only a few hundred
traces are required to successfully mount a key-recovery attack.

Tolun Tosun, Amir Moradi and Erkay Savas 5

2 Background

2.1 Notations

The notations we followed in the paper are as follows.

e Vectors are represented by bold lowercase letters such as x, while matrices are
represented by bold uppercase letters such as X. Polynomials are represented by
lowercase regular letters such as x. Vector-to-vector, matrix-to-vector, and scalar-
vector multiplications are denoted by - while element-wise multiplication of vectors
or matrices is denoted by x. The i-th element (coefficient) of a vector (polynomial)
is denoted by the subscripts, such as x; (x;).

o The central reduction to the range [—¢q/2, ¢/2] is explicitly denoted by mod¥¢, while
mod ¢ denotes the regular modular reduction to the range [0, q). We also use mod ¢
when the output range is not important such as in high-level representation of
algorithms, i.e. pseudocodes. The set of unsigned integers in [0, ¢) is denoted by Z,.
Accordingly, iZq represents the signed representation of integers modulo ¢, namely
the integers in the range [—q/2,¢/2]. We assume an odd ¢ unless the opposite is
explicitly stated.

o Random variables are denoted by uppercase letters such as X. P(-) denotes the
probability function, E[-] the expected value function, and A (u, o) the noise following
a Gaussian distribution with mean p and standard deviation o.

e Unless otherwise stated, the logarithm is base 2, and @ denotes the exclusive OR.
« Shares of variables are represented by superscripts, such as X = X% + X1,

o B(X) denotes the number of bits needed to represent the unsigned integer X. S
denotes the machine word size. In this paper, either § = 16 or 8 = 32.

o Wg(X) represents the Hamming weight (HW) of a signed integer X in 8-bit 2’s
complement representation.

e S(X):Z — {0,1} returns the non-negativeness (sign) of the integer X:

ifX>0

0, otherwise

2.2 Lattice-Based Cryptography (LBC)

Here, we briefly review lattice-based post-quantum algorithms from an SCA attack per-
spective. We focus on Kyber [SAB*22] and Dilithum [LDK"22], which are among the
algorithms selected by NIST at the end of the third round of the post-quantum cryptogra-
phy standardization process. Afterwards, we discuss the details of the NTT, which is a
crucial primitive for efficiently implementing polynomial arithmetic in LBC.

Ring of Polynomials. Most of the lattice-based cryptosystems, including Kyber and
Dilithium, operate over the ring of polynomials R, = Z4[z]/(X™ + 1) that contains
polynomials up to degree n — 1 while the coeflicients are in Z,. Arithmetic operations in
R, are the main building block for implementing LBC, and it is the main target of SCA
attacks as well.

6 Exploiting the Central Reduction in Lattice-Based Cryptography

Kyber. Kyber [SABT22] is a lattice-based post-quantum KEM, a variant of the LPR
encryption scheme [LPR10]. For all security levels, Kyber employs ¢ = 3329 and n = 256
to instantiate Rq. The key pair is generated by the MLWE [Reg05] equation t = A -s +e.
The vector of polynomials e € quf is considered as noise and thrown away after the key
generation while s € R’q“ forms the secret key. On the other hand, A € R’q“ *kand t € R’;
are public. The polynomials in both s and e are short, whose coefficients are sampled from
the central binomial distribution B,, with error distribution . The sensitive operation
in a KEM in terms of non-profiled SCA attacks is the decapsulation function where the
secret key is involved [MWK 24, TS24]. The decapsulation in an LPR scheme such as
Kyber is quite simple: v —s” - u, where u € RZ and v € R together form the ciphertext.
Related parameters k and 7 are chosen depending on the NIST security level as {2, 3,4}
and {2,4, 2}, respectively.

Dilithium. Dilithium is a lattice-based post-quantum signature following the Fiat-Shamir
scheme with aborts approach [Lyu09]. It employs ¢ = 223 — 213 41 = 8380417 and n = 256.
The secret-public key pair for Dilithium is generated through the MLWE equation similar
to Kyber, i.e. t = A - s + s5. Distinctively, both s; and s, are saved as the secret key
while the pseudo-randomly generated matrix A € R’;Xl and vector t € Rfl are public
as in Kyber. The coefficients of the secret polynomials in s; and sy are short as well.
Specifically, the secret coefficients are sampled uniformly at random in [—n,n]. A natural
target for a non-profiled SCA attack on Dilithium is the signature function as it involves
the secret key [CKAT21, SLKG23, TS24]. More precisely, the multiplications ¢ - s; and
c - s are targeted, where — among the outputs of the signature — the challenge polynomial
¢ € Ry is public and depends on the input message. The parameters (k,[) are chosen as
{(4,4),(6,5), (8,7)} with respect to the security level. 1 is chosen the same as in Kyber.

2.3 Number Theoretic Transform (NTT)

NTT allows efficient multiplication of polynomials in R,. Given two polynomials a € R,
and b € Ry, the NTT multiplication is performed as follows.

NTT! (NTT(a) X NTT(b)) (2)

To simplify the notation, we denote the NTT transformation for polynomials using ‘hat’
for the rest of the paper, i.e. @ = NTT(a). The element-wise multiplication in the NTT
domain, @ b, is known as the base multiplication.

Complete NTT. NTT is considered as an application of the Chinese Remainder Theorem
(CRT) to Ry. In case ¢ =1 mod 2n, a primitive 2n-th root of unity (2, € Z, exists for
which (3}, = —1 mod ¢. This setting allows a complete NTT over R4, where ™ +1 can be
factored down to the linear factors as HZ:Ol (z — ¢35, The NTT transformation indeed
computes the remainder from the division of its input polynomial by (z — 22;“) for each
i, resulting in a vector of n elements, i.e. in Zy. Consequently, the base multiplication is

performed coefficient wise, i.e. a modular multiplication for each i.

Implementing NTT Transformation. The forward and backward NTT transformations
can be efficiently implemented in log(n) steps. Each step is called an NTT layer. In-
deed, the polynomial is recursively split using so-called butterfly units until a linear
degree is reached. The forward transformation is usually implemented with Cooley-
Tuckey (CT) butterflies [CT65] while the backward transformation is commonly realized
using Gentleman-Sande (GS) butterflies [GS66] although it is not a must. For an input

Tolun Tosun, Amir Moradi and Erkay Savas 7

pair of coefficients ap and a;, the CT butterfly computes the output pair by
&ozao—al-é, @1:(104—@1'57 (3)

where § is called the twiddle factor, a power of (ay,.

Incomplete NTT. Sometimes, due to performance optimizations or restrictions of the
operated ring of polynomials, NTT is not computed for all log(n) layers [LS19, AHKS22,
ABCG20, CHK"21, ACCT22]. This is referred to as incomplete NTT. In case the NTT
is computed for m < log(n) layers, & for a € R, is a vector with 2™ elements and each
element is a polynomial with a degree of log(n) — m. Then, the base multiplication refers
to the multiplication of degree-(log(n) —m) polynomials. For instance, Kyber employs
g = 3329 and n = 256 allowing a 7-layer NTT while log(n) = 8. Therefore, the base
multiplication in this setting is achieved by performing 128 individual multiplications of
degree-1 polynomials, as demonstrated in Algorithm 1.

Algorithm 1 Base Multiplication for (log(n) — 1)-layer incomplete NTT

Input: §,¢; the resulting vectors from (log(n) — 1)-layer forward NTT transformation
on s,c € Ry
Output: 2=5%¢

1: for Vi € {0,...,n/2} do > Compute 2; = §; - ¢
2: 2,‘70 — §i,0 . éi)o + §i71 . 6,‘71 . (51' mod q > 51 is a power of an
3: Zi1 ¢ 531 Cio+8i0-C,1 modg

4: end for

2.4 Modular Arithmetic

As follows, we briefly review the modular reduction techniques that are adapted in LBC.
Compared to ECC or RSA, the modular arithmetic in LBC deals with relatively shorter
integers. Additionally, operating with signed integers in modular arithmetic proves to be
more efficient in LBC [HZZ 22, AHKS22, GKS21, ABCG20, BKS19]. The main reason
for this is due to the fact that it simply eliminates the need for an extra addition for
preventing negativeness in the butterfly units (see Equation (3)). Table 2 summarizes
state-of-the-art reduction schemes implemented on the ARM Cortex-M4. It can be seen
that the smallest latency in terms of the number of clock cycles is achieved by central
reduction techniques [ABCG20, AHKS22, HZZ"22], whose output range is centered around
0. As a result, in addition to the NTT transformation, central reduction is also preferred
to speed up the base multiplication.

Barrett Reduction. The Barrett reduction was originally proposed in [Bar87]. Its main
idea is to subtract a factor of the modulus g from the number to reduce by approximating the
division of the number by ¢ through a pre-computed factor and shifting. A signed version
of Barrett reduction adapted for LBC is proposed in [Seil8]. The input range of the signed
Barrett reduction is [—3/2, 3/2), and the output range is [0, ¢]. A 9-cycle implementation
of the signed Barrett reduction for packed integers dedicated to ARM Cortex-M4 is
presented in [ABCG20]. Packing of integers refers to storing two 8 = 16-bit integers in
a 2 8 = 32-bit register, which is then passed to the packed reduction function. Later, a
6-cycle implementation of Barrett reduction for packed integers was reported in [AHKS22],
which performs a central reduction with an output range [—q/2, ¢/2].

8 Exploiting the Central Reduction in Lattice-Based Cryptography

Table 2: Summary of state-of-the-art reduction implementations on ARM Cortex-M4.

Scheme 15} Input Output Packed Cycles
Range Range
Montgomery [ABCG20] 16 [—q-8/2,q9-6/2) (—q,9) X 2
Montgomery [GKS21] 32 [—q:8/2,q-6/2) (—q,9) X 2
Montgomery [ABCG20] 16 [—q-8/2,q-6/2) (—q,q) v 8
Barrett [Seil8]* 16 [—8/2,5/2) [0,4] X 3
Barrett [AHKS22] 16 [—5/2,5/2) [—q/2,q/2] v 6
Plantard [HZZ122] 16 [—q222¢ q2220"1% [—q/2,q/2] X 2
Plantard [HZZ*22] 16 [—q222,¢2229)% [—q/2,q/2] v 5

* gives the definition of the algorithm but does not present an implementation on
ARM Cortex-M4.
% o is a parameter of Plantard reduction that satisfies ¢ < 27~ 1.

Montgomery Reduction. The Montgomery reduction is first proposed in [Mon85].
Similar to the Barrett reduction, it enables a constant time reduction by eliminating the
need for division. A signed version of Montgomery reduction is presented by [Seil8], with
an input range [—q-3/2,q-3/2) and output range (—gq,q). While a 3-cycle implementation
on ARM Cortex-M4 was initially given by [BKS19] for 8 = 16, the state-of-the-art
implementation of Montgomery reduction [ABCG20, GKS21] takes 2 cycles for both
£ =16 and 8 = 32. Also, an 8-cycle implementation of Montgomery reduction for packed
integers was presented in [ABCG20]. We would like to note that a final correction may be
required after the signed Montgomery reduction to find the residue in the signed range
[—q/2,q/2] which is the ultimate goal. However, we computationally found out that the
correction step is not needed most of the time. In particular for ¢ = 3329 and 8 = 16, only
%0.01 of the corresponding input range requires a correction while the output is already
in [—q/2, q/2] for the rest. Therefore, we study the output range [—q/2, q/2] for the sake
of simplicity for the rest of this paper.

Plantard Reduction. The Plantard reduction [Pla21] is a more recent algorithm compared
to its counterparts, Montgomery and Barrett. While the original Plantard reduction
operates on unsigned integers, the authors of [HZZ"22] proposed an improved version,
which operates on signed integers to be employed in LBC. The output range of the signed
version is [—¢q/2, ¢/2], the same as the state-of-art Barrett reduction. One advantage of
the Plantard reduction is that it enables 2-cycle modular multiplication by a constant,
outperforming the 3-cycle Montgomery multiplication. The multiplication by a constant
is beneficial for implementing the butterfly units during the NTT transformations (see
Equation (3)). On the other hand, the improved Plantard reduction also takes 2 cycles on
ARM Cortex-M4, the same as Montgomery. However, Plantard’s 2-cycle implementation
enables a larger input range and a smaller output range that is desirable. Specifically, the
Plantard reduction generates the output in the exact range [—q/2, ¢/2]. In other words, it
does not require any final correction. This is a significant improvement over the 2-cycle
Montgomery reduction whose output range is (—¢,q). As a side note, packed reduction
takes 5 cycles.

Tolun Tosun, Amir Moradi and Erkay Savas 9

3 Non-Profiled SCA Attack on NTT Multiplication

In this section, we present the general outline of a non-profiled power SCA attack on an
implementation of a polynomial multiplication in the NTT domain.

3.1 Attack Outline

Leakage Model. Let us first define the assumed leakage function of the target device
based on the random variable X defined in the space X', constant scaling factor «, and
noise sampled from a Gaussian distribution with mean p and standard deviation o, which
is independent of X as

L(X)=a -Wz(X)+N(u,o). (4)

L(X) is commonly used to simulate SCA leakage of micro-processors in the presence of
noise when X is processed.

Adversary Model. Consider the base multiplication § % ¢ where s € R, is a secret
polynomial, and ¢ € R, is a public polynomial. The goal of an adversary is to reveal §
through a non-profiled SCA attack where the attacker has access to the power consumption
pattern of the underlying device during the computation of § x é. In a non-profiled attack,
the attacker samples the leakage of § x ¢ for v distinct computations where ¢ changes for
each measurement. The set of samples recorded for each measurement is referred to as a
trace.

Attack on Complete NTT. As previously mentioned, the base multiplication in the NTT
domain is performed element wise. Therefore, each §; can be attacked independently using
the knowledge of ¢;. To retrieve §;, a set of hypotheses is made. Each hypothesis is tested
by evaluating the target function, g(8;,¢;), thereby statistically comparing the observed
leakages (traces). We use the above-defined random variable X as the sensitive output
of the target function, X = ¢(§;,¢;), as we consider ¢; as a random variable changing
over measurements. In this study, the target function to reveal §;, is the multiplication
9(8i,¢;) = ;- & mod ¢ (or mod¥q if the reduction is central). Therefore, X = Z, (or
X = *7Z,), and there are ¢ hypotheses to test. Accordingly, we use X’ = g(&},¢;) to denote
the evaluation of the chosen target function for the hypothesis 8,. In a Correlation Power
Analysis (CPA) attack [BCOO04], the output of the target function is transformed into
hypothetical leakages using a prediction function with HW function, Wgz(X’), being the
most frequently used prediction function. CPA is based on estimating the correlation,
e.g. by Pearson correlation coefficient, between measured and hypothetical leakages,
pPWs(X'"), L(X)). With a sufficient number of traces, the attacker expects to obtain
$; = argmaxg (p (Wg (X)), L(X))). Since the attacker may not know which point in time
corresponds to £(X) in the traces, the procedure is usually repeated for a subset of all
samples points.

Attack on Incomplete NTT. For (log(n) — 1)-level incomplete NTT such as in Kyber, ¢
hypotheses should be examined since §; - ¢; is a multiplication between degree-1 polynomials
(see Algorithm 1) [MWK™24, TS24]. In this case, the attacker can use the lower-degree
coefficient g(8;,¢é;) = 2, for 2, = §,; - ¢;, the higher-degree coefficient g(8;,¢é;) = 2,1, or
both coefficients g(8;,¢;) = {Zi.0,2:1} as the target. If lower- or higher-degree coefficients
are used alone, X' = Z,, similar to when NTT is complete. On the other hand, X = Zg
if both coefficients are involved in the target function. Since a number and its additive
inverse in 2’s complement form' are correlated, the number of hypotheses can be reduced

I Negative integers in 2’s complement form are represented by inverting all bits of the corresponding
positive integer and adding 1 to the result.

10 Exploiting the Central Reduction in Lattice-Based Cryptography

to q/2 and ¢?/2 for complete and incomplete NTT, respectively. In this manner, the
attacker learns either the actual secret or its additive inverse.

Application to Kyber and Dilithium. It is important to emphasize that the adversary
model as well as the target function explained above can directly be applied to both Kyber
and Dilithium. More precisely, performing an attack on the leakage of § x ¢ to reveal §
corresponds to targeting s” - u in the case of Kyber and targeting c-s; or ¢-ss for Dilithium
(see Section 2.2).

3.2 Second-Order Attack

Masking. The most promising way to defeat the above-explained SCA attack is mask-
ing [HKL 122, BGR*21, FBR™22, 0Y23, MGTF19, ABC*23b, CGTZ23, RRd" 16, BC22,
CGMZ23, BDKT21, KDVB*22]. Indeed, masking of the polynomial multiplication is
straightforward from an algorithmic perspective, as it can be seen as a linear operation.
For a uniformly and randomly generated share s°, one computes the other share as
s' = s — 5% Then, the computation 5 * ¢ is performed on the shares as 5% x ¢ and §' % é.
Notice that, § x ¢ = 8% x ¢ + 8! x &. Accordingly, 8; - & = 8% - &, + &} - ¢; for all i. This is
referred to as arithmetic masking. In particular, the order of masking is defined by the
number shares representing the secrets. Here in the given example, first-order masking is
applied as two shares are used. Since §; - ¢; is not computed in plain, the leakage of every
single point in SCA traces is expected to be independent of §; and hence independent of
the estimated hypothetical leakage, e.g. Wg(X’). It is noteworthy to mention that an
assumed condition for such a claim is that each share s and s! should individually follow
a uniform distribution.

Combination Function. In order to conduct successful CPA attacks on a first-order
masked implementation, the leakage associated to two shares should be combined using a
pre-processing function. Since the shares are processed individually (not simultaneously),
their associated leakages appear in different time samples. Intuitively for the application
studied in this work, the attacker combines the observed leakages associated to X° =
g(89,¢;) and X! = g(8},¢;) while mean-free product is known as the most efficient pre-
processing (combination) function [PRB09, SVO™10]. For leakages of the random shares,
L(X?) and £(X1!), the mean-free product is defined as

CIL(X®), L(X1)) = (L(X°) = BIL(X)]) - (LX) = BIL(X)]) ()

The mean-free product is the most preferred combination function because it effectively
reduces noise by removing constant offsets, thereby enhancing the signal-to-noise ratio and
emphasizing relevant variations. Needless to say, E[£(X")] and E[£(X!)] are approximated
by the sample means over the trace set. For sake of completeness, we include the absolute
difference combination function [JPS05] in Appendix A, which is also an efficient and
frequently used combination function.

Optimal Prediction Function (OPF). [PRBO09] shows that an optimal prediction function
must be computed in order to efficiently perform a second-order CPA attack by means of
a combination function

Jopt(w) = E[C (£ (X7), £ (X)) [X =a]. (6)

Recall that X = X%+ X! mod ¢ (or mod *¢). In simple words, the expected value
of the combination function is calculated for the given unmasked value which can be
hypothetically computed. A CPA attack performed on a masked implementation by means

Tolun Tosun, Amir Moradi and Erkay Savas 11

of such a pre-processing function is referred to as Higher-Order CPA (HOCPA). Similar to
the first-order attack, the attacker estimates the correlation p(fopt(X'),C(L(X?), £(X1)))
to rank the hypotheses. The correlation achieved by f,,; and the correct hypothesis is
referred to as the optimal correlation, denoted by popt = p(fopt(X),C(L(X?), L(X1))). In
this study, we use HOCPA with the mean-free product as the distinguisher and discuss
the optimal prediction function and its efficiency for the presented adversary model in
different reduction scenarios. However, we replicate some of the experiments discussed in
the subsequent sections for the absolute difference combination function.

Conditioning on Zero-Values. As the chosen target function is a multiplication for this
study, one can fine-tune the optimal prediction function by considering zero-value public
data, i.e. ¢ = 0. Notice that for the complete NTT, X = 0 if and only if & = 0 (assuming
5; #0), because of the speciality of 0 in multiplication. Then, X9 and X! become 0 as
X0 = &0 and fou(0) = E[C(Yo, ¥1)|X0 = 0, X" = 0] = a2 - (EDWs(X) + N (1 0)])2,
see Equation (4). When the NTT is incomplete, X can be 0 even though & is non-zero,
because the target X is the addition of two multiplications which can sum up to 0. Recall
that X is a function of 2; ; in this case, which is formulated in Algorithm 1. However,
since having é&; = 0 is less likely for the incomplete NTT (1/¢? for &, 9 = &1 = 0, assuming
uniformly random ¢;) we do not concentrate on this case.

4 Distribution of HW of Signed Integers Modulo g

In this section, we study the distribution of HW of the signed representation of integers
modulo ¢, i.e. the effect of central reduction on HW. Accordingly, we compare signed and
unsigned arithmetic in terms of SCA leakage. We evaluate the primes that are employed
in Kyber and Dilithium with ¢ = 3329 and g = 8380417, respectively, and study the carrier
primes that are employed for Dilithium to perform short polynomial arithmetic [AHKS22],
namely ¢ = 257 for Dilithium2 and Dilithiumb, and ¢ = 769 for Dilithium3. We should
note that masking the short polynomials in their range is possible [ABC'23a]. One
important factor for computing the HW of negative integers is the machine word size /3
which does not have any effect on the HW of positive integers. The machine word size
is usually 8 = 16 for ¢ = 257, ¢ = 769, and ¢ = 3329 while § = 32 for ¢ = 8380417
in software implementations. Unless otherwise stated, we take these values for § in the
studied adversary model. However, we discuss the role of distinct values of 5 in the SCA
leakages.

4.1 HW as a Sign Indicator

The main observation that led to this study is the clear separation of HW of the non-
negative side of *Z,, namely [0,¢/2] and the negative side [—¢/2,0). As an intuition,
consider ¢ = 257; the positive interval of *Zys; corresponds to [0,128], for which the
maximum HW is Wg(127) = 7. In other words, the HW of integers [0, 128] lies in [0, 7].
On the other hand, the negative side of *Zgys; corresponds to [—128,0), where the HWs
are in the range of [9,16] assuming 2’s complement representation with machine word
size § = 16. Consequently, the HW of a number in *Zs57, reveals its sign immediately.
Figure 1 visualizes our observation for all the primes analyzed in this study. Note that
there is an overlap between the HW ranges [—¢/2,0) and [0, ¢/2], for ¢ = 769, ¢ = 3329,
and g = 8380417. For instance, the HW of non-negative integers in *Zssa9 are distributed
in [0, 10] while that of negative integers are in the range [6,16]. Therefore, there is an
overlap for five possible HWs in the interval [6,10] out of a total of 17 possible values
assuming the machine word size 8 = 16.

12 Exploiting the Central Reduction in Lattice-Based Cryptography

15 15
12 12
~ 10 10
> >
=° =°
2 s S
2 2
0 0
-100 -50 0 50 100 -400 —-200 0 200 400
X X
(a) ¢ =257, 3=16 (b) ¢ =769, B =16

15

12

—1000 0 1000 -4 -2 0 2 4

X X
(c) ¢ = 3329, B = 16 (d) ¢ = 8380417, 3 = 32

Figure 1: Distribution of HW of integers in [—q/2,¢/2] in 2’s complement representation.

0 50 100 150 200 250

X
Figure 2: Distribution of HW of integers in [0, ¢) for ¢ = 257.

Based on our observation in Figure 1, we write the following equality for Ws(X) where
X € *7,.

Wp(X) =8(X) -7+ (1 =8(X))-(B-7)+e, (7)

for some inner-cluster error term e € £ where Ele] = 0 and 0 < v < /2. Note that
stands for the mean of HWs given X is non-negative, i.e. v = E[Ws(X) | S(X) = 1].
Similarly, let 4~ denote the mean HW given X is negative, v~ = E[Ws(X) | S(X) =0].
Table 3 demonstrates the values of v and 7~ depending on ¢q. Note that v~ ~ 5 — v,
which allows us to simplify Equation (7). Naturally, v~ approaches v as the so-called
gap M(q,3) = 8 — log(q) decreases. On the other hand, the expected value E[le|] is not
affected by (8 while it slightly increases as g gets larger. Additionally, whether the integers
modulo ¢ are represented in signed or unsigned form has no impact on this expected value.

Tolun Tosun, Amir Moradi and Erkay Savas 13

Table 3: The mean and standard deviation of HW for positive and negative integers with
distinct g. v denotes the mean of HWs for positive integers in *Z,, namely [0,¢/2]. v~
denotes the mean of HWs for negative integers in *Z,, namely [—¢/2, —1]. 7* denotes
the mean of HWs for [¢/2 + 1, ¢ — 1], the set of integers in Z, which are considered to be
negative in LBC, and e is the error term defined in Equation (7).

| 257 | 769 | 3329 | 8380417
ol 348 | 416 | 519 | 10.99
v~ | B=35|B-417| B-52] f-11
¥ 45 | 516 | 619 | 1199
Elle]] | 133 | 14 | 155 | 234

Distribution of HW of Unsigned Integers Modulo q. We would like to note that the
argument made in this section does not apply to the unsigned representation of integers
modulo ¢, namely Z,. It can be seen in Figure 2 that no clear ranges can be identified for
unsigned integers when observing their HW. In LBC, the upper half of Z, is considered
as negative, namely [—¢q/2 + ¢,q — 1]. However, Table 3 shows that the mean of HW of
negative side, denoted by v*, is approximately v + 1, independent of 8 and q.

4.2 Impact of Signed Arithmetic on Optimal Correlation

To formally assess the impact of signed arithmetic on SCA leakages, we compare the
optimal correlation achieved by the state-of-the-art combination function, mean-free
product, between the cases when the modular reduction is central and when it is non-
central. Figure 3 presents the estimated optimal correlation g, for distinct prime ¢ and
machine word size 8 and reduction scenarios. It can be seen that j,,: estimated for central
reduction achieves more than twice of the one estimated for the non-central reduction,
particularly for 3 = 16 and 8 = 32. Indeed, p,p: is an increasing function of 3 for a given
g when the reduction is central, complying with our initial observation in Table 3. As
decreases, pop: for the central reduction reaches that of the the non-central case as the
limit. More importantly, the correlation shows a strong resistance to noise for the signed
case. For instance, when o = 5 and ¢ = 257 and 8 = 16 (such as a masked software
implementation of Dilithium), pop reaches p = 0.24 while we observe p = 0.017 for the
unsigned case. We should refer to Table 2 showing that £ increases the input range of the
reduction algorithms. However, our analysis shows that it further increases the associated
SCA leakages. It also makes sense to compare the optimal correlation achieved in case
of Boolean masking with the other results. Similar to what presented in [PRB09], the
correlation for Boolean masking reaches p = 0.35 for an 8-bit implementation in a noiseless
scenario. Similar to the non-central reduction case, this drops rapidly with the noise, e.g.
to p=0.02 for o = 5.

We replicated the same analysis for the absolute difference combination function, as
detailed in Figure 11 (in Appendix A). Although the estimated optimal correlations are
slightly lower across all values of ¢, 8, and o, the impact of 8 and o follows the same
pattern observed for the mean-free product.

For this evaluation, we computed f,,; as a look-up table for each case. This has a time
complexity of O(g?) to create f,p, which can be costly for large g, such as ¢ = 8380417.
In the next section, we deal with explicit formulas for f,,; dedicated to central reduction.

14 Exploiting the Central Reduction in Lattice-Based Cryptography

0.6

Popt
popt

Popt
popt

(c) ¢ = 3329 (d) ¢ = 8380417

Figure 3: Optimal correlation with respect to the noise standard deviation o for different

q and 8 and reduction strategies. Estimations are performed with 1 million samples
uniformly taken for X° and X!.

% Reduction to [—¢q/2, ¢q/2] for ¢ = 257, ¢ = 769 and ¢ = 3329: 8 = 16 (black), 5 =15
(blue), 8 = 14 (green), 8 = 13 (brown), 8 = 12 (red), 8 = 11 (gray), 8 = 10 (purple),
B =9 (cyan)

% Reduction to [—¢q/2,q/2] for ¢ = 8380417: 5 = 32 (black), 8 = 31 (blue), 5 = 30
(green), 8 = 29 (brown), 5 = 28 (red), 5 = 27 (gray), 8 = 26 (purple), 5 = 25 (cyan),
£ = 24 (magenta), 5 = 23 (teal)

% Reduction to [0, q) (dashed)

% Boolean masking only in (a) for § = 8 and ¢ = 256 (dotted)

5 Absolute Value Prediction Function

When the target operation is protected using Boolean masking and the underlying circuit
is a noisy Hamming weight of intermediates (as in Equation (4)), it is shown by [PRB09]
that W3 can be effectively used as the optimal prediction function for HOCPA attacks.
However, this is not necessarily the case when masking is arithmetic. To provide an intuition,
we estimated p(Wg(X), fopt(X)), as proposed in [PRB09], to measure the accuracy of
prediction functions for the studied adversary model, presented in Table 4. The results
indicate a significant correlation loss in all scenarios. Hence, in this section, we search
for an explicit formula for the optimal prediction function in case of arithmetic masking.
Precisely, we show that the absolute value function can be used as the optimal prediction
function when targeting arithmetic masking where central reduction is employed.

Tolun Tosun, Amir Moradi and Erkay Savas 15

Table 4: Estimations of p(Wg(X), fopt(X)) for different moduli ¢ and 8. The estimations
are performed with 1 million uniformly random samples for X while the reduction is
central.

p 1 957 769 3329 p 7| 8380417
16 | —0.741 -0.732 —0.661 32 | —0.706
15 | —0.723 —0.706 —0.607 31 | —0.684
14 | —0.698 —0671 —0.527 30 | —0.655
13 | —0.665 —0.621 —0.405 29 | —0.618
12 | —0.618 —0.545 —0.223 28 | —0.570
11 | —0.548 —0.427 27 | —0.507
10 | —0.442 —0.241 2% | —0.424
9 | —0.273 25 | —0.314

24 | —0.173
23 | —0.003
P(X =z | S(X°) = S(X1)) P(X =z | S(X°) # S(X1))

—q/2 q/2 * —q/2 q/2
(a) Case 1: (b) Case 2:
(X°<0and X' < 0)or (X°>0and X' >0) (X°>0and X' <0)or (X >0and X' <0)
ie. S(X%) =S(X) ie. S(XY) £ S(XY)

Figure 4: Probability distributions of X = X° + X! mod*q for X0, X! e+ Zq

Distribution of the Secret Knowing the Sign of Shares. Consider two uniformly random
variables X0, X1 e+ Z4 and their modular addition X0 4 X! modiq. Given the signs
of both variables, Figure 4 demonstrates the probability distribution of X% 4+ X! modiq.
As depicted in the figure, there are two cases for the distribution given the sign of both
random variables. If the sign of X° and X! are the same, namely S(X°) = S(X1!), then
the probability is distributed around 4¢/2. Otherwise, it is centered around 0. Indeed,
the distributions correspond to the convolution of probability distribution functions. More
precisely, one of
P(XY=2°|X°<0), PX°=2"|X">0)

is convoluted to one of
PX'=2'|X'<0), PX'=z'|X'>0).

Now suppose that X° and X' are arithmetic shares representing a secret intermediate
variable X = (X° X!). Then, the above discussion shows that information about the sign
of the individual shares leads to a strong effect on the distribution of the secret X.

A Model for Mean-Free Product. In the previous section, we showed that the HW of 2’s
complement representation of an integer in [—q/2, ¢/2] is a noisy indicator of its sign. Also,
recall the leakage in CMOS circuits which is highly relevant to the HW of processed data

16 Exploiting the Central Reduction in Lattice-Based Cryptography

(see Equation (4)). Now, let Y7 = £(X!) and Y3 = £(X!) denote the leakage associated
to the random shares X° and X'. The mean-free product can be written as follows.
C(YQ,Yl) :(ao . Wg(XO) -‘rN(Mo, 0'0) — E[Ozo . Wﬁ(XO) -‘rN(Mo, 0’0)]) .

(a1 - Wa(Xh) + N (1, 01) = Efon - Wa(X1) + N, 1)]) (8)
For the sake of simplicity, we assume o = ap = a1, it = g = 1, and 0 = 09 = 01. As

X9 and X are uniformly random signed integers in *Z, and represented by 3 bits in the
computer memory, F [X 0] =F [X 1] = /2. Then, we can write

C(Y0, Y1) = (- Wa(X°) + N(p1,0) = (- B/2+p)) -
(0 Wa(XY) + N(p1,0) = (- B/2+ 1)), (9)
and by distributing the terms and as N'(0,0) = a- N (0,0/a),
C(Yo, V1) =a? (wﬁ(xo) — B)2+ N(0, U/a)) : (wﬂ(xl) — B/2+ N(0, a/a)). (10)
By plugging Equation (7) into Equation (10) we have
C(Yo, Y1) = 0 (S(XO) - (7 = /2) + (1 - S(X9) - (/2) + e + N (0,0/a))-

(SN (r=B/2)+ (1= S(XN) - (B/2 = 7) + e1 + N(0,0/a)). (1)

Conditional Probability of Sign Equality. As explained above and shown by Figure 4,
we conclude that

P(X =z | S(X%) = S(XY)) = (2/0) - (|21/(a/2) = |2l - (4/4%). (12)
Based on the dependency of X on S(X°) and S(X!), we show that the conditional
probability P(S(X?) = S(X') | X =) is a multiple of |z|.

7D<X — ‘ S(X%) = S(Xl)) ~P(S(X0) :S(Xl))

P(sz)
2| - (4/¢°) - 1/2

= T =(2/q) - |z| (13)

P(S(X°) = S(X") ’ X =)=

Estimating the Optimal Prediction Function. We make use of the conditional probability
to formally estimate F [C (Yo, Y1) ‘X = x] as

E[C(Yo, Y1) |X =2,8(X%) =S (Xx)]-P(S(X?)

=S(XY)|X=2)+
E[C(Yo,)| X=2,S(X")#S(X")] P(S(X") #S(X")|X =2). (14)

Considering the terms including e and ey as error, we can write E [C (Yo, Y1) ’X =z as

(v=B8/2)* 2/a) |zl + (v = B/2) - (B/2 =) - (1 = 2/q - |2]) + ec =
(v=8/2)* - (4/q) - o — (v = B/2)" + ec, (15)

Tolun Tosun, Amir Moradi and Erkay Savas 17

20 15
10
10
N 5
5 0 Q 0
‘E -10 ‘E -
-10
-20 -15
-100 =50 0 50 100 —400 -200 0 200 400
X X
(a) g=257, =16 (b) ¢ =769, 8 =16
20
5
10
oo (SN
A 32 -10
< s <2
-20
_10 -30
~1000 0 1000 -4 -2 0 2 4
X X
(C) q= 33297 B =16 (d) q = 8380417, ﬁ =32

Figure 5: Visualization of optimal prediction function for the central reduction range
[—4/2,q/2]. fopt(X) (black), ec (gray), co - | X|+ c1 (pink).

where

ec=FEleg-e1 | X=a]+2E[e1-S(X°) (v—8/2)+ (1-8 (X)) (B/2—7) | X =]
:E[eo~61|X:x]+4('y—ﬂ/2)~E[eo~S(X1) | X =2]. (16)

Note that ec can be derived for any valid g when FE [eo ey | X = x] and
E [eo -S(XY) | X = x] are pre-computed. This approach is beneficial particularly if
q is large (e.g. 8380417) and the attacker does not know [in advance. Intuitively, ec is
relatively small and its impact decreases as the margin M(q, 8) increases. With sufficient
M(q, B), Equation (15) is accurately approximated by

E [C (Yo, Y1) | X = x] /e |z + e, (17)

where ¢y = (v — 3/2)? - 4/q and ¢; = —(y — 3/2)?. Figure 5 visualizes these estimations
and the corresponding error for two distinct cases of ¢ and . Since constants ¢y and c¢;
do not affect the correlation, fups(x) = |z| can be used as the optimal prediction function.

On the Accuracy of f,,s. Since Equation (16) does not allow to give an exact explicit
formula for ec, we proposed approximating fop:(X) using the absolute value function. In
order to evaluate the accuracy loss as a result of using f.ss instead of Equation (15), we
estimated p (faps (X), fopt (X)). Table 5 presents the estimations, indicating p > 0.99
for all studied ¢ and 3 couples mentioned in Section 4. Therefore, we conclude that
the absolute value prediction function is highly accurate for the attacks we consider in
this work. However, for any other settings (¢ and § couples), where the absolute value
prediction function leads to an undesired accuracy, the fo,¢(X) function can be computed
for all possible values of X as E [C (Yy, Y1) | X] (e.g. Equation (15)).

18 Exploiting the Central Reduction in Lattice-Based Cryptography

Table 5: Estimations of p(faps(X), fopt(X)) for different moduli ¢ and 3. The estimations
are performed with 1 million uniformly random samples for X while the reduction is
central.

p 91 957 769 3329 p 7| 8380417
16 | 0.999 0997 0.992 32 | 0998
15 | 0999 0.996 0.984 31 0.998
14 | 0998 0.993 0.961 30 0.997
13 | 0997 0.987 0.877 29 0.995
12 | 0994 0970 0.546 28 0.992
11 | 0985 0.908 27 0.983
10 | 0.956 0.635 2% 0.961
9 | 0.825 25 0.892

24 0.659
23 0.214

The fups can also be used with the absolute difference combination function [JPS05].
The corresponding results for this configuration are presented in Appendix A.

Alternative Prediction Function. To take the advantage of zero-value public data as
explained in Section 3.2, we define the alternative absolute value prediction function as
follows.

((8/2)* —c1)/co, fX =0

18
|X| otherwise (18)

Jfaps(X) = {

Recall that E [C (Yp, Y1) | X =0, X! =0] = (8/2)%

6 Simulation Results

In this section, we present the result of HOCPA attacks explained in Section 3 making
use of simulated traces. In our simulations, we consider different noise levels and various
reduction scenarios for each of the studied q. We particularly compare the required number
of traces with and without central reduction. Needless to say that f.ss and f,, are used as
the prediction function when the reduction is central while f,,; is computed as a look-up
table otherwise (as done in Section 4.2).

Simulated Traces. We perform the following routine to generate simulated traces for
base multiplication.

1. Generate a secret key vector s €+ Zy* uniformly at random.
2. Generate a public vector ¢ €* Z7" uniformly at random.

3. Sample s? e+ Zg' uniformly at random. Apply first-order masking to s such that
s=s"+s! modiq (or mod ¢ depending on the reduction scheme).

4. Compute s’ x ¢ and s xc. For each i € {0,...,m — 1} and j € {0,1}, perform a

modular multiplication with (or without) central reduction as z! = s/ - ¢; mod*q (or
mod ¢) with m being the number of elements in s and c¢. Particularly, the modular
reduction is performed in [—¢/2,q/2] or [0,q) to simulate the leakage for different

reduction scheme presented in Table 2.

Tolun Tosun, Amir Moradi and Erkay Savas 19

5. Compute the HW of each 2z’ as the simulated leakage (2m individual results).

6. Apply Gaussian noise to the simulated leakages as in Equation (4), with o = 1,
u =0, and the given standard deviation o.

7. Go back to Step 2 until v traces are generated.

For computing the HWs, 16-bit or 32-bit 2’s complement representations are used
depending on ¢, as explained in Section 4. m, v, o, q as well as the reduction range
(Step 4) are pre-defined parameters. We set m = 100 for all simulations. Note that
the traces generated by this routine simulate a base multiplication for a complete NTT
transformation, where the element-wise multiplication is just a modular multiplication.
While ¢ = 8380417 allows a complete NTT with the ring dimension n = 256, other moduli
q = 257, ¢ = 769, and g = 3329 do not allow complete NTT but allow incomplete NTT
of 7 layers. Recall that the element-wise multiplication is the multiplication of degree-1
polynomials in that case. However, the simulations aim to benchmark our introduced
absolute value prediction function and compare leakage of different reduction schemes.
Therefore, there is no harm in doing the simulations as if the NTT is complete, which only
affects the number of hypotheses. The comparison between the hypothetical and observed
leakages is not affected by this behavior. Note also that we use s and c here instead of the
notation § and ¢ given in Section 3.

Evaluation. Figure 6 presents the corresponding results, with respect to ¢, v, and o, while
the success rate refers to (# correctly predicted s; /m). It should be noted that the number
of traces is displayed on a logarithmic scale. As evident by the results, the implementations
with central reduction are significantly more vulnerable to these non-profiled HOCPA
attacks in terms of the number of traces. For instance, when ¢ = 3329 and o = 0, the
attack against non-central reduction needs 1500 traces to succeed, which is 6x more than
the number of traces needed when the reduction is central. Moreover, the noise o has a
greater impact on the attacks on implementations with non-central reduction compared
to the central case. When ¢ = 3329 and ¢ = 4, the attack on non-central reduction
needs 45k traces to succeed, which is 31x more than what is required in case of central
reduction. The difference with respect to the number of traces reaches 123x for ¢ = 257
and 0 = 4. We conclude that HOCPA with f,;s targeting central reduction remains a
major threat in different noise levels conforming with the observation shown in Figure 3.
Based on the aforementioned decrease in the number of traces required to attack, employing
central reduction in masked LBC might be not the best choice from the SCA perspective.
Although central reduction is sometimes preferred for efficiency purposes, non-central
reduction can harden higher-order SCA attacks in security-demanding applications.

In general, the attack on central reduction needs relatively small number of traces to
succeed. However, the number of traces for a successful attack depends on the margin
M(q, B), which is slightly worse for ¢ = 3329 compared to the other primes considered
here. For ¢ = 3329 and o = 4, HOCPA with [, requires only 1400 traces to succeed. In
a noiseless scenario, where ¢ = 257 and o = 0, the attack only needs around 110 traces. As
previously stated, we consider only two cases 5 = 16 and = 32. However, we anticipate
from Figure 3 that, as 8 decreases, the number of required traces to attack the central
reduction schemes gets closer to that when a non-central reduction scheme is employed.
As anticipated, the advantage of using fJ,. over fus highly depends on the number of
times when ¢; = 0. For instance when ¢ = 257 and o =4, f,_ leads to %13 reduction in
the number of required traces in our experiments. As the chance of observing zero-values
decreases when ¢ increases, the advantage of 7, decreases as well. For example, when
q=3329 and 0 =4, f7,, reduces v by %9 compared to fups.

20 Exploiting the Central Reduction in Lattice-Based Cryptography

E-r”|
2 3 4 5 1 2 3 4 5 1 2 3 4 5

(a) g=257,0=0 (b) g=257,0 =4 (¢) gq=1769,0=0 (d) ¢q=769,0 =4

]
E-r |
1 2 3 4 5 1 2 3 4 5
() g=3329,0 =0 (f) g=23329,0=4 (g) ¢ = 8380417, (h) ¢ = 8380417,
oc=0 oc=14

Figure 6: Success rate (in y-axis) of second-order CPA attacks on simulated traces. z-axis
denotes log,, v. For each point in the curves, 100 experiments have been performed with
random data.

% Prediction functions and reduction ranges: fqps with [—¢/2,¢/2] (solid black), f,.
with [—¢/2, ¢/2] (solid gray), fop: with [0, ¢q) (dashed).

7 Practical Results: Application to Kyber

In this section, we present the result of applying our proposed approach to perform
successful HOCPA attacks on a protected implementation of Kyber. It is important
to note that we have previously compared the SCA leakage between central and non-
central reduction. Therefore, the motivation of this section is to evaluate the difficulty of
conducting successful HOCPA attacks targeting central reduction using real data. Source
code of the implementations and the attack scripts as well as the simulations presented in
the previous section are publicly available.?

Target Implementation. We focus on the ARM Cortex-M4 specific open-source and
first-order masked implementation of Kyber from [BC22]3. The polynomial arithmetic
of the implementation is mostly in assembly, ported from the pqm4 project [KRSS19b]
and employs the Montgomery reduction that we illustrated in Section 2.4. We also
created a second version of the victim implementation by integrating the latest itera-
tion of polynomial arithmetic from pqm4 which employs the Plantard reduction based
on [HZZ*22]*. Hereafter, we denote the untouched target implementation with Mont-
gomery reduction by ¥, and the in-house version with Plantard reduction by ¥p. In
particular, we focus on the function basemul_asm which implements the base multiplica-
tion § % ¢ in the incomplete NTT domain for both Montgomery and Plantard versions.
We should note that — to the best of our knowledge — all masked implementations of
post-quantum algorithms on the ARM Cortex-M4 that have been reported in the literature
are built on top of pqm4 by directly porting the linear operations including polynomial
arithmetic [HKL 22, BGR 21, ABC"23b, BDK 21, HDR23]. Therefore, we believe that

2https://github.com/toluntosun21/ExploitingCentralReduction
Shttps://github.com/uclcrypto/pgmé_masked/ commit hash: 5fe90ba
4https://github.com/mupq/pgnéd commit hash: 3743a66

https://github.com/toluntosun21/ExploitingCentralReduction
https://github.com/uclcrypto/pqm4_masked/
https://github.com/mupq/pqm4

Tolun Tosun, Amir Moradi and Erkay Savas 21

assessing the most recent iteration of pqm4, featuring state-of-the-art polynomial arith-
metic, would be beneficial. The open-source Kyber implementation [BC22] employs the
Montgomery reduction since the more efficient Plantard reduction did not exist when
the polynomial implementation was imported from pqm4. Our experiments are centered
around the medium security level, i.e. Kyber768, though it does not affect our approach
and results.

Setup. We used NewAE ChipWhisperer CW308 UFO board to collect power traces. The
victim program was running on a STM32F303, which is equipped with an ARM Cortex-M4.
The frequency of the core is set to 7.3 MHz by an external reference clock which is also
given to the power-collecting facility (analog-to-digital converter) while 4 power samples
are recorded at each clock cycle. We provided a trigger signal for the power-collecting
module to indicate the beginning of the function basemul_asm for the first share. Hence,
only the samples related to the base multiplication were recorded. The attacks have been
performed using the scared library®, with an in-house developed Python model that mimics
the intended Kyber implementation. A laptop equipped with an AMD Ryzen™ 7 7840HS®
8-core processor and 64 GB RAM was used for running the attack.

Attack Details. A mean trace over 1000 traces is presented in Figure 7. It should be
noted that the iterations of the function basemul_asm are visible through the mean trace
for both shares. In order to reveal each §;, in the corresponding attacks we have only
taken into account the relevant part of the power traces based on the iterations. We used
a constant offset to combine the leakages associated to two shares (by mean-free product
as explained in Section 3.2) based on the pattern observed in Figure 7. It is noteworthy
to mention that the same strategy can be easily adapted via educated guesses without
prior knowledge of the specific implementation. Recall that §; is a degree-1 polynomial in
Kyber, and two coefficients must be predicted together based on the outline presented in
Section 3. We tested ¢ - q/2 hypotheses (~ 2224 as ¢ = 3329) with f.s as the prediction
function, so that either the actual secret or its additive inverse is found (for both ¥,
and Up). The target of the attack is the higher-degree coefficient of each §; - é;, precisely
g(8; - &) = 2,1 computed in Line 2 of Algorithm 1. When fq, is used as the prediction
function, an hypothesis and its additive inverse, +35;, gets the same correlation score due
to the nature of absolute value function.”

Evaluations. Let us start the evaluations by exemplary presenting the result of the
individual attacks on §g for both ¥, and ¥p in Figure 8. The correlation peaks for the
correct hypotheses are observed in the corresponding time samples for the secret coefficient.
Observe that the correlation for the correct hypotheses are around 0.3, which can be
considered a major correlation for a higher-order attack. Needless to say, the correlation
coefficient changes for different values of i. From a better perspective, Figure 9a and
Figure 9b present the efficiency of our introduced prediction function f,ps in terms of the
number of traces needed to succeed. Consistent with the simulation results, fups is very
effective against arithmetic masking with central reduction. In particular, the attacks
require 850 and 550 traces to fully recover the secret of the evaluated implementations. The
reason why the attack on Wy, requires more traces to succeed is that the secret coefficients
8; for even values of ¢ lead to lower correlation scores in general compared to the rest of

Shttps://pypi.org/project/scared/

Shttps://www.amd.com/en/products/processors/laptop/ryzen/7000-series /amd-ryzen-7-7840hs.html

7One option to distinguish the correct hypothesis from its additive inverse is to re-run the same HOCPA
attack on two hypotheses +3; using the sign function S, see Equation (1). This intuition is based on the
fact that not every bit of the intermediate values equally contributes in the amount of power consumption,
i.e. not an ideal HW model. This leads fopt to be not fully symmetric with respect to the y axis, see
Figure 5.

22 Exploiting the Central Reduction in Lattice-Based Cryptography

power sample

T T T T T T T
0 2500 5000 7500 10000 12500 15000 17500

sample index

100 200 300 400 9200 9300 9400
(a) 88 - ¢ and 89 - & (b) 58 - &0 and 381 - &

Figure 7: The mean power trace associated with the execution of the base multiplication
function basemul_asm in Wy, for both shares, 5° x ¢ and ' x é&. The iterations of the
function are marked by interleaving black and gray colors. Due to loop unrolling, 64
iterations are observed for each share instead of n/2 = 128. Recall that the ring dimension
n = 256 for Kyber and 7-layer NTT is performed. The first iterations of basemul_asm for
both shares are marked and zoomed in (a) and (b). The same observation applies to Up.

0.4 0.4
0.3+ 0.3 4
0.24 0.2 1
@ 0.1+ @ 0.1
0.0 0.0 4
-0.14 —-0.11
—0.2 4 —0.2

lCIFO léD l‘llO 160 léU 260 ZéU 15‘0 17‘5 260 22‘5 250 275

sample index sample index
(a) \I’M (b) ‘I/P

Figure 8: HOCPA with v = 1000 and f,»s targeting §y for both ¥,; and ¥p. The
correlation scores of incorrect hypotheses are in gray, and for the correct hypothesis in
black.

the attack. While this observation can be micro-architecture and implementation specific,
we did not concentrate on improving it as the overall attack still leads to a reasonably low
number of traces. We should also remark that the aim of this study is not to compare W,
and Up since both implementations employ central reduction; rather the goal is to show
that the approach generalizes to central reduction techniques.

As a reference, we also included the success rate of a classical first-order CPA by
the W3 prediction function performed on the same but unprotected implementations in
Figure 9¢ and Figure 9d. In order to keep the consistency, we used the same part of the
power traces as those considered in HOCPAs. Distinctively, we used both lower- and
higher-degree coefficients from the output of each §; - ¢; as the target function, namely
9(8:,¢;) = {20, 21} (see Algorithm 1). We should also note that f,ps is designed to work

Tolun Tosun, Amir Moradi and Erkay Savas

23

success rate

0.5

L
500

v

L
1,000

success rate

0.5

L
500

L
1,000

v

(a) HOCPA on masked ¥, with fqps (b) HOCPA on masked ¥, with fops

1} 1r
] Z
]]
B 05 8 05[.
S S
=] =]
2] 2]
(] | | | | i 07 | | |
0 20 40 60 80 100 20 40 60 80 100
v v

(¢c) CPA on unmasked ¥, with Wg (d) CPA on unmasked ¥, with Wg

Figure 9: Success rates of the SCA attacks against Kyber. The success rate refers to
(# correctly predicted 4:/128). Retrieving +8§; is considered as success.

with a single coefficient and we leave construction of a prediction function which takes
multiple coefficients as the future work.

Bonus: Combining with Lattice Attack. As given in [KT23], the attacker can take the
advantage of the fact that SCA attacks are performed in the NTT domain. Intuitively,
there exists 3329256 possibilities for the NTT domain secret § while this number is 52°6
for the normal domain secret s, indicating an over-determined system. The authors
of [KT23] created an LWE instance from the inverse NTT transformation and showed that
by retrieving only 38 out of 128 pairs of NT'T domain coefficients, the rest of the coefficients
can be revealed by solving the LWE, which is practically solvable. The challenge is to
assess which NTT domain coefficients was predicted correctly. We applied a series of lattice
attacks until an instance is successfully solved, starting from the subset of predictions to
the NTT domain coefficients with highest correlation scores. Each execution of the lattice
attack takes 20 seconds, returning success in case of the included subset of coefficients
were correctly retrieved by the preceding SCA attack. Figure 10 depicts the relationship
between the number of traces and the time needed by the lattice attack to succeed in
our experiments. In particular for ¥, the attack succeeds after 643 trials (= 3.5 hours)
with 400 traces while it succeeds with 250 traces for ¥p after 27 trials (=~ 10 minutes)®.
Indeed, v = 250 is considered as a very small number to conduct a successful non-profiling
higher-order SCA attack on a masked implementation. The lattice attack is implemented
using fpylll library®.

8Except for v = 250 for ¥p and v = 400 for ¥, the timing of lattice attacks are approximations.
https://pypi.org/project/fpylll/

https://pypi.org/project/fpylll/

24 Exploiting the Central Reduction in Lattice-Based Cryptography

300 15
o 200) , 10f
5 =
g g
Z 100} g sf
0 7\ | | | 0 L | | |
400 450 500 550 600 250 300 350 400
14 14
(a) U (b) Up

Figure 10: Time required for the lattice attacks to successfully retrieve the whole secret
polynomial s using the predictions for §; which are obtained by HOCPAs.

8 Conclusions and Future Work

In this paper, we investigated the impact of various reduction schemes on SCA leakage of
the implementation of modular arithmetics, with a specific focus on the central reduction.
State-of-the-art masking LBC, e.g. [MGTF19, HKL ™22, BGR™21, ABCT23b, BDK"21,
HDR23, FBR*22, RRA"16, BC22, CGMZ23], concentrated on developing gadgets to
handle non-linear operations and considered the linear part of the algorithms such as the
polynomial arithmetic as relatively trivial to mask due to its transparency to arithmetic
masking (i.e. repeating the operation on each share individually). However, our study
reveals that the design decisions such as the reduction technique for the linear parts have
a significant impact on the exploitability of the associated SCA leakages and hence on
the number of traces required for a successful attack. Our study exposes this fact by
showing that a HOCPA attack becomes significantly easier when the masked polynomial
multiplication § x ¢ is targeted and the modular reduction in the victim’s implementation
is central. Specifically, the use of signed arithmetic notably increases SCA leakage. We
quantify this leakage by studying the optimal correlation and the number of traces required
for a successful HOCPA attack.

Our findings reveal that the signed representation of integers modulo ¢ leads to a
strong dependency between the sign of an integer and its HW in 2’s complement form.
We assessed this dependency through simulations involving the parameter sets employed
by the post-quantum cryptography winners Kyber and Dilithium. We also efficiently
exploited this source of leakage, by introducing the absolute value prediction function.
We believe that our work is unique in the literature as it is the only non-profiled SCA
attack particularly designed to efficiently exploit higher-order leakages. We further have
showcased our approach targeting a first-order masked implementation of Kyber. As our
attack does not require profiling and is successful with only 250 traces (in our experiments
and using our measurement setup), we claim that utilization of the central reduction in
masked implementations indeed may ease SCA attacks. To the best of our knowledge, we
report the lowest number of traces for a successful non-profiled second-order SCA attack
against masked implementations of LBC. We leave the generalization of our introduced
absolute value prediction function to higher orders as a work for the future.

As another outcome of our study, it can also be concluded that finding the sample
points in power traces associated with the random arithmetic shares is trivial in masked
implementations of LBC. Consequently, it is highly recommended to apply shuffling on
top of arithmetic masking. Indeed, it is relatively easy to shuffle the base multiplication
since 8; - ¢; are performed independently for each i leading to 4! possible permutations.

Tolun Tosun, Amir Moradi and Erkay Savas 25

A Absolute Difference Combination Function
Absolute value combination function is defined as follows.
Cabs (L(X0), L(X1)) = |L£(X?) — L(X)] (19)

In the following analysis including Figure 11, Figure 12, Table 6, Table 7, and Table 8, for
the sake of simplicity we took g = 1 = 0 regarding the noise terms in £(X°) and £(X*)
(see Equation (4)). Note that, our results hold as long as ug = p1. Results for ¢ = 8380417
are not presented due to the computational complexity of experiments. However, they can
be anticipated from the results for the other studied primes presented in this section and
the ones corresponding to the mean-free product (Figure 3 and Table 5). Estimation of
the corresponding optimal prefiction function — so-called fopt(i) — is performed with 100 k
samples uniformly taken for X°, X!, and the noise taken from N(0,) for each i.

A.1 Optimal Correlation for C,,

0.6
0.4 b —
- - \
Iy I \
<Q° <Q°L \
0.2 \ —
NS
oL ! | !
0 5 10 15 20
o
(b) ¢ =769

0.6

Popt

(c) ¢ = 3329

Figure 11: Optimal correlation for C,ps with respect to the noise standard deviation o
for different ¢ and S and reduction algorithms. Estimations are performed with 1 million
samples uniformly taken for X% and X!

* Reduction to [—¢/2,q/2] for ¢ = 257, ¢ = 769 and ¢ = 3329: 8 = 16 (black), 5 = 15
(blue), 8 = 14 (green), 8 = 13 (brown), 8 = 12 (red), 8 = 11 (gray), 5 = 10 (purple),
B =9 (cyan)

% Reduction to [0, q) (dashed)

26 Exploiting the Central Reduction in Lattice-Based Cryptography

A.2 Accuracy of Absolute Value Prediction Function for C,,

It can be seen in Figure 12 that fopt for Cgups is an affine function of f,;s with some noise.
Table 6, Table 7, and Table 8 present the estimations for p (faps (X), fopt (X)) in this
configuration. Observe that |p| > 0.99 for the evaluated g and 8 couples mentioned in
Section 4, allowing us to conclude that f,;s can be effectively used with Cgps.

3

-100 -50 0 50 100

X
(a) q=257,3=16,0=0

fopt (X)

—400 —200 0 200

X
(c) =169, 8=16,0 =0

fopt (X)

w

—1000 0 1000

X
(e) q=13329, 8=16,0=0

-100 =50 0 50 100

X
(b) ¢ =257, B=16, 0 = 4

X)

fopt(

—400 —200 0 200 400

X
(d)g=1769,8=16,0 =4

—1000 0 1000

X
(f) q=13329, 3 =16, 0 =4

Figure 12: Visualization of optimal prediction function fopt for the central reduction range

[—q/2,q/2] with respect to absolute difference combination function. fopt(X) (black),
¢ - |1 X| + ¢} (pink) for some ¢} and ¢}.

Tolun Tosun, Amir Moradi and Erkay Savas

27

Table 6: Estimations of p(faps(X), fopt(X)) for Caps, ¢ = 257 and different § and o. The
estimations are performed with 1 million uniformly random samples for X while the
reduction is central.

3 0 2 4 6 8 10
16 —0999 -0999 -0.999 -0.999 -0999 —-0.999
15 —-0.999 —-0.999 —-0.999 —-0.999 —-0.999 —0.998
14 —-0.998 —-0.998 —-0.998 —0.998 —0.998 —0.998
13 —-0.998 —-0.998 —-0.997 0997 —-0.996 —0.996
12 —-0.996 -0.996 —-0.994 —-0.993 —0.993 —0.992
11 —-0.992 —-0.990 —-0.986 —0.984 —-0.983 —0.982
10 —-0.975 —-0.964 —0.957 —0.952 —-0.949 —-0.947
9 -0.864 —-0.834 —-0.818 —0.809 —-0.801 —0.793

Table 7: Estimations of p(faps(X), fopt(X)) for Cups, ¢ = 769 and different S and o. The
estimations are performed with 1 million uniformly random samples for X while the
reduction is central.

3 0 2 4 6 8 10
16 —0.998 —-0.998 —-0.998 —-0.998 -0.998 —-0.998
15 —-0.997 -0.998 —-0.997 —-0.997 —0.996 —0.996
14 —-0.99 —-0.996 —0.995 —-0.994 —-0.994 —0.994
13 —-0.993 —-0.992 —-0.990 —-0.989 —-0.988 —0.988
12 -098 -0979 -0974 0972 -0971 —0.970
11 —-0941 -0.923 -0912 -0.908 —0.905 —0.902
10 -0.673 —-0.645 —-0.632 —0.626 —0.620 —0.614

Table 8: Estimations of ﬁ(fabS(X)7fopt(X)) for Cups, ¢ = 3329 and different 8 and o.
The estimations are performed with 1 million uniformly random samples for X while the
reduction is central.

3 0 2 4 6 3 10
16 —0.996 —-0.995 -0.993 -0.993 -0.992 -0.992
15 —-0.992 -0.989 —-0.986 —0.985 —-0.984 —0.983
14 -0978 -0971 —-0.965 —0.962 —0.961 —0.959
13 -0913 -0.893 —-0.882 —-0.877 —-0.872 —0.869
12 —-0.562 —-0.551 —0.544 —-0.539 —-0.534 —0.529

28

Exploiting the Central Reduction in Lattice-Based Cryptography

References

[AAT+21]

[ABC*23a]

[ABC+23b]

[ABCG20]

[ACCT22]

[AHKS22]

[BAAT19)

[BAE*24]

[Bar87]

[BBC*20]

Furkan Aydin, Aydin Aysu, Mohit Tiwari, Andreas Gerstlauer, and Michael
Orshansky. Horizontal side-channel vulnerabilities of post-quantum key

exchange and encapsulation protocols. ACM Transactions on Embedded
Computing Systems (TECS), 20(6):1-22, 2021.

Aikata Aikata, Andrea Basso, Gaetan Cassiers, Ahmet Can Mert, and Su-
joy Sinha Roy. Kavach: Lightweight masking techniques for polynomial
arithmetic in lattice-based cryptography. TACR Transactions on Crypto-
graphic Hardware and Embedded Systems, pages 366-390, 2023.

Melissa Azouaoui, Olivier Bronchain, Gaétan Cassiers, Clément Hoffmann,
Yulia Kuzovkova, Joost Renes, Tobias Schneider, Markus Schénauer, Frangois-
Xavier Standaert, and Christine van Vredendaal. Protecting dilithium against
leakage revisited sensitivity analysis and improved implementations. TACR
TCHES, 2023(4):58-79, 2023.

Erdem Alkim, Yusuf Alper Bilgin, Murat Cenk, and Francois Gérard. Cortex-
m4 optimizations for {R, M} lwe schemes. TACR Transactions on Crypto-
graphic Hardware and Embedded Systems, pages 336-357, 2020.

Amin Abdulrahman, Jiun-Peng Chen, Yu-Jia Chen, Vincent Hwang,
Matthias J Kannwischer, and Bo-Yin Yang. Multi-moduli ntts for saber
on cortex-m3 and cortex-m4. TACR Transactions on Cryptographic Hardware
and Embedded Systems, pages 127-151, 2022.

Amin Abdulrahman, Vincent Hwang, Matthias J. Kannwischer, and Amber
Sprenkels. Faster kyber and dilithium on the cortex-M4. In Giuseppe Ateniese
and Daniele Venturi, editors, ACNS 22, volume 13269 of LNCS, pages 853-871.
Springer, Heidelberg, June 2022.

Nina Bindel, Sedat Akleylek, Erdem Alkim, Paulo S. L. M. Barreto, Jo-
hannes Buchmann, Edward Eaton, Gus Gutoski, Juliane Kramer, Patrick
Longa, Harun Polat, Jefferson E. Ricardini, and Gustavo Zanon. qTESLA.
Technical report, National Institute of Standards and Technology, 2019. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-2-submissions.

Olivier Bronchain, Melissa Azouaoui, Mohamed ElGhamrawy, Joost Renes,
and Tobias Schneider. Exploiting small-norm polynomial multiplication with
physical attacks: Application to crystals-dilithium. TACR Transactions on
Cryptographic Hardware and Embedded Systems, 2024(2):359-383, 2024.

Paul Barrett. Implementing the Rivest Shamir and Adleman public key
encryption algorithm on a standard digital signal processor. In Andrew M.
Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 311-323. Springer,
Heidelberg, August 1987.

Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, Chitchanok
Chuengsatiansup, Tanja Lange, Adrian Marotzke, Bo-Yuan Peng, Nicola
Tuveri, Christine van Vredendaal, and Bo-Yin Yang. NTRU Prime. Tech-
nical report, National Institute of Standards and Technology, 2020. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

Tolun Tosun, Amir Moradi and Erkay Savas 29

[BC22]

[BCOO4]

[BDK*21]

[BGR™21]

[BKS19]

[BNGD23]

[CDH*20]

[CGMZ23)

[CGTZ23]

[CHK*21]

[CKA*+21]

[C'T65]

Olivier Bronchain and Gaétan Cassiers. Bitslicing arithmetic/boolean masking
conversions for fun and profit with application to lattice-based KEMs. TACR
TCHES, 2022(4):553-588, 2022.

Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors,
CHES 2004, volume 3156 of LNCS, pages 16-29. Springer, Heidelberg, August
2004.

Michiel Van Beirendonck, Jan-Pieter D’anvers, Angshuman Karmakar, Josep
Balasch, and Ingrid Verbauwhede. A side-channel-resistant implementation
of saber. ACM Journal on Emerging Technologies in Computing Systems
(JETC), 17(2):1-26, 2021.

Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Christine
van Vredendaal. Masking kyber: First- and higher-order implementations.
TACR TCHES, 2021(4):173-214, 2021. https://tches.iacr.org/index.
php/TCHES/article/view/9064.

Leon Botros, Matthias J. Kannwischer, and Peter Schwabe. Memory-efficient
high-speed implementation of Kyber on cortex-M4. In Johannes Buchmann,
Abderrahmane Nitaj, and Tajje eddine Rachidi, editors, AFRICACRYPT 19,
volume 11627 of LNCS, pages 209-228. Springer, Heidelberg, July 2019.

Linus Backlund, Kalle Ngo, Joel Gértner, and Elena Dubrova. Secret key
recovery attack on masked and shuffled implementations of crystals-kyber
and saber. In International Conference on Applied Cryptography and Network
Security, pages 159-177. Springer, 2023.

Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hulsing, Joost Ri-
jneveld, John M. Schanck, Peter Schwabe, William Whyte, Zhenfei Zhang,
Tsunekazu Saito, Takashi Yamakawa, and Keita Xagawa. NTRU. Tech-
nical report, National Institute of Standards and Technology, 2020. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

Jean-Sébastien Coron, Francois Gérard, Simon Montoya, and Rina Zeitoun.
High-order polynomial comparison and masking lattice-based encryption.
TACR TCHES, 2023(1):153-192, 2023.

Jean-Sébastien Coron, Frangois Gérard, Matthias Trannoy, and Rina Zeitoun.
Improved gadgets for the high-order masking of dilithium. TJACR TCHES,
2023(4):110-145, 2023.

Chi-Ming Marvin Chung, Vincent Hwang, Matthias J Kannwischer, Gre-
gor Seiler, Cheng-Jhih Shih, and Bo-Yin Yang. Ntt multiplication for ntt-
unfriendly rings: New speed records for saber and ntru on cortex-m4 and
avx2. IACR Transactions on Cryptographic Hardware and Embedded Systems,
pages 159-188, 2021.

Zhaohui Chen, Emre Karabulut, Aydin Aysu, Yuan Ma, and Jiwu Jing.
An efficient non-profiled side-channel attack on the crystals-dilithium post-
quantum signature. In 2021 IEEFE 39th International Conference on Computer
Design (ICCD), pages 583-590. IEEE, 2021.

James W Cooley and John W Tukey. An algorithm for the machine calculation
of complex fourier series. Mathematics of computation, 19(90):297-301, 1965.

https://tches.iacr.org/index.php/TCHES/article/view/9064
https://tches.iacr.org/index.php/TCHES/article/view/9064
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

30

Exploiting the Central Reduction in Lattice-Based Cryptography

[DNGW23]

[FBR+22]

[GKS21]

[GS66]

[HDR23]

[HKL*22)

[HZZ+22]

[JPS05)

[KAA22]

[KDVB+22]

[KJJ99)

[KLH+20]

Elena Dubrova, Kalle Ngo, Joel Gértner, and Ruize Wang. Breaking a fifth-
order masked implementation of crystals-kyber by copy-paste. In Proceedings
of the 10th ACM Asia Public-Key Cryptography Workshop, pages 10—20, 2023.

Tim Fritzmann, Michiel Van Beirendonck, Debapriya Basu Roy, Patrick
Karl, Thomas Schamberger, Ingrid Verbauwhede, and Georg Sigl. Masked
accelerators and instruction set extensions for post-quantum cryptography.
TACR TCHES, 2022(1):414-460, 2022.

Denisa O. C. Greconici, Matthias J. Kannwischer, and Amber Sprenkels.
Compact dilithium implementations on cortex-M3 and cortex-M4. [TACR
TCHES, 2021(1):1-24, 2021. https://tches.iacr.org/index.php/TCHES/
article/view/8725.

W Morven Gentleman and Gordon Sande. Fast fourier transforms: for fun
and profit. In Proceedings of the November 7-10, 1966, fall joint computer
conference, pages 563-578, 1966.

Daniel Heinz and Gabi Dreo Rodosek. Fast first-order masked nttru. In
International Workshop on Constructive Side-Channel Analysis and Secure
Design, pages 127-148. Springer, 2023.

Daniel Heinz, Matthias J. Kannwischer, Georg Land, Thomas Poppelmann,
Peter Schwabe, and Amber Sprenkels. First-order masked kyber on ARM
cortex-M4. Cryptology ePrint Archive, Report 2022/058, 2022. https:
//eprint.iacr.org/2022/058.

Junhao Huang, Jipeng Zhang, Haosong Zhao, Zhe Liu, Ray C. C. Cheung,
Cetin Kaya Kog, and Donglong Chen. Improved plantard arithmetic for
lattice-based cryptography. JACR TCHES, 2022(4):614-636, 2022.

Marc Joye, Pascal Paillier, and Berry Schoenmakers. On second-order differen-
tial power analysis. In Cryptographic Hardware and Embedded Systems—CHES
2005: Tth International Workshop, Edinburgh, UK, August 29-September 1,
2005. Proceedings 7, pages 293-308. Springer, 2005.

Emre Karabulut, Erdem Alkim, and Aydin Aysu. Single-trace side-channel
attacks on w-small polynomial sampling: With applications to NTRU, NTRU
prime, and CRYSTALS-DILITHIUM. Cryptology ePrint Archive, Report
2022/494, 2022. https://eprint.iacr.org/2022/494.

Suparna Kundu, Jan-Pieter D’Anvers, Michiel Van Beirendonck, Angshuman
Karmakar, and Ingrid Verbauwhede. Higher-order masked saber. In Interna-
tional Conference on Security and Cryptography for Networks, pages 93-116.
Springer, 2022.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, CRYPT(0’99, volume 1666 of LNCS, pages
388-397. Springer, Heidelberg, August 1999.

II-Ju Kim, Tae-Ho Lee, Jaeseung Han, Bo-Yeon Sim, and Dong-Guk Han.
Novel single-trace ML profiling attacks on NIST 3 round candidate dilithium.
Cryptology ePrint Archive, Report 2020/1383, 2020. https://eprint.iacr.
org/2020/1383.

https://tches.iacr.org/index.php/TCHES/article/view/8725
https://tches.iacr.org/index.php/TCHES/article/view/8725
https://eprint.iacr.org/2022/058
https://eprint.iacr.org/2022/058
https://eprint.iacr.org/2022/494
https://eprint.iacr.org/2020/1383
https://eprint.iacr.org/2020/1383

Tolun Tosun, Amir Moradi and Erkay Savas 31

[KRSS19a]

[KRSS19b]

[KT23]

[LDK*22]

[LPR10]

[LS19]

[Lyu09]

[MGTF19]

[Mon85]

[MUTS22]

[MWEK*24]

[0Y23]

[PFH*22]

Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
pam4: Testing and benchmarking NIST PQC on ARM cortex-M4. Cryptology
ePrint Archive, Report 2019/844, 2019. https://eprint.iacr.org/2019/
844.

Matthias J Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
pam4: Testing and benchmarking nist pgc on arm cortex-m4. 2019.

Yen-Ting Kuo and Atsushi Takayasu. A lattice attack on crystals-kyber
with correlation power analysis. In International Conference on Information
Security and Cryptology, pages 202-220. Springer, 2023.

Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrede Lepoint, Pe-
ter Schwabe, Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-
DILITHIUM. Technical report, National Institute of Standards and
Technology, 2022. available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In Henri Gilbert, editor, FEUROCRYPT 2010,
volume 6110 of LNCS, pages 1-23. Springer, Heidelberg, May / June 2010.

Vadim Lyubashevsky and Gregor Seiler. Nttru: Truly fast ntru using ntt.
IACR Transactions on Cryptographic Hardware and Embedded Systems, pages
180-201, 2019.

Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and
factoring-based signatures. In Mitsuru Matsui, editor, ASTACRYPT 2009,
volume 5912 of LNCS, pages 598-616. Springer, Heidelberg, December 2009.

Vincent Migliore, Benoit Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque.
Masking dilithium: Efficient implementation and side-channel evaluation. In
Applied Cryptography and Network Security: 17th International Conference,
ACNS 2019, Bogota, Colombia, June 5-7, 2019, Proceedings 17, pages 344—
362. Springer, 2019.

Peter L Montgomery. Modular multiplication without trial division. Mathe-
matics of computation, 44(170):519-521, 1985.

Soundes Marzougui, Vincent Ulitzsch, Mehdi Tibouchi, and Jean-Pierre
Seifert. Profiling side-channel attacks on dilithium: A small bit-fiddling leak
breaks it all. Cryptology ePrint Archive, 2022.

Catinca Mujdei, Lennert Wouters, Angshuman Karmakar, Arthur Beckers,
Jose Maria Bermudo Mera, and Ingrid Verbauwhede. Side-channel analysis
of lattice-based post-quantum cryptography: Exploiting polynomial multi-
plication. ACM Transactions on Embedded Computing Systems, 23(2):1-23,
2024.

Sila Ozeren and Oguz Yayla. Methods for masking crystals-kyber against
side-channel attacks. In 2023 16th International Conference on Information
Security and Cryptology (ISCTirkiye), pages 1-6. IEEE, 2023.

Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim
Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. FALCON. Technical report, National Institute
of Standards and Technology, 2022. available at https://csrc.nist.gov/
Projects/post-quantum-cryptography/selected-algorithms-2022.

https://eprint.iacr.org/2019/844
https://eprint.iacr.org/2019/844
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

32

Exploiting the Central Reduction in Lattice-Based Cryptography

[Pla21]

[PPM17]

[PRB09)

[Reg05]

[RRA*16]

[SAB*22

[Seil8]

[Sho94]

[SLKG22]

[SLKG23]

[SVO+10]

[TS24]

Thomas Plantard. Efficient word size modular arithmetic. IEEE Transactions
on Emerging Topics in Computing, 9(3):1506-1518, 2021.

Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel
attacks on masked lattice-based encryption. In Wieland Fischer and Naofumi
Homma, editors, CHES 2017, volume 10529 of LNCS, pages 513-533. Springer,
Heidelberg, September 2017.

Emmanuel Prouff, Matthieu Rivain, and Régis Bevan. Statistical analysis of
second order differential power analysis. IEEFE Transactions on computers,
58(6):799-811, 20009.

Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM
STOC, pages 84-93. ACM Press, May 2005.

Oscar Reparaz, Sujoy Sinha Roy, Ruan de Clercq, Frederik Vercauteren,
and Ingrid Verbauwhede. Masking ring-LWE. Journal of Cryptographic
Engineering, 6(2):139-153, June 2016.

Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tan-
crede Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler,
Damien Stehlé, and Jintai Ding. CRYSTALS-KYBER. Technical re-
port, National Institute of Standards and Technology, 2022. avail-
able at https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022.

Gregor Seiler. Faster avx2 optimized ntt multiplication for ring-lwe lattice
cryptography. Cryptology ePrint Archive, 2018.

Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In 35th FOCS, pages 124-134. IEEE Computer Society Press,
November 1994.

Hauke Steffen, Georg Land, Lucie Kogelheide, and Tim Giineysu. Breaking
and protecting the crystal: Side-channel analysis of Dilithium in hardware.
Cryptology ePrint Archive, Report 2022/1410, 2022. https://eprint.iacr.
org/2022/1410.

Hauke Steffen, Georg Land, Lucie Kogelheide, and Tim Giineysu. Breaking
and protecting the crystal: Side-channel analysis of dilithium in hardware.
In International Conference on Post-Quantum Cryptography, pages 688-711.
Springer, 2023.

Francgois-Xavier Standaert, Nicolas Veyrat-Charvillon, Elisabeth Oswald,
Benedikt Gierlichs, Marcel Medwed, Markus Kasper, and Stefan Mangard.
The world is not enough: Another look on second-order DPA. In Masayuki
Abe, editor, ASTACRYPT 2010, volume 6477 of LNCS, pages 112-129.
Springer, Heidelberg, December 2010.

Tolun Tosun and Erkay Savas. Zero-value filtering for accelerating non-profiled
side-channel attack on incomplete ntt based implementations of lattice-based
cryptography. IEEE Transactions on Information Forensics and Security,
2024.

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2022/1410
https://eprint.iacr.org/2022/1410

Tolun Tosun, Amir Moradi and Erkay Savas 33

[XPR*+21]

Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, David Oswald, Wang Yao,
and Zhiming Zheng. Magnifying side-channel leakage of lattice-based cryp-
tosystems with chosen ciphertexts: The case study of kyber. IEEE Transac-
tions on Computers, 71(9):2163-2176, 2021.

	Introduction
	Background
	Notations
	Lattice-Based Cryptography (LBC)
	Number Theoretic Transform (NTT)
	Modular Arithmetic

	Non-Profiled SCA Attack on NTT Multiplication
	Attack Outline
	Second-Order Attack

	Distribution of HW of Signed Integers Modulo q
	HW as a Sign Indicator
	Impact of Signed Arithmetic on Optimal Correlation

	Absolute Value Prediction Function
	Simulation Results
	Practical Results: Application to Kyber
	Conclusions and Future Work
	Absolute Difference Combination Function
	Optimal Correlation for Cabs
	Accuracy of Absolute Value Prediction Function for Cabs

