
Long Paper CrISA-X: Unleashing Performance
Excellence in Lightweight Symmetric Cryptography

for Extendable and Deeply Embedded Processors

Oren Ganon1 and Itamar Levi1

Bar-Ilan University, Ramat-Gan, Israel. Emails: oren.ganon@biu.ac.il, itamar.levi@biu.ac.il

1 ABSTRACT
The selection of a Lightweight Cryptography (LWC) algorithm is crucial for resource-

limited applications. The National Institute of Standards and Technology (NIST) leads
this process, which involves a thorough evaluation of the algorithms’ cryptanalytic strength.
Furthermore, careful consideration is given to factors such as algorithm latency, code size,
and hardware implementation area. These factors are critical in determining the overall
performance of cryptographic solutions at edge devices.
Introducing CrISA-X , a Cryptography Instruction Set Architecture eXtensions designed
to improve cryptographic latency on extendable processors. CrISA-X, classified as Generic-
Atomic, Block-Specific and Procedure-Specific, leverages RISC processor hardware and
a base ISA to effectively execute LWC algorithms. Our study aims to evaluate the
execution efficiency of new single-cycle instruction extensions and tightly coupled multi-
cycle instructions on extendable modular RISC processors. CrISA-X provides enhanced
speed of various algorithms simultaneously while optimizing ISA adaptability, a feat yet to
be accomplished. The extension, diverse for several computation levels, is first specifically
tailored for individual algorithms and sets of LWC algorithms, depending on performance,
frequency, and area trade-offs. By diligently applying the Min-Max optimization technique,
we have configured these extensions to achieve a delicate balance between performance,
area code size, etc. Our study presents empirical evidence of the performance enhancement
achieved on a real synthesis modular RISC processor. We offer a framework for creating
optimized processor hardware and ISA extensions. The CrISA-X framework generally
outperforms ISA extensions by delivering significant performance boosts between 3x to
17x while experiencing a relative area cost increase of +12% and +47% in LUTs, in respect
to the instruction set category. Notably, as one important example, the utilization of the
ASCON algorithm yields a 10x performance boost in contrast to the base ISA instruction
implementation.

2 Introduction
The Internet of Things (IoT), Artificial Intelligence of Things (AIoT), and machine-to-

machine (M2M) edge devices refer to a vast network of devices connected to the internet,
all of which collect, share, and process large amounts of data [BS11]. With the increasing
demand for edge computing, the risk of serious security incidents also rises, making it
crucial to ensure the security of these systems.

Symmetric-key lightweight cryptography algorithms used on edge devices for data
encryption and decryption are designed to be effective and efficient. NIST began a
public competition in 2013 to select an authenticated encryption and hashing scheme
suitable for such devices on constrained environments [TMC+21, MAA+20]. In 2021,
NIST announced ten finalists to move to the final round of the standardisation process,

2
CrISA-X: Unleashing Performance Excellence in Lightweight Symmetric Cryptography for

Extendable and Deeply Embedded Processors

Figure: 1. Example of Enhancing ASCON Performance with CrISA-X: A Comparative
Latency Analysis of Base ISA Instruction (Baseline) vs. Replacement Code

as shown in Table 1. The finalists include ASCON, Elephant, GIFT-COFB, Grain128-
AEAD, ISAP, Photon-Beetle, Romulus, Sparkle, TinyJambu, Xoodyak. In 2023, it was
announced that the Ascon family had been chosen to standardize lightweight cryptography.
This selection is expected to have significant implications for the cybersecurity industry
and represents a major milestone in the field of cryptography. Along with the NIST
competition, the CAESAR committee also launched a contest to discover authenticated
encryption methods appropriate for devices with limited resources. As part of the CAESAR
portfolio for lightweight applications, Ascon is the top selection, while Acron is the second
choice. All finalists and selected candidates are potential candidates for edge computing,
especially the selected candidates. Clearly, on lightweight nodes performance is a crucial
factor in the evaluation process. Parameters such as cycle-count performance, area, and
footprint were specifically emphasised, focusing on candidates who performed significantly
better than the current NIST standards. To facilitate the deployment of LWC on edge
computing environments with constrained resources, ongoing research endeavors to explore
diverse approaches to accelerate algorithms [XJL+19, SR20]. There are several reasons
why it is important to speed up the execution of lightweight cryptography algorithms on
processors in edge device applications: lightweight cryptography involves computation
in repeated rounds, causing significant latency for encryption, decryption, and hashing
(Tag-compression) of each data set. Speeding up these computational blocks can enable the
processing of larger encryption data on these devices without sacrificing performance or
battery life. Endpoint sensor applications are prime examples of edge devices that perform
lightweight encryption as part of the root of trust (RoT) zone. These devices rely on a
general-purpose processor to collect sensing data, process it, and execute cryptographic
algorithms. Then, the data is transmitted through a secure channel. Crypto processing
might limit effective communication speed, reducing the sensor reading rate thus reducing
user experience and system effectiveness.

While lightweight cryptography schemes are necessary to reduce latency and resources,
endpoint device system designers require processor acceleration features to reduce latency
even further [GPKT09,DFA+20]. This allows devices to operate with much higher data
throughput. Cryptography encryption mechanisms in processor-based edge devices can be
implemented through optimised software libraries written in C language or assembly or
through dedicated hardware accelerators. The software approach is flexible but unsuit-
able for low-frequency constrained devices with strict latency requirements. Dedicated
off-processor hardware accelerators often perform better, on the other side of the scale.
However, they require more hardware space and are less flexible than software solutions.
Moreover, delay caused by transferring data from the processor to the accelerator could
also overshadow the benefits of dedicated hardware, depending on the frequency and
amount of data being transferred. As a result, there is a growing emphasis on developing
processor-based mechanisms, such as custom-specific instructions, that enable efficient en-
cryption while maintaining low-latency requirements and keeping reusability and flexibility.

Oren Ganon and Itamar Levi 3

Researchers exploring this domain are looking specifically at one vector of leveraging the
processor’s basic ISA and supplementing it with additional instructions to encapsulate
a certain amount of computation [MB20,VVP+16,TMC+23,Sab23,GS22]. However, to
gain a quantitative understanding of how additional extended instructions, with various
levels of computation, can improve the speed and reduce memory costs, it is necessary to
tighten the instruction extension together with extended processors and associated hard-
ware.This study aims to explore the potential of instruction extension with any extendable
RISC processor, such as the RISC-V open standard ISA, to enhance the performance of
lightweight cryptographic algorithms. The paper provides technical details regarding the
implementation process, which includes the design and development of new instructions,
their integration with processors, and the overall impact on system performance and area.
The study’s findings have significant implications for accelerating algorithms on RISC
processors, providing an efficient solution for LWC.

3 Related Work and Our Contribution
Accelerating cryptographic algorithms using custom instruction-set architectures or

hardware/software co-design, have long been considered a potential means of enhancing
their computation speed. Although the concept is familiar, limited studies have been
conducted on the topic. Specifically, existing research has been divided into three categories:
first, efficient implementations of the candidates over standard processor architecture,
software-hardware and ISAs; second, works that focus on accelerating only one candidate
over simple cores 1; and lastly, some works aim to jointly optimize a small subset of
algorithms with minimal or no adaptation of extended processor architectures.

3.1 Related Work Overview
This section aims to provide an overview of the research related to the topic. It will
describe the key findings of the relevant studies conducted by previous researchers Table 2
summarizes the main research conducted in this area. Renner and Pozzobon [RPM22],
and Sebastian and Enrico [WYY22] conducted a comprehensive analysis of the final ten
ciphers from NIST’s lightweight cryptography project. They assessed the efficient software
implementation performance of these ciphers on different 32-bit processor platforms with
varying architectures and provided valuable insights into their performance characteristics
under specific test scenarios. The authors’ research can assist developers in establishing
a performance baseline for LWC software implementation on micro-controller platforms.
Edwards and Forrest [EF96] studied hardware/software codesign as a tightly coupled

1Referring to a single processing element, limited memory and instruction-level parallelism, and other
related features from the architecture designer tool-set

Table 1: NIST LWC finalist algorithms

Algorithm Variant Feedback
Grain-128AEAD AEAD Stream Cipher

GIFTcofb AEAD Permutation GIFT-128
Romulus AEAD,Hash Block Cipher Skinny-128-384+
ASCONf AEAD,Hash Permutation Ascon-p
Elephant AEAD Permutation Keccak-f[m]

ISAP AEAD Permutation Keccak-f[m]
PHOTONbee AEAD,Hash Permutation PHOTON256

SPARKLE AEAD,Hash Permutation Sparkle
TinyJAMBU AEAD Permutation TinyJAMBU

Xoodyak AEAD,Hash Permutation Xoodoo

4
CrISA-X: Unleashing Performance Excellence in Lightweight Symmetric Cryptography for

Extendable and Deeply Embedded Processors

Table 2: Summary of Related Work
Academic Work on Accelerating Cryptography Algorithms using ISA Ext’

Related
Work

Characteristics
/#Algos’

Extendable
Processor

Extendable
ISA

[MPP21]
Single Algo, Native

C-Code
64bit,No extend

HW
Extended

RISC-V ISA

[CGM+23]
All finalist, Native

C-Code
32bit,No extend

HW
Extended

RISC-V ISA

[CJL+20]
All finalist,
ASM-Code

32bit,No extend
HW

Base RISC-V
ISA

[WYY22]
Several Algos’,
Native C-Code

32bit,No extend
HW

Standard ARM
ISA

[RPM20]
All finalist, Native

C-Code
32bit,No extend

HW
Standard

RISC-V ISA

[RPM22]
All finalist, Native

C-Code
32bit,No extend

HW
Standard

RISC-V ISA

[ABCdS+22]
All finalist, Native

C-Code
32bit,No extend

HW
Standard TI

ISA
[AÖ21] Single Algo, Native

C-Code
32bit,Partly
extend HW

Extended
RISC-V ISA

accelerator to enhance software acceleration. Critical regions are parts of an application
where software alone cannot meet performance requirements, necessitating hardware-
based solutions or where implementing specific regions in hardware significantly improves
performance. Their research highlights the importance of hardware/software codesign to
achieve optimal performance. As the popularity of the RISC-V architecture continues to
rise, researchers are exploring ways to efficiently implement LWC algorithms through RISC-
V ISA Extensions as co-processors. Two teams, Altınay and Örs [AÖ21], and Steinegger and
Primas [SP20] have developed ISA Extensions to speed up Ascon permutation. They have
designed dedicated instructions to perform an entire Ascon-p round efficiently in hardware.
However, these ISA Extensions are designed to target a single algorithm and require tight
integration with a specific processor core. They employ hard-coded registers to store the
state and focus on a single data path without instruction or memory-level parallelism.
Marshall, Page, and Hung Pham [MPP21] have also developed ISA Extensions to accelerate
the ChaCha stream cipher by using a similar approach of dedicated coprocessor hardware
for a specific stream cipher. While the last mentioned team focused on a single algorithm,
Tehrani et al. [TGMD20] focused on a few, but limited, LWC algorithms, including 64-bit
block ciphers like GIFT-64-128 and Skinny-64-128. In their article, ZiBin Dai and XueRong
Yu [DYSC07] aim to improve the speed of cryptography processing by utilizing a flexible,
albeit limited, processor architecture. The authors suggest a specific method to enhance
the efficiency of analyzed algorithms by introducing a new set of very long instruction
word (VLIW) instructions. These instructions leverage paralleling processing elements
for specific instructions and follow a conventional hardware/software design approach
to enhance the performance and flexibility of cryptographic processing. However, their
analysis is limited to older ciphers and does not cover lightweight ones. The authors focus
on the VLIW and additional ISA as a single mechanism to improve performance, without
extending the hardware architecture. This paper will elaborate further on this approach.
In parallel to our conducted research and our basic short-version publication [GL23]2, Hao
Cheng et al. [CGM+23] presented the design, implementation, and evaluation of Instruction

2Best-paper award winner at IEEE NEWCAS conference

Oren Ganon and Itamar Levi 5

Set Extensions (ISEs) for nine of the ten LWC final round submissions, providing evidence
for richer evaluation with respect to metrics related to implementation. The authors
analyze the performance of these ISEs on a RISC-V processor and compare them to
software implementations. The article focuses on the RISC-V additional ISA while keeping
the processor architecture as 32-bit native processor, without hardware or conceptual
architectural changes, more related to the realm of extendable and modular processors.
Among other aspects and differences, we touch upon this significant aspect in this paper.
Notably, the work from Cheng et al. focused on one ISE without the general goal of
searching for an ISE which solves the min-max paradigm as we define it: “one minimal
ISE which maximises its’ performance impact on sets of algorithms jointly”. Instead, their
proposed ISE can be seen as a union of separate ISE per algorithm altogether.

3.2 Our Contribution
The study provides a detailed description of Crisa-X, a classification of processor instruc-
tion extensions and tightly coupled acceleration logic for LWC algorithms. Accurately
categorising these extensions is crucial in evaluating the trade-off between performance and
area when integrating new instructions into a processor. In particular, this classification
can aid in determining the optimal balance between hardware acceleration and software
execution for a given processor architecture. We explore various ways to expand processor
hardware to accommodate new instruction sets and discuss the necessary process architec-
ture required to support these extensions. These enhancements are carefully designed to
support a range of LWC algorithms simultaneously.

The Crisa-X ISA-extension instruction subsets include Generic-Atomic, Specific-Blocks,
and Specific-Procedures categories, all of which greatly enhance the performance of NIST
and CAESAR AEAD competitor algorithms. Generic-Atomic new instructions are a
combination of bitwise operations designed for efficient computation with a small number
of operands, allowing for the composition of a wide cryptographic permutation spectrum.
The new instructions are executed efficiently within a single clock cycle. In contrast, Specific-
Blocks are designed for extensive computation and serve as a foundational component for
composing cryptographic permutation code. These new instructions exploit substantial
memory- and instruction-level parallelism. To further enhance the acceleration of even
larger blocks covering entire permutations, we introduce the Specific-Procedure instructions
which establish the optimal subset to maximize acceleration. As significant computation is
required for Specific-Blocks and Specific-Procedure, they are incorporated as tightly coupled
acceleration logic within the processor pipeline. The research aimed to showcase our
capability in solving a min-max problem by creating an extended ISA that can be used
seamlessly by designers and cryptographers. The new set of instructions is designed to
maximize impact across various cryptographic algorithms while minimizing costs and the
number of required extended instructions.

Our main contributions are listed below:

1. The CrISA-X ISA new instructions stand out for their innovative computing capabil-
ities, distinguishing between atomic, block, and procedure instructions, which cover
a wide range of tradeoffs when it comes to latency performance and area utilization.

2. New instructions hardware implementation is carefully designed as single-cycle
or complex multi-cycle specific operations to accommodate various architectural
constraints and minimise the negative impact of the processor’s critical paths and
thus performance.

3. The proposed paper recommends the extension of the base processor hardware
to facilitate the support of high levels of Instruction-Level Parallelism (ILP) and
Memory-Level Parallelism (MLP) within the new Crisa-X ISA extension.

4. The CrISA-X classification also categorizes instructions into algorithm-agnostic and

6
CrISA-X: Unleashing Performance Excellence in Lightweight Symmetric Cryptography for

Extendable and Deeply Embedded Processors

algorithm-specific types. For algorithm-agnostic applications, the CrISA-X ISA offers
a versatile set of instructions suitable for all algorithms.

5. Depending on the required speedup, CrISA-X can be used for specific applications or
a wide range of lightweight cryptography candidates while considering area budget.

6. This new instruction set incorporates Min-Max optimization to identify the compu-
tation level of ISA that minimizes processor area implementation, maximizes ISA
versatility among various algorithms, and boosts performance, delivering optimal
value. The search process within this extensive design space as elaborated.

7. The paper presents quantitative execution time analysis on a real synthesis modular
processor design, offering insights into the actual performance of the new ISA set for
various LWC algorithms.

8. The research introduces an efficient, automated methodology encompassing the
identification of computation-heavy software blocks, ISA extension design for diverse
classifications, simulation, validation, and the generation of synthesis processor RTL.

9. The CrISA-X ISA’s toolchain support is versatile and compatible with various
hardware platforms, including the Cadence Tensilica framework. Furthermore, it is
designed to be freely shared within the academic community and released under an
open-source license to promote transparency and collaboration.

3.3 Organisation
The paper is divided into several sections. The Introduction Section provides a background
for this study and includes an in-depth analysis of related work in this domain. The list of
our contributions is then presented. In the Methodology section, we describe CriSA-X in
detail. We begin by describing our design flow and profiling, followed by the acceleration
model, extendable processor, instruction extension, and the challenges we faced. In the
Design section, we delve into the design considerations of CrISA-X for various LWC
algorithms. Lastly, we introduce multiple implementation techniques and present the
CrISA-X evaluation results on real hardware and simulation, and compare to all publicly
available prior-art and available designs and public codes.

3.4 Scope of our work
We have narrowed our focus to handle the extensive design space and engineering effort:

1. We are discussing a modular extensible processor with a base ISA that operates
on 32-bit architecture. Our proposal for an additional new ISA encoding space
ranges from 32-bit to 128-bit, which provides a wider set of ISAs and makes it more
generally powerful. It is worth noting that the NIST call outlines a requirement to
consider “8-bit, 16-bit, and 32-bit microcontroller architectures” [NIS22a], which is
in line with our direction.

2. We focus solely on the AEAD encrypt and decrypt API, rather than both the AEAD
and hash function API. The same kernel is used for both APIs.

3. We do not consider ISAP as the Ascon-p permutation used is already covered by
other algorithms like Ascon.

4. In this work, we do not provide support in the base ISA or instruction extensions
for implementing countermeasures against implementation attacks. This is left for
continuous research.

4 Methodology
4.1 CrISA-X Design Flow
Designing an application-specific custom processor, along with custom instructions, is a
challenging task for designers. They have to ensure that the resulting design is optimal

Oren Ganon and Itamar Levi 7

Figure: 2. High-Level design flow for CrISA-X instructions sets.

constantly. It is a time-consuming process that requires designers to evaluate numerous
combinations of available parts that make up the processor. Achieving an optimal design
is a difficult problem requiring much effort. Different design flows have been proposed
to overcome such a difficult design choice. Figure 2 gives one such design flow, which
outlines the process for designing CrISA-X instructions set for LWC algorithm. This
design flow profiles a set of LWC application programs and associated data. Profiling is
performed upon numerous processor configurations. Each configuration consists of the base
processor with one or more coprocessors. For example, the configuration might be a base
processor and a dual load-store unit. We gather extensive profiling analyzer data to identify
“hotspot” functions across LWCs, together with structural and functional aspects of the
code, particularly to the permutation implementation. Structural code analysis involves
examining its physical structure or form without necessarily delving into its functionality.
This analysis emphasizes the code organization, relationships between different program
components, and the overall architecture of the algorithm. We identify the flow of control
in the algorithm, including loops, conditionals, and branching. Additionally, we examine
how data is organized and manipulated within the algorithm, including arrays, linked
lists, trees, and more. This analysis helps us understand the code organization and
flow and aid in identifying potential areas for optimization by the new ISA extension.
Functional analysis, however, focuses on what the algorithm specifically does and how
well it achieves its intended purpose. The profiling data allows us to learn where the
program spent its time and which functions called which other functions while executing.
This information can show which pieces of the program are slower than expected and
might be candidates for rewriting to make LWC programs execute faster. It can also
tell us which functions are being called more or less often than expected. The analysis
of profiling data and cryptography’s structural and functional elements holds significant
importance in verifying code computations and their intensity. This analysis leads to
developing new instructions to meet the increasing computational needs. Once the profiling
has been performed on all these, a heuristic is used to select one of the configurations
for further optimization. In the second step, we develop an ISE for each computation
code. As the new instruction is tight to a processor architecture, we will examine both
aspects during the implementation. Instruction extension is realized through a hardware
implementation scripted in a specialized Hardware Description Language (HDL). The
CrISA-X design is classified based on the encoding space and computation logic utilized
to perform instructions. Other parameters, such as the number of operands used, input

8
CrISA-X: Unleashing Performance Excellence in Lightweight Symmetric Cryptography for

Extendable and Deeply Embedded Processors

Figure: 3. hardware/software co-design strategies (a) software only (b) loosely-couple (c) tightly
coupled and (d) ISA extension.

and output data, and computation logic, are also considered. Furthermore, we endeavor
to explore potential techniques for extending the modular processor to enable support
for varying levels of logic in instructions. This extension will cater to instruction sets
implementing low, mid, and high amounts of logic. The data output is designed to be ready
in a single cycle for instructions categorized as low computation logic. However, for mid to
high levels of computation logic, the implementation of computations spans multiple clock
cycles, mostly two cycles. This is all made to minimize the impact on processor operation
frequency. In the final step, we will analyze the tradeoffs and opportunities of using the new
ISA extension among a larger set of LWCs. We will explore how multi-LWC algorithms
can be created by building upon the single ISE designs and also search for opportunities
to optimize joint algorithms. As a result of this optimization flow, each new instruction
will be targeted for algorithm-specific or algorithm-agnostic use and algorithm C-code will
update accordingly to use the new ISA extension. Every new instruction incorporated into
an algorithm adheres to functional correctness. Also, each LWC application validates that
the algorithmic behavior aligns with the original across various test patterns, which will
be expounded upon later in this paper.

4.2 Selecting the Accelerator Models

To cope with reaching high-performance challenges, hardware/software co-design strategies
are usually employed. For a given LWC algorithm, the goal is to find an optimal assignment
of tasks between software running on reduced instruction set computer (RISC) processors
and hardware implemented as accelerator logic. By splitting the tasks of an algorithm into
hardware and software elements, high-speed and flexible implementations can be developed.
Various options exist for accelerating cryptographic solutions based on embedded processor
core [PMMB22, SZII11, Sea01]. These options differ in throughput, flexibility, range of
solutions, and area cost. Refer to Figure 3 for illustrations of the main implementation
options. Software implementation of cryptographic algorithms is clearly a simpler and
easier approach. It does not require a specialized hardware block. It does not impact the
die size and therefore does not raise system costs. This approach requires some code space
in the instruction memory, making updating and maintaining the cryptographic code easy
and affordable. The processor is designed to run algorithms with pipeline architecture
efficiently, supporting conditional execution, function calls, and stack memory. It is also
optimised for complex mathematical operations, including integer multiplications and
floating-point calculations. However, processors may be less effective when executing
cryptographic procedures involving many bitwise operations within a loop. This is because
each bitwise operation can only be implemented as a single processor instruction in a
single cycle [PS00]. Software-only implementations should be considered a last resort when

Oren Ganon and Itamar Levi 9

high-computation cryptography algorithms are required for low-latency applications on
general-purpose processors.

A high throughput approach for accelerating cryptographic algorithms uses hardware
logic, described in 3(b,c). Hardware logic accelerators can execute code in a few or single
cycle and achieve significant speedup. There are two categories of accelerators: tightly and
loosely coupled. In a loosely coupled (LC) implementation, an accelerator is positioned
outside the processor core, and it operates independently like a co-processor. The LC
accelerator logic works similarly to a hardware function call. It is designed to be out-of-core
and communicate via a system bus. This prevents the logic from degrading the processor
pipeline’s performance. As a result, the accelerator logic blocks can be coarse-grained
with complex data paths that accelerate a complete LWC kernel implementation. On the
other hand, the BUS interface can take care of heavy communication back and forth from
the processor to the accelerator logic. LC hardware implementation requires additional
hardware space and power consumption for the overall cryptographic solution. This
design mostly speeds up a specific cryptographic algorithm with limited configuration
space. However, LC hardware implementation is not dependent on the operating system or
runtime code. The operation frequency executed in out-of-core hardware can be different
and faster than the core.

A tightly coupled (TC) approach involves adding accelerator logic fused into the core
pipeline and adding new ISA instructions to use this logic appropriately. This approach
adds hardware functional units that can operate in parallel with existing ones to expedite
critical parts of an application kernel. Extending the processor hardware to support
this additional logic can minimize data processing bootblack and boost the application
performance. TC logic is part of the processor pipeline and interacts during pipeline stages.
TC logic and the core pipeline can access the same resources, such as the register file,
processor state, data memory, etc. New instructions designed as TC potentially stalled
in case of data dependency constraints. TC includes special instructions in its ISA to
manage operations, typically communicated to software through compilers or low-level
libraries. A typical application case for TC is a sequence of bitwise operations that rely on
different logic, like LWC permutation. Integrating TC accelerator logic can be challenging
for hardware designers. Firstly, it can complicate the CPU design. Secondly, it may pose
timing closure challenges since the TC logic is required to meet the same clock-frequency
constraints as the processor. Finally, TC accelerators have limited flexibility in terms of
portability across different LWC algorithms. From a system-level perspective, decoupling
the LC accelerator from the processor provides greater flexibility than the TC model.
With the LC accelerator running, the processor can perform other tasks or shut down to
conserve energy. On the other hand, the TC model requires less effort from the compiler
and toolchain since the LC extension is integrated into the pipeline and extended ISA.

A standard general-purpose processor can only perform single bit-wise logical operations
on limited operands per cycle [PS00]. An alternative design strategy is to augment the
core processor with custom ‘light’ instructions that fuse a few base ISAs together, as
described in Fig. 3(d). Using those new custom instructions with extensible processors that
have wide data and instruction interfaces will bring higher levels of data and instruction
parallelism. These new instructions, which form a minimal set of additional instructions
to the base ISA, are supported by the processor toolchain and can be executed in a single
cycle compared to the same functional implementation with only basic ISA instructions.
lightweight custom instruction can potentially improve computation block speed and reduce
memory space without significantly impacting the processor timing paths and clock rate.
Using the ISA extension method, we can implement LWC with fewer instructions as the
new instructions are inline with kernel implementation, resulting in a significant boost
in performance for long-latency calculations. As those new custom instructions fuse only
a few operations together, they can potentially cater to a wide range of cryptographic

10
CrISA-X: Unleashing Performance Excellence in Lightweight Symmetric Cryptography for

Extendable and Deeply Embedded Processors

Figure: 4. Multidimensional Design Space for Customizable Processor

applications. Designing a lightweight extension ISA to support LWC achieves balance
against high hardware costs, requiring expertise in application, instruction set design, and
processor design.

4.3 Extensible Customizable Processors
The extensible customizable processor is rooted in the principles of classical Reduced
Instruction Set Computing (RISC) architectures. It boasts the ability to be configured in
numerous dimensions, as is illustrated in Figure 4.

Firstly, in terms of the basic design, several core architectural key elements can be
incorporated to enhance the base processor, including functional units, instruction and
data bus width, number of load-store units (LSUs), number of instruction fetch, etc. By
carefully selecting and adapting the appropriate hardware block to the data and instruction
processing needs, the processor architecture can be tailored to meet the specific requirements
of LWC applications, resulting in improved algorithm execution times. Secondly, the base
instruction set can be extended by user-defined custom instructions. Performance-critical
code portions that require multiple instructions on a generic RISC architecture can be
compressed into a single, user-defined instruction to obtain a significant speedup. Thirdly,
The processor possesses an array of registers and states, including processor state, custom
registers, and register files, that are expandable. By expanding these registers, we can boost
the number of registers available or adapt them to varied data formats. This increases
storage capacity for essential data, intermediate results, or control signals. With more
register, the processor can access and manipulate crucial information more efficiently,
reducing the requirement for frequent data transfers to external memory and elevating
overall performance. Lastly, Implementing a new architecture necessitates a comprehensive
update of the toolchain, including the instruction-set simulator, compiler, debugger,
assembler, and all associated tools. By doing so, developers can create applications for
the processor and evaluate their performance with greater efficiency and accuracy. It is
imperative that this update is executed promptly to ensure the seamless integration of
the new architecture into existing systems and to facilitate the development of optimized
software for enhanced performance.

4.4 Challenges with Instruction Extension
The augmentation of an existing processor’s ISA with custom instructions extension has
emerged as a popular approach for enhancing application execution speed. Nonetheless,
designing a new instruction set architecture is a critical task requiring meticulous planning

Oren Ganon and Itamar Levi 11

and consideration. Developing an ISE poses several challenges that must be carefully
addressed to ensure an efficient and effective design.

The first challenge in designing an extension is identifying the proper compute block
to implement as new instructions. Cryptography tasks involve intensive mathematical
computations using bitwise operations, memory access, and flow control, including data
movement, manipulation, and boolean logic operations. Breaking down the function
execution time is crucial in identifying software bottlenecks suitable for replacement
by the new ISA extension acceleration. The design of the instruction extension must
show measurable performance gains on the target workload. The instruction extension
should focus on accelerating the application code’s hottest and most frequently executed
sections. This strategy is an application of Amdahl’s law, which suggests that the useful
effect of optimization is maximized by covering the dominant areas of the program code
with acceleration. However, just replacing the group of base ISA sequences with new
instructions doesn’t guarantee a performance boost as there is a certain overhead for
register load/transfer associated with a new instruction.

In order to guarantee that newly introduced instructions have a substantial impact on
latency, the second challenge lies in identifying, within the hottest compute block, the
specific components that should transfer the new instructions. This analysis should take
into account a few parameters: (1) the input and output register amount and immediate
values. this will impact the number of register file ports for input and output ultimately
defining the bandwidth to and from the extension hardware. (2) registers width and
datatype (3) points in logic data flow where there are no register mutual dependencies,and
the instruction extension can be scheduled.

Designing a new ISA extension requires careful consideration of instruction encoding
space as it is a limited resource, which makes instruction encoding the the third. As
the encoding space is inherent in the processor bus width, the encoding scheme should be
efficient, compact, and compatible with the existing encoding formats. While designing a
new instruction, the challenge is to allocate the minimum space, considering the opcode,
number of registers, immediate, and states, while achieving the maximum computation.
This challenge will be addressed later in this paper by categorizing instruction according to
encoder space and computing level. With a modular processor, we extended the instruction
bus to be large, with more space for long instructions. Moreover, the VLIW option for
partitioning the wide instructions into custom slots will create a multi-slot VLIW machine,
each slot capable of executing one of a set of operations in parallel. We must carefully
analyze and decide which instructions will get into groups based on the dependencies
between instructions. There can be dependencies between instructions in a group, but
they can cause pipeline hazards. This analysis should be per the LWC algorithm, and once
we reach a solid optimal design, we should go one step further and tune which instructions
will get into groups from joint algorithm aspects.

The power-performance-area (PPA) trade-off is a the the forth challenge. New
instructions have direct implications for processor hardware. The processor area and
timing are the most viable processor characteristics that get impacted and must be taken
care of carefully. Heavy combinational logic embedded in the instruction logic impacts
the processor area and can cause long-timing paths. for instance, new instructions may
involve adding more function units that should work sequentially. Moreover, In the case of
a few institutions running in parallel, there is a potential scenario in which more than one
instruction needs to access the register file. Therefore, the register file design would have
many ports, potentially muxing together, creating a more complicated access path, being
prominent in the area, and possibly bringing timing constraints. Instruction extension
design must also consider the cost and power implications of adding new instructions to
the processor. New instructions can increase the processor’s size and complexity, leading
to higher costs and power consumption and decreasing the max processor frequency. A

12
CrISA-X: Unleashing Performance Excellence in Lightweight Symmetric Cryptography for

Extendable and Deeply Embedded Processors

well-designed ISE can result in a lower footprint in the hardware area, i.e., gate-gate.

4.5 Profiling

Identifying and adding instruction extensions to existing base processors has been exten-
sively studied. A significant body of literature has been published on this subject over the
years [CMS07,CZM03,KR06,YM04,CHKP98]. The typical approach involves starting
from the application code, identifying a large set of ideal ISE candidates from a compiler
intermediate or from generated convex sub-graphs from the data flow graph (DFG), and
then searching for the optimized ISE. Although, those methods satisfy the processor I/O
constraints, the outcome is limited for specific processor architecture. It does not consider
the various options to extend the processor hardware for DLP and ILP to gain more
speedup for computation block across more than one algorithm. Our philosophy is different,
and we used a profiling analyzer based on the GNU gprof [FS88] to identify “hotspot”
functions across a set of LWCs. The “hotspot” function consumes a substantial amount of
the execution time of the specific algorithm. The profiling step gathers data about the
application instructions executed with “hotspot” functions from the actual execution of
the program. Instruction Set Simulator collects profile data from the target application in
a non-intrusive manner so that it does not affect the actual functioning of the original code.
The profiling tool records the execution of every instruction in a cycle accurate manner.
We use different types of analysis outputs to understand our program’s performance. The
flat profile shows how many times each function was called and how many cycles it used.
This information helps us identify the functions that require the most computation. The
call graph displays the amount of time taken by a function and its associated functions. By
analyzing this information, we can identify functions and the function assembly code, that
may not take much time but trigger other functions that consume substantial amounts
of time. Finally, we use line-by-line profiling, assigning histogram samples to individual
assembly lines of source code instead of functions.

Profiling data guides the block computation selection of which translate to CrISA-x
instructions set. The profiling step of the process is performed using a cycle-accurate in-
struction set simulator (CA-ISS) that supports both the entire base ISA and the introduced
new extended CrISA-x instructions. The CA-ISS model simulates the processor at an
abstraction level between the RTL and the functional model. It presents the architectural
details necessary for the processor dimension to evaluate its performance capabilities in ad-
vance. A CA-ISS runs on a host machine to mimic the functional behaviors of instructions
running on target hardware. CA-ISS allows the estimate of the execution time of software
in a cycle accurate way and validates a system even when its target hardware does not yet
exist or is not available. A CA-ISS reflects a target hardware logic and conforms to the
cycle-by-cycle behavior of the target system. It can produce the same number of cycles as
the actual execution on the target hardware. We used the execution statistics gathered by
the profiling tool, combined with instruction timing values, like cycles required to execute
each instruction, to give an accurate number of cycles required to execute the application
on the base ISA and with CrISA-x instruction. The speedup of the enhanced ISA version
relative to the base ISA version can be computed and compared fast. The profiling tool
determines how many cycles are required to emulate each instruction executed from the full
ISA, which is not supported by the base ISA. This is calculated by counting the number
of base instructions executed by software modules used to emulate these instructions and
scaling the results according to the number of clock cycles that are required to execute
each base instruction executed.

Oren Ganon and Itamar Levi 13

4.5.1 CrISA-X illustration

An illustrative example will be presented in this section to provide a comprehensive
understanding of the CrISA-X methodology. Furthermore, we will show the concept of
issuing multiple instructions, including CrISA-X , on the same cycle. Later in this paper,
we will delve deeper into these topics, examining them in greater details.

To illustrate these, consider the ASCON permutation described in listing 1, where
profiling numbers (mark as (xK)) indicate that significant application’s execution time is
spent computing the c-code statement as part of permutation flow.

Listing 1: Basline c-code Ascon permutation
1 (10K) x0.e = x0.e^x4.e;
2 (10K) x0.o = x0.o^x4.o;
3
4 (10K) x2.e = x2.e ^ (~x3.e & x4.e);
5
6 (10K) x3.e = x3.e ^ ((x3.e>>4)|(x3.e < <28));

The provided C code explains how the permutation works in both linear (lines 1-4) and
nonlinear parts. For example, in the linear part (e.g., lines 1 and 2) section, two data input
registers, one odd (o) and one even (e), are XORed, which requires two base instructions,
not counting the instructions required for loading and storing the data. Later in the code,
in the nonlinear section, an intermediate value goes through a bitwise NOT operation,
and then a bitwise AND operation is performed. The result is then XORed to obtain the
final value, which takes three base instructions. In line 6, an instruction involves rotating
a 32-bit input by performing a circular shift, followed by XORing the result to obtain the
final value. This operation comprises two basic instructions.

Listing 2: Crisa-X code Ascon permutation
1 XOR2(x0.e,x4.e,x0.o,x4.o);
2
3 x2.e = XORNOTAND(x2.e,x3.e,x4.e);
4
5 x3.e = XOROT(x3.e,x3.e ,4);

As described in listing 2, these c-code and corresponded assembly instruction can be
fused into three different single-cycle fused instructions called XOR2, XORNOTAND, and
XOROT. Each instruction uses one or two input operands from the processor register file
to compute the output value and save it back to the register file. The semantics of those
instructions and others will be described later. The software toolchain updates as-well and
recognizes the new instructions in addition to the processor base ISA. Fused instructions,
as described in listing 2, are significantly cheaper in area and have a limited access port
for the register file because they operate on restricted data sets. A computation that
previously took seven assembly bitwise operations, each taking seven cycles per iteration
on a base processor, now only requires three cycles, resulting in nearly a 3x performance
increase. This kind of instruction will be defined later on in this paper as Crisa-X Generic
Atomic.

Instructions extensions that involve more input and output operands, and therefore
implement more involved computation can be designed with logic that spans multiple
clock cycles. Such instructions, defined later in this paper as Crisa-X Block Specific and
Procedure Specific can be fully pipelined and can be issued back-to-back or in an iterative
manner. Fully pipelined instructions achieve higher performance because they can be

14
CrISA-X: Unleashing Performance Excellence in Lightweight Symmetric Cryptography for

Extendable and Deeply Embedded Processors

issued back-to-back, but they may also require extra implementation hardware to store
intermediate results in the instruction pipeline.

Creating instruction extensions for customized processors goes beyond the fusion of
several operations into a single instruction. We can improve instruction-level parallelism
(ILP) by bundling multiple instructions into a single long instruction word (LIW) and
executing them simultaneously in parallel. In VLIW, the compiler explicitly schedules
multiple independent instructions into a single, long instruction word, which is then issued
to the processor, executing all instructions in parallel. Different types of instructions can
be used, including base instructions and dedicated CrISA-X instruction, which can be
freely intermixed to optimize performance. The instructions are divided into slots. Each
slot represents a group of instructions that can be executed in parallel within a single clock
cycle. Slots are not equally sized. Any combination of the operations allowed in each slot
as far as the encoding space allowed. With multiple instructions bundled into a single
slot, the processor only needs to fetch and decode one instruction word per cycle. This
simplifies the instruction fetch and decoding stages, reducing the complexity and overhead
of these stages in the processor’s pipeline. Slots allow the processor to efficiently utilize its
available resources, such as functional units and registers

Consider the Ascon permutation example. The inner loop performs the actual compu-
tation using three-fused instructions. It also utilizes two L32I load instructions and one
S32I store instruction to move the data as needed3. Additionally. listing 3 describe the
ILP way to accelerate this code. In this example we are using a 64-bit instruction format
with one slot for the load and store instructions two slot for the computation instructions.

Listing 3: Ascon permutation slot setting
1 format flix3 64 {slot0 , slot1 , slot2}
2 slot_opcodes slot0 {LD_INST , ST_INST }
3 slot_opcodes slot1 {LD_INST , XOR2}
4 slot_opcodes slot2 {XOR2 ,XORNOTAND ,XOROT}

The first declaration creates a 64-bit instruction and defines an instruction format
with three opcode slots. The last three lines of code list base ISA instructions to be
available in each opcode slot defined for this processor slot configuration. Note that all
the instructions specified are predefined, some of them are core processor instructions, and
others are CrISA-X. For this example, the compiler can compile the source code using
slot extension definitions without any changes to the generated C/C++ program. The
generated assembly code for this processor implementation is described in listing 4:

Listing 4: Ascon permutation assembly VLIW look
1 loop:
2 { $LD_INST ; LD_INST ;XOR2}
3 { $ST_INST ; LD_INST ; XORNOTAND }
4 { $ST_INST ;XOR2; XOROT}

A computation that requires fourteen cycles (nine cycles for operation and 5 cycles for
load-store) per iteration/data input on a base processor, with multi-issue and extended
ISA only requires three cycles per iteration, resulting in nearly a 5x performance increase.
In the context of supporting multiple algorithms and achieving pareto-optimality, it is
necessary to establish an instruction slot format that ensures no algorithm can be improved
without negatively affecting another algorithm. This is accomplished by striking a balance
between the various algorithms, such that we add ISEs for each algorithm so that it can

3Noted that the term “32” in this context pertains to operands with a bit length of 32, while “I” denotes
an immediate value integrated directly into the instruction.

Oren Ganon and Itamar Levi 15

Figure: 5. CrISA-X Classification together with Processor Extensions. Previous work (red)
described in Table 2

perform well on its own, and we increase as little as possible the complexity of these new
ISEs so that they can be shared as much as possible between algorithms; clearly, without
increasing cost and area significantly.

5 Design
In designing CrISA-X for performance-acceleration of LWC code, we have adopted a

two-fold approach comprising the design of an instruction extension and processor exten-
sion. This approach optimizes LWC code performance by leveraging the ISA extension’s
capabilities and the extended RISC processor. By doing so, we can extend a group of
custom hardware resources to support a new instruction set. Adopting a new instruction
set and removing constraints on processor architecture minimize the processor area and
maximize the utility of ISE designs. The relationship between software and hardware
processors is illustrated in Figure 5. In the case of an extendable processor, CrISA-X
instructions are defined and formatted as part of implementing the software layer for LWC.
The base ISA is the sole means of interaction between applications and the underlying
hardware at the lower layer. The CrISA-X Extended ISA specifies additional instruction
using function unit extensions and registers throughout the processor’s extended ILP and
DLP hardware.

5.1 Extending Processor Architecture
The processor architecture can be extended in several dimensions: (1) The scalar Register
File has been extended to support multiple input and output operands with multi-read
and write ports. (2) The width of the processor’s data and instruction bus has been
extended to allow for simultaneous transfer of instructions and operands, reducing memory
accesses. (3) The processor fetch and execution units have been designed to execute
multiple instructions in parallel by packing them into a single long instruction word. This
parallel execution allows for improved performance by exploiting ILP. (4) Extending the
processor with additional load/store hardware to allow multiple memory operations to
be executed in parallel. (5) Additional constant, state, and array registers have been
added to the processor’s register space. These single-cycle access registers are built along
the processor pipeline to provide dedicated or temporary storage that can be shared and
used between new instruction sets. (6) Instruction extension includes fused and SIMD
operations. The first creates new instructions composed of several simple bitwise operations

16
CrISA-X: Unleashing Performance Excellence in Lightweight Symmetric Cryptography for

Extendable and Deeply Embedded Processors

Figure: 6. (a)CrISA-X trade-offs Power-Performance-Area(PPA) vs Number of operands,
Functional-Units (FUs) and amount of computation (b) CrISA-X categories

and the second designs instructions that simultaneously perform operations on multiple
data elements.

5.2 Extending Processor Instruction Set
Various implementation styles are available when designing an accelerator to support cryp-
tographic algorithms on a general-purpose processor. These techniques can be algorithm-
agnostic or algorithm-specific and use hardware, software, or a hybrid approach using
Extended ISA. The approaches of Extended ISA can be categorized based on the number
of operands, amount of computation, and instruction encoding space. These are dubbed
specific-atomic, specific-block, or specific-algorithmic ISA as describe in Figure 6.

The generic-atomic (GA) approach is an instruction extension that encapsulates
several bitwise operations happening in series, which are not available as part of the base
ISA. CrISA-X GA usually have two to four operands, with part of them serving as the
destination. The instruction encoding is kept short. These instructions are algorithm-
agnostic, allowing them to be applied to any type of algorithm. This versatility makes them
suitable for implementing a vast spectrum of LWC implementation. Their re-usability across
different contexts and applicability to a wide range of cryptographic algorithms ensures
they can balance performance and flexibility in general cryptographic implementations.

The specific-block (SB) family refers to an instruction extension that encapsulates
multiple bitwise operations and accomplishes large computational tasks that might executed
within a multi-cycle. CrISA-X SB instructions usually involve a substantial number of
operands, typically ranging from four to eight, with one or more serving as the destination.
The instructions use few parallel execution units to support narrower permutation building
blocks that require a significant amount of computation.

The generic-atomic, GA, and specific-block approaches prioritize certain operations
within the scope of individual permutations. The specific-algorithmic (SA) approach,
on the other hand, encompasses a comprehensive sequence of operations that span across
the entire permutation block as an interdependent single unit.

The specific-algorithmic is an instruction extension designed as tightly coupled accel-
eration logic that spans over more than a single cycle. The logic represents specific tasks,
such as Ascon or Keccak permutation, and targets extensive computation. Instructions
from this family involve multiple operands, often more than eight, and one or more serve
as the destination. The length of instruction encoding is wide. The CrISA-X SA has been
designed to avoid register spills to stack memory, i.e., temporary load and store operations
during the permutation round. The extensive computation behind a specific algorithmic
instruction allows for significant performance improvement when executing cryptographic
LWC. However, the hardware implementation necessitates an increased gate count and
impacts the maximum frequency of the processor pipeline. To minimize the impact on
the critical path, we divide the specific algorithmic logic computation into two cycles and

Oren Ganon and Itamar Levi 17

Figure: 7. Ascon’s Permutation steps

retime the signals as necessary.
Readers which are more focused on understanding bottom-lines and conclusions, and

less interested in the deep technical details per each algorithm, can continue reading from
Section 6.

5.3 ASCON
The Ascon submission presents a detailed analysis of several algorithms, including Ascon-
128, Ascon-128a, Ascon-80pq, Ascon-Hash, and Ascon-Hasha, as reported in the work
of Dobraunig et al [DEM+19]. However, the primary focus of the submission is on the
Ascon-128 algorithm and its kernel. This kernel is composed of the pa and pb kernel
permutations, where “p” denotes a single permutation, and “a” and “b” represent the
number of rounds. The Ascon permutation, denoted as “p”, comprises three layers: Round
constant addition, Substitution layer, and Linear layer. This permutation operates on a
320-bit state, divided into five 64-bit words χ0, χ1, χ2, χ3, and χ4. In the round constant
addition layer, χ2 input is XORed to the round-specific constant. The substitution layer
is typically implemented using logical ANDs, XORs, and NOTs, while the linear layer
employs shift left and XOR operations.

CrISA-X description: To demonstrate the CrISA-X instruction set, the Ascon-
128 algorithm is used in a bit-interleaved manner on a 32-bit processor. Each 64-bit
word of the state is divided into two 32-bit words. One word contains the bits at even
positions, and the other word contains the bits at odd positions. This representation can
exploit the 32-bit register extension without paying latency overhead for accessing a 64-bit
register file. However, this comes at the expense of conversions between the bit-interleaved
representation and 64-bit representation whenever data is injected into or extracted from
the state. CrISA-X hides this latency as part of the instruction logic as it includes bit
extraction from the state as a pre-operation.

The bitwise logic for the non-linear and linear layers is illustrated in Figure 7. These
layers involve logical operations performed on 64-bit words, which can be split into two
operations on 32-bit chunks. The substitution box requires extensive base instructions, split
between 44 XORs, 12 NOTs, and 10 ANDs, 19 shifts, and 19 ORs, spread between even
and odd parts. In total, there are about 104 native instructions per round. Depending on
the amount of computation it encapsulates, the various uses of the CrISA-X instruction are
represented by different colors, as shown in Figure 7. It takes 16 instructions to implement
the generic-atomic in the linear layer, while the non-linear layer requires 14 CrISA-x
instructions, resulting in a total of about 30 CrISA-X instructions. The permutation layer
can significantly speed up the process by a factor of 5x. Figure 8 describes the generic-
atomic semantic use to speed up Ascon permutation. Immediate values can be used to
specify rotation amounts. When implementing the S-box with the specific-block approach,
only the new 8 instructions’ are needed. The linear layer requires the new 10 instructions’

18
CrISA-X: Unleashing Performance Excellence in Lightweight Symmetric Cryptography for

Extendable and Deeply Embedded Processors

XORNOTAND at, as1, as2
at ⇐ at xor ((not as1) and as2)

XORROTIMD at, as, imm
at ⇐ at xor (at>>imm) or (at>>32 − imm)

XOR2IMD at1, at2, imm1, imm2
at1 ⇐ at1 xor imm1
at2 ⇐ at2 xor imm2

XOR2 at1, as1, at2, as2
at1 ⇐ at1 xor as1
at2 ⇐ at2 xor as2

Figure: 8. CrISA-X Generic Atomic instruction for Ascon permutation

ASCON_LINEAR ast0e, ast0o,..., ast4e, ast4o
begin

temp$ast0e⇐ast0e xor rot32(ast0o,4)
temp_ast0o⇐ast0o xor rot32(ast0e,5)

..
ast0e⇐temp$ast0e xor rot32(temp$ast0e,10)
ast0o⇐temp_ast0o xor rot32(temp_ast0o,10)

end
func : rot32(in, ofs) = (a >> ofs)or(a << 32 − ofs)

Figure: 9. CrISA-X Block-Specific for Ascon Linear layer

ASCON_nonLINEAR ast0e, ast0o,..., ast4e, ast4o
begin

tmpe0⇐ast0e xor ast4e
tmpo0⇐ast0o xor ast4o
mide0⇐tmpe0 xor

xornotand(tmpe0, tmpe1, tmpe2)
mido0⇐tmpo0 xor

xornotand(tmpo0, tmpo1, tmpo2)
..

ast0e⇐mide0 xormide4
ast0o⇐mido0 xormido4

end
func : xornotand(a, b, c) = a ⊕ (˜b&c)

Figure: 10. CrISA-X Block-Specific for Ascon Nonlinear layer

when using the wide instruction bus approach. With this, the permutation layer can
achieve a speed-up of up to 8 times faster. while implementing with specific-procedure
brings 10x factor. Figures 9, 10 describe the appropriate semantic for block level.

5.4 Elephant
The mode of Elephant is a nonce-based encrypt-then-MAC construction, where encryption
is performed using counter mode and message authentication using a variant of the
protected counter sum MAC function. The Elephant submission specifies a few AEAD

Oren Ganon and Itamar Levi 19

algorithms, Dumbo, Jumbo, and Delirium [DEM+19]. To focus we choose one and
specifically concentrate on Delirium: namely Delirium = Elephant-Keccak-f[200].

The delirium permutation was selected because the keccak permutation is widely used
in other lightweight algorithms. The Keccak-f [] permutation is the fundamental building
block for SHA3, and for two candidates in the CAESAR competition, namely KEYAK
and KETJE [BDP+14,BDPA15,Dwo15,RS16]. The permutation function is computed
using 25 Keccak states, marked as A0 to A24. Each state is 8 bytes and the iteration is
performed over a set of 8 rounds. The state data can be saved using extended register files,
resulting in fewer data movements than only exploiting register files in the baseline core.
In brief, five keccak steps are defined by five operators symbolized by θ, ρ, Π, χ, ι. θ , The
most extensive ones are illustrated in Figure 11. θ step requires XOR between five states,
then rotating left by a factor of one to get Di states. The last step is Di states XORs
with Ai states. ρ step is for left rotate all lanes in the state by a fixed offset. For efficient
implementation of the ρ step, left rotation by the Keccak constant tables are saved as the
hardwired processor state. In the Π step, all lanes in the state are transposed in a fixed
pattern. This step can be done using only MOV instruction. Next, is χ, where each bit
of the lane is non-linearly combined with the bits of nearby lanes using AND, XOR, and
NOT instructions. Last is ι: a simple XOR of constants into a single lane. An in-depth
explanation of the keccak permutation can be found in the reference [BDPVA09]. The
state of a 5x5x8bit keccak can be viewed as w-slices of 25 bits each or as five planes with
five lanes of 8 bits each. Our research employs a layered design that groups four states into
a single 32-bit input. The CrISA-X instruction logic effectively hides the latency penalty
by handling data separation back to an 8-bit representation as part of the instruction. All
the steps involved in the keccak algorithm, except for Π and ι, can be efficiently performed
using the CrISA-X instruction from various categories. The Π and ι steps mainly involve
moving data from one register to another and do not have a significant impact on latency.

CrISA-X description: To showcase the CrISA-X instruction set, we decided to store
the keccak in the extended register file. We wanted to work only with full 32-bit variables
instead of 8-bit variables. Thus, we replaced all byte variables with uint32 variables,
which resulted in a state representation that consisted of an array of seven 32-bit words.
The Keccak permutation steps are illustrated in Figure 11. Each category of CrISA-X
instructions is represented by a different color. For the generic-atomic instruction set,
we use XOR5 and XOR5m, the last one involving immediate value as inputs. These
institutions perform XOR operation between five operands or immediate and produce
the result in a single cycle. In addition, two new fusion instructions have been designed:
ROLXOR, which brings rotate-left and XOR together, and XORANDNOT, which fuses
XOR with the result of NOT-AND operations. Figure 12 presents the pseudo-code for
Keccak and demonstrates the use of specific-block and specific-procedure instead of original
operations. The instruction set for the specific block implements the full θ, ρ, and χ keccak
steps in a single instruction. ‘Block’ operation approach is possible for custom processor
hardware where the state can be stored in a custom register file. Instruction logic can
efficiently read the state in a lane-wise or fashion, and operate, depending on the keccak
step. The keccak state is composed of 200 bits, which can be arranged in seven 32-registers.
This allows for the creation of a hardware logic that can perform all permutations in one
instruction, known as a specific procedure. The input and output for this instruction will
be seven 32 registers from the extended register file. The logic of the instruction includes
five Keccak operators - θ, ρ, Π, χ, ι. θ executed back-to-back.

5.5 GIFT-COFB
GIFT-128 is a member of the GIFT block cipher family. It uses a substitution-permutation
network (SPN) with the key length and block size set to 128 bits. The algorithm and
its implementation are described in reference [BCI+19,BPP+17,MSA22]. The function

20
CrISA-X: Unleashing Performance Excellence in Lightweight Symmetric Cryptography for

Extendable and Deeply Embedded Processors

Figure: 11. keccak permutation θ, ρ, and χ steps

Figure: 12. Keccak pseudo code along with CrISA-X classification

Figure: 13. Quintuple steps description

giftb128 () is the most cycle-intensive function, and it consumes 90% of all the LWC
reference code and implements a 40-round block cipher. Input is a 128-bit cipher state
expressed as four 32-bit slices S0, S1, S2, and S3. The round function consists of quintuple
steps repeated eight times. Each quintuple step is a group of operations that happen in
serial and are repeated five times. the steps are: SBOX, Nibble\byte\half-word rotate
right, then result in XOR with round-key and last with round-constant, describe in Figure
13.

CrISA-X description: The GIFT-128 cipher uses a 32-bit register nativity. Thus,
the CrISA-X instruction is designed to take advantage of this and focuses on fusing bitwise
operations into a single instruction that can be executed in a single cycle. Three new
fusion instructions have been developed for the Generic Atomic set: XORAND, ROTOR,
and XORSHFTAND. Instructions semantics are described in Figure 14. They are used as

Oren Ganon and Itamar Levi 21

XORAND (XOROR) at, as1, as2
at ⇐ at xor (as1 and (or) as2)

ROTOR at imm1, imm2, imm3, imm4
at ⇐ ((at>>imm1) and imm2)) or

((at<<imm3) and imm4))
XORSHFTAND at, as1, as2, as3 imm

at ⇐ (as1 xor (as2>>as2)) and imm

Figure: 14. CrISA-X Generic Atomic instruction for GIFT-COFB permutation

building instructions to speed-up core computation. With the Specific-Block set, we design
interactions that take as input the four S0, S1, S2, and S3 and compute the full SBOX.
The same is performed for other instructions: ROTOR, ROTXOR, and SWAPMOVE. For
the Specific-Algorithm, we design a single interaction that calculates QUINTUPLE round
in a single instruction.

5.6 Grain-128AEADv2

Grain-128AEADv2 is an authenticated encryption algorithm with support for associated
data. we logically divide the cipher into two phases. The first phase is the loading phase, in
which the shift registers are loaded and initialized with the key and the nonce. Second, the
cipher enters the running phase, in which pre-output is generated both for encryption and
authentication. A pre-output generator is constructed using a linear feedback shift register
(LFSR), and a non-linear feedback shift register (NFSR), which are 128 bits each, and
generates a stream of pseudo-random bits used for encryption and the authentication tag.
The authentication phase consists of a shift register and an accumulator. The algorithm
performs several functions, but the keystream generation, authentication, and loading
phases require the most cycles. In these phases, the system works with 32-bit words and
uses various bitwise operations such as shifts, ANDs, and XORs to calculate feedback bits
for LFSR and NFSR and generate the new key stream.

CrISA-X description: We created fusion instructions composing multiple operations
into one to speed up such operations. For the Generic-Atomic set, we use the ROTXOR
instruction, which its semantics is describes in Figure 16. This flexible instruction can
take three 32-bit operands as input, one operand as output, and two immediate values.
By shifting the bits individually, we can extract a 32-bit word from a 64-bit word in many
different ways. The authentication mechanism in Grain-128AEADv2 is based on a universal
hash function, introduced in [WC81]. For hashing, the message is multiplied by a Toeplitz
matrix where the Toeplitz matrix multiplication is implemented using XOR the shift
register with the accumulator for each single bit in the byte that we are authenticating and
shift in the keystream byte that has been retrieved before, for that we use Generic-Atomic
ROTXOR, SHIFTLXOR and XORAND operations. Extending the processor data bus
to 128 bits, we can load and save all state data back to memory with a Spcific-Block
instruction called LOAD128B and STORE128B. After loading the data, it can be divided
into four 32-bit variables: S0, S1, S2, and S3. These variables are saved on the processor’s
extended register file and available for both CrISA-X and base instructions. The algorithm
extracts a 32-bit word from a 64-bit register through independent registers, so we can
fuse them in a single instruction. We utilize this data group and create Specific-Block
instructions calculating the BLOCKROTXOR as illustrated in Figure 15. For Specific-
Algorithmic, we use the same processor extension to design a single instruction for the
entire core computation of GRAIN128_NEXT_KEYSTREAM.

22
CrISA-X: Unleashing Performance Excellence in Lightweight Symmetric Cryptography for

Extendable and Deeply Embedded Processors

Figure: 15. GRAIN128 extract a 32-bit word from a 64-bit register with Specific-Block

ROTXOR at, as1, as2, imm1, imm2
at⇐as1 xor(as1>>imm1)xor(as2<<imm2)

Figure: 16. CrISA-X Generic Atomic instruction for Grain128 core

XOROR2(XORAND2) at1, at2, as1, as2,
imm1, imm2

at1⇐at1 xor as1, at2⇐at2 or(and) as2

Figure: 17. CrISA-X Generic Atomic instruction for PHOTON-Beetle core

5.7 PHOTON-Beetle

The PHOTON-Beetle is an authenticated encryption and hash family, that uses a sponge-
based mode Beetle with the PHOTON256 being the underlying permutation [BCD+19].
We focus on the primary algorithm PHOTON-Beetle-AEAD[128] bit sliced version. The
PHOTON256 permutation operates on an internal state of 256 bits. Bit-slicing code
slices the 256-bit data into an 8x32 words array, organized in 8 rows. The permutation is
composed of 12 rounds, each applying 4 round functions: these are AddConstant, SubCells,
ShiftRows, and MixColumnsSerial. SubCells applies a 4-bit S-Box to each of the 64 4-bit
cells. ShiftRows rotates the position of the cells in each of the rows, and MixColumnSerial
linearly mixes all the columns independently using serial matrix multiplication.

CrISA-X description: The AddConstant step performs the XOR operation on each
word out of eight with the correct constant. To make this operation faster, we utilize
the Generic-Atomic XOR2 instruction to double the throughput. Additionally, we save
the round constant as a hard wire table. This helps to minimize the new instruction
encoding as we only use an index reference to the constant table. To fully utilize the
capabilities of the 32-bit processor and its extensions, we used the bit-slicing code for
PHOTON256, especially this can be seen for the SubCells step. The basic concept of bit
slicing involves converting the code into a sequence of logical operations such as AND,
XOR, OR, and NOT, which can be executed on a standard- processor ISA [SOM]. For the
Generic-Atomic instruction set, we have combined and optimized several operations into a
single instruction, such as XOR2, XOROR, and XORAND as described in Figure 17, that
executes as a single cycle. During the ShiftRows steps, we use the ROTOR instruction
that rotates left by immediate positions for each row per BYTE. As CrISA-X instructions
use 32-bit inputs\output operands, ROTOR instruction operates on four bytes in parallel,
quad the throughput. The data is separated internally as part of the instruction to hide
any additional latency penalty. PHOTON 256-bit state can be divided into two groups,
with each group of 128 bits mapped to four 32-bit registers. Since the input states are
independent and the SBOX non-linear operation is performed per 4-bits, we build a parallel

Oren Ganon and Itamar Levi 23

computation block to produce a 4-bit x 32 non-linearity operation in a single cycle. We
utilize this data group and create Specific-Block SBOX instruction to accomplish this. The
same concept was implemented for ShiftRows step where we rotate 16 bytes in parallel.
For Specific-Algorithmic, we utilize a processor extension to create a single instruction
that carries out the core computation of SBOX for the entire 256-bit input. Specific-
Algorithmic PHOTON_PERMUTATION uses 8x32bit register as inputs\output. This
greatly impacts the register file as we significantly increase the number of ports. combining
Specific-Algorithmic instruction with wide data load and store instructions (referenced as
LOAD128 and STORE128), we achieve a significant speedup in the permutation.

5.8 Romulus
The Romulus submission describes the AEAD algorithms Romulus-N/M/T and the hash
function algorithm Romulus-H. The computational complexity and latency of the kernel in
Skinny-128-384-plus tweakable block cipher is high hence our focus was on it. This kernel
operates on an internal state of 128 bits, representing a 4x4 matrix of bytes, similar to
AES. The round function is composed of five operations in the following order: SubCells,
AddConstants (AC), AddRoundTweakey (ART), ShiftRows (SR), and MixColumns (MC).
SubCells applies an 8-bit S-box. The AddConstants operation XORs some round-dependent
constants to the first column of the state. AddRoundTweakey extracts eight bytes from the
tweakey state and XORs them to the state, whereby the bytes are permuted and updated
with simple LFSRs. ShiftRows rotates the bytes of the state row-wise to the right by 0,
1, 2, and 3 positions, similar to the ShiftRows Right-rotate line i by i positions. Finally,
MixColumns multiplies each byte-column of the state multiplied by a binary matrix. The
skinny opt32 implementation relies on fix-slicing with QUADRUPLE ROUND routine
[AP20]. Fix-slicing mainly consists of fixing the bits within a register (or slice) never to
move and adjusting the other slices accordingly so that the proper bits are involved in
the SubBytes operation. This implementation doesn’t compute the ShiftRows operation.
Some masks and shifts are applied during the MixColumns operation so that the proper
bits are XORed together. Furthermore, the row permutation within MixColumns and the
bit permutation at the end of the Sbox is omitted. The rows are synchronized with the
classical after only four rounds.

CrISA-X description: The input for the skinny128 core computation is a 128-
bit state split into four 32-bit registers representing a 128-bit state. Core executing
QUADRUPLE ROUND routine ten times. QUADRUPLE ROUND includes XOR and
OR operation on each 32-bit state register, swap bit and mask, and add round key. We
use a Generic-Atomic XORNOTOR instruction that fused the bitwise operation to a
single instruction. We use Generic-Atomic XORSHFTAND instruction to swap the bits
with masks. Generic-Atomic XOR2 instruction helps to double the throughput of adding
round-key constant as this is done for each 32-bit state. Using the Specific-Block approach,
we have implemented the QUADRUPLEROUND routine as a new CrISA-X instruction.
This instruction takes the 128-bit state matrix split into four 32-bit words (quads) and the
relevant tweak keys (TK1, TK2, TK3) and offsets. It implements this part of the encryption
for a single block logic as a series of XORNOTOR, SWAPMOVE, followed by XOR2. The
instruction we implement for Specific-Procedure is the new CrISA-X instruction, which
includes the computation of all SKINNY128_384_PLUS and involves ten QUADRUPLE
ROUND calls.

5.9 Sparkle
Sparkle is a group of cryptographic permutations, each of which operates on a different
block size - 256, 384, or 512 bits [BBdS+19]. The principal member of Schwaemm is
Schwaemm256-128, which takes a 256-bit nonce and a 128-bit key as input and produces

24
CrISA-X: Unleashing Performance Excellence in Lightweight Symmetric Cryptography for

Extendable and Deeply Embedded Processors

SWAPMOVE at1, at2, as1, as2
tempreg⇐(at2 xor(at1>>as2))and as1
at1⇐at1xor(tempreg<<as2)
at2⇐at2xor(tempreg)

XORNOTOR at1, as1, as2
at1 ⇐ at1 xor (not(as1 or as2))

Figure: 18. CrISA-X Generic Atomic instruction for Romulus

Figure: 19. Sparkle permutations with (a) linear layer (ARX-box) (b) diffusion non-linear
layer

a 128-bit authentication tag as output. This is the primary submission for the AEAD
functionality, and thus, we will focus on that code variant. The Sparkle permutations are
created using the following primary components: A non-linear layer uses the ARX-box
block cipher called Alzette [DPU+16]. This layer relies only on Addition, Rotations, and
XORs (ARX paradigm). It can be understood as a four-round iterated block cipher where
the rounds differ in rotation amounts. After each round, the 32-bit constant (i.e., the
key) is XORed to the left word. Since Alzette has a simple Feistel-like structure, the
inverse computation is straightforward and reuses the same CrISA-X instructions. A
linear diffusion layer utilizes a Feistel function, which involves rotating the rightmost three
branches of the state, followed by a swap between the leftmost three branches and the
rightmost three branches. This design of the linear layer enables the creation of a long
trail by leaving half of the words in the state unaltered.

CrISA-X description: The instructions for using Sparkle permutations with CrISA-X
are depicted in Figure 19. ARX-box relies on additions, rotations, and XORs, as described
in the ARX diagram. These operations can easily be fused into a single instruction of the
Generic-Atomic type. We use SHIFTLXOR and ROLXOR instructions that was defined
and described earlier in the paper. By utilizing two additional Specific Blocks instructions,
we can perform linear and non-linear computations separately, managing the amount of
computation logic for each one of those instructions. The Specific-Procedure instruction
named “sparkle opt” involves computing all Sparkle permutations.

5.10 TinyJAMBU

TinyJAMBU is a variant of JAMBU with a 128-bit key, 128-bit state size, and 32-bit
message block size. We are concentrating on the TinyJAMBU-128 algorithm for a kernel
represented by the keyed permutation Pn. There are two possible number of iterations

Oren Ganon and Itamar Levi 25

Figure: 20. (A) TinyJAMBU state function C-code. (B) Native assembly code. (C) multi-issue
code together with Generic-Atomic

(for n): 640 or 1024 times. The TinyJAMBU permutation uses a non-linear feedback
shift register (NFSR) with a feedback path that consists of four bitwise XORs and a
bitwise NAND. The only non-linear operation in TinyJAMBU is this feedback path. The
state-update operation in TinyJAMBU is crucial and significantly impacts performance.
The function takes in three inputs: the 128-bit state, the number of rounds, and a key.
The function computes the state update for each iteration by performing shifts, XORs,
and bit-wise NAND operations. This process is repeated in four blocks, each dedicated to
a different state. The state-update function is used during the initialization phase, key,
nonce setup, processing of the associated data, and encryption and decryption steps.

CrISA-X description: The state-update function implementation involves dividing
the 128-bit state into four 32-bit registers: {state||state||state||state}. This enables
simultaneous computation of 32 rounds of the permutation, where XOR and NAND
operations are performed on 32-bit words. These operations involve a word from the state,
a word from the key, and four extracted words from specific positions in the state. The
extraction process simplifies obtaining a single 32-bit word by combining two adjacent 32-
bit state words using Generic-Atomic ROTXOR instruction. To speed up the state-update
function, we utilize XOR5, an extension of XOR2, and NOTAND instruction. By utilizing
the Specific-Block instruction, we can implement a single hardware logic iteration for state
updates using ROTORBLOCK. This instruction expands the ROTXOR by extracting
words from specific positions in the state for multiple words in parallel. The instruction can
be executed 640 or 1024 times, depending on the algorithm-level call, and therefore bring
significant speedup. By using the Specific-Procedure instruction, we have designed a larger
logic block that operates over multiple clock cycles. This is achieved by implementing
the STATE_UPDATE function in a single computing block where the 128-bit state is
used as both input and output, thus avoiding any register switching. In the code of the
“state updates” function shown in Figure 20(A), one phase of the bit state extraction
and update process is illustrated. This block of code repeats itself four times during a
single iteration, with each phase having a different 32-bit state taken from the 128-bit
input states. In Part (B) of the same figure, we can find the assembly translation for a
single rotate operation made in C code. Each rotation takes about 7 instructions including
loading and storing the variable to data memory. With the use of extensible processors,
we can extend the instruction issuing to be able to multiply at the same cycle. By using
Generic-Atomic set, we can execute two rotations in a single cycle. Additionally, loading
data from data memory is done in parallel, further optimizing the process.

5.11 Xoodyak
Xoodyak is a versatile cryptographic object used for most symmetric-key functions such
as hashing, pseudo-random bit generation, authentication, encryption, and authenticated
encryption. IXoodyak uses the Xoodoo permutation The design approach of this 384-bit

26
CrISA-X: Unleashing Performance Excellence in Lightweight Symmetric Cryptography for

Extendable and Deeply Embedded Processors

Figure: 21. Xoodoo Permutation phases along with Generic-Atomic

permutation is inspired by Keccak-p [DHVAVK18]. The Xoodoo permutation’s state
is represented by a matrix consisting of three rows and four columns, with each column
containing 32-bit words. This matrix can be visualized as three horizontal planes, each
consisting of 128 bits, stacked on top of one another. The state can also be seen as 128
columns of three bits belonging to a different plane. Xoodoo performs 12 iterations of a
round function, which consists of five steps: θ A column-parity mixing layer. χ a non-linear
layer. ρ-west and ρ-east are two plane-shifting layers; and a round-constant addition. The
ρ layers move bits horizontally and perform lane-wise rotations of planes and lanes by
11, 1, and 8 bits to the left. The parity-computation part of θ and the χ layers only
interact with state-bits vertically, within 3-bit columns. The θ layer mainly executes XORs
and left rotations by 5 and 14 bits. Finally, the non-linear layer χ applies a 3-bit S-box
to each state column, which can be computed using logical ANDs, XORs, and bitwise
complements. CrISA-X description: The extraction process simplifies obtaining a single
32-bit word by combining two adjacent 32-bit state words using Generic-Atomic Figure
21 describes a Pseudo-code description of the Xoodoo. We utilized the XOR3 instruction
from the CrISA-X’s Generic-Atomic set. This instruction allows us to perform the XOR
operation between three operands in a single cycle, producing an output result. We also
incorporat a few fusion instructions, such as ROTXOR which combines the rotate-left and
XOR operations, and XORANDNOT which combines XOR with the result of NOT-AND
operations. The Xoodoo permutation state is a cryptographic primitive composed of
384-bit permutations, which can be subdivided into four groups of 96 bits. The round
count parameterize each group of bits. These bits are input for wide instructions, such as
the Specific-Block and Specific-Procedure CrISA-X sets. The Specific-Block set executes
each step (θ, χ, ρ-west, and ρ-east) as a single instruction in a single cycle. On the other
hand, the Specific-Procedure set implements all steps (θ, χ, ρ-west, and ρ-east) as one
computational block, the XOODOOPERMUT12 rounds, as a single instruction.

To optimize the performance of both sets, we extended the processor with a custom
state that saves the round constants labeled as RC[i]. Consequently, this design choice
reduces the required registers and minimizes the instruction encoding space. Moreover,
along with features like multiple issues and doubling load units, this modification results
in a significant boost in speed.

6 Implementation
This section details the implementation aspects of the software and processor platform

used for evaluating CrISA-X instructions.

Oren Ganon and Itamar Levi 27

6.0.1 Software

Our design implements custom instructions for a large set of LWC from NIST and
CAESAR finalist [TMC+21] to optimize latency performance. As a starting point for
our optimization, we used publicly available versions of lightweight cryptography 32-bit
optimized C-codes. This is the source code submitted for a given algorithm [nis22b]. Table 3
summarizes the kernel implementations and code flavor used in the LWC finalists algorithms.
The NIST-specified benchmark API facilitates encryption and decryption. It includes
an AEAD API for encrypting and decrypting using aead_encrypt and aead_decrypt
methods. The code has been modified to support the original and the replacement
kernel implementations. The original base implementation is used without alteration. We
optimized the reference code with CrISA-X instruction sets. We have developed a high-level
software strategy to utilize each realized CrISA-X design by the host core. We begin with
a baseline implementation for each algorithm and use it as is, without modifications. The
baseline implementation refers to the source code submitted for a particular algorithm. We
aim for consistency by utilizing the most efficient C-code 32-bit processor implementation
strategy for the base implementation, which is compatible with our replacement kernel.
Minor changes are made to create a kernel implementation that can be selected between
the base and replacement code developed by us by utilizing appropriate C pre-processor
directives. Maintaining code correctness is critical. We perform functional and inline checks
to ensure algorithms function similarly for base and replacement code. To achieve the
lowest latency performance for both the base and replacement code, we always use CLANG
LLVM 15 as our software compiler. We set the highest level of speed optimization to -O3.
The default optimization option for our CLANG compiler is optimized for speed rather
than size. The Clang LLVM Compiler is an open-source compiler designed to provide the
best possible implementation of the C family of programming languages. It uses the LLVM
optimizer and code generator, which enables it to offer top-notch optimization and code
generation support for many targets. Additionally, the compiler facilitates creating and
encoding new instruction extensions through the backend compiler update. Cryptographic
implementations are often optimized by writing them in assembly language to prevent
bugs or weaknesses introduced by the compiler. However, in our case, we chose to use
reference-optimized code written in C. We trust the compiler will match this code with the
most optimized assembly code available. To further optimize the code at a higher level, we
use the CLANG compiler with higher optimization. This generates native 32-bit codes by
utilizing advanced compiler features such as optimized register reordering and allocation,
loop unrolling, and utilizing processor base and extended ISA.

6.0.2 Hardware

An essential aspect of the optimization was additional custom hardware resources added to
the processor architecture and used to speed up the encryption and decryption procedure
as illustrated in Figure 5 and described in Sub-section 5.1. Our target platform (i.e., Host
core) is based on an extended Xtensa 32-bit RISC Tiny configuration4. The processor core
utilizes a 5-stage, in-order pipeline to execute instructions. To simplify things, we are using
16KB tightly coupled memories for both instructions and data, located very close to the
CPU, which allows for single-cycle access. To demonstrate the benefits of adding CrISA-X
instruction set, we did not use optimizations like the branch prediction mechanism to
optimize the execution of branch instructions. The processor is designed in a modular
fashion, which allows for precise implementation of instructions extension needed by the
domain and extends the processor hardware with minimal area or power overheads. The
processor can be tailored to specific application requirements by configuring it with various
feature parameters. These options include multipliers, a floating-point unit, a multi-issue

4Under the tensilica academic program application agreement

28
CrISA-X: Unleashing Performance Excellence in Lightweight Symmetric Cryptography for

Extendable and Deeply Embedded Processors

with flexible VLIW issuing stage, a wider data and instruction bus, and extended load and
store units capable of supporting multiple memory accesses. Instructions can be extended
using the TIE language to enhance processor performance. The TIE language enables
the creation of a new data path, complete with new registers, register files, multi-cycle
execution units, SIMD execution units, a VLIW data path, and custom data types and
processor registers, as discussed in the above sections. The TIE Compiler facilitates
this process by updating the entire compiler toolchain, including the compiler, debugger,
and profiler, as well as the instruction-set simulator and system models. Furthermore,
the TIE Compiler automatically inserts optimized clock-gated execution units, registers,
register files, control logic, bypass logic, and other components into the processor hardware,
ensuring that the process is correct by construction, as verified by EDA. The CrISA-X
instruction set has been designed to efficiently execute, either as a single-cycle or two-
cycle, depending on the operating frequency target, the number of operands, and the
computation logic involved. For those reasons, for instructions set from the CrISA-X
Specific-Procedure or Specific-Block classification, a register pipeline was added for some of
the data paths. Our processor has been equipped with efficient forwarding units, enabling
additional function units to be located in the execute stage and active in parallel. The
processor has also been extended to include a register file decoder and an instruction
decoder, which allow it to correctly provide inputs and output operands to the functional
units, ensuring the required computations are performed efficiently. To evaluate the area
and the cycle-accurate execution latency, we have developed an experimental platform
using the AMD Kintex7 FPGA KC705 evaluation platform. We have designed a stand-
alone synthesizing using Xilinx Vivado 2019.1, which includes the processor and CrISA-X
instruction set. We have used default synthesis settings and have not invested effort in
synthesis or post-implementation optimization. The host core itself uses a 200MHz clock.

6.0.3 Evaluation Metrics

The study aims to improve the speed and efficiency of CrISA-X instruction sets and NIST
algorithms, focusing on trade-offs between them. The study was conducted on each NIST
finalist algorithm, using several quantitative measures such as clock cycle latency and code
size (footprint) to evaluate the LWC algorithms. Data was collected for various NIST
LWC algorithms. We have implemented specific scoping measures to manage the extensive
design space effectively and minimize the required engineering effort, including:

• We studied the cycle count results for AEAD functions whose code is not inline.
we done that by introduced a compiler attribute called __attribute__((noinline)).
This attribute prevents the compiler from optimizing code size at the expense of
execution speed by disabling the in-lining of the function. In-lining is a technique the
compiler or interpreter uses to eliminate the overhead associated with function calls
by inserting the function code directly at the call site. This can enhance performance
by reducing the number of instructions executed and eliminating the need for stack
operations and jumps.

• When using the unrolling compiler together with the -O3 optimization compilers try
scheduling a loop to get the best performance. By using a CrISA-X, the compiler can
almost always reduce the number of instructions required to implement a replacement
kernel. This means that the loop overhead, which results from iteration over rounds
within it, can become more prominent.

• Constant-time replacement kernel implementations are utilized due owing to CrISA-x,
especially for the CrISA-x Specific-Block and Specific-Procedure categories. This
property is easier to deliver compared to other implementation strategies.

• Some algorithms, such as GIFT-OCB and Ascon, use big-endian representation
for the byte-order input and output. However, Xtensa and most other embedded

Oren Ganon and Itamar Levi 29

Table 3: Algorithms List and Code name
A list of algorithms, associated code benchmark names, and the kernel code used in this evaluation.

Algorithm Code Benchmark Flavor Kernel

Ascon ascon128v12/bi32_bit_intlv bitinterleaving 32bit P6\P8\P12
Elephant elephant200v2/ref ref implementation KeccakP200Round
GIFT-COFB giftcofb128v1/opt32 bitslicing 32bit giftb128
Grain grain128aeadv2/rhys rhys 32bit grain128_next_keystream
PHOTON-Beetle photonbeetleaead128rate128v1/bi32 bitslicing 32bit PHOTON_Permutation
Romulus (FS) romulusn/opt32 bitslicing 32bit skinny128_384_plus,permute_tk
Sparkle schwaemm256128v2/opt optmize 32bit Sparkle_opt
TinyJAMBU tinyjambu128v2/opt optmize 32bit state_update
Xoodyak xoodyakround3/ref ref implementation Xoodoo_Permute_12rounds

microcontrollers use little-endian representation to process and store 32-bit data.
Therefore, the byte order of 32-bit words injected into or extracted from the state
must be reversed. Our implementation performs the injection and extraction of words
using special CrISA-X 1-cycle instruction, including sequence of bytes conversion,
in a byte-by-byte fashion. This has the advantage of not requiring attention to the
alignment of the byte arrays in which the inputs and outputs are stored.

• Same as above when the optimized code uses a bit of interleaving approach like in
PHOTON-Beetle and ASCON. Bit interleaving 32-bit to 64-bit code is a technique for
converting a 32-bit integer into a 64-bit integer by interleaving the bits of the 32-bit
integer with zeros. In ASCON code, permutation is surrounded by two functions
to_bit_interleaving() and from_bit_interleaving() , those too were implemented
with CrISA-X instruction and execute in a single cycle approach.

7 Evaluation
7.1 Conditions
In this section, we present the result of evaluating our CrISA-X instruction designs from
both hardware and software perspectives. As mentioned in Section 6. We attempt to align
the replacement code as closely as possible with the original LWC code by updating the
code with CrISA-X instruction. Table 3 describes a list of algorithms, Code benchmark
names which flavor was used, and kernels. Each algorithm was tested with two packet
sizes: 128 and 16 bytes. The results described in 7.1.2 refer to 16-byte packet sizes. The
evaluation of software usage for each CrISA-X design has resulted in measuring latency
in clock cycles for each algorithm. Compared to the baseline, the overhead is listed in
parentheses. The performance evaluations were conducted on both an Instruction Set
Simulator (ISS) toolchain and a Xilinx evaluation board. As the results of the two targets
were identical, only one was mentioned.

7.1.1 Hardware- Area

Table 4 summarizes the area FPGA synthesis results for each Crisa-X instruction set design
per category. For the Crisa-X Genric-Atomic set, we offer a single set of instructions. For
the Specific-Block and Specific-Procedure sets, we suggest a set of instructions per LWC
algorithm. Therefore, the area result is reported for each category appropriately. We use
FPGA Look-Up Tables (LUTs) as indicators for design areas for the processor including
instruction extensions. LUTs are the fundamental building blocks of logic and are used to
implement most logic functions in the design. The overhead is cumulative and relative to
the base five-stage processor, which consists of 3500 LUTs. According to our area synthesis
results, implementing the Crisa-X Genric-Atomic extensions requires an additional 504

30
CrISA-X: Unleashing Performance Excellence in Lightweight Symmetric Cryptography for

Extendable and Deeply Embedded Processors

Table 4: CrISA-X Hardware
CrISA-X instruction cost in LUTs

Submission

Processor
Area plus
CrISA-X

Genric-Atomic, [LUT]

Processor
Area plus
CrISA-X

Specific-Block, [LUT]

Processor
Area plus
CrISA-X

Specific-Procedure, [LUT]
Ascon

4004
(+12.6%)

5539 (+36.81%) 6614 (+47.08%)
Elephant 5259 (+33.45%) 6388 (+45.21%)
GIFT 5195 (+32.63%) 6098 (+42.6%)
Grain 5001 (+30.01%) 6066 (+42.3%)
PHOTON 5420 (+35.42%) 6259 (+44.08%)
Romulus 5453 (+35.82%) 6388 (+45.21%)
Sparkle 5033 (+30.46%) 6517 (+46.29%)
TinyJAMBU 5517 (+36.56%) 6421 (+45.49%)
Xoodyak 5291 (+33.85%) 6292 (+44.37%)

LUTs, resulting in a cumulative overhead of 12.6% compared to the baseline processor. As
expected, both Crisa-X Specific-Block and Specific-Procedure have an impact on increasing
the area—the former ranges from 1,501 to 2,017 LUTs and the latter from 2,566 to 3,017
LUTs. For clarity, the measurement excludes VLIW processor extension hardware for
multi-issuing, which requires about 910 additional LUTs. The same is true for memories.

7.1.2 Software- Latency and Code Space

Table 5 summarizes the latency in reference to CrISA-X instruction categories GA, BS, and
PS. This latency result is taken for running kernel code in the context of the aead_encrypt
and aead_decrypt API. We provide information regarding the execution latency of each
algorithm code, reported in cycle count. The latency for encryption and decryption is
specified separately. In addition to each measurement, we specify the corresponding boost
factor compared to the baseline, a processor with no extensions. The results are described
separately for various CrISA-X instructions categories. The measurements were taken for
16B plaintext and associated data. The code was highly optimized with -O3 optimization
level for baseline and replacement codes. Figure 22 illustrates the latency results in a bar
chart to emphasize the performance boost brought by CrISA-x, compared to the baseline.
Note that the left (A) Sub-figure of Figure 22 is in logarithmic x-axis whereas for clarity
the right Sub-figure (B) is in linear scale (y-axis).

Table 6 summarizes the Latency and Code Space (Text-Size) results. This time the
data focuses on the kernel code in isolation only. We report the number of Crisa-X
Genric-Atomic instructions used, execution latency results, and memory footprint for each
kernel code. Execution latency is the time it takes to execute a program, measured in clock
cycles. On the other hand, memory footprint refers to the amount of instruction space
(text) measured in bytes. We calculate the relative improvement factor by comparing the
results with an associated baseline. The baseline is captured on the reduced processor
using only the base ISA, not processor extension, and no instruction extensions. The result
is illustrated in Figure 23. Kernel speedup has been achieved by a 2x to 3.9x boost in
latency performance while reducing the code space by 20% to 250%. Note that for some
kernels, e.g., Ascon, GIFT, and Romulus, we utilize additional CrISA-X instructions to
speed up pre-computation functions like generating big-endian representation, or byte
swapping.

Oren Ganon and Itamar Levi 31

Figure: 22. Performance Analysis of Finalist AEAD Algorithms. (A) CrISA-X compara-
tive Analysis of the Latency performance of original and replacement Code Implementations
(B) CrISA-X quantifying the potential speedup in latency by a factor of X. Conditions:16B
plaintext/data associated.AEAD API used.O3-optimized code. cycle-level latency measured.

Figure: 23. Kernel Only: CrISA-X GA Speedup and instruction count, compared to
baseline

7.1.3 Comparable Studies

Several studies of software performance evaluation across different processor architectures
exist. NIST LWC team presents the benchmarking framework and shows the evaluation
results [RPM22] and in git repository5. The evaluation was made on several processors
from different architectures and ISA sets, including some with ISA extenstion. The leading
architectures evaluated are AVR ATmega, Amtel, ARM Cortex-M0\3\4, RISC-V, L106.
The following list outlines the characteristics of various processor architectures:

• RISC-V 32-bit Architecture plus RV32GC with subset Zbkb, Zbkx - a subset of K for
bit manipulation instructions sign as Zbkb/x V 32,0 ,1 ,2. Base ISA extended with
LWC-specific ISEs.

• RISC-V 32-bit Architecture plus RV32I base ISA extended with LWC-specific ISEs
for Ascon only.

• Cortex-M0™ 32-bit Architecture with Armv6-M Instruction set on evaluation board
Arduino MKR Zero (SAMD21G18A)

• Cortex-M3™ 32-bit Architecture with ARMv7-M Instruction set
• Cortex™-M4 32-bit Architecture with ARMv7-M plus DSP instruction set extension.
5https://github.com/usnistgov/Lightweight-Cryptography-Benchmarking

32
CrISA-X: Unleashing Performance Excellence in Lightweight Symmetric Cryptography for

Extendable and Deeply Embedded Processors

Table 5: CrISA-X Latency - aead_encrypt\decrypt API
CrISA-X GA, BS, and PS performance latency results for finalist LWC algorithms compared to

baseline reduce processor. “Proc.” is a short for processor.
Conditions: 16B plaintext/AD, AEAD API used, optimized -O3. cycle-level latency measured.

Submission Functionality Reduce Proc.
+Baseline Code

Extend Proc.
+Baseline Code

Extend Proc.
+CrISA-X GA

Extend Proc.
+CrISA-X BS

Extend Proc.
+CrISA-X PS

Ascon aead_encrypt 7557(1x) 4376(1.73x) 1460(5.18x) 936(8.07x) 729(10.37x)
Ascon aead_decrypt 7581(1x) 4532(1.67x) 1480(5.12x) 950(7.98x) 750(10.11x)

Elephant aead_encrypt 89673(1x) 61586(1.46x) 13452(6.67x) 10014(8.95x) 5424(16.53x)
Elephant aead_decrypt 89432(1x) 61752(1.45x) 13484(6.63x) 10021(8.92x) 5229(17.1x)

GIFT-COFB
(BS) aead_encrypt 6493(1x) 3049(2.13x) 1972(3.29x) 1221(5.32x) 601(10.8x)

GIFT-COFB
(BS) aead_decrypt 6637(1x) 2933(2.26x) 1969(3.37x) 1222(5.43x) 600(11.06x)

Grain-
128AEADv2 aead_encrypt 14189(1x) 6096(2.33x) 4648(3.05x) 3069(4.62x) 1950(7.28x)

Grain-
128AEADv2 aead_decrypt 14523(1x) 6409(2.27x) 4884(2.97x) 3009(4.83x) 1955(7.43x)

PHOTON-
Beetle aead_encrypt 36127(1x) 17832(2.03x) 11621(3.11x) 5513(6.55x) 2647(13.65x)

PHOTON-
Beetle aead_decrypt 35470(1x) 17199(2.06x) 11600(3.06x) 5443(6.52x) 2546(13.93x)

Romulus (FS) aead_encrypt 21964(1x) 11325(1.94x) 6200(3.54x) 4502(4.88x) 2221(9.89x)
Romulus (FS) aead_decrypt 21923(1x) 11374(1.93x) 6195(3.54x) 4530(4.84x) 2243(9.77x)

Sparkle aead_encrypt 6332(1x) 3743(1.69x) 2510(2.53x) 1004(6.31x) 501(12.64x)
Sparkle aead_decrypt 6310(1x) 3778(1.67x) 2500(2.52x) 1010(6.25x) 500(12.62x)

TinyJAMBU aead_encrypt 8889(1x) 3888(2.29x) 2515(3.53x) 2051(4.33x) 1521(5.84x)
TinyJAMBU aead_decrypt 8953(1x) 3843(2.33x) 2574(3.48x) 2096(4.27x) 1499(5.97x)

Xoodyak aead_encrypt 7122(1x) 4191(1.7x) 2998(2.38x) 1005(7.09x) 676(10.54x)
Xoodyak aead_decrypt 7031(1x) 4317(1.63x) 3001(2.34x) 1045(6.73x) 754(9.32x)
rWith reference to [CGM+23] taking the lowest result for RV32GC + Zbkb/x between:V1,2 ,3.

on evaluation board Arduino Nano 33 BLE (nRF52840)
• Atmel AVR Atmega 8-bit Architecture
• Tensilica L106 32-bit Architecture on evaluation board NodeMCU v2 (ESP8266)

We compare our performance latency gain of CrISA-X vs other processors and ISA
benchmark. Figure 24 showing Table 7 in chart bar view for easy tracking and illustrates
latency performance using CrISA-X compared to other solutions and architectures. To
ensure a fair comparison, we evaluate the same kernel and code variant using equal amounts
of plaintext and associated data. We conduct tests for CrISA-X and the benchmark data,
with 16B plaintext/data associated. We use the AEAD API and O3-optimized code. If
multiple benchmark data are available for the code variant, we select the result from the
benchmark set that has the best performance mean and lower latency.
We look into performance comparison for the Keccak-f[200] permutation to enhance our
study’s data further. We compared the reported boost from two works, one on RISC-
V and one on ARM processors, to what we achieved with CrISA-X. The first work is
from Lemmen [LMD20], presenting an optimized RISC-V acceleration implementation
of Elephant Keccak-f[200], based on using a RISC-V, supporting RV32IMAC core. The
authors used SiFive E31 core and modified the state representation and function to enable
the processing of multiple blocks concurrently. Rawat [RS17] presents an optimized ARM

Oren Ganon and Itamar Levi 33

Table 6: CrISA-X Latency - Kernel in Isolation. Latency speedup and instruction size
result of CrISA-X compared to the baseline (reduced processor).

Submmision
Code

Kernel
Latency

Text Size
Reduce
Processor

Extended
Processor
CrISA-X

GA

Instruction
Count

CrISA-X
GA

Ascon P6 latency [cycle] 428 160(2.7x) 3
*same ratio for P8\P12 Text Size [bytes] 1010 412(2.5x)

Elephant KeccakP200Round latency [cycle] 615 203(3x) 3
Text Size [bytes] 139 59(2.4x)

GIFT giftb128 latency [cycle] 1400 705(2x) 3
Text Size [bytes] 901 409(2.2x)

Grain grain128_next_keystream latency [cycle] 310 85(3.6x) 2
Text Size [bytes] 926 602(1.5x)

PHOTON PHOTON_Permutation latency [cycle] 11762 4096(2.9x) 4
Text Size [bytes] 2012 955(2.1x)

Romulus skinny128_384_plus latency [cycle] 4358 1130(3.9x) 3
Text Size [bytes] 1550 907(1.7x)

permute_tk latency [cycle] 1615 533(3x) 3
Text Size [bytes] 751 555(1.4x)

Sparkle Sparkle_opt latency [cycle] 1958 577(3.4x) 2
Text Size [bytes] 221 120(1.8x)

TinyJAMBU state_update latency [cycle] 603 157(3.8x) 3
Text Size [bytes] 265 201(1.3x)

Xoodyak XoodooPermute12rounds latency [cycle] 899 252(3.6x) 3
Text Size [bytes] 698 569(1.2x)

Figure: 24. Performance Comparison of Finalist LWC Algorithms Using CrISA-X
Classification: GA, BS, and PS vs. Other Processors with and without ISA Extension
Conditions: 16B plaintext/data associated. AEAD API used. O3-optimized code. cycle-
level latency measured.

NEON using SIMD instruction for acceleration. Figure 25 illustrates the performance
comparison of CrISA-X against Lemmen and NEON SIMD from ARMv7. We compare the
reported performance of those works against CrISA-X’s performance in different categories.

34
CrISA-X: Unleashing Performance Excellence in Lightweight Symmetric Cryptography for

Extendable and Deeply Embedded Processors

Table 7: CrISA-X vs Other Latency.LWC Algorithm Performance Comparison using
CrISA-X Classification vs other architecture and ISA.

Sub
Xtensa
CrISA-X

GA

Xtensa
CrISA-X

BS

Xtensa
CrISA-X

PS

1RISC-V
RV32GC

(+ISE)

2RISC-V
RV32I
(+ISE)

3Cortex
M0

4Cortex
M3

5Cortex
M4

6Ten
L106

7Atmel

ascon 1460 936 729 4059 17931 12337 25737 4842 8688 93452
grain 4648 3069 1950 9962 N/A 31783 49701 13664 17312 125334
gift 1972 1221 601 4440 N/A 11603 N/A 7487 10137 N/A
romulusn 6200 4502 2221 7104 N/A 22503 N/A 11145 13764 N/A
schwaemm 2500 1004 501 2424 N/A 16475 N/A 6281 11892 N/A
tinyjambu 2515 2051 1521 3891 N/A 10758 28441 5134 7395 163276
xoodyak 2998 1005 676 3921 N/A 13418 16070 6708 7546 51639
elephant 13452 10014 5424 N/A N/A 58287 N/A 18219 44559 N/A
photon 11621 5513 2647 N/A N/A 118408 N/A N/A 84011 N/A
References:[1]: [CGM+23] ,[2]: [AÖ21] ,[3]: [oST22]
,[4]: [WYY22] [5]: [oST22] ,[6]: [oST22] ,[7]: [WYY22]. N/A: No data or No Applicable comparison

Figure: 25. Performance latency Keccak-P200 Round

8 Summary
In this study, we propose CrISA-X methodology as a potential enhancing ISA

and processor extension for LWC algorithms. The methodology, design flow, suggested
instructions and processor extensions are generic and applicable to any RISC processor
and can be used as a layout for new RISC-V extensions. For example, with CrISA-X
enabled, the Ascon algorithm family, which was announced as a finalist by NIST, can
achieve a speedup of 5x to 10x depending on the selected instruction set. Other LWC
algorithms achieve average speedups ranging 2x to 17x factors using the same instruction
set. Figure 24 illustrates these superior performance on real hardware. Table 8 in the
Appendix summarizes the instruction set for each category, while Table 9 lists the applicable
processor extensions for each algorithm.

Oren Ganon and Itamar Levi 35

Broadly speaking, the comparison of CrISA-X with software-only alternatives or other
ISA extensions or processor architectures shows that:

1. The CrISA-X instructions set allows a reduction in execution latency.
(a) Genric-Atomic instructions: FUSED a few base instructions to one, and design

as a single cycle - brings 2x-5x speedup.
(b) Block-Specific instructions: SIMD a few in/out operands into mid-range compu-

tation block and design as two-cycle- brings 4x-8x speedup.
(c) Block-Specific instructions: SIMD a few-plus in/out operands into heavy com-

putation block, and design as two-cycle- brings 7x-17x speedup.
2. The degree of reduction is instruction, computing and algorithm-dependent but

significant in some cases and on average, and, at the same time.
3. Our results show that software-only implementations using CrISA-X can be signifi-

cantly more efficient than those using the base ISA alone.
4. The hardware overhead of the CrISA-X instruction set ranges from low to mid,

depending on the CrISA-X set being used.
5. The CrISA-X instruction set enables constant-time execution, reducing memory

footprint. These features highlight the value of instruction set extensions in resource-
constrained devices and the Lightweight Cryptography (LWC) process.

The CrISA-X provides multiple levels of computational instruction and multiple dimensions
for processor extension, resulting in new instruction sets that demonstrate excellent
performance. By carefully analyzing the constituent algorithms and building a set of
processor extension opportunities, the CrISA-X set supports multiple algorithms and
optimizes Pareto. we establish a multi-issuing instruction slot format that balances the
performance of various algorithms. That is, we provide instruction extensions set for each
algorithm, designing their complexity as minimally as possible and with the goal of keeping
these instructions general enough (in format, number of slots and operands etc.) to be
able to share them between algorithms without significantly increasing cost and area.
Acknowledgments. I. Levi and O. Ganon were funded partially by the Israel Science
Foundation (ISF) grant 2569/21, and by the Israel Innovation Authority (IIA), Bio-Chip
Consortium Grant file No. 75696.

References
[ABCdS+22] Malik Alsahli, Alex Borgognoni, Luan Cardoso dos Santos, Hao Cheng,

Christian Franck, and Johann Großschädl. Lightweight permutation-based
cryptography for the ultra-low-power internet of things. In International
Conference on Information Technology and Communications Security, pages
17–36. Springer, 2022.

[AÖ21] Özlem Altınay and Berna Örs. Instruction extension of rv32i and gcc
back end for ascon lightweight cryptography algorithm. In 2021 IEEE
International Conference on Omni-Layer Intelligent Systems (COINS),
pages 1–6. IEEE, 2021.

[AP20] Alexandre Adomnicai and Thomas Peyrin. Fixslicing aes-like ciphers: New
bitsliced aes speed records on arm-cortex m and risc-v. Cryptology ePrint
Archive, 2020.

[BBdS+19] Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann
Großschädl, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, Qingju
Wang, and Alex Biryukov. Schwaemm and esch: lightweight authenticated
encryption and hashing using the sparkle permutation family. NIST round,
2, 2019.

36
CrISA-X: Unleashing Performance Excellence in Lightweight Symmetric Cryptography for

Extendable and Deeply Embedded Processors

[BCD+19] Zhenzhen Bao, Avik Chakraborti, Nilanjan Datta, Jian Guo, Mridul Nandi,
Thomas Peyrin, and Kan Yasuda. Photon-beetle authenticated encryption
and hash family. NIST Lightweight Compet. Round, 1:115, 2019.

[BCI+19] Subhadeep Banik, Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu,
Mridul Nandi, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke
Todo. Gift-cofb v1. 0. Submission to the NIST Lightweight Cryptography
project, 2019.

[BDP+14] G Bertoni, J Daemen, M Peeters, GV Assche, and RV Keer. Caesar
submission: Ketje v2. online at http://ketje. noekeon. org/ketje-1.1. pdf,
2014.

[BDPA15] G Bertoni, J Daemen, M Peeters, and GV Assche. Caesar submission:
Keyak v2. online at http://keyak. noekeon. org/keyak-2.1. pdf, 2015.

[BDPVA09] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Keccak specifications. Submission to nist (round 2), 3(30):320–337, 2009.

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. Gift: A small present: Towards
reaching the limit of lightweight encryption. In Cryptographic Hardware
and Embedded Systems–CHES 2017: 19th International Conference, Taipei,
Taiwan, September 25-28, 2017, Proceedings, pages 321–345. Springer, 2017.

[BS11] Debasis Bandyopadhyay and Jaydip Sen. Internet of things: Applications
and challenges in technology and standardization. Wireless personal com-
munications, 58:49–69, 2011.

[CGM+23] Hao Cheng, Johann Großschädl, Ben Marshall, Dan Page, and Thinh Pham.
Risc-v instruction set extensions for lightweight symmetric cryptography.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
pages 193–237, 2023.

[CHKP98] Hoon Choi, Seung Ho Hwang, Chong-Min Kyung, and In-Cheol Park.
Synthesis of application specific instructions for embedded dsp software. In
Proceedings of the 1998 IEEE/ACM international conference on Computer-
aided design, pages 665–671, 1998.

[CJL+20] Fabio Campos, Lars Jellema, Mauk Lemmen, Lars Müller, Daan Sprenkels,
and Benoit Viguier. Assembly or optimized c for lightweight cryptography on
risc-v? In Cryptology and Network Security: 19th International Conference,
CANS 2020, Vienna, Austria, December 14–16, 2020, Proceedings 19, pages
526–545. Springer, 2020.

[CMS07] Xiaoyong Chen, Douglas L Maskell, and Yang Sun. Fast identification
of custom instructions for extensible processors. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 26(2):359–368,
2007.

[CZM03] Nathan Clark, Hongtao Zhong, and Scott Mahlke. Processor acceleration
through automated instruction set customization. In Proceedings. 36th
Annual IEEE/ACM International Symposium on Microarchitecture, 2003.
MICRO-36., pages 129–140. IEEE, 2003.

[DEM+19] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel,
Bart Mennink, Robert Primas, and Thomas Unterluggauer. Submission to
nist. Submission to the NIST LWC Competition, 2019.

Oren Ganon and Itamar Levi 37

[DFA+20] Viet B Dang, Farnoud Farahmand, Michal Andrzejczak, Kamyar Mohajerani,
Duc T Nguyen, and Kris Gaj. Implementation and benchmarking of round
2 candidates in the nist post-quantum cryptography standardization process
using hardware and software/hardware co-design approaches. Cryptology
ePrint Archive: Report 2020/795, 2020.

[DHVAVK18] Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny Van Keer. The
design of xoodoo and xoofff. IACR Transactions on Symmetric Cryptology,
pages 1–38, 2018.

[DPU+16] Daniel Dinu, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, Johann
Großschädl, and Alex Biryukov. Design strategies for arx with provable
bounds: Sparx and lax (full version). Cryptology ePrint Archive, 2016.

[Dwo15] Morris J Dworkin. Sha-3 standard: Permutation-based hash and extendable-
output functions. 2015.

[DYSC07] ZiBin Dai, XueRong Yu, JinHai Su, and XingYuan Chen. Accelerated flexible
processor architecture for crypto information. In 2007 2nd International
Conference on Pervasive Computing and Applications, pages 399–403. IEEE,
2007.

[EF96] Martyn Edwards and John Forrest. A practical hardware architecture to
support software acceleration. Microprocessors and Microsystems, 20(3):167–
174, 1996.

[FS88] Jay Fenlason and Richard Stallman. Gnu gprof. GNU Binutils. Available
online: http://www. gnu. org/software/binutils (accessed on 21 April 2018),
1988.

[GL23] Oren Ganon and Itamar Levi. Modular processor architecture with cryptog-
raphy isa extensions. In 2023 21st IEEE Interregional NEWCAS Conference
(NEWCAS), pages 1–2. IEEE, 2023.

[GPKT09] Vladimir Guzma, Teemu Pitkanen, Pertti Kellomaki, and Jarmo Takala.
Reducing processor energy consumption by compiler optimization. In 2009
IEEE Workshop on Signal Processing Systems, pages 063–068. IEEE, 2009.

[GS22] Shubham Gupta and Sandeep Saxena. Lightweight cryptographic techniques
and protocols for iot. In Internet of Things: Security and Privacy in
Cyberspace, pages 55–77. Springer, 2022.

[KR06] Ian Kuon and Jonathan Rose. Measuring the gap between fpgas and asics.
In Proceedings of the 2006 ACM/SIGDA 14th international symposium on
Field programmable gate arrays, pages 21–30, 2006.

[LMD20] Mauk Lemmen, Bart Mennink, and Joan Daemen. Optimizing Elephant for
RISC-V. PhD thesis, BSc thesis, Radboud University, 2020. https://www.
cs. ru. nl/bachelors . . . , 2020.

[MAA+20] Dustin Moody, Gorjan Alagic, Daniel C Apon, David A Cooper, Quynh H
Dang, John M Kelsey, Yi-Kai Liu, Carl A Miller, Rene C Peralta, Ray A
Perlner, et al. Status report on the second round of the nist post-quantum
cryptography standardization process. 2020.

[MB20] Thomas Xuan Meng and William Buchanan. Lightweight cryptographic
algorithms on resource-constrained devices. Preprints, 2020.

38
CrISA-X: Unleashing Performance Excellence in Lightweight Symmetric Cryptography for

Extendable and Deeply Embedded Processors

[MPP21] Ben Marshall, Daniel Page, and Thinh Hung Pham. A lightweight ise
for chacha on risc-v. In 2021 IEEE 32nd International Conference on
Application-specific Systems, Architectures and Processors (ASAP), pages
25–32. IEEE, 2021.

[MSA22] Hasindu Madushan, Iftekhar Salam, and Janaka Alawatugoda. A review of
the nist lightweight cryptography finalists and their fault analyses. Elec-
tronics, 11(24):4199, 2022.

[NIS22a] NIST. Nist requerments, available online:
https://csrc.nist.gov/csrc/media/projects/lightweight-
cryptography/documents/final-lwc-submission-requirements-
august2018.pdf (accessed on 21 april 2023), 2022.

[nis22b] nist.gov. Nist final, available online:
https://csrc.nist.gov/projects/lightweight-cryptography/finalists (ac-
cessed on 21 april 2023), 2022.

[oST22] National Institute of Standards and Technology. Benchmarking of nist lwc
finalists on microcontrollers, 2022.

[PMMB22] Biagio Peccerillo, Mirco Mannino, Andrea Mondelli, and Sandro Bartolini.
A survey on hardware accelerators: Taxonomy, trends, challenges, and
perspectives. Journal of Systems Architecture, 129:102561, 2022.

[PS00] Thomas Pornin and Jacques Stern. Software-hardware trade-offs: Applica-
tion to a5/1 cryptanalysis. In CHES, pages 318–327, 2000.

[RPM20] Sebastian Renner, Enrico Pozzobon, and Jürgen Mottok. Nist lwc software
performance benchmarks on microcontrollers, 2020.

[RPM22] Sebastian Renner, Enrico Pozzobon, and Jürgen Mottok. The final round:
Benchmarking nist lwc ciphers on microcontrollers. In Attacks and De-
fenses for the Internet-of-Things: 5th International Workshop, ADIoT 2022,
Copenhagen, Denmark, September 30, 2022, Revised Selected Papers, pages
1–20. Springer, 2022.

[RS16] Hemendra K Rawat and Patrick Schaumont. Simd instruction set extensions
for keccak with applications to sha-3, keyak and ketje. In Proceedings of the
Hardware and Architectural Support for Security and Privacy 2016, pages
1–8. 2016.

[RS17] Hemendra Rawat and Patrick Schaumont. Vector instruction set extensions
for efficient computation of keccak. IEEE Transactions on Computers,
66(10):1778–1789, 2017.

[Sab23] Nafih Sabagh. Msit: Modified Lightweight Encryption Algorithm for Secure
Internet of Things. PhD thesis, San Diego State University, 2023.

[Sea01] David Seal. ARM architecture reference manual. Pearson Education, 2001.

[SOM] Yroslav Sovyn, Ivan Opirskyy, and Olha Mykhaylova. Finding a bit-sliced
representation of 4× 4 s-boxes based on typical logic processor instructions.

[SP20] Stefan Steinegger and Robert Primas. A fast and compact risc-v accelerator
for ascon and friends. In International Conference on Smart Card Research
and Advanced Applications, pages 53–67. Springer, 2020.

Oren Ganon and Itamar Levi 39

[SR20] Gopinath Sittampalam and Nagulan Ratnarajah. Enhanced symmetric
cryptography for iot using novel random secret key approach. In 2020 2nd
International Conference on Advancements in Computing (ICAC), volume 1,
pages 398–403. IEEE, 2020.

[SZII11] Sadagopan Srinivasan, Li Zhao, Ramesh Illikkal, and Ravishankar Iyer.
Efficient interaction between os and architecture in heterogeneous platforms.
ACM SIGOPS Operating Systems Review, 45(1):62–72, 2011.

[TGMD20] Etienne Tehrani, Tarik Graba, Abdelmalek Si Merabet, and Jean-Luc
Danger. Risc-v extension for lightweight cryptography. In 2020 23rd
Euromicro Conference on Digital System Design (DSD), pages 222–228.
IEEE, 2020.

[TMC+21] Meltem Sönmez Turan, Kerry McKay, Donghoon Chang, Cagdas Calik,
Lawrence Bassham, Jinkeon Kang, John Kelsey, et al. Status report on
the second round of the nist lightweight cryptography standardization
process. National Institute of Standards and Technology Internal Report,
8369(10.6028), 2021.

[TMC+23] Meltem Sönmez Turan, Kerry McKay, Donghoon Chang, Jinkeon Kang,
Noah Waller, John M Kelsey, Lawrence E Bassham, and Deukjo Hong.
Status report on the final round of the nist lightweight cryptography stan-
dardization process. 2023.

[VVP+16] Pawan Kumar Verma, Rajesh Verma, Arun Prakash, Ashish Agrawal, Kshi-
rasagar Naik, Rajeev Tripathi, Maazen Alsabaan, Tarek Khalifa, Tamer
Abdelkader, and Abdulhakim Abogharaf. Machine-to-machine (m2m) com-
munications: A survey. Journal of Network and Computer Applications,
66:83–105, 2016.

[WC81] Mark N Wegman and J Lawrence Carter. New hash functions and their use
in authentication and set equality. Journal of computer and system sciences,
22(3):265–279, 1981.

[WYY22] Yuhei Watanabe, Hideki Yamamoto, and Hirotaka Yoshida. Performance
evaluation of nist lwc finalists on avr atmega and arm cortex-m3 microcon-
trollers. Cryptology ePrint Archive, 2022.

[XJL+19] Yinhao Xiao, Yizhen Jia, Chunchi Liu, Xiuzhen Cheng, Jiguo Yu, and
Weifeng Lv. Edge computing security: State of the art and challenges.
Proceedings of the IEEE, 107(8):1608–1631, 2019.

[YM04] Pan Yu and Tulika Mitra. Scalable custom instructions identification for
instruction-set extensible processors. In Proceedings of the 2004 international
conference on Compilers, architecture, and synthesis for embedded systems,
pages 69–78, 2004.

A Additional Comparison and Data Tables

40
CrISA-X: Unleashing Performance Excellence in Lightweight Symmetric Cryptography for

Extendable and Deeply Embedded Processors

Table 8: CrISA-X Instruction Set
Summary of CrISA-X instruction set per algorithms.

Submission Generic-Atomic Block-Specific Procedure-Specific

Ascon
XORNOTAND(1OUT,1IN\1IMD) ASCON_LINR(5INOUT)
XOR2(2OUT,2IN\2IMD) ASCON_NONLINR(5INOUT) ASCON_PERMUTATION(10INOUT)
XORROT(1OUT,2IN\2IMD)

Elephant
XORNOTAND(1OUT,1IN\1IMD) THETA(4INOUT)
XOR#(1OUT,#IN) RHO(4INOUT) KECACCK_PERMUTATION(7INOUT)
ROTXOR(1OUT,4IN) CHI(4INOUT)

GIFT

ROTOR(1OUT,4IN\4IMD)
XOROR(1OUT,2IN) SWAPMOVE(2INOUT,2INT)
XORAND(1OUT\2OUT,2IN) SBOX(4INOUT) QUINTUPLE_ROUND(4INOUT)
XORROT(1OUT,2IN\2IMD)
XOR2(2OUT,2IN\2IMD)
XORSHFTAND(1OUT,3IN\3IMD)

Grain
ROTXOR(1OUT,4IN) LOAD128B/STORE128B(4INOUT)
XORAND(1OUT\2OUT,2IN) BLOCKROTXOR(4INOUT) GRAIN128_NEXT_KEYSTREAM(4INOUT)
SHIFTLXOR(1OUT,2IN)

PHOTON
XOR2(2IN\2OPRND OR 2OUT) LOAD128B/STORE128B(4INOUT)
XOROR(1OUT,2IN) SHIFTROW(4INOUT)
SHIFTLXOR(1OUT,2IN) SBOX(8INOUT) PHOTON_PERMUTATION(8INOUT)
ROTOR(1OUT,2IN,2IMD)

RomulusN
XORSHFTAND(1OUT,3IN\3IMD) SWAPMOVE(2INOUT,2INT)
XOR2(2IN\2OPRND OR 2OUT) QUADRUPLEROUND(4INOUT) SKINNY128_384_PLUS(6INOUT)
XOROR(1OUT,2IN) PERMUTE_TK_4\6\8\10(4INOUT)

Sparkle
ROTOR(1OUT,2IN,2IMD) ARXLAYEL((4INOUT))
SHIFTLXOR(1OUT,2IN) LINEARLAYER((4INOUT)) SPARKLE_OPT(8INOUT)
XOR2(2IN\2OPRND OR 2OUT)

TinyJAMB’
ROTOR(1OUT,2IN,2IMD)
XOR#(1OUT,#IN) ROTORBLOCK(5INOUT,4IMD) STATE_UPDATE(8INOUT,8IMD)
NOTAND(1OUT,2IN)

Xoodyak
XOR#(1OUT,#IN) THETA(3INOUT)
ROTOR(1OUT,2IN,2IMD) RHO(3INOUT) XOODOOPERMUT12(6INOUT)
XORNOTAND(1OUT,1IN,1IMD) CHI(3INOUT)
SHIFTLOR(1OUT,2IN)

Symbol ’#’ represents the number of operands involved as instruction operands.

Table 9: Processor Extension use together with CrISA-X
Summary of Processor Hardware Extension per algorithms.

Sub
Extended

Regester-file
Extended

Ports

Extended
Instruction-

Bus

Extended
Data-
Bus

Extended
Load-
Store

Extended
Issue’ing

Stage

Added
Constants

Table

Extended
Functional

Units

Extended
Toolchain

Ascon 64reg Yes 64bits 32bits 2L\S Yes N/A {xor\or-shift, xor:xor
xor-and-not } Yes

Elephant 64reg Yes 64bits 32bits 2L\S Yes Kecacck
Const

{xor\or-shift, xor:...xor
xor-and-note } Yes

GIFT 64reg Yes 64bits 32bits 2 L\S Yes Gift Const {xor\or-shift, xor\or-and} Yes

Grain 64reg Yes 64bits 128bits 2 L\S Yes N/A {xor\or-shift, xor\or-and} Yes

PHOTON 64reg Yes 64bits 128bits 2 L\S Yes N/A {xor\or-shift\xor:xor
xor\or-and, xor-and-not } Yes

Romulus 64reg Yes 64bits 32bits 2 L\S Yes N/A {xor\or-shift, xor:xor
xor-and-not } Yes

Sparkle 64reg Yes 64bits 32bits 2 L\S Yes N/A {xor\or-shift, xor:...xor
xor-and-note } Yes

TinyJ 64reg Yes 64bits 32bits 2 L\S Yes N/A {xor\or-shift, xor:...xor
xor-and-not } Yes

Xoodyak 64reg Yes 64bits 32bits 2 L\S Yes Xoodoo Const {xor\or-shift, xor:...xor
xor-and-and } Yes

