
Constrained PRFs for Inner-Product Predicates
from Weaker Assumptions

Sacha Servan-Schreiber⋆

MIT

Abstract. In this paper, we provide a novel framework for constructing Constrained Pseudo-
random Functions (CPRFs) with inner-product constraint predicates, using ideas from subtrac-
tive secret sharing and related-key-attack security.

Our framework can be instantiated using a random oracle or any suitable Related-Key-Attack
(RKA) secure pseudorandom function. This results in three new CPRF constructions:

1. an adaptively-secure construction in the random oracle model;
2. a selectively-secure construction under the DDH assumption; and
3. a selectively-secure construction with a polynomial domain under the assumption that one-

way functions exist.

All three instantiations are constraint-hiding and support inner-product predicates, leading to
the first constructions of such expressive CPRFs under each corresponding assumption. More-
over, while the OWF-based construction is primarily of theoretical interest, the random oracle
and DDH-based constructions are concretely efficient, which we show via an implementation.

⋆ This work was done in part while at Microsoft Research, New England.

1

Table of Contents

1 Introduction . 2
1.1 Related Work . 4
1.2 Organization . 5

2 Technical Overview . 5
2.1 Our Approach . 5

3 Preliminaries . 7
3.1 Notation . 7
3.2 Constrained Pseudorandom Functions . 7
3.3 RKA-secure PRFs . 9

4 The Basic Framework and Construction . 10
4.1 Instantiation via a Random Oracle . 10

5 Generalized Framework and Constructions . 13
5.1 Extended Framework . 13
5.2 DDH-based Construction . 15
5.3 VDLPN-based Construction . 16

6 CPRFs for Inner-Product Predicates from OWFs . 17
6.1 Affine RKA-secure PRFs from OWFs . 18
6.2 CPRF Construction from OWFs . 19

7 Evaluation . 20
7.1 Complexity and Benchmarks . 20
7.2 Comparison to other CPRF constructions . 21
7.3 Discussion . 21

8 Conclusion and Future Work . 21
A Extensions . 27

A.1 More General Constraint Predicates . 27
B Application to Learning Theory . 28
C Collision-resistant Hashing from Discrete Logarithms . 29
D Deferred proofs . 30

D.1 Proof of Lemma 3 . 30

1 Introduction

Constrained pseudorandom functions (CPRFs) [10, 16, 48] are pseudorandom functions (PRFs) with
a “default mode” associated with a master key msk, and a “constrained mode” associated with a
constrained key csk defined over a predicate C. The constrained key csk can be used to compute the
same “default mode” value of the PRF for all inputs x where C(x) = 0. However, for all inputs x
where C(x) ̸= 0, the constrained key csk can only be used to compute a pseudorandom value that is
computationally independent of the PRF value under msk.

In the basic definition of CPRFs, the constrained key csk can reveal the predicate C (i.e., all inputs
x where C(x) = 0). For example, the GGM PRF [41], admits puncturing constraints [10, 16, 48],
where the constraint C is a point function that outputs 0 on all-but-one input. In the GGM PRF,
csk reveals the punctured point to the constraint key holder. An enhanced definition of CPRFs, first1

formalized by Boneh, Lewi, and Wu [14] (PKC 2017), requires csk to hide C, and is much more
challenging to achieve, even for simple constraints [14, 26, 34].

Constructing CPRFs for expressive constraint classes under standard assumptions has proven to
be a challenging task. Several constructions exist for simple constraint classes, such as prefix-matching,
bit-fixing, and constraints expressible by t-CNF formulas (with constant t) under various assumptions,
including the minimal assumption that one-way functions exist (see the excellent survey of related
works in [34, Appendix A]). However, even slightly more expressive constraints, such as constraints
represented by inner products, constant-degree polynomials, or circuits in NC1 (the class of functions

1 Alternative notions of constraint PRFs were discovered concurrently in [16, 48].

computable by logarithmic-depth circuits), appear to be much more challenging to construct from
standard assumptions [3, 26, 28, 30].

In a recent work, Couteau, Meyer, Passelègue, and Riahinia [30] (Eurocrypt 2023) were able to
realize CPRFs for NC1 from DCR (but without the constraint-hiding property), as well as constraint-
hiding CPRF with inner-product constraint predicates, through an elegant connection to homomor-
phic secret sharing [18, 19, 21, 54]. In contrast, constraint-hiding CPRFs for NC1 are only known under
LWE [26, 28, 55] (or indistinguishability obfuscation [14, 27]) and can even imply indistinguishability
obfuscation in certain cases [26]. Therefore, the result of Couteau et al. significantly pushes the con-
straint expressivity of CPRFs under the Decisional Composite Residuosity (DCR) assumption. Prior
to their result, the only known constructions for constraint-hiding CPRFs with sufficiently powerful
constraint predicates to evaluate inner-product constraints required either the learning with errors
(LWE) assumption or non-standard assumptions [14, 26, 55]. However, in contrast to other constraint
predicates that can be realized from one-way functions [10, 16, 34, 48], there is still a significant gap
in our understanding of which assumptions are necessary for realizing CPRFs for more expressive
constraint classes, such as inner-product and NC1 predicates.

Motivation. In this paper, we revisit the assumptions required to construct constraint-hiding CPRFs
for inner-product constraint classes. This is motivated by the existence of CPRFs for NC1 from
Diffie-Hellman-style assumptions [3], as well as constraint-hiding CPRFs for bit-fixing and (constant
sized) t-CNF formulas from the minimal assumption that one-way functions exist [34]. Understanding
what assumptions are required to realize sufficiently expressive CPRFs can shed light on realizing
closely related “high-end” cryptographic primitives such as functional encryption [26, 38], searchable
symmetric encryption [14], attribute-based encryption [3], and even obfuscation [26]. Specifically, in
this paper, we ask:

Under what assumptions do constrained PRFs with inner-product predicates exist?

The motivation for studying inner-product constraints is that they can be used to construct CPRFs
with constraint predicates represented by constant-degree polynomials and extensions thereof (see
Appendix B for details), and are of interest both as a theoretical object and as a practical tool.

From a theoretical lens, the fact that inner-product predicates lie somewhere in between t-CNF and
NC1 predicates in terms of expressivity, motivates the study of CPRFs for inner-product predicates
under weaker assumptions, with the goal of potentially finding new techniques that could lead to more
expressive constraints under weaker assumptions. This was also the motivation behind Attrapadung
et al. [3] and other works examining the assumptions required to build CPRFs. Indeed, Davidson et al.
[34] prove that CPRFs for inner-product predicates imply CPRFs for constant t-CNFs predicates (see
[34, Appendix C] and Appendix B), which in turn imply CPRFs for bit-fixing predicates.

From a practical perspective, the current lack of any concretely efficient CPRF constructions for
inner-product predicates,2 motivates the quest of finding assumptions under which efficient construc-
tions can be realized. This is especially motivated by the hope that concretely efficient construc-
tions of CPRFs for inner-product predicates will lead to interesting real-world applications, as has
been the case for the concretely efficient constructions of CPRFs admitting puncturing constraints
(e.g., [5, 6, 15, 22, 37, 44, 50, 52, 58, 59, 60]).

Contributions. In this paper, we make the following three contributions:

New constructions from new assumptions. We construct the first CPRFs for inner-product predicates
with (1) adaptive security in the random oracle model, (2) selective security under the Decisional
Diffie-Hellman (DDH) assumption, and (3) selective security with a polynomial input domain under
the minimal assumption that One-way Functions (OWFs) exist. All three of our results push the
frontier of what was previously known theoretically on CPRFs. Moreover, our constructions are all
constraint-hiding by default.

A simple framework. We provide a simple framework that exploits the properties of subtractive secret
sharing to construct CPRFs for inner-product predicates. Our framework makes explicit several ideas
that have been used implicitly in many prior works on CPRFs (e.g., [3, 24, 25, 55]), and may prove
useful in obtaining more results in the future.

2 To the best of our knowledge, no constraint-hiding CPRF constructions have been implemented to date.

3

An implementation. Due to the simplicity of our building blocks, we show that our constructions
result in the first practical constraint-hiding CPRFs under standard assumptions. We implement and
benchmark our constructions, proving that they are concretely efficient. (All prior constructions of
CPRFs for inner-product predicates, including the DCR-based construction of Couteau et al., require
computationally expensive machinery, making them impractical.)

Extensions and Applications. Our framework has the following applications and extensions.

1. More complex predicates. From inner-product constraints, we can build CPRFs for more complex
predicates via generic transformations, including constraints represented by constant degree poly-
nomials and CPRFs for the “AND” of d distinct inner-product predicates. In particular, the latter
allows us to construct matrix-product constraint predicates, where the constraint is satisfied if
and only if Ax = 0, for a constraint matrix A.

2. Lower-bounds in learning theory. In learning theory, Membership Query (MQ) learning provides
a model for quantifying the “learnability” or complexity of a certain class of functions [61].
Informally, in the MQ learning framework, a learner gets oracle access to a function and must
approximate the function after making a sufficient number of queries. Cohen, Goldwasser, and
Vaikuntanathan [29] introduce a model they call MQ with Restriction Access (MQRA), where in
addition to black-box membership queries, the learner obtains non-black-box access to a restricted
subset of the function. Obtaining (negative) results on the learnability of a particular class in the
MQRA model can be done using a connection to constrained PRFs; see Appendix B.

Followup Work. In a followup work, Couteau, Devadas, Devadas, Koch, and Servan-Schreiber [31]
extend our CPRF construction to realize a shiftable CPRF, which allows the master key holder to
emulate the PRF evaluation on the constrained key for different potential constraints. They then show
how to use this extended CPRF to realize an efficient OT extension protocol with precomputability
and a non-interactive public-key setup, which heavily exploits the concrete efficiency of our CPRF
construction.

1.1 Related Work

In Table 1, we summarize known constructions of CPRFs for inner-product predicates (including
existing constructions for more general predicates such as NC1 and P/poly) and highlight our results.

CPRFs for inner-product predicates. Attrapadung et al. [3] construct constrained PRFs for NC1

(which includes inner-product predicates) from the L-decisional Diffie-Hellman inversion (L-DDHI) in
combination with DDH over the quadratic residue subgroup QRp (they can make their construction
adaptively-secure by using a random oracle instead of DDH in QRp), but their construction is not

constraint-hiding. Similarly, Couteau et al. [30] also show how to construct CPRFs for NC1 predicates
from the DCR assumption through homomorphic secret sharing (but also fail to achieve constraint
privacy). Couteau et al. [30] additionally show that their techniques can be used to construct a
CPRF from DDH with a polynomially-bounded input domain. CPRFs for more general predicates are
known from multi-linear maps [10, 13], indistinguishability obfuscation [4, 11, 14, 34, 45, 46], and
LWE [24, 25, 26, 28, 55], and can be used to instantiate CPRFs with inner-product constraints under
those assumptions.

Constraint-hiding CPRFs for inner-product predicates. Davidson et al. [34] (Crypto 2020)
construct (weakly) constraint hiding CPRFs for inner-product predicates from the LWE assumption.
Specifically, their construction satisfies a weaker privacy definition, in which the adversary does not
get access to an evaluation oracle. Constraint-hiding CPRFs for more general predicates (that include
inner-product predicates) are known from the LWE assumption [25, 26, 28, 55] and indistinguishability
obfuscation [14]. To the best of our knowledge, Couteau et al. [30] are the first realize constraint-hiding
CPRFs for inner-product predicates from a non-lattice assumption, specifically from DCR.

One-one CPRFs. Our framework (as well as some prior constructions of CPRFs [3, 30, 34]) shares
some conceptual similarities to the construction of one-one constrained PRFs [56]—an information-
theoretic primitive that can be viewed as a CPRF in the “no-evaluation security” model [3], with
applications to conditional disclosure of secrets. However, their constructions cannot be used to realize
the standard notion of CPRFs from standard assumptions.

4

Assumption Security Hiding Predicate Practical Comments

[24, 25, 26, 28, 55] LWE Selective ✓/ ✗ ⊇ NC1 ✗ [24] is not constraint hiding

AMNYY18 [3] L-DDHI Selective ✗ NC1 ✗ L-DDHI in QRp ∧ DDH in G

AMNYY18 [3] L-DDHI Adaptive ✗ NC1 ✗ L-DDHI in QRp ∧ ROM

DKNYY20 [34] LWE Adaptive ✗ IP ✗ Is weakly constraint hiding

CMPR23 [30] DCR Selective ✓ IP ✗

CMPR23 [30] DDH Selective ✓ IP ✗ Polynomial input domain

Theorem 1 ROM Adaptive ✓ IP ✓

Theorem 3 DDH Selective ✓ IP ✓

Theorem 5 VDLPN Selective ✓ IP ✗ Only for weak CPRFs

Theorem 8 OWF Selective ✓ IP ✗ Polynomial input domain

Table 1: Related work on CPRFs for Inner-Product (IP) predicates from standard assumptions.
ROM = Random Oracle Model.

DDH = Decisional Diffie-Hellman assumption.

DCR = Decisional Composite Residuosity assumption.

L-DDHI = L-decisional Diffie-Hellman Inversion assumption.

VDLPN = Variable-density Learning Parity with Noise assumption [22].

1.2 Organization

In Section 2, we provide a technical overview highlighting the main ideas behind our framework and
constructions. In Section 3, we cover the necessary preliminaries on CPRFs and RKA-secure PRFs. In
Section 4, we present our framework and provide an adaptively secure CPRF construction for inner-
product predicates in the random oracle model. In Section 5, we show that we can instantiate our
framework from RKA-secure PRFs, without the need for a random oracle. In Section 6, we show how
to instantiate our framework from one-way functions. In Section 7, we discuss the practical efficiency
of our constructions. In Appendix B, we discuss extensions and applications.

2 Technical Overview

In this section, we provide an overview of our framework and constructions.

Background on CPRFs. Following prior works [25, 30], for PRF domain X and a constraint
C : X → {0, 1}, we write C(x) = 0 for “true” (authorized), and C(x) ̸= 0 for “false” (unauthorized).
CPRFs consist of a master secret key msk, which can be used to evaluate the PRF on all inputs in
the domain. From msk, it must then be possible to efficiently sample a constrained key csk for a given
constraint C, which can be used to evaluate the PRF on all inputs x in the domain where C(x) = 0.
Constraint hiding CPRFs have the added property that C remains hidden given csk. See Section 3
for formal definitions.

2.1 Our Approach

We now explain the main technical ideas that underpin our framework for constructing CPRFs for
inner-product predicates. We start by explaining how we can use the idea of subtractive secret sharing
to construct a constraint predicate C for inner-product predicates, inspired by Couteau et al.

The power of subtractive secret sharing. Subtractive secret shares of a value s, which we denote
by s0 and s1, have the property that s0 − s1 = s (over Z). By splitting s into two random shares
s0 and s1, individually each share is independent of the secret s. To use subtractive secret sharing
to construct CPRFs, the main idea is to exploit the symmetry between the two shares. Specifically,
consider what happens when the secret s is zero. Because we have that s0 − s1 = 0, it follows that
s0 = s1. This symmetry present in subtractive secret shares has enabled many efficient techniques for
distributed computations [17, 18, 19, 20, 21, 23, 39, 54], and surprisingly, also applies to CPRFs [30].
Specifically, consider the inner-product constraint Cz parameterized by a vector z and defined as

5

Cz(x) = ⟨z,x⟩. Next, denote subtractive secret shares of the constraint vector z by z0 and z1, such
that z0 − z1 = z. Thanks to the aforementioned symmetry property, for all input vectors x:

– If ⟨z,x⟩ = 0 (i.e., Cz(x) = 0, authorized), then ⟨z0,x⟩ = ⟨z1,x⟩, and
– If ⟨z,x⟩ ≠ 0 (i.e., Cz(x) ̸= 0, unauthorized), then ⟨z0,x⟩ ≠ ⟨z1,x⟩.

In words, the constraint is satisfied if and only if both shares of the inner product are equal. Moreover,
note that z1 can be sampled after z0, because z0 is a random value independent of the “secret”
constraint z. We now describe how we can use these properties of subtractive secret sharing to
construct a CPRF.

Initial attempt (not secure). Our first idea, which unfortunately turns out to be not secure, is
to let the master secret key msk = z0, for a random z0. Then, for a given constraint vector z, the
constrained key is computed (on-the-fly) as csk = z1, where z1 = z0 − z. The intuition is that for
all x where ⟨z,x⟩ = 0 (i.e., for all authorized x), both the master secret key and the constrained key
can be used to derive the same key k. Specifically, we can simply let k = ⟨z0,x⟩ = ⟨z1,x⟩. Using
the key k, in conjunction with any PRF F , we can define the output of the evaluation on the input
x to be Fk(x). Additionally, for all x where ⟨z,x⟩ ≠ 0 (i.e., for all unauthorized x), the master key
and constrained key derive different PRF keys, which results in the constrained key outputting a
pseudorandom value.

Unfortunately, while this initial attempt provides the necessary correctness properties, it is not secure
for the following two reasons:

1. the CPRF adversary, knowing the constraint z and given z1 can trivially recover z0 (the master
secret key) simply by computing z0 = z1 + z, and

2. in the case where ⟨z,x⟩ ̸= 0, the derived key is still related to the master key msk, in that
⟨z1,x⟩ = ⟨z0,x⟩ − ⟨z,x⟩.

Couteau et al. [30] resolves these two issues by resorting to HSS. In particular, they only use the
value of ⟨z,x⟩ (which each party can compute a share of given z0 and z1, respectively) as a conditional
mask in a HSS computation that computes a PRF. As such, they require evaluating a PRF inside of
HSS which makes their construction impractical. This is where our approach diverges from the one
of Couteau et al., which we explain next.

Second attempt (secure). To fix our initial attempt, we must first prevent the adversary from
recovering z0 (the master secret key) from the constrained key z1, while still guaranteeing the neces-
sary property that ⟨z0,x⟩ = ⟨z1,x⟩ whenever ⟨z,x⟩ = 0. To achieve this, we exploit the linearity of
inner products. Specifically, let F be a finite field of order at least 2λ, for a security parameter λ. As
before, we let msk := z0, for a random z0 ∈ Fℓ. However, now we let csk := z1, where z1 := z0−∆z,
for a random scalar “shift” ∆ ∈ F. Notice that when ⟨z,x⟩ = 0,

⟨z0,x⟩ = ⟨z0,x⟩ −∆ ⟨z,x⟩ = ⟨z0,x⟩ − ⟨∆z,x⟩
By linearity of

inner products

= ⟨z1,x⟩ ,

which still guarantees that the master secret key and constrained key can be used to derive the same
PRF key k, whenever C(x) = 0. Moreover, because ∆ is uniformly random over F (which has order at
least 2λ), z1 cannot be used to recover z0, even with knowledge of the constraint z, thereby preventing
the CPRF adversary from recovering the master secret key msk from the constrained key csk.

Now, with the random shift ∆, we ensure that the constrained key csk does not leak the master
secret key, and forms the basis for our framework described in Section 4. However, we are still left
with the second problem we identified in our initial attempt: The derived PRF keys are still related to
the master secret key, which does not guarantee that the resulting PRF evaluation is pseudorandom
to the adversary. To deal with this, we can use the random oracle model.

Construction in the random oracle model. One simple way to instantiate the CPRF with
correlated keys is to instantiate the PRF with a random oracle H. This forms the basis for our first
instantiation, which we describe in Section 4.1. In a nutshell, we show that, if we use the derived
key k = ⟨z1,x⟩ with a random oracle H as the PRF, then the construction Fk(x) := H(k,x) is a
secure CPRF. Specifically, the random oracle ensures that each evaluation is uniformly random, while

6

still guaranteeing both the master secret key and the constrained key derive the same k when the
constraint is satisfied.

Removing the random oracle with an RKA-secure PRF. To remove the random oracle re-
quirement, we show that we can use a “special” PRF that remains provably secure when evaluated
with different related keys. Such PRFs are known as Related-Key-Attack (RKA) secure PRFs [8]
and have been studied extensively [1, 2, 7, 8, 12, 22, 32, 40, 42, 51], yielding several constructions
to choose from. This result is rather surprising, since prior works that require notions of correlation-
robustness (e.g., [47, 49, 57]) could only be constructed from more powerful assumptions. In contrast,
we show that constructing CPRFs with inner-product constraints requires a much weaker flavor of
correlation-robustness satisfied by RKA-secure PRFs with affine key-derivation functions. In partic-
ular, this weaker notion of correlation-robustness can be instantiated unconditionally leading to our
one-way function based CPRF construction in Section 6.

Suitable RKA-secure PRFs. As we have informally shown above, a fully “RKA-secure” PRF can be
realized with a random oracle to remove correlations in the keys. However, constructions of RKA-
secure PRFs exist from several standard assumptions. These constructions achieve security against
adversaries that can adaptively query the PRF when keyed on arbitrary functions of the secret key. In
particular, we require RKA-security against affine functions of the key (see Section 3 for definitions),
which is a stronger notion compared to standard RKA-security against additive functions that is
often considered in the literature. The affine function requirement eliminates many RKA-secure PRF
constructions (e.g., [2, 7, 8, 12, 32, 40, 51]), leaving us only with the DDH-based RKA-secure PRF
for affine functions of Abdalla et al. [1].

The DDH-based RKA-secure PRF forms the basis for our first instantiation in the standard
model. However, we also show that we can use any (weak) PRF3 that is RKA-secure against additive
functions to instantiate our framework and obtain a (weak) CPRF for inner-product predicates. In
particular, this allows us to use the VDLPN-based RKA-secure (weak) PRF of Boyle et al. [22].

Additionally, we show that we can adapt the one-way function based RKA-secure PRF of Apple-
baum and Widder [2] to instantiate our framework (under certain restrictions). Specifically, the PRF
of Applebaum and Widder [2] is only secure against additive functions and requires the number of
related keys that the adversary queries to be apriori bounded by some polynomial t (in the security
parameter). While these restriction makes their RKA-secure PRF construction have limited applica-
tions elsewhere, we find that it is just sufficiently powerful to apply to our framework provided that
we bound the magnitude of the input vectors to be polynomial in t and limit CPRF to a polynomially-
sized domain. However, a problem is that their construction is only proven RKA-secure for additive
functions of the key, which is not suitable to instantiate our framework. Fortunately, however, we can
easily adapt their result to the case of affine functions, making it compatible with our framework
and leading to the first Minicrypt CPRF construction for inner-product predicates. Prior to this, the
only CPRF for inner-product predicates with a polynomial domain was based on DDH [30].

3 Preliminaries

3.1 Notation

We let λ denote the security parameter. We let F denote a finite field (e.g., integers mod p), Z denote
the set of integers, and N denote the set of natural numbers. We let F× denote the set F \ {0}. A
vector v = (v1, . . . , vn) is denoted using bold lowercase letters. Scalar multiplication with a vector is
denoted av = (av1, . . . , avn) and the inner product between two vectors a and b is denoted ⟨a,b⟩.
We let poly(·) denote any polynomial and negl(·) denote a negligible function. We say an algorithm

A is efficient if it runs in probabilistic polynomial time. For a finite set S, we let x
R← S denote a

uniformly random sample from S. Assignment from a possibly randomized algorithm A on input x
is denoted y ← A(x) and intialization of y to the value x is denoted as y := x.

3.2 Constrained Pseudorandom Functions

We start by recalling the syntax and properties of constrained pseudorandom functions (CPRFs). For
simplicity, we restrict the definition to 1-key, constraint-hiding CPRFs, which is the definition satisfied

3 A weak PRF is secure if the adversary only queries it on random inputs.

7

by our constructions. We point to Boneh et al. [14] for a more general definition of constraint-hiding
CPRFs (i.e., with polynomial-key security).

Definition 1 (Constrained Pseudorandom Functions; adapted from [14, 30]). Let λ ∈ N be
a security parameter. A Constrained Pseudorandom Function (CPRF) with key space K = Kλ, domain
X = Xλ, and range Y, that supports constraints represented by the class of circuits C = {Cλ}λ∈N,
where Cλ : X → {0, 1}, consists of the following four algorithms.

– KeyGen(1λ)→ msk. Takes as input a security parameter λ. Outputs a master secret key msk ∈ K.
– Eval(msk, x)→ y. Takes as input the master secret key msk and input x ∈ X . Outputs y ∈ Y.
– Constrain(msk, C)→ csk. Takes as input the master secret key msk and a constraint circuit C ∈ C.

Outputs a constrained key csk.

– CEval(csk, x)→ y. Takes as input the constrained key csk and an input x ∈ X . Outputs y ∈ Y.
We let any auxiliary public parameters pp be an implicit input to all algorithms. A CPRF must satisfy
the following correctness and security properties.

Correctness. For all security parameters λ, all constraints C ∈ C, and all inputs x ∈ X such that
C(x) = 0 (authorized), it holds that:

Pr

[
Eval(msk, x) = CEval(csk, x)

msk← KeyGen(1λ),

csk← Constrain(msk, C)

]
= 1− negl(λ).

(1-key, adaptive) Security. A CPRF is (1-key, adaptively)-secure if for all efficient adversaries A,
the advantage of A in the following security experiment ExpsecA,b(λ) is negligible in λ. Here, b denotes
the challenge bit.

1. Setup: On input 1λ, the challenger runs msk← KeyGen(1λ), initializes the set Q := ∅, and runs
A(1λ).

2. Pre-challenge queries: A adaptively sends arbitrary inputs x ∈ X to the challenger. For each
x, the challenger computes y ← Eval(msk, x), sends y to A, and proceeds to update Q← Q∪{x}.

3. Constrain query: A sends one constraint C ∈ C to the challenger. The challenger computes
csk← Constrain(msk, C), and sends csk to A.

4. Challenge query: For the single challenge query, A sends input x∗ ∈ X as its challenge query,
subject to the restriction that x∗ ̸∈ Q and C(x∗) ̸= 0. If b = 0, the challenger computes y∗ ←
Eval(msk, x∗). Else, if b = 1, the challenger picks y∗

R← Y. The challenger sends y∗ to A.
5. Post-challenge queries: A continues to adaptively query the challenger on inputs x ∈ X , subject

to the restriction that x ̸= x∗. For each x, the challenger computes y ← Eval(msk, x) and sends y
to A.

6. Guess: A outputs its guess b′, which is the output of the experiment.

A wins if b′ = b, and its advantage AdvsecA (λ) is defined as

AdvsecA (λ) :=
∣∣Pr[ExpsecA,0(λ) = 1

]
− Pr

[
ExpsecA,1(λ) = 1

]∣∣ ,
where the probability is over the randomness of A and KeyGen.

Definition 2 (Constraint Privacy; adapted from [14, 30]). A CPRF is (1-key, adaptive)-
constraint-hiding if for all efficient adversaries A, the advantage of A in the following security exper-
iment ExpprivA,b(λ) is negligible in λ. Here, b denotes the challenge bit.

1. Setup: On input 1λ, the challenger runs msk← KeyGen(1λ), initializes the set Q := ∅, and runs
A(1λ).

2. Pre-challenge queries: A adaptively sends arbitrary input values x ∈ X to the challenger.
For each x, the challenger computes y ← Eval(msk, x), sends y to A, and proceeds to update
Q← Q ∪ {x}.

3. Constrain query: A sends a pair of constraints (C0, C1) ∈ C2 to the challenger, subject to the
restriction that C0(x) = C1(x), for all x ∈ Q. The challenger computes csk∗ ← Constrain(msk, Cb),
and sends csk∗ to A.

8

4. Post-challenge queries: A adaptively sends arbitrary input values x ∈ X to the challenger, sub-
ject to the restriction that C0(x) = C1(x). For each x, the challenger computes y ← Eval(msk, x),
and sends y to A.

5. Guess: A outputs its guess b′, which is the output of the experiment.

A wins if b′ = b and its advantage AdvprivA (λ) is defined as

AdvprivA (λ) :=
∣∣∣Pr[ExpprivA,0(λ) = 1

]
− Pr

[
ExpprivA,1(λ) = 1

]∣∣∣ ,
where the probability is over the randomness of A and KeyGen.

Definition 3 ((1-key, selective) Security). A CPRF as defined in Definition 1 is said to be (1-key,
selectively)-secure if the adversary commits to the constraint C before querying the challenger [14].
That is, A sends the constraint C to the challenger before issuing any pre-challenge queries. The same
applies to the constraint-privacy definition (Definition 2).

Remark 1 (Unique evaluation queries). Without loss of generality, we can restrict the PRF adversary
A to issuing only unique evaluation queries (as was also done in prior PRF formalizations [2, 3]).
Note that the adversary is already restricted to a unique challenge query in the above definition.

3.3 RKA-secure PRFs

Here, we formalize the notion of related-key attack (RKA)-secure PRFs.

Remark 2 (Find-then-Guess Security). We slightly modify the standard defintion of RKA-secure
PRFs (e.g., [8]) to better align with the syntax of constrained PRFs. In the basic definition, the
adversary does not obtain evaluation queries from what is guaranteed to be the output of the PRF F
on some key. However, we note that this extra evaluation oracle is without loss of generality, and is
only added to syntactically simplify our proofs. This definition is known as the find-then-guess PRF
security game [30, Definition 10] and implies the real-or-random PRF security game, albeit with a
polynomial loss in security.

Definition 4 (Φ-restricted Adversaries). An efficient RKA-PRF adversary A is said to be Φ-
restricted if its oracle queries have a related-key derivation function ϕ chosen arbitrarily from a set
of valid key derivation functions Φ.

Definition 5 (Related-Key-Attack Secure PRFs [8]). Let λ ∈ N be a security parameter
and ℓ = ℓ(λ) ∈ poly(λ). Let F = {Fk : Xλ → Y}k∈Kλ

be a family of functions and Φ : Kλ → Kλ

be a family of related-key derivation functions. F is said to be an RKA-secure PRF family if for all
efficient Φ-restricted adversaries A, the advantage of A in the following security experiment ExprkaA,b(λ)
is negligible in λ. Here, b denotes the challenge bit.

– Setup: On input 1λ, the challenger samples k
R← Kλ, initializes the set Q := ∅, and runs A(1λ).

– Pre-challenge queries: For each query (ϕ, x), the challenger computes y ← Fϕ(k)(x), sends y
to A, and proceeds to update Q← Q ∪ {(ϕ, x)}.

– Challenge query: For the single challenge query (ϕ∗, x∗), subject to the restriction that (ϕ∗, x∗) ̸∈
Q, the challenger proceeds based on the bit b as follows. If b = 0, the challenger computes

y ← Fϕ∗(k)(x
∗). If b = 1, the challenger samples y

R← Y. The challenger then sends y to A.
– Post-challenge queries: For each query (ϕ, x), subject to the restriction that (ϕ, x) ̸= (ϕ∗, x∗),

the challenger computes y ← Fϕ∗(k)(x), and sends y to A.
– Guess: A outputs its guess b′, which is the output of the experiment.

A wins if b′ = b and its advantage AdvrkaA (λ) is defined as

AdvrkaA (λ) :=
∣∣∣Pr[ExprkaA,0(λ) = 1

]
− Pr

[
ExprkaA,1(λ) = 1

]∣∣∣ ,
where the probability is over the randomness of A and choice of k.

9

Definition 6 (Affine Related-Key Derivation Functions [1]). Let F be a finite field and let
n ≥ 1 be an integer, let the class Φaff (aff for affine) denote the class of functions from Fn to Fn that
can be separated into n component functions consisting of degree-1 univariate polynomials. That is,

Φaff :=

{
ϕ : Fn → Fn |

ϕ = (ϕ1, . . . , ϕn);

∀i ∈ [n], ϕi(ki) = γiki + δi, γi ̸= 0

}
.

Note that γi ̸= 0 is necessary to make the derivation function non-trivial.

Remark 3. Note that Φaff captures additive and multiplicative relations, which we denote by Φ+ ⊂ Φaff

and Φ× ⊂ Φaff , respectively.

4 The Basic Framework and Construction

In Construction 1, we present our basic framework for constructing CPRFs for inner-product pred-
icates, and present an instantiation of it in the random oracle model in Section 4.1. We extend
this framework and use it in conjunction with RKA-secure PRFs in Section 5 to realize CPRFs for
inner-product predicates under DDH, VDLPN, and OWFs.

Construction 1 (The basic framework).
Let λ be a security parameter, ℓ ≥ 1 be an integer, and F be a finite field of order at least 2λ.
For a key space K and range Y, a suitable choice of efficiently computable deterministic function
map : F→ K, and a PRF family F =

{
Fk : Fℓ → Y

}
k∈K, the CPRF algorithms are defined as:

KeyGen(1λ, ℓ):

1 : k0
R← F

2 : z0
R← Fℓ

3 : msk := (k0, z0)

Constrain(msk, z):

1 : parse msk = (k0, z0)

2 : ∆
R← F×

3 : z1 := z0 −∆z

4 : return csk := (k0, z1)

Eval(msk,x):

1 : parse msk = (k0, z0)

2 : δx := ⟨z0,x⟩
3 : k ← map(k0 + δx)

4 : return Fk(x)

CEval(csk,x):

1 : parse csk = (k0, z1)

2 : δx := ⟨z1,x⟩
3 : k ← map(k0 + δx)

4 : return Fk(x)

4.1 Instantiation via a Random Oracle

The simplest instantiation of Construction 1 is to let Fk(x) := H(k,x) where H : K × Fℓ → Y
is a random oracle. Doing so ensures that when ⟨z,x⟩ ̸= 0, the output is uniformly random and
independent of the constrained key csk, which guarantees that the evaluation undermsk is independent
of csk. We prove the following theorem.

Theorem 1. Let λ be a security parameter, ℓ ≥ 1 be any integer, F be a finite field of order at least 2λ,
and map be any entropy-preserving map. Construction 1 is a (1-key, adaptively-secure, constraint-
hiding) CPRF in the random oracle model when F =

{
Fk : Fℓ → Y

}
k∈K is a PRF family, where

Fk(x) := H(k,x) for all k ∈ K and x ∈ Fℓ, and where H : K × Fℓ → Y is a random oracle.

Proof. We prove each required property in turn.

Correctness. Correctness follows from the intuition presented in Section 2. For all constraints z and
inputs x, whenever ⟨z,x⟩ = 0, we have that

δx = ⟨z0,x⟩ = ⟨z0,x⟩+ ⟨z,x⟩ = ⟨z0,x⟩+ ⟨∆z,x⟩ = ⟨z1,x⟩ .

10

Therefore, Eval and CEval (of Construction 1) compute the same key k, because both Eval and CEval
add the same shift δx to the starting key k0. It then follows that the evaluation is identical under the
master key and the constrained key given that Fk is deterministic.

(1-key, adaptive) Security. Our proof consists of a sequence of hybrid games. First, we begin by
noting that H(k0,x) trivially satisfies the definition of a pseudorandom function when H is a random
oracle and k0 has sufficient entropy to prevent guessing.

Hybrid H0. This hybrid consists of the (1-key, adaptive) CPRF security game.4 We note that here,
the challenger provides an oracleOH via which the adversaryA queries the random oracleH. We place
the following restrictions on the adversary: (1) each query issued by A to the challenger (including
queries to OH) is unique and (2) the adversary queries the pre- and post-challenge oracles only on
constrained queries after issuing the single constraint query. These restrictions are without loss of
generality in the 1-key setting, and have been used in prior work (e.g., [3, 34]).

Hybrid H1. In this hybrid game, the challenger starts by sampling responses to the pre-challenge
evaluation queries until the constraint query is issued. That is, for a bound q0 on the number of pre-

challenge queries issued by A, the challenger samples v1, . . . , vq0
R← Y. Then, the challenger responds

to the i-th pre-challenge query xi with vi, and programs the random oracle OH to output vi on all
future queries r when it holds that r = k0 + ⟨z0,xi⟩, for some i ∈ [q0]. After the constraint query is
issued, the challenger responds to pre-challenge queries as in H0.

Claim. A’s advantage in H1 is at most negl(λ) larger compared to H0.

Proof. Let qH be the total number of random oracle queries issued by the adversary prior to the
constrain query, and let ri for i ∈ [q0] be the queries to OH . We define the event bad0 as:

∃(i, j) ∈ [qH]× [q0] such that ri = (k0 + ⟨z0,xj⟩ ,xj) ∧H(ri) ̸= vj .

The event bad0 corresponds to the case where the adversary happens to query the random oracle OH

on a “bad” input ri prior to the challenger programming OH to output vi, causing the response to
be inconsistent with respect to H0. For any given pre-challenge query xj issued before the constrain
query, the probability that A issues an ri query to OH such that ri = (k0 + ⟨z0,xj⟩ ,xj) is equivalent
to the probability of guessing k0, which is bounded by 1

|F| . Hence, by a union bound, we get that

Pr
k0

R←F
[bad0] ≤

qH · q0
|F|

≤ qH · q0
2λ

≤ negl(λ),

which bounds A’s advantage in H1 to a negligible function in λ.

Hybrid H2. In this hybrid game, we swap the definition of the constrained key and master key.

Specifically, in this game, the challenger responds to A’s constrain query z by sampling z1
R← Fℓ and

sending back csk = z1. The challenger then samples ∆
R← F, computes z0 = z1 +∆z, and responds

to future evaluation queries using z0 as the master key.

Claim. A’s advantage in H2 is equivalent to its advantage in H1.

Proof. This change is purely syntactic and therefore does not affect the distribution of the keys. In
particular, note that in H1, all evaluation queries prior to the constrain query are sampled indepen-
dently of the master key. As such, it can be sampled at the time of the constraint query.

Hybrid H3. In this hybrid game, the challenger samples w1, . . . , wq1
R← Y as the responses to the q1

pre- and post-challenge evaluation queries issued following the constrain query. Then, the challenger
responds to A’s i-th evaluation query xi, where ⟨z,xi⟩ ≠ 0 (recall the restriction in H0), with wi.

4 An alternative proof strategy is to use the framework of Attrapadung et al. [4] and show that H(k0 +
⟨z0,x⟩ ,x) is a no-evaluation secure CPRF (similar to the CPRF game but the adversary does not get
access to an evaluation oracle). They prove that any no-evaluation secure and “collision-resistant” CPRF
becomes adaptively secure in the ROM when the output is passed through a random oracle. However, this
then necessitate making the construction of the form H ′(H(k0 + ⟨z0,x⟩ ,x)) or arguing why H ′(H(·)) is
equivalent to H(·) in the ROM. We opt here to prove adaptive security directly for completeness.

11

Claim. A’s advantage in H3 is at most negl(λ) larger compared to H2.

Proof. Here, we let qH be a bound on the total number of random oracle queries issued by the
adversary throughout the game and let q1 be a bound on the number of pre- and post-challenge
evaluation queries issued following the constrain query. We then define the event bad1 as:

∃(i, j) ∈ [qH]× [q1] such that ri = (k0 + ⟨z0,xj⟩ ,xj) ∧H(ri) ̸= wj ,

where ri is a query to OH issued by A and each xj is constrained by assumption. The event bad1
corresponds to the case where the adversary happens to query OH on an input corresponding to
a constrained evaluation under the master key msk, causing the response to be inconsistent with
respect to the distribution in H2. For all post-constraint evaluation queries xj, where j ∈ [q1], define
yj = H(k0 + ⟨z0,xj⟩ ,xj), which is computed identically to a post-constraint evaluation response in
hybrid H2. We claim that yj is computed independently of the constrained key csk = z1. To see this,
note that we can equivalently express yj in terms of z1 as yj = H(k0+ ⟨z1,xj⟩+∆ ⟨z,xj⟩ ,xj), where
and ⟨z,xj⟩ ̸= 0 by assumption. Then, because ∆ is uniformly random and independent of z1 in H2,
each yj is computed using a random oracle H that is “seeded” by ∆ ⟨z,xj⟩, which makes the response
independent of z1. Then, to compute the probability of the event bad1, over the choice of ∆ ∈ F, we
can apply a union bound over all q1 post-constraint evaluation queries issued by A to get

Pr
∆

R←F
[bad1] ≤

qH · q1
|F|

≤ qH · q1
2λ

= negl(λ),

which bounds the adversary’s advantage in H3 to a negligible function in λ.

Hybrid H4. This hybrid consists of the find-then-guess PRF security game with PRF Fk(x) :=
H(k,x). Specifically, the challenger samples a random bit b ∈ {0, 1}. If b = 0, the challenger samples

a random k
R← F, then computes y∗ ← Fk(x

∗). Else, if b = 1, the challenger picks y∗
R← Y. In both

cases, the challenger sends y∗ to A.

Claim. A’s advantage in H4 is equivalent to its advantage in H3.

Proof. The claim follows by a straightforward reduction. In particular, note that all evaluation queries
in H3 are sampled independently of ∆. Therefore, ∆ is only used by the challenger in H3 to respond
to the challenge query, which is equivalent to sampling a uniformly random and independent key k to
answer the challenge query x∗ in H3 given that k0+ ⟨z0,x∗⟩ = k0+ ⟨z1,x∗⟩+∆ ⟨z,x∗⟩ is a uniformly
random value in F when ∆ is sampled uniformly and independently of z1. ■

Constraint Privacy. We must prove that for all z and z′ provided by the adversary A, the con-
strained key, and all evaluation and challenge queries, do not reveal whether the constraint z or z′ is
used by the challenger.

First, we begin by noting that, even given (z, z′, ∆), z0+∆z is distributed identically to z0+∆z′

because z0 is uniformly random and independent of z and z′. Therefore, the constrained key, absent
the evaluation queries, is efficiently simulatable regardless of the constraint chosen by the challenger.

Now, we must show that this remains the case even when the adversary is given access to the
evaluation and challenge oracles. Observe that we can proceed via the same sequence of hybrids used
in the security proof above. Note that in the game defined by Hybrid H1, each constrained query is
answered using a uniformly random key ki ∈ K. As such, the evaluation queries on constrained inputs
are independent of the constraint, which guarantees that A cannot distinguish between z and z′ with
better than negligible advantage. ■

Remark 4 (Replacing the random oracle with a correlated-input secure hash). As noted by several
prior works (e.g., [35, 42, 47]), the random oracle model is an overkill when all that is required is a
notion of “correlation-robustness.” Specifically, in our case, all we require is that H removes specific
types of correlations present in its inputs. With this in mind, we can replace the random oracle H
with a correlated-input secure hash (CIH) function [3, 35, 42, 47]. At a high level, a CIH is a publicly
parameterized function H whose outputs “look random and independent” to a computationally-
bounded adversary, even when the inputs are correlated. Specifically, we require the CIH to be secure
against affine correlations between the inputs. The proof of security for Theorem 1 then follows the

12

same blueprint, but instead hinges on the correlated-input security ofH to ensure that the outputs are
computationally indistinguishable from uniform. Unfortunately, we are not aware of an adaptively-
secure CIH function construction (to the best of our knowledge, all existing constructions are in
the selective-security regime). However, we note that there exist strong connections between CIH
functions and RKA-PRFs, as discussed in-depth by Goyal, O’Neill, and Rao [42]. RKA-PRFs form
the basis of our next instantiation of Construction 1.

5 Generalized Framework and Constructions

In this section, we instantiate our framework via RKA-secure PRFs. In Section 5.1, we start by
extending the basic framework from Section 4 to make it more amenable with RKA-secure PRF
constructions. We then prove that this framework yields constraint-hiding CPRFs from any RKA-
secure PRF supporting Φaff key derivation functions. In Sections 5.2 and 5.3, we plug in the DDH-
based and VDLPN-based RKA-secure PRF constructions into the framework. We defer instantiating
the framework with our OWF-based RKA-secure PRF to Section 6, as there we must first construct
a Φaff -RKA-secure PRF from OWFs.

5.1 Extended Framework

Existing constructions of RKA-secure PRFs (e.g., [1, 2, 7, 22]) have a key that is a vector of n
field elements. As such, we cannot directly instantiate Construction 1 because the inner products
are performed in F but the keys live in the vector space Fn (or subfield thereof). We therefore
provide an extended version of our framework in Construction 2, that can be instantiated with the
parameters of existing RKA-secure PRFs. At a high level, to accommodate keys that consist of vectors
of n elements, we apply Construction 1 independently n times to derive a key for each coordinate.
Formally, we capture this in Construction 2.

Construction 2 (The extended framework).
Let λ be a security parameter, n, ℓ ≥ 1 be integers, and F be a finite field. For a key space K and
range Y, a suitable choice of efficiently computable deterministic function map : Fn → K, and a
PRF family F =

{
Fk : Fℓ → Y

}
k∈K, the CPRF algorithms are defined as:

KeyGen(1λ, ℓ):

1 : k0
R← Fn

2 : foreach i ∈ [n] :

3 : z0i
R← Fℓ

4 : msk := (k0, z01, . . . , z0n)

Constrain(msk, z):

1 : parse msk = (k0, z0i, . . . , z0n)

2 : foreach i ∈ [n] :

3 : ∆i
R← F

4 : z1i := z0i −∆iz

5 : return csk := (k0, z11, . . . , z1n)

Eval(msk,x):

1 : parse msk = (k0, z0i, . . . , z0n)

2 : foreach i ∈ [n] :

3 : δxi := ⟨z0i,x⟩
4 : δx := (δx1, . . . , δxn)

5 : k ← map(k0 + δx)

6 : return Fk(x)

CEval(csk,x):

1 : parse csk := (k0, z11, . . . , z1n)

2 : foreach i ∈ [n] :

3 : δxi := ⟨z1i,x⟩
4 : δx := (δx1, . . . , δxn)

5 : k ← map(k0 + δx)

6 : return Fk(x)

Theorem 2. Let K be a subfield of F and let the PRF key space K = Kn. Fix map to be any non-
trivial ring homomorphism applied component-wise. If F is a family of RKA-secure pseudorandom
functions with respect to affine related key derivation functions Φaff , as defined in Definition 6, then
Construction 2 instantiated with F is a (1-key, selectively-secure, constraint-hiding) CPRF.

13

Proof. We prove the required properties in turn.

Correctness. For all constraints z and inputs x, whenever ⟨z,x⟩ = 0, we have that δxi = ⟨z0i,x⟩ =
⟨z0i,x⟩ +∆i ⟨z,x⟩ = ⟨z0i,x⟩ + ⟨∆iz,x⟩ = ⟨z1i,x⟩ ∈ F. Therefore, the resulting δx (as computed in
Eval and CEval of Construction 1) is the same. Moreover, this holds for all i ∈ [n], and because map is
a ring homomorphism to a subfield of F, the resulting keys are also identical when ⟨z,x⟩ = 0. It then
follows that the PRF evaluation is identical under the master key and the constrained key, because
both Eval and CEval add the same δx.

(1-key, selective) Security. We prove security by a reduction to the RKA-security of F . Our proof
consists of a sequence of hybrid games.

Hybrid H0. This hybrid consists of the (1-key, selective) CPRF security game.

Hybrid H1. In this hybrid, the challenger first samples the constrained key and then samples the
master key. Specifically, at the start of the game, given the constraint z (we’re in the selective security

regime), the challenger first samples the constrained key csk := (k0, z11, . . . , z1n), where k0
R← Fn

and z1i
R← Fℓ, for all i ∈ [n]. Then, the challenger computes the master secret key as msk :=

(k0, z01, . . . , z0n), where z0i := z1i +∆iz and ∆i
R← F, for all i ∈ [n].

Claim. A’s advantage in H1 is identical to A’s advantage in H0.

Proof. The claim follows immediately by observing that the distribution of msk and csk in H1 is
identical to H0, because the change is merely syntactic.

Hybrid H2. In this hybrid game, the challenger does not sample ∆ anymore. Instead, it is given
access to the following stateful oracle Orka:

Oracle Orka

Initialize. Sample ∆
R← Kn.

Evaluation. On input a affine function ϕ ∈ Φaff and x ∈ Fℓ, return Fϕ(∆)(x).

The challenger is then defined as follows.

1. Setup: On input (1λ, z), B initializes Q := ∅, samples csk according to H1 by sampling k0
R← Fn,

and z1i
R← Fℓ, for all i ∈ [n], and runs A on input csk := (k0, z11, . . . , z1n).

2. Pre-challenge queries: For each query x issued by A, the challenger updates Q ← Q ∪ {x},
then does the following to compute y:

- Compute ai := map(⟨z,x⟩) and bi := map(k0i + ⟨z1i,x⟩), for all i ∈ [n].

- Set ϕ : u 7→ a ◦ u + b where a := (a1, . . . , an) and b := (b1, . . . , bn), where ◦ denotes the
component wise (i.e., Hadamard) product.

- Query Orka on input (ϕ,x), and forward the response y to A.
▷ Note that y is computed by Orka as Fk′(x) where
▷ k′ = a ◦∆+ b ∈ Kn = ϕ(∆), for ϕ ∈ Φaff .

3. Challenge: For the single challenge query x∗, subject to ⟨z,x∗⟩ ̸= 0 and x∗ ̸∈ Q, the challenger
does the following. Sample b ∈ {0, 1}.
- If b = 0, then

- Compute ai := map(⟨z,x⟩) and bi := map(k0i + ⟨z1i,x∗⟩), for all i ∈ [n].

- Set ϕ∗ : u 7→ a ◦ u+ b where a := (a1, . . . , an) and b := (b1, . . . , bn), where ◦ denotes the
component wise product.

- Query Orka on input (ϕ∗,x∗), and forward the response y∗ to A.
- Else if b = 1, then

- Sample y∗
R← Y and send y∗ to A.

14

4. Post-challenge queries: Answered identically to pre-challenge queries.

Claim. A’s advantage in H2 is identical to A’s advantage in H1.

Proof. The difference between H2 and H1 is again purely syntactic since each output is computed
identically in both games, with the only difference being that the challenger now only has access to
∆ via the oracle Orka.

Hybrid H3. This hybrid consists of the RKA security game for F with respect to affine related key
derivation functions Φaff .

Claim. If there exits an efficient adversary A for H2 that wins with non-negligible advantage, then
there exists an efficient Φaff -restricted adversary B that wins the H3 game (RKA security game) with
the same advantage as A.

Proof. The challenger in H2 is already playing the role of a Φaff -restricted adversary when querying
the oracle Orka to answer the pre- and post-challenge queries. The reduction to RKA security of F is
therefore straightforward.

Constraint Privacy. For constraint privacy, we must show that if F is an RKA-secure PRF family,
then all evaluation and challenge queries remain pseudorandom, regardless of whether constraint z
or z′ is used by the challenger.5

Again, note that z0i +∆iz is distributed identically to z0i +∆iz
′, thereby making the constraint

key, absent the evaluation queries, efficiently simulatable regardless of the constraint chosen by the
challenger. Now, we must show that this remains the case even when the adversary is given access
to the evaluation oracles. We prove this via the following lemma. Roughly speaking, the lemma
states that if the underlying PRF is RKA-secure, then distinguishing between evaluations under two
different related-key derivation functions of the PRF key contradicts the RKA security of the PRF.

Lemma 1. Let λ be a security parameter and F = {Fk : X → Y}k∈K be an RKA-secure PRF. Then,
for all efficient Φ-restricted adversaries A, the advantage in the following game is negligible in λ.

– Setup: On input 1λ, the challenger samples k
R← K, samples a random bit b ∈ {0, 1}, initializes

the set Q := ∅, and runs A(1λ).
– Pre-challenge queries: For each query (ϕ, x), the challenger computes y ← Fϕ(k)(x), sends y

to A, and proceeds to update Q← Q ∪ {(ϕ, x)}.
– Challenge query: A sends challenge query (ϕ∗0, ϕ

∗
1, x
∗), subject to the restriction that (ϕ∗c , x

∗) ̸∈
Q, ∀c ∈ {0, 1}. The challenger computes y∗ ← Fϕ∗

b (k)
(x∗) and sends y∗ to A.

– Post-challenge queries: For each query (ϕ, x) subject to the restriction that (ϕ, x) ̸= (ϕ∗c , x
∗),∀c ∈

{0, 1}, the challenger computes y ← Fϕ(k)(x), and sends y to A.
– Guess: A outputs its guess b′.

A wins if b′ = b and its advantage is defined as |Pr[A wins]− 1
2 |, where the probability is over the

internal coins of A and choice of k.

The lemma follows immediately from a standard hybrid argument. By RKA-security of the PRF F
we have that Fϕ0(k)(x) ≈c R(x) ≈c Fϕ1(k)(x), where R is a random function. Therefore, a distinguisher
would directly contradict the security of the RKA-PRF.

■

5.2 DDH-based Construction

In this section, we describe the DDH-based RKA-secure PRF construction of Bellare and Cash [7]
(later extended by Abdalla et al. [1]) and describe how it fits into Construction 2 to realize a DDH-
based CPRF for inner-product predicates.

RKA-secure PRF from DDH. The multiplicative variant [1, 7] of the Naor-Reingold PRF [53] is
parameterized by an integer n ≥ 1 and a multiplicative group G of prime order p with generator g. The

5 Recall that the adversary provides two constraints z and z′.

15

PRF key k = (a1, . . . , an) ∈ Zn
p consists of n random elements in Zn

p and the input x ∈ {0, 1}n \ {0n}
is chosen from the set of all non-zero n-bit strings. The PRF NR∗ is then defined as:

NR∗((a1, . . . , an), x) = g
∏n

i=1 a
xi
i . (1)

The RKA-secure version of the multiplicative Naor-Reingold PRF is parameterized by a collision-
resistant hash function h : {0, 1}n ×Gn → {0, 1}n−2 and is defined as:6

NR∗((a1, . . . , an), 11∥h(x, ga1 , . . . , gan)). (2)

Abdalla et al. [1, Section 4] show that Equation (2) is an RKA-secure PRF for Φaff -restricted adver-
saries. We provide an informal merger of the main theorems from Abdalla et al. [1] pertaining to this
construction here, for completeness.

Proposition 1 (Merge of [1, Theorems 4.5, 5.1, & A1]). Let G be a multiplicative group
of prime order p and let NR∗ be defined as in Equation (1). Let h : {0, 1}n × Gn → {0, 1}n−2 be
a collision-resistant hash function. Define the PRF family F = {Fk : {0, 1}n → G}k∈Zn

p
to be as in

Equation (2). Then, if the DDH assumption holds in G, F is RKA-secure against all efficient, Φaff-
restricted adversaries A.

Remark 5 (RKA security under DDH). Abdalla et al. [1] prove the RKA security of their construction
for Φaff -restricted adversaries under the 1-DDHI assumption (which is known to be equivalent to the
Square DDH assumption [9]). However, they explicitly note that, by combining Theorems 4.5, 5.1, &
A1 (found in the full version of their paper), they obtain the same result under the DDH assumption.

Remark 6 (Supporting vector inputs). NR∗ takes as input a binary string x ∈ {0, 1}n as opposed to
a vector x ∈ Fℓ as is assumed by our framework. However, we can easily map any x ∈ Fℓ to a binary
string of required length via any collision-resistant hash function (CRHF), which are known from the
discrete logarithm assumption [33] (implied by DDH, see Appendix C), making vector inputs x ∈ Fℓ

syntactically cleaner and without any loss of generality. In particular, for a CRHF h, the binary string
input x can be computed as h(x). Moreover, since the RKA-secure variant of NR∗ already requires
hashing the input using a CRHF, this does not introduce additional computational complexity.

Construction from DDH-based RKA-secure PRF. With the RKA-secure PRF construction of
Proposition 1, we can instantiate Construction 2. To satisfy the key space and related-key derivation
requirements, we must instantiate our extended framework with the following parameters. Let p be
the order of the DDH-hard group G. We set F to be a field extension of Fp, and let n = n(λ) ∈ poly(λ),
following Equation (2). Applying Theorem 2 in conjunction with Proposition 1 yields:

Theorem 3. Assume that the DDH assumption holds in a group G of order p. Then, there exists a (1-
key, selectively-secure, constraint-hiding) CPRF for inner-product constraint predicates with vectors
in Fℓ

p, for any ℓ ≥ 1.

Remark 7 (Complexity of the DDH-based construction). The Naor-Reingold PRF from Equation (1)
can be evaluated in NC1. Interestingly, the same is true of the RKA-secure variant of Equation (2),
provided that the collision resistant hash function can be evaluated in NC1 (which is the case of the
discrete log based construction [33]; see also Appendix C). We will use this later in Appendix B when
applying our construction to lower bounds in learning theory.

5.3 VDLPN-based Construction

In this section, we show that we can instantiate Construction 2 from any RKA-secure PRF supporting
only additive key derivation functions Φ+ ⊂ Φaff over the field F2. In particular, this allows us to
instantiate our framework using the weak PRF candidate of Boyle et al. [22] based on the Variable-
density Learning Parity with Noise (VDLPN) assumption. This yields the first construction of a
(weak) CPRF for inner-product predicates under a code-based assumption.

6 Note that the prefix “11” ensures that the input is never 0n, and therefore always in the domain of NR∗ [1, 7].

16

RKA-secure weak PRF candidate from VDLPN. For a security parameter λ, the VDLPN-
based weak PRF candidate of Boyle et al. [22] is parameterized by integers D = D(λ), w = w(λ),
input space {0, 1}n and key space {0, 1}n, where n := w ·D(D − 1)/2. The PRF FK is defined as:

FK(x) =

D⊕
i=1

w⊕
j=1

i∧
k=1

(Ki,j,k ⊕ xi,j,k). (3)

Theorem 4 (Informal; adapted from [22, Theorem 6.9]). Let λ be a security parameter and
suppose that the VDLPN assumption holds with parameters w(λ) and D(λ). Then, the PRF in Equa-
tion (3) is an RKA-secure weak PRF with respect to additive key derivation functions Φ+.

We will use the following lemma which proves that for the case of F2, additive and affine RKA
security are in fact equivalent in our context:

Lemma 2. Let F be a PRF with key space Fn
2 that is secure against Φ+-restricted adversaries. Then,

Construction 2 instantiated with F is a secure CPRF.

Proof. Consider the proof of Theorem 2. We look at the queries issued by the CPRF challenger to
the RKA oracle Orka in Hybrid H2 of the proof. For each query x issued by the adversary to the
CPRF challenger, the induced affine function ϕ ∈ Φaff is parameterized by vectors a,b ∈ Fn

2 . Note
that a = (a1, . . . , an), where ai ← ⟨z,x⟩. Moreover, ai ̸= 0 for all queries that do not satisfy the
constraint, which implies that ai = 1 ∈ F2. As such, each (constrained) query issued to the RKA
oracle Orka by the challenger is an affine function ϕ ∈ Φaff parameterized by (1,b) and the oracle Orka

responds with the PRF evaluated using key k := 1 ◦∆+b. This is equivalent to an additive function
ϕ′ ∈ Φ+ simply parameterized by b. The reduction in Theorem 2 therefore goes through as before,
concluding the lemma. ■

Construction from VDLPN-based RKA-secure weak PRF. With the RKA-secure weak PRF
construction of Equation (3), we can instantiate Construction 2. To satisfy the key space and related-
key derivation requirements, we must instantiate our extended framework with the following param-
eters. We set F to be a field extension of F2n , n = n(λ) ∈ poly(λ), map maps from F to Fn

2 , and ℓ ≥ n
(inputs of length ℓ can be truncated to n before being fed into the PRF, without loss of generality).
Applying Theorem 2 in conjunction with Theorem 4 and Lemma 2 yields:

Theorem 5. Assume that the VDLPN assumption holds. Then, there exists a (1-key, selectively-
secure, constraint-hiding) weak CPRF for inner-product constraint predicates computed over vectors
in Fℓ

2, where ℓ ≥ n.

6 CPRFs for Inner-Product Predicates from OWFs

In this section, we instantiate our extended framework from Section 5.1 under the minimal assumption
that one-way functions exist. Unlike our constructions in Section 5.1, here we will require that the set
of possible related keys computed for evaluation queries is bounded by a fixed polynomial t = t(λ),
which forces us to restrict the input domain of the CPRF. Specifically, we show that we can satisfy
this requirement without placing any restrictions on the CPRF adversary if the CPRF inputs are
vectors in [0, B)ℓ with B ∈ O(1) and ℓ = ℓ(λ) ∈ O(log λ). These restrictions limit the L∞-norm of
each input vector and make the input domain of the CPRF polynomial in the security parameter.
We note that this is the same class of inner-product constraints considered by Davidson et al. [34]
(inner products over Z) from the LWE assumption, albeit here we only obtain a polynomially-sized
input domain.

Our construction builds off of a result by Applebaum and Widder [2], which constructs a restricted
class of RKA-secure PRFs from any PRF and am-wise independent hash function. Their construction
is secure against additive relations over a group, provided that the RKA adversary uses at most
t = t(λ) different related-key derivation functions ϕ1 . . . , ϕt ∈ Φ+, where t≪ m. (We stress, however,
that the adversary can query the PRF on an unbounded number of inputs using each of the t different
RKA functions.) Because m-wise independent hash functions can be constructed unconditionally [62],
the resulting RKA-secure PRF can be realized from any PRF, thus relying only on the assumption
that one-way functions exist [2, 41]. More formally, they prove:

17

Theorem 6 (Adapted from [2]). Let K = {Gλ}λ∈N be a sequence of efficiently computable additive
groups, and t = t(λ) be an arbitrary fixed polynomial. Then, assuming the existence of a PRF F =
{Fk : Xλ → Y}k∈Gλ

, there exists an RKA-secure PRF with respect to addition over K provided that
the total number of unique related-key derivation functions queried by the adversary is bounded by t.
(The adversary is allowed to query each function on any number of inputs.)

Unfortunately, we require the PRF to be RKA-secure with respect to affine relations Φaff and
therefore cannot apply Theorem 6 directly. More concretely, the issue with affine (as opposed to
additive) relations is that they are not “claw-free,” meaning that there exist pairs of different functions
ϕ1, ϕ2 ∈ Φaff such that for a key k ∈ K, ϕ1(k) = ϕ2(k). The lack of claw-freeness poses problems in
security proofs because, if an adversary is able to find two different ϕ1, ϕ2 ∈ Φaff such that ϕ1(k) =
ϕ2(k), the adversary learns information about k and can then break the RKA-security of the PRF [1].
To address this, we strengthen Theorem 6 for the case of Φaff -restricted adversaries by showing that
the number of collisions is bounded by a negligible factor in the security parameter, proving a stronger
theorem via their approach. We describe this next.

6.1 Affine RKA-secure PRFs from OWFs

In this section, we show how to construct RKA-secure PRFs for affine related-key derviation functions
from one-way functions. The framework and proof closely follows that of Applebaum and Widder [2]
for constructing RKA-secure PRFs from m-wise independent hash functions.

Immunizing PRFs against RKA. The idea of Applebaum and Widder [2] is to to immunize
any regular PRF family F with key space K = Kλ against a bounded related-key attack, where the
adversary makes at most t related key queries (but can make an unbounded number of PRF queries
under each related key) for some apriori fixed t = t(λ) ∈ poly(λ). The high level idea is to use a long
key s from a large key space S (larger than Kt) and use a public hash function h to derive shorter
key h(s) ∈ K for F . Here, we generalize their approach to the case of affine functions.

Definition 7 (t-good hash function). Let λ be a security parameter, F be finite field of or-
der at least 2λ, and K ⊆ {0, 1}λ be a set of strings. A hash function h : F → K is said to be
t-good if for any t-tuple of distinct affine function (ϕ1, . . . , ϕt) ∈ Φt

aff , the joint distribution of

(h(s), h(ϕ1(s)), . . . , h(ϕt(s)) induced by a random choice of s
R← F, is ε-close in statistical distance to

the uniform distribution over Kt+1, for some negligible ε = ε(λ).

Definition 8 (t-good hash family). Let λ be a security parameter, F be a finite field of order at
least 2λ, and Z,K ⊆ {0, 1}λ. A family of hash functions H = {hz : F→ K}z∈Z is said to be t-good if

with all-but-negligible probability, for a randomly selected z
R← Z, the hash function hz is t-good.

We now prove that if we have a t-good hash family, we can “immunize” any PRF against affine
related key attacks. Later, in Lemma 3, we show how to construct a t-good hash family from m-wise
independent hash functions.

Theorem 7 (Extended from [2, Lemma 7.1]). Let λ be a security parameter, t = t(λ) ∈ poly(λ),
F be a finite field of order at least 2λ, and Z,K ⊆ {0, 1}λ. Let F = {Fk : X → Y}k∈K be a PRF family
and H = {hz : F→ K}z∈Z be a t-good hash family. The PRF family G = {Gs,z : X → Y}s∈F,z∈Z , pa-
rameterized by a secret s

R← F and public z
R← Z, and defined by the mapping Gs,z(x) 7→ Fk(x), where k ←

hz(s), is an RKA-secure PRF family against t-bounded Φaff-restricted adversaries.

Proof. Suppose, towards contradiction, there exists an efficient Φaff -restrictedA that has non-negligible
advantage in the RKA-security game for G. Then, there exists a non-negligible function ν such that,∣∣∣∣∣ Pr

s
R←F,z R←Z

[AGs,z (1λ, z)]− Pr
z

R←Z
[AR(1λ, z)]

∣∣∣∣∣ ≥ ν(λ),

where R is a truly random function.

Then, consider a vector of t+ 1 keys k := (k0, k1, . . . , kt) ∈ Kt+1, and define a stateful oracle Ok

as follows.

18

Oracle Ok

Initialize. Set Qϕ := {}, define a dictionary T := [], and counter j ← 1.

Evaluation.

- For each non-RKA query x, output Fk0
(x).

- For each RKA query (ϕ, x):

- If ϕ ∈ Qϕ, retrieve ki ← T [ϕ] and output Fki
(x).

- If ϕ ̸∈ Qϕ, set T [ϕ]← kj , set j ← j + 1, and output Fkj (x).

In words, Ok outputs Fki
(x), and stores the association between ϕ and ki to answer all future queries

involving ϕ using PRF key ki.

Now, because hz is t-good, for a random vector k of t+ 1 keys, we have that∣∣∣∣∣ Pr
k

R←Kt+1,z
R←Z

[AOk(1λ, z)]− Pr
z

R←Z
[AGs,z (1λ, z)]

∣∣∣∣∣ ≥ ν(λ)− negl(λ).

By a straightforward hybrid argument, it follows that A has non-negligible advantage in win-
ning the (standard) PRF game by distinguishing between Ok and the truly random function R,
contradicting that F is a PRF. This proves security against Φaff -restricted adversaries.

■

The following lemma shows that any Ω(λ · t2)-wise independent hash function with a sufficiently
large domain is t-good in the sense of Definition 7. Moreover, an m-wise independent hash func-
tion can be constructed unconditionally for any m (e.g., using a universal hash based on random
polynomials [62]).

Lemma 3. Let λ be a security parameter, t = t(λ) ∈ poly(λ), and H be a family of m-wise inde-
pendent hash function with domain S = {Sλ} and range K = {Kλ} where m ≥ λ(3t + 5)(t + 1),
|Kλ| = 2λ, and |Sλ| = 2λ(2t+6). Then, H is a t-good family of hash function. In particular, for all but

a 2−λ fraction of the functions in H, the distribution of hz
R← H is 2−0.99λ-close to uniform.

Proof. The proof is deferred to Appendix D.1 as it closely follows the proof strategy of Applebaum
and Widder [2, Proof of Lemma 7.2] for a similar lemma in the context of additive functions. ■

6.2 CPRF Construction from OWFs

Using the RKA-secure PRF construction from Theorem 7, we can instantiate Construction 2 with
F = Fp, for sufficiently large p ≥ 2λ(2t+6) as required by Lemma 3, and n ≥ 1. However, we must
set the input vector domain to [0, B)ℓ ⊂ Zℓ with the vector length ℓ such that Bℓ ≤ t. Specifically,
this ensures that the total number of unique inputs to the t-good hash when deriving affine keys is
bounded by t = t(λ) ∈ poly(λ). To see this, note that there are Bℓ possible values for the inner product
⟨z0,x⟩ +∆ ⟨z,x⟩ given that z and z0 are fixed while x ∈ [0, B)ℓ is chosen by the adversary. Hence,
we can simply let map be defined by applying n different t-good hash functions component-wise to
derive the PRF key in Kn. Then, applying Theorem 2 in conjunction with Theorem 7 yields:

Theorem 8. Let λ be a security parameter and fix a polynomial t = t(λ) ∈ poly(λ). Assume that
one-way functions exist. Then, there exists a (1-key, selectively-secure, constraint-hiding) CPRF for
inner-product constraint predicates with ℓ = ℓ(λ) ∈ O(log λ) and input vectors in the range [0, B) for
any constant B such that Bℓ ≤ t.

Proof. We recall the proof of Theorem 2, and in particular Hybrid H2. In the game defined by H2, for
each query x issued by the CPRF adversary, the challenger derives the affine function ϕ parameterized
by vectors a,b ∈ Fn

p where:

• a := (a1, . . . , an) with ai = ⟨z,x⟩ for all i ∈ [n].

19

• b := (b1, . . . , bn) with bi = ⟨z0i,x⟩ for all i ∈ [n].

Note that z and z0i, for all i ∈ [n] are fixed at the start of the CPRF game. Therefore, a,b are both
entirely determined by the query vector x. The RKA oracle Orka in H2 (when instantiated with the
immunized RKA-PRF construction of Theorem 7) computes the RKA key as hi(ai∆i + bi) for all
i ∈ [n], where hi is an independent t-good hash function and ∆i is an independent PRF key. We
must show that, for all possible sets of queries Q := {xj | 1 ≤ j ≤ qE} issued by A (here qE is an
arbitrary upper bound on the total number of evaluation queries), the number of unique inputs to hi

never exceeds t. This follows from the fact that the number of possible values that ki := ai∆i + bi
can take on is bounded by the number of unique values of x, which in turn is bounded by Bℓ ≤ t,
by construction. We remark that there are no restrictions placed on the adversary’s queries—the
adversary can adaptively query the CPRF challenger and issue any polynomial number of evaluation
queries (independently of t). ■

As a corollary, we obtain an analogous result to Theorem 8 but with an exponential input domain
provided that the CPRF adversary makes at most t unique evaluation queries on constrained inputs.

Corollary 1. Let λ be a security parameter and fix a polynomial t = t(λ) ∈ poly(λ). Assume that one-
way functions exist. Then, there exists a (1-key, selectively-secure, constraint-hiding) CPRF for inner-
product constraint predicates for any ℓ ≥ 1 provided that the adversary makes at most t constrained
evaluation queries.

7 Evaluation

In this section, we implement7 and benchmark our CPRF constructions. For each construction, we first
analyze the complexity (in terms of multiplication, additions, and invocations of other cryptographic
primitives) and then report the concrete performance of our Go (v1.20) implementation benchmarked
on an Apple M1 CPU. All benchmarks are performed on a single core.

7.1 Complexity and Benchmarks

Random oracle construction. The random oracle construction requires computing the inner product
in F followed by a call to a random oracle. We heuristically instantiate the random oracle using the
SHA256 hash function. We let the F = Fp be a finite field where p is a 128-bit prime. The bottleneck
of the construction is computing the inner product (modulo p), which requires a total of ℓ modular
multiplications and additions. We report the concrete performance in Table 2. Overall, evaluation
required a few microseconds of computation time, ranging from 2µs for small vectors (ℓ = 10) and
200µs for large vectors (ℓ = 1000).

DDH-based construction. In the DDH-based construction, the bulk of the required operations are
performed modulo p, where p is the order of the DDH-hard group. For a security parameter λ and
n = n(λ), the CPRF construction requires computing (1) nℓ multiplications and nℓ additions (mod
p) to compute the inner products between length-ℓ vectors, (2) one invocation of a collision-resistant
hash function, and (3) n multiplications (mod p) and n + 1 group operations in G to compute the
PRF evaluation. This results in a total complexity of n(ℓ+ 1) multiplications (mod p), nℓ additions,
n+1 group operations, and one invocation of a CRHF. Using the P256 elliptic curve, letting n = 128,
and using the discrete logarithm based CRHF construction (see Appendix C), each CPRF evaluation
requires a few ms to compute (note that in practice, the DL-based CRHF can be replaced with a
fixed-key AES or SHA256 hash function for better performance). We report the concrete performance
in Table 3. The concrete performance is worse for smaller vectors due to constant overheads of
computing the CRHF and PRF relative to computing the inner product. For larger vectors, however,
the inner product computation dominates the cost.

OWF-based construction. Our OWF-based construction requires computing the inner products
over the integers, which requires ℓ multiplications and ℓ additions in Z to compute inner products.
Then, we need to evaluate an m-wise independent hash function. This requires evaluating a random
polynomial of degree m = λ(3t+5)(t+1) with log2(λ(2t+6))-bit coefficients (recall Lemma 3). Here,

7 The implementation is open source: https://github.com/sachaservan/cprf.

20

https://github.com/sachaservan/cprf

(ℓ) 10 50 100 500 1000

2 µs 10 µs 19 µs 98 µs 200 µs

Table 2: Concrete evaluation time for our RO-based
CPRF construction for vectors of length ℓ.

(ℓ) 10 50 100 500 1000

8 ms 11 ms 16 ms 46 ms 85 ms

Table 3: Concrete evaluation time for our DDH-
based CPRF construction for vectors of length ℓ.

we let λ = 40 as it is a statistical security parameter of the t-good hash function. For very small
values of B and ℓ, we obtain reasonable concrete efficiency when evaluating the m-wise independent
hash function (less than one second of computation for B = 2 and ℓ = 5 and roughy 50MB public
parameters). However, for larger parameters, the concrete efficiency quickly becomes impractical. This
blowup is due to the quadratic overhead of Lemma 3. Additionally, the public parameters quickly
become impractically large (e.g., petabytes) as ℓ increases due to the cubic factor in t. Furthermore,
the concrete size of the public parameters required to store the description of the m-wise independent
hash function (m coefficients of a random polynomial) is exceedingly large. This description already
reaches terabytes in size with B = 2 and ℓ = 10, barring any concretely practical instantiation.

7.2 Comparison to other CPRF constructions

Prior CPRF constructions for inner product (and NC1) predicates [4, 30, 34] do not have implementa-
tions, and due to large parameters or heavy building blocks, are far too inefficient to be implemented.
We briefly discuss the concrete efficiency roadblocks associated with these constructions.

– The LWE-based CPRF construction of Davidson et al. [34] is implementable but very inefficient
due to the large parameters required for security and computationally expensive building blocks.
Specifically, their construction requires computing a linear (in the input size) matrix-matrix prod-
ucts of LWE matrices, which poses a major efficiency roadblock. Similar roadblocks are faced with
other LWE-based constructions, even if adapted to the simpler case of inner-product constraints.

– The constructions of Attrapadung et al. [3] is tailored to evaluating NC1 boolean circuits and
requires computing a linear number of group exponentiations in the degree of the universal NC1

circuit computing the constraint predicate. While their construction can be theoretically applied
to computing inner-product predicates, it does lend itself to a practical solution as it would require
emulating field operations inside of the NC1 universal circuit.

– The approach of Couteau et al. [30] based on DCR requires evaluating a PRF using HSS (where
the PRF key is encoded as an HSS input share). This requires evaluating a linear (in the degree of
the polynomial computing the PRF) number of HSS multiplications. Using a DCR-based variant
of the Naor-Reingold PRF (the only DCR-based PRF in NC1, as required for HSS evaluation)

necessitates computing g
∏n

i a
xi
i in HSS, where the key k = (a1, . . . , an) is the PRF key provided

as input. The exceedingly high degree of this polynomial eliminates the possibility of a concretely
practical instantiation, since even low-degree polynomials can already be concretely expensive to
evaluate in HSS schemes [19].

7.3 Discussion

In light of the concrete performance of our constructions, is becomes clear that the OWF-based
constructions is primarily of theoretical interest on realistic parameters, as it does not scale well with
the length of the input vectors. In contrast, the random oracle and DDH-based constructions are
both very efficient and require only a few microseconds or milliseconds to evaluate on long input
vectors. To the best of our knowledge, these are the first concretely efficient constrained PRFs for
inner-product predicates.

8 Conclusion and Future Work

In conclusion, this paper contributes a simple framework for constructing constraint-hiding CPRFs
with inner-product constraint predicates through subtractive secret sharing and related-key-attack-

21

secure PRFs. Through our framework, we constructed the first (1-key, selectively-secure, constraint-
hiding) CPRFs with inner-product constraint predicates from DDH and from one-way functions, and
the first (1-key, adaptively-secure, constraint-hiding) CPRFs in the random oracle model.

Future work. We identify several interesting avenues for future work. The first open problem is con-
structing (constraint-hiding) CPRFs for more expressive constraints from new assumptions, especially
for NC1 and puncturing constraints. Given the tight connection between our framework and RKA-
secure PRFs, an additional avenue of exploration is constructing suitable RKA-secure PRFs from new
assumptions (which will immediately enable instantiating our framework under those assumptions as
well). Second, there are currently few practical applications of CPRFs with inner-product predicates
that we are aware of, which we believe is due to the previous lack of concretely efficient constructions.
Finding practical other use cases for CPRFs with inner-product predicates (constraint-hiding or not),
is an interesting question and worth exploring in light of our efficient constructions.

Acknowledgements

I’d like to thank Geoffroy Couteau for insightful discussions, providing me with several pointers and
references (especially when it came to pointing out the relevance of [23, 29]), and many invaluable
suggestions. I’d also like to thank Michele Orrù for editorial advice and feedback. Finally, I’m grateful
to Vinod Vaikuntanathan and Yael Kalai for helpful discussion on early ideas surrounding this work.

22

Bibliography

[1] Michel Abdalla, Fabrice Benhamouda, Alain Passelègue, and Kenneth G Paterson. Related-key
security for pseudorandom functions beyond the linear barrier. In Advances in Cryptology–
CRYPTO 2014: 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21,
2014, Proceedings, Part I 34, pages 77–94. Springer, 2014.

[2] Benny Applebaum and Eyal Widder. Related-key secure pseudorandom functions: The case of
additive attacks. Cryptology ePrint Archive, 2014.

[3] Nuttapong Attrapadung, Takahiro Matsuda, Ryo Nishimaki, Shota Yamada, and Takashi Ya-
makawa. Constrained PRFs for in traditional groups. In Advances in Cryptology–CRYPTO
2018: 38th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19–
23, 2018, Proceedings, Part II, pages 543–574. Springer, 2018.

[4] Nuttapong Attrapadung, Takahiro Matsuda, Ryo Nishimaki, Shota Yamada, and Takashi Ya-
makawa. Adaptively single-key secure constrained PRFs for NC1. In IACR International Work-
shop on Public Key Cryptography, pages 223–253. Springer, 2019.

[5] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, and Peter Scholl. MozZ2karella:
efficient vector-OLE and zero-knowledge proofs over Z2k . In Annual International Cryptology
Conference, pages 329–358. Springer, 2022.

[6] Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß, Emmanuela
Orsini, Lawrence Roy, and Peter Scholl. Publicly verifiable zero-knowledge and post-quantum
signatures from VOLE-in-the-head. In Annual International Cryptology Conference, pages 581–
615. Springer, 2023.

[7] Mihir Bellare and David Cash. Pseudorandom functions and permutations provably secure
against related-key attacks. In Annual Cryptology Conference, pages 666–684. Springer, 2010.

[8] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In International Conference on the Theory and Applications of
Cryptographic Techniques, pages 491–506. Springer, 2003.

[9] Olivier Blazy and David Pointcheval. Traceable signature with stepping capabilities. In Cryptog-
raphy and Security: From Theory to Applications: Essays Dedicated to Jean-Jacques Quisquater
on the Occasion of His 65th Birthday, pages 108–131. Springer, 2012.

[10] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications.
In Advances in Cryptology-ASIACRYPT 2013: 19th International Conference on the Theory
and Application of Cryptology and Information Security, Bengaluru, India, December 1-5, 2013,
Proceedings, Part II 19, pages 280–300. Springer, 2013.

[11] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more from
indistinguishability obfuscation. Algorithmica, 79:1233–1285, 2017.

[12] Dan Boneh, Kevin Lewi, Hart Montgomery, and Ananth Raghunathan. Key homomorphic PRFs
and their applications. In Annual Cryptology Conference, pages 410–428. Springer, 2013.

[13] Dan Boneh, Sam Kim, and Hart Montgomery. Private puncturable PRFs from standard lattice
assumptions. In Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 415–445. Springer, 2017.

[14] Dan Boneh, Kevin Lewi, and David J Wu. Constraining pseudorandom functions privately. In
IACR International Workshop on Public Key Cryptography, pages 494–524. Springer, 2017.

[15] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. Forward and backward private searchable
encryption from constrained cryptographic primitives. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 1465–1482, 2017.

[16] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom func-
tions. In International workshop on public key cryptography, pages 501–519. Springer, 2014.

[17] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Annual international
conference on the theory and applications of cryptographic techniques, pages 337–367. Springer,
2015.

[18] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for secure computation
under DDH. In Advances in Cryptology–CRYPTO 2016: 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I, pages 509–539.
Springer, 2016.

[19] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, and Michele Orrù. Homomorphic secret
sharing: optimizations and applications. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pages 2105–2122, 2017.

[20] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Efficient
pseudorandom correlation generators: Silent OT extension and more. In Advances in Cryptology–
CRYPTO 2019: 39th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 18–22, 2019, Proceedings, Part III 39, pages 489–518. Springer, 2019.

[21] Elette Boyle, Lisa Kohl, and Peter Scholl. Homomorphic secret sharing from lattices without
FHE. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 3–33. Springer, 2019.

[22] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Correlated
pseudorandom functions from variable-density LPN. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 1069–1080. IEEE, 2020.

[23] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Efficient
pseudorandom correlation generators from ring-LPN. In Advances in Cryptology–CRYPTO 2020:
40th Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA,
August 17–21, 2020, Proceedings, Part II 40, pages 387–416. Springer, 2020.

[24] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic PRFs from standard
lattice assumptions: Or: How to secretly embed a circuit in your PRF. In Theory of Cryptogra-
phy: 12th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015,
Proceedings, Part II 12, pages 1–30. Springer, 2015.

[25] Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Private constrained
PRFs (and more) from LWE. In Theory of Cryptography Conference, pages 264–302. Springer,
2017.

[26] Ran Canetti and Yilei Chen. Constraint-hiding constrained PRFs for NC from LWE. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques, pages
446–476. Springer, 2017.

[27] Nishanth Chandran, Srinivasan Raghuraman, and Dhinakaran Vinayagamurthy. Reducing depth
in constrained PRFs: From bit-fixing to NC1. In Public-Key Cryptography–PKC 2016, pages 359–
385. Springer, 2016.

[28] Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond permutation branching
programs: proofs, attacks, and candidates. In Advances in Cryptology–CRYPTO 2018: 38th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19–23, 2018,
Proceedings, Part II 38, pages 577–607. Springer, 2018.

[29] Aloni Cohen, Shafi Goldwasser, and Vinod Vaikuntanathan. Aggregate pseudorandom functions
and connections to learning. In Theory of Cryptography: 12th Theory of Cryptography Conference,
TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part II 12, pages 61–89. Springer,
2015.

[30] Geoffroy Couteau, Pierre Meyer, Alain Passelègue, and Mahshid Riahinia. Constrained pseudo-
random functions from homomorphic secret sharing. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 194–224. Springer, 2023.

[31] Geoffroy Couteau, Lalita Devadas, Srinivas Devadas, Alexander Koch, and Sacha Servan-
Schreiber. Quietot: Lightweight oblivious transfer with a public-key setup. Cryptology ePrint
Archive, 2024.

[32] Nan Cui, Shengli Liu, Yunhua Wen, and Dawu Gu. Pseudorandom functions from LWE: RKA
security and application. In Australasian Conference on Information Security and Privacy, pages
229–250. Springer, 2019.

[33] Ivan Bjerre Damg̊ard. Collision free hash functions and public key signature schemes. In Work-
shop on the Theory and Application of of Cryptographic Techniques, pages 203–216. Springer,
1987.

[34] Alex Davidson, Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa.
Adaptively secure constrained pseudorandom functions in the standard model. In Advances in
Cryptology–CRYPTO 2020: 40th Annual International Cryptology Conference, CRYPTO 2020,
Santa Barbara, CA, USA, August 17–21, 2020, Proceedings, Part I, pages 559–589. Springer,
2020.

[35] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail Ostrovsky.
Trapdoor hash functions and their applications. In Annual International Cryptology Conference,
pages 3–32. Springer, 2019.

24

[36] Zeev Dvir, Anup Rao, Avi Wigderson, and Amir Yehudayoff. Restriction access. In Proceedings
of the 3rd Innovations in Theoretical Computer Science Conference, pages 19–33, 2012.

[37] Thibauld Feneuil. Post-Quantum Signatures from Secure Multiparty Computation. PhD thesis,
Sorbonne Université, 2023.

[38] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure functional encryption
without obfuscation. IACR Cryptol. ePrint Arch., 2014:666, 2014.

[39] Niv Gilboa and Yuval Ishai. Distributed point functions and their applications. In Advances
in Cryptology–EUROCRYPT 2014: 33rd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings
33, pages 640–658. Springer, 2014.

[40] David Goldenberg and Moses Liskov. On related-secret pseudorandomness. In Theory of Cryp-
tography Conference, pages 255–272. Springer, 2010.

[41] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. Journal
of the ACM (JACM), 33(4):792–807, 1986.

[42] Vipul Goyal, Adam O’Neill, and Vanishree Rao. Correlated-input secure hash functions. In
Theory of Cryptography: 8th Theory of Cryptography Conference, TCC 2011, Providence, RI,
USA, March 28-30, 2011. Proceedings 8, pages 182–200. Springer, 2011.

[43] Ronen Gradwohl and Amir Yehudayoff. t-wise independence with local dependencies. Informa-
tion processing letters, 106(5):208–212, 2008.

[44] David Heath and Vladimir Kolesnikov. One hot garbling. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, pages 574–593, 2021.

[45] Dennis Hofheinz, Akshay Kamath, Venkata Koppula, and Brent Waters. Adaptively secure
constrained pseudorandom functions. In International Conference on Financial Cryptography
and Data Security, pages 357–376. Springer, 2019.

[46] Susan Hohenberger, Venkata Koppula, and Brent Waters. Adaptively secure puncturable pseu-
dorandom functions in the standard model. In International conference on the theory and appli-
cation of cryptology and information security, pages 79–102. Springer, 2015.

[47] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently.
In Annual International Cryptology Conference, pages 145–161. Springer, 2003.

[48] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Dele-
gatable pseudorandom functions and applications. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pages 669–684, 2013.

[49] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and
applications. In Automata, Languages and Programming: 35th International Colloquium, ICALP
2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II 35, pages 486–498. Springer, 2008.

[50] Arthur Lazzaretti and Charalampos Papamanthou. Treepir: Sublinear-time and polylog-
bandwidth private information retrieval from DDH. Cryptology ePrint Archive, 2023.

[51] Kevin Lewi, Hart Montgomery, and Ananth Raghunathan. Improved constructions of PRFs
secure against related-key attacks. In Applied Cryptography and Network Security: 12th Interna-
tional Conference, ACNS 2014, Lausanne, Switzerland, June 10-13, 2014. Proceedings 12, pages
44–61. Springer, 2014.

[52] Yiping Ma, Ke Zhong, Tal Rabin, and Sebastian Angel. Incremental offline/online PIR. In 31st
USENIX Security Symposium (USENIX Security 22), pages 1741–1758, 2022.

[53] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random
functions. Journal of the ACM (JACM), 51(2):231–262, 2004.

[54] Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of Paillier: homomorphic secret
sharing and public-key silent OT. In Advances in Cryptology–EUROCRYPT 2021: 40th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, October 17–21, 2021, Proceedings, Part I 40, pages 678–708. Springer, 2021.

[55] Chris Peikert and Sina Shiehian. Privately constraining and programming PRFs, the LWE way.
In IACR International Workshop on Public Key Cryptography, pages 675–701. Springer, 2018.

[56] Naty Peter, Rotem Tsabary, and Hoeteck Wee. One-one constrained pseudorandom functions. In
1st Conference on Information-Theoretic Cryptography (ITC 2020). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2020.

[57] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set intersection based
on OT extension. ACM Transactions on Privacy and Security (TOPS), 21(2):1–35, 2018.

25

[58] Kim Ramchen and Brent Waters. Fully secure and fast signing from obfuscation. In Proceedings
of the 2014 ACM SIGSAC conference on computer and communications security, pages 659–673,
2014.

[59] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana Raykova. Distributed vector-
OLE: Improved constructions and implementation. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pages 1055–1072, 2019.

[60] Shi-Feng Sun, Xingliang Yuan, Joseph K Liu, Ron Steinfeld, Amin Sakzad, Viet Vo, and Surya
Nepal. Practical backward-secure searchable encryption from symmetric puncturable encryp-
tion. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pages 763–780, 2018.

[61] Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984.

[62] Mark N Wegman and J Lawrence Carter. New hash functions and their use in authentication
and set equality. Journal of computer and system sciences, 22(3):265–279, 1981.

26

Supplementary Material

A Extensions

In this section, we describe extensions to CPRFs with inner-product constraints.

A.1 More General Constraint Predicates

It is known (in some cases folklore) that CPRFs for inner-product constraint predicates yield CPRFs
with constraints described by constant-degree polynomials, t-CNF formulas (with constant t) [34], and
the “AND” of an arbitrary set of constraint predicates. We explicitly describe these extensions here
for completeness. We note that all the presented extensions preserve the constraint-hiding property.

CPRFs for constant-degree polynomials. A CPRF for inner-product constraint predicates
can be converted to a CPRF for constraint predicates described by constant-degree polynomials
P by associating each entry in the constraint vector z with a coefficient of P . Specifically, let
z = (ad, ad−1, . . . , a1, a0) be the coefficients describing the degree-d polynomial over F. Then, for
input vectors of the form x = (xd, xd−1, . . . , x, 1), it holds that P (x) = 0 if and only if ⟨z,x⟩ = 0.

CPRFs for t-CNF formulas. Any t-CNF formula can be defined as the AND of d =
(
m
t

)
· 2t NC0

t

circuits, where NC0
t is the class of NC0 circuits that read at most t indices of the input bits [34]. More

formally, a t-CNF circuit C : {0, 1}m → {0, 1} can be defined as:

C(x) =

d∧
i=1

Ci(x) where Ci ∈ NC0
t . (4)

Davidson et al. [34, Appendix C] provide a simple reduction from CPRFs for inner-product pred-
icates to CPRFs for t-CNF formulas. The high level idea is to let x = (C1(x), C2(x), . . . , Cd(x),−1),
where the Ci’s describe the t-CNF circuit C, as per Equation (4). The constraint vector is then defined
as z = (z1, . . . , zd, w), where zi = 1 if the i-th circuit needs to be satisfied and zi = 0 otherwise, and
w is the hamming weight of (z1, . . . , zd). It then holds that ⟨z,x⟩ = 1 if and only if C(x) = 0. This
reduction to t-CNF formulas implicitly uses the fact that we can describe constraints as the “AND”
of many individual, simpler constraints. We describe this trick explicitly, and explain how it applied
to constructing constraint predicates described by matrix-vector products.

Conjunction of constraints. Here, we show that if we have a CPRF for a constraint class C, then
we can construct a CPRF for the constraint class

∧d
i=1 Ci where ∀i, Ci ∈ C. In a nutshell, we can

define the CPRF for “AND constraints” as a vector of d CPRFs such that the output is defined to
be the addition of all the individual CPRF outputs. It is not difficult to see that the sum of the d
individual CPRF outputs will be consistent with the evaluation under the master secret key if and
only if all the constraints are satisfied. To the best of our knowledge, we are the first to formalize this
simple folklore extension to CPRFs.

Let CPRF = (CPRF.Gen,CPRF.Eval,CPRF.Constrain,CPRF.CEval) be a CPRF for constraints in

the class C. We construct the CPRF ĈPRF for the AND of d constraints in C as follows. Let ⊕ denote
the group operation over the range Y.

– ĈPRF.Gen(1λ, d):

1: Compute mski ← CPRF.Gen(1λ) for all i ∈ [d].

2: Output msk := (msk1, . . . ,mskd).

– ĈPRF.Eval(msk, x):

1: Parse msk = (msk1, . . . ,mskd).

2: Compute yi ← CPRF.Eval(mski, x) for all i ∈ [d].

3: Output
⊕d

i=1 yi.

– ĈPRF.Constrain(msk, Ĉ):

1: Parse msk = (msk1, . . . ,mskd) and Ĉ = (C1, . . . , Cd) ∈ Cd.
2: Compute csk(i) ← CPRF.Constrain(mski, Ci) for all i ∈ [d].

3: Output csk := (csk(1), . . . , csk(d)).

– ĈPRF.CEval(csk, x):

1: Parse csk = (csk(1), . . . , csk(d)).

2: Compute yi ← CPRF.CEval(csk(i), x) for all i ∈ [d].

3: Output
⊕d

i=1 yi.

We prove the following proposition with regards to the above construction.

Proposition 2. Let CPRF = (CPRF.Gen,CPRF.Eval,CPRF.Constrain,CPRF.CEval) be a CPRF for

constraints in the class C. Then ĈPRF is a CPRF for constraint predicates described as
∧d

i=1 Ci,

where Ci ∈ C. Moreover, if CPRF is constraint-hiding, then so is ĈPRF.

Proof sketch. We briefly sketch the proofs of correctness and security.

Correctness. Correctness holds because if all d constraints C1, . . . , Cd are satisfied, then Êval and

ĈEval agree on all yi computed as CPRF.Eval(mski, x) and CPRF.CEval(csk(i), x), respectively. It then
follows that the sum of the outputs is identical under both the master secret key and constrained key.

Security. If at least one C1, . . . , Cd is not satisfied, then CPRF.CEval(csk(i), x), for at least one i ∈ [i]
will output a pseudorandom value in Y (by the security of CPRF). By a straightforward hybrid

argument, it then follows that ĈPRF.CEval(csk(i), x) outputs a pseudorandom value that is indepen-
dent of the CPRF evaluation under the master key. Constraint hiding follows by a similar hybrid
argument. ■

Matrix-vector product constrains. As a corollary of Proposition 2 and our constructions of CPRF
for inner-product predicates, we can construct CPRFs for constraints where the constraint is satisfied
if and only if Ax = 0, for some constraint matrix A. Specifically, for a matrix A ∈ Fd×ℓ where
(a1, . . . ,ad) ∈ (Fℓ)d is the vector of rows of A, it holds that Ax = 0⇐⇒

∧d
i=1 ⟨ai,x⟩ = 0.

B Application to Learning Theory

In this section, we highlight known connections between learning theory and CPRFs and provide a
corollary that is implied by our CPRF construction from DDH.

Membership queries with restriction access. Motivated by the goal of providing stronger lower
bound in learning theory, Cohen, Goldwasser, and Vaikuntanathan [29] introduce a learning model
they call MQ with Restriction Access (MQRA) and show that CPRFs naturally define a concept
class that is not learnable, even when the learner obtains non-black-box access to the function on
a restricted subset of the domain. Informally, in the basic MQ learning framework [61] (without
restriction access), a learner gets oracle access to a function and must approximate the function after
a sufficient number of queries. Restriction access [36] is a different model in learning theory, where the
learner obtains a non-black-box implementation of the function computing a restricted set of function
evaluations. Cohen et al. merge the two model to introduce the model of MQ with Restriction Access
(MQRA), where in addition to black-box membership queries, the learner obtains non-black-box access
to a restricted “simplified” version of the function. We provide the informal definition here, and point
the reader to Cohen et al. for details and further discussion.

Definition 9 (Membership queries with restriction access (MQRA) [29]). Let C : X → {0, 1}
be a concept class, and S = {S ⊆ X} be a collection of subsets of the domain X . S is the set of
allowable restrictions for concepts f ∈ C. Let Simp be a “simplification rule” which, for a concept f
and restriction S outputs a “simplification” of f restricted to S. An algorithm A is an (ϵ, δ, α)-MQRA

learning algorithm for representation class C with respect to a restrictions in S and simplification
rule Simp if, for every f ∈ C, Pr

[
ASimp(f,·) = h

]
≥ 1 − δ, where h is an ϵ-approximation to f , and

furthermore, A only requests restrictions for an α-fraction of the whole domain X .

28

Cohen et al. prove the following theorem (restated here in its informal version since the formal
definitions require substantial notation):

Theorem 9 (Informal). Suppose F is a family of constrained PRFs which can be constrained to
sets in S = {S ⊆ X}. If F is computable in circuit complexity class C, then C is hard to MQRA-learn
with restrictions in S.

Let IP =
{
{x1, . . . ,xN , z} | x1, . . . ,xN , z ∈ Fℓ; ⟨xi, z⟩ = 0,∀i ∈ [N]

}
N∈N be the subsets of the

input domain Fℓ that satisfy the inner-product relation with respect to a vector z. Using our CPRFs
for inner-product predicates, we immediately obtain the following two corollaries.

Corollary 2. Assuming the DDH assumption holds in a cyclic group G, there is a simplification rule
such that NC1 is hard to MQRA-learn with respect to restrictions in IP.

In particular, Corollary 2 uses the fact that our DDH-based CPRF construction can be evaluated in
NC1 (recall Remark 7).

C Collision-resistant Hashing from Discrete Logarithms

Here, we describe a construction of Collision-resistant Hash Function (CRHF) family from the Discrete
Logarithm (DL) assumption that generalizes the construction of Damg̊ard [33] in the natural way.
Importantly, this construction is in the complexity class NC1, which makes the CPRF construction
from the DDH assumption (when instantiated with this DL-based CRHF family) have an evaluation
function that is computable in the complexity class NC1.

Construction. Fix a prime-order group G in which the discrete logarithm problem is hard and let
extract : G → {0, 1}k be a randomness extractor with λ ≤ k ≤ log2(|G|) with public parameters
ppe. Let p > 2λ be the order of G and define the CRHF family H =

{
hg : Zn

p → {0, 1}k
}
g∈Gn ,

parameterized by n random generators g = (g1, . . . , gn) and public parameters pp consisting of the
group description and ppe, where the function hg : Zn

p → {0, 1}k is defined as

hg(x) = extract(
n∏

i=1

gxi
i).

Claim. The function family H :=
{
hg : Zn

p → {0, 1}k
}
g∈Gn is a CRHF family.

Proof. Consider the simpler hash function ĥg(x) =
∏n

i=1 g
xi
i parameterized by g = (g1, . . . , gn).

Suppose, towards contradiction, that there exists an efficient A that finds a pair of colliding inputs
to ĥg with non-negligible probability ν(λ). Then, on input (1λ,G,g), A outputs (x,x′) such that

x ̸= x′ and ĥg(x) = ĥg(x
′), with probability at least ν(λ). Therefore, when A succeeds, we have that∏n

i=1 g
xi
i =

∏n
i=1 g

x′
i

i . We can use A to solve the discrete logarithm problem as follows. On input a
generator g for G and an element y ∈ G,

1: Sample i
R← [n].

2: Sample (a1, . . . , ai−1, ai+1, . . . , an)
R← Zn−1

p \ {0}.
3: Set g = (ga1 , . . . , gai−1 , y, gai+1 , . . . , gan).

4: Run A on input (1λ,g) and obtain as output (x,x′).

5: Compute z ←
∑n

j=1,j ̸=i ajxj and z′ ←
∑n

j=1,j ̸=i ajx
′
j .

6: Output ai ← (z′ − z)/(xi − x′i).

We now analyze the reduction. The probability that xi ̸= x′i is at least 1
n because i is chosen

uniformly from the set {1, . . . , n}. Second, observe that

n∑
j=1

ajxj −
n∑

j=1

ajx
′
j = z − z′ + ai(xi − x′i) = 0,

which implies that (z′ − z)/(xi − x′i) = ai. As such, the reduction succeeds with probability 1
nν(λ),

which is non-negligible, contradicting the discrete logarithm assumption in G.

29

Finally, it follows that hg is a CRHF if ĥg is a CRHF because extract is a randomness extractor and
k ≥ λ, making the advantage of A in the case where it is given outputs of the randomness extractor
equivalent to the case where it is given the explicit description of group elements. Specifically, this
follows from a random element of G having at least λ bits of min entropy.

■

D Deferred proofs

D.1 Proof of Lemma 3

Proof. The proof is almost identical (occasionally taken verbatim) to the related proof of Applebaum
and Widder [2, Lemma 7.2] for the case of additive functions. However, it differs in several key places
where we must consider affine functions and their impact on the corresponding distributions, which
has sufficient repercussions to necessitate rewriting the proof in full.

Fix a sequence of t distinct affine functions ϕ := (ϕ0, ϕ1, . . . , ϕt) where we define ϕ0 to be the
identity function for notational convenience. We say that hz ∈ H is ε-good for ϕ if for a random s,
the distribution {hz(ϕi(s)}0≤i≤t is ε-close to the uniform distribution over Kt+1. In order to bound
the statistical distance, we must prove the following claim.

Claim. For all but a 2−2λ(t+1)−λ-fraction of the h ∈ H the following holds. For every vector of (not
necessarily distinct) keys k := (k0, . . . , kt) ∈ Kt+1,

Pr
s

R←S

[
t∧

i=0

h(ϕi(s)) = ki

]
∈
(

1

|K|t+1
· (1± 2−0.99λ)

)
.

Proof. Fix a vector of keys k ∈ Kt+1. For every s ∈ S, define the indicator random variable χs which
takes on the value 1 if h(ϕi(s)) = ki for all i ∈ {0, 1, . . . , t} and a random choice of h ∈ H. Observe
that the random variable χ̄ taking the value of Prs[

∧t
i=0 h(ϕi(s)) = ki], and induced by a choice of

h, can be written as χ̄ =
∑

s∈S
χs

|S| . Next, we must prove the following bound:

Pr
h

R←H

[
χ̄ ̸∈

(
1

|K|t+1
· (1± 2−0.99λ)

)]
≤ 2−3λ(t+1)−λ, (5)

which we will later use to prove the claim via a simple union bound. To prove Equation (5), observe
that since H is an m-wise independent hash family and m > t + 1, we have that E[χs] = 1/|K|t+1,
for every s. Then, by linearity of expectation, it is easy to see that E(χ̄) = 1/|K|t+1. Next, we show
that the average of χs is concentrated around its expectation. Following the proof of Applebaum and
Widder [2, Claim 7.3], we can show that the χs’s are r-wise independent, for r ≥ 3t+5, which yields
a strong concentration bound despite local dependencies in the χs’s (see the result of Gradwohl and
Yehudayoff [43] for an overview of the deployed proof strategy).

To formally prove the bound, define a graph G over any pair of s, s′ ∈ S by placing an edge between
s and s′ if ϕi(s) = ϕj(s

′) for some i ̸= j. It then follows that the degree of each node in G is at most
d = (t+1)2. We claim that for every independent set I in the graph, the random variables {χs : s ∈ I}
are r-wise independent (or using the terminology of Gradwohl and Yehudayoff [43], the random
variable r-agree with G). To show this, consider any independent set I ⊆ S. For any r-sized subset
(s1, . . . , sr) ⊆ I, the value of each random variable χsj for sj ∈ I, solely depends on the value of h
evaluated on the set of t+1 points (ϕ0(sj), ϕ1(sj), . . . , ϕt+1(sj)). Moreover, observe that for all choices
of t + 1 distinct affine functions (ϕ1, . . . , ϕt+1), all elements of the set {ϕ0(sj), ϕ1(sj), . . . , ϕt+1(sj)}
are also distinct with probability at least 1 − t+1

2λ
, since the probability of a collision between any

distinct ϕu and ϕv is exactly 1/|S| < 2−λ ≤ 1/|K|. It then follows (via a union bound and using
the fact that I is an independent set) that the sets {ϕ0(sj), ϕ1(sj), . . . , ϕt+1(sj)} for all j ∈ [r] are

distinct with probability at least 1− r(t+1)
2λ

.

From the above, we conclude that with all but negligible probability in λ, the image of these
sets under a randomly chosen h are statistically independent, since h is m-wise independent for
m ≥ r(t+ 1). It then follows that χs1 , . . . , χsr are statistically independent, or in other words, agree

30

with G [43]. Applying the bound of [43, Corollary 3.2] and taking into account the negligible collision
probability computed above, we get that:

Pr
h

R←H

[
χ̄ ̸∈

(
1

|K|t+1
· (1± δ)

)]
< 4
√
πr

(
|K|t+1

√
(d+ 1)r

δ
√
|S|

)r

+
r(t+ 1)

2λ
. (6)

Then, setting δ = 2−0.99λ, |K| = 2λ, |S| = 2(2t+6)λ, and r, t ∈ poly(λ), Equation (6) is upper-bounded
by 2−λr ≤ 2−3λ(t+1)−λ for all sufficiently large λ (recall that d = (t + 1)2 and r ≥ 3t + 5), and
so Equation (5) follows. The claim then follows by applying a union bound over all 2λ(t+1) possible
k ∈ Kt+1, since λ(t+ 1)− 3λ(t+ 1)− λ = −2λ(t+ 1)− λ. ■

To complete the proof of the lemma, note that any h that satisfies the lemma is 2−0.99λ-good
(as defined in the beginning of the proof) for the fixed sequence of affine functions ϕ. Specifically,
(h(ϕ0(s)), . . . , ht(ϕt+1(s))) has a statistical distance of at most 2−0.99λ from the uniform distribution.
Moreover, as shown above, all but a 2−2λ(t+1)−λ-fraction of the h ∈ H are t-good for the fixed vector
ϕ. By applying a union bound over all possible 22λ(t+1) affine functions, we conclude that all but a
2−λ-fraction of the h ∈ H are t-good, in the sense of Definition 7, and the lemma follows. ■

31

	Constrained PRFs for Inner-Product Predicates from Weaker Assumptions
	Introduction
	Related Work
	Organization

	Technical Overview
	Our Approach

	Preliminaries
	Notation
	Constrained Pseudorandom Functions
	RKA-secure PRFs

	The Basic Framework and Construction
	Instantiation via a Random Oracle

	Generalized Framework and Constructions
	Extended Framework
	DDH-based Construction
	VDLPN-based Construction

	CPRFs for Inner-Product Predicates from OWFs
	Affine RKA-secure PRFs from OWFs
	CPRF Construction from OWFs

	Evaluation
	Complexity and Benchmarks
	Comparison to other CPRF constructions
	Discussion

	Conclusion and Future Work
	Extensions
	More General Constraint Predicates

	Application to Learning Theory
	Collision-resistant Hashing from Discrete Logarithms
	Deferred proofs
	Proof of lemma:t-good-parameters

