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Abstract: All anonymous identity-based encryption (IBE) schemes that are group homomorphic 1

(to the best of our knowledge) require knowledge of the identity to compute the homomorphic 2

operation. This paper is motivated by this open problem, namely to construct an anonymous group- 3

homomorphic IBE scheme that does not sacrifice anonymity to perform homomorphic operations. 4

Note that even when strong assumptions such as indistinguishability obfuscation (iO) are permitted, 5

no schemes are known. We succeed in solving this open problem by assuming iO and the hardness 6

of the DBDH problem over rings (specifically, ZN2 for RSA modulus N). We then use the existence 7

of such a scheme to construct an IBE scheme with re-randomizable anonymous encryption keys, 8

which we prove to be IND-ID-RCCA secure. Finally, we use our results to construct identity-based 9

anonymous aggregation protocols. 10

Keywords: Identity-Based Encryption, Homomorphic Encryption, Anonymous Aggregation 11

1. Introduction 12

The problem we tackle in this paper relates to a primitive known as identity-based 13

group homomorphic encryption (IBGHE) which is defined in [1]. Basically, IBGHE is 14

identity-based encryption that is homomorphic for some group operation and the ciphertext 15

space for every identity forms a group. Moreover, the decryption function is a group 16

homomorphism between the ciphertext group and the plaintext group. GHE has several 17

applications, discussed in [1], and an IBGHE facilitates those applications in an identity- 18

based infrastructure. 19

It is an open problem to construct an IBGHE that is simultaneously anonymous and 20

homomorphic for addition. There are only two IBGHE schemes that support modular 21

addition to the best of our knowledge, namely the XOR-homomorphic variant of the Cocks 22

IBE scheme in [2] and the more recent IBGHE scheme from [3] that is homomorphic for 23

addition modulo smooth square-free integers. Now Joye discovered that the Cocks IBE 24

scheme itself is XOR-homomorphic [4] but the scheme is not an IBGHE since the ciphertext 25

space with the homomorphic operation forms a quasigroup and not a group. Some readers 26

might wonder about schemes that are considered multiplicatively homomorphic, which 27

allow addition in the exponent, and question why we do not classify them as IBGHE 28

schemes for addition. The reason is that the corresponding additive group has exponential 29

order and decryption can only recover messages using Pollard’s lambda algorithm that are 30

less than some polynomial bound so the valid message space does not form an additive 31

group. Now the two IBGHE schemes supporting modular addition that we are aware 32

of are not anonymous but there are variants of these schemes that achieve anonymity. 33

However, although such schemes gain anonymity, they lose the homomorphic property. 34

Most usually, we need to know the identity associated with a ciphertext in order to correctly 35

compute the homomorphic operation and so when the identity is hidden to us as it is 36

when the scheme is anonymous, we cannot compute the homomorphic operation. So 37

the open problem we address in this paper in a nutshell is to construct an IBGHE for 38

addition that is anonymous while retaining the homomorphic operation. Note that while 39
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we have concentrated on GHE, it is important to point out that there are no other additively 40

homomorphic schemes (such as quasigroup homomorphic schemes like Cocks as observed 41

by Joye) that achieve simultaneous anonymity and the ability to carry out the homomorphic 42

operation without knowing the identity associated with a ciphertext. Of course, our focus 43

is not on bounded homomorphisms like LWE-based schemes that incorporate noise, but 44

instead on those with an algebraic structure and support for a theoretically unbounded 45

number of operations. One of the reasons we opt for GHE over linearly-homomorphic 46

LWE-based schemes is that the former enjoys the desired property of strong unlinkability; 47

that is, an evaluated ciphertext is distributed the same as a fresh ciphertext in the view of 48

the key holder (recipient), whereas LWE-based schemes achieve this only by requiring an 49

expensive bootstrapping operation and making a circular security assumption. 50

1.1. Motivation and Applications 51

Beyond theoretical interest, there are applications that motivate consideration of this 52

open problem. We construct an anonymous IBE using anonymous IBGHE as a building 53

block. We prove this scheme IND-ID-RCCA secure (note that RCCA is a slight relaxation of 54

CCA2). Our anonymous IBE scheme has two interesting properties. Firstly, it allows one to 55

generate anonymous keys associated with a particular identity. Therefore, an encryptor can 56

encrypt a message using an anonymous key for some unknown recipient. Secondly, such 57

keys can be rerandomized such that the resulting anonymous key is computationally un- 58

linkable to the original anonymous key. This finds an immediate application in anonymous 59

aggregation, as we describe below. 60

Consider the following application scenario. Suppose we have a collection of sensor 61

nodes that collect data and send it towards a central server. Suppose the data are numerical 62

measurements and there are different recipients depending on external factors. Each sensor 63

data encrypts a measurement with the recipient’s identity and sends it en route towards 64

the central server. It is desirable that ciphertexts that are seen by potential adversaries 65

do not reveal the associated recipient’s identity. Along the route there are nodes that 66

function as aggregators which can be authorized independently by each sensor node to 67

aggregate the data coming from that sensor node. If a sensor nodes give authorization to 68

the aggregator then the aggregator should be able to aggregate data for the same recipient 69

coming from any of the sensor nodes that have given authorization. Addition (summation) 70

is a common type of aggregation since perhaps only an average measurement is needed by 71

the recipient. To fulfill this application scenario, we need an IBE scheme that is anonymous 72

and homomorphic for addition where the homomorphic operation can be computed 73

without knowing the recipient’s identity. 74

Consider two senders that produce ciphertexts for recipient id. Both of them send 75

their respective authorization keys to an aggregator whose identity is ¯id, he performs 76

aggregation on the two ciphertexts and sends the result on to a second aggregator. The 77

second aggregator should not be able to perform aggregation with the result unless he 78

is given an authorization key from ¯id. However the recipient should be able to decrypt 79

all such ciphertexts intended for her including the result of the aggregation. Now the 80

issue is that the recipient’s identity is hidden from the aggregators. But the result of their 81

aggregation needs to be decryptable by the recipient id and also “fresh" such that the second 82

aggregator who may be authorized by the original senders, but not authorized by the first 83

aggregator, should not be able to perform aggregation on the result. We describe our 84

approach to solving this problem below. 85

1.2. Our Results 86

We present a feasibility result in this work of an additively-homomorphic IBGHE that 87

is both anonymous and supporting evaluation of the homomorphic operation without 88

knowing a user’s identity. Our construction is based on iO and the hardness of DDH 89

in elliptic curves over ZN2 where N is an RSA modulus. These are strong assumptions 90

but we make headway on this open problem. Elliptic curves over rings have been less 91
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widely studied; Pailler [5] introduced the types of curves we use in this paper which are 92

over the ring ZN2 while Peter at al. [6] describe a specific class of curves that are suitable 93

to instantiate our construction. Furthermore, iO has not been realized from standard 94

assumptions although there have been several recent advances in constructing iO from 95

quite different approaches under different assumptions, which gives us more confidence 96

that iO exists. To obtain our feasibility result, we first borrow an idea from [7] to leverage 97

obfuscation to map an identity string to a freshly-generated public key of some encryption 98

scheme. In fact, abstracting for a moment from the specific construction, we will describe 99

the high-level paradigm. As part of the public parameters, we have an obfuscated program 100

that maps an identity to a public key in some multi-user system with public parameters. The 101

public keys in a multi-user system share the same set of common public parameters - think 102

of the generator g and modulus p in ElGamal [8] as the common public parameters, except 103

ElGamal is of no use here since it is only multiplicatively homomorphic. Nevertheless, 104

ElGamal serves to illustrate another property that this paradigm requires, namely that the 105

multi-user system supports key privacy where key privacy can be viewed as the analog to 106

anonymity in the identity-based setting; that is, the ciphertexts in the multi-user system do 107

not reveal the public key they are associated with, which is the case in ElGamal. We are 108

using the term multi-user system in a broad sense here permitting both the case where we 109

have a trusted authority and the case where we do not. In the former, the public parameters 110

are generated by a trusted authority with a backdoor (master secret key) such that the 111

trusted authority can decrypt any ciphertext. In our paradigm, the public parameters 112

of the multi-user system will be generated by the trusted authority of the IBE scheme 113

and published as part of the IBE scheme’s public parameters. So we need the multi-user 114

system to be both key-private and additively homomorphic, where the homomorphic 115

operation can be computed without knowing the public key associated with a ciphertext. 116

The fundamental question is: can we concretely realize a multi-user system that has both 117

key privacy and an additive homomorphism. We can answer this question in the affirmative 118

by using a variant of Paillier scheme based on elliptic curves over rings that is presented 119

in [6], which is a multi-user system supporting homomorphic addition modulo a large 120

semiprime N and for which we can easily show that key privacy holds assuming the 121

hardness of DDH in elliptic curves over ZN2 . 122

1.2.1. Anonymous IBE with Rerandomizable Anonymous Keys 123

Next we present an anonymous IBE scheme based on the Boneh-Franklin scheme 124

which we prove IND-ID-RCCA secure. Our scheme requires an additively-homomorphic 125

anonymous IBE scheme as a building block (as described above and which we realize in 126

Section 3) Our anonymous IBE scheme has two interesting properties. Firstly, it allows one 127

to generate anonymous keys associated with a particular identity. Therefore, an encryptor 128

can encrypt a message using an anonymous key for some unknown recipient. Secondly, 129

such keys can be rerandomized such that the resulting anonymous key is computationally 130

unlinkable to the original anonymous key. One of the applications for this scheme is in 131

realizing identity-based anonymous aggregation in Section 5. This is the first IBE scheme 132

that is both anonymous and IND-ID-RCCA secure. 133

1.2.2. Identity-Based Anonymous Aggregation 134

In an identity-based anonymous aggregation (IBAA) protocol, every identity has an 135

associated secret key derivable by the Trusted Authority with their maseter secret key. 136

Every identity can issue an authorization key to an aggregator that allows the aggregator 137

to perform aggregation on ciphertexts created by that identity, but for any recipient identity. 138

We envisage that in practice more complex policies may be used to control authorization 139

which are beyond the scope of this work. Here we simply model authorization with 140

symmetric keys. Therefore a symmetric key functions as an authorization key that can be 141

issued to aggregators. For every ciphertext, the encryptor generates a fresh symmetric key κ 142

(effectively a session or transport key) and uses it to encrypt the IBE ciphertext that encrypts 143
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the message. This symmetric key κ is encrypted with the authorization key for the sender 144

so that any party who is given this key can recover the IBE ciphertext that encrypts the 145

message. However, the recipient must always be able to decrypt a ciphertext intended for 146

her irrespective of whether it has been given an authorization key (for aggregation) by the 147

encryptor. To solve this problem, the ciphertext also incorporates an IBE encryption of κ so 148

that the recipient can recover the IBE ciphertext that encrypts the message. One of the main 149

challenges is in relation to aggregation. It is straightforward for the aggregator to evaluate 150

the homomorphic operation on both IBE ciphertexts without knowing the recipient’s 151

identity (anonymous group-homomorphic IBE enables this). However we must use a fresh 152

symmetric key to encrypt this evaluated IBE ciphertext in order to ensure unlinkability. But 153

how do we encrypt this fresh key with the recipient’s identity without knowledge of the 154

identity so that he can decrypt the result of the aggregation? One solution to this is to use 155

FHE and then rely on bootstrapping for unlinkability but this requires us to make a circular 156

security assumption and furthermore, bootstrapping in the identity-based settings requires 157

strong assumpitons such as iO. Our solution is to use our anonymous IBE scheme with 158

its rerandomizable anonymous keys (described above) and this solves all our problems 159

(including strong unlinkability) while being more efficient than FHE and without the need 160

for a circular security assumption. Furthermore, we rely on the IND-ID-RCCA security 161

to prove a desirable property of aggregation validity whereby no party who has not being 162

granted authorization as an aggregator can perform a pre-determined transformation of 163

the plaintext. 164

2. Preliminaries 165

2.1. Notation 166

A quantity is said to be negligible with respect to some parameter λ, written negl(λ), 167

if it is asymptotically bounded from above by the reciprocal of all polynomials in λ. 168

For a probability distribution D, we denote by x←$ D that x is sampled according to D. 169

If S is a set, y←$ S denotes that y is sampled from x according to the uniform distribution 170

on S. 171

The support of a predicate f : A→ {0, 1} for some domain A is denoted by supp( f ), 172

and is defined by the set {a ∈ A : f (a) = 1}. 173

The set of contiguous integers {1, . . . , k} for some k > 1 is denoted by [k]. 174

2.2. Identity Based Encryption 175

Definition 2.1. An Identity Based Encryption (IBE) scheme is a tuple of PPT algorithms (G, K, E, D) 176

defined with respect to a message spaceM, an identity space I and a ciphertext space Ĉ as follows: 177

• G(1λ): 178

On input (in unary) a security parameter λ, generate public parameters PP and a master 179

secret key MSK. Output (PP,MSK). 180

• K(MSK, id): 181

On input master secret key MSK and an identity id ∈ I : derive and output a secret key skid 182

for identity id. 183

• E(PP, id, m): 184

On input public parameters PP, an identity id ∈ I , and a message m ∈ M, output a 185

ciphertext c ∈ C ⊆ Ĉ that encrypts m under identity id. 186

• D(skid, c): 187

On input a secret key skid for identity id ∈ I and a ciphertext c ∈ Ĉ, output m′ if c is a valid 188

encryption under identity id; output a failure symbol ⊥ otherwise. 189

2.3. Public-Key GHE 190

An important subclass of partial homomorphic encryption is the class of public-key 191

encryption schemes that admit a group homomorphism between their ciphertext space and 192

plaintext space. This class corresponds to what is considered “classical” HE [9], where a 193
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single group operation is supported, most usually addition. Gjøsteen [10] examined the 194

abstract structure of these cryptosystems in terms of groups, and characterized their security 195

as relying on the hardness of a subgroup membership problem. Armknecht, Katzenbeisser 196

and Peter [9] rigorously formalized the notion, and called it group homomorphic encryption 197

(GHE). We recap with the formal definition of GHE by Armknecht, Katzenbeisser and Peter 198

[9]. 199

Definition 2.2 (GHE, Definition 1 in [9]). A public-key encryption scheme E = (G, E, D) 200

is called group homomorphic, if for every (pk, sk) ← G(1λ), the plaintext spaceM and the 201

ciphertext space Ĉ (written in multiplicative notation) are non-trivial groups such that 202

• the set of all encryptions C := {c ∈ Ĉ | c← Epk(m), m ∈ M} is a non-trivial subgroup of Ĉ 203

• the restricted decryption D∗sk := Dsk|C is a group epimorphism (surjective homomorphism) i.e.

D∗sk is surjective and ∀c, c′ ∈ C : Dsk(c · c′) = Dsk(c) · Dsk(c
′)

• sk contains an efficient decision function δ : Ĉ → {0, 1} such that

δ(c) = 1 ⇐⇒ c ∈ C

• the decryption on Ĉ \ C returns the symbol ⊥. 204

2.4. Identity-Based Group Homomorphic Encryption (IBGHE) 205

Definition 2.3 (Identity Based Group Homomorphic Encryption (IBGHE), Based on [11]). 206

Let E = (G, K, E, D) be an IBE scheme with message spaceM, identity space I and ciphertext 207

space Ĉ. The scheme E is group homomorphic if for every (PP,MSK)← G(1λ), every id ∈ I , and 208

every skid ← K(MSK, id), the message space (M, ·) is a non-trivial group, and there is a binary 209

operation ∗ : Ĉ2 → Ĉ such that the following properties are satisfied for the restricted ciphertext 210

space Ĉid = {c ∈ Ĉ : Dskid(c) ̸= ⊥}: 211

GH.1: The set of all encryptions Cid = {c | c← E(PP, id, m), m ∈ M} ⊆ Ĉid is a non-trivial 212

group with respect to the operation ∗. 213

GH.2: The restricted decryption D∗skid := Dskid|Cid is surjective 214

and ∀c, c′ ∈ Cid Dskid(c ∗ c′) = Dskid(c) · Dskid(c
′). 215

We are interested in schemes whose plaintext space forms a group and which allow 216

that operation to be homomorphically applied an unbounded number of times. There exist 217

schemes however that do not satisfy all the requirements of GHE, namely their ciphertext 218

space does not form a group but instead forms a quasigroup (a group without associativity) 219

such as the Cocks’ IBE [12], which was shown to be inherently XOR-homomorphic by Joye 220

[4]. 221

2.5. Multi-User Encryption 222

A multi-user encryption (MUE) scheme is an abstraction from a class of public-key 223

encryption schemes where the public keys of users share common public parameters, whose 224

generation may or may not include a trusted setup, in which case a Trusted Authority (TA) 225

may hold a master decryption key that enables them to decrrypt the ciphertexts of any 226

user. An instance of MUE is ElGamal which does not require a trusted setup or involve a 227

Trusted Authority with a “backdoor" whereas another instance of an MUE is a public-key 228

encryption scheme with a double decryption mechanism (DD-PKE) as defined by Galindo 229

and Herranz [13] where the public parameters are generated along with a master secret 230

key by a TA. 231

An MUE is a tuple of PPT algorithms (Setup,KeyGen,Enc,Dec,mDec) with plaintext 232

spaceM and ciphertext space Ĉ defined as follows: 233
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• Setup(1λ): takes as input a security parameter λ and outputs a pair (PP,MSK) con- 234

sisting of public parameters PP and an optional master secret key MSK which may be 235

set to ⊥, 236

• KeyGen(PP): takes as input the public parameters PP and outputs a pair of pub- 237

lic/private keys (pk, sk). 238

• Enc(PP, pk, m): takes as input the public parameters PP, a user’s public key pk and a 239

message m ∈ M, and outputs a ciphertext c ∈ C ⊆ Ĉ. 240

• Dec(PP, sk, c): takes as input the public parameters PP, a secret key sk and a ciphertext 241

c ∈ Ĉ, and outputs either a plaintext m ∈ M or ⊥ if decryption fails. 242

• mDec(PP,MSK, pk, c): takes as input the public parameters PP, the master secret key 243

MSK, a user’s public key pk and a ciphertext c ∈ Ĉ and outputs either a plaintext 244

m ∈ M or ⊥ if decryption fails or MSK = ⊥. 245

2.6. Elliptic Curves Over Rings 246

Proposition 2.1 ([6]). If N = pq is some RSA modulus, i.e. p and q are primes of about the same 247

bit length λ, then there is an efficient construction of elliptic curves E : y2z = x3 + axz2 + bz3
248

over ZN2 such that M := lcm(#E(Zp), #E(Zq)) has at least two large (of about the same size as p 249

and q) prime factors. 250

Lemma 2.1 ([6]). As in Proposition 2.1, let M ∈ N have at least two large prime factors (of about
λ bits). If π(M) denotes the product of all small prime factors of M, then

Prs←$ Π(M)

[
gcd(s, M) ̸= 1

]
is negligible in λ

where Π(M) := {s ∈ ZN2 \ {0} | gcd(s, π(M)) = 1}. 251

2.7. Indistinguishability Obfuscation 252

Definition 2.4 (Indistinguishability Obfuscation). (Based on Definition 7 from ([14]) A uniform 253

PPT machine iO is called an indistinguishability obfuscator for every circuit class {Cκ} if the 254

following two conditions are met: 255

• Correctness: For every κ ∈ N, for every C ∈ Cκ , for every x in the domain of C, we have that

Pr C′(x) = C(x) : C′ ← iO(C) = 1.

• Indistinguishability: For every κ ∈ N, for all pairs of circuits C0, C1 ∈ Cκ , if C0(x) = C1(x)
for all inputs x, then for all PPT adversaries A, we have:

|PrA(iO(C0)) = 1| − |PrA(iO(C1)) = 1| ≤ negl(κ).

2.8. Puncturable Pseudorandom Function 256

A puncturable pseudorandom function (PRF) is a constrained PRF (Key,Eval) with an 257

additional PPT algorithm Puncture. Let n(·) and m(·) be polynomials. Our definition here 258

is based on ([14]) (Definition 3.2). A PRF key K is generated with the PPT algorithm Key 259

which takes as input a security parameter κ. The Eval algorithm is deterministic, and on 260

input a key K and an input string x ∈ {0, 1}n(κ), outputs a string y ∈ {0, 1}m(κ). 261

A puncturable PRF allows one to obtain a “punctured” key K′ ← Puncture(K, S)
with respect to a subset of input strings S ⊂ {0, 1}n(κ) with |S| = poly(κ). It is required
that Eval(K, x) = Eval(K′, x) ∀x ∈ {0, 1}n(κ) \ S, and for any poly-bounded adversary
(A1,A2) with S ← A1(1κ) ⊂ {0, 1}n(κ) and |S| = poly(κ), any key K ← Key(1κ), any
K′ ← Puncture(K, S), and any x ∈ S, it holds that

PrA2(K′, x,Eval(K, x)) = 1− PrA2(K′, x, u) = 1 ≤ negl(κ)

where u←$ {0, 1}m(κ). 262
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3. Construction of Anonymous Additively-Homomorphic IBE 263

3.1. PKTK MUE Scheme 264

We now describe the cryptosystem from [6] that is an instance of an MUE and satisfies 265

some interesting properties including the fact that even the Trusted Authority cannot 266

determine which user a ciphertext is created for (Property 3 [6]) so the scheme is anonymous 267

even to the TA under the hardness of DDH in E(ZN2). The scheme is very similar to 268

Galbraith’s elliptic-curve based Paillier scheme [15]. 269

• Setup(1λ) : On input a security parameter λ, this algorithm generates an RSA modulus 270

N = pq where p and q are primes of about the same bit length λ. Then it constructs 271

an elliptic curve E : y2z = x3 + axz2 + bz3 over ZN2 such that E has the properties 272

described in Proposition 2.1. Furthermore, it chooses a point Q = (x, y, z) ∈ E(ZN2) 273

whose order divides M = lcm(#E(Zp), #E(Zq)). It outputs the public parameters 274

PP := (N, π((M), a, b, Q) and the master secret key MSK := M. The plaintext space is 275

M = ZN and the ciphertext space is Ĉ = ⟨Q⟩ × ⟨Q,M1⟩. 276

• KeyGen(PP): chooses s←$ Z∗M at random1 and computes R← sQ. It outputs public 277

key pk := R and secret key sk := s. 278

• Enc(PP, pk, m): chooses a random value r←$ ZN2 and computes the ciphertext (A, B)
as

A← rQ and B← rR +Mm

. 279

• Dec(pp, sk, (A, B)): outputs

m← x(B− sA)

N
.

• mDec(PP,MSK, (A, B)) : outputs

m← x(MB)
N

M−1 mod N.

3.2. Our Scheme 280

Our scheme is essentially the transformation in [7] applied to the MUE scheme above. 281

We need to define a program FMapPK that is obfuscated as part of the public parameters. 282

Let E be an MUE scheme such as the PKTK scheme above which has message space ZN . 283

The program FMapPK takes an identity id and maps it to public key pkid. 284

Program FMapPK(id) :

1. Compute rid ←
PRF.Eval(K, id).

2. Compute (pkid, skid) ←
E .KeyGen(PPE ; rid).

3. Output pkid

285

Let E be the PKTK MUE scheme. Let iO be an indistinguishability obfuscator and let PRF 286

be a puncturable PRF. We now define the construction. 287

• AH.Setup(1λ) : On input security parameter λ, compute (PPE ,MSKE )← E .Setup(1λ). 288

Next generate K ← PRF.Gen(1λ) and compute O ← iO(FMapPKPPE ,K
). Output (PP := 289

(O,PPE ),MSK := (K,MSKE ). 290

• AH.KeyGen(MSK, id) : On input master secret key MSK := (K,MSKE ) and an identity 291

id, compute rid ← PRF.Eval(K, id). Next generate (pkid, skid) ← E .KeyGen(PPE ; rid). 292

Output skid. 293

1 This can be done by sampling s←$ Π(M) (which is possible as π(M) is included in PP)
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• AH.Enc(PP, id, m) : On input public parameters PP, an identity id and a message 294

m ∈ ZN , obtain pkid ← O(id) and compute c← E .Enc(PPE , pkid, m). Output c. 295

• AH.Dec(skid, c): On input a secret key skid for identity id, compute m← E .Dec(PPE , skid, c)296

and output m. 297

Theorem 3.1. Assuming indistinguishability obfuscation and the hardness of DDH in E(ZN2), 298

AH is an anonymous and IND-ID-CPA secure IBE scheme. 299

Proof. The theorem follows as a consequence of Theorem 1 in [7] where the underlying 300

public-key encryption scheme is replaced with the PKTK MUE scheme whose key-privacy 301

and semantic security rely on the hardness of DDH in E(ZN2). 302

This simple construction serves mainly as a possibility result for an anonymous 303

homomorphic IBE where the homomorphic operation can be computed without knowing 304

the identity associated with one or more ciphertexts. We leave as an open problem the 305

construction of more efficient and perhaps even practical schemes of this nature. 306

4. Anonymous IBE with Rerandomizable Anonymous Encryption Keys 307

In this section, we present an anonymous IBE scheme that is a variant of Boneh- 308

Franklin and show that it is both anonymous and IND-ID-RCCA secure. The scheme has 309

two interesting properties: the generation of anonymous keys associated with a particular 310

recipient identity and rerandomization of such keys. In regard to the former, anonymous 311

keys allow a party to encrypt a message for an unknown recipient; that is, the key hides 312

the identity of the recipient. In regard to rerandomization of these keys, a rerandomized 313

key is computationally unlinkable to another anonymous key with the same associated 314

identity. Therefore, two anonymous keys for the same identity, where one is obtained 315

by rerandomizing the other, cannot be linked in any way. These properties are essential 316

in our application of anonymous aggregation in the next section. Here, we observe that 317

an essential building block of our construction is an anonymous homomorphic IBE for 318

addition modulo N as realized in the previous section. In fact, an anonymous homomrophic 319

IBE from LWE does not suffice here; a group homomorphic scheme appears to be necessary. 320

4.1. Our Construction 321

Let g ∈ G be a generator of a cyclic group G and let gT ∈ GT be a generator of another 322

cyclic group GT . Both groups are of order N, a large semiprime. Now let e : G×G→ GT be 323

a non-degenerate bilinear map between G and GT (the target group) such that gT = e(g, g). 324

The notational convention we follow in this section is to write group elements using 325

uppercase letters whose integer exponent with respect to the generator is the corresponding 326

lowercase letter. Our construction is based around the Boneh-Franklin scheme. We now 327

describe our construction which serves to illustrate various concepts we would like to 328

establish. We Let H be a hash function modelled as a random oracle that maps identity 329

strings to elements of G. The master secret key contains an integer s←$ ZN chosen at setup 330

while the public parameters contains S← gs. The other building blocks are an anonymous 331

group homomorphic IBE scheme Em that is homomorphic for addition modulo N, a NIZK 332

and an IND-CCA2 secure symmetric encryption scheme. Consider a recipient identity id. 333

Then we derive the public key for id as A← H(id) ∈ G. The encryptor chooses a random 334

integer r←$ ZN and computes Â ← Ar. Then he computes ψ1 ← Em.Enc(PPIBE, id, r) 335

and z1 ← Em.Enc(PPIBE, id, 1M). Subsequently, the encryptor chooses a random integer 336

b←$ ZN and computes B ← gb and ψ2 ← PKE.Enc(pkT , b; ρ) for some randomness ρ. 337

Finally, the encryptor generates a NIZK proof π that ψ2 encrypts the discrete logarithm of 338

B with respect to base g. We derive the symmetric key k← e(Âb, S) ∈ GT and encrypt the 339

message with the symmetric encryption scheme using the key k. 340

In the real mode, a decryptor with a secret key skid := (Sid := As, skIBE,id ← 341

Em.KeyGen(MSKIBE, id)) for identity id, computes r ← Em.Dec(skid, ψ1) and k← e(B, Sid)r ∈ 342

GT . In the security proof, when we do not have access to Sid, we alternatively derive k 343
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as follows. First we decrypt ψ2 with the trapdoor secret key to obtain b then we compute 344

k← e(Âb, S) ∈ GT . 345

To generate an anonymous key for an identity, consider the following algorithm: 346

• GenAnonKey(PP, id): 347

– r←$ ZN 348

– ψ← Em.Enc(PPIBE, id, r) 349

– z← Em.Enc(PPIBE, id, 1M) 350

– A← H(id) 351

– Â← Ar
352

– Return AnK := (Â, ψ, z) 353

An aonymous key AnK lets a party encrypt messages for an unknown intended recipient, 354

which is computationally hidden from the party. 355

To rerandomize an AnK generated as above, the following algorithm is used: 356

• RerandomizeKey(PP,AnK): 357

– Parse AnK as (Â, ψ, z) 358

– r′←$ ZN 359

– Â′ ← Âr′
360

– u1, u2←$ ZN 361

– ψ′ ← ψr′ ∗ zu1 362

– z′ ← zu2 363

– Return AnK′ := (Â′, ψ′, z′) 364

The advantage of RerandomizeKey is that given an anonymous key derived with this algo- 365

rithm from an original anonymous key, no party can link the keys and determine that they 366

are related (i.e. have the same intended recipient). The anonymous key is preprended to 367

every ciphertext generated with it so therefore it is advantageous to rerandomize it so as 368

ciphertexts are not linked to each other. 369

We present the scheme formally now. Note that the encryption algorithm may alter- 370

natively accept an anonymous key AnK as input instead of a recipient identity. Figure 1 371

formally describes the scheme. 372

4.2. Security 373

The scheme cannot be proved IND-ID-CCA2 secure in the conventional sense because 374

the AnK portion of the ciphertext is malleable and so too is the NIZK proof potentially 375

(unless a non-malleable NIZK is used). We can however prove the scheme secure against an 376

adaptive chosen ciphertext attack in a relaxed model, namely the notion IND-ID-RCCA . 377

Theorem 4.1. Assuming Em is IND-ID-CPA secure, PKE is IND-CPA secure and NIZK is a sound 378

and zero-knowledge NIZK, then our scheme is IND-ID-RCCA secure under the hardness of DBDH 379

in the random oracle model. 380

Proof. We prove the theorem by means of a hybrid argument. We start with a real system 381

that encrypts the first challenge message m0 and move to a hybrid that encrypts the second 382

challenge message m1. 383

Hybrid 0: This is the real system that encrypts the challenge message m0. Let k be the 384

symmetric key used to produce the symmetric ciphertext ψ3. 385

Hybrid 1: The change we make in this hybrid is to how ψ1 is generated. Instead of 386

encrypting randomness r, we choose another uniformly random element s and produce ψ1 387

as an IBE encryption of s. We still use the previous symmetric key k to produce ψ3 which is 388

a symmetric encryption of ψ1 ∥ m0. 389

Indistinguishability between Hybrid 0 and Hybrid 1 follows from the semantic security 390

of the Em. In the reduction, we use the "trapdoor" mode discussed earlier to derive the 391

symmetric key; that is, for a typical ciphertext, we decrypt ψ! to obtain b and compute 392
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Algorithm Setup(1λ)
(PPIBE,MSKIBE)← Em.Setup(1λ)
(pkT , skT)← PKE.Gen(1λ)
H←$H
s←$ ZN
S← gs

CRS← NIZK.CRSGen(1λ)
Return (PP := (H, S,PPIBE, pkT ,CRS),MSK := (K, s,MSKIBE, skT))

Algorithm KeyGen(MSK, id)
A← H(id)
Sid ← As

skIBE,id ← Em.KeyGen(MSKIBE, id)
Return skid := (Sid, skIBE,id)

Algorithm Enc(PP, id, m)
r←$ ZN
ψ1 ← Em.Enc(PPIBE, id, r)
z← Em.Enc(PPIBE, id, 1M)
A← H(id)
Â← Ar

b←$ ZN
B← gb

ρ←$ {0, 1}ℓρ // where ℓρ is the
length of randomness required for PKE.Enc

ψ2 ← PKE.Enc(pkT , b; ρ)
π ← NIZK.Prove(CRS, (g, B, pkT , ψ2), (b, ρ))

// the NIZK uses relation R (below)
k← e(Âb, S)
ψ3 ← SKE.Enc(k, ψ1 ∥ m)
Return c := (Â, ψ1, z, B, ψ2, π, ψ3)

Algorithm Dec(skid, c)
(Sid, skIBE,id)← skid
(Â, ψ1, z, B, ψ2, π, ψ3)← c
If NIZK.Verify(CRS, (g, B, pkT , ψ2), π) ̸= 1

Return ⊥
r ← Em.Dec(skIBE,id, ψ1)
I f Â ̸= Ar

Return ⊥
k← e(Sid, B)r

Return SKE.Dec(k, ψ3)

Relation R(stmt := (g, B, pkT , ψ2), w := (b, ρ))
Return B = gb ∧ ψ2 = PKE.Enc(pkT , b; ρ)

Figure 1. Our IBE scheme with rerandomizable anonymous keys.
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e(Â, S)b. When we decrypt ψ3 we check if the first component of the plaintext matches ψ1, 393

otherwise we output ⊥ Secondly, if the second component is m0 or m1, we output "test" 394

as is required in IND-ID-RCCA. If the ciphertext we gave the adversary is queried for 395

decryption, then we also output "test". 396

Hybrid 2: The change we make in this hybrid is to how ψ1 is generated. We compute it 397

instead as an encryption of some uniformly random element z ̸= b but still use k (as in 398

previous hybrid) to produce ψ3. 399

Hybrid 1 and Hybrid 2 are indistinguishable from the IND-CCA2 security of PKE. 400

In the reduction, we return the original approach (i.e. the "real" mode) to compute the 401

symmetric key. 402

Hybrid 3: The change we make in this hybrid is to generate the symmetric key uniformly 403

at random. 404

Indistinguishability of Hybrid 2 and Hybrid 3 follows from the hardness of DBDH. 405

Hybrid 4: In this hybrid, we change how ψ3 is produced. Instead of encrypting ψ1 ∥ m0, 406

we encrypt ψ1 ∥ m1. 407

Indistinguishability of Hybrid 3 and Hybrid 4 follows from the iND-CCA2 security 408

of the symmetric encryption scheme. We are now in a hybrid where the second challenge 409

message m1 is encrypted. The remaining hybrids reverse the changes in Hybrid 1 - Hybrid 410

3 until we arrive at a hybrid that is the real system that encrypts the challenge message m1. 411

This completes our proof. 412

413

Corollary 4.1. Assuming Em is an IND-ID-CPA secure anonymous IBE then our scheme is 414

anonymous. 415

This is an immediate consequence of the semantic security and anonymity of Em. 416

5. Identity-Based Anonymous Aggregation 417

In an identity-based anonymous aggregation protocol, a collection of nodes encrypt 418

data for different recipients and forward them to their neighbors. The intended recipient 419

along with an aggregator are able to extract the following grouping, functional unit or “pack- 420

age", comprising the tuple (h, v, z), which we define momentarily. Let E be an anonymous 421

IBGHE scheme (such as AH in Section 3) and let H be a collision-resistant function. Fur- 422

thermore, let id be the recipient’s identity. Then we have h = H(id), v← E .Enc(PPE , id, m) 423

and z ← E .Enc(PPE , id, 0). For two such tuples c := (h, v, z) and c′ := (h′, v′, z′), the 424

aggregation algorithm is defined in Figure 2. The hash of the recipient’s identity h allows

Algorithm Agg.Aggregate(c, c′)
(h, v, z)← c
(h′, v′, z′)← c′

If h ̸= h′:
Output ⊥

s1, s2←$ ZN
v′′ ← v ∗ v′ ∗ zs1

z′′ ← zs2

Return c′′ := (h′′ := h, v′′, z′′)

Figure 2. Aggregation algorithm.
425

an aggregator to determine whether two ciphertexts have the same intended recipient, in 426

which case, the hash components are equal, and aggregation can be performed; otherwise, 427

aggregating both ciphertexts would produce an invalid result. With this approach, we 428

obtain one-way anonymity. The v component is an E encryption under the recipient’s 429

identity of the plaintext value. For sake of simplicity, we are assuming the plaintext space 430

isM := ZN . For referential convenience, we designate this type of scheme P− type. 431
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Now an alternative approach is to exclude the hash component from this tuple such 432

that an aggregator cannot learn anything about the recipient’s identity nor can it determine 433

whether two ciphertexts have the same recipient. As such, aggregation is always performed, 434

but we need some way for the decryptor to establish whether a ciphertext is valid or has 435

been likely contaminated through aggregation with a different identity. A solution to this 436

emerges when the plaintext space is exponentially large, as is the case here. The idea is to 437

include an additional encryption v̄ of−m where the underlying plaintext of v is m such that 438

v ∗ v̄ decrypts to zero (or 1M, the identity element). The decryptor discards a ciphertext 439

as invalid if v ∗ v̄ does not decrypt to zero. Homomorphically adding (pairwise) a pair 440

of ciphertexts (v′, v̄′) associated with another identity results in a pair of encryptions of a 441

random values in ZN . Therefore, the resulting ciphertext will be rejected as invalid by the 442

decryptor with overwhelming probability. For referential convenience, we designate this 443

type of scheme F− type

Algorithm Agg.Aggregate(c, c′)
(v, v̄, z)← c
(v′, v̄′, z′)← c′

s1, s2, s3←$ ZN
v′′ ← v ∗ v′ ∗ zs1

v̄′′ ← v̄ ∗ v̄′ ∗ zs2

z′′ ← zs3

Return c′′ := (v′′, v̄′′, z′′)

Figure 3. Aggregation algorithm.
444

Since any party who obtains the ciphertext tuple as above can modify the underlying 445

plaintext (malleability), we may wish to restrict this ability to a subset of authorized 446

parties, which we refer to as aggregators. While a suitable means of access control for 447

granting such authorization to aggregators is beyond the scope of this work (e.g: ABE 448

and related primitives may be of import), we describe a simplified paradigm that can be 449

adapted and extended as required. Typically, we would expect the ciphertext tuple above 450

to be encrypted with a non-malleable encryption scheme such as an IND-CCA2 secure 451

symmetric-key encryption scheme, denoted by SKE. Moreover, a random symmetric key 452

κ is first generated and the tuple c is then encrypted i.e. we have ψ← SKE.Enc(κ, c). The 453

natural question is then, how does one obtain κ? Note that both authorized aggregators 454

and the recipient must be able to access κ. First, an appropriate means of access control can 455

be employed to allow authorized aggregators to access κ, a subject that as aforementioned, 456

is outside the scope of this work. Secondly, and most importantly, the intended recipient 457

must be able to access κ. The challenge arises for intermediate aggregators who need to 458

encrypt a fresh κ under the recipient’s identity, which is hidden from them due to the 459

desired property of anonymity. It is apparent from a proof of aggregation validity that the 460

IBE scheme in which κ is encrypted must be secure against adaptive chosen ciphertext 461

attacks. Aggregation validity is a property that is defined in the next section and informally 462

means that no efficient adversary who is given an encryption of a message m and who is 463

neither an authorized aggregator nor the intended recipient can produce a valid ciphertext 464

that encrypts a targeted modification of m that is; t ·m for some a priori decided t ̸= 1M. 465

We now formalize identity-based anonymous aggregation (IBAA) in a simplified form 466

where authorization of aggregators is based on symmetric encryption which is sufficient 467

for our purposes but we note this may be replaced with a more complex form of access 468

control accommodated by a more generalized definition. 469

Definition 5.1. An identity-based anonymous aggregation (IBAA) protocol P consists of the 470

following PPT algorithms: 471

• Setup(1λ): On input a security parameter λ, generate public parameters PP and master secret 472

key MSK. Output (PP,MSK). 473
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• KeyGen(MSK, id): On input master secret key MSK and an identity id, output a secret key 474

skid for identity id. 475

• Authorize(skĩd): On input a secret key skĩd for identity ĩd, output an authorization key that 476

permits aggregation on ciphertexts generated by a source (sender) with identity ĩd. 477

• Enc(PP, skĩd, id, m): On input public parameters PP, a secret key for the source (sender) skĩd 478

whose identity is ĩd, a recipient identity id and message m ∈ M, produce a ciphertext c that 479

encrypts m under identity id and output c. 480

• Dec(skid, c): On input secret key skid for identity id and a ciphertext c, output a message 481

m ∈ M if c is a valid ciphertext for identity id; otherwise, output ⊥. 482

• Aggregate(PP, skĩd, (ak1, c1), (ak2, c2)): On input public parameters PP, the aggregator’s 483

secret key skĩd for their identity ĩd and two ciphertexts c1 and c2 with corresponding autho- 484

rization keys ak1 and ak2 (it may be the case that ak1 = ak2) that permit aggregation, if 485

ak1 permits aggregation on c1 and ak2 permits aggregation on c2, then output c′ such that 486

Dec(skid, c′) = Dec(skid, c1) ∗ Dec(skid, c2) for some operation ∗ (typically for an abelian 487

group). Otherwise, output ⊥. Additionally, in order to perform aggregation on c′, a party 488

needs an authorization key from ĩd. 489

This primitive is very similar to homomorphic IBE except there are few notable 490

differences. Firstly, only senders who are authorized by the TA can encrypt messages which 491

can be decrypted by the recipient if they have received a secret key from the TA for their 492

identity. Secondly, aggregation is possible on a sender’s ciphertext only if the aggregator 493

has received an authorization key from the sender. 494

Correctness: For i ∈ {1, 2}, all (PP,MSK) ← Setup(1λ), all identities id∗i ∈ I (senders),
¯id ∈ I (aggregator) and id ∈ I (recipient), all skid∗i ← KeyGen(MSK, id∗i ), all sk ¯id ←
KeyGen(MSK, ¯id), all skid ← KeyGen(MSK, id), all mi ∈ M, all ci ← Enc(PP, id∗i , id, mi) and
any aki, then

Dec(skid,Aggregate(PP, sk ¯id, (ak1, c1), (ak2, c2))) = m1 ∗m2

iff aki ∈ Authorize(skid∗i ) (except with negligible probability) where I is the identity space. 495

More precisely, the second part of the iff in the above condition is actually a security 496

condition, which we now treat on its own. 497

Definition 5.2. An IBAA scheme is said to satisfy (selective) aggregation validity if for all t ̸=
0 ∈ M the advantage of any PPT adversary A = (A1,A2) is negligible in the security parameter
where the advantage is defined as follows:

AdvA,AV = PrDec(skid, c′)→ t ∗m : (PP,MSK)← Setup(1λ),
(ĩd, id)← A1(1λ),
m←$M,
skĩd ← KeyGen(MSK, ĩd),
skid ← KeyGen(MSK, id),
c← Enc(PP, skĩd, id, m),
c′ ← AO2 (PP, c))

where O = KeyGen(MSK, ·) except queries cannot be made for identities ĩd and id. It is assumed 498

that |M| is exponentially large and the min-entropy ofM is sufficiently higher than the security 499

parameter. 500
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Definition 5.3. An IBAA scheme is said to satisfy (selective) strong unlinkability if the advantage
of any PPT adversary A = (A1,A2) is negligible in the security parameter where the advantage is
defined as follows:

AdvA,UL = PrAO2 (PP, c′, c′′, c′′)→ 1 : (PP,MSK)← Setup(1λ),
(ĩd, ĩd′, ĩd′′, m, m′, id)← A1(1λ),
skĩd ← KeyGen(MSK, ĩd),
sk

ĩd′
← KeyGen(MSK, ĩd′),

sk
ĩd′′
← KeyGen(MSK, ĩd′′),

ak← Authorize(skĩd),
ak′ ← Authorize(sk

ĩd′),
c← Enc(PP, skĩd, id, m),
c′ ← Enc(PP, sk

ĩd′
, id, m′),

c′′ ← Aggregate(PP, sk
ĩd′′

, (ak, c), (ak′, c′))

−PrAO2 (PP, c′, c′′, c′′)→ 1 : (PP,MSK)← Setup(1λ),
(ĩd, ĩd′, ĩd′′, m, m′, id)← A1(1λ),
skĩd ← KeyGen(MSK, ĩd),
sk

ĩd′
← KeyGen(MSK, ĩd′),

sk
ĩd′′
← KeyGen(MSK, ĩd′′),

ak← Authorize(skĩd),
ak′ ← Authorize(sk

ĩd′),
c← Enc(PP, skĩd, id, m),
c′ ← Enc(PP, sk

ĩd′
, id, m′),

c′′ ← Enc(PP, sk
ĩd′′

, id, m ∗m′)

where O = KeyGen(MSK, ·); note that queries can be made for identity id. 501

Definition 5.4. An IBAA scheme is said to be one-way anonymous if the advantage of any PPT
adversary A = (A1,A2) is negligible in the security parameter where the advantage is defined as
follows:

AdvA,OW-ANON = PrAO2 (PP, c)→ id : (PP,MSK)← Setup(1λ),
(ĩd, m)← A1(1λ),
id←$ I ,
skĩd ← KeyGen(MSK, ĩd),
c← Enc(PP, skĩd, id, m)

where O = KeyGen(MSK, ·). It is assumed that I is exponentially large and the min-entropy of I 502

is sufficiently higher than the security parameter. 503

6. Construction of IBAA 504

We now present a construction of the primitive defined in Section 5. Our construc- 505

tion requires an anonymous homomorphic IBE scheme Em for the plaintext values, a 506

collision-resistant hash function family, a symmetric encryption scheme ESKE, a PRF and 507

an anonymous IBE Ek for encrypting the keys. LetH be a family of collision-resistant hash 508

functions. Our IBAA sheme is shown in Figure 4. 509

We now prove an important result. 510

Theorem 6.1. Assuming Ek is IND-ID-RCCA secure and SKE is IND-CCA2 secure, then the 511

IBAA scheme in Figure 4 satisfies aggregation validity. 512
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Algorithm Agg.Setup(1λ)
K ← PRF.Gen(1λ)
(PPIBE,MSKIBE)← Em.Setup(1λ)
(PP′IBE,MSK′IBE)← Ek.Setup(1λ)
H←$H
Return (PP := (H,PPIBE,PP′IBE),MSK := (K,MSKIBE,MSK′IBE))

Algorithm Agg.KeyGen(MSK, id)
rα ← PRF.Eval(K, id ∥ ‘A’)
αid ← ESKE.Gen(1λ; rα)
skIBE ← Em.KeyGen(MSKIBE, id)
sk′IBE ← Ek.KeyGen(MSK′IBE, id)
Return skid := (αid, skIBE, sk′IBE)

Algorithm Agg.Authorize(skĩd)
(αĩd, skIBE, sk′IBE)← skĩd
Return akĩd := αĩd

Algorithm Agg.Enc(PP, skĩd, id, m)
(αĩd, skIBE, sk′IBE)← skĩd
κ ← ESKE.Gen(1λ)
h← H(id)
c1 ← ESKE.Enc(αĩd, κ)
c2 ← Ek.Enc(PP′IBE, id, κ)
v← Em.Enc(PPIBE, id, m)
z← Em.Enc(PPIBE, id, 1M)
c3 ← ESKE.Enc(κ, (h, v, z))
Return c := (c1, c2, c3)

Algorithm Agg.Dec(skid, c)
(αid, skIBE, sk′IBE)← skid
κ ← Ek.Dec(sk′IBE, c2)
t← ESKE.Dec(κ, c3)
If t = ⊥:

Return ⊥
(h, v, z)← t
m← Em.Dec(skIBE, v)
Return m

Figure 4. Our IBAA scheme - first five algorithms.

Proof. We prove the theorem via a hybrid argument. To avoid repetition and to make 513

the analysis more concise, we describe some notation for something that is common to 514

all steps in the argument. For each step, we need to construct a simulator that uses an 515

adversary A against selective aggregation validity in either the hybrid from the step in 516

question or the previous hybrid to attack the security of one of the underlying primitives. 517

However, the security games for each of these primitives involve an adversary outputting 518

a guess bit whereas the adversary A outputs a ciphertext c′. Therefore, an essential part of 519

the reduction is to show how we convert this ciphertext c′ into a bit b′ ∈ {0, 1} such that 520

either b′ or its complement can be sent to the challenger to break security of the underlying 521

primitive. For the sake of brevity in the reductions below, we simply describe how b′ is 522

computed from c′. 523

Hybrid 0: This is the real system. 524

Hybrid 1: In this hybrid, we change c1 to an encryption of a uniformly random and 525

independent element. 526

Indistsinguishability follows from the IND-CCA2 security of the symmetric encryption 527

scheme. The reduction in this case is straightforward. 528
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Hybrid 2: In this hybrid, we change the c2 component of the ciphertext to an encryption of a 529

random element drawn from the message space of the Ek scheme. So instead of encryptiong 530

κ, we encrypt a random element ρ. 531

We can use an adversary that has non-negligible advantage distinguishing between 532

Hybrid 0 and Hybrid 1 to construct an adversary that has a non-negligible advantage 533

against the IND-ID-RCCA security of Ek. The reduction is as follows. First we run A1 to 534

obtain (ĩd, id). We sample m←$M. We run Setup and all steps of the encryption algorithm 535

except the step that generates c2. Therefore, we for example generate κ, c1 and c3. We 536

set µ0 ← κ and µ1 ← ρ where ρ is a uniformly random element in the message space of 537

Ek and send the pair of messages (µ0, µ1) to the IND-ID-RCCA challenger. We receive a 538

challenge ciphertext e and we set c1 ← e and set c ← (c1, c2, c3). Then we run A2 with 539

the public parameters and ciphertext c, and obtain c′. Parse c′ as (c′1, c′2, c′3). Then the 540

reduction sends c′1 to the IND-ID-RCCA decryption oracle, and if the oracle responds 541

with test then check if c′3 is decryptable with κ or ρ and let µ be the tuple obtained, or 542

else if the oracle responds with a plaintext k, check if c′3 is decryptable with k and set µ 543

to be the tuple returned. Otherwise set µ ← ⊥. Finally the guess bit b′ is computed as 544

b′ ← µ ̸= ⊥ ∧ .Em.Dec(skIBE, µ.v) = m ∗ t where skIBE is the key we have derived in the 545

simulation. Indistinguishability follows from the IND-ID-RCCA security of Ek. 546

Hybrid 3: In this hybrid, we change the c3 component of the ciphertext to an encryption of 547

a random element drawn from the message space of the SKE scheme. 548

In the reduction, parse c′ as (c′1,c′2, c′3) and decrypt c′2 with the secret key derived in 549

the simulation to obtain κ. If κ decrypts c′3, set µ to the resulting tuple. Otherwise, send 550

c′3 to the IND-CCA2 decryption oracle and set µ to the response. Finally the guess bit b′ 551

is computed as b′ ← µ ̸= ⊥∧ .Em.Dec(skIBE, µ.v) = m ∗ t where skIBE is the key we have 552

derived in the simulation. Indistinguishability follows from the IND-CCA2 security of the 553

SKE scheme. 554

The adversary has negligible advantage in this game since the ciphertext c does not 555

contain any information about m. The result follows. 556

We have ommitted the aggregation algorithm from Figure 4 since this varies depend- 557

ing on whether we target the P− type or F− type setting. Our goal is to achieve strong 558

unlinkability, aggregation validity and (one-way/full) anonymity in the (P− type/F− type) 559

settings. 560

6.0.1. P-type Setting 561

We can however readily obtain strong unlinkability together with aggregation validity 562

in the P− type setting of one-way anonymity, which we will now describe. Unfortunately, 563

our approach is inherently restricted to one-way anonymity, leaving open the problem 564

of achieving strong unlinkability and aggregation validity in the F− type setting of full 565

anonymity; we tackle this problem later. Our approach for the P− type setting involves 566

instantiating Ek with an IND-ID-CCA2 secure IBE scheme. The hash of the target identity 567

h in the tuple encrypted by c3 is used as an identity string; that is, c2 is an encryption 568

with Ek under identity string h of the symmetric key κ. The ciphertext component c3 is an 569

encryption of the tuple (h, v, z). The aggregation algorithm for our IBAA scheme in this 570

setting is given in Figure 5. 571

6.0.2. F-type Setting 572

Now we turn our attention to the more challenging problem of obtaining aggregation 573

validity together with strong unlinkability in the F− type setting of full anonymity. We 574

observe that we can solve this problem with (identity-based) fully homomorphic encryption 575

(FHE). The idea is to encrypt the hash h with an identity-based FHE scheme to obtain 576

ciphertext ψh and place ψh in the tuple (h, v, z) instead of h. The aggregator can then 577

homomorphically produce an encryption of a fresh key under identity h by performing 578

homomorphic evaluation on ψh. The additional expense of homomorphic evaluation aside, 579
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Algorithm Agg.Aggregate(PP, skĩd, (ak, (c1, c2, c3)), (ak′, (c′1, c′2, c′3)))
(αĩd, skIBE, sk′IBE)← skĩd
α← ak
α′ ← ak′

κ ← ESKE.Dec(α, c1)
κ′ ← ESKE.Dec(α′, c′1)
If κ = ⊥ or κ′ = ⊥:

Output ⊥
(h, v, z)← ESKE.Dec(κ, c3)
(h′, v′, z′)← ESKE.Dec(κ′, c′3)
If h ̸= h′:

Output ⊥
s1, s2←$ ZN
v′′ ← v ∗ v′ ∗ zs1

z′′ ← zs2

κ′′ ← ESKE.Gen(1λ)
c′′1 ← ESKE.Enc(αĩd, κ′′)
c′′2 ← Ek.Enc(PP′IBE, h, κ′′)
c′′3 ← ESKE.Enc(κ′′, (h′′ := h, v′′, z′′)
Return (c′′1 , c′′2 , c′′3 )

Figure 5. Our IBAA scheme aggregation algorithm for P− type setting.

the major prohibitive factor of this approach is the fact that bootstrapping is necessary to 580

achieve unlinkability and this requires us to make a circular security assumption. Hence 581

we seek to solve the problem an alternative way, avoiding FHE and bootstrapping. 582

Instead, we rely on an IND-ID-RCCA secure IBE scheme that is both anonymous 583

and satisfies strong unlinkability with the ability to generate rerandomizable anonymous 584

encryption keys for a particular identity. We make use of our anonymous IBE scheme from 585

the previous section to fullfil our requirements. Recall that this scheme comes with two 586

useful algorithms: 587

• GenAnonKey(PP, id): 588

• RerandomizeKey(PP,AnK): 589

Given the public parameters and an identity string, the algorithm GenAnonKey generates 590

an anonymous key AnK which hides the identity and can be used to encrypt a message for 591

that identity. The second algorithm, RerandomizeKey, given the public parameters and an 592

anonymous key, derives an unrelated anonymous key for the same identity such that no 593

party can link the keys and determine that they are related (i.e. have the same intended 594

recipient). The anonymous key is preprended to every ciphertext generated with it so 595

therefore it is advantageous to rerandomize it so as ciphertexts are not linked to each other. 596

Figure 6 shows how this algorithm is used in our IBAA scheme’s aggregation algorithm for 597

the F− type setting. Note that although we do not show it, it is also necessary to slightly 598

modify the encryption and decryption algorithms of our IBAA scheme to accomodate the 599

F− type setting. 600
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Algorithm Agg.Aggregate(PP, skĩd, (ak, ct), (ak′, ct′))
(αĩd, skIBE, sk′IBE)← skĩd
(c1, c2 := (AnK, ψ), c3)← ct
(c′1, c′2 := (AnK′, ψ′), c′3)← ct′

α← ak
α′ ← ak′

κ ← ESKE.Dec(α, c1)
κ′ ← ESKE.Dec(α′, c′1)
If κ = ⊥ or κ′ = ⊥:

Output ⊥
(v, v̄, z)← ESKE.Dec(κ, c3)
(v′, v̄′, z′)← ESKE.Dec(κ′, c′3)
s1, s2, s3←$ ZN
v′′ ← v ∗ v′ ∗ zs1

v̄′′ ← v̄ ∗ v̄′ ∗ zs2

z′′ ← zs3

κ′′ ← ESKE.Gen(1λ)
c′′1 ← ESKE.Enc(αĩd, κ′′)
AnK′′ ← RerandomizeKey(PP′IBE,AnK)
c′′2 ← (AnK′′, Ek.Enc(PP′IBE,AnK′′, κ′′))
c′′3 ← ESKE.Enc(κ′′, (v′′, v̄′′, z′′)
Return (c′′1 , c′′2 , c′′3 )

Figure 6. Our IBAA scheme aggregation algorithm for F− type setting.
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