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Abstract: All anonymous identity-based encryption (IBE) schemes that are group homomorphic
(to the best of our knowledge) require knowledge of the identity to compute the homomorphic
operation. This paper is motivated by this open problem, namely to construct an anonymous group-
homomorphic IBE scheme that does not sacrifice anonymity to perform homomorphic operations.
Note that even when strong assumptions such as indistinguishability obfuscation (iO) are permitted,
no schemes are known. We succeed in solving this open problem by assuming iO and the hardness
of the DBDH problem over rings (specifically, Zy2 for RSA modulus N). We then use the existence
of such a scheme to construct an IBE scheme with re-randomizable anonymous encryption keys,
which we prove to be IND-ID-RCCA secure. Finally, we use our results to construct identity-based
anonymous aggregation protocols.

Keywords: Identity-Based Encryption, Homomorphic Encryption, Anonymous Aggregation

1. Introduction

The problem we tackle in this paper relates to a primitive known as identity-based
group homomorphic encryption (IBGHE) which is defined in [1]. Basically, IBGHE is
identity-based encryption that is homomorphic for some group operation and the ciphertext
space for every identity forms a group. Moreover, the decryption function is a group
homomorphism between the ciphertext group and the plaintext group. GHE has several
applications, discussed in [1], and an IBGHE facilitates those applications in an identity-
based infrastructure.

It is an open problem to construct an IBGHE that is simultaneously anonymous and
homomorphic for addition. There are only two IBGHE schemes that support modular

itps://dotorg 103390/ cryplography 020 4ition to the best of our knowledge, namely the XOR-homomorphic variant of the Cocks
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IBE scheme in [2] and the more recent IBGHE scheme from [3] that is homomorphic for
addition modulo smooth square-free integers. Now Joye discovered that the Cocks IBE
scheme itself is XOR-homomorphic [4] but the scheme is not an IBGHE since the ciphertext
space with the homomorphic operation forms a quasigroup and not a group. Some readers
might wonder about schemes that are considered multiplicatively homomorphic, which
allow addition in the exponent, and question why we do not classify them as IBGHE
schemes for addition. The reason is that the corresponding additive group has exponential
order and decryption can only recover messages using Pollard’s lambda algorithm that are
less than some polynomial bound so the valid message space does not form an additive
group. Now the two IBGHE schemes supporting modular addition that we are aware
of are not anonymous but there are variants of these schemes that achieve anonymity.
However, although such schemes gain anonymity, they lose the homomorphic property.
Most usually, we need to know the identity associated with a ciphertext in order to correctly
compute the homomorphic operation and so when the identity is hidden to us as it is
when the scheme is anonymous, we cannot compute the homomorphic operation. So
the open problem we address in this paper in a nutshell is to construct an IBGHE for
addition that is anonymous while retaining the homomorphic operation. Note that while
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we have concentrated on GHE, it is important to point out that there are no other additively
homomorphic schemes (such as quasigroup homomorphic schemes like Cocks as observed
by Joye) that achieve simultaneous anonymity and the ability to carry out the homomorphic
operation without knowing the identity associated with a ciphertext. Of course, our focus
is not on bounded homomorphisms like LWE-based schemes that incorporate noise, but
instead on those with an algebraic structure and support for a theoretically unbounded
number of operations. One of the reasons we opt for GHE over linearly-homomorphic
LWE-based schemes is that the former enjoys the desired property of strong unlinkability;
that is, an evaluated ciphertext is distributed the same as a fresh ciphertext in the view of
the key holder (recipient), whereas LWE-based schemes achieve this only by requiring an
expensive bootstrapping operation and making a circular security assumption.

1.1. Motivation and Applications

Beyond theoretical interest, there are applications that motivate consideration of this
open problem. We construct an anonymous IBE using anonymous IBGHE as a building
block. We prove this scheme IND-ID-RCCA secure (note that RCCA is a slight relaxation of
CCA2). Our anonymous IBE scheme has two interesting properties. Firstly, it allows one to
generate anonymous keys associated with a particular identity. Therefore, an encryptor can
encrypt a message using an anonymous key for some unknown recipient. Secondly, such
keys can be rerandomized such that the resulting anonymous key is computationally un-
linkable to the original anonymous key. This finds an immediate application in anonymous
aggregation, as we describe below.

Consider the following application scenario. Suppose we have a collection of sensor
nodes that collect data and send it towards a central server. Suppose the data are numerical
measurements and there are different recipients depending on external factors. Each sensor
data encrypts a measurement with the recipient’s identity and sends it en route towards
the central server. It is desirable that ciphertexts that are seen by potential adversaries
do not reveal the associated recipient’s identity. Along the route there are nodes that
function as aggregators which can be authorized independently by each sensor node to
aggregate the data coming from that sensor node. If a sensor nodes give authorization to
the aggregator then the aggregator should be able to aggregate data for the same recipient
coming from any of the sensor nodes that have given authorization. Addition (summation)
is a common type of aggregation since perhaps only an average measurement is needed by
the recipient. To fulfill this application scenario, we need an IBE scheme that is anonymous
and homomorphic for addition where the homomorphic operation can be computed
without knowing the recipient’s identity.

Consider two senders that produce ciphertexts for recipient id. Both of them send
their respective authorization keys to an aggregator whose identity is id, he performs
aggregation on the two ciphertexts and sends the result on to a second aggregator. The
second aggregator should not be able to perform aggregation with the result unless he
is given an authorization key from id. However the recipient should be able to decrypt
all such ciphertexts intended for her including the result of the aggregation. Now the
issue is that the recipient’s identity is hidden from the aggregators. But the result of their
aggregation needs to be decryptable by the recipient id and also “fresh" such that the second
aggregator who may be authorized by the original senders, but not authorized by the first
aggregator, should not be able to perform aggregation on the result. We describe our
approach to solving this problem below.

1.2. Our Results

We present a feasibility result in this work of an additively-homomorphic IBGHE that
is both anonymous and supporting evaluation of the homomorphic operation without
knowing a user’s identity. Our construction is based on iO and the hardness of DDH
in elliptic curves over Zy2 where N is an RSA modulus. These are strong assumptions
but we make headway on this open problem. Elliptic curves over rings have been less
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widely studied; Pailler [5] introduced the types of curves we use in this paper which are
over the ring Zy;» while Peter at al. [6] describe a specific class of curves that are suitable
to instantiate our construction. Furthermore, iO has not been realized from standard
assumptions although there have been several recent advances in constructing iO from
quite different approaches under different assumptions, which gives us more confidence
that iO exists. To obtain our feasibility result, we first borrow an idea from [7] to leverage
obfuscation to map an identity string to a freshly-generated public key of some encryption
scheme. In fact, abstracting for a moment from the specific construction, we will describe
the high-level paradigm. As part of the public parameters, we have an obfuscated program
that maps an identity to a public key in some multi-user system with public parameters. The
public keys in a multi-user system share the same set of common public parameters - think
of the generator ¢ and modulus p in ElGamal [8] as the common public parameters, except
ElGamal is of no use here since it is only multiplicatively homomorphic. Nevertheless,
ElGamal serves to illustrate another property that this paradigm requires, namely that the
multi-user system supports key privacy where key privacy can be viewed as the analog to
anonymity in the identity-based setting; that is, the ciphertexts in the multi-user system do
not reveal the public key they are associated with, which is the case in ElGamal. We are
using the term multi-user system in a broad sense here permitting both the case where we
have a trusted authority and the case where we do not. In the former, the public parameters
are generated by a trusted authority with a backdoor (master secret key) such that the
trusted authority can decrypt any ciphertext. In our paradigm, the public parameters
of the multi-user system will be generated by the trusted authority of the IBE scheme
and published as part of the IBE scheme’s public parameters. So we need the multi-user
system to be both key-private and additively homomorphic, where the homomorphic
operation can be computed without knowing the public key associated with a ciphertext.
The fundamental question is: can we concretely realize a multi-user system that has both
key privacy and an additive homomorphism. We can answer this question in the affirmative
by using a variant of Paillier scheme based on elliptic curves over rings that is presented
in [6], which is a multi-user system supporting homomorphic addition modulo a large
semiprime N and for which we can easily show that key privacy holds assuming the
hardness of DDH in elliptic curves over Zyp.

1.2.1. Anonymous IBE with Rerandomizable Anonymous Keys

Next we present an anonymous IBE scheme based on the Boneh-Franklin scheme
which we prove IND-ID-RCCA secure. Our scheme requires an additively-homomorphic
anonymous IBE scheme as a building block (as described above and which we realize in
Section 3) Our anonymous IBE scheme has two interesting properties. Firstly, it allows one
to generate anonymous keys associated with a particular identity. Therefore, an encryptor
can encrypt a message using an anonymous key for some unknown recipient. Secondly,
such keys can be rerandomized such that the resulting anonymous key is computationally
unlinkable to the original anonymous key. One of the applications for this scheme is in
realizing identity-based anonymous aggregation in Section 5. This is the first IBE scheme
that is both anonymous and IND-ID-RCCA secure.

1.2.2. Identity-Based Anonymous Aggregation

In an identity-based anonymous aggregation (IBAA) protocol, every identity has an
associated secret key derivable by the Trusted Authority with their maseter secret key.
Every identity can issue an authorization key to an aggregator that allows the aggregator
to perform aggregation on ciphertexts created by that identity, but for any recipient identity.
We envisage that in practice more complex policies may be used to control authorization
which are beyond the scope of this work. Here we simply model authorization with
symmetric keys. Therefore a symmetric key functions as an authorization key that can be
issued to aggregators. For every ciphertext, the encryptor generates a fresh symmetric key «
(effectively a session or transport key) and uses it to encrypt the IBE ciphertext that encrypts
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the message. This symmetric key « is encrypted with the authorization key for the sender 14
so that any party who is given this key can recover the IBE ciphertext that encrypts the 1as
message. However, the recipient must always be able to decrypt a ciphertext intended for 146
her irrespective of whether it has been given an authorization key (for aggregation) by the 147
encryptor. To solve this problem, the ciphertext also incorporates an IBE encryption of ¥ s0 148
that the recipient can recover the IBE ciphertext that encrypts the message. One of the main 14
challenges is in relation to aggregation. It is straightforward for the aggregator to evaluate 1so
the homomorphic operation on both IBE ciphertexts without knowing the recipient’s s
identity (anonymous group-homomorphic IBE enables this). However we must use a fresh  1s2
symmetric key to encrypt this evaluated IBE ciphertext in order to ensure unlinkability. But 1ss
how do we encrypt this fresh key with the recipient’s identity without knowledge of the 1sa
identity so that he can decrypt the result of the aggregation? One solution to this is to use 1ss
FHE and then rely on bootstrapping for unlinkability but this requires us to make a circular 1se
security assumption and furthermore, bootstrapping in the identity-based settings requires sz
strong assumpitons such as iO. Our solution is to use our anonymous IBE scheme with  1ss
its rerandomizable anonymous keys (described above) and this solves all our problems  1se
(including strong unlinkability) while being more efficient than FHE and without the need 160
for a circular security assumption. Furthermore, we rely on the IND-ID-RCCA security e
to prove a desirable property of aggregation validity whereby no party who has not being 12
granted authorization as an aggregator can perform a pre-determined transformation of 1es

the plaintext. 164
2. Preliminaries 165
2.1. Notation 166

A quantity is said to be negligible with respect to some parameter A, written negl(A), 17
if it is asymptotically bounded from above by the reciprocal of all polynomials in A. 168

For a probability distribution D, we denote by x <—s D that x is sampled according to D. 1ee
If S is a set, y <—s S denotes that y is sampled from x according to the uniform distribution 17

on S. 171
The support of a predicate f : A — {0,1} for some domain A is denoted by supp(f), 17
and is defined by the set {a € A : f(a) = 1}. 173
The set of contiguous integers {1,...,k} for some k > 1 is denoted by [k]. 174
2.2. Identity Based Encryption 175

Definition 2.1. An Identity Based Encryption (IBE) scheme is a tuple of PPT algorithms (G, K, E, D) 176
defined with respect to a message space M, an identity space T and a ciphertext space C as follows: 172

° G(l/\) 178
On input (in unary) a security parameter A, generate public parameters PP and a master 1z
secret key MSK. Output (PP, MSK). 180

d K(MSK,Id) 181
On input master secret key MSK and an identity id € ZL: derive and output a secret key skiq — 1e2
for identity id. 163

° E(PP,Id,m) 184
On input public parameters PP, an identity id € I, and a message m € M, output a  1ss
ciphertext ¢ € C C C that encrypts m under identity id. 186

L4 D(Skid,C).' 187
On input a secret key skig for identity id € T and a ciphertext ¢ € C, output m' i ¢ is a valid  1e
encryption under identity id; output a failure symbol L otherwise. 189

2.3. Public-Key GHE 190

An important subclass of partial homomorphic encryption is the class of public-key 101
encryption schemes that admit a group homomorphism between their ciphertext space and 12
plaintext space. This class corresponds to what is considered “classical” HE [9], where a 103
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single group operation is supported, most usually addition. Gjesteen [10] examined the
abstract structure of these cryptosystems in terms of groups, and characterized their security
as relying on the hardness of a subgroup membership problem. Armknecht, Katzenbeisser
and Peter [9] rigorously formalized the notion, and called it group homomorphic encryption
(GHE). We recap with the formal definition of GHE by Armknecht, Katzenbeisser and Peter

[9].
Definition 2.2 (GHE, Definition 1 in [9]). A public-key encryption scheme £ = (G, E,D)

is called group homomorphic, if for every (pk,sk) < G(1%), the plaintext space M and the
ciphertext space C (written in multiplicative notation) are non-trivial groups such that

o theset of all encryptions C := {c € C | ¢ = Ep(m),m € M} is a non-trivial subgroup of C
*  therestricted decryption D, := Dy c is a group epimorphism (surjective homomorphism) i.e.

D} is surjective and ¥c,c’ € C : Dg(c-c") = Dgi(c) - Dgk(c”)
e sk contains an efficient decision function 6 : C — {0, 1} such that
5(c)=1 < ceC
e thedecryption on C \ C returns the symbol L.

2.4. Identity-Based Group Homomorphic Encryption (IBGHE)

Definition 2.3 (Identity Based Group Homomorphic Encryption (IBGHE), Based on [11]).

Let £ = (G,K, E, D) be an IBE scheme with message space M, identity space Z and ciphertext
space C. The scheme & is group homomorphic if for every (PP, MSK) < G(1), every id € Z, and
every skiq <— K(MSK, id), the message space (M, -) is a non-trivial group, and there is a binary
operation * : C2 — C such that the following properties are satisfied for the restricted ciphertext
space Cig = {c € C : Dy, (c) # L}:

GH.1:  The set of all encryptions Ciqg = {c | ¢ <~ E(PP,id,m),m € M} C Cig is a non-trivial
group with respect to the operation *.

GH.2:  The restricted decryption Dy,  := Dgy,\c,, is surjective
and ¥c,c’ € Ciy Dy, (c* ') = Dgy, () - Dy, (c').

We are interested in schemes whose plaintext space forms a group and which allow
that operation to be homomorphically applied an unbounded number of times. There exist
schemes however that do not satisfy all the requirements of GHE, namely their ciphertext
space does not form a group but instead forms a quasigroup (a group without associativity)
such as the Cocks’ IBE [12], which was shown to be inherently XOR-homomorphic by Joye

[4].

2.5. Multi-User Encryption

A multi-user encryption (MUE) scheme is an abstraction from a class of public-key
encryption schemes where the public keys of users share common public parameters, whose
generation may or may not include a trusted setup, in which case a Trusted Authority (TA)
may hold a master decryption key that enables them to decrrypt the ciphertexts of any
user. An instance of MUE is ElGamal which does not require a trusted setup or involve a
Trusted Authority with a “backdoor” whereas another instance of an MUE is a public-key
encryption scheme with a double decryption mechanism (DD-PKE) as defined by Galindo
and Herranz [13] where the public parameters are generated along with a master secret
key by a TA.

An MUE is a tuple of PPT algorithms (Setup, KeyGen, Enc, Dec, mDec) with plaintext
space M and ciphertext space C defined as follows:
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e Setup(1'): takes as input a security parameter A and outputs a pair (PP, MSK) con-
sisting of public parameters PP and an optional master secret key MSK which may be
setto L,

e KeyGen(PP): takes as input the public parameters PP and outputs a pair of pub-
lic/private keys (pk, sk).

e Enc(PP, pk, m): takes as input the public parameters PP, a user’s public key pk and a
message m € M, and outputs a ciphertext c € C C C.

e Dec(PP,sk,c): takes as input the public parameters PP, a secret key sk and a ciphertext
¢ € C, and outputs either a plaintext m € M or L if decryption fails.

e mDec(PP,MSK, pk, c): takes as input the public parameters PP, the master secret key
MSK, a user’s public key pk and a ciphertext ¢ € C and outputs either a plaintext
m € M or L if decryption fails or MSK = L.

2.6. Elliptic Curves Over Rings

Proposition 2.1 ([6]). If N = pq is some RSA modulus, i.e. p and q are primes of about the same
bit length A, then there is an efficient construction of elliptic curves E : y?z = x3 + axz? + bz®
over Zp such that M := lcm(#E(Zy,), #E(Zg)) has at least two large (of about the same size as p
and q) prime factors.

Lemma 2.1 ([6]). As in Proposition 2.1, let M € N have at least two large prime factors (of about
A bits). If t(M) denotes the product of all small prime factors of M, then

Pry sri(m) [ged(s, M) # 1] is negligible in A
where TI(M) := {s € Zp2 \ {0} | ged(s, t(M)) = 1}.

2.7. Indistinguishability Obfuscation

Definition 2.4 (Indistinguishability Obfuscation). (Based on Definition 7 from ([14]) A uniform
PPT machine iO is called an indistinguishability obfuscator for every circuit class {Cy} if the
following two conditions are met:

*  Correctness: For every x € N, for every C € Cx, for every x in the domain of C, we have that
PrC’(x) =C(x): C' +iO(C) = 1.

*  Indistinguishability: For every x € N, for all pairs of circuits Cy, C1 € Cy, if Co(x) = C1(x)
for all inputs x, then for all PPT adversaries A, we have:

|PrA(iO(Cy)) =1| — |PrA(GO(Cy1)) = 1| < negl(x).

2.8. Puncturable Pseudorandom Function

A puncturable pseudorandom function (PRF) is a constrained PRF (Key, Eval) with an
additional PPT algorithm Puncture. Let n(-) and m(-) be polynomials. Our definition here
is based on ([14]) (Definition 3.2). A PRF key K is generated with the PPT algorithm Key
which takes as input a security parameter «. The Eval algorithm is deterministic, and on
input a key K and an input string x € {0,1}"(*), outputs a string y € {0,1}"(%).

A puncturable PRF allows one to obtain a “punctured” key K’ <— Puncture(K, S)
with respect to a subset of input strings S  {0,1}"(®) with |S| = poly(x). It is required
that Eval(K, x) = Eval(K’,x) Vx € {0,1}"(®)\ S, and for any poly-bounded adversary
(A1, Ay) with S < A;(1%) € {0,1}"®) and |S| = poly(x), any key K < Key(1¥), any
K’ < Puncture(K, S), and any x € S, it holds that

Pr Ay (K, x,Eval(K,x)) =1 —PrAy(K', x,u) =1 < negl(x)

where 1 s {0,1}"(),

251
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3. Construction of Anonymous Additively-Homomorphic IBE
3.1. PKTK MUE Scheme

We now describe the cryptosystem from [6] that is an instance of an MUE and satisfies
some interesting properties including the fact that even the Trusted Authority cannot
determine which user a ciphertext is created for (Property 3 [6]) so the scheme is anonymous
even to the TA under the hardness of DDH in E(Zy32). The scheme is very similar to
Galbraith’s elliptic-curve based Paillier scheme [15].

e Setup(1") : On input a security parameter A, this algorithm generates an RSA modulus
N = pg where p and g are primes of about the same bit length A. Then it constructs
an elliptic curve E : y?z = x3 + axz? + bz3 over Zyp such that E has the properties
described in Proposition 2.1. Furthermore, it chooses a point Q = (x,y,z) € E(Zy2)
whose order divides M = lecm(#E(Zy),#E(Z;)). It outputs the public parameters
PP := (N, ((M),a,b, Q) and the master secret key MSK := M. The plaintext space is
M = Zy and the ciphertext space is C = (Q) x (Q, M;).

e KeyGen(PP): chooses s «—sZ}, at random' and computes R < sQ. It outputs public
key pk := R and secret key sk :=s.

e Enc(PP, pk,m): chooses a random value r <—s$ Zy. and computes the ciphertext (A, B)
as

A < rQand B < R+ M,,

e Dec(pp,sk, (A,B)): outputs
x(B—sA)

%
" N

e mDec(PP,MSK, (A, B)) : outputs

X(MB)M*l mod N.

3.2. Our Scheme

Our scheme is essentially the transformation in [7] applied to the MUE scheme above.
We need to define a program Fyj,ppk that is obfuscated as part of the public parameters.
Let £ be an MUE scheme such as the PKTK scheme above which has message space Zy.
The program Fy,ppk takes an identity id and maps it to public key pk;g.

Program Fy,ppk (id) :

1. Compute Tid —
PRF.Eval(K, id).

2. Compute (pkiq, skiq) —
E.KeyGen(PPg¢;riq).

3. Output pkjq

Let &€ be the PKTK MUE scheme. Let iO be an indistinguishability obfuscator and let PRF
be a puncturable PRF. We now define the construction.

e AH.Setup(1%) : On input security parameter A, compute (PPg, MSKg) + &.Setup(1%).
Next generate K < PRF.Gen(1") and compute O + iO(FMaPPKPPg,K)' Output (PP :=
(O, PP¢), MSK := (K, MSK¢).

*  AH.KeyGen(MSK, id) : On input master secret key MSK := (K, MSK¢) and an identity
id, compute r;q < PRF.Eval(K,id). Next generate (pkiq,skiq) < €.KeyGen(PPg¢;riq).
Output skiq.

1 This can be done by sampling s < T1(M) (which is possible as 77(M) is included in PP)
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e AH.Enc(PP,id,m) : On input public parameters PP, an identity id and a message
m € Zy, obtain pkig <— O(id) and compute ¢ < £.Enc(PPg, pkiq, m). Output c.

204

2905

*  AH.Dec(skiq, c): Oninput a secret key sk;q for identity id, compute m <— £.Dec(PP¢, skig, C}os

and output m.

Theorem 3.1. Assuming indistinguishability obfuscation and the hardness of DDH in E(Zyp),
AH is an anonymous and IND-ID-CPA secure IBE scheme.

Proof. The theorem follows as a consequence of Theorem 1 in [7] where the underlying
public-key encryption scheme is replaced with the PKTK MUE scheme whose key-privacy
and semantic security rely on the hardness of DDH in E(Zyp). O

This simple construction serves mainly as a possibility result for an anonymous
homomorphic IBE where the homomorphic operation can be computed without knowing
the identity associated with one or more ciphertexts. We leave as an open problem the
construction of more efficient and perhaps even practical schemes of this nature.

4. Anonymous IBE with Rerandomizable Anonymous Encryption Keys

In this section, we present an anonymous IBE scheme that is a variant of Boneh-
Franklin and show that it is both anonymous and IND-ID-RCCA secure. The scheme has
two interesting properties: the generation of anonymous keys associated with a particular
recipient identity and rerandomization of such keys. In regard to the former, anonymous
keys allow a party to encrypt a message for an unknown recipient; that is, the key hides
the identity of the recipient. In regard to rerandomization of these keys, a rerandomized
key is computationally unlinkable to another anonymous key with the same associated
identity. Therefore, two anonymous keys for the same identity, where one is obtained
by rerandomizing the other, cannot be linked in any way. These properties are essential
in our application of anonymous aggregation in the next section. Here, we observe that
an essential building block of our construction is an anonymous homomorphic IBE for
addition modulo N as realized in the previous section. In fact, an anonymous homomrophic
IBE from LWE does not suffice here; a group homomorphic scheme appears to be necessary.

4.1. Our Construction

Let ¢ € G be a generator of a cyclic group G and let g7 € Gt be a generator of another
cyclic group Gt. Both groups are of order N, a large semiprime. Now lete : G x G — G be
a non-degenerate bilinear map between G and G (the target group) such that g7 = e(g, ).
The notational convention we follow in this section is to write group elements using
uppercase letters whose integer exponent with respect to the generator is the corresponding
lowercase letter. Our construction is based around the Boneh-Franklin scheme. We now
describe our construction which serves to illustrate various concepts we would like to
establish. We Let H be a hash function modelled as a random oracle that maps identity
strings to elements of G. The master secret key contains an integer s <—$ Zy chosen at setup
while the public parameters contains S <— g°. The other building blocks are an anonymous
group homomorphic IBE scheme &y, that is homomorphic for addition modulo N, a NIZK
and an IND-CCA2 secure symmetric encryption scheme. Consider a recipient identity id.
Then we derive the public key for id as A < H(id) € G. The encryptor chooses a random
integer r s Zy and computes A < A’. Then he computes ¢; < Eu.Enc(PP g, id, 7)
and z1 < &,,.Enc(PPgg, id, 1 (). Subsequently, the encryptor chooses a random integer
b<sZy and computes B « g¥ and ¢, < PKE.Enc(pky, b;p) for some randomness p.
Finally, the encryptor generates a NIZK proof 7t that 1, encrypts the discrete logarithm of
B with respect to base g. We derive the symmetric key k < e(A?,S) € Gt and encrypt the
message with the symmetric encryption scheme using the key k.

In the real mode, a decryptor with a secret key skiq := (Sig = A°,skiggid <
Em-KeyGen(MSKgg, id)) for identity id, computes r <— &,.Dec(skiq, 1) and k < e(B, Sig)" €
Gr. In the security proof, when we do not have access to S;q, we alternatively derive k

297
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as follows. First we decrypt i, with the trapdoor secret key to obtain b then we compute saa

k(—E(Ab,S) € GT. 345
To generate an anonymous key for an identity, consider the following algorithm: 346
*  GenAnonKey(PP,id): 3a7
- r<s 7N 348
- lp — 5m.EnC(PP|BE,id,7’) 349
- Z < Sm.EnC(PP|BE,id,1M) 350
- A+ H(Id) 351
- A +— A" 352
- Return AnK := (A, ¢,2) 353
An aonymous key AnK lets a party encrypt messages for an unknown intended recipient, sss
which is computationally hidden from the party. 355
To rerandomize an AnK generated as above, the following algorithm is used: 356
e RerandomizeKey(PP, AnK): 357
- Parse AnKas (A, ¢,z2) 358
- s ZN 350
- A« Ar’ 360
- Uy, Up <5 ZN 361
— lp/ . ll]", %z 362
- z! ¢ "2 363
- Return AnK’ := (A',¢/,2') 364

The advantage of RerandomizeKey is that given an anonymous key derived with this algo- ses
rithm from an original anonymous key, no party can link the keys and determine that they e
are related (i.e. have the same intended recipient). The anonymous key is preprended to ser
every ciphertext generated with it so therefore it is advantageous to rerandomize it so as  ses
ciphertexts are not linked to each other. 369

We present the scheme formally now. Note that the encryption algorithm may alter- sz
natively accept an anonymous key AnK as input instead of a recipient identity. Figure 1 37
formally describes the scheme. 372

4.2. Security 373

The scheme cannot be proved IND-ID-CCA2 secure in the conventional sense because 374
the AnK portion of the ciphertext is malleable and so too is the NIZK proof potentially s7s
(unless a non-malleable NIZK is used). We can however prove the scheme secure againstan sz
adaptive chosen ciphertext attack in a relaxed model, namely the notion IND-ID-RCCA . 77

Theorem 4.1. Assuming &, is IND-ID-CPA secure, PKE is IND-CPA secure and NIZK is a sound  szs
and zero-knowledge NIZK, then our scheme is IND-ID-RCCA secure under the hardness of DBDH 37
in the random oracle model. 380

Proof. We prove the theorem by means of a hybrid argument. We start with a real system e
that encrypts the first challenge message 1y and move to a hybrid that encrypts the second  s2

challenge message . 383
Hybrid 0: This is the real system that encrypts the challenge message myg. Let k be the e
symmetric key used to produce the symmetric ciphertext 3. 385

Hybrid 1: The change we make in this hybrid is to how  is generated. Instead of sss
encrypting randomness , we choose another uniformly random element s and produce ;  ss7
as an IBE encryption of s. We still use the previous symmetric key k to produce 3 which is  ses
a symmetric encryption of ¢y || my. 389

Indistinguishability between Hybrid 0 and Hybrid 1 follows from the semantic security seo
of the &,. In the reduction, we use the "trapdoor" mode discussed earlier to derive the 30
symmetric key; that is, for a typical ciphertext, we decrypt ¢, to obtain b and compute se2
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Algorithm Setup(1%)
(PPigg, MSK|gg) + En.Setup(171)
(pkr,sky) < PKE.Gen(1%)
H<+sH
SN
S+ g°
CRS + NIZK.CRSGen(1%)
Return (PP = (H, S, PPIBE/ ka, CRS), MSK := (K, S, MSK|BE, SkT))

Algorithm KeyGen(MSK, id)
A « H(id)
Sid «— AS
SkIBE,id — Sm.KeyGen(MSK|BE, Id)
Return Skid = (Sid/SleE,id)

Algorithm Enc(PP, id, m)

V< ZN

lPl — gm.EnC(PP“gE,id, 1’)

Z Sm.EnC(PP|BE, id, 1./\/1)

A« H(id)

A AT

b<+s ZN

B+ gb

p +5{0,1}% // where £, is the
length of randomness required for PKE.Enc

Py < PKE.Enc(pkr, b; p)

7t < NIZK.Prove(CRS, (g, B, pkt, 92), (b, p))
// the NIZK uses relation R (below)

k < e(A?,S)

l/)3 — SKE.Er‘IC(k, l/Jl || m)

Return ¢ := (A, 1,2, B, ¥, 7T, ¥3)

Algorithm Dec(skig, ¢)
(Sias skigg id) < skid
(A, 1P1,Z, B, 1/12, 7T, l/J3) «—C
If NIZK.Verify (CRS, (g, B, pky, ), 77) # 1
Return L
r 4= En.Dec(skigg,ia, 1)
IfA # A7
Return L
k E(Sid, B)r
Return SKE.Dec(k, 13)

Relation R(stmt := (g, B, pkr, ¢2), w := (b, p))
Return B = g¥ A ¢ = PKE.Enc(pkr, b; p)

Figure 1. Our IBE scheme with rerandomizable anonymous keys.
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e(A,S)b. When we decrypt g3 we check if the first component of the plaintext matches 9y,
otherwise we output L Secondly, if the second component is 1 or m;, we output "test"
as is required in IND-ID-RCCA. If the ciphertext we gave the adversary is queried for
decryption, then we also output "test".

Hybrid 2: The change we make in this hybrid is to how 1 is generated. We compute it
instead as an encryption of some uniformly random element z # b but still use k (as in
previous hybrid) to produce 3.

Hybrid 1 and Hybrid 2 are indistinguishable from the IND-CCA2 security of PKE.
In the reduction, we return the original approach (i.e. the "real" mode) to compute the
symmetric key.

Hybrid 3: The change we make in this hybrid is to generate the symmetric key uniformly
at random.

Indistinguishability of Hybrid 2 and Hybrid 3 follows from the hardness of DBDH.
Hybrid 4: In this hybrid, we change how 3 is produced. Instead of encrypting 1 || myo,
we encrypt ¢y || my.

Indistinguishability of Hybrid 3 and Hybrid 4 follows from the iND-CCA2 security
of the symmetric encryption scheme. We are now in a hybrid where the second challenge
message 111 is encrypted. The remaining hybrids reverse the changes in Hybrid 1 - Hybrid
3 until we arrive at a hybrid that is the real system that encrypts the challenge message m;.
This completes our proof.

O

Corollary 4.1. Assuming &, is an IND-ID-CPA secure anonymous IBE then our scheme is
anonymous.

This is an immediate consequence of the semantic security and anonymity of &£,.

5. Identity-Based Anonymous Aggregation

In an identity-based anonymous aggregation protocol, a collection of nodes encrypt
data for different recipients and forward them to their neighbors. The intended recipient
along with an aggregator are able to extract the following grouping, functional unit or “pack-
age", comprising the tuple (h,v, z), which we define momentarily. Let £ be an anonymous
IBGHE scheme (such as AH in Section 3) and let H be a collision-resistant function. Fur-
thermore, let id be the recipient’s identity. Then we have h = H(id), v < £.Enc(PPg, id, m)
and z < E.Enc(PPg¢,id,0). For two such tuples ¢ := (h,v,z) and ¢’ := (W,7/,2), the
aggregation algorithm is defined in Figure 2. The hash of the recipient’s identity & allows

Algorithm Agg.Aggregate(c,c’)
(h,v,2) + ¢
(W, 0,2+ ¢
TEh £ I
Output L
S1,82 ¢S N
v — vxv 2%
7" 2%
Return ¢” := (W' :=h,v",2")

Figure 2. Aggregation algorithm.

an aggregator to determine whether two ciphertexts have the same intended recipient, in
which case, the hash components are equal, and aggregation can be performed; otherwise,
aggregating both ciphertexts would produce an invalid result. With this approach, we
obtain one-way anonymity. The v component is an £ encryption under the recipient’s
identity of the plaintext value. For sake of simplicity, we are assuming the plaintext space
is M := Zy. For referential convenience, we designate this type of scheme P — type.
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Now an alternative approach is to exclude the hash component from this tuple such
that an aggregator cannot learn anything about the recipient’s identity nor can it determine
whether two ciphertexts have the same recipient. As such, aggregation is always performed,
but we need some way for the decryptor to establish whether a ciphertext is valid or has
been likely contaminated through aggregation with a different identity. A solution to this
emerges when the plaintext space is exponentially large, as is the case here. The idea is to
include an additional encryption  of —m where the underlying plaintext of v is m such that
v * 0 decrypts to zero (or 1,4, the identity element). The decryptor discards a ciphertext
as invalid if v * ¥ does not decrypt to zero. Homomorphically adding (pairwise) a pair
of ciphertexts (v/,7') associated with another identity results in a pair of encryptions of a
random values in Zy. Therefore, the resulting ciphertext will be rejected as invalid by the
decryptor with overwhelming probability. For referential convenience, we designate this
type of scheme F — type

Algorithm Agg.Aggregate(c, c’)
(v,0,2) < ¢
(o, 0,2") « ¢
51,82,83 <5 ZN
v <~ v* 0 xz%
' o * 0 * 2%
Z// P ZSg
Return ¢’ := (v”,9",2")

Figure 3. Aggregation algorithm.

Since any party who obtains the ciphertext tuple as above can modify the underlying
plaintext (malleability), we may wish to restrict this ability to a subset of authorized
parties, which we refer to as aggregators. While a suitable means of access control for
granting such authorization to aggregators is beyond the scope of this work (e.g: ABE
and related primitives may be of import), we describe a simplified paradigm that can be
adapted and extended as required. Typically, we would expect the ciphertext tuple above
to be encrypted with a non-malleable encryption scheme such as an IND-CCAZ2 secure
symmetric-key encryption scheme, denoted by SKE. Moreover, a random symmetric key
k is first generated and the tuple c is then encrypted i.e. we have ¢ <— SKE.Enc(x, c). The
natural question is then, how does one obtain x? Note that both authorized aggregators
and the recipient must be able to access . First, an appropriate means of access control can
be employed to allow authorized aggregators to access «, a subject that as aforementioned,
is outside the scope of this work. Secondly, and most importantly, the intended recipient
must be able to access x. The challenge arises for intermediate aggregators who need to
encrypt a fresh x under the recipient’s identity, which is hidden from them due to the
desired property of anonymity. It is apparent from a proof of aggregation validity that the
IBE scheme in which « is encrypted must be secure against adaptive chosen ciphertext
attacks. Aggregation validity is a property that is defined in the next section and informally
means that no efficient adversary who is given an encryption of a message m and who is
neither an authorized aggregator nor the intended recipient can produce a valid ciphertext
that encrypts a targeted modification of m that is; t - m for some a priori decided t # 1.

We now formalize identity-based anonymous aggregation (IBAA) in a simplified form
where authorization of aggregators is based on symmetric encryption which is sufficient
for our purposes but we note this may be replaced with a more complex form of access
control accommodated by a more generalized definition.

Definition 5.1. An identity-based anonymous aggregation (IBAA) protocol P consists of the
following PPT algorithms:

e Setup(1"): On input a security parameter A, generate public parameters PP and master secret
key MSK. Output (PP, MSK).
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e KeyGen(MSK,id): On input master secret key MSK and an identity id, output a secret key — aza
skiq for identity id. a7s
*  Authorize(sk): On input a secret key sk for identity id, output an authorization key that sz
permits aggregation on ciphertexts generated by a source (sender) with identity id. a7
*  Enc(PP,sky,id, m): On input public parameters PP, a secret key for the source (sender) sk a7

whose identity is id, a recipient identity id and message m € M, produce a ciphertext c that s

encrypts m under identity id and output c. 480
e Dec(skig, c): On input secret key skiq for identity id and a ciphertext c, output a message s
m € M if c is a valid ciphertext for identity id; otherwise, output L. a82

*  Aggregate(PP, sk, (aky, c1), (ako, c2)): On input public parameters PP, the aggregator’s  ass
secret key sk for their identity id and two ciphertexts ¢ and c with corresponding autho-  ass
rization keys aky and aky (it may be the case that aky = akp) that permit aggregation, if ass
akq permits aggregation on cy and aky permits aggregation on cy, then output ¢’ such that s
Dec(skiq, ¢’) = Dec(skig, ¢1) * Dec(skig, c2) for some operation x (typically for an abelian  ssz
group). Otherwise, output L. Additionally, in order to perform aggregation on ¢’, a party ass
needs an authorization key from id. aso

This primitive is very similar to homomorphic IBE except there are few notable s
differences. Firstly, only senders who are authorized by the TA can encrypt messages which 402
can be decrypted by the recipient if they have received a secret key from the TA for their e
identity. Secondly, aggregation is possible on a sender’s ciphertext only if the aggregator ses
has received an authorization key from the sender. 404

Correctness: For i € {1,2}, all (PP, MSK) < Setup(1%), all identities id € Z (senders),
id € Z (aggregator) and id € Z (recipient), all skjg: < KeyGen(MSK,id;), all skyy <
KeyGen(MSK, id), all skjq < KeyGen(MSK, id), all m; € M, all ¢; - Enc(PP,id},id, m;) and
any ak;, then

Dec(skiq, Aggregate(PP, skig, (aky, c1), (ak, c2))) = my x my

iff ak; € Authorize(skidi*) (except with negligible probability) where 7 is the identity space. s
More precisely, the second part of the iff in the above condition is actually a security ase
condition, which we now treat on its own. 497

Definition 5.2. An IBAA scheme is said to satisfy (selective) aggregation validity if for all t #
o € M the advantage of any PPT adversary A = (A1, Ay) is negligible in the security parameter
where the advantage is defined as follows:

Advgay = PrDec(skig,c’) = txm: (PP,MSK) < Setup(1%),
(id,id) « A (1%),
m<s M,
sk KeyGen(MSK, id),
skig < KeyGen(MSK, id),
¢ < Enc(PP, skia,id,m),
¢« A9(PP,c))

where O = KeyGen(MSK, -) except queries cannot be made for identities id and id. It is assumed s
that | M| is exponentially large and the min-entropy of M is sufficiently higher than the security  aes
parameter. 500
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Definition 5.3. An IBAA scheme is said to satisfy (selective) strong unlinkability if the advantage
of any PPT adversary A = (Ay, Ap) is negligible in the security parameter where the advantage is
defined as follows:

AdvyuL = PrAY(PP,c,c",c"") —1: (PP,MSK) « Setup(1}),
(id,id’,id", m, m’,id) < A; (1),
sk « KeyGen(MSK, id),
sk, ¢ KeyGen(MSK, id'),
Sk@? + KeyGen(MSK, 1217’),
ak Authorize(skia),
ak’ Authorize(ski?),
¢ < Enc(PP, sk, id, m),
'+ Enc(PP,skE,,id,m’),
" — /—\ggregate(PP,skic?/, (ak,c), (ak/, "))

—PrA9(PP,c,c",¢") = 1: (PP,MSK) <« Setup(1"),
(id,id’, id", m, m’,id)  Ay(1%),
sk « KeyGen(MSK, id),
sk ¢ KeyGen(MSK, id'),
sk~ ¢ KeyGen(MSK, id"),
ak « Authorize(skia),
ak’ Authorize(ski?),
¢ < Enc(PP, sk, id, m),
¢’ + Enc(PP, sk, id, m’),

id"”

" — Enc(PP,skiav//,id,m xm')

where O = KeyGen(MSK, -); note that queries can be made for identity id.

Definition 5.4. An IBAA scheme is said to be one-way anonymous if the advantage of any PPT
adversary A = (Aq, Ay) is negligible in the security parameter where the advantage is defined as
follows:

Adv 4 ow.anoN = PrA9(PP,c) —id: (PP,MSK) < Setup(1'),
(id,m) < Ay (1%),
id<s7Z,
sk < KeyGen(MSK, id),
¢ < Enc(PP, skia,id,m)

where O = KeyGen(MSK, ). It is assumed that T is exponentially large and the min-entropy of Z
is sufficiently higher than the security parameter.

6. Construction of IBAA

We now present a construction of the primitive defined in Section 5. Our construc-
tion requires an anonymous homomorphic IBE scheme &, for the plaintext values, a
collision-resistant hash function family, a symmetric encryption scheme Eskg, a PRF and
an anonymous IBE & for encrypting the keys. Let H be a family of collision-resistant hash
functions. Our IBAA sheme is shown in Figure 4.

We now prove an important result.

Theorem 6.1. Assuming & is IND-ID-RCCA secure and SKE is IND-CCA2 secure, then the
IBAA scheme in Figure 4 satisfies aggregation validity.

501
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Algorithm Agg.Setup (1)
K « PRF.Gen(1")
(PPige, MSK|gg) + En-Setup(1%)
(PPlge, MSK{gg) « & Setup(1%)
H<—sH
Return (PP := (H, PP|gg, PPigg), MSK := (K, MSK|gg, MSKgg))

Algorithm Agg.KeyGen(MSK, id)
fa + PRF.Eval(K, id || ‘A)
Nid < SSKE.Gen(l)‘; 7’,1)
skige < Em-KeyGen(MSK|gE, id)
skigg < Er-KeyGen(MSK|gg, id)
Return skig := (g, Skisg, SK|gg)

Algorithm Agg.Authorize(sk;)
(Déia, SkIBE/ SkiBE) — Skﬂ

Return aki;i =g

Algorithm Agg.Enc(PP, sk, id, m)
(aBISkIBE/ SkiBE) < Skia
K < SSKE.Gen(l’\)
h « H(id)
C1 < 5SKE-EnC(¢"i3/K)
o < &Enc(PP|gg, id, k)
U < 5m.EnC(PP|BE, id,m)
Z gm.EnC(PP|BE, id, 1./\/()
c3 + Eske-Enc(k, (h,v,2))
Return ¢ := (cq, ¢, ¢3)

Algorithm Agg.Dec(skiq, ¢)
(aig, SkiBE, Skigg) < skid
x < E.Dec(skigg, ¢2)
t < Eske.Dec(x, c3)
Ift=1:

Return L

(h,0,2) « t
m <— gm.DeC(Sk|BE,U)
Return m

Figure 4. Our IBAA scheme - first five algorithms.

Proof. We prove the theorem via a hybrid argument. To avoid repetition and to make
the analysis more concise, we describe some notation for something that is common to
all steps in the argument. For each step, we need to construct a simulator that uses an
adversary A against selective aggregation validity in either the hybrid from the step in

question or the previous hybrid to attack the security of one of the underlying primitives.

However, the security games for each of these primitives involve an adversary outputting
a guess bit whereas the adversary A outputs a ciphertext ¢’. Therefore, an essential part of
the reduction is to show how we convert this ciphertext ¢’ into a bit b’ € {0,1} such that
either b’ or its complement can be sent to the challenger to break security of the underlying
primitive. For the sake of brevity in the reductions below, we simply describe how ¢’ is
computed from ¢’.

Hybrid 0: This is the real system.

Hybrid 1: In this hybrid, we change c; to an encryption of a uniformly random and
independent element.

Indistsinguishability follows from the IND-CCAZ2 security of the symmetric encryption
scheme. The reduction in this case is straightforward.
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Hybrid 2: In this hybrid, we change the ¢, component of the ciphertext to an encryption of a
random element drawn from the message space of the & scheme. So instead of encryptiong
x, we encrypt a random element p.

We can use an adversary that has non-negligible advantage distinguishing between
Hybrid 0 and Hybrid 1 to construct an adversary that has a non-negligible advantage
against the IND-ID-RCCA security of &. The reduction is as follows. First we run A; to
obtain (id, id). We sample m s M. We run Setup and all steps of the encryption algorithm
except the step that generates c;. Therefore, we for example generate «, ¢; and c3. We
set yp < x and y1 < p where p is a uniformly random element in the message space of
& and send the pair of messages (o, #1) to the IND-ID-RCCA challenger. We receive a
challenge ciphertext e and we set ¢; < e and set ¢ < (c1,¢2,¢3). Then we run A; with
the public parameters and ciphertext ¢, and obtain ¢’. Parse ¢’ as (c}, ¢, c}). Then the
reduction sends ¢} to the IND-ID-RCCA decryption oracle, and if the oracle responds
with test then check if ¢} is decryptable with « or p and let y be the tuple obtained, or
else if the oracle responds with a plaintext k, check if ¢} is decryptable with k and set y
to be the tuple returned. Otherwise set  <— L. Finally the guess bit b’ is computed as
b < u # LA .Ey.Dec(skigg, p.v) = m *t where skgg is the key we have derived in the
simulation. Indistinguishability follows from the IND-ID-RCCA security of &.

Hybrid 3: In this hybrid, we change the c3 component of the ciphertext to an encryption of
a random element drawn from the message space of the SKE scheme.

In the reduction, parse ¢’ as (c},c}, ¢’3) and decrypt ¢} with the secret key derived in
the simulation to obtain «. If x decrypts ¢}, set y to the resulting tuple. Otherwise, send
c4 to the IND-CCA2 decryption oracle and set y to the response. Finally the guess bit b’
is computed as b’ < u # L A .Ep.Dec(skigg, p.v) = m * t where skjgg is the key we have
derived in the simulation. Indistinguishability follows from the IND-CCA2 security of the
SKE scheme.

The adversary has negligible advantage in this game since the ciphertext ¢ does not
contain any information about m. The result follows. [

We have ommitted the aggregation algorithm from Figure 4 since this varies depend-
ing on whether we target the P — type or F — type setting. Our goal is to achieve strong
unlinkability, aggregation validity and (one-way/full) anonymity in the (P — type/F — type)
settings.

6.0.1. P-type Setting

We can however readily obtain strong unlinkability together with aggregation validity
in the P — type setting of one-way anonymity, which we will now describe. Unfortunately,
our approach is inherently restricted to one-way anonymity, leaving open the problem
of achieving strong unlinkability and aggregation validity in the F — type setting of full
anonymity; we tackle this problem later. Our approach for the P — type setting involves
instantiating & with an IND-ID-CCAZ2 secure IBE scheme. The hash of the target identity
h in the tuple encrypted by c3 is used as an identity string; that is, ¢, is an encryption
with & under identity string & of the symmetric key x. The ciphertext component c3 is an
encryption of the tuple (h,v,z). The aggregation algorithm for our IBAA scheme in this
setting is given in Figure 5.

6.0.2. F-type Setting

Now we turn our attention to the more challenging problem of obtaining aggregation
validity together with strong unlinkability in the F — type setting of full anonymity. We
observe that we can solve this problem with (identity-based) fully homomorphic encryption
(FHE). The idea is to encrypt the hash / with an identity-based FHE scheme to obtain
ciphertext ¢y, and place ¢, in the tuple (h,v,z) instead of h. The aggregator can then
homomorphically produce an encryption of a fresh key under identity i by performing
homomorphic evaluation on ;. The additional expense of homomorphic evaluation aside,
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Algorithm Agg.Aggregate(PP, sk, (ak, (c1, ¢2,¢3)), (ak’, (¢}, 5, c5)))
(73, skige, skige) < skig
« < ak
o ak/
K < 55KE.DeC(DC, Cl)
K <€SKE.DeC(D(/, Cﬁ)
Ifx=Lorx' = L:
Output L
(h, ”U,Z) — ESKE.DeC(K, 63)
(W,v',2") + Eske.Dec(i’, cfy)
Th £ -
Output L
51,8 <% ZN
v o0 2%
Z// — ZSZ
k" ESKE.Gen(l/\)
¢} + Eske-Enc(agz, ")
< E.Enc(PPigg, h, k")
f + Eske-Enc(x”, (W :=h,v",2")
Return (cf, ¢, cf)

Figure 5. Our IBAA scheme aggregation algorithm for P — type setting.

the major prohibitive factor of this approach is the fact that bootstrapping is necessary to
achieve unlinkability and this requires us to make a circular security assumption. Hence
we seek to solve the problem an alternative way, avoiding FHE and bootstrapping.

Instead, we rely on an IND-ID-RCCA secure IBE scheme that is both anonymous
and satisfies strong unlinkability with the ability to generate rerandomizable anonymous
encryption keys for a particular identity. We make use of our anonymous IBE scheme from
the previous section to fullfil our requirements. Recall that this scheme comes with two
useful algorithms:

*  GenAnonKey(PP,id):
e RerandomizeKey (PP, AnK):

Given the public parameters and an identity string, the algorithm GenAnonKey generates
an anonymous key AnK which hides the identity and can be used to encrypt a message for
that identity. The second algorithm, RerandomizeKey, given the public parameters and an
anonymous key, derives an unrelated anonymous key for the same identity such that no
party can link the keys and determine that they are related (i.e. have the same intended
recipient). The anonymous key is preprended to every ciphertext generated with it so
therefore it is advantageous to rerandomize it so as ciphertexts are not linked to each other.
Figure 6 shows how this algorithm is used in our IBAA scheme’s aggregation algorithm for
the F — type setting. Note that although we do not show it, it is also necessary to slightly
modify the encryption and decryption algorithms of our IBAA scheme to accomodate the
F — type setting.
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Algorithm Agg.Aggregate(PP, sk, (ak, ct), (a K,ct'))
(73, skige, skige) < skig
(c1,¢2 := (AnK,9),c3) < ct
(¢, ch = (AnK', §'), c}) «— ct’
a < ak
a <« ak/
K < SSKE.DGC(DC, Cl)
k' < Eske.Dec(a’,c])
Ifx=_1lLork = L:
Output L
(v,7,2z) + Eske.Dec(xk, c3)
(v',7,2) + Eske.Dec(x’, cf)
S$1,52,53 (—$ZN
v —vx0 xz%
0"« 0% 0 * 2%
Z// — ZS3
K" SSKE.Gen(lA)
¢} « Eske-Enc(az, k)
AnK" «+— RerandomizeKey(PP|gg, AnK)
o« (AnK", E¢.Enc(PPgg, AnK”, "))
o « Eske-Enc(x”, (v",3",2")
Return (cf, ¢}, c¥)

Figure 6. Our IBAA scheme aggregation algorithm for F — type setting.
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