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Abstract. The rapid digitization of aviation communication and its de-
pendent critical operations demand secure protocols that address domain-
speci�c security requirements within the unique functional constraints of
the aviation industry. These secure protocols must provide su�cient secu-
rity against current and possible future attackers, given the inherent na-
ture of the aviation community, that is highly complex and averse to fre-
quent upgrades as well as its high safety and cost considerations. In this
work we propose a pair of quantum-secure hybrid key exchange protocols
(PQAG-KEM and PQAG-SIG) to secure communication between aircrafts
in-�ight and ground stations. PQAG-KEM leverages post-quantum and
classical Key Encapsulation Mechanisms (KEMs) to ensure the hybrid
security of the protocol against classical as well as future quantum ad-
versaries. PQAG-SIG, alternatively, uses quantum-safe digital signatures
to achieve authentication security. We provide an implementation of both
PQAG-KEM and PQAG-SIG, and compare favourably with current state-
of-the-art secure avionic protocols. Finally, we provide a formal analysis
of our new PQAG protocols in a strong hybrid key exchange framework.

Keywords: Authenticated key exchange, hybrid key exchange, provable secu-
rity, protocol analysis, avionics

1 Introduction

The state of the aviation communications (avionics) in the 1980s was charac-
terised by channel isolation, and operated through the use of analog and legacy
infrastructures of military origin. Over time this has gradually shifted towards
commercial and digital communication technologies. This shift has been fairly
slow owing to the lengthy standardization processes, but at the time of writing
multiple state organizations in Europe (EUROCONTROL) and the US (Fed-
eral Aviation Administration-FAA) are actively involved in the standardisation
and structuring of future communication infrastructures (FCI) for the aviation
industry with digital communication as its central component. This transfor-
mation is in part due to drastic increases in air-tra�c load, global ATC sta�
shortages, adverse environmental e�ects of the aviation industry, cost e�ective-
ness and advanced surveillance and safety capabilities. However, by replacing
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legacy military-grade infrastructures with digital products � both onboard air-
crafts (ACs) as well as in ground systems (GSs) � the communication of the
aviation industry is no longer isolated, and thus the threat of an eavesdropper
or even an active attacker is no longer unrealistic. Thus, integrating digital tech-
nologies into critical communications without carefully considering their security
will drastically undermine the safety of such avionics. Further exacerbating the
situation is the highly-dependent nature of the aviation industry: attacks on
a single component may cascade and cripple its entire infrastructure, ending in
catastrophic failures. Such attacks are not unrealistic: EUROCONTROL reports
that such cyberattacks against aviation systems are on the rise [8].

Controller-Pilot Data Link Communications (CPDLC) is a protocol that fa-
cilitates communication between the Air Tra�c Control (ATC) stations and ACs
over a datalink medium. CPDLC was designed to reduce communication loads
on the Very High Frequency (VHF) band, in order to handle large numbers of
ACs communicating with ATCs simultaneously in congested air tra�c zones.
CPDLC communication has multiple applications, ranging from route change
and clearances to level assignments and crossing constraints [10]. At present all
CPDLC communications are carried out over unencrypted and unauthenticated
datalinks. Thus, there is a need to develop a future-proof secure communication
protocol that both ensures con�dentiality and authenticity of communication,
while withstanding the evolving threat landscape.

At the time of writing, NIST's Post Quantum Cryptography (PQC) Stan-
dardization Process has concluded and chosen its winners for key encapsulation
and digital signatures categories. This process standardizes post-quantum public
key cryptographic primitives to potentially replace existing quantum-vulnerable
primitives currently in widespread use. In addition, the White House recently
published a memorandum [25], introducing a plan to increase resources and col-
laborative e�orts for the multi-year process of migrating vulnerable computer
systems to quantum-resistant cryptography.

However, almost all PQC increases computation and key sizes compared to
quantum-vulnerable counterparts, complicating their practical adoption, espe-
cially in resource-constrained environments. For instance, the novel LDACS me-
dia for GS-to-AC communication provides a throughput of 303.33 kbps (forward-
link) and 199.73 kbps (reverse-link) [2], and the average throughput of data-links
used in avionic communication is 31.5kbps across the globe. Moreover, security
analysis of PQC is relatively immature and constantly evolving compared to
their classical counterparts [7]�corroborated by recent attacks undermining the
security of digital signature scheme Rainbow [3] and the KEM SIKE [4]�both
candidates previously shortlisted as NIST PQC �nalists. Within this context,
adopting a hybrid approach [7] combining classical and PQC primitives presents
a realistic equilibrium, providing security guarantees against potentially undis-
covered vulnerabilities (both algorithmic and in-code) in novel PQC and security
against future quantum adversaries.

In this paper we propose two hybrid key exchange protocols to secure CPDLC
communication between ground stations (GS) and aircrafts (AC). We provide a
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formal proof of security for the proposed protocols against both quantum and
classical adversaries. We instantiate our proposed protocols with di�erent post-
quantum algorithms to understand the real-world applicability of our protocols
to the resource-constrained ecosystem of avionic communication. We compare
our proposals to existing work and demonstrate that we provide satisfactory
performance with the added bene�t of heightened (hybrid) security.
Organisation: In Section 3 we describe our protocols, followed by details of
implementation in Section 4. Sections 5 and 6 explain our security framework in
detail and formally prove our protocols' security, respectively. The paper closes
with conclusions and directions for future work in Section 7.

2 Related Work

Here we discuss pre-existing literature related to classical and post-quantum
avionic communication protocols.

The Automatic Dependent Surveillance-Broadcast is a mandatory broadcast
system for all aircrafts, where an aircraft periodically broadcasts its position,
allowing it to be tracked. Wesson et. al. [27] discuss the security of the ADS-B
protocol and lays out speci�c considerations required when designing the secu-
rity of aviation communication; interoperability with existing policies and laws,
bandwidth and interference constraints and how ADS-B operates in a crypto-
graphically untrusted environment. Their work primarily evaluates symmetric
and asymmetric settings, concluding that maintaining the secrecy of symmetric
keys across multiple untrusted global domains is unsuitable for the purpose of
secure communication in aviation.

Given the safety-critical nature of the aviation industry, complete encryption
of critical communication is problematic, due to the non-negligible likelihood of
system or human error resulting in decryption failures in a prompt real-time
capacity. In fact, the federal aviation administration (FAA) has strongly rec-
ommended maintaining clear datalinks for aviation communication in order to
keep critical surveillance data, such as positional information of aircraft, openly
accessible [28]. Moreover, the use of shared keys also complicates key revocation
scenarios in the event of key compromise, since it requires replacing keys across
all parties involved. The novel ADS-B proposal [28] is based on symmetric-key
primitives, speci�cally Format-Preserving Encryption for obscuring �ight iden-
tity and the TESLA protocol [17] for authentication. While less computation-
ally expensive, as previously discussed it is not a scalable solution in the global
airspace. In addition, their work heavily relies on a Trusted Third Party for
key management and distribution on a frequent basis. Furthermore, the use of
TESLA protocol introduces additional latency to the scheme given how decryp-
tion keys are sent after sending the encrypted messages. Our protocols (presented
in Section 3) avoid these issues, as they are constructed from asymmetric-key
primitives, require only a single round for key establishment, and secure CPDLC
communications speci�cally, not addressing ADS-B.
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Other approaches to securing communication in aviation rely on asymmet-
ric encryption schemes, introducing communication overhead compared to sym-
metric encryption, due to large public-key and ciphertext sizes. For instance, to
achieve the symmetric-key equivalent strength of 112 bits (ADS-B packet size),
which NIST claims is cryptographically secure until 2030, the ECDSA signature
length is 448 bits, four times greater than an ADS-B message [27]. Since ECDSA
generates the shortest signature for a given key length it has been proposed as a
suitable scheme for securing ACARS messages by the ACARS message security
standard [1] but is rarely adopted by any major airlines.

Khan et. al. [10] propose a lightweight protocol for securing CPDLC us-
ing elliptic-curve cryptography and Schnorr signature schemes. Their method
provides authenticated communication while preserving con�dentiality and non-
repudiation properties against a classical adversary, but fails to achieve secu-
rity against a quantum adversary. Mäurer et. al. [15] also propose an alter-
native to CPDLC, an LDACS-based protocol using di�erent �avours of Di�e-
Hellman key exchange (DHKE) to establish keys, and evaluate the practicality
of their proposals. They modify the Station-to-Station (STS) protocol with dis-
tinct DHKE instantiations, comparing Elliptic Curve DHKE (ECDH) and Su-
persingular Isogeny DHKE (SIDH) as the underlying key exchange. Their work
concludes while STS-ECDH provides the most resource e�cient performance,
STS-SIDH (believed at the time to provide post-quantum security) was the bet-
ter option for long-term security. We implement our solution in Section 4, and
compare with Mäurer et. al.'s STS-(C)SIDH protocol [15], demonstrating our
protocol's relative practicality while also achieving stronger notions of security.

Finally, Bellido-Mangenell et. al. [2] and Mielke et. al. [16] propose a secure
protocol for CPDLC over the LDACS medium, and simulate their protocol's
communication between aircrafts and ground stations. Their proposal combines
an asymmetric post-quantum public-key encryption scheme (McEliece, using
code-based cryptography) and symmetric encryption (AES-256-GCM). The au-
thors [16] highlight that the protocol does not guarantee security against poten-
tial man-in-the-middle attackers since the exchanged (ephemeral) public keys
are not authenticated. Finally, neither provide any formal proof of security.

2.1 KEMTLS

KEMTLS [21] is a key exchange protocol, proposed to transition TLS 1.3 hand-
shakes to a post-quantum setting. KEMTLS proposes the use of KEMs instead
of digital signatures for server authentication, as post-quantum signature pub-
lic keys and signatures tend to be larger than their post-quantum KEM coun-
terparts. While TLS 1.3 commonly runs in unilateral (server-only) authentica-
tion, there are many scenarios which require mutual client-server authentication,
which includes our air-to-ground communication setting. Schwabe et al.[22] pro-
pose a mutually-authenticated variant of KEMTLS, called KEMTLS-PDK, relying
on pre-distributed server public keys prior to the protocol initiation.

While TLS 1.3's setting and requirements are similar to our own, the avionic
communication media places signi�cant restraints on both bandwidth and com-
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putation, as it abhors congestion and communication must complete within a re-
stricted timeframe, necessitating the introduction of a custom protocol. Our two
proposed protocols, PQAG-SIG and PQAG-KEM, super�cially resemble TLS 1.3
and KEMTLS-PDK respectively, but our design has been speci�cally tailored to
the domain constraints of avionic communication. Our key schedule is signi�-
cantly simpli�ed, avoiding the complexity introduced in TLS 1.3. In addition, we
achieve 1.5 round-trip times for both variants. The PQAG-SIG protocol, intro-
duced to take advantage of existing certi�cate-based infrastructures, mutually
authenticates aircrafts and ground-control stations using certi�cates (classical
or post-quantum) and derives a post-quantum hybrid shared key. Concurrently,
the PQAG-KEM variant of our protocol provides post-quantum hybrid implicit
mutual authentication and derives a post-quantum hybrid shared key.

3 PQAG Key Exchange Protocols

In this section we describe two variants of our proposed post-quantum air-to-
ground communications protocol PQAG, PQAG-KEM and PQAG-SIG, executed
between an Aircraft A and a Ground Station G. We give the detailed crypto-
graphic operations in Figures 1 and 2. Note that PQAG-KEM and PQAG-SIG
have slightly di�erent infrastructure requirements, as well as di�erent communi-
cation and computational overheads. In PQAG-SIG, we require no predistribution
of public keys, but imposes higher communication costs due to large public-key
sizes. Overheads added by PQAG-SIG are particularly high if the implementa-
tion utilizes post-quantum digital signatures (see Tables 6 and 5). In PQAG-KEM,
we assume that A already knows G's public keys, reducing communication and
computational overhead, but may be a realistic (and scalable) assumption in
avionics, where travel paths (and thus, G partners) can be known ahead of time.

3.1 PQAG-KEM

Broadly, PQAG-KEM executes a series of post-quantum and classical KEMs be-
tween A and G, combining the outputs into symmetric keys mk and k. A and G
maintain two long-term KEM key pairs, one classical and one post-quantum. We
assume that G has pre-distributed their public KEM key pairs to A prior to the
protocol execution, and that public keys can be validated by some PKI, outside
the scope of our protocol. The MAC tags, computed using mk (itself computed
using outputs of the long-term KEMs), provide mutual authentication, and the
ephemeral KEMs provide forward secrecy for the derived session key k.

A begins by generating post-quantum and classical KEM ephemeral public
keys (pqpkE, cpkE respectively) and a random nonce rA. Next, A encapsulates se-
crets under the long-term key pairs of G (cpkG and pqpkG), computing ciphertexts
cctxtG and pqctxtG. Afterwards, A forms a message m0 by concatenating some
(arbitrary) header information headerA, with rA, idA, cctxtG, pqctxtG,cpkE, pqpkE

and the long-term public-keys of A cpkA, pqpkA, sending m0 to G.
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Aircraft AC Ground Station GS

static CKEMA : (cpkA, cskA) static CKEMG : (cpkG, cskG)

static PQKEMA : (pqpkA, pqskA) static PQKEMG : (pqpkG, pqskG)

Knows cpkG, pqpkG

rA
$← {0, 1}256

(cpkE, cskE)
$← CKEM.KGen()

(pqpkE, pqskE)
$← PQKEM.KGen()

(cctxtG, ckG)
$← CKEM.Encaps(cpkG)

(pqctxtG, pqkG)
$← PQKEM.Encaps(pqpkG)

m0 ← {headerA, rA, idA, cctxtG, pqctxtG, cpkA, pqpkA, cpkE, pqpkE}
m0

rG
$← {0, 1}256

ckG ← CKEM.Decaps(cctxtG, cskG)

pqkG ← PQKEM.Decaps(pqctxtG, pqskG)

(cctxtA, ckA)
$← CKEM.Encaps(cpkA)

(pqctxtA, pqkA)
$← PQKEM.Encaps(pqpkA)

(cctxtE, ckE)
$← CKEM.Encaps(cpkE)

(pqctxtE, pqkE)
$← PQKEM.Encaps(pqpkE)

ms← HKDF.ChainExtract(ckG∥pqkG∥ckA∥pqkA∥ckE∥pqkE)

m1 ← {headerG, rG, idG, cctxtE, pqctxtE, cctxtA, pqctxtA}
mk, k ← HKDF.Expand(ms,H(m0∥m1), “PQAGKEM

′′)

τ ← MAC(mk,m0∥m1)
m1, τ

ckE ← CKEM.Decaps(cctxtE, cskE)

pqkE ← PQKEM.Decaps(pqctxtE, pqskE)

ckA ← CKEM.Decaps(cctxtA, cskA)

pqkA ← PQKEM.Decaps(pqctxtA, pqskA)

ms← HKDF.ChainExtract(ckG∥pqkG∥ckA∥pqkA∥ckE∥pqkE)

mk, k ← HKDF.Expand(ms,H(m0∥m1), “PQAGKEM
′′)

abort if MAC(mk,m0∥m1) ̸= τ

τ ′ ← MAC(mk,m0∥m1∥τ)

τ ′, AuthenticatedPayload

abort if MAC(mk,m0∥m1∥τ) ̸= τ ′

Fig. 1: The PQAG-KEM key exchange protocol. Note that HKDF.ChainExtract
(a∥b∥ . . . ∥n) = HKDF.Extract(. . .HKDF.Extract(HKDF.Extract(a, 0), b) . . . , n).

Aircraft A Ground Station G

rA
$← {0, 1}256

(cpkE, cskE)
$← CKEM.KGen()

(pqpkE, pqskE)
$← PQKEM.KGen()

m0 ← {headerA, cpkE, pqpkE, rA, idA}
σ0 ← Sign(skA,m0) abort if 1 ̸= SIG.Vfy(pkA,m0, σ0)

m0, σ0

rG
$← {0, 1}256

(cctxtE, ckE)
$← CKEM.Encaps(cpkE)

(pqctxtE, pqkE)
$← PQKEM.Encaps(pqpkE)

c← (cctxtE, pqctxtE)

m1 ← {headerG, c, rG, idG}
ms← HKDF.Extract(ckE, pqkE)

mk, k ← HKDF.Expand(ms, ϵ)

σ1 ← Sign(skG,m0||m1)abort if 1 ̸= SIG.Vfy(pkG,m0∥m1, σ1)

m1, σ1

ckE ← CKEM.Decaps(cskE, cctxtE)

pqkE ← PQKEM.Decaps(pqskE, pqctxtE)

ms← HKDF.Extract(ckE, pqkE)

mk, k ← HKDF.Expand(ms, ϵ)

τ ← MAC(mk,m0∥m1)

τ , AuthenticatedPayload

Fig. 2: The PQAG-SIG key exchange protocol.
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Upon receiving m0, G decapsulates post-quantum and classical cipher-
texts pqctxtG and cctxtG, deriving keys pqkG and ckG. Next, G encapsulates
secrets under the ephemeral public keys cpkE, pqpkE, generating cctxtE and
pqctxtE respectively. G further encapsulates secrets under A's long-term pub-
lic keys cpkA, pqpkA, generating cctxtA and pqctxtA. The key outputs of KEM
encapsulations and decapsulations are used to derive a master key ms =
HKDF.ChainExtract(ckG∥pqkG∥ckA∥pqkA∥ckE∥pqkE). G forms message m1 by
concatenating some (arbtitrary) header headerG, with rG, idG, cctxtE, pqctxtE,
cctxtA with pqctxtA. G derives a �nal session key k and MAC key mk by comput-
ing mk, k = HKDF.Expand(ms,H(m0∥m1), “PQAGKEM

′′). The G further computes
τ ← MAC(mk,m0∥m1), sending m1 and τ to A.

A decapsulates cctxtE, pqctxtE, cctxtA and pqctxtA and derives the shared
keys mk, k. Next, A veri�es τ under mk aborts the session if it fails. Finally, A
computes τ ′ ← MAC(mk,m0∥m1∥τ) and returns τ ′ to G for authentication, and
can immediately use k establish secure communications with G. G �nally veri�es
τ ′, aborting the session if it fails.

3.2 PQAG-SIG

PQAG-SIG proceeds similarly to PQAG-KEM by combining ephemeral post-
quantum and classical KEM outputs into a single session key k, achieving forward
secrecy. However, authentication is achieved by post-quantum signature schemes
SIG. Unlike PQAG-KEM, we do not assume any pre-distribution of public keys,
but similarly assume that long-term public keys can be validated through some
PKI outside the scope of our protocol.

A begins by generating post-quantum and classical KEM public keys
cpkE, pqpkE respectively and a random nonce rA. A straightforwardly computes
a message m0 by concatenating header information headerA, cpkE, pqpkE, rA and
its unique identi�er idA. A signsm0 using its long-term secret key skA (outputting
σ0), sending m0 and σ0 to G.

G veri�es σ0, aborting the session if it fails. G then encapsulates post-quantum
and classical secrets under pqpkE, cpkE, outputting pqctxtE and cctxtE respec-
tively, which are concatenated into c. G forms message m1 by concatenating
headerB , ciphertext c, random nonce rG and its unique identi�er idG. G derives
an intermediate value ms = HKDF.Extract(ck , pqk), and derives the session key
k and MAC key mk by computing mk, k = HKDF.Expand(ms, ϵ). G generates
its own signature σ1 ← Sign(skG,m0∥m1) sending σ1 and m1 to A.

A veri�es σ1 using G's long-term public key skG, and upon failure will abort
the session. A then decapsulates cctxtE and pqctxtE, and derives the shared keys
mk, k. Finally, A computes τ ← MAC(mk,m0∥m1) and returns τ to G, immedi-
ately using k to communicate securely with G.

.
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4 Implementation of PQAG

In this section we discuss our instantiation and reference implementation of
the PQAG protocols. We implement PQAG-KEM and PQAG-SIG in Python, and
benchmarked their performance on a Raspberry Pi to demonstrate practicality
on constrained devices (and for uniform comparisons with previously existing
protocols), and a standard desktop system. We compare our results with ex-
isting works [2,15]. We modi�ed the STS-SIDH protocol [15] with CSIDH, due
to SIDH weaknesses [4], using the post-quantum sibc library for CSIDH [20]
and Ed25519 for digital signatures. It must be noted that [2] does not provide
performance metrics, only network performance results. We begin by discussing
our choices of instantiations for cryptographic primitives.

Instantiation PQAG aims for 128-bit post-quantum security against a
quantum-equipped attacker. The e�ciency of PQAG within resource-constrained
environments was a critical consideration during instantiation. We instantiate
PQAG-SIG with Kyber as the post-quantum KEM and Dilithium as the digital
signature (which we denote PQAG-SIG-Ky-Di). To compare with classical signa-
tures, we instantiate PQAG-SIG with either McEliece (PQAG-SIG-Mc) or Kyber
(PQAG-SIG-Ky) as the underlying post-quantum KEM, but with classical signa-
ture scheme (EC)DSA. For all three variants, the �nal derived shared keys were
256-bits long. Thus our choices of cryptographic algorithms for PQAG-SIG are:

� Classic CKEM: Elliptic-curve DH key exchange using curve P384 [9].
� Post-Quantum PQKEM: McEliece with parameter set 348864f [24] and
Kyber-512 [24], both achieving 128-bit quantum security.

� SIG: EdDSA using curve P-384 [9] For PQAG-SIG-Ky-Di with NIST level 2
security claimed [18,26].

� MAC: HMAC-SHA-256 [12] using 256-bit keys.
� KDF: HKDF-SHA-256 [11] using 256-bit keys.

We instantiate PQAG-KEM with Kyber as the post-quantum KEM (which
we denote PQAG-KEM-Hy). To check how much our hybrid approach impacts
performs, we also implemented a variant of PQAG-KEM that does not include
any of the CKEM operations, instead simply performing PQKEM steps, which
we denote PQAG-KEM-FQ. For both variants, the �nal derived shared keys were
256-bits long. Thus our choices of cryptographic algorithms for PQAG-KEM are:

� Classic CKEM: Elliptic-curve DH key exchange using curve P384 [9].
� Post-Quantum PQKEM: Kyber-512 [24], achieving 128-bit quantum security.
� MAC: HMAC-SHA-256 [12] using 256-bit keys.
� KDF: HKDF-SHA-256 [11] using 256-bit keys.

Implementation We require the use of the Python cryptography library
[24] for implementing CKEM and KDF, and PyNaCl [23] libraries for SIG cryp-
tographic primitives. For PQAG-SIG-Ky, PQAG-SIG-Mc and PQAG-SIG-Ky-Di we
require the use of the Python pqcrypto [18] library.
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4.1 PQAG-SIG Computational Costs

We now pro�le the performance of the underlying cryptographic functions in
terms of average execution times (for 100 iterations per cryptographic func-
tions). Our benchmarking experiments are designed to provide a comparative
evaluation of the PQAG protocols among their di�erent initiations as well as
existing literature, and also evaluate the cost of di�erent post-quantum algo-
rithms used in PQAG-SIG and PQAG-KEM respectively. Table 1 compares the
performance of the cryptographic components of PQAG-SIG-Mc, PQAG-SIG-Ky
and PQAG-SIG-Ky-Di when run on two separate testbeds. Our experiments were
performed on a Raspberry Pi 3 B+ running Raspberry Pi OS with a 1.4GHz
quad core and 1GB RAM; and an Intel Core 1.80GHz i7-10510U CPU with
16GB RAM, running Windows 10 Home.

Operation (A)
PQAG
McE
Pi

PQAG
Ky
Pi

PQAG
Di
Pi

PQAG
McE
Intel

PQAG
Ky
Intel

PQAG
Di

Intel

PQKEM.KGen 1.1530 0.0015 0.0007 0.2814 0.0006 0.0002

CKEM.KGen 0.0178 0.0268 0.0201 0.0036 0.0027 0.0011

SIG.Sign 0.0051 0.0024 0.0072 0.0020 0.0003 0.0003

SIG.Vfy 0.0058 0.0014 0.0015 0.0021 0.0003 0.0001

KEM.Decaps 0.0216 0.0191 0.0190 0.0044 0.0028 0.0012

MAC 0.0053 0.0001 0.0002 0.0013 0.0001 0.0001

Operation (G)
PQAG
McE
Pi

PQAG
Ky
Pi

PQAG
Di
Pi

PQAG
McE
Intel

PQAG
Ky
Intel

PQAG
Di

Intel

CKEM.KGen 0.0177 0.0205 0.0194 0.0035 0.0027 0.0040

SIG.Sign 0.0056 0.0011 0.0056 0.0022 0.0003 0.0011

SIG.Vfy 0.0054 0.0019 0.0016 0.0022 0.0003 0.0004

KEM.Encaps 0.0194 0.0193 0.0192 0.0046 0.0031 0.0047

MAC 0.0047 0.0002 0.0002 0.0013 0.0001 0.0001

Table 1: Performance evaluation for cryptographic primitives (in seconds) on Rasp-

berry Pi 3 B+ (left-hand side) and on Intel Core i7-10510U CPU @ 1.80GHz.

(right-hand side). KEM.Encaps and KEM.Decaps combines PQKEM,CKEM and KDF
operations into a single function. Note that McE, Ky and Di refer to PQAG-SIG-Mc,
PQAG-SIG-Ky and PQAG-SIG-Ky-Di, respectively, and A contains results for aircraft
operations and G results for ground stations.

Both PQAG-SIG-Ky and PQAG-SIG-Ky-Di achieve signi�cantly better perfor-
mance than PQAG-SIG-Mc, and as expected the desktop testbed was better for
all performance metrics than the Raspberry Pi testbed. In general, the McEliece
key generation had the highest average time per operation for both the test
environments. Kyber key generation, on the other hand, was faster even when
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compared to the classical ECDH key generation. In addition, the SIG.Sign and
SIG.Vfy operations of PQAG-SIG-Ky outperformed PQAG-SIG-Mc, due to the
drastically smaller public keys. This also applies to the MAC execution on both
A and G: due to the smaller key sizes theMAC operations were signi�cantly faster
for PQAG-SIG-Ky. Between PQAG-SIG-Ky's SIG.Sign operations performed faster
than PQAG-SIG-Ky-Di's due to its smaller key sizes. However, for both the in-
stantiations the di�erence in SIG.Vfy performance was negligible, con�rming the
faster veri�cation times of Dilithium. For the desktop testbed, all cryptographic
operations averaged well under a single second, whereas in the the Raspberry Pi
3 B+ testbed, all operations except the McEliece key generation averaged under
a second. These results are promising for practical integration of PQAG-SIG-Ky
into the constrained environments used in aviation infrastructure.

Variant
PQAG-SIG-Mc

Pi

PQAG-SIG-Ky
Pi

PQAG-SIG-Mc
Intel

PQAG-SIG-Ky
Intel

Online 1.17584 0.03074 0.28688 0.00355

O�ine 0.04528 0.02557 0.00624 0.00286

Table 2: Aircraft walltime (in seconds) with online and o�ine post-quantum key gen-
eration on Raspberry Pi 3 B+ (left-hand side) and Intel Core i7-10510U CPU

@ 1.80GHz (right-hand side).

We also implemented optimised variants of both PQAG-SIG-Ky and
PQAG-SIG-Mc that perform some o�ine computation to improve the online run-
time of the protocol execution. Since aircrafts will have o�ine travel time be-
tween communication with di�erent ground stations, the protocol can reduce on-
line key generation by pre-computing and storing the post-quantum public keys
prior to the session initialisation by A. For both the original �real-time� protocol
and the �precomputed� protocols we pro�led the wall-time performance of the av-
erage A execution times (for 100 executions of PQAG-SIG-Ky and PQAG-SIG-Mc
respectively), and give the results in Table 2. For both test environments, of-
�ine key generation reduced PQAG-SIG-Mc's and PQAG-SIG-Mc's computational
overhead, but it signi�cantly decreased the total walltime of PQAG-SIG-Mc.
This is because key generation in Kyber is signi�cantly faster than McEliece,
so the impact is not quite as high. We did not implement an o�ine version of
PQAG-SIG-Ky-Di since it would not have impacted the signing operations.

4.2 PQAG-KEM Computational Costs

Tables 3 compares the computational overhead of each cryptographic primitive
of PQAG-KEM-Hy, PQAG-KEM-FQ when run on our two testbeds.

The performance results of PQAG-KEM-Hy and PQAG-KEM-FQ are shown
in Table 3. It is clear that PQAG-KEM-Hy has higher computational overhead,
due to the additional CKEM operations and key derivation steps. However, it is
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Operation (A)
PQAG
Hy
Pi

PQAG
FQ
Pi

PQAG
Hy
Intel

PQAG
FQ
Intel

PQKEM.KGenE 0.00090 0.00115 0.00028 0.00028

CKEM.KGenE 0.00301 NA 0.00068 NA

PQKEM.EncapsG 0.00127 0.00243 0.00064 0.00029

CKEM.EncapsG 0.00313 NA 0.00082 NA

CKEM.DecapsE 0.00292 NA 0.00066 NA

PQKEM.DecapsA 0.00133 0.00160 0.00021 0.000092

PQKEM.DecapsE 0.00270 0.00135 0.00058 0.00011

MAC 0.00003 0.000061 0.00008 0.00007

Operation (G)
PQAG
Hy
Pi

PQAG
FQ
Pi

PQAG
Hy
Intel

PQAG
FQ
Intel

CKEM.EncapsE 0.00579 NA 0.00129 NA

PQKEM.EncapsE 0.00144 0.00090 0.00069 0.00019

CKEM.DecapsG 0.00293 NA 0.00068 NA

PQKEM.EncapsA 0.00124 0.00089 0.00065 0.00018

PQKEM.DecapsG 0.00321 0.00190 0.00069 0.00017

MAC 0.00003 0.000061 0.00010 0.00007

Table 3: Performance evaluation for cryptographic primitives used in PQAG-SIG vari-
ants (in seconds) onRaspberry Pi 3 B+ (left-hand side) and Intel Core i7-10510U
CPU @ 1.80GHz (right-hand side). Note that Hy and FQ refers to the (hybrid se-
cure) PQAG-SIG-Ky, and (purely post-quantum) PQAG-KEM-FQ, respectively, and A
contains results for aircraft operations and G results for ground stations.

clear that the computational performance of the two instantiations is negligibly
di�erent, and we argue that the added hybrid layer of security in PQAG-KEM-Hy
justi�es the slight increase in computation time.

In Table 4 we compare the performance of all instantiations of PQAG against
STS-SIDH [15]. For all protocols we pro�led the walltime performance of the
entire AC and GS execution (for 100 executions of PQAG-KEM, PQAG-SIG and
STS-SIDH). Both the AC and the GS are running on the same machine, and
communication is exchanged via localhost.

In general STS-CSIDH proved computationally most expensive, averaging at
signi�cantly higher performance times in both testbeds. Particularly, within the
Raspberry Pi testbed STS-CSIDH struggled to perform, and with occasionally
lengthy �hang" times between subsequent operations and periodic restarts. The
original STS-SIDH [15] is instantiated with SIDH which is around 10x times
faster compared to CSIDH. However, since the publication of [15], SIDH has
been proven insecure [4] and thus we instantiated STS-CSIDH [15] with CSIDH
to guarantee its post-quantum security while maintaining its SIDH basis. Fur-
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Testbed
STS

CSIDH

PQAG
KEM
FQ

PQAG
KEM
Hy

PQAG
SIG
McE

PQAG
SIG
Ky

PQAG
SIG
Di

Pi 312.8312 0.0103 0.0300 1.2513 0.0169 0.0947

Intel 57.5576 0.0013 0.0087 0.3059 0.0024 0.0133

Table 4: Comparison of walltime executions (in seconds).

thermore, STS-CSIDH requires an additional message from the ground station
to the aircraft, adding to communication latency. In comparison PQAG-SIG-Mc
fared signi�cantly better in both testbeds, even when performance is a�ected
by the large KEM public keys. Overall, among all the PQAG-SIG instantiations,
PQAG-SIG-Ky o�ered the most competitive performance in the constrained Rasp-
berry Pi testbed. Between PQAG-SIG-Ky and PQAG-SIG-Ky-Di, PQAG-SIG-Ky
performed better due to the faster signing operations and smaller signature sizes
of ECDSA compared to Dilithium.

Between the two implementations of PQAG-KEM, PQAG-KEM-FQ had a
slight edge in performance, compared to PQAG-KEM-Hy. This was due to the
fact that PQAG-KEM-FQ only uses post-quantum Kyber for all KEMs, whereas
for PQAG-KEM-Hy we use hybrid KEMs, combining Kyber with ECDH to pro-
vide hybrid security. We conclude that the negligible increase in the computation
times of PQAG-KEM-Hy is o�set by the additional layer of security.

Datalink

Protocol STS
CSIDH

PQAG-KEM-FQ PQAG-KEM-Hy

VDLm2/31.5kbps 0.660+∆ 0.998+∆ 1.170+∆

AeroMACS/1.8− 9.2Mbps 0.001-0.0002+∆ 0.018-0.003+∆ 0.0201-0.004+∆

LDACS/0.6− 2.8Mbps 0.003-0.0007+∆ 0.052-0.011+∆ 0.062-0.013+∆

InmarsatSB/432kbps 0.005+∆ 0.072+∆ 0.085+∆

IridiusmCertus/22− 704kbps 0.094-0.003+∆ 1.42-0.044+∆ 1.665-0.0521+∆

Datalink

Protocol
PQAG-SIG-Mc PQAG-SIG-Ky PQAG-SIG-Ky-Di

VDLm2/31.5kbps 66.940+∆ 0.560+∆ 1.554+∆

AeroMACS/1.8− 9.2Mbps 1.164-0.2274+∆ 0.01-0.0019+∆ 0.028-0.006+∆

LDACS/0.6− 2.8Mbps 3.492-0.7483+∆ 0.029-0.0062+∆ 0.082-0.018+∆

InmarsatSB/432kbps 4.85+∆ 0.041+∆ 0.113+∆

IridiusmCertus/22− 704kbps 95.237-2.976+∆ 0.797-0.025+∆ 2.225-0.07+∆

Table 5: Comparison of transmission times (in seconds) per round-trip.

Communication Cost For all our instantiations, Table 5 compares the trans-
mission times per round-trip, for all frequently used data-links in ground-to-air
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Implementation Hello Response

STS-CSIDH 128 128

PQAG-KEM-FQ 2384 1520

PQAG-KEM-Hy 2740 1844

PQAG-SIG-Mc 261447 455

PQAG-SIG-Ky 1090 1026

PQAG-SIG-Ky-Di 3075 3043

Table 6: Hello and Response message sizes (in bytes) for each implementation.

avionic communication. This was calculated by dividing the packet size of each
instantiation (Table 6) by the expected bandwidth for each medium. For each
calculated transmission time we have an additional ∆ value to account for var-
ious factors a�ecting the round-trip time, such as latency. This ∆ value is con-
trolled by the speci�cs constraints of the communication links and the setting
in which its used. For instance, the expected ∆ of STS-CSIDH is extremely high
due to the long computational times (10× slower than the now defunct SIDH).
For PQAG-McEliece, the ∆ unacceptably increases due to the large public keys
(261,120 bytes). Satellite data-links have a longer RTT due to the distance be-
tween nodes, which in turn will a�ect the ∆.

Component
PQAG-SIG

McE
PQAG-SIG

Ky
PQAG-SIG

Di
PQAG-KEM

FQ
PQAG-KEM

Ky

PQKEM pqpk 261120 800 800 800 800

PQKEM pqctxt 112 736 736 736 736

CKEM cpk 215 215 215 N/A 215

SIG σ 96 96 2044 N/A N/A

MAC τ 32 32 32 32 32

Table 7: Communication cost of the underlying cryptographic components of
PQAG-KEM and PQAG-KEM respectively (in bytes).

Table 7 compares the communication complexity of all our PQAG instanti-
ations. We consider the length of the cryptographic components of each mes-
sage, in particular we do not capture header sizes, nor nonce or id values, as
they are either constant or setting-speci�c. The McEliece public key is the
most bandwidth-consuming component of PQAG-SIG-Mc at 261Kb. However,
the PQKEM ciphertext size of McEliece was smaller than that of Kyber, which
may prove advantageous in certain circumstances, such as in the case of data-
links with asymmetric bandwidths for forward-and-return links. Moreover, the
signature size of Dilithium (2044B) is signi�cantly larger compared to the clas-
sical counterpart EdDSA (96B), which will add to the communication overhead.
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Additionally, it must be noted that although the output of ECC-P384R1 is 384-
bits, due to additional encodings of the Python library used, the resulting �nal
output produces ECC keys that are 215-bytes long, which can be optimised.

5 Hybrid Security Framework

In this section we detail the hybrid authenticated key exchange (HAKE) secu-
rity framework HAKE (mostly verbatim [7]) for the analysis of the PQAG key
exchange protocols. As in the original model [7], the modi�ed HAKE model
is based on Bellare-Rogaway-based AKE models, and captures adversaries of
di�ering strength (quantum and classical) via a detailed key compromise in-
terface. Speci�cally, we model quantum adversaries by allowing them to com-
promise non-post-quantum key establishment primitives (for instance, elliptic
curve-based algorithms to establish a shared secret key). The majority of our
modi�cations from the original HAKE model are simpli�cations � since HAKE
explicitly captures the use of preshared symmetric keys, not used within our
new PQAG protocols. We give a high-level description of the modi�ed HAKE
framework in Section 5.2 (and detail the di�erences between our variant and the
original HAKE framework). We then describe cleanness and partnering de�ni-
tions in Section 5.4 as well as Section 5.5.

5.1 Secret Key Generation

Recall that HAKE addresses secret key generation (the output of a �KGen� al-
gorithm) of individual key establishment primitives explicitly, and categorises
them into long-term (i.e. generated once and used in every execution of the pro-
tocol), and ephemeral (i.e. generated on a per-stage basis) secret generation. We
simplify the HAKE model by only including the following sub-categories:

� Post-quantum asymmetric secret generation � long-term post-quantum
asymmetric secrets (for example, signature secret keys), are generated by
LQKeyGen, whereas ephemeral post-quantum asymmetric secrets (such as
KEM secret keys) are generated by EQKeyGen.

� Classical asymmetric secrets � long-term classical asymmetric secrets (for ex-
ample, ECDSA secret keys) are generated by LCKeyGen, whereas ephemeral
classical asymmetric secrets (for example, ECDH secret keys) are generated
by ECKeyGen.

In addition, our proposed PQAG protocols are not a multi-stage key exchange
protocols, which establishes multiple keys throughout protocol execution. Thus,
we remove all multi-stage speci�c state and indexing in the HAKE execution
environment. With this context, we now formally de�ne the HAKE execution
environment, capturing how an adversary can interact with a hybrid AKE pro-
tocol.
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5.2 Execution Environment

Consider an experiment ExpHAKE,clean,AΠ,nP ,nS
(λ) played between a challenger C and

an adversary A. C maintains a set of nP parties P1, . . . , PnP
(representing users

interacting with each other in protocol executions), each capable of running up
to (potentially parallel) nS sessions of a probabilistic key exchange protocol Π.
Each session is an execution of the key exchange protocol Π, represented as a
tuple of algorithms Π = (f,EQKeyGen,ECKeyGen, LQKeyGen, LCKeyGen). We
use πs

i to refer to both the identi�er of the s-th instance of the Π being run
by party Pi and the collection of per-session variables maintained for the s-th
instance of Π run by Pi, and f is a algorithm capturing the honest execution of
the protocolΠ by protocol participants. We describe generically these algorithms
below:

Π.f(λ, p⃗ki, s⃗ki,
⃗pskidi,

⃗pski, π,m)
$→ (m′, π′) is a (potentially) probabilistic

algorithm that takes a security parameter λ, the set of long-term asymmetric
key pairs p⃗ki, s⃗ki of the party Pi, a collection of per-session variables π and an
arbitrary bit stringm ∈ {0, 1}∗∪{∅}. f outputs a responsem′ ∈ {0, 1}∗∪{∅} and
an updated per-session state π′, behaving as an honest protocol implementation.

We describe a set of algorithms Π.XYKGen(λ)
$→ (pk, sk), where X ∈ {E, L}

and Y ∈ {C,Q}. Π.XYKGen is a probabilistic post-quantum ephemeral (if XY =
EQ), post-quantum long-term (if XY = LQ), classic ephemeral (if XY = EC), or
classic long-term (if XY = LC) asymmetric key generation algorithms, taking a
security parameter λ and outputting a public-key/secret-key pair (pk, sk).
C runs Π.LQKeyGen(λ) and Π.LCKeyGen(λ) nP times to generate long-term

post-quantum and long-term classical asymmetric key pairs (which we denote

with p⃗ki, s⃗ki) for each party Pi ∈ {P1, . . . , PnP
}, and delivers all public-keys p⃗ki

for i ∈ {1, . . . , nP } toA. The challenger C then randomly samples a bit b
$← {0, 1}

and interacts with A via the queries listed in Section 5.3, also maintaining a set
of corruption registers, representing a list of ephemeral and long-term secrets
that have been compromised by A via Reveal, Corrupt and Compromise queries.
Eventually, A issues a Test query, to which C responds with kb, either the real
session key generated by the Test session (when b = 0), or a random key from
the same distribution (when b = 1). C now interacts with A via the queries
listed in Section 5.3 (except the Test query), and eventually terminates and
outputs a guess d of the challenger bit b. The adversary A wins the HAKE key-
indistinguishability experiment if d = b, and additionally if the test session π
satis�es a cleanness predicate clean, which we discuss in more detail in Section
5.5. We give an algorithmic description of this experiment in Figure 3 in Section
B. Each session maintains a set of per-session variables:

ρ ∈ {init, resp}: The role of the party in the current session. Note that parties
can be directed to act as init or resp in concurrent or subsequent sessions.

pid ∈ {1, . . . , nP , ⋆}: The intended communication partner, represented with ⋆
if unspeci�ed. Note that the identity of the partner session may be set during
the protocol execution, in which case pid can be updated once.

α ∈ {active, accept, reject,⊥}: The status of the session, initialised with ⊥.
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mi ∈ {0, 1}∗ ∪ {⊥}, where i ∈ {s, r}: The concatenation of messages sent (if
i = s) or received (if i = r) by the session in each stage, initialised by
⊥.

k ∈ {0, 1}∗ ∪ {⊥}: The session key, or ⊥ if no session key has yet been computed.
exk ∈ {0, 1}∗ ∪ {⊥}, where x ∈ {q, c}: The post-quantum ephemeral asym-

metric (if x = q), or classic ephemeral asymmetric (if x = c) secret key
generated by the session, initialised by ⊥.

st ∈ {0, 1}∗: Any additional state used by the session in each stage.

5.3 Adversarial Interaction

Our HAKE framework considers a traditional AKE adversary, in complete control
of the communication network, able to modify, inject, delete or delay messages.
They are able to compromise several layers of secrets: (a) long-term private keys,
allowing our model to capture forward-secrecy notions and quantum adversaries.
(b) ephemeral private keys, modelling the leakage of secrets due to the use of bad
randomness generators, or potentially bad cryptographic primitives or quantum
adversaries. (c) session keys, modelling the leakage of keys by their use in bad
cryptographic algorithms. The adversary interacts with the challenger C via the
queries below:

Create(i, j, role)→ {(s),⊥}: Allows the adversary A to initialise a new session
owned by party Pi, where the role of the new session is role, and intended
communication partner party Pj . If a session πs

i has already been created,
C returns ⊥. Otherwise, C returns (s) to A.

Send(i, s,m)→ {m′,⊥}: Allows A to send messages to sessions for protocol ex-
ecution and receive the output. If the session πs

i .α ̸= active, then C re-

turns ⊥ to A. Otherwise, C computes Π.f(λ, p⃗ki, s⃗ki, π
s
i ,m) → (m′, πs

i
′),

sets πs
i ← πs

i
′, updates transcripts πs

i .mr, π
s
i .ms and returns m′ to A/Q.

Reveal(i, s): Allows A access to the session keys computed by a session. C checks
if πs

i .α = accept and if so, returns πs
i .k to A. In addition, the challenger

checks if there exists another session πt
j that matches with πs

i , and also sets
⃗SKr

j ← corrupt. Otherwise, C returns ⊥ to A.
Test(i, s)→ {kb,⊥}: Allows A access to a real-or-random session key kb used

in determining the success of A in the key-indistinguishability game. If a
session πs

i exists such that πs
i .α = accept, then the challenger C samples a

key k0
$← D whereD is the distribution of the session key, and sets k1 ← πs

i .k.
C then returns kb (where b is the random bit sampled during set-up) to A.
Otherwise C returns ⊥ to A.

CorruptXK({i, j})→ {ki,⊥}: Allows A access to the secret post-quantum long-
term key pqsk i (if X = Q) or the secret classical long-term key csk i (if X = C),
generated for the party Pi (and Pj , in the preshared case) prior to protocol
execution. If the secret long-term key has already been corrupted previously,
then C returns ⊥ to A.

CompromiseYK(i, s)→ {eqk, eck,⊥}: Allows A access to the secret ephemeral
post-quantum key πs

i .eqk (if Y = Q), or the secret ephemeral classical key
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πs
i .eck (if Y = C) generated for the session πs

i prior to protocol execution. If
πs
i .eqk/π

s
i .eck has already been corrupted previously, then C returns ⊥ to

A.

5.4 Partnering De�nition

To determine which secrets A can reveal without trivially breaking the security
of a given session, our model must de�ne how sessions are partnered. In our
work, we use the notion of matching sessions [13], and origin sessions [6]. On
a high level, πs

i is an origin session of πt
j if πs

i has received the messages that
πt
j sent without modi�cation, even if the reply that πs

i sent back has not been
received by πt

j . If all messages sent and received by πs
i and πt

j are identical,
then the sessions match. We give detailed de�nitions and a precise pseudocode
description of these functions in Appendix B. We give detailed de�nitions and a
precise pseudocode description of these functions in Appendix B.

5.5 Cleanness Predicates

Cleanness predicates in authenticated key exchange protocols detail the exact
restrictions on adversarial powers. For instance, in protocols that are not post-
compromise secure, the leakage of the long-term key of a party trivially allows
the adversary to impersonate that party. Thus, it follows that sessions estab-
lished after that corruption (with that party as the communicating peer) cannot
be secure. We note that the cleanness predicates de�ned below are speci�c to
PQAG-KEM and PQAG-SIG.

The PQAG protocols defend against a quantum adversary. Thus, a successful
adversary is allowed to compromise the long-term and ephemeral classical asym-
metric secrets (via CorruptCK and CompromiseCK, respectively) without penalty.
Since the PQAG protocols authenticate with post-quantum primitives, and aim
to achieve perfect forward secrecy, we allow a successful adversary to issue a
CorruptQK(j) query (where the πs

i .pid = j and Test(i, s) was queried), as long
as πs

i was completed before the CorruptQK(j) query was issued.
Thus, a �clean� session has not had A compromise: (a) the ephemeral

post-quantum secrets of the Test session and its matching partner in the tested
stage, (b) the long-term post-quantum secrets of the Test session's partner before
the Test session completes. We formalise this intuition as cleanPQAG in De�nition
8, in Appendix B.

It may also be desirable to determine the security guarantees that PQAG pro-
vides against classical adversaries in the event of a new vulnerability discovered
in the underlying post-quantum key establishment primitive, as demonstrated
by the recent attacks against Rainbow [3], or SIDH [5,14,19].

In such a case, a �clean� session has not had the adversary compromise:
Thus, a �clean� session has not had A compromise: (a) either the ephemeral
classic secrets of the Test session and its matching partner in the tested stage,
or (b) the ephemeral post-quantum secrets of the Test session and its matching
partner in the tested stage, and (c) the long-term post-quantum secrets of the
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Test session's partner before the Test session completes. In order to capture this
scenario, we formalise this intuition as cleancHAKE in De�nition 8, in Appendix
B, and provide a second analysis against a PPT adversary A.

Finally, we formalise the advantage of an adversary A in winning the HAKE
key indistinguishability experiment in the following way:

De�nition 1 (HAKE Key Indistinguishability). Let Π be a key-exchange
protocol, and nP , nS ∈ N. For a particular given predicate clean, a QPT algo-
rithm A, we de�ne the advantage of A in the HAKE key-indistinguishability game

to be AdvHAKE,clean,AΠ,nP ,nS
(λ) = 2 ·

∣∣∣Pr [ExpHAKE,clean,AΠ,nP ,nS
(λ) = 1

]
− 1

2

∣∣∣. We say that Π is

post-quantum HAKE-secure if, for all QPT algorithms A, AdvHAKE,clean,AΠ,nP ,nS
(λ) is

negligible in the security parameter λ. We say that Π is classically HAKE-secure
if, for all PPT algorithms A, AdvHAKE,clean,AΠ,nP ,nS

(λ) is negligible in the security pa-
rameter λ.

6 Security Analysis

In this section we analyse our proposed PQAG-SIG and PQAG-KEM protocols,
by utilising the simpli�ed HAKE model presented in Section 5. We begin by
presenting our �rst result, the security of PQAG-SIG, in Theorem 1.

Theorem 1 (PQAG-SIG Security). The PQAG-SIG protocol presented in Sec-
tion 3 is post-quantum secure under cleanness predicate cleanqHAKE (capturing
perfect forward security and resilience to KCI attacks against A). That is, for
any QPT algorithm A against the key-indistinguishability game (de�ned in Fig-

ure 3), Adv
HAKE,cleanqHAKE,A
PQAG-SIG,nP ,nS

(λ) is negligible under the prf, dual-prf, ind-cpa, eufcma
and eufcma security of the PRF, PRF, KEM, MAC and SIG primitives respectively.

Proof. We now turn to proving our result. We split our analysis into three
mutually-exclusive cases:

1. Case 1 assumes that the test session πs
i (such that A issued Test(i, s)) is an

initiator session, and that πs
i has no matching partner (as in Figure 4). We

de�ne the QPT algorithm A's advantage in Case 1 as AdvHAKE,clean,A,C1
PQAG-SIG,nP ,nS

(λ).
2. Case 2 assumes that the test session πs

i is a responder , and that
πs
i has no matching partner. We de�ne A's advantage in Case 2 as

AdvHAKE,clean,A,C2
PQAG-SIG,nP ,nS

(λ).
3. Case 3 assumes that the test session πs

i has a matching partner. We de�ne

A's advantage in Case 3 as AdvHAKE,clean,A,C3
PQAG-SIG,nP ,nS

(λ).

It is clear that: AdvHAKE,clean,APQAG-SIG,nP ,nS
(λ) ≤ AdvHAKE,clean,A,C1

PQAG-SIG,nP ,nS
(λ) +

AdvHAKE,clean,A,C2
PQAG-SIG,nP ,nS

(λ) + AdvHAKE,clean,A,C3
PQAG-SIG,nP ,nS

(λ), thus we bound A's advantage in
each case separately.

In Case 1 and Case 2 we show that A's advantage in causing the test
session πs

i to accept without a matching partner is negligible, and thus the A's
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advantage in winning the key-indistinguishability game is negligible (since the
experiment does not di�er based on the challenge bit b, as the πs

i does not
compute a real-or-random session key).

In Case 3 we replace the computation of the real session key by the test
session πs

i with a uniformly random key. Thus, the distribution of the keys
returned by πs

i are identical, regardless of the value of the challenge bit b, and
we can show that A's advantage in winning the key-indistinguishability game is
negligible. We now begin with the �rst case.

Case 1: Test init session without origin session We begin by showing
that A has negligible change in causing πs

i to reach an accept state without a
matching session. We do so via the following sequence of game hops:

Game 0 This is the HAKE security game and Adv
HAKE,cleanqHAKE,A,C1
PQAG-SIG,nP ,nS

(λ) =
Pr(break0).

Game 1 In this game, we guess the index (i, s) and the intended partner j
and abort if, during the execution of the experiment, a query Test(i′, s′) is
received to a session πs′

i′ such that π
s′

i′ .pid = j′ and (i, s, j) ̸= (i′, s′, j′). Thus:
Pr(break0) ≤ nP

2 · nS · Pr(break1).
Game 2 In this game we abort if the test session πs

i sets the status πs
i .α ←

reject. Note that by the previous game we abort if the Test query is issued
to a session that is not πs

i , and if πs
i .pid ̸= j. If the session πs

i ever reaches
the status πs

i .α← reject, then the challenger will respond to the Test(i, s)
query with ⊥, and thus the di�erence in A's advantage between Game 2
and Game 3 is 0. Thus: Pr(break1) ≤ Pr(break2).

Game 3 In this game we de�ne an abort event abortα that triggers if the
test session πs

i sets the status π
s
i .α← accept. We note that the response to

Test(i, s) issued by A is always ⊥, (since the challenger aborts the game if πs
i

accepts, and Test(i, s) = ⊥ when πs
i rejects the protocol execution), and thus

Pr(break3) = 0. InGame 4 andGame 5 we prove that the probability of A
in causing abortα to trigger is negligible. Thus: Pr(break2) ≤ Pr(abortα).

Game 4 In this game we abort if the test session πs
i receives a signature σ1

(signed over m0∥m1) that veri�es correctly but there exists no honest session
πt
j that has output σ1. Speci�cally, in Game 4 we de�ne a reduction B1

against the eufcma security of the signature scheme SIG. At the beginning of
the experiment, when B1 receives the list of public-keys (pk1, . . . , pknP

) from
C, B1 initialises a eufcma challenger Ceufcma, and replaces pkj with pk output
by Ceufcma. Whenever A initialises a session owned by Pj , then B1 generates
m0 as usual, but queries Ceufcma with m0 to get a signature σ0 over m0.
Similarly, whenever A issues Send(j, t,m) to a session πt

j owned by Pj , then
B1 veri�es m and computes m1 as usual, but queries Ceufcma with m∥m1 to
receive σ1 over m∥m1. These changes are indistinguishable to A, as Ceufcma

generates public-keys and signatures identically to C, so A cannot detect
this replacement. Note that if A has issued a CorruptQK(j) query before

πs
i receives σ1, then cleanqHAKE = false for πs

i , and C returns b∗
$← {0, 1}
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regardless of the challenge bit b. Thus, any A with non-negligible advantage
must not yet have issued CorruptQK(j). Also, as the result of Game 2 and
Game 3, the game aborts after πs

i receives m1, σ1, so A cannot later issue
a CorruptQK(j) query.
By the de�nition of Case 1, πs

i sets the status π
s
i .α← accept despite there

being no honest session that outputs m1, σ1. Thus, B1 never queried m0∥m1

to Ceufcma, and it follows that m1, σ1 is a forged message. Thus, if πs
i receives

a signature σ1 (signed over m0∥m1) that veri�es correctly but there exists
no honest session πt

j that has output σ1, then B1 wins the eufcma security

game against the signature scheme SIG, and Pr(abortα) = Adveufcma
SIG,B1

(λ).
Since πs

i now aborts when verifying σ1, it cannot trigger abortα and thus

we have: Adv
HAKE,cleanqHAKE,A,C1
PQAG-SIG,nP ,nS

(λ) ≤ nP
2nS · Adveufcma

SIG,B1
(λ).

Case 2: Test responder session without origin session We now show that
A has negligible change in causing πs

i (with πs
i .ρ = responder) to reach an accept

state without an origin session. As the proof of Case 2 follows analogously to
Case 1 with a minor change in notation up to Game 3, we omit these game
hops and proceed from Game 5.

Game 4 In this game we abort if the test session πs
i receives a signature σ0

(signed over m0) that veri�es correctly but there exists no honest session
πt
j that has output σ0. Speci�cally, in Game 4 we de�ne a reduction B2

against the eufcma security of the signature scheme SIG. At the beginning of
the experiment, when B2 receives the list of public-keys (pk1, . . . , pknP

) from
C, B1 initialises a eufcma challenger Ceufcma, and replaces pkj with pk output
by Ceufcma. Whenever A initialises a session owned by Pj , then B2 generates
m0 as usual, but queries Ceufcma with m0 to get a signature σ0 over m0.
Similarly, whenever A issues Send(j, t,m) to a session πt

j owned by Pj , then
B2 veri�es m and computes m1 as usual, but queries Ceufcma with m∥m1 to
receive σ1 over m∥m1. These changes are indistinguishable to A, as Ceufcma

generates public-keys and signatures identically to C, so A cannot detect
this replacement. Note that if A has issued a CorruptQK(j) query before

πs
i receives σ0, then cleanqHAKE = false for πs

i , and C returns b∗
$← {0, 1}

regardless of the challenge bit b. Thus, any A with non-negligible advantage
must not yet have issued CorruptQK(j). Also, as the result of Game 2 and
Game 3, the game aborts after πs

i receives τ , so A cannot later issue a
CorruptQK(j) query.
By the de�nition of the abort event, B2 never queried m0 to Ceufcma, and it
follows that m0, σ0 is a forged message. Thus, if πs

i receives a signature σ0

that veri�es correctly but there exists no honest session πt
j that has output

σ0, then B2 wins the eufcma security game against the signature scheme SIG,
and Pr(abortα) = Adveufcma

SIG,B2
(λ) + Pr(break4).

Game 5 In this game, we replace the key pqkE derived in the test session πs
i

with the uniformly random and independent value p̃qk . We de�ne a reduction
B3 that interacts with a ind-cpa KEM challenger (as described in De�nition
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4) and replaces the pqpkE value sent in m0, and the ciphertext pqctxtE sent
in m1 with the public-key pk and the ciphertext c received from the ind-cpa
KEM challenger. By Game 4, we know that pqpkE sent in m0 must have
been sent from an honest session πt

j owned by Pj without modi�cation. Any
adversary that can detect the replacement of pqkE with a uniformly random

value p̃qk implies an e�cient distinguishing algorithm B3 against the ind-cpa
security of KEM. Thus: Pr(break4) ≤ Advind-cpaKEM,B3

(λ) + Pr(break5).
Game 6 In this game we replace the computation of the extracted key

ms = PRF(ckE, p̃qk) with a uniformly random and independent value

m̃s
$← {0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in

the protocol execution of the test session πs
i , and (potentially) its matching

session πt
j . We de�ne a reduction B4 that initialises a dual-prf challenger

Cdual-prf when πs
i needs to compute PRF(ckE, p̃qk) and instead queries ckE

to Cdual-prf . B4 uses the output of the query m̃s to replace the computa-

tion of ms. Since p̃qk is uniformly random and independent by Game 5,
and A cannot issue CompromiseQK(i, s) or CompromiseQK(j, t) (since the
communicating partner has sent a message m0 that was received without
modi�cation by A), this is a sound replacement. If the test bit sampled by

Cdual-prf is 0, then m̃s = PRF(ckE, p̃qk) and we are in Game 5. If the test

bit sampled by Cdual-prf is 1, then m̃s
$← {0, 1}PRF and we are in Game 6.

Thus any adversary A capable of distinguishing this change can be turned
into a successful adversary B4 against the dual-prf security of PRF, and we
�nd: Pr(break5) ≤ Advdual-prfPRF,B4

(λ) + Pr(break6).
Game 7 In this game we replace the computation of the expanded keys

mk, k = PRF(m̃s, ϵ) with a uniformly random and independent values

m̃k, k̃
$← {0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used

in the protocol execution of the test session πs
i , and (potentially) its match-

ing session πt
j . We de�ne a reduction B5 that initialises a prf challenger Cprf

when πs
i needs to compute PRF(m̃s, ϵ) and instead queries ϵ to Cprf . B5 uses

the output m̃k, k̃ to replace the computation of mk, k. Since m̃s is already
uniformly random and independent byGame 6, this is a sound replacement.

If the test bit sampled by Cprf is 0, then m̃k, k̃ = PRF(m̃s, ϵ) and we are in

Game 6. If the test bit sampled by Cprf is 1, then m̃k, k̃
$← {0, 1}PRF and we

are in Game 7. Thus any adversary A capable of distinguishing this change
can be turned into a successful distinguishing adversary B5 against the prf
security of PRF, and we �nd Pr(break6) ≤ AdvprfPRF,B5

(λ) + Pr(break7).
Game 8 In this game we abort if the test session πs

i receives a message τ
(computed over m0∥m1) that veri�es correctly but there exists no honest
session πt

j that has output τ . Speci�cally, in Game 8 we de�ne a reduction
B6 against the eufcma security of the Message Authentication Code MAC.

When B6 needs to compute a MAC over m0∥m1 using m̃k, B6 computes the
MAC by initialising a eufcma challenger Ceufcma and querying m0∥m1. No
changes to the experiment occur, as Ceufcma computes MACs identically to
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C, so A cannot detect this replacement. Also, as the result of Game 7, m̃k
is a uniformly random and independent value, so this replacement is sound.
By the de�nition of Case 2, πs

i sets the status π
s
i .α← accept despite there

being no honest session that matches πs
i . Thus, B6 never queried m0∥m1 to

Ceufcma, and it follows that τ is a forged message. Thus, if πs
i receives a MAC

tag τ (over m0∥m1) that veri�es correctly but there exists no honest session
πt
j that matches πs

i , then (m0∥m1, τ) represents a valid forgery and B6 wins
the eufcma security game against MAC, and Pr(break8) = Adveufcma

MAC,B6
(λ).

Since πs
i now aborts when verifying τ , it cannot trigger abortα and thus:

AdvHAKE,clean,A,C2
PQAG-SIG,nP ,nS

(λ) ≤ nP
2nS ·

(
Adveufcma

SIG,B2
(λ) + Advind-cpaKEM,B3

(λ) + Advdual-prfPRF,B4
(λ)

+ AdvprfPRF,B5
(λ) + Adveufcma

MAC,B6
(λ)

)
.

We now complete our proof by bounding A's advantage in Case 3.

Case 3: Test session with matching session

In Case 3, we show that if A that has issued a Test(i, s) query to a clean session
πs
i , then A has negligible advantage in guessing the test bit b. In what follows,

we note that for the cleanness predicate cleanqHAKE to be upheld by πs
i , then

CompromiseQK(i, s), CompromiseQK(j, t) cannot be queried (where πt
j matches

πs
i ). Thus, we can assume in what follows that A has not compromised the post-

quantum ephemeral KEM secrets. We now show that A has negligible advantage
in guessing the test bit b, via the following series of game hops:

Game 0 This is the HAKE security game, and Adv
HAKE,cleanqHAKE,A,C3
PQAG-SIG,nP ,nS

(λ) =
Pr(break0).

Game 1 In this game, we guess the index (i, s) and the matching session (j, t)
and abort if, during the execution of the experiment, a query Test(i′, s′)

is received to a session πs′

i′ such that πj′

t′ matches πs′

i′ and (i, s), (j, t) ̸=
(i′, s′), (j′, t′). Thus Pr(break0) ≤ n2

P · n2
S · Pr(break1).

Game 2 In this game, we replace the key pqkE derived in the test session πs
i

with the uniformly random and independent value p̃qk . We de�ne a reduction
B7 that interacts with a ind-cpaKEM challenger (as described in De�nition 4)
and replaces the pqpkE value sent inm0, and the ciphertext pqctxtE sent inm1

with the public-key pk and the ciphertext c received from the ind-cpa KEM
challenger. By the de�nition of Case 3, we know that pqpkE (or pqctxtE,
respectively) sent in m0 (resp. m1) must have been sent from an honest
session πt

j owned by Pj without modi�cation if πs
i .ρ = resp (resp. init).

Any adversary that can detect the replacement of pqkE with a uniformly

random value p̃qk implies an e�cient distinguishing algorithm B7 against the
ind-cpa security of KEM. Thus: Pr(break1) ≤ Advind-cpaKEM,B7

(λ) + Pr(break2).
Game 3 In this game we replace the computation of the extracted key

ms = PRF(ckE, p̃qk) with a uniformly random and independent value

m̃s
$← {0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in the
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protocol execution of the test session πs
i , and (potentially) its matching ses-

sion πt
j . We de�ne a reduction B8 that initialises a dual-prf challenger Cdual-prf

when πs
i needs to compute PRF(ckE, p̃qk) and instead queries ckE to Cdual-prf .

B8 uses the output of the query m̃s to replace the computation of ms. Since

p̃qk is uniformly random and independent by Game 2, and A cannot issue
CompromiseQK(i, s) or CompromiseQK(j, t), this is a sound replacement. If

the test bit sampled by Cdual-prf is 0, then m̃s = PRF(ckE, p̃qk) and we are in

Game 2. If the test bit sampled by Cdual-prf is 1, then m̃s
$← {0, 1}PRF and we

are in Game 3. Thus any adversary A capable of distinguishing this change
can be turned into a successful adversary B8 against the dual-prf security of
PRF, and we �nd: Pr(break2) ≤ Advdual-prfPRF,B8

(λ) + Pr(break3).
Game 4 In this game we replace the computation of the expanded keys

mk, k = PRF(m̃s, ϵ) with a uniformly random and independent values

m̃k, k̃
$← {0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used

in the protocol execution of the test session πs
i , and its matching session πt

j .
We de�ne a reduction B9 that initialises a prf challenger Cprf when πs

i needs
to compute PRF(m̃s, ϵ) and instead queries ϵ to Cprf . B9 uses the output

m̃k, k̃ to replace the computation of mk, k. Since m̃s is already uniformly
random and independent byGame 3, this is a sound replacement. If the test

bit sampled by Cprf is 0, then m̃k, k̃ = PRF(m̃s, ϵ) and we are in Game 3.

If the test bit sampled by Cprf is 1, then m̃k, k̃
$← {0, 1}PRF and we are in

Game 4. Thus any adversary A capable of distinguishing this change can be
turned into a successful distinguishing adversary B9 against the prf security
of PRF, and we �nd Pr(break3) ≤ AdvprfPRF,B9

(λ)+Pr(break4). Since k̃ is now
uniformly random and independent of the protocol �ow regardless of the test
bit b, A has no advantage in guessing the test bit and thus:

Adv
HAKE,cleanqHAKE,A,C3
PQAG-SIG,nP ,nS

(λ) ≤ nP
2nS

2 ·
(
Advind-cpaKEM,B7

(λ) + Advdual-prfPRF,B8
(λ) +

AdvprfPRF,B9
(λ)

)
.

Next we present the security of PQAG-SIG against purely classical adversaries,
i.e. A is a PPT algorithm, with cleanness predicate cleancHAKE in Theorem 2.

Theorem 2 (PQAG-SIG Classical Security). The PQAG-SIG protocol pre-
sented in Section 3 is secure under cleanness predicate cleancHAKE (capturing
perfect forward security and resilience to KCI attacks against a classical adver-
sary A). That is, for any PPT algorithm A against the key-indistinguishability

game (de�ned in Figure 3), AdvHAKE,cleancHAKE,APQAG-SIG,nP ,nS
(λ) is negligible under the dual-prf,

prf, ind-cpa, eufcma and eufcma security of the PRF, PRF, KEM, MAC and SIG
primitives respectively.

Due to space restrictions, we provide the full proof (which closely follows the
proof of Theorem 1) in Appendix C.

Now we turn to proving the security of PQAG-KEM. We note that the proof
of PQAG-KEM follows closely the proof of Theorem 1, with minor changes in
Case 1 and Case 2, where we demonstrate that a session will not accept without
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a matching partner due to the use of post-quantum KEMs. As such, we mainly
detail the proof of Case 1, and leave the full proof details to the appendix.

Theorem 3 (PQAG-KEM Security). The PQAG-KEM protocol presented in
Section 3 is post-quantum secure under cleanness predicate cleanqHAKE (capturing
perfect forward security and resilience to KCI attacks against A). That is, for any
QPT algorithm A against the key-indistinguishability game (de�ned in Figure 3),

Adv
HAKE,cleanqHAKE,A
PQAG-KEM,nP ,nS

(λ) is negligible under the dual-prf, prf, ind-cpa, ind-cca and
eufcma security of the PRF, PRF, KEM, KEM and MAC primitives respectively.

Proof. We now turn to proving our result. We split our analysis into three
mutually-exclusive cases:

1. Case 1 assumes that the test session πs
i (such that A issued Test(i, s)) is an

initiator session, and that πs
i has no matching partner (as in Figure 4). We

de�ne the QPT algorithmA's advantage inCase 1 as AdvHAKE,clean,A,C1
PQAG-KEM,nP ,nS

(λ).
2. Case 2 assumes that the test session πs

i is a responder , and that
πs
i has no matching partner. We de�ne A's advantage in Case 2 as

AdvHAKE,clean,A,C2
PQAG-KEM,nP ,nS

(λ).
3. Case 3 assumes that the test session πs

i has a matching partner. We de�ne

A's advantage in Case 3 as AdvHAKE,clean,A,C3
PQAG-KEM,nP ,nS

(λ).

It is clear that: AdvHAKE,clean,APQAG-KEM,nP ,nS
(λ) ≤ AdvHAKE,clean,A,C1

PQAG-KEM,nP ,nS
(λ) +

AdvHAKE,clean,A,C2
PQAG-KEM,nP ,nS

(λ) + AdvHAKE,clean,A,C3
PQAG-KEM,nP ,nS

(λ), thus we bound A's advantage
in each case separately.

In Case 1 and Case 2 we show that A's advantage in causing the test
session πs

i to accept without a matching partner is negligible, and thus the A's
advantage in winning the key-indistinguishability game is negligible (since the
experiment does not di�er based on the challenge bit b, as the πs

i does not
compute a real-or-random session key).

In Case 3 we replace the computation of the real session key by the test
session πs

i with a uniformly random key. Thus, the distribution of the keys
returned by πs

i are identical, regardless of the value of the challenge bit b, and
we can show that A's advantage in winning the key-indistinguishability game is
negligible. We now begin with the �rst case.

Case 1: Test init session without origin session We begin by showing
that A has negligible advantage in causing πs

i to reach an accept state without
a matching session. We do so via the following sequence of game hops:

Game 0 This is the HAKE security game and Adv
HAKE,cleanqHAKE,A,C1
PQAG-KEM,nP ,nS

(λ) =
Pr(break0).

Game 1 In this game, we guess the index (i, s) and the intended partner j
and abort if, during the execution of the experiment, a query Test(i′, s′) is
received to a session πs′

i′ such that π
s′

i′ .pid = j′ and (i, s, j) ̸= (i′, s′, j′). Thus:
Pr(break0) ≤ nP

2 · nS · Pr(break1).



Quantum-Secure Hybrid Communication for Aviation Infrastructure 25

Game 2 In this game we abort if the test session πs
i sets the status πs

i .α ←
reject. Note that by the previous game we abort if the Test query is issued
to a session that is not πs

i , and if πs
i .pid ̸= j. If the session πs

i ever reaches
the status πs

i .α← reject, then the challenger will respond to the Test(i, s)
query with ⊥, and thus the di�erence in A's advantage between Game 2
and Game 3 is 0. Thus: Pr(break1) ≤ Pr(break2).

Game 3 In this game we de�ne an abort event abortα that triggers if the
test session πs

i sets the status π
s
i .α← accept. We note that the response to

Test(i, s) issued by A is always ⊥, (since the challenger aborts the game if πs
i

accepts, and Test(i, s) = ⊥ when πs
i rejects the protocol execution), and thus

Pr(break3) = 0. InGame 4 andGame 5 we prove that the probability of A
in causing abortα to trigger is negligible. Thus: Pr(break2) ≤ Pr(abortα).

Game 4 In this game, we replace the key pqkG derived in the test session

πs
i with the uniformly random and independent value p̃qkG. We de�ne a

reduction B1 that interacts with a post-quantum ind-cca KEM challenger
Cind-cca (as described in De�nition 4), and replaces G's long-term KEM public
key pqpkG with the public key output from Cind-cca. Note that B1 can do so
at the beginning of the game, by guessing the identity of the partner session
of Test in Game 2, A knows pqpkG prior to protocol execution. When πs

i

should compute pqctxtG, B1 instead replaces the computation of pqctxtG and

pqkG with the outputs of Cind-cca, p̃qctxt and p̃qk respectively (and similarly
for the (potential) partner session πt

j). Whenever party j requires the use

of the secret key to decapsulate a ciphertext pqctxt ′ ̸= p̃qctxt , B1 simply
queries pqctxt ′ to Cind-cca, and replaces the computation of pqk ′ with the
output of Cind-cca. Detecting the replacement of pqkG with a uniformly random

value p̃qk implies an e�cient distinguishing QPT algorithm B1 against the
post-quantum ind-cca security of KEM. Thus: Pr(abortα) ≤ Advind-ccaKEM,B1

(λ)+
Pr(break4).

Game 5-9 Due to space constraints, we consolidate many PRF replacement
hops into a single game. In this game we replace the computation of interme-

diate ms values ms1 = PRF(ms0, p̃qk) (where ms0 = HKDF.Extract(ckE, ϵ)),
ms2 = PRF(m̃s1, ckA), ms3 = PRF(m̃s2, pqkA), ms4 = PRF(m̃s3, ckE),
ms5 = PRF(m̃s4, pqkE) with a uniformly random and independent values

m̃s1, m̃s2, m̃s3, m̃s4, m̃s5
$← {0, 1}PRF (where {0, 1}PRF is the output space

of the PRF) used in the protocol execution of the test session πs
i , and (po-

tentially) its matching session πt
j . We de�ne reductions B2,B3,B4,B5,B6

that initialises a dual-prf/prf challenger Cdual-prf/prf when πs
i needs to com-

pute PRF(m̃si, kX) and instead queries kX to Cdual-prf/prf . Bi uses the out-

put of the query m̃si to replace the computation of msi. Since m̃si−1

is uniformly random and independent by Game 4, and A cannot issue
CompromiseQK(i, s) or CompromiseQK(j, t), this is a sound replacement.
If the test bit sampled by Cdual-prf/prf is 0, then m̃si = PRF(m̃si−1, kX)
and we are in Game 4. If the test bit sampled by Cdual-prf/prf is 1, then

m̃si
$← {0, 1}PRF and we are in Game 4+ i. Thus any adversary A ca-
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pable of distinguishing this change can be turned into a successful adver-
sary Bi against the dual-prf/prf security of PRF, and we �nd: Pr(break4) ≤
Advdual-prfPRF,B2

(λ) + AdvprfPRF,B3,B4,B5,B6
(λ) + Pr(break9).

Game 10 In this game we replace the computation of the MAC and session
key mk, k = HKDF.Expand(m̃s5,H(m0∥m1), “PQAGKEM

′′) with a uniformly

random and independent value m̃k, k̃
$← {0, 1}PRF used in the protocol exe-

cution of the test session πs
i , and (potentially) its matching session πt

j . We
do so by initialising a prf challenger and querying the hash value H(m0∥m1),

and use the output m̃k, k̃ from the prf challenger to replace the computation
of mk, k. Since m̃s5 is uniformly random and independent by Game 9, and
A cannot issue CompromiseQK(i, s) or CompromiseQK(j, t), this is a sound

replacement. If the test bit sampled by the prf challenger is 0, then m̃k, k̃ =
HKDF.Expand(m̃s5,H(m0∥m1), “PQAGKEM

′′) and we are in Game 9. If the

test bit sampled by the prf challenger is 1, then m̃k, k̃
$← {0, 1}PRF and we

are inGame 10. Thus any adversary A capable of distinguishing this change
can be turned into a successful QPT adversary B7 against the post-quantum
prf security of PRF, and we �nd: Pr(break9) ≤ AdvprfPRF,B7

(λ) + Pr(break10).
Game 11 In this game we abort if the test session πs

i receives a message τ
(computed over m0∥m1) that veri�es correctly but there exists no honest
session πt

j that has output τ . Speci�cally, in Game 11 we de�ne a reduction
B8 against the eufcma security of the Message Authentication Code MAC.

When B8 needs to compute a MAC over m0∥m1 using m̃k, B8 computes the
MAC by initialising a eufcma challenger Ceufcma and querying m0∥m1. No
changes to the experiment occur, as Ceufcma computes MACs identically to C,
so A cannot detect this replacement. In addition, m̃k is a uniformly random
and independent value, by Game 10.
By the de�nition of Case 1, πs

i sets the status π
s
i .α← accept despite there

being no honest session that matches πs
i . Thus, B8 never queried m0∥m1 to

Ceufcma, and it follows that τ is a forged message. Thus, if πs
i receives a MAC

tag τ (over m0∥m1) that veri�es correctly but there exists no honest session
πt
j that matches πs

i , then (m0∥m1, τ) represents a valid forgery and B8 wins
the eufcma security game against MAC, and Pr(break10) = Adveufcma

MAC,B8
(λ).

Since πs
i now aborts when verifying τ , it cannot trigger abortα and thus we

have: Adv
HAKE,cleanqHAKE,A,C1
PQAG-KEM,nP ,nS

(λ) ≤ nP
2nS ·

(
Advind-ccaKEM,B1

(λ) + Advdual-prfPRF,B2
(λ) +

5 · AdvprfPRF,B3,B4,B5,B6,B7
(λ) + Adveufcma

MAC,B8
(λ) +

)
.

Case 2: Test responder session without origin session We now show thatA
has negligible change in causing πs

i (with πs
i .ρ = responder) to reach an accept

state without an origin session. As the proof of Case 2 follows analogously
to Case 1 with minor changes (notation to account for changes in role, and
minor changes in Game 11 to account for authenticating m0∥m1∥τ) instead of
m0∥m1), we omit these game hops and proceed to Case 3.
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Case 3: Test session with matching session

In Case 3, we show that if A that has issued a Test(i, s) query to a clean session
πs
i , then A has negligible advantage in guessing the test bit b. In what follows,

we note that for the cleanness predicate cleanqHAKE to be upheld by πs
i , then

CompromiseQK(i, s), CompromiseQK(j, t) cannot be queried (where πt
j matches

πs
i ). Thus, we can assume in what follows that A has not compromised the post-

quantum ephemeral KEM secrets. We now show that A has negligible advantage
in guessing the test bit b, via the following series of game hops:

Game 0 This is the HAKE security game, and Adv
HAKE,cleanqHAKE,A,C3
PQAG-KEM,nP ,nS

(λ) =
Pr(break0).

Game 1 In this game, we guess the index (i, s) and the matching session (j, t)
and abort if, during the execution of the experiment, a query Test(i′, s′)

is received to a session πs′

i′ such that πj′

t′ matches πs′

i′ and (i, s), (j, t) ̸=
(i′, s′), (j′, t′). Thus Pr(break0) ≤ n2

P · n2
S · Pr(break1).

Game 2 In this game, we replace the key pqkE derived in the test session

πs
i with the uniformly random and independent value p̃qk . We do so by

interacting with a post-quantum ind-cpa KEM challenger (as described in
De�nition 4) and replace the pqpkE value sent in m0, and the ciphertext

pqctxt sent in m1 with the public-key p̃qpk and the ciphertext p̃qctxt received
from the post-quantum ind-cpa KEM challenger. Since πs

i matches πt
j , we

know that the public-key and ciphertext sent inm0 andm1 respectively were
received by the sessions without modi�cation. Detecting the replacement of

pqkE with a uniformly random value p̃qk implies an e�cient distinguishing
QPT algorithm B9 against the post-quantum ind-cpa security of KEM. Thus:
Pr(break1) ≤ Advind-cpaKEM,B9

(λ) + Pr(break2).
Game 3 In this game we replace the computation of intermediate ms ms5 =

PRF(ms4, p̃qk) with a uniformly random and independent value m̃s5
$←

{0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in the proto-
col execution of the test session πs

i , and (potentially) its matching session πt
j .

We de�ne a reduction B10 that initialises a dual-prf challenger Cdual-prf when
πs
i needs to compute PRF(ms4, p̃qk) and instead queries ms4 to Cdual-prf . B10

uses the output of the query m̃s5 to replace the computation of ms5. Since

p̃qk is uniformly random and independent by Game 2, and A cannot issue
CompromiseQK(i, s) or CompromiseQK(j, t), this is a sound replacement. If

the test bit sampled by Cdual-prf is 0, then m̃s5 = PRF(ms4, p̃qk) and we are

in Game 2. If the test bit sampled by Cdual-prf is 1, then m̃s5
$← {0, 1}PRF

and we are in Game 3. Thus any adversary A capable of distinguishing this
change can be turned into a successful adversary B10 against the dual-prf
security of PRF, and we �nd: Pr(break2) ≤ Advdual-prfPRF,B10

(λ) + Pr(break3).
Game 4 In this game we replace the computation of the MAC and session

key mk, k = HKDF.Expand(m̃s5,H(m0∥m1), “PQAGKEM
′′) with a uniformly

random and independent value m̃k, k̃
$← {0, 1}PRF used in the protocol exe-

cution of the test session πs
i , and (potentially) its matching session πt

j . We
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do so by initialising a prf challenger and querying the hash value H(m0∥m1),

and use the output m̃k, k̃ from the prf challenger to replace the computation
of mk, k. Since m̃s5 is uniformly random and independent by Game 3, and
A cannot issue CompromiseQK(i, s) or CompromiseQK(j, t), this is a sound

replacement. If the test bit sampled by the prf challenger is 0, then m̃k, k̃ =
HKDF.Expand(m̃s5,H(m0∥m1), “PQAGKEM

′′) and we are in Game 3. If the

test bit sampled by the prf challenger is 1, then m̃k, k̃
$← {0, 1}PRF and we

are in Game 4. Thus any adversary A capable of distinguishing this change
can be turned into a successful QPT adversary B11 against the post-quantum
prf security of PRF, and we �nd: Pr(break3) ≤ AdvprfPRF,B11

(λ) + Pr(break4).

Since k̃ is now uniformly random and independent value of the protocol �ow
regardless of the value of the test bit b, A has no advantage in guessing the
test bit and thus:
Adv

HAKE,cleanqHAKE,A,C3
PQAG-KEM,nP ,nS

(λ) ≤ nP
2nS

2 ·
(
Advind-cpaKEM,B9

(λ) + Advdual-prfPRF,B10
(λ) +

AdvprfPRF,B11
(λ)

)
.

Next we present the security of PQAG-KEM against purely classical adver-
saries, i.e. A is a probabilistic polynomial-time algorithm, in Theorem 4.

Theorem 4 (PQAG-KEM Classical Security). The PQAG-KEM protocol pre-
sented in Section 3 is secure under cleanness predicate cleancHAKE (capturing
perfect forward security and resilience to KCI attacks against classical adver-
saries). That is, for any PPT algorithm A against the key-indistinguishability

game (de�ned in Figure 3), AdvHAKE,cleancHAKE,APQAG-KEM,nP ,nS
(λ) is negligible under the dual-prf,

prf, ind-cpa, ind-cca and eufcma security of the PRF, PRF, KEM, KEM, and MAC
primitives respectively.

Due to space restrictions, we provide the full proof (which closely follows the
proof of Theorem 3) in the Supplementary Materials.

7 Conclusion and Future Work

In this work we have proposed a pair of quantum-secure hybrid key exchange
protocols PQAG-KEM and PQAG-SIG for securing communication in avionic in-
frastructure. We formally verify the security of both protocols against future-
quantum as well as classical attackers, highlighting its suitability to provide
long-term security within critical national infrastructures. We benchmarked our
protocols with di�erent post-quantum algorithms and compared their perfor-
mance against other state-of-the-art avionic communication protocols and illus-
trated that our protocols combines tight security with fast performance even
within resource-constrained environments.

PQAG opens up many avenues for future work. First, instantiating PQAG
with other post-quantum and classical cryptographic schemes to explore even
more e�cient combinations suitable for resource-constrained real-world appli-
cation. For instance, combining Kyber with gap-Di�e-Hellman is likely to pro-
duce signi�cantly faster performance even with real-time key generation. This
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combination will also aid in reducing the communication cost by further short-
ening the size of the classical key exchange components. Moreover, comparing
PQAG-KEM and PQAG-SIG with STS-SIDH by simulating all protocols within a
realistic network environment, capturing the constraints of data links deployed
within aviation infrastructures would further demonstrate the practicality of
post-quantum cryptography within aviation infrastructure. In addition, PQAG
needs to be extended so that it can also facilitate the veri�cation of transcript
consistency between AC and GS as the �ight moves from one GS to another.
The primary purpose of this extension would be to assist the hand-over of com-
munication between ACs and GSs as an aircraft moves from one geographical
location to another.
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Supplementary Materials

A Preliminaries

In this section we introduce the cryptographic primitives and assumptions that
we used to build our PQAG construction and prove its security, respectively.
We describe a pseudorandom function and its prf security game as well as the
dual-prf security game against both classical and post-quantum algorithms. Next,
we discuss digital signatures and eufcma notions of security, as well as key en-
capsulation mechanisms and ind-cpa notions of security. Finally, we detail key
derivation functions and kdf security. We begin by introducing PRF and prf
security.

De�nition 2 (prf Security). A pseudo-random function family is a collection
of deterministic functions PRF = {PRFλ : K × I → O : λ ∈ N}, one function
for each value of λ. Here, K, I, O all depend on λ, but we suppress this for ease
of notation. Given a key k in the keyspace K and a bit string m ∈ M, PRFλ

outputs a value y in the output space O = {0, 1}λ. We de�ne the security of
a pseudo-random function family in the following game between a challenger C
and a PPT adversary A, with λ as an implicit input to both algorithms:

1. C samples a key k
$← K and a bit b uniformly at random.

2. A can now query C with polynomially-many distinct mi values, and receives

either the output yi ← PRFλ(k,mi) (when b = 0) or yi
$← {0, 1}λ (when

b = 1).
3. A terminates and outputs a bit b′.

We say that A wins the PRF security game if b′ = b and de�ne the advantage of
a algorithm A in breaking the pseudo-random function security of a PRF family
PRF as AdvprfPRF,A(λ) = |2 · Pr(b′ = b) − 1|. We say that PRF is post-quantum

prf-secure if for all QPT algorithms A, AdvprfPRF,A(λ) is negligible in the security

parameter λ. We say that PRF is secure if for all PPT algorithms A, AdvprfPRF,A(λ)
is negligible in the security parameter λ.

We now turn to describe dual-prf security for pseudorandom functions. On
a high-level, a PRF achieves dual-prf security if the PRF retains its prf security
when keyed with either the k input or the m.

De�nition 3 (dual-prf Security). Let PRF be a PRF family. We de�ne a
second PRF family PRFdual = {PRFdual

λ : I × K → O : λ ∈ N} by setting
PRFdual

λ (m, k) = PRFλ(k,m). We de�ne the advantage of A in breaking the

dual-prf security of PRF as Advdual-prfPRF,A (λ) = max{AdvprfPRF,A(λ),Adv
prf
PRFdual,A(λ)}.

We say that PRF is post-quantum dual-prf-secure PRF family if, for all QPT
algorithms A, Advdual-prfPRF,A (λ) is negligible in the security parameter λ, and PRF is

dual-prf-secure PRF family if, for all PPT algorithms A, Advdual-prfPRF,A (λ) is negli-
gible in the security parameter λ.
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Next we de�ne key encapsulation mechanisms and ind-cpa-security against
both classical and post-quantum algorithms.

De�nition 4 (Key Encapsulation Mechanism). A key encapsulation mech-
anism (KEM) is a triple of algorithms KEM = {KGen,Encaps,Decaps} with an
associated keyspace K. We describe the algorithms below:

� KGen(λ)
$→ (pk, sk) : KGen is a probabilistic algorithm that takes as input

the security parameter λ and returns a public/secret key pair (pk, sk).

� Encaps(pk)
$→ (c, k) : Encaps is a probabilistic algorithm that takes as input

a public key pk and outputs a ciphertext c as well as a key k ∈ K.
� Decaps(sk, c)→ (k) : Decaps is a deterministic algorithm that takes as input
a secret key sk and a ciphertext c and outputs a key k ∈ K, or a failure
symbol ⊥.

KEM is correct if ∀(pk, sk) such that KGen(λ)
$→ (pk, sk), and (c, k) such

that Encaps(pk)
$→ (c, k), it holds that Decaps(sk, c) = k. We de�ne the ind-cpa

security of a key encapsulation mechanism in the following game played between
a challenger C and an adversary A.

1. C generates a public-key pair KGen(λ)
$→ (pk, sk)

2. C generates a ciphertext and key Encaps(pk)
$→ (c, k0)

3. C samples a key k1
$← K and a bit b uniformly at random.

4. A is given (pk, c, kb) and outputs a guess bit b′

We say that A wins the ind-cpa security game if b′ = b and de�ne the advan-
tage of an algorithm A in breaking the ind-cpa security of a key encapsulation
mechanism KEM as Advind-cpaKEM,A(λ) = |2 ·Pr(b′ = b)−1|. We say that KEM is post-

quantum ind-cpa-secure if for all QPT algorithms A, Advind-cpaKEM,A(λ) is negligible
in the security parameter λ. We say that KEM is ind-cpa-secure if for all PPT
algorithms A, Advind-cpaKEM,A(λ) is negligible in the security parameter λ.

Now we strengthen our assumptions by de�ning ind-cca security for KEMa:

De�nition 5 (Key Encapsulation Mechanism). A key encapsulation mech-
anism (KEM) is a triple of algorithms KEM = {KGen,Encaps,Decaps} with an
associated keyspace K, as described above.

We de�ne the ind-cca security of a key encapsulation mechanism in the fol-
lowing game played between a challenger C and an adversary A.

1. C generates a public-key pair KGen(λ)
$→ (pk, sk)

2. C generates a ciphertext and key Encaps(pk)
$→ (c, k0)

3. C samples a key k1
$← K and a bit b uniformly at random.

4. A is given (pk, c, kb)
5. The adversary may adaptively query the challenger; for each query value

ctxti the challenger responds with ki = Decaps(sk, ctxti)
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6. The adversary outputs a guess bit b′

We say that A wins the ind-cca security game if b′ = b and de�ne the advan-
tage of an algorithm A in breaking the ind-cca security of a key encapsulation
mechanism KEM as Advind-ccaKEM,A(λ) = |2 ·Pr(b′ = b)−1|. We say that KEM is post-

quantum ind-cca-secure if for all QPT algorithms A, Advind-ccaKEM,A(λ) is negligible
in the security parameter λ. We say that KEM is classically ind-cca-secure if for
all PPT algorithms A, Advind-ccaKEM,A(λ) is negligible in the security parameter λ.

Next, we turn to de�ning classical and post-quantum eufcma security for
message authentication codes (MACs).

De�nition 6 (Message Authentication Code (MAC) security). A mes-
sage authentication code (MAC) scheme is a tuple of algorithms MAC =
{KGen,Tag} where:

� KGen is a probabilistic key generation algorithm taking input a security pa-
rameter λ and returning a symmetric key k.

� Tag is a deterministic algorithm that takes as input a symmetric key k and
an arbitrary message m from the message spaceM and returns a tag τ .

Security is formulated via the following game that is played between a challenger
C and an algorithm A:

1. The challenger samples k
$← K

2. The adversary may adaptively query the challenger; for each query value mi

the challenger responds with τi = Tag(k,mi)
3. The adversary outputs a pair of values (m∗, τ∗) such that (m∗, τ∗) /∈
{(m0, σ0), . . . (mi, σi)}

The adversary A wins the game if Tag(k,m∗) = τ∗, producing a tag forgery. We
de�ne the advantage of A in breaking the existential unforgeability property of a
MAC MAC under chosen-message attack to be:

Adveufcma
MAC,A(λ) = Pr (Tag (k,m∗) = τ∗)

We say that MAC is post-quantum eufcma-secure if, for all QPT algorithms A,
Adveufcma

MAC,A(λ) is negligible in the security parameter λ, and is classically eufcma-

secure if, for all PPT algorithms A, Adveufcma
MAC,A(λ) is negligible in the security

parameter λ.

Finally, we turn to de�ning classical and post-quantum eufcma security for
digital signatures.

De�nition 7 (Digital Signature eufcma-signature). A digital signature
(SIG) scheme is a tuple of algorithms SIG = {KGen,Sign,Vfy} where:

� KGen is a probabilistic key generation algorithm taking input a security pa-
rameter λ and returning a public key pk and a secret key sk.
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� Sign is a probabilistic algorithm that takes as input a secret key sk and an
arbitrary message m from the message spaceM and returns a signature σ.

� Vfy is a deterministic algorithm that takes as input a public key pk, an
message m and a signature σ and returns bit b ∈ {0, 1}.

We require correctness of a digital signature scheme SIG. Speci�cally, for all

(pk, sk)
$← SIG.KGen, we have SIG.Vfy(pk,m, SIG.Sign(sk,m)) = 1. Security is

formulated via the following game that is played between a challenger C and an
algorithm A:

1. The challenger samples pk, sk
$← K

2. The adversary may adaptively query the challenger; for each query value mi

the challenger responds with σi = Sign(sk,mi)
3. The adversary outputs a pair of values (m∗, σ∗) such that (m∗, σ∗) /∈
{(m0, σ0), . . . (mi, σi)}

The adversary A wins the game if Vfy(pk,m∗, σ) = 1, producing a signature
forgery. We de�ne the advantage of A in breaking the existential unforgeability
property of a digital signature scheme SIG under chosen-message attack to be:

Adveufcma
SIG,A (λ) = Pr (Vfy (pk,m∗, σ∗) = 1)

We say that SIG is post-quantum eufcma-secure if, for all QPT algorithms A,
Adveufcma

SIG,A (λ) is negligible in the security parameter λ, and is eufcma-secure if,

for all PPT algorithms A, Adveufcma
MAC,A(λ) is negligible in the security parameter

λ.

B Detailed HAKE Security Experiment

In this section we give the algorithmic description of the HAKE security exper-
iment. We also provide an exact pseudocode de�nition for matching sessions
[13] and origin sessions [6], as well as our future-quantum cleanness predicate
cleanqHAKE and classical cleanness predicate cleancHAKE.

Finally, we provide our formal cleanness predicate against future quantum
adversaries in De�nition 8, and our formal cleanness predicate against classical
adversaries in De�nition 9.

De�nition 8 (cleanqHAKE). A session πs
i such that π

s
i .α = accept and πs

i .pid =
j in the security experiment de�ned in Figure 3 is cleanqHAKE if all of the following
conditions hold:

1. The query Reveal(i, s) has not been issued.
2. For all (j, t) ∈ nP × nS such that πs

i matches πt
j, the query Reveal(j, t) has

not been issued.
3. If there exists a session πt

j such that πt
j matches πs

i , then the following sets
of queries has not been issued:
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ExpHAKE,clean,A-Q
Π,nP ,nS

(λ):

1: b
$← {0, 1}

2: Π.LQKeyGen(λ)
$→ pqpk i, pqsk i ∀i ∈ [nP ]

3: Π.LCKeyGen(λ)
$→ cpk i, csk i ∀i ∈ [nP ]

4: p⃗ki ← (pqpk i, cpk i)
5: LQKi, LCKi ← clean ∀i ∈ [nP ], j ∈ [nP ]

6: ⃗EQKs
i , ⃗ECKs

i ← clean ∀i ∈ [nP ], s ∈ [nS ]
7: ctr ← 0
8: d

$← A(p⃗k)Send,Create⋆,Corrupt⋆,Compromise⋆,Reveal

9: if clean(πb) then
10: return (d = b)
11: else
12: return d

$← {0, 1}
13: end if

Send(i, s,m):

1: if πs
i .α ̸= active then

2: return ⊥
3: end if

4: Π.f(λ, p⃗ki, s⃗ki, π
s
i ,m)→ (πs

i ,m
′)

5: if πs
i .α = reject then

6: return ⊥
7: end if

8: πs
i .mr ← πs

i .mr∥m
9: πs

i .ms ← πs
i .ms∥m′

10: return m′

Reveal(i, s):

1: if πs
i .α ̸= accept then

2: return ⊥
3: end if

4: ⃗SKs
i ← corrupt

5: if ∃(j, t) s.t. match(πs
i , π

t
j)

then

6: ⃗SKt
j ← corrupt

7: end if

8: return πs
i .k

Test(i, s):

1: if πb ̸= ⊥ then

2: return ⊥
3: end if

4: if πs
i .α ̸= accept then

5: return ⊥
6: end if

7: k0
$← D, k1 ← πs

i .k
8: ⃗SKs

i ← tested
9: πb ← πs

i

10: return kb

Create(i, j, t, role):

1: let s = min{s : πs
i .ρ = ⊥}

2: πs
i .ρ = role

3: πs
i .pid = j

4: Π.EQKeyGen(λ)→ pqpk , pqsk
5: Π.ECKeyGen(λ)→ cpk , csk
6: πs

i .eqk← pqsk , πs
i .eck← pqsk

7: return s

CorruptCK(i):

1: if LCKi = corrupt

then

2: return ⊥
3: end if

4: LCKi ← corrupt

5: return csk i

CorruptQK(i):

1: if LQKi = corrupt

then

2: return ⊥
3: end if

4: LQKi ← corrupt

5: return pqsk i

CompromiseQK(i, s):

1: if ⃗EQKs
i = corrupt

then

2: return ⊥
3: end if

4: ⃗EQKs
i ← corrupt

5: return πs
i .eqk

CompromiseCK(i, s):

1: if ⃗ECKs
i = corrupt

then

2: return ⊥
3: end if

4: ⃗ECKs
i ← corrupt

5: return πs
i .eck

Fig. 3: HAKE experiment for an adversary A against the key-indistinguishability secu-
rity of protocol Π. Note that the values p⃗k given as input to A and Q represent the
vector p⃗ki for all nP parties. The function match takes as input two sessions πs

i and
πt
j and determines if they are matching according to some matching de�nition. For the

de�nition of the matching sessions function used in our HAKE experiment, see Section
5.4.

� CompromiseQK(i, s), CompromiseQK(j, t) have not been issued, where πt
j

matches πs
i .

4. If there exists no (j, t) ∈ nP × nS such that πt
j is an origin session of πs

i ,
then CorruptQK(j) has not been issued before πs

i .α← accept.

De�nition 9 (cleancHAKE). A session πs
i such that πs

i .α = accept and πs
i .pid =

j in the security experiment de�ned in Figure 3 is cleanqHAKE if all of the following
conditions hold:

1. The query Reveal(i, s) has not been issued.
2. For all (j, t) ∈ nP × nS such that πs

i matches πt
j, the query Reveal(j, t) has

not been issued.
3. If there exists a session πt

j such that πt
j matches πs

i , then at least one of the
following sets of queries has not been issued:
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match(πs
i , π

t
j)→ {0, 1}:

1: if (πs
i .ms ̸= πt

j .mr)
∨(πs

i .mr ̸= πt
j .ms)

∨(πs
i .ρ = πt

j .ρ) ∨(πs
i .pid ̸=

j)
∨(πt

j .pid ̸= i) then
2: return 0
3: end if

4: return 1

origin(πs
i , π

t
j)→ {0, 1}:

1: if (πs
i .mr ̸= πt

j .ms)∨
(πs

i .m
′
r ̸= πt

j .ms : πs
i .m

′
r

= trunc(πs
i .mr, |πt

j .ms|)
then

2: return 0
3: end if

4: return 1

Fig. 4: A pseudocode description of the matching session and origin session functions.

� CompromiseQK(i, s), CompromiseQK(j, t) have not been issued, where πt
j

matches πs
i .

� CompromiseCK(i, s), CompromiseCK(j, t) have not been issued, where πt
j

matches πs
i .

4. If there exists no (j, t) ∈ nP × nS such that πt
j is an origin session of πs

i ,
then CorruptQK(j) has not been issued before πs

i .α← accept.

C Full Classical Proofs

Next we prove the security of PQAG-SIG against purely classical adversaries, i.e.
A is a PPT algorithm.

Theorem 5 (PQAG-SIG Classical Security). The PQAG-SIG protocol pre-
sented in Section 3 is secure under cleanness predicate cleancHAKE (capturing
perfect forward security and resilience to KCI attacks against a classical adver-
sary A). That is, for any PPT algorithm A against the key-indistinguishability

game (de�ned in Figure 3), AdvHAKE,cleancHAKE,APQAG-SIG,nP ,nS
(λ) is negligible under the dual-prf,

prf, ind-cpa, eufcma and eufcma security of the PRF, PRF, KEM, MAC and SIG
primitives respectively.

Proof. We now turn to proving our result. We split our analysis into three
mutually-exclusive cases:
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1. Case 1 assumes that the test session πs
i (such that A issued Test(i, s))

is an initiator session, and that πs
i has no matching partner (as in Fig-

ure 4). We de�ne the PPT algorithm A's advantage in Case 1 as

AdvHAKE,cleancHAKE,A,C1
PQAG-SIG,nP ,nS

(λ).
2. Case 2 assumes that the test session πs

i is a responder , and that
πs
i has no matching partner. We de�ne A's advantage in Case 2 as

AdvHAKE,cleancHAKE,A,C2
PQAG-SIG,nP ,nS

(λ).
3. Case 3 assumes that the test session πs

i has a matching partner. We de�ne

the PPT algorithm A's advantage in Case 3 as AdvHAKE,cleancHAKE,A,C3
PQAG-SIG,nP ,nS

(λ).

It is clear that: AdvHAKE,cleancHAKE,AΠ,nP ,nS
(λ) ≤ AdvHAKE,cleancHAKE,A,C1

PQAG-SIG,nP ,nS
(λ)+

AdvHAKE,cleancHAKE,A,C2
PQAG-SIG,nP ,nS

(λ)+AdvHAKE,cleancHAKE,A,C3
PQAG-SIG,nP ,nS

(λ), thus we bound A's advan-
tage in each case separately.

In Case 1 and Case 2 we show that A's advantage in causing the test
session πs

i to accept without a matching partner is negligible, and thus the A's
advantage in winning the key-indistinguishability game is negligible (since the
experiment does not di�er based on the challenge bit b, as the πs

i does not
compute a real-or-random session key). As the analysis of Case 1 and Case 2
follows identically the corresponding analysis of Theorem 1, we omit the details
here, and point the reader to Section 6.

In Case 3 we replace the computation of the real session key by the test
session πs

i with a uniformly random key. Thus, the distribution of the keys
returned by πs

i are identical, regardless of the value of the challenge bit b, and
we can show that A's advantage in winning the key-indistinguishability game is
negligible. We now begin with the third case.

Case 3: Test session with matching session In Case 3, we show that if
A that has issued a Test(i, s) query to a clean session πs

i , then A has negligible
advantage in guessing the test bit b. In what follows, we split our analysis of Case
3 into the following sub-cases, each corresponding to a condition necessary for
the cleanness predicate cleancHAKE to be upheld by πs

i . These are the subcases
(where πt

j matches πs
i ):

� Subcase 3.1: CompromiseQK(i, s), CompromiseQK(j, t) were not queried.
� Subcase 3.2: CompromiseCK(i, s), CompromiseCK(j, t) were not queried.

It is straightforward to see that the advantage of A in Case 3 is bound by
the sum of the advantages of A in all subcases. It is also straightforward to see
that the proof of Subcase 3.1 follows identically the corresponding analysis of
Case 3 of Theorem 1, and so we omit the details here, and point the reader to
Section 6. We now treat the second subcase (Subcase 3.2), where A has not
compromised the classic ephemeral KEM secrets.

3.2: CompromiseCK(i, s), CompromiseCK(j, t) have not been issued,
where πt

j matches πs
i .
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Game 0 This is the HAKE security game, and AdvHAKE,cleancHAKE,A,C3.2
PQAG-SIG,nP ,nS

(λ) =
Pr(break0).

Game 1 In this game, we guess the index (i, s) and the matching session (j, t)
and abort if, during the execution of the experiment, a query Test(i′, s′)

is received to a session πs′

i′ such that πj′

t′ matches πs′

i′ and (i, s), (j, t) ̸=
(i′, s′), (j′, t′). Thus Pr(break0) ≤ n2

P · n2
S · Pr(break1).

Game 2 In this game, we replace the key ckE derived in the test session πs
i

with the uniformly random and independent value c̃k . We de�ne a reduction
B10 that interacts with a ind-cpa KEM challenger (as described in De�nition
4) and replaces the cpkE value sent in m0, and the ciphertext cctxtE sent
in m1 with the public-key pk and the ciphertext c received from the ind-cpa
KEM challenger. By the de�nition of Case 3, we know that cpkE (or cctxtE,
respectively) sent in m0 (resp. m1) must have been sent from an honest
session πt

j owned by Pj without modi�cation if πs
i .ρ = resp (resp. init). Any

adversary that can detect the replacement of ckE with a uniformly random

value c̃k implies an e�cient distinguishing algorithm B10 against the ind-cpa
security of KEM. Thus: Pr(break1) ≤ Advind-cpaKEM,B10

(λ) + Pr(break2).
Game 3 In this game we replace the computation of the extracted key

ms = PRF(c̃k , pqkE) with a uniformly random and independent value

m̃s
$← {0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in

the protocol execution of the test session πs
i , and (potentially) its matching

session πt
j . We de�ne a reduction B11 that initialises a prf challenger Cprf

when πs
i needs to compute PRF(c̃k , pqkE) and instead queries pqkE to Cprf .

B11 uses the output of the query m̃s to replace the computation of ms. Since

c̃k is uniformly random and independent by Game 2, and A cannot issue
CompromiseCK(i, s) or CompromiseCK(j, t), this is a sound replacement. If

the test bit sampled by Cprf is 0, then m̃s = PRF(c̃k , pqkEP ) and we are in

Game 2. If the test bit sampled by Cprf is 1, then m̃s
$← {0, 1}PRF and we

are in Game 3. Thus any adversary A capable of distinguishing this change
can be turned into a successful adversary B11 against the prf security of PRF,
and we �nd: Pr(break2) ≤ AdvprfPRF,B11

(λ) + Pr(break3).
Game 4 In this game we replace the computation of the expanded keys

mk, k = PRF(m̃s, ϵ) with a uniformly random and independent values

m̃k, k̃
$← {0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used

in the protocol execution of the test session πs
i , and its matching session πt

j .
We de�ne a reduction B12 that initialises a prf challenger Cprf when πs

i needs
to compute PRF(m̃s, ϵ) and instead queries ϵ to Cprf . B12 uses the output

m̃k, k̃ to replace the computation of mk, k. Since m̃s is already uniformly
random and independent byGame 3, this is a sound replacement. If the test

bit sampled by Cprf is 0, then m̃k, k̃ = PRF(m̃s, ϵ) and we are in Game 3.

If the test bit sampled by Cprf is 1, then m̃k, k̃
$← {0, 1}PRF and we are in

Game 4. Thus any adversary A capable of distinguishing this change can be
turned into a successful distinguishing adversary B12 against the prf security
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of PRF, and we �nd Pr(break3) ≤ AdvprfPRF,B12
(λ) + Pr(break4). Since k̃ is

now uniformly random and independent of the protocol �ow regardless of
the test bit b, A has no advantage in guessing the test bit and thus:
AdvHAKE,cleancHAKE,A,C3.2

PQAG-SIG,nP ,nS
(λ) ≤ nP

2nS
2 ·

(
Advind-cpaKEM,B10

(λ) + AdvprfPRF,B11
(λ) +

AdvprfPRF,B12
(λ)

)
.

Theorem 6 (PQAG-KEM Classical Security). The PQAG-KEM protocol pre-
sented in Section 3 is secure under cleanness predicate cleancHAKE (capturing
perfect forward security and resilience to KCI attacks against classical adver-
saries). That is, for any PPT algorithm A against the key-indistinguishability

game (de�ned in Figure 3), AdvHAKE,cleancHAKE,APQAG-KEM,nP ,nS
(λ) is negligible under the prf,

ind-cpa, ind-cca and eufcma security of the PRF, KEM, KEM, and MAC primi-
tives respectively.

Proof. We now turn to proving our result. We split our analysis into three
mutually-exclusive cases:

1. Case 1 assumes that the test session πs
i (such that A issued Test(i, s))

is an initiator session, and that πs
i has no matching partner (as in Fig-

ure 4). We de�ne the PPT algorithm A's advantage in Case 1 as

AdvHAKE,cleancHAKE,A,C1
PQAG-KEM,nP ,nS

(λ).
2. Case 2 assumes that the test session πs

i is a responder , and that
πs
i has no matching partner. We de�ne A's advantage in Case 2 as

AdvHAKE,cleancHAKE,A,C2
PQAG-KEM,nP ,nS

(λ).
3. Case 3 assumes that the test session πs

i has a matching partner. We de�ne

the PPT algorithm A's advantage in Case 3 as AdvHAKE,cleancHAKE,A,C3
PQAG-KEM,nP ,nS

(λ).

It is clear that: AdvHAKE,cleancHAKE,APQAG-KEM,nP ,nS
(λ) ≤ AdvHAKE,cleancHAKE,A,C1

PQAG-KEM,nP ,nS
(λ)+

AdvHAKE,cleancHAKE,A,C2
PQAG-KEM,nP ,nS

(λ)+AdvHAKE,cleancHAKE,A,C3
PQAG-KEM,nP ,nS

(λ), thus we bound A's advan-
tage in each case separately.

In Case 1 and Case 2 we show that A's advantage in causing the test
session πs

i to accept without a matching partner is negligible, and thus the A's
advantage in winning the key-indistinguishability game is negligible (since the
experiment does not di�er based on the challenge bit b, as the πs

i does not
compute a real-or-random session key). As the analysis of Case 1 and Case 2
follows identically the corresponding analysis of Theorem 3, we omit the details
here, and point the reader to Section 6.

In Case 3 we replace the computation of the real session key by the test
session πs

i with a uniformly random key. Thus, the distribution of the keys
returned by πs

i are identical, regardless of the value of the challenge bit b, and
we can show that A's advantage in winning the key-indistinguishability game is
negligible. We now begin with the third case.

Case 3: Test session with matching session In Case 3, we show that if
A that has issued a Test(i, s) query to a clean session πs

i , then A has negligible
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advantage in guessing the test bit b. In what follows, we split our analysis of Case
3 into the following sub-cases, each corresponding to a condition necessary for
the cleanness predicate cleancHAKE to be upheld by πs

i . These are the subcases
(where πt

j matches πs
i ):

� CompromiseQK(i, s), CompromiseQK(j, t) were not queried.
� CompromiseCK(i, s), CompromiseCK(j, t) were not queried.

It is straightforward to see that the advantage of A in Case 3 is bound by
the sum of the advantages of A in all subcases. It is also straightforward to see
that the proof of Subcase 3.1 follows identically the corresponding analysis of
Case 3 of Theorem 3, and so we omit the details here, and point the reader to
Section 6. We now treat the second subcase (Subcase 3.2), where A has not
compromised the classic ephemeral KEM secrets.

3.2: CompromiseCK(i, s), CompromiseCK(j, t) have not been issued,
where πt

j matches πs
i .

Game 0 This is the HAKE security game, and AdvHAKE,cleancHAKE,A,C3.2
PQAG-KEM,nP ,nS

(λ) =
Pr(break0).

Game 1 In this game, we guess the index (i, s) and the matching session (j, t)
and abort if, during the execution of the experiment, a query Test(i′, s′)

is received to a session πs′

i′ such that πj′

t′ matches πs′

i′ and (i, s), (j, t) ̸=
(i′, s′), (j′, t′). Thus Pr(break0) ≤ n2

P · n2
S · Pr(break1).

Game 2 In this game, we replace the key ckE derived in the test session πs
i

with the uniformly random and independent value c̃k . We do so by in-
teracting with a classical ind-cpa KEM challenger (as described in De�ni-
tion 4) and replace the cpkE value sent in m0, and the ciphertext cctxt

sent in m1 with the public-key c̃pk and the ciphertext c̃ctxt received from
the classical ind-cpa KEM challenger. Since πs

i matches πt
j , we know that

the public-key and ciphertext sent in m0 and m1 respectively were re-
ceived by the sessions without modi�cation. Detecting the replacement of

ckE with a uniformly random value c̃k implies an e�cient distinguishing
PPT algorithm B12 against the classical ind-cpa security of KEM. Thus:
Pr(break1) ≤ Advind-cpaKEM,B12

(λ) + Pr(break2).
Game 3 In this game we replace the computation of intermediate ms ms4 =

PRF(ms3, c̃k) with a uniformly random and independent value m̃s4
$←

{0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in the proto-
col execution of the test session πs

i , and (potentially) its matching session πt
j .

We de�ne a reduction B13 that initialises a dual-prf challenger Cdual-prf when
πs
i needs to compute PRF(ms3, c̃k) and instead queries ms3 to Cdual-prf . B13

uses the output of the query m̃s4 to replace the computation of ms4. Since

c̃k is uniformly random and independent by Game 2, and A cannot issue
CompromiseCK(i, s) or CompromiseCK(j, t), this is a sound replacement. If

the test bit sampled by Cdual-prf is 0, then m̃s4 = PRF(ms3, c̃k) and we are
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in Game 2. If the test bit sampled by Cdual-prf is 1, then m̃s4
$← {0, 1}PRF

and we are in Game 3. Thus any adversary A capable of distinguishing this
change can be turned into a successful adversary B13 against the dual-prf
security of PRF, and we �nd: Pr(break2) ≤ Advdual-prfPRF,B13

(λ) + Pr(break3).
Game 4 In this game we replace the computation of intermediate ms ms5 =

PRF(m̃s4, pqkE) with a uniformly random and independent value m̃s5
$←

{0, 1}PRF (where {0, 1}PRF is the output space of the PRF) used in the pro-
tocol execution of the test session πs

i , and (potentially) its matching session
πt
j . We de�ne a reduction B14 that initialises a prf challenger Cprf when πs

i

needs to compute PRF(m̃s4, pqkE) and instead queries pqkE to Cprf . B14 uses
the output of the query m̃s5 to replace the computation of ms5. Since m̃s4
is uniformly random and independent by Game 3, this is a sound replace-
ment. If the test bit sampled by Cprf is 0, then m̃s5 = PRF(m̃s4, pqkE) and

we are in Game 3. If the test bit sampled by Cprf is 1, then m̃s5
$← {0, 1}PRF

and we are in Game 4. Thus any adversary A capable of distinguishing this
change can be turned into a successful adversary B14 against the prf security
of PRF, and we �nd: Pr(break3) ≤ AdvprfPRF,B14

(λ) + Pr(break4).
Game 5 In this game we replace the computation of the MAC and session

key mk, k = HKDF.Expand(m̃s5,H(m0∥m1), “PQAGKEM
′′) with a uniformly

random and independent value m̃k, k̃
$← {0, 1}PRF used in the protocol

execution of the test session πs
i , and (potentially) its matching session

πt
j . We do so by initialising a prf challenger and querying the hash value

H(m0∥m1), and use the output m̃k, k̃ from the prf challenger to replace
the computation of mk, k. Since m̃s5 is uniformly random and independent
by Game 4, this is a sound replacement. If the test bit sampled by the

prf challenger is 0, then m̃k, k̃ = HKDF.Expand(m̃s5,H(m0∥m1), “PQAGKEM
′′)

and we are in Game 4. If the test bit sampled by the prf challenger is

1, then m̃k, k̃
$← {0, 1}PRF and we are in Game 5. Thus any adversary A

capable of distinguishing this change can be turned into a successful PPT
adversary B15 against the post-quantum prf security of PRF, and we �nd:
Pr(break4) ≤ AdvprfPRF,B15

(λ) + Pr(break5).

Since k̃ is now uniformly random and independent value of the protocol �ow
regardless of the value of the test bit b, A has no advantage in guessing the
test bit and thus:
AdvHAKE,cleancHAKE,A,C3.2

PQAG-KEM,nP ,nS
(λ) ≤ nP

2nS
2 ·

(
Advind-cpaKEM,B12

(λ) + Advdual-prfPRF,B13
(λ) + 2 ·

AdvprfPRF,B14,B15
(λ)

)
.


	Quantum-Secure Hybrid Communication for Aviation Infrastructure

