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Abstract—The rising tide of data breaches targeting large data
storage centres and servers has raised serious privacy and
security concerns. Homomorphic Encryption schemes offer an
effective defence against such attacks, but their adoption has
been hindered by substantial computational and communica-
tion overheads, particularly on the client’s side. The Hybrid
Homomorphic Encryption (HHE) protocol was developed to
mitigate these issues. However, the susceptibility of HHE to
strong attacks, specifically physical attacks, has been largely
unexplored. While physical attacks like the Differential Fault
Analysis (DFA) have proved very effective in the field of
symmetric cryptography, prior works have largely relied on
strong assumptions like nonce reuse, limiting their feasibility
in a real-world setting.

In this work, we introduce a novel attack- SASTA, which
presents, to the best of our knowledge, the first generalized
analysis of HHE under DFA. Our analysis uncovers a signifi-
cant limitation of the HHE protocol where a single fault leads
to complete key recovery not only for the standard scheme-
AES but also for the new HHE tailored Symmetric Encryption
(SE) schemes – RASTA, PASTA, MASTA, and HERA. We further
extend SASTA to effectively target Authenticated Transcipher-
ing protocols. Unlike prior works, the key advantage of SASTA
is that it does not require nonce reuse.

We demonstrate a proof-of-concept of our attack on an off-
the-shelf ATXmega128D4-AU microcontroller running HHE
firmware and mount end-to-end key recovery attacks. Finally,
we discuss conventional countermeasures to defend against
SASTA. Our work highlights that despite HHE’s advantages
of improving performance and reducing communication over-
head, further analysis of its security guarantees is required.

Index Terms—Homomorphic Encryption, Hybrid Encryption,
Transciphering, Fault attacks, AES-GCM, PASTA, HERA,
RASTA, RUBATO

1. Introduction

The world is witnessing a concerning surge in daily data
breaches, typically directed at large data storage centres and
servers. Such breaches allow malicious parties access to vast
amounts of private information. The key reason being, even
though data is encrypted for communication, the servers

inevitably have to decrypt it for computation or storage. Not
only does this allow the server to see the client’s data, but
also attackers in the event of a data breach. To address this
growing security and privacy concern, there is a pressing
need for privacy-preserving storage and computation.

Homomorphic Encryption (FHE) schemes [10], [11],
[15], [16], [23], [28] offer such privacy preserving capa-
bilities. However, their widespread adoption is inhibited
by significant computational and communication overheads.
This is because FHE encryption schemes transform data
into substantially larger polynomials and rely on costly
polynomial arithmetic for performing computations on the
encrypted data. While server-side computations can be expe-
dited through dedicated hardware accelerators [2], [24], [27],
[41], [49], the same approach is infeasible for client-side
applications due to their high cost. Moreover, the transmis-
sion of these large polynomials incurs huge communication
overheads.

Hybrid Homomorphic Encryption (HHE), also known
as transciphering [52], was introduced to tackle these prob-
lems. The main idea behind HHE is to replace the expensive
homomorphic data encryption methods with symmetric key
encryption. In the HHE setup, clients encrypt their data with
a symmetric key before sending it to the server. The server
then homomorphically evaluates the decryption circuit on
the symmetric ciphertext to transform it into a homomorphic
ciphertext (asymmetric). The obtained FHE ciphertext can
then be used to perform the required computations on the
server. As a result, this method saves significant communi-
cation and computation requirements on the client.

Over the years, researchers have realized that stan-
dard symmetric key schemes (e.g., AES) operating on
boolean data have a huge performance overhead. As a result
new HHE tailored Symmetric Encryption (SE) schemes –
PASTA [21], MASTA [34], HERA [17], and RUBATO [35],
have been proposed. Unlike standard schemes, these operate
over integers in prime fields (Fp) and offer better perfor-
mance for real-world applications like machine learning.

Recent works [1], [6] have proposed authenticated tran-
sciphering (AT) to further enhance the capabilities of HHE
by ensuring the integrity and authenticity of encrypted data.
They achieve this by using symmetric schemes (e.g., AES-
GCM) in Authenticated Encryption with Associated Data
(AEAD) mode.

Despite its promise, the HHE protocol itself and the
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new SE schemes have not undergone extensive cryptanal-
ysis, especially in the context of physical attacks such
as Differential Fault Analysis (DFA). Physical attacks on
cryptographic implementations are attacks that exploit the
physical characteristics of the device running the primitive
to recover secret parameters involved in its computation.
These attacks can involve measuring the execution time and
power consumption or actively disturbing a cryptographic
computation to recover sensitive data. These attacks are
often more efficient than classical cryptanalytic attacks and
are considered a serious threat by device vendors.

In this work, we present SASTA, a novel DFA attack
on HHE to recover private cryptographic keys used by the
client device. We use a single pair of fault-free and faulty
ciphertexts to construct differentials that subsequently help
retrieve private key information. Our key observation is a
significant vulnerability in the HHE protocol, which makes
it susceptible to a DFA attack even in a nonce-respecting
setting. We also extend the SASTA-based fault analysis to
the AT setting (utilizing AES-GCM) and present an end-
to-end key-recovery.

The SASTA attack proceeds in three main stages: First,
the attacker induces a single fault during the SE encryption
routine on the client device, resulting in the generation of
erroneous ciphertexts, which are sent to the server. Second,
the attacker constructs a differential using the results re-
turned by the server. Since the server operates on a faulty
ciphertext, the resulting computation shows a disparity in the
output, which is decrypted on the client’s side. Finally, with
this differential, the attacker mounts a key-recovery attack,
breaking user privacy.

To date, there have been few DFA studies [54], [55]
on HHE tailored SE schemes [13], [19], [46], [47]. These
works are limited by their sole focus on the symmetric
facet of the HHE protocol. Moreover, they rely on strong
assumptions like nonce reuse, which are prohibited in their
respective specifications [17], [19], [21], [34], precluding
classical differential analysis. On the other hand, SASTA
takes into account the homomorphic aspects of the HHE
protocol, which allows it to bypass the nonce–reuse assump-
tion, making it a realistic attack while adhering to the design
specifications. Finally, while prior works target schemes
operating on boolean data [13], [19], [46], [47], we analyze
SASTA for all recent schemes – PASTA [21], MASTA [34],
HERA [17], and RUBATO [35] that operate in prime fields
and are consequently more efficient. An analysis of these
schemes under DFA is unexplored yet much needed due
to the vast potential for deployment of privacy-preserving
applications. Our results are summarized in Table 1.

Contributions

In this work, we investigate both types of HHE enabling
SE schemes: (1) the standard scheme AES-GCM, and
(2) the new high-performance scheme proposals- RASTA,
PASTA, MASTA, HERA, and RUBATO. Analysing the latter
is more challenging due to a lack of prior DFA literature on

Field Target Sec. nonce #F Time AttackScheme resp.

Z2

Flip530 80

No

1 39hr [55]
Kreyvium 128 3 5min [55]
Filip430 80 1 751hr [54]

RASTA-6 80 1 96hr [54]
RASTA-5 128

Yes

1 0.1s Sec.4.5
RASTA-6 128 1 0.12s Sec.4.5

AES-GCM 128 1 5s Sec.4.6
AES-GCM 256 3 45min† Sec.4.6

Zp

PASTA-3 128 1 0.5s Sec.4.1
PASTA-4 128 1 0.21s Sec.4.1
MASTA-4 128 1 0.09s Sec.4.2
MASTA-5 128 1 0.07s Sec.4.2
HERA-5 128 1 0.005s Sec.4.3

TABLE 1. COMPARISON OF SASTA WITH PRIOR WORKS [54], [55]
ANALYZING HHE TAILORED SE UNDER DFA. THE AVERAGE TIME IS
REPORTED FOR KEY-RECOVERY ON A 2GHZ CLOCK AND 4GB RAM

PROCESSOR. #F REFERS TO THE NUMBER OF FAULTS REQUIRED AND †

STANDS FOR RESULTS REPORTED IN [4].

SE schemes defined over Fp. We list our main contributions
below:

• SASTA- First protocol level nonce respecting at-
tack on HHE: To the best of our knowledge, we are
the first to show the viability of fault attacks on HHE
while conforming to scheme specifications. Our at-
tack technique operates under a nonce-respecting
setting, thus requiring a significantly weaker attacker
than prior DFA works.

• First DFA of SE schemes over Fp : We de-
velop the first key-recovery attack utilizing SASTA
for breaking the new HHE tailored SE schemes-
PASTA [21], MASTA [34], HERA [17]. This also
extends to RASTA [19] defined over Z2.

• A new attack on Authenticated Transciphering
(AT): We extend our attack and, for the first time,
show how AT [1] (based on AES-GCM) becomes
vulnerable to DFA by leveraging SASTA.

• Attack Proof-of-Concept: We demonstrate our at-
tack using an 8-bit off-the-shelf micro-controller
ATXmega128D4-AU set as target using the Chip-
WhispererLite CW1173 board. This attack requires
just a single known fault, resulting in complete
key-recovery. Additionally, we have integrated the
firmware for the new HHE tailored SE scheme-
HERA to validate SASTA, further amplifying the
scope of our investigation.

• Countermeasure Analysis: We finally provide a
comprehensive analysis of potential strategies and
techniques to strengthen the security of HHE proto-
col against SASTA.

2. Background and Related Work

Notation: Z2 refers to Boolean values and Zp refers to
integers modulo p > 2. Fp is used to denote prime fields for
a prime modulus p. We will denote numbers (integers and
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real) with small letters (e.g., x), vectors of numbers with
capital letters (e.g., X) except message m and ciphertext
c, and matrices with bold and capital letters (e.g., M). Sub-
scripts Xi are used for naming different matrices or vectors,
and superscripts Xi are used for indexing coefficients in a
vector or rows in a matrix. Throughout the paper, variables
with an apostrophe sign (e.g., c′, C ′,M′) refer to faulty
values resulting from fault injection. Finally, the subscripts
FHE or SE imply the value is encrypted using FHE or SE.
The red coloured values- (e.g., x) imply faulty computation
or result.

2.1. Homomorphic Encryption

Before we delve into the specifics of ‘Hybrid’ Ho-
momorphic Encryption (also known as transciphering), we
provide a brief introduction to Homomorphic Encryption.
It is one of the four pioneering privacy-enhancing tech-
niques, including Trusted Execution Environments, Multi-
Party Computation, and Zero-Knowledge Proofs. The first
FHE scheme was introduced by Gentry in 2009 [28], and
since then, several FHE schemes have been introduced by
researchers, such as BGV [11], BFV [10], [23], CKKS [14],
[15], and TFHE [16]. These schemes enable computations
on encrypted data, making tasks like machine learning pos-
sible while preserving privacy. This unique capability of
privacy-preserving data storage and computation has made
FHE ‘the holy grail of cryptography ’ [50].

Most FHE schemes rely on complex mathematical prob-
lems like Learning With Errors (LWE) or its faster polyno-
mial ring variant, Ring Learning With Errors (RLWE), to
ensure security and homomorphic computation. However, a
significant drawback is that they transform plaintext data
into much larger polynomials when homomorphically en-
crypted, resulting in substantial communication and compu-
tational overhead, often ranging from 10, 000× to 100, 000×
[39]. Transmitting these large ciphertexts and performing
operations on them is quite expensive. To address this
challenge, researchers have developed specialized hardware
accelerators [2], [24], [27], [41], [49], to accelerate compu-
tation. These accelerators can significantly reduce computa-
tion costs, but the issue of communication overhead remains
a significant bottleneck in practical implementations. These
accelerators are also designed mainly for operations on the
server side as they are too expensive for the client side.
Hence, clients continue to suffer from both computational
and communication overhead.

2.2. Hybrid Homomorphic Encryption (HHE)

HHE addresses the increased communication and com-
putational complexity incurred because of FHE-encryption
by essentially using a symmetric key-based encryption
method that can be decrypted in a homomorphic manner.
The top-level overview of the HHE protocol is depicted in
Figure 1, and a stepwise description is illustrated in Table 2.
It proceeds as follows.

   

+

Figure 1. Workflow of HHE is illustrated here. The homomorphically
encrypted key (KFHE) is communicated only once. After this, multiple
small ciphertexts (ciSE ) encrypted using SE are sent along with nonce.
The server performs a ‘homomorphic SE decryption circuit evaluation’
(HSD) and obtains a homomorphically encrypted ciphertext ciFHE .

Client Server
Initialization

Generate keys K and {sK, pK}
KFHE = FHEEnc(K)pK
Send pK and KFHE → → Save keys pK and KFHE

Encryption using SE
ciSE = mi + Eπ(K,ni)
Send ciSE , ni, and f() → → ciSE , ni, and f()

Homomorphic SE Decryption Circuit Evaluation (HSD)
ciFHE = ciSE − FHEEπ (ni,KFHE)

Function Evaluation
Compute c′iFHE

= f(ciFHE )
c′iFHE

← ← Send c′iFHE

Result Decryption
f(mi) = FHEDec(c

′
iFHE

)sK
TABLE 2. A SIMPLIFIED ALGORITHMIC DESCRIPTION OF THE HHE

PROTOCOL. HERE, i REFERS TO i-TH ITERATION OF THE HHE
PROTOCOL.

• The client has two types of keys, the symmetric
encryption key K and asymmetric private and public
keys {sK, pK} for FHE. These keys are long-term
keys and remain constant for a long time. The client
needs to protect both K and sK because knowledge
of sK can leak K, and this, in turn, results in the
attacker gaining access to all messages mi as well
as the results sent by the server.

• Next, the client uses the public key pK to encrypt
K using FHEEncrypt, and sends this to the server
at the beginning itself1. After this, whenever clients
need to store or process data on the cloud, they use
SE Encryption to encrypt the message blocks mi

using K and send the resultant ciphertext ciSE =
mi + Eπ to the server along with the public nonce
ni. Eπ refers to the key-dependent permutation that
results in a keystream, which is added to plaintext
for encryption.

• The server uses the encrypted key KFHE along with
the nonce ni to evaluate the SE decryption cir-
cuit homomorphically (FHEEπ

). This results in a
ciphertext (ciFHE), which is only homomorphically

1. Note that the client also computes evaluation keys and sends them to
the server in the initialization phase. We do not mention them as they are
irrelevant to our investigation.
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encrypted under key sK. This can now be stored on
the server or processed (f()) as the client desires.

• The client can retrieve the original/resultant cipher-
text and use sK to decrypt the result.

SE schemes that can only operate on Boolean data (e.g.,
AES, RASTA [19]) entail a substantial performance decline
on the server side. Hence, for better performance and ap-
plication support, researchers have developed schemes like
MASTA [34], PASTA [21], HERA [17], and RUBATO [35]
that can directly operate over prime fields Fp, enabling
operations on real or integer plaintexts, and offering cost-
effective communication and efficient (client-side) encryp-
tion. Thus, in our work, we focus on both these scheme
types to demonstrate the broad applicability of our attack.
Section A contains the design overview of these new SE
schemes.

2.3. Authenticated Transciphering (AT)

In the homomorphic setting, AT [1], [6] is used to ensure
data integrity; that is, the data sent by the client is the same
as that received by the server for computation. We stress on
the fact that conventional FHE schemes do not offer data
integrity and so the use of AT offers an additional benefit
over other HHE related advantages.

In a symmetric setting, the client sends encrypted data
along with a tag to the server. The server generates a tag
from the received data and matches it with the received
tag to verify data integrity. However, in the homomorphic
setting, the server can only generate an encrypted tag using
encrypted key (KFHE). As a result, it cannot do tag matching
to verify integrity. Consequently, the server has to send the
encrypted tag back to the client who has to verify whether
the two Tags match. This is briefly described in Table 3.

First, AT was analyzed by the authors in [6]. They
utilized Grain128-AEAD [37], and this was converted to
a TFHE [16] ciphertext on the server side. This is followed
by a recent work [1], where the authors report benchmarks
for authenticated transciphering using standard symmetric
encryption schemes such as AES-GCM and ASCON for
CKKS [15] FHE scheme. The results of this work show
that due to the possibility of parallel processing, AES-
GCM is much faster than ASCON, which can only process
plaintexts sequentially. However, even at its best AES-GCM
consumes a total depth of 123, requiring many bootstrapping
operations just for HSD. On the other hand, the new HHE
tailored SE scheme proposals [17], [19], [21], [34], [35] do
not require any bootstrapping for one encryption as they
consume very less multiplicative depth, hence delivering
very good performance.

In summary, the purpose of AT is to generate an addi-
tional authentication tag alongside encryption and decryp-
tion processes. This tag is intended to ensure data integrity
and authenticity. The primary objective is to ensure that
the authentication tag seamlessly transitions from the SE
ciphertext to the FHE ciphertext. If this is not achieved with
a 100% success probability, unintended decryption failures
will occur.

Client Server
Initialization

Generate K and {sK, pK}
KFHE = FHEEnc(K)pK
Send pK and KFHE → → Save keys pK and KFHE

Encryption using SE
ciSE = mi + Eπ(K,ni) ∀0 ≤ i < l
Ti = GCM(Eπ, ciSE , K)
Send ciSE , ni, and f() → → ciSE , ni, and f()

Homomorphic SE Decryption Circuit Evaluation (HSD)
ciFHE = ciSE − FHEEπ (ni, KFHE)
TiFHE = GCM(FHEEπ , ciSE , KFHE)

Function Evaluation
Compute c′iFHE

= f(ciFHE )

c′iFHE
, TiFHE ← ← Send c′iFHE

, TiFHE

Result Decryption
If Ti == FHEDec(TiFHE )sK :

f(mi) = FHEDec(c
′
iFHE

)sK

TABLE 3. A SIMPLIFIED ALGORITHMIC DESCRIPTION OF THE
AUTHENTICATED TRANSCIPHERING PROTOCOL [1], [6]. HERE Eπ

REFERS TO ANY SE PERMUTATION (E.G., AES), AND i REFERS TO i-TH
ITERATION OF THE HHE PROTOCOL.

2.4. Differential Fault Analysis of SE

Differential Fault Analysis is a physical attack that ex-
ploits information leaked from faulty computations on a
victim’s device. Faults are induced by forcing the device
to operate in unexpected environmental conditions (such
as high voltage surges, clock or EM glitches) and the
observed differences between fault-free and faulty outputs
are analyzed to reveal information about the internal states.

The standard DFA threat model consists of a victim
device running encryption/decryption protocols with a secret
key and an adversary with the ability to induce faults in its
computations. It also allows the adversary to function in a
chosen plaintext or ciphertext setting. These works [54], [55]
further make an even stronger assumption by presuming the
repetition of nonces to mount effective attacks. As pointed
out by the authors in [20], repeating nonces always incurs a
certain loss of security, and the inability to repeat the nonce
renders conventional DFA techniques infeasible, as stated in
[57].

The susceptibility of classical SE schemes to fault at-
tacks has been extensively analyzed. Several key-recovery
attacks have been demonstrated for RSA-CRT Signa-
tures [8], AES [3], [5], [30], [38], [51], [61]. Prior works [3],
[58], [61] show how even a single fault during AES encryp-
tion can be utilized to significantly reduce the key space,
which can be made unique using known plaintext ciphertext
pairs.

3. The SASTA Fault Attack

In this section, we outline the SASTA attack strategy.
It is important to note that FHE and, by extension, HHE
schemes are, at best, chosen-plaintext (IND-CPA) secure. In
other words, a malicious (CCA2) server can simply return
adaptively chosen ciphertexts, which can lead to trivial key-
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recovery attacks [44]. Thus, in any HHE related setting, the
server is assumed to be honest-but-curious2.

3.1. Threat Model

We mount our attack in a known-plaintext setting, which
is weaker than CPA and closely follows [43]. We adopt a
standard DFA threat model from prior works [7], [42], [51],
[55], [62]. The setting is that of a client communicating
with an honest-but-curious server in the presence of an
attacker who tries to leak the client’s secrets. The attacker
has the ability to observe the queries sent by the client device
and the responses sent by the server during a limited time
window, during which she is also able to induce a known
glitch or a fault in the computations done on the client’s
device3. A known fault is usually induced by manipulating
the operating conditions of the hardware (HW) involved in
the computations [7], [42], [59], [62] and results in a skipped
instruction or a flipped bit that is known to the attacker.

To utilize this model in the HHE setting (described in
Section 2.2), we assume that the server computes a function
f on the received (encrypted) data and responds with the
(encrypted) output. This function is predefined by the client
before the start of the HHE protocol, as stated in [29]. While
previous works on DFA enhance the attacker’s capabilities
by assuming conditions like nonce reuse, we relax this as-
sumption to present a more realistic adversary. Moreover, we
restrict the attacker to observe only a single query-response
pair to mount a successful attack. Both these requirements
make our threat model significantly weaker than the ones
used by prior works.

3.2. Attack Methodology

The attack proceeds in three broad phases
1 Faulting client’s SE Encryption: A single fault is in-

duced by the attacker during the execution of SE encryption
routine on the client ( Figure 2). This fault results in the
generation of erroneous ciphertexts, which are sent to the
server. Since not every fault can be exploited, the attacker
identifies certain Fault Injection Points (FIPs) depending on
the SE primitive. These FIPs are targeted, and the resulting
faults are subsequently leveraged for key-recovery.
2 Generating Differentials: The attacker observes a

differential obtained in the output returned by the server.
First, the client sends a faulty message to the server, which
evaluates the homomorphic decryption circuit (HSD) on it.
The server then sends the function output corresponding to
the message back to the client, and this output is different
from the output corresponding to a fault-free message, thus
forming a differential (Table 4 b ). This process is further
elaborated in Section 3.3.

2. Note that this assumption is not too strong as there are techniques [25],
[63], [64] such as Zero knowledge proofs to ensure that the ciphertext
returned by the server is not malicious and is actually the result of the
requested computation for a function know to or predefined by the client.

3. Evil maid attack

+

Figure 2. Utilizing SASTA for differential fault analysis of HHE tailored
SE schemes or AES counter mode.

3 Key-Recovery: The attacker uses the knowledge of the
FIP and the generated differentials to extract the private key
K that is stored on the client device and used for the HHE
encryption and decryption. The private key can then be used
to compromise the privacy of users on the attacked device.
We detail the key-recovery methods in Section 4.

In the case of AT, the fault is induced during the very
first permutation (Eπ) evaluation (Figure 3), which is needed
only for Tag computation. Thus, the differential is obtained
using the valid tag received from the server side. This
differential is subsequently employed for the purpose of key-
recovery.

3.3. Attacking HHE

In HHE, the client device simply performs SE (Table 2)
encryption to protect the message sent to the server. The
encryption involves computing key-dependent permutation
(Eπ) and then adding it to the message (as shown in Fig-
ure 1). For schemes defined over Z2, instead of modular
addition/subtraction, XOR is used.

The attacker induces a fault in the SE routine (illustrated
in Figure 2) and observes the outputs sent by the server
to generate a differential, which can subsequently be used
for key-recovery, as detailed in Table 4. In the following
lemmas and theorem, i refers to the i-th iteration of the
HHE protocol and j is used to index message blocks (for
schemes over Fp) or bits (e.g., in AES). For simplicity, we
have removed the subscripts SE and FHE.

Lemma 1 (Expression of Faulty Ciphertext). If a fault oc-
curs during the client-side encryption, the resulting cipher-
text c′i with t coefficients after encryption can be expressed
as follows:

c′ji = mj
i + E′π(K,ni)

j (mod p) ∀ 0 ≤ j < t

Proof. In HHE, the ciphertext cji is a function of the original
message mj

i and the permutation Eπ(K,ni)
j applied during

encryption. When a fault occurs during the permutation
process, this faulty ciphertext is represented as the sum of
the original message and the output of the faulty permutation
as shown in Table 4 a .

The faulty ciphertext c′ji is then sent to the server. The server
performs HSD, which results in a faulty message m′i.
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Client Server
Initialization

Encryption using SE
c′iSE

= mi + E′π(K,ni) a
Send c′iSE

, ni, and f() → → c′iSE
, ni, and f()

Homomorphic SE Decryption Circuit Evaluation (HSD)
c′iFHE

= c′iSE
− FHEEπ (ni,KFHE) b

≃ miFHE +∆Eπ , where
∆Eπ ≃ E′π(K,ni)− Eπ(K,ni)

Function Evaluation
Result Decryption

f(m′
i) = FHEDec(c

′
iFHE

)sK
= f(∆Eπ +mi) c

TABLE 4. ALGORITHMIC DESCRIPTION OF THE FAULTY COMPUTATION
DURING THE HHE PROTOCOL. FOR BREVITY, WE OMIT THE

INITIALIZATION AND FUNCTION EVALUATION PARTS OF THE
PROTOCOL.

Lemma 2 (Computation of Faulty Message). In the event
of a fault during client-side encryption, the server-side HSD
results in a faulty message m′i, calculated as follows:

m′j = mj+E′π(K,ni)
j−Eπ(K,ni)

j (mod p) ∀ 0 ≤ j < t

Proof. The server, upon receiving the ciphertext ci, performs
HSD, which is essentially the subtraction of the encrypted
permutation Eπ(K,ni)

j from ci:

mj
i = cji − Eπ(K,ni)

j (mod p) ∀ 0 ≤ j < t

m′ji = c′ji − Eπ(K,ni)
j (mod p) ∀ 0 ≤ j < t

When a fault occurs during the client-side permutation, it
results in a deviation from the actual computation. The
server-side HSD uses the faulty ciphertext and the fault-free
permutation Eπ(K,ni)

j . This results in the computed mes-
sage being faulty m′i, differing from the original message
mi due to the fault-induced difference in the permutations.
This is shown in Table 4 b .

Theorem 1 (Fault induced differential without non-
ce-reuse). When a fault occurs in the permutation (Eπ)
during the client-side encryption, then due to server-side
HSD, the fault-induced differential is as given below.

∆Eπ = E′π(K,ni)− Eπ(K,ni) (mod p)

Proof. Using Lemma 1, we get a faulty ciphertext c′i when
a fault is injected in the permutation during the encryption.
Lemma 2 shows that the server-side HSD of c′i yields a
homomorphically encrypted but faulty message m′i distinct
from the original message mi. Since the original message is
known to the attacker, the differential (∆Eπ) can be obtained
(as shown in Table 4 c ) by simply subtracting the known
message mi from m′i.

m′i −mi = E′π(K,ni)− Eπ(K,ni) = ∆Eπ (mod p)

Thus, we obtain a difference ∆Eπ, which can be utilized
for key-recovery, as detailed in Section 4. We note that

Further
computation

Figure 3. Exploiting SASTA for Authenticated Transciphering using AES-
GCM.

generating the differential relies on the ability to compute
m′i − mi from the returned output. Hence, the function to
be evaluated has to be invertible. This is further discussed
in Section 7. However, this limitation does not apply to the
extended attack on AT, which is independent of the choice
of the function, as detailed in Section 3.4.

3.4. Extending to AT

In this section, we extend SASTA to an AT setting.
As described in Section 2.3, AT is used to ensure data
integrity in HHE. This is important to guarantee that the
result obtained by the client is for the intended data and
not faulty data. In [1], [6], the authors propose AT using
schemes on boolean data (e.g., GRAIN128, AES); however,
these can also be replaced by the new schemes over integers
for efficient computation. Therefore, we keep the discussion
in this section generic to any scheme utilizing the GCM-like
mode for authenticated encryption and data integrity.

We propose mounting SASTA during the very first
permutation call (Eπ) of any new encryption since it is only
used for tag generation and does not affect the subsequent
ciphertext generation, as shown in Figure 3. The stepwise
description is provided in Table 5. This is useful as a lack
of dependence on ciphertexts frees us from the limitation on
f() being invertible (Section 3.3). Note that the associated
data absorption and encryption part is shown only as a gray
box in the figure as we do not alter or influence its output via
our attack, and the security of AES-GCM does not rely on
it being unknown. Hence, the output (ADEi a.k.a. GHASH
result) of this computation stays the same on both the client
and server-side computations, and the attacker only needs
to know this output.

As mentioned in the previous section, for the scheme
over boolean data (Z2), the modular addition/subtraction
shown in the equations is replaced with XOR. Following
Lemma 1, the faulty tag computation on the client side can
be expressed as follows (Table 5 i ).
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Client Server
Initialization

Encryption using SE
ciSE = mi + Eπ(K,ni)
ADEi = GCMpartial(Eπ , ciSE ,K) //Black-box
Tag′i = E′π(K,ni)⊕ADEi i
Send ciSE , ni, and f() → → ciSE , ni, and f()

Homomorphic SE Decryption Circuit Evaluation (HSD)
Function Evaluation

Result Decryption
If Tag′i == FHEDec(TagiFHE

)sK : ii
f(mi) = FHEDec(c

′
iFHE

)sK
TABLE 5. ALGORITHMIC DESCRIPTION OF THE FAULTY COMPUTATION

DURING AUTHENTICATED TRANSCIPHERING.

Tag′i = ADEi + E′π(K,ni) (mod p)

This is followed by the encrypted (fault-free) tag computa-
tion on the server side, as shown below:

Tagi = ADEi + Eπ(K,ni) (mod p)

Since the tag is encrypted, the server sends it to the client
for verification, and the client obtains a differential with-
out requiring nonce-repetition thus keeping with our threat
model (shown in Table 5 ii ).

∆Tagi = Tag′i − Tagi (mod p)

= E′π(K,ni)− Eπ(K,ni) = ∆Eπ (mod p)

This obtained differential can subsequently be used for
key-recovery. Observe that the differential obtained here is
the same as Theorem 1. Therefore, the same key-recovery
techniques can be utilized.

4. Leveraging SASTA: Key-Recovery Case
Studies

In this section, we present an end to end key-recovery
attack on a variety of ciphers with unique constructions
to show the impact of SASTA. We provide detailed case
studies for each of the targeted ciphers- AES, PASTA,
MASTA, HERA, and RASTA. In each study, we identify
critical Fault Injection Points (FIPs) which can help exploit
the differential (Section 3.3 or Section 3.4) for key-recovery.

4.1. Cracking PASTA’s Defenses

The PASTA-4 permutation is shown in Figure 4. It con-
sists of four rounds each comprising an Affine Layer A(), a
Mixing layer Mix() and S-box S′/S(). The state is treated as
two concatenated vectors (Xi||Xj) and is initialized with the
secret key. Affine transform performs matrix-vector (state)
multiplication and round constant addition to the state. The
Mix is used to combine the results of the two partial vectors
in the state. All of these transforms are completely reversible
and can be traced back to the initial state (secret key).
Hence, to prevent trivial round-inversion, at the very end

Figure 4. The attack strategy and fault injection point for PASTA-4 permu-
tation (KS = Eπ(K,ni)).

a truncation is done, and only one of the vectors in the
state is given as the final output (KS = Eπ(K,ni)). For
a brief understanding of PASTA permutation please refer to
Section A.

Several candidate FIPs exist for inducing a fault such
that it diffuses widely throughout the PASTA-4 permutation
(Figure 9). For instance, introducing a fault before the final
S operation will result in its diffusion across the entire state
due to the subsequent matrix multiplications (A8/9) and
Mix steps. However, post-experimentation, we concluded
that this differential alone will not lead to a unique key-
recovery, as multiple keys can fulfill the condition of ob-
taining a specific differential after a fault injection. Thus, it
would necessitate multiple such faults to eliminate potential
key guesses. Therefore, we resort to seeking alternate fault
injection points.

We induce a fault in the matrix to be multiplied during
step A9, as depicted in Figure 4. If we denote the input state
after the last S operation as X8||X9, the fault-free result is
as follows.

Eπ(K,ni) = Trunc(Mix(A8(X8),A9(X9))) (1)
Eπ(K,ni) = 2 · (M8 ·X8 +RC8) + (M9 ·X9 +RC9)

(2)

The Trunc operation prevents easy round inversion for key-
recovery. After fault injection, we obtain the following:

E′π(K,ni) = 2 · (M8 ·X8 +RC8) + (M′9 ·X9 +RC9)
(3)

∆Eπ = ∆M9 ·X9 (4)
X9 = ∆M−19 ·∆Eπ (5)

Lemma 3. Uniquely Recovering X8||X9 implies full key-
recovery of key K.

Proof. The permutation consists of matrix multiplications
with invertible matrices, and the remaining linear operations
are inherently invertible. Therefore, a one-to-one mapping
exists between the initial input state K, public variables
n, i, and intermediate state X8||X9. This mapping is based
on the fixed round operations in between and the public
XOF outputs (Mi, RCi). If we can obtain X8||X9 uniquely,
then this will lead to a unique key-recovery because all the
operations in the permutation are invertible.
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Theorem 2 (Unique Key-recovery). Given that ∆M9 is
known and invertible, the SASTA attack strategy leads to a
unique key-recovery for PASTA.

Proof. To understand this, let us categorize the variables in
the above equations into two types- known and unknown.
The only unknown variables are the states halves X8 and
X9. We know E′π(K,ni), ∆Eπ, and consequently Eπ(K,ni)
due to faulty client-side computation of permutation and the
differential obtained from the server (∆Eπ). The matrices
M8,M9 and round constants RC8, RC9 are generated using
the Extendable Output Function (XOF), e.g., KECCAK. The
inputs to XOF are nonce and counter, which are public.
Hence, these variables are also known.

If we can use a fault to recover intermediate states
X8, X9, it would lead to a complete key-recovery
(Lemma 3). Truncation (Equation 2) prevents this inversion
from the final state to the initial state (K) by hiding half
of the final state. To do this, we will recover X9 using
Equation 5, given that ∆M9 is known and invertible. We
can use this information to recover X8 from Equation 3,
mitigating the truncation, thus leading to a unique key-
recovery.

∆M9 is the difference caused by fault injection in the
matrix M9, and its value is known due to known-fault posi-
tion (the location of the instruction-skipped or bit-flip). For
ensuring invertibility with high probability [40], we discuss
next how we choose appropriate fault injection points.
Locating the Interesting FIPs
Ensuring ∆M9 is invertible after a fault is crucial for
determining the appropriate FIP. For this, we look for FIPs
that lead to a full matrix diffusion as evidenced by studies
[18], [40], [56] which indicate the probability of random n
dimensional square matrices being invertible is close to one
(
∏n

k=1(1−pk−1−n) < 1− 1
p where p is the modulus). Since

the fault induced is fairly random, with high probability, we
can ensure ∆M9 has no linear dependencies and is thus
invertible.

To induce such a fault, we identify the KECCAK (dis-
cussed in item C) permutation (XOF) as a viable option. A
fault in the XOF function, just before it generates M9, leads
to a full matrix diffusion. This exploits KECCAK’s diffusion
property against HHE. Observe that this does not require
a specific fault, for example, skipping a very particular
instruction. The sole requirement is knowing which fault
is induced so the attacker can know the value of ∆M9.

4.2. Analyzing MASTA

The MASTA [34] scheme design was introduced con-
currently with PASTA and can be viewed as a direct adap-
tation of RASTA [19], originally defined over Z2, to Fp.
As outlined in Section A, MASTA incorporates two primary
functions in its permutation: the χ S-box and the affine
layer Ai (illustrated in Figure 10). The matrix used for
multiplication within Ai is generated in a manner similar to
PASTA, ensuring it is invertible by design. In the last round

+

Figure 5. The fault injection points for inducing a fault in HERA or RUBATO
permutation before final add-round-key.

r, if the state with t elements after the last S-box is denoted
as Xr, then the final result following the permutation is
expressed as follows:

Eπ(K,ni) = Ar(Xr) +K (mod p) (6)
Eπ(K,ni) = Mr ·Xr +RCr +K (mod p) (7)

The fault is induced in the matrix Mr (Figure 10), and
the resulting differential is as presented below:

∆Eπ = Mr ·Xr − M′r ·Xr (mod p) (8)
∆Eπ = ∆Mr ·Xr (mod p) (9)

Theorem 3. Given ∆Mr is known and invertible, the
SASTA attack strategy leads to a unique key-recovery for
MASTA.

Proof. Similar to the case of PASTA, the only unknowns in
the above equations are Xr and K. Given that the difference
matrix is invertible and known, Equation 9 can be used to
retrieve Xr. No truncation is done here; instead, the key is
added in the end, as shown in Equation 7. This gives us an
interesting opportunity to directly retrieve the key K using
the previously obtained Xr. Hence, no round inversion is
required, and because matrix Mr is invertible, a unique key
is obtained.

Regarding constraints on ∆Mr in Theorem 3, we can
apply the same argument as that is used for PASTA, asserting
that with a high probability (close to 1), ∆Mr will be
invertible. Hence, MASTA is susceptible to SASTA, with
the key-recovery process significantly simplified due lack
of truncation and the last add-key operation.

4.3. Extending Attack Strategy to HERA

HERA [17], as elaborated in Section B, takes a slightly
different design approach and uses a pseudo-key-schedule,
where the XOF output vector (RV ) is multiplied with the
key and then added to the state (X). This is followed by the
affine layer, which has constant matrices, unlike PASTA and
MASTA. A fault in the last XOF call utilizing RVr for state
Xr (Figure 5) would result in the following equations:

Eπ(K,ni) = Xr +RVr ·K (mod p) (10)
∆Eπ = RV ′r ·K −RVr ·K (mod p) (11)
∆Eπ = ∆RVr ·K (mod p) (12)
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Theorem 4. Given ∆RV r is known and fully diffused, the
SASTA attack strategy leads to a unique key-recovery for
HERA.

Proof. The invertibility constraint was required in the case
of PASTA and MASTA because the differential was a matrix
(∆Mr). In the case of HERA, the known difference is simply
a vector ∆RV r, hence recovering key K, using Equation 12,
only involves solving simple linear equations. Thus, the
invertibility constraint is relaxed in this setting, and similar
to MASTA, no round inversion is required, which further
simplifies the key-recovery.

In previous cases, a small fault in the XOF output vector
led to a fully diffused matrix due to the matrix generation.
This implies that diffusion is dependent on both XOF and
matrix generation. However, in the case of HERA, the XOF
output vector (RV ) is directly utilized instead of being
employed to generate a matrix. Consequently, diffusion is
solely dependent on the XOF. Hence, we rely on attacks
that skip the first few values produced by the XOF call to
populate the vector. This results in a shifted vector that offers
adequate diffusion. It can be noted that this FIP is a small
subset of possible FIPs for PASTA and MASTA. Equation C
explains how the big set of FIPs used in previous cases can
also be utilized for HERA.

4.4. The Curious Case of RUBATO

The design of RUBATO [35] (Section C) is heavily
influenced by HERA and PASTA. Even though the design
is very similar, RUBATO cannot support schemes over inte-
gers Zp like BGV and BFV that are supported by PASTA,
MASTA, and HERA. It can only support a scheme that does
approximate arithmetic- CKKS. The reason being use of
additive Gaussian noise (GSN ) at the end of the HHE
routine, which modifies the Equation 10 as follows:

Eπ(K,ni) = Xr +RVr ·K +GSN (mod p) (13)

After fault injection, the differential is expressed as follows:

∆Eπ = ∆RVr ·K +GSN (mod p) (14)

The GSN introduced during encryption is not removed
during decryption and remains in the data throughout the
homomorphic operations. This inherent noise leads to a
precision loss, rendering the data unsuitable for precise
integer arithmetic and confining its utility to CKKS [15]. On
the other hand, this error enhances the security guarantees,
transforming the problem into an LWE problem. This is
precisely why the authors opt for low multiplicative depth
per round and fewer rounds in the scheme.

Observe that the differential obtained is an LWE sample.
In the DFA fault scenario, the attacker possesses knowledge
of plaintext and ciphertext pairs. However, the introduction
of noise disrupts this assumption, transforming the message
into an unknown value due to the addition of GSN . Hence,
SASTA cannot exploit RUBATO for plain modes. However,
since no noise can be added to tag computation during

the homomorphic authenticated decryption process, RU-
BATO can be exploited if GCM-like authenticated encryption
modes are used.

4.5. Applicability of SASTA to RASTA

Until now, we explored state-of-the-art HHE scheme
over Fp; however, we note that the SASTA technique is
quite general and can also be applied to schemes over
Z2. The only dependency being that there are much fewer
invertible matrices in Z2 [40]. Therefore, it is more probable
that the differential might not result in unique key-recovery,
which would require an exhaustive search over the reduced
key space. Alternatively, multiple faulty ciphertexts can also
help converge to a unique key.

We analyzed RASTA [19] to obtain the differential as
follows.

Eπ(K,ni) = Ar(Xr)⊕K (15)
Eπ(K,ni) = Mr ·Xr ⊕RCr ⊕K (16)

∆Eπ = Mr ·Xr ⊕ M′r ·Xr (17)
∆Eπ = ∆Mr ·Xr (18)

As discussed in Section A, RASTA has the similar design
principles as MASTA [34]. The implementation of RASTA
also uses KECCAK for XOF, hence making it the appropriate
FIP as done in the previous cases. It results in the desired
difference for SASTA and leads to a unique key-recovery,
using the Theorem 3.

4.6. Exploiting AES via Known Approaches

With AES having been a standard for over two decades,
numerous studies have analyzed it using DFA [3]–[5], [30],
[38], [51], [58], [61]. These works also include both single
or multiple-fault-based key-recovery techniques [3], [61],
[30], [38], [51]. Most of these techniques do not even rely on
known fault conditions. The FIPs employed in these studies
can be utilized to realize SASTA. Consequently, SASTA
can be employed to extend the same attacks in an HHE
setting with weaker assumptions, due to non-reliance on
nonce-reuse.

It is crucial to mention that DFA methods requiring
multiple fault injections also depend on both fault-free and
faulty ciphertext pairs for the same nonce. However, with
SASTA, the nonce-reuse assumption is relaxed, making
such attacks feasible in practical scenarios. Therefore, in
the context of AES, SASTA does not restrict the number
of possible fault injections to one, and existing unique key-
recovery techniques that require multiple fault injections
for AES-256 [4], [5], [30], [38], [51] can be utilized. This
is because these works only require faulty and fault-free
ciphertext pairs under the same plaintext and nonce, as
provided by SASTA.

Overall, in this section, we elaborated how SASTA can
be utilized to mount DFA resulting in full key-recovery on
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the standard (AES-GCM) as well as state-of-the-art con-
structions (RASTA, PASTA, MASTA, and HERA). For all the
above case studies, we only considered fault attack surfaces
on client-side. However, for the sake of completeness, we
also analyzed possible FIP on the server-side computations
detailed in Figure C. We emphasize that attacking the
client’s device is a more realistic setting and is generally
the target of all prior works.

Next, we will present the fault injection attack experi-
ment resulting in practical key-recovery.

5. The Ambush: Fault Attack Demonstration

HHE employs symmetric key schemes for reduced com-
putation and communication overhead, enabling it to be
executed on resource-constrained embedded devices. We im-
plement SASTA on one such constrained embedded device,
specifically the ATXmega128D4-AU on the ChipWhisperer-
Lite CW1173 evaluation board4. It is an 8-bit Harvard
architecture RISC single-chip off-the-shelf microcontroller,
which runs lightweight schemes like the TINYAES. Similar
to prior fault injection works [59], we also utilize the
opensource ChipWhisperer toolchain5.

Given the limitations of this device, it is infeasible to
perform an entire conventional client-side FHE computa-
tion. However, the use of HHE makes this possible6. To
illustrate the potential of HHE in enabling FHE utilizable
encryption on resource-constrained devices, we have suc-
cessfully implemented and executed the HERA algorithm on
the ATXmega128D4-AU. This is essential for the develop-
ment of secure and efficient encryption solutions for a wide
range of applications. Next, we will discuss how we induce
known faults in KECCAK, and ambush the implementation
of HERA.

5.1. Fault Injection Technique

The SASTA attack model does not require a specific
fault, and the attack strategy solely relies on the ability
to determine the faulty output. Several works in the liter-
ature [9], [12], [22], [48], [59] have validated its feasibility.
Hence, there are no constraints on the type of fault or the
specific operation it affects. It can be introduced at any point
within the extended execution of the KECCAK permutation.
Moreover, we can estimate the position of the fault within
a few possible locations (discussed in Section 5.2). As a
result, we can further relax the requirement for knowledge
of the instruction affected by the fault.

To successfully demonstrate fault injection on the KEC-
CAK permutation we use the FIPS202 standard implemen-
tation [26]. Our target platform is CWLITEXMEGA, and
we employ clock-glitching to induce faults. The design runs
as firmware at the default clock frequency of 7.38 MHz. The

4. https://rtfm.newae.com/Targets/CW303%20XMEGA/
5. https://github.com/newaetech/chipwhisperer
6. The ChipWhisperer opensource toolchain runs AES firmware and

hence can support AES-GCM mode.
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Figure 6. The sample fault injection attack positions targeted in our work.
The first position is the beginning of KECCAK permutation, and the second
is where the results of permutation are written to the final buffer

fault is mounted on the client’s device with the target set
to the KECCAK based XOF. The KECCAK function call has
three sub-calls: absorb, permute, and squeeze. The absorb
call places the input into the KECCAK state, the permute
call runs the permutation, and the squeeze call returns the
output.

Figure 6 illustrates the power trace and the two specific
locations where we injected our attack. The first location
corresponds to the start of the KECCAK Permute operation.
Injecting a fault here resulted in skipping this particular
instruction, causing the output from the preceding permuta-
tion to be refed. The second known fault injection point is
towards the latter stages of the KECCAK Permute operation.
This led to a shifted version of the non-faulty KECCAK
output, providing a known fault. For the latter case, we made
minor changes to the FIPS202 implementation to simplify
the attack. Since the input to the KECCAK is known and
public, after the fault injection, the difference, ∆ (in Mr or
RVr) required for key-recovery also becomes known.

These two known fault injection points serve to demon-
strate the feasibility of known fault injections on microcon-
trollers. Similarly, voltage glitches [59] can also be utilized
to mount precise attacks during storage of KECCAK inter-
mediate states. It is essential to note that precise faults, such
as bit flips within the KECCAK state, can also be mounted on
FPGA implementations, showcasing versatility. We further
tested the effectiveness of duplication countermeasures.

5.2. Attack and Key-recovery

To showcase a fault injection resulting in full key-
recovery, we analyze the HERA firmware. This is because
the available interesting FIPs for HERA are a subset of
those required for RASTA, PASTA, and MASTA (as discussed
in Section 4.3). Hence, an attack on HERA would also
showcase practicality of SASTA on the other schemes.
Figure 7 displays the power trace for the final Add-round-
key operation. As we aim for the entire state to be faulty, we
introduce a known fault at the beginning of the computation.
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Figure 7. The first diagram illustrates the fault induction during the last
HERA ARK operation. The second diagram presents an enlarged view of
the normal and faulty computations following the clock glitch. Please note
that these traces have been extracted from the original extensive plot, and
the x-axis is relative.

This known fault skips the initial few KECCAK squeeze
outputs, causing the resulting XOF output to shift and
provide the necessary fault diffusion. We then employ the
strategy discussed in Section 4.3 and utilize this known
single fault to recover the secret key. This attack does not
require any nonce repetition due to the HHE setting, making
it highly effective.

Our attack does not necessitate power traces shown in
Figure 7. These power traces are merely used to demon-
strate the fault injection points, and its effect on the power
consumption. The power analysis attacks are more complex
and require specialized equipment and expertise than fault
attacks. Therefore, as described in the attack model, our
attack only requires an attacker to be capable of inducing
faults during the execution of SE Encryption.

5.2.1. Identifying successful fault injection. From our ex-
perimentation, it became evident that not all fault injections
yield a faulty result. Identifying this is easy as the difference
(∆Eπ) will be zero. When an effective fault is induced,
our model necessitates knowledge of the specific operation
affected. Numerous works in the literature [9], [12], [22],
[48], [59] have shown that this can be done with high
precision. We also demonstrated this in our experimentation
above.

In cases where attackers lack access to precise fault
injection techniques, an alternative approach can be em-
ployed. Attackers can induce an unknown fault and rely on
the fault injection range within which the fault is triggered.
Since the firmware is known, the attacker can simulate all
the faults in an XOF emulation within the attack range,

recovering potential faulty outputs and corresponding key
guesses. Finally, they can uniquely recover the actual key
with just a single fault-free encryption result.

In conclusion, while the successful execution of the
HERA algorithm on the ATXmega128D4-AU highlights the
potential of HHE, the SASTA ambush emphasizes the
importance of reevaluating these solutions, particularly the
HHE protocol, against realistic attack settings. This is cru-
cial to ensure their robustness and effectiveness in real-world
scenarios.

5.3. Empirical results for key-recovery

This section explores the attack specifics and outcomes.
We first examine how the attacker determines the time offset
for fault injection. Subsequently, we explore the duration
and range of the attack, ultimately resulting in unique key-
recovery.

The only non-constant portion in the execution of all
the HHE schemes is the rejection sampling, which for a
known prime has a fixed average rejection rate. It enables
the attacker to estimate a good time offset, and we reiterate
that an attacker can induce the fault anytime in the entire
KECCAK permutation. Thus providing a broad attack win-
dow with a 92% success probability for faults resulting in
an exploitable differential.

Depending on the scheme and prime selection, the attack
duration, during which faults can be induced, varies from
4% to 18% of the total execution time of HHE on the client
side, offering potential extension to earlier rounds as an
intriguing future scope. The high success probability of the
fault, attributed to its non-specific instruction skip nature,
makes it particularly effective when induced during the
first KECCAK permute call in the Matrix/Vector generation
phase.

Following the attack overview outlined in Section 4, our
primary target is the HERA scheme, which exhibits unique
key-recovery. This characteristic also applies to RASTA,
MASTA, and PASTA. As detailed in Table 1, we evaluate the
128-bit secure variants PASTA-3/4, MASTA-4/5, RASTA-5/6,
and HERA-5, achieving unique key-recovery (100% success
probability once the single known fault has been realized).
It only requires the encryption of one message block on the
client side. Our key-recovery takes significantly less time
than prior works, and our proposed attack model allows
a weaker and more practical attacker setting. Furthermore,
we have verified that our results remain unaffected by the
end-to-end protocol, as our attack specifically targets the
symmetric-key encryption and decryption part of the HHE
protocol.

6. Countermeasure analysis

In this section, we will discuss several countermeasures
that can be applied to protect HHE against SASTA. While
fault attack defences for AES have already been explored,
to defend the new SE constructions against the attack, the
following countermeasures could be utilized. The techniques
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discussed next offer immediate solutions; however, a more
comprehensive and algorithmic approach would be ideal for
securing HHE against potential fault attacks.

6.1. Pregeneration and Storage

One potential countermeasure against SASTA involves
the offline pregeneration and storage of XOF output. This
technique works effectively for RASTA and HERA as the ma-
trices hold boolean data in the former case, and in the latter
case, the XOF output is always a vector and is never used
for matrix generation. However, for PASTA and MASTA,
this is challenging due to the large amount of XOF output
and matrix storage needed. To put this into perspective, the
storage demand for just one PASTA-4 permutation matrix is
approximately 22KB. Given that this data changes with each
iteration, generating and storing such substantial volumes
of data can lead to significant storage expenses, especially
from the client’s perspective. Thus, more effective mitigation
techniques are essential.

Another way to achieve this is by interleaving the ran-
dom vector generation for all matrices in the schemes itself.
In doing so, any fault introduced would propagate across all
vectors, effectively scrambling the entire state much earlier
and rendering the fault unexploitable. However, a bit-flip
fault affecting a specific random vector would still lead to
a fault attack, as the matrix generation would spread the
fault. Hence, we conclude that this is not the most effective
countermeasure for PASTA and MASTA.

6.2. Redundancy and fault detection

In the long run, redundant computations would be a
more suitable countermeasure to make the attack hard for an
attacker. This duplicate computation will only be required
for the last round. Along with redundancy, we propose to
employ multiple checks at every stage of the last round
to ensure fault detection. Note that redundancy is not the
ultimate solution as the attacker can bypass the checks, but
they need many precise faults. This increases the required
strength for mounting an effective fault attack. With a certain
degree of redundancy, we can ensure the security of the
design in a realistic scenario.

6.3. Infective Countermeasure

Since fault detection can be bypassed by a stronger
adversary, infective countermeasure [31] proves to be more
reliable. Towards this, we employ an XOR-based detection
mechanism. The last round is duplicated, and at every stage,
the two duplicate computations are XORed. This XORed
result is ANDed with two random vectors, and the result
is XORed back to the two duplicated states. This happens
after the Affine and Mix transform. If there is no fault,
the XOR result will always be zero. Hence, AND with the
random vector will also be zero, and the last XOR would
not affect the states. On the contrary, if there is a fault,
the values XORed back to the state would introduce random
unexploitable garbage in the result.
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Figure 8. A comparison of latency and storage for different PASTA im-
plementations (with or without countermeasures). The four highlighted
implementations are effective countermeasures against SASTA.

6.4. How do masked implementations behave un-
der SASTA?

Masking is a technique employed to protect against
side-channel attacks, such as differential power analysis.
This involves splitting the secret into multiple shares and
processing each share separately, ensuring that these shares
are never combined directly at any intermediate stage. In our
case, the secret is the key (K); hence, all the computations
involving the key would have to be masked. This involves
only the key-dependent block. Since the scheme only has
additions/subtractions or multiplication, additive masking
will be used. In contrast, the XOF, which is the attack
target, is not key-dependent and hence will not be masked.
Therefore, SASTA would not be affected by masking. Note
that, in the current literature, no masking scheme is proposed
for any HHE scheme. Hence, we only analyze the effect of
a possible additive masking.

Countermeasure Performance Evaluation

We report performance evaluation results based on
the reference implementation provided by the authors
of PASTA [21]. The baseline implementation consumes
274,203 clock cycles on average for 100,000 executions
of PASTA-Eπ. The implementation results are reported for
the 12th Gen Intel i7 CPU. In Figure 8, we estimate the
cost of countermeasures regarding latency and required extra
storage. For storage requirements, we estimate the cost in
terms of maximum state and intermediate variable storage
required at any point in time during the PASTA-Eπ execu-
tion. From Figure 8, it is evident that the Redundancy and
Infective countermeasures offer the best latency vs memory
trade-offs. For protection against both SCA and SASTA, we
propose using both masking and infective countermeasures
with slightly extra overhead.

6.5. Algorithmic Countermeasures for AT

To protect against an attack on AT, it is best to ensure
that the tag sent by the server cannot be utilized to form the
differential required for SASTA (Section 3.4).

One performance-hungry way to ensure this is by send-
ing the tag to the server, and the server can run an encrypted
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equality check computation as discussed in [1]. Hence, this
incurs a computation overhead on the server side. While
the attacker is able to see the result, it is not exploitable
(we need the faulty tag to obtain the differential), thus
safeguarding against SASTA.

However, this approach has the caveat when utilized by
schemes like BGV [11], FV [23], or CKKS [15]. Since these
schemes cannot compute comparisons or perform other non-
polynomial operations, they use function approximations,
which do not always return a fully accurate result and
sometimes fail for values distributed over a large range.
Consequently, there is a scope for error even when there
is no fault.

Another problem associated with this approach is its
reliance on the server doing an actual expensive tag ver-
ification instead of simply returning an encryption of 1’s
(equality check result). However, since in our threat model,
we assume an honest but curious server, this is not an issue.

Another better approach that forces the server to at least
correctly decrypt the data would be to pass the generated
tag through an arithmetic hash function. So, on the client
side, the hash of the tag is matched instead of the actual tag.
Since hash functions are one-way, a faulty hash cannot be
traced back to the actual fault or fault-free value. Therefore,
we conclude that this approach is perhaps the best to protect
against SASTA on the GCM mode of operation.

7. Limitations and Future Scope

In this section, we present the limitations of SASTA
on the plain HHE protocol, which offers directions for
future research. The first limitation is that SASTA cannot
be directly extended to RUBATO due to its use of Gaussian
error, leading to noisy but secure encryption (discussed
in Section 4.4). It would be interesting to explore if this
security measure can be bypassed, possibly with multiple
fault injections [59].

Another limitation of our approach is its dependence on
the function f() being evaluated. SASTA depends on the
ability to infer the message m′ from the ciphertext f(m′)
returned by the server as we need to be able to calculate
m′ −m using the output from the server. The function f()
does not have to be an identity function and can be any
invertible function.

However, if f() is complex and reduces the output space
to a few classes (e.g., in machine learning for classification),
then the differential obtained cannot be exploited with a
single query, and it is challenging to retrieve the input
from the result of such functions. In essence, SASTA’s
applicability is tied to the properties of the function f(),
which determines the ability to retrieve the input from the
output.

Such a limitation also exists for prior works targeting
FHE schemes [43]7. Hence, a natural extension to our work
could be generating differentials for other function classes,
which warrants future investigation. However, we would like

7. It led to CKKS [15] being IND-CPAD secure and not IND-CPA.

to note that for the extension on AT, we no longer depend
on f(). The reason for this is that the tag is not part of the
function evaluation but is only used to verify data integrity.

In summary, the identified limitations in SASTA open
up promising avenues for future security analysis of privacy-
enhancing techniques, specifically HHE protocol and AT.

8. Conclusion

In this work we introduce a novel fault attack tech-
nique called SASTA, designed for mounting DFA-based
fault injection attacks on HHE. Traditional DFA attacks
require at least two ciphertext computations with fixed nonce
and plaintext assumptions. This is so that fault-free and
faulty ciphertext can be obtained under the same plaintext
and public parameters to form an exploitable differential.
However, SASTA eliminates the need for such assumptions,
thus making the attack model realistic and practical.

We apply SASTA on standard scheme AES, as well as
new high-performance HHE, tailored SE schemes- RASTA,
PASTA, MASTA, and HERA. SASTA is also easily extend-
able to AT. We validate this approach experimentally by
executing a fault injection attack on an off-the-shelf mi-
crocontroller running HHE firmware. This proof-of-concept
demonstrates that an entire key can be recovered with just
a single fault in a few seconds. Finally, we conclude by
analyzing potential countermeasures to defend HHE as well
as AT implementations against SASTA. We also discuss the
limitations of our work, which present interesting avenues
for future research.

Our work advances the field by introducing a novel
attack model, demonstrating vulnerabilities in the HHE
protocol, and lays the foundation of fault analysis of HHE
without nonce-reuse.
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Appendix

AES-GCM is a standardized AEAD scheme used in
TLS protocols. It uses the GCM mode along with the AES
symmetric-key scheme. The GCM mode is widely adopted
in applications for its performance and is not restricted
to AES. Any SE scheme can be used to replace AES in
this mode to offer AT in the context of HHE. Since AES
is a well-known standard, in this section, we will give a
brief idea of new SE schemes design. For this, we choose
PASTA [21] due to its comprehensive support for various
operations. Other designs can be viewed as adaptations or
variations of PASTA and will be discussed afterwards.

In the context of HHE, the variables can be categorized
into two types: public and private. As illustrated in Figure 1
and Figure 9, both the nonce (n) and the counter (i) are
considered public data, as they are known to both the
client and the server. In contrast, the key (K) is private
and exclusively known to the client. For HSD, this key is
encrypted and securely transmitted to the server as KFHE

(done only once in the beginning). Hence, both K and the
client’s message (mi) remain concealed from the server.

Figure 9. The PASTA-4 permutation (π) takes as input the key (K), nonce
(n), and counter (i), and ultimately generates the truncated result- key
stream (KS).

With the public and private variables clearly defined,
we now describe the PASTA scheme. It operates as a stream
cipher and comprises two variants: 3-round PASTA-3 and 4-
round PASTA-4. Figure 9 demonstrates the PASTA permuta-
tion (π). It is important to note that the operations outside the
square box, denoted as XOF (extendable-output function),
are public. SHAKE128 is used for this. Contrarily, the oper-
ations within the box are considered private (key-dependent)
and involve either addition or multiplications using modular
arithmetic in Zp. Here, p can be any prime between 16
and 60 bits depending on the specific requirements of the
underlying FHE scheme.

The state size (2t) varies between the PASTA-3 and
PASTA-4 variants of the scheme. Specifically, for PASTA-
3, 2t = 128 coefficients, while for PASTA-4, it is 64. These
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2t coefficients are divided into two halves, XL and XR,
and then processed via permutation. The resulting KS is
added to the plaintext for encryption and subtracted from
the ciphertext for decryption. The permutation consists of
several layers that are applied in each round, described as
follows:

• Ai (Affine Layer): For this layer, an invertible matrix
Mi and a round constant vector RCi are generated
using the SHAKE128 XOF output. Then, the layer
performs Mi ·Xi +RCi operation, where Xi repre-
sents the input state comprising t coefficients.

• Mix (Mixing Layer): Following Ai, the two halves
of the state are mixed using the Mix operation. This
operation transforms the state into (2 ·XL +XR, 2 ·
XR +XL). This step is crucial for spreading values
evenly across the two-state halves.

• S′/S (S-Box Layer): The next layer involves the
S-Box operation. For the final round, the cube S-
Box (S) is applied, while for all previous rounds, a
Feistel S-Box (S′) is utilized. Both these s-boxes are
invertible.

S(Xj) = (Xj)3 (mod p) ∀ 0 ≤ j < t

S′(Xj) =

{
Xj (mod p) if j = 0,

Xj + (Xj−1)2 (mod p) otherwise,

• Truncation Layer (Trunc): This is applied at the
end (pre-final) and truncates the output to prevent
round inversion. It returns the XL state as the final
output.

1. MASTA and RASTA design overview

+

Figure 10. The r-round MASTA permutation. The ‘+’ sign in the box refers
to modular vector addition.

MASTA [34] follows a slightly different approach as
shown in Figure 10. It does not split the state into two halves
like PASTA and comprises only two primary layers: the
affine layer and the S-box layer. The affine layer of MASTA
is similar to that of PASTA; however, MASTA employs χ-S-
box (Equation 19). The pre-final step is the most significant
distinguishing factor between PASTA and MASTA. While
PASTA opts for truncation at this stage, MASTA employs
modular addition with the key. Both PASTA and MASTA
are versatile and can support operations over Zp, making
them suitable for BGV and BFV. RASTA [19] is similar to

MASTA with the only difference being operation over Z2

and the choice of S-box.

Sχ(X
j) =

{
Xj (mod p) if j ≤ 1,

Xj +Xj−1 ·Xj−2 (mod p) otherwise,
(19)

2. HERA design overview

+

Figure 11. This figure gives a general idea of HERA and RUBATO permu-
tation. The ‘+’ and ‘·’ signs in the boxes refer to modular vector addition
and modular vector dot product.

HERA [17] adopts a distinct approach compared to
PASTA and MASTA (as shown in Figure 11). It comprises
five rounds, all utilizing cube S-boxes. The primary distin-
guishing feature of HERA is its approach to the affine layer.
In this layer, matrix multiplication (MC|MR) utilizes constant
low-hamming weight matrices, while the addition of round
constants is transformed into an add-round key function. For
this, the output of the XOF is multiplied by the encryption
key, creating a key-schedule-like effect. After the S-box (SB)
operation, every round adds this derived key to the state.
Importantly, HERA can be applied to FHE schemes over
both integer arithmetic Zp (BGV and BFV) and approximate
arithmetic R,Fp (CKKS).

3. RUBATO design overview

RUBATO [35] was developed after PASTA and HERA,
utilizing design principles from both schemes (Figure 11).
Specifically tailored for CKKS FHE scheme, RUBATO em-
ploys the same design philosophy as HERA. However, it
deviates from HERA by employing feistel S-boxes instead
of cube S-boxes for all rounds. In its pre-final step, RUBATO
utilizes truncation like PASTA and adds Gaussian noise,
making the ciphertext dependent on the hard problem of
LWE. This, in turn, limits its use case to CKKS and intro-
duces an inherent precision loss in the computation.

The matrix multiplication required for processing the
affine layers of the new SE schemes is an expensive opera-
tion. This is not a problem on the client side, as data can be
fetched and stored as desired. Contrarily, on the server side
during HSD, data is encoded/encrypted into polynomials,
which do not offer much flexibility and consume significant
multiplicative depth. To reduce this, the baby-step giant-
step method [36] is used [21], [34] for expediting matrix-
vector multiplication on encoded/encrypted data, as shown
in Section C. The matrix (M) represents encoded plaintext
data in this context, and the vector corresponds to encrypted
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ciphertext (X). t is the vector size, and t = t1 ·t2. The rotj

function rotates the input vector by j, and the diag function
gives rotated diagonals of M.

Y =

t2−1∑
k=0

rotkt2

(
t1−1∑
j=0

diagkt1+j(M)⊙ rotj(X)

)

This method involves the following crucial steps:

1) Diagonal Encoding: The diagonals of the matrix
are homomorphically encoded.

2) Rotation: Next, these encoded diagonals, which
are homomorphic plaintexts, are subject to rotation
operations.

3) Multiplication: Finally, the rotated diagonals are
multiplied with the rotated ciphertext. The result-
ing ciphertexts undergo a few more rotations and
accumulations.

The KECCAK [53] permutation function is renowned for
its role as the underlying component of the secure hashing
algorithm standard SHA-3. For the SE schemes, KECCAK,
in its SHAKE128/SHAKE256 modes, is utilized as XOF,
and its inputs are the nonce and counter values. The data
generated undergoes a process known as rejection sampling,
where it is filtered to ensure that it is smaller than the prime
modulus. This output is then used to generate matrices and
round constants in schemes like PASTA and MASTA and
obtain the key schedule for HERA and RUBATO.

The Number Theoretic Transform (NTT) [45], [60]
facilitates the conversion of polynomials from coefficient
representation to slot representation. With this transforma-
tion, polynomial multiplication has a cheap O(n log n) com-
plexity, in contrast to the expensive O(n2) complexity in
the coefficient representation. All ciphertexts and plaintexts
utilized on the server side are either stored in NTT form or
converted to it for homomorphic multiplications. The NTT
transformation can be seen as a matrix-vector multiplication
where the input polynomial is the vector, and the matrix
comprises powers of roots-of-unity.

The steps for generating the invertible matrices (Mi) of
PASTA-Eπ are as follows:

• Generate a vector of t numbers using SHAKE128
XOF. This constitutes the first row of the matrix
M0

i = [α0, α1, · · · , αt−1].
• Next, use this row to generate the remaining rows

using Equation 20 [32], [33]. This ensures that the
matrix is invertible

Mj+1
i = Mj

i ·


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · ·
· · · · · · ·
0 0 0 · · · 1
α0 α1 α2 · · · αt−1

∀ 1 ≤ j < t

(20)

As stated in Section 4.3, the diffusion in RVr completely
depends on the diffusion obtained from XOF. To understand

Figure 12. This figure shows that more KECCAK permutations for random
vector generation of HERA make it easier to target a specific vector without
affecting others, leading to a higher reduction in the keyspace.

why the FIP of inducing a fault in Keccak permutation,
used for PASTA and MASTA, may not always lead to full
diffusion, let us look at how the XOF calls work. It retrieves
values from the KECCAK output, which are then rejection
sampled. If the KECCAK output state is fully consumed,
then another permutation is done, and a new output is gen-
erated. Note that primes that lead to a high rate of rejection
sampling would require more permutations. Similarly, large
moduli would also require more permutations. Hence, the
random vector obtained would be distributed across many
permutations. On the other hand, primes that have a low
rejection rate will require fewer permutations. This is shown
in Figure 12.

When we induce a fault, we have to ensure that we do
not make the XOF results required in the previous rounds
faulty. Hence, we must induce the fault in the first permu-
tation, which is exclusive to the XOF call for RVr. This
would diffuse the fault in all the remaining permutations
as well. If the coefficients in RVr are more distributed,
more values would be faulty. Consequently, most key values
can be recovered, and the reduced keyspace becomes sus-
ceptible to brute-force attacks. To summarize, our analysis
reveals that in the case of HERA, prime moduli leading
to a high rate of rejection sampling are more vulnerable
under SASTA than primes with a lower rate of rejection
sampling. Note that this analysis is specific to fault type-
KECCAK instruction skip. Another fault type or location
could have a similar effect, such as a matrix counter skip or
skipping the matrix multiplication instruction. This will have
a success probability of 1 without any reliance on prime size
or rejection rate.

Although attacking the client’s device is more realistic
and is generally the target of all prior works, we cannot
completely rule out the possibility of the fault being induced
on the server side by a malicious insider. Hence, informing
the community about the potential of such an attack is
imperative, acknowledging that its feasibility remains an
open debate.

Corollary 1 (The mirror effect). The SASTA fault model
can be used on the server side during HSD to obtain the
differential:

∆Eπ = Eπ(K,ni)− E′π(K,ni) (mod p)

Proof. For all HHE schemes that are stream ciphers (PASTA,
SASTA, RASTA, MASTA, HERA, and RUBATO) or use
stream modes like the AES-GCM, there is a computation
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mirror effect on the client and server side. This implies that
the Eπ computation is done in the same way on both the
server and client side. The only difference being on the
server-side the Key is encrypted. Thus, a fault induced dur-
ing the server-side homomorphic evaluation of SE decryp-
tion circuit would result in faulty permutation E′π(K,ni).
This, coupled with the client’s fault-free computation, will
result in the desired differential. Hence, without any loss
of generality, the same fault model can be used by the
adversary, who could inject the faults on the server side.

Let us examine the ideal scenario where a fault (non-
zero by definition) fully diffuses only to the diagonal of the
last matrix/vector utilized in all the constructions discussed
above. The steps for generating an invertible matrix are
explained in item C. The server-side computation offers
a remarkable opportunity for attack surface, thanks to the
use of the baby-step giant-step based matrix-vector mul-
tiplication method (discussed in Section C). This method
encodes the diagonals of matrix M, or the vector in NTT
form (discussed in item C). These encoded values are then
utilized for multiplication.

When the fault is introduced on data in NTT form, it
diffuses throughout the entire plaintext after the Inverse NTT
operation. This is because of the matrix multiplication used
to reverse the transform. Since our plaintext is a diago-
nal/vector, the fault spreads to the whole diagonal/vector.
For practically inducing this known fault, an instruction skip
fault during the NTT transform is sufficient, as the values
are public. Such a fault can be induced with high precision
as shown in [9], [12], [22], [48]. However, attacking the
server-side computation can be challenging due to limited
opportunities and constraints.

Although the fault can be introduced on both the client
and server side (Corollary 1), it is more realistic that the
attacker gains momentarily access to one device and not
both. Hence, although we show interesting attack surfaces
on both the client and server sides, we only analyze the
schemes under the client-side fault injection points.
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