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Abstract

A multidimensional scalar multiplication (d-mul) consists of computing [a1]P1+
· · ·+[ad]Pd, where d is an integer (d ≥ 2), α1, · · · , αd are scalars of size l ∈ N∗

bits, P1, P2, · · · , Pd are points on an elliptic curve E. This operation (d-mul) is
widely used in cryptography, especially in elliptic curve cryptographic algorithms.
Several methods in the literature allow to compute the d-mul efficiently (e.g., the
bucket method [1], the Karabina et al. method [2–4]). This paper aims to present
and compare the most recent and efficient methods in the literature for computing
the d-mul operation in terms of with, complexity, memory consumption, and
proprieties. We will also present our work on the progress of the optimisation
of d-mul in two methods. The first method is useful if 2d − 1 points of E can
be stored. It is based on a simple precomputation function. The second method
works efficiently when d is large and 2d − 1 points of E can not be stored. It
performs the calculation on the fly without any precomputation. We show that
the main operation of our first method is 100(1− 1

d
)% more efficient than that

of previous works, while our second exhibits a 50% improvement in efficiency.
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These improvements will be substantiated by assessing the number of operations
and practical implementation.

Keywords: Elliptic curves, multidimensional scalar multiplication (d-mul), scalar
multiplication, complexity

1 Introduction

Elliptic curve scalar multiplication is the main operation of the elliptic curve based
algorithms such as EdDSA [5] for the signature scheme, and Elliptic Curve Diffie
Hellman protocol ECDH [6]. This operation enables the repetition of adding a point
P from an elliptic curve E to itself k times to result in a new point on E. This
point is denoted as [k]P , where k ∈ Z. Several works optimising this opera-
tion have been proposed in this context. Among these methods, one can cite the
double and add method [7], the addition subtraction method [7] and the window
method (w-method [8]). Cryptographic applications can benefit from multidimensional
scalar multiplication algorithms (d-mul). For example, the signature verification of
ECDSA [9] and the SIDH protocol [10] require a d-mul for d = 2. Multidimensional
scalar multiplication can also speed up simple scalar multiplication [4]. In recent years,
d-mul algorithms have attracted attention in this context. A d-mul takes d scalars
α1, α2, . . . , αd and d points from the elliptic curve E, denoted as P1, P2, . . . , Pd, and
produces the result [α1]P1 + [α2]P2 + . . .+ [αd]Pd, where l ∈ N∗ and log2(αi) = l for
1 ≤ i ≤ d. The best known d-mul algorithms are discussed in papers such as [2–4, 11–
15]. While [11, 13–15] focus on special cases of d, [2–4, 12] generalise d-mul for elliptic
curves.

Our contribution:

Initially, we were motivated by the usefulness of a d-mul with a small d in certain
cryptographic schemes. For this reason, we exploited the possibility of precomputation
and storage to design a first method with an efficient main operation. While preparing
this first method, we discovered newer schemes based on zkSNARK [16, 17] that
require a d-mul with a large number of scalars. In this case, our first method is no
longer applicable. Furthermore, according to [16, 17] the computation of the d-mul
is the bottleneck in zkSNARK based schemes. This motivated us to develop a second
method that doesn’t require precomputation and storage to efficiently compute a d-mul
with a large d. Our methods represent a revitalisation of the design, in contrast, to [17–
19] which focus on optimising the bucket method through software and hardware
enhancements. These methods include some countermeasures against side channel
attacks. In addition, the second method, designed for large d, is algorithmically simple
and does not require many memory accesses.

Notations:

Let a, b, x ∈ Z, and C be a matrix. In the rest of this paper, we use the following
notations:
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• [|a, b|] is the set of integers between a and b,
• HW (x) is the Hamming weight of x,
• Ct is the transposition of C,
• p is a prime number,
• K is a finite field of characteristic p,
• E is an elliptic curve defined over K,
• P∞ represents the identity of the group (E(K),+),
• A is an addition on E,
• D is a doubling on E.

This paper is structured as follows: First, we present in Section 2 a State of the Art
of the known methods for multidimensional scalar multiplication (d-mul). Section 3
introduces two new methods for efficient computation of d-mul. The first deals with the
case of a small parameter d using precomputation. It takes inspiration from Shamir’s
trick, namely when d = 2. The second method does not rely on precomputation.
Instead, it performs d-mul calculations on the fly. It processes simultaneously the bits
of scalars αi, where i ∈ [|1, d|]. In Section 5, we make a detailed comparison of the
complexity of our work with that of other existing methods. We compare some key
properties of the presented methods, with a special focus on comparing our methods
with the optimized version of Karabina et al.’s algorithms in terms of main operation
complexity, as these represent the latest advances in d-mul. This comparison concerns
the level of curve arithmetic (number of additions and doublings) and coordinate
systems (affine, projective, and Jacobian). For clarity, we refer to the methods of
Karabina et al. [2–4] as d-mul methods. We then apply the optimized version of d-mul
methods and our first method on the secp256k1 curve [20] used in ECDSA [9] and
the Montgomery curve [21] used in SQIsign [22] to compare running times for small
d. We repeat this comparison by applying the same version of d-mul methods and our
second method to the BLS12 − 381 curve [23] used in zkSNARK protocols for large
d. Note that the improvements proposed in this paper are applicable to any elliptic
curve. Our paper concludes with a summary of the results and contributions.

2 State of the Art

The d-mul problem consists of computing [α1]P1 + · · · + [αd]Pd, where d, l, and
α1, · · · , αd are integers such that d ≥ 2, l ≥ 1, with 1 ≤ i ≤ d, αi ∈ [0, 2l − 1] and
P1, P2, · · · , Pd ∈ E.

2.1 Case of d=2

2.1.1 Simultaneous Scalar Multiplication (Shamir’s trick [24, 25])

Shamir’s trick allows the computation of [α1]P1 + [α2]P2. This method is given in
detail in [26]. Let l ∈ N∗, α1, α2 be two integers such that l = log2(αi), with i ∈ {1, 2}.
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The binary representations of α1 and α2 are given by:

(α1)2 = (b
(1)
l−1b

(1)
l−2 · · · b

(1)
1 b

(1)
0 )2,

(α2)2 = (b
(2)
l−1b

(2)
l−2 · · · b

(2)
1 b

(2)
0 )2.

Note that ∀j ∈ [0, l−1],∀i ∈ {1, 2}, b(i)j ∈ {0, 1}, b
(i)
l−1 is denoted by the most significant

bit, and b
(i)
0 is the least significant bit. We define the 2× l matrix C by:

C =

(
b
(1)
l−1 · · · b

(1)
1 b

(1)
0

b
(2)
l−1 · · · b

(2)
1 b

(2)
0

)

where, for each integer k, we use [k] to express the scalar multiplication of a given
point on E by k. We remark that

[α1]P1 + [α2]P2 = (P1, P2)C


2l−1

...
21

20


= [2l−1]([b

(1)
l−1]P1 + [b

(2)
l−1]P2) + · · ·+ [21]([b

(1)
1 ]P1

+ [b
(2)
1 ]P2) + [20]([b

(1)
0 ]P1 + [b

(2)
0 ]P2).

This computation leads to the Algorithm 1, which takes as inputs:

• α1, α2 ∈ N,
• l: the size (in bits) of the longest scalar,
• P1, P2 ∈ E.

The number of additions depends on the so-called Joint Hamming Weight (JHW) of
α1 and α2 defined in [26] as the number of non zero columns in the matrix C. It is
possible to extend the JHW definition to any finite number of scalars. Since α1 and
α2 are randomly generated and have a size of l bits, then JHW (α1, α2) ≈ 3

4 l. Thus,
the main operation of this method involves l steps. At each step j ∈ [0, l − 1], one

doubling is performed, and if (b
(1)
j , b

(2)
j ) ̸= (0, 0), one addition is also performed. So

the complexity of the main operation is approximately

3

4
lA+ (l − 1)D.

For the precomputation, one addition is performed. The non-adjacent form (NAF [8])
of α1 and α2 can be used instead of their binary representations to optimize the
complexity of Shamir’s trick. In fact, NAF is one of the signed binary representations
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Algorithm 1 Simultaneous Scalar Multiplication (Shamir’s trick [24, 25])

Input: l ≥ 1, α1 = (b
(1)
l−1 · · · b

(1)
1 b

(1)
0 )2, α2 = (b

(2)
l−1 · · · b

(2)
1 b

(2)
0 )2, P1, P2 ∈ E

Output: [α1]P1 + [α2]P2

1. precomputation G← P1 + P2.
2. R← P∞.
3. for j = l − 1 down to 0 do:
3. 1 R← [2]R.

3. 2 if ((b
(1)
j , b

(2)
j ) = (1, 0)) then R← R+ P1.

3. 3 else if ((b
(1)
j , b

(2)
j ) = (0, 1)) then R← R+ P2.

3. 4 else if ((b
(1)
j , b

(2)
j ) = (1, 1)) then R← R+G.

4. return R.

admitting the smallest number of non zero digits. We illustrate it in the following
example:

α = (11100011111011)2 = (1001̄001000001̄01̄)NAF ,

where 1̄ = −1. Compared to the binary representation, the use of this representation
allows us to reduce the number of additions. In fact, HW (α1) ≈ HW (α2) ≈ l

3 , which
makes JHW (α1, α2) ≈ 5

9 l. Consequently, if we use the NAF representation, Shamir’s
trick requires the precomputation of two points, G = P1 + P2 and H = P1 − P2, and
has the following main operation complexity:

5

9
lA+ lD.

2.1.2 Bernstein’s method (DJB)

Let l ∈ N∗, and α1, α2 ∈ [0, 2l−1]. The DJB method allows to compute [α1]P1+[α2]P2

based on the concept of the differential addition chain [11] that is an addition chain
in which P1 and P2 are represented by their difference P1−P2. Montgomery observed
in [27] that for P1 and P2 two points of the curve y2 = x3 + ax2 + x (Montgomery’s
curve), we can efficiently compute the x−coordinate of P1+P2 from the x−coordinates
of P1, P2, and P2 − P1. Based on this observation and the concept of a differential
addition chain, Bernstein designed in [11] a method to compute [α1]P1 + [α2]P2 on
the Montgomery curve for l-bit scalars α1 and α2. At each step, one doubling and
two additions are performed, which ensures the uniformity of the operations. More
precisely, three temporal variables T1, T2 and T3 are initialized, respectively, to P∞, P1

and P2. Then, they are updated at each step by doubling one of the Ti and adding two
different pairs of points. The rules of this updating are based on a recursive formula
applied to the bits of α1 and α2 given in [11]. As an example, we show in Figure
1 how this formula works to construct a differential addition chain of (13, 17). The
complexity of the main operation in DJB is given by:

2lA+ lD.
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(0,0) (1,0) (0,1) (1,-1)

(0,1) (1,1) (0,2)

(1,3) (2,2) (1,2)

(3,5) (4,4) (3,4)

(7,9) (6,8) (6,9)

(13,17) (14,18) (13,18)

Figure 1: The differential addition chain of (13, 17).

Table 1 compares the Bernstein and Shamir methods.

Method Main operation Precomputation Storage Uniformity

Shamir’s trick lD+ 3
4
lA 1A 3 points ×

Bernstein lD+2lA − 2 points ✓

Table 1: Comparison of the Bernstein and Shamir methods.

2.2 Case of d > 2

Recall that our goal is to compute efficiently [α1]P1+[α2]P2+· · ·+[αd]Pd, where d ≥ 2,
α1, · · · , αd ∈ N with log2(αi) = l, for some l ∈ N∗, 1 ≤ i ≤ d and P1, · · · , Pd ∈ E.

2.2.1 Interleaving with NAFs

Interleaving is a technique, as described in [8], used to prepare precomputed points for
each [αi]Pi using distinct methods. During each step of the main operation, we perform
a doubling operation and addition by employing the precomputed points corresponding
to each [αi]Pi. In this context, we introduce an interleaving approach based on window
non adjacent forms (wNAFs). Specifically, for 1 ≤ i ≤ d, we assign a window width
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wi ∈ N∗ to αi using Algorithm 3 in [28]. We calculate wiNAF(αi) =
∑li−1

j=0 (k
i
j2

i),

where kij ∈ {1, 3, · · · , 2wi−1} and li is the number of digits kij for each i. Subsequently,

for 1 ≤ i ≤ d, we precompute the points [j]Pi for odd values of j < 2wi−1. During
the main operation, the digits of scalars αi are jointly processed from left to right to
perform a single doubling. This method is outlined in Algorithm 3.51 in [8]. It requires∑d

i=1(2
wi−2) as storage points. Its precomputation is given by:

#{i;wi > 2}D+

d∑
i=1

(2wi−2 − 1)A

and its main operation complexity is

lD+ l

d∑
i=1

(
1

wi + 1
)A

2.2.2 Bucket method (Pippenger Algorithm)

This method is proposed in [1] and described in detail in [17–19]. It is based on the
Pippenger algorithm, which was originally designed to efficiently compute the multi
exponent multiplication [17]. It is hardware optimised in [17] for d-mul speed-up. It
is parallelized in [19] to provide an efficient GPU implementation of zkSNARK. It is
used in [18] with a new coordinate system for twisted Edwards curves to speed up the
d-mul for a large d. The bucket method works as follows:

• We select an integer w ≥ 2 such that w ≈ log2(d), w is referred to as the ’window
width’,

• For each i ≤ d, we write αi = (αi,⌈ l
w ⌉, · · · , αi,1)2w . This implies that we partition

each αi into ⌈ l
w ⌉ words, each word is of size w bits,

• For each 0 ≤ j ≤ ⌈ l
w ⌉ − 1:

– Let P [j] = [α1,j ]P1 + [α2,j ]P2 + · · ·+ [αd,j ]Pd,

– We range the points P1, · · · , Pd into 2w buckets (B
[j]
0 , B

[j]
1 , · · · , B[j]

2w−1) according
to αi,j and we eliminate the bucket 0, with 1 ≤ i ≤ d,

– We add the points in each bucket to obtain the sums S
[j]
1 , S

[j]
2 , · · · , S[j]

2w−1,

– We compute P [j] =
∑2w−1

k=1 [k]S
[j]
k using an efficient method proposed in [1].

• After computing of all P [j], we calculate the final result,
∑⌈ l

w ⌉−1
j=0 [2jw]P [j], using an

inverse recursive method described in [19].

This method is given in Algorithm 1 in [17]. Its main operation complexity is given by:

lD+ ⌈ l
w
⌉(d+ 2w+1)A
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2.2.3 d-mul methods

We present the three versions of d-mul methods in chronological order as follows:

d-mul

The d-mul is described in Algorithm 1 in [2]. It requires, as a first step, transforming the
scalars into a particular matrix A known as the state matrix [3]. This transformation is
called the initialisation step. It is illustrated in Algorithm 1 in [2]. Then it constructs a
matrices’chain (A(i))li=1 from A such that A(1) = A using Algorithm 2 in [2]. This chain
is called a chain of state matrices. Finally, it carries out successive linear combinations
on the points Pi, moving in the opposite direction to that of the construction, until
obtaining the sum [α1]P1 + · · ·+ [αd]Pd.

Randomised d-mul

Recall that the magnitude of a state matrix is defined in [3] as being the largest value
among the absolute values of the matrix entries. Let d, l ∈ N∗, P1, P2, · · · , Pd ∈ E, r
a binary string of size ld. Let v be a binary vector of size d. r and v are generated
uniformly at random. Let σ be a permutation on {2, · · · , d + 1}. Randomised d-mul
(Algorithm 2 in [3]) produces a random point of the form [α1]P1+ · · ·+ [αd]Pd, where
α1, α2, · · · , αd ∈ [0, 2l−1] are randomly generated from r. Unlike d-mul, randomised d-
mul avoids constructing a chain of state matrices from a matrix of a given magnitude.
In fact, using a permutation on {0, 1, · · · , d−1}, it constructs a chain of state matrices
from a matrix of magnitude 1. The magnitudes of the matrices in this chain form
a strictly increasing sequence. The magnitude of the final matrix is determined by
the binary chain r. Furthermore, randomised d-mul performs the needed computation
on the points Pi at each construction step. It ends with a random point as a linear
combination of these points. We can use Algorithm 1 in [3] to recover the scalars.

Optimised d-mul

Randomised d-mul does not allow the scalars to be chosen apriory. Therefore, Hutchin-
son and Karabina proposed the optimised d-mul [4] to ensure this correctness. It
optimises computations compared to d-mul by using bit permutations and XOR op-
eration. The use of negative scalars is supported by the optimised d-mul. In fact, if
a scalar is negative, it must be replaced by its symmetric, which is positive, and the
point associated with it must also be replaced by its symmetric. Therefore, the Algo-
rithm 4 in [4] presents a version of optimised d-mul with positive scalars Furthermore,
optimised d-mul requires the generation of a random permutation σ on {1, · · · , d} us-
ing the parity of the scalars αi (Algorithm 1 in [4]).
We compare d-mul methods in Table 2.
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Method
Main operation
complexity

Precomputation Static table
Temporal
storage

d-mul lD+ldA.

dA.
2ld conditional tests.
2ld sums of 2 rows
of a (d+ 1)× d−matrix.

d points.
l(d+ 1)d
scalars.

Randomised
d-mul

lD+ldA.
ld bits additions .
ld conditional tests.

dA. d points. ld bits.

Optimised
d-mul

lD+ldA.
ld 2−bit XORs.
dA.

d points. ld bits.

Table 2: Comparison of d-mul methods

The authors of all versions of d-mul methods have recommended to:

• Forget about using the first version of d-mul methods [2],
• Use the randomised d-mul method [2] when the cryptographic application requires
the use of random scalars,

• Employ optimised d-mul [4] when those scalars are prefixed.

Since we are working in the context of elliptic curve optimisation, we will use the latest
version of d-mul methods (optimised d-mul) for our next comparisons.

3 Our methods

This paper aims to compute efficiently the following d-mul:

[α1]P1 + [α2]P2 + · · ·+ [αd]Pd,

where d ≥ 2, l ∈ N∗, α1, · · · , αd are scalars with log2(αi) = l, and P1, · · · , Pd ∈ E. In
this work, we distinguish between two cases. The first case is when d is small, and the
second one is when d is large.
In the following, we explain when d is small or large:
we suppose that our available storage space allows us to store at most 2M − 1 points,
where M ∈ N∗, then

• If d ≤M , d is small,
• If d > M , d is large.

In this section, we present two methods of an efficient computation of d-mul. The
first method when d is small and we have precomputation steps. It is referred to as
Multidimensional Shamir’s trick. The second method consists in the calculation
of the d-mul without precomputation and when d is large. This method is called
Multiple double and add.
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3.1 First method (Multidimensional Shamir’s trick)

While various methods for multidimensional scalar multiplication exist in the litera-
ture, it’s worth mentioning that Shamir’s trick (Algorithm 1) hasn’t been adapted for
any d parameter. In response, rather than offering a direct extension, we present, in
this section, a generalisation based on a specific precomputation technique.

3.1.1 Description

Recall that this method is considered when d is small (see above for the definition of
small). As we need to store some precomputed points. This case applies to several cryp-
tographic algorithms, including digital signature algorithms EdDSA [5], ECDSA [9],
and post quantum signature SQISign [22].
This method aims to efficiently compute the following d-mul:

[α1]P1 + [α2]P2 + · · ·+ [αd]Pd,

where P1, · · · , Pd ∈ E and α1, · · · , αd ∈ N, with log2(αi) = l, 1 ≤ i ≤ d. Note that
if there are i ∈ [|1, d|] such that log2(αi) = m < l, we add l −m zeros to the left of
the most significant bits of αi. This is because, at each step j ∈ [0, l − 1], we need
to precompute elliptic curve points in the format [c1]P1 + [c2]P2 + · · · + [cd]Pd, with
c1, c2, · · · , cd represent the d bits that are used at each jth step in the main operation.
Let us write the scalars α1, α2, · · · , αd in their binary representations as follows:

α1 = (b
(1)
l−1b

(1)
l−2 · · · b

(1)
1 b

(1)
0 )2,

α2 = (b
(2)
l−1b

(2)
l−2 · · · b

(2)
1 b

(2)
0 )2,

...

αd−1 = (b
(d−1)
l−1 b

(d−1)
l−2 · · · b(d−1)

1 b
(d−1)
0 )2,

αd = (b
(d)
l−1b

(d)
l−2 · · · b

(d)
1 b

(d)
0 )2.

Note that, ∀j ∈ [0, l − 1],∀i ∈ [|1, d|], b
(i)
j ∈ {0, 1}, b

(i)
l−1 is denoted by the most

significant bit and b
(i)
0 is the least significant bit. We present the scalars (αi)1≤i≤d in

the matrix C as follows:

C =


b
(1)
l−1 · · · b

(1)
1 b

(1)
0

b
(2)
l−1 · · · b

(2)
1 b

(2)
0

...
...

. . .
...

b
(d)
l−1 · · · b

(d)
1 b

(d)
0


We arrange the points (Pi)1≤i≤d within the matrix row P in the following manner:

P =
(
P1 P2 · · · Pd

)
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We place the powers (2j)0≤j≤l−1in the matrix column S as follows:

S =


2l−1

...
21

20


Thus, we get:

[α1]P1 + [α2]P2 + · · ·+ [αd]Pd = PCS

= P


b
(1)
l−1 · · · b

(1)
1 b

(1)
0

b
(2)
l−1 · · · b

(2)
1 b

(2)
0

...
...

. . .
...

b
(d)
l−1 · · · b

(d)
1 b

(d)
0



2l−1

...
21

20


= [2l−1]([b

(d)
l−1]Pd + · · ·+ [b

(2)
l−1]P2 + [b

(1)
l−1]P1)

+ [2l−2]([b
(d)
l−2]Pd + · · ·+ [b

(2)
l−2]P2 + [b

(1)
l−2]P1)

...

+ [21]([b
(d)
1 ]Pd + · · ·+ [b

(2)
1 ]P2 + [b

(1)
1 ]P1)

+ [20]([b
(d)
0 ]Pd + · · ·+ [b

(2)
0 ]P2 + [b

(1)
0 ]P1)

From our computation, we remark that we can precompute and store the points of

the form
d∑

i=1
b
(i)
j ̸=0

Pi in a table T . It is possible to use a storage T since we assumed that

d is small. Then, we can simplify the computation of the d-mul and we get:

[α1]P1 + [α2]P2 + · · ·+ [αd]Pd = [2l−1]T [xl−1] + [2l−2]T [xl−2] + · · ·+ [21]T [x1] + [20]T [x0].

with ∀j ∈ [0, l − 1], xj =
⊕d

i=1(b
(i)
j << (i− 1)) and T [xj ] =

d∑
i=1

b
(i)
j ̸=0

Pi, where:

{
•
⊕

is the XOR operation,
• << is the left shift operation.
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The T [xi] are precomputed, stored, and considered later in the main operation.
Note that the table T is constructed in the following way:

P∞ −→ T [0],

P1 −→ T [1],

P2 −→ T [2],

P1 + P2 −→ T [3],

P3 −→ T [4],

P1 + P3 −→ T [5],

P2 + P3 −→ T [6],
...

P1 + P2 + · · ·+ Pd −→ T [2d − 1].

This method is detailed in Algorithm 2, maintaining its similarity to Shamir’s trick
when d = 2. This algorithm takes as inputs the scalars α1, α2, · · · , αd. It outputs the
point Q = [α1]P1 + · · ·+ [αd]Pd.
For each j ∈ [0, l − 1], in the jth step of the main operation, we use an integer

xj =
⊕d

i=1(b
(i)
j << (i−1)) to locate the stored points to be processed. The parameter

xj is the positive integer whose binary representation is b
(d)
j b

(d−1)
j · · · b(2)j b

(1)
j .

Algorithm 2 Multidimensional Shamir’s trick

Input: α1 = (b
(1)
l−1 · · · b

(1)
0 )2, · · · , αd = (b

(d)
l−1 · · · b

(d)
0 )2,

P1, P2, · · · , Pd ∈ E.
Output: [α1]P1 + · · ·+ [αd]Pd.

1. Precompute V = {T [0], T [1], · · · , T [2d − 1]}.
2. Q = P∞.
3. for j = l − 1 down to 0 do
3. 1 Q← [2]Q.

3. 2 xj ←
⊕d

i=1(b
(i)
j << (i− 1)).

3. 3 if xj ̸= 0 then Q← Q+ V [xj ].
4. return Q.

3.1.2 Complexity

This method costs a storage of 2d − 1 points and requires 2d − d − 1 additions as
precomputation. When uniformity is not a concern, we use the Algorithm 2, where
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the main operation contains l steps. During each step j ∈ [0, l − 1], we perform one

doubling and one addition if at least one of the bits b
(i)
j is non null, with j ∈ [0, l−1] and

1 ≤ i ≤ d. Consequently, the total complexity of the main operation in this method
consists of l doublings and JHW (α1, α2, · · · , αd) ≈ (1 − 1

2d
) additions. However, if

uniformity is a priority, we opt for Algorithm 4, where the main operation precisely
involves l additions and l doublings. The complexity of this method is shown in Table
3.

Without uniformity
(Algorithm 2)

With uniformity
(Algorithm 4)

Main operation lD+(1− 1
2d

)lA lD+lA

Precomputation (2d − d− 1)A

Storage 2d − 1 points

Table 3: The complexity of the first method.

To illustrate how our method works, we present the following example:
Example 1.
Let d = 3, α1 = 13 = (01101)2, α2 = 17 = (10001)2, α3 = 21 = (10101)2, and
P1, P2, P3 ∈ E. Here l = log2(21) = 5.
As explained at the beginning of this method, table T contains all the possibilities of

the points
d∑

i=1
b
(i)
j ̸=0

Pi, with 0 ≤ j ≤ l − 1. In this example, T is given by:

T = {P∞, P1, P2, P1 + P2, P3, P1 + P3, P2 + P3, P1 + P2 + P3}.
Thus,

[13]P1 + [17]P2 + [21]P3 = PCS

=
(
P1, P2, P3

)0 1 1 0 1
1 0 0 0 1
1 0 1 0 1



24

23

22

21

20



=
(
P1, P2, P3

)23 + 22 + 20

24 + 20

24 + 22 + 20


= [24]T [6] + [23]T [1] + [22]T [5] + [21]T [0] + [20]T [7]

We compute this sum using the Algorithm 2. The complexity in this example is
interpreted as follows:
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• The main operation’s complexity: 5D+4A,
• The precomputation’s complexity: 4A,
• The storage: 7 points.

If we use the Algorithm 4, the main operation’s complexity is 5D+5A

3.2 Second method (Multidimensional Double and add)

3.2.1 Description

In some cryptographic algorithms, such as the zkSNARK protocol, the d-mul is used
for a large d (e.g. d = 222). Simply put, these schemes use a large number of scalars
to compute the d-mul. This poses a challenge for storage on resource constrained
devices. Thus, we can’t store efficiently precomputed points as explained in Section
3.1. Therefore, in this section, we present an efficient method for computing d-mul
with a large d. This method is called Multidimensional double and add. It does
not rely on the precomputation. Similarly to the first method, for 1 ≤ i ≤ d, the
binary representation of αi is as follows:

αi = (b
(i)
l−1b

(i)
l−2 · · · b

(i)
1 b

(i)
0 )2,

where l is the size of the longest scalar.

For j ∈ [0, l−1], this method acts simultaneously on the bits b
(1)
j , b

(2)
j , · · · , b(d−1)

j , b
(d)
j .

Let xj =
⊕d

i=1(b
(i)
j << (i − 1)). If xj ̸= 0, we perform one doubling, we compute on

the fly the points T [xj ] =
d∑

i=1
b
(i)
j ̸=0

Pi, and we add the result of the doubling to T [xj ]. We

assume that we always have xj ̸= 0 since the probability of xj = 0 is negligible when
d is large. This method is detailed in Algorithm 3. In fact, the condition xj = 0 is

equivalent to b
(i)
j = 0,∀i ∈ [|1, d|]. Since the scalars are generated uniformly at random

and d is large, xj = 0 has a probability of 1/2d, which is very small. For example, in
a practical case, d could be 222. Therefore, the probability of xj = 0 is 1

24194304 .

3.2.2 Complexity

Let j ∈ [0, l− 1], xj =
⊕d

i=1(b
(i)
j << (i− 1)). At each jth step, this method performs

one doubling, HW (xj)− 1 additions to compute the point T [xj ] =
d∑

i=1
b
(i)
j ̸=0

Pi, and one

addition to add the result of the doubling to T [xj ]. In total, we perform one doubling

andHW (xj) additions at each step. Thus, this method requires exactly
∑l−1

j=0 HW (xj)
additions and l doublings. It is worth noting that xj represents the binary sequence

b
(d)
j b

(d−1)
j · · · b(1)j b

(1)
j , where j ∈ [0, l − 1]. For i ∈ [|1, d|], each bit b

(i)
j is derived from

the scalar αi. As αi is generated uniformly at random, HW (xj) is approximately d
2 .
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Algorithm 3 Multidimensional double and add

Input: α1 = (b
(1)
l−1 · · · b

(1)
0 )2, · · · , αd = (b

(d)
l−1 · · · b

(d)
0 )2,

P1, P2, · · · , Pd ∈ E.
Output: [α1]P1 + · · ·+ [αd]Pd.

1. Q← P∞
2. for j = l − 1 down to 0 do
2. 1 Q← [2]Q.
2. 2 T = P∞.
2. 3 for i = 1 to d do

if b
(i)
j ̸= 0 then T ← T + Pi.

2. 4 Q = Q+ T .
3. return Q.

The complexity of this method is approximately given by:

d

2
lA+ lD

To illustrate this method, we give the following example:
Example 2.
Let d = 4, α1 = 17 = (10001)2, α2 = 25 = (11001)2, α3 = 28 = (11100)2, α4 = 12 =
(01100)2 and P1, P2, P3, P4 ∈ E. In this example l = 5 and,

[α1]P1 + [α2]P2 + [α3]P3 + [α4]P4 = [17]P1 + [25]P2 + [28]P3 + [12]P4

= [16](P1 + P2 + P3) + [8](P2 + P3 + P4)

+ [4](P3 + P4) + [2]P∞ + (P1 + P2)

= [24]([1]P1 + [1]P2 + [1]P3 + [0]P4)

+ [23]([0]P1 + [1]P2 + [1]P3 + [1]P4)

+ [22]([0]P1 + [0]P2 + [1]P3 + [1]P4)

+ [21]([0]P1 + [0]P2 + [0]P3 + [0]P4)

+ [20]([1]P1 + [1]P2 + [0]P3 + [0]P4).

According to the second method for this example x0 = 3, x1 = 0, x2 = 12, x3 = 14, and
x4 = 7. As HW (7) = 3, HW (14) = 3, HW (12) = 2, HW (0) = 0 and HW (3) = 2,
In this example, we interpret the complexity as follows:

• the main operation’s complexity: 5D+10A,
• the storage: 4 points.
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4 Security analysis and countermeasures

In this section, we examine security concerns related to our methods and provide the
corresponding countermeasures.

4.1 First method

Let j ∈ [0, l− 1] and xj =
⊕d

i=1(b
(i)
j << (i− 1)). Although the probability of getting

a non zero xj is negligible, we consider this situation to be a security problem. Indeed,
in the Algorithm 2, an adversary could perform a power attack to deduce that the bits
of the scalars αi used in the jth step are all equal to zero. To solve this problem, we
provide Algorithm 4 to consider the two possible cases, xj ̸= 0 and xj = 0. Then we
inject a false addition when xj = 0 to ensure uniformity of the elliptic curve operations.
Thus the complexity of the main operation reaches exactly l additions and l doublings
with a slight increase compared to Algorithm 2. In other words, we do not go to great
lengths to ensure this uniformity.

Algorithm 4 Uniform Multidimensional Shamir’s trick

Input: α1 = (b
(1)
l−1 · · · b

(1)
0 )2, · · · , αd = (b

(d)
l−1 · · · b

(d)
0 )2,

P1, P2, · · · , Pd ∈ E.
Output: [α1]P1 + · · ·+ [αd]Pd.

1. Precompute V = {T [0], T [1], · · · , T [2d − 1]}.
2. Q = P∞, F ← V [d− 1].
3. for j = l − 1 down to 0 do
3.1 Q← [2]Q.

3.2 xj ←
⊕d

i=1(b
(i)
j << (i− 1)).

3.3 if xj ̸= 0 then Q← Q+ V [xj ].
3.4 else F ← F +Q. //A fake addition.

4. return Q.

4.2 Second method

Let j ∈ [0, l − 1] and xj be the same parameter used in the first method. Viewing
the main operation within Algorithm 3 as a comprehensive entity, we consistently
uphold uniformity across all steps with a high probability. In fact, the only distinct

case arises when xj = 0, indicating that b
(i)
j = 0 for 1 ≤ i ≤ d. However, this

event occurs with an extremely low probability ( 1
2d
) given a large d. In this rare

scenario, we have the opportunity to enhance the security of our algorithm and achieve
complete uniformity by introducing a fake addition operation. Although this practice
is not expensive in terms of curve operations, its cost escalates significantly as d
increases. This increased cost arises from the calculation of xj and the associated
conditional statements. Consequently, in Algorithm 3, we have intentionally omitted
the conditional check on xj . This decision ensures that the same block of operations
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is approximately practised at every step, regardless of the value of xj . This strategy
enhances efficiency, as d grows larger.
Let us examine the Algorithm 3 more closely, concentrating on loop 2.3. It becomes

apparent that an adversary has the ability to determine the values of the bits b
(i)
j

at every jth step, where 1 ≤ i ≤ d. This can be achieved by manipulating a power

attack during the running of the addition operations to decide whether the bit b
(i)
j

should be interpreted as 0 or 1. To solve this problem, and to thwart the adversary’s
ability to deduce the bits of the scalars αi, a simple solution is to apply an efficient
random permutation, such as the Fisher-Yates shuffle algorithm stated in [29], to the

bits b
(i)
j during each jth step. This is referred to as full use of permutations. Because

the running time of such a permutation depends on a large d, using it for all the l
steps could affect the efficiency of the method. To address this concern, we propose
a solution based on the following two scenarios: one scenario where the scalars are
predetermined and another where they are generated for single use.

− First scenario:

• the scalars are predetermined,
• we predefine a set of indices called Perm from the set {0, 1, · · · , l − 1},
• at every jth step, we generate an efficient permutation σ over the set {1, · · · , d}
and apply it to {b(1)j , · · · , b(d)j } and {P1, · · · , Pd} if j ∈ Perm,
• if j /∈ Perm, σ acts as the identity map on the set {1, · · · , d},
• This operation is called partial use of permutations.

− Second scenario:

• the scalars are generated for single use,
• we choose the set Perm at random from the set {0, · · · , l − 1} each time the
algorithm runs,
• The same approach is used as in the first scenario.

In both scenarios, we ensure that the bits b
(i)
j are hidden during certain steps, which

significantly improves security. Specifically, if we assume that the cardinality of Perm
is denoted as m ∈ [|1, l|], an adversary would have to perform an exhaustive attack
with a complexity of 2dm to reveal the hidden bits. This complexity is exceptionally
high, mainly due to the large integer d in this method. We can strengthen security by
extending the set Perm, taking into account the available computational resources.
Furthermore, in the second scenario, we can weaken the adversary’s effort by modifying
the steps affected by the random permutations in each algorithm run. This does not
affect the security of the scalars as they are used only once. At the end of each jth step,
we can free the memory from the generated permutation to ameliorate the efficiency of
our algorithm. All of the aforementioned adjustments are represented by algorithm 5.

5 Comparison

In this section, we compare our method to those outlined in the state of the Art, as-
sessing their complexity and various properties such as uniformity, precomputation,
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Algorithm 5 Multidimensional double and add (modified)

Input: α1 = (b
(1)
l−1 · · · b

(1)
0 )2, · · · , αd = (b

(d)
l−1 · · · b

(d)
0 )2,

P1, P2, · · · , Pd ∈ E.
Output: [α1]P1 + · · ·+ [αd]Pd.

1. Q← P∞
2. Perm

r←− {0, 1, · · · , l−1}. //Pick uniformly at random a subset Perm from the set
{0, 1, · · · , l − 1}.

3. for j = l − 1 down to 0 do
3.1 Q← [2]Q.
3.2 T = P∞.
3.3 if j ∈ Perm then generate a random permutation σ on {1, · · · , d}.
3.4 else σ ← id{1,··· ,d}. // σ operates as it is the identity map.
3.5 for i = 1 to d do

if b
(σ(i))
j ̸= 0 then T ← T + Pσ(i).

3.6 Q = Q+ T .
4. return Q.

windowing, and parallelisation. Our primary focus is comparing the complexity of the
main operation and the running time of our method to that of the optimised d-mul,
which represents the latest advancement in optimising d-mul. We initiate our compar-
ative analysis by examining the existing methods, especially in the specific case where
d = 2. We provide a comprehensive comparison, as shown in Table 5, for this par-
ticular case. Subsequently, we broaden our evaluation to encompass the general case,
considering two scenarios: one scenario involving a small d and the other with a larger
d. To simplify the comparison, we employ a uniform window size w for all scalars αi

in the Interleaving method.
Note that all our practical experiments are carried out on an Intel i7 Personal Work-
station with 8GB RAM and SSD storage, using SageMath.
Before proceeding with the categorisation of our comparison based on the parameter
d, it is important to note the presence of certain properties in the presented methods
and then compare them to our approaches in Table 4.

Method Precomputation Windowing Parallelisation Uniformity
Shamir’s trick ✓ × × ✓
Bernstein × × ✓ ✓
Bucket method × ✓ ✓ ✓
Optimised d-mul ✓ × ✓ ✓
Our first method ✓ × × ✓
Our second method × × ✓ ✓

Table 4: Comparison of the proprieties of our method to the existing methods.

− The case of d = 2:
In this case, if we do not need uniformity (as in algorithm 2), our method is

18



Method Main operation Precomputation Storage
Naive (α1 + α2 − 1)A − 2 points

Shamr’s trick lD+ 3
4
lA 1A 3 points

Bernstein lD+2lA − 2 points
Optimised 2-mul lD+2lA 2A 2 points
Our method lD+lA 1A 3 points

Table 5: The comparison of complexity for d = 2.

equivalent to Shamir’s trick in terms of the complexity of the main operation, pre-
computation and storage, where storage refers to the number of points that need
to be stored. However, this equivalence only holds for precomputation and storage
if we introduce uniformity into our method (algorithm 4). In this case, Shamir’s
trick outperforms our method in terms of the efficiency of the main operation.
Moreover, this work surpasses Bernstein’s method in terms of the main operation.
It conserves l point additions.

− The case of small d > 2:
We proceed to compare our first method, in Table 6, with existing methods when d
is small. Table 6 showcases a notable achievement: our method surpasses optimised

Method Main operation Precomputation Storage

Naive (
∑d

i=1 αi − 1)A − d points

Interleaving lD+ ld
w+1

A dD+(2w−2 − 1)A d2w−2 points

Optimised d-mul lD+ldA dA d points

Our method lD+lA (2d − d− 1)A 2d − 1 points

Table 6: The comparison of complexity for small d > 2.

d-mul in terms of the complexity of the main operation. Furthermore, it outper-
forms the Interleaving method when d exceeds w+1. However, our method requires
more precomputation and storage compared to optimised d-mul. Additionally, the
Interleaving method necessitates the calculation of wNAFs (Non Adjacent Forms)
of the scalars αi at each step and does not guarantee the uniformity of operations.
When assessing the overall complexity, which includes both the main operation
and the precomputation, while keeping d and w constant, we offer the following
comparisons:

• Our method overestimates the efficiency of optimised d-mul if l ≥ 2d−2d−1
d−1 ,

• Our method also outperforms the Interleaving method when l ≥
(w+1)(2d−2w−2−d)

d .

To simplify the general comparison (Table 6) and to present it only as a function
of the parameter l, which is considerably larger than d and w, we offer the updated
comparison in Table 7 with d = 6 and w = 4.
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Method Main operation Precomputation Storage

Naive (
∑6

i=1 αi − 1)A − 6 points

Interleaving lD+ 6
5
lA 6D+18A 24 points

Optimised d-mul lD+6lA 6A 6 points
Our method lD+lA 57A 63 points

Table 7: The comparison of complexity, for d = 6 and w = 4.

Our method’s main operation complexity surpasses that of optimised d-mul. This
latter offers advantages like uniformity and parallelisation. Thus, our primary focus
is to compare our method with d-mul.
Table 8 shows that our method maintains a constant main operation complexity
with respect to d, while optimised d-mul’s complexity varies. Additionally, for each
d, optimised d-mul consumes d− 1 more additions than our method.

d Optimised d-mul Our method
3 lD+3lD lD+lA
4 lD+4lA lD+lA
5 lD+5lA lD+lA
6 lD+6lA lD+lA
7 lD+7lA lD+lA
8 lD+8lA lD+lA

Table 8: The comparison of the
main operation complexity.

Table 9 presents a detailed analysis considering the arithmetic field and different
coordinate systems. We assume S = 3

4M, where M, S and I represent multipli-
cation, squaring and inversion in K. The data in Table 9 clearly show that our
method outperforms optimised d-mul regarding main operation complexity for small
d ≥ 2 across different coordinate systems. In particular, it shows remarkable effi-
ciency when using Jacobian coordinates. To confirm this comparison, we applied
our method (’Mu-S-secp256k1’ and ’Mu-S-Mont’) and optimised d-mul (’d-mul-
secp256k1’ and ’d-mul-Mont’) on both the secp256k1 curve [20] used in ECDSA [9]
and the Montgomery curve [21] used in SQIsign [22]. For a closer look at the
running time comparison, we set d to 4 and vary the parameter l within the set
{32, 64, 128, 192, 256, 320}, generating four approximate graphs in Figure 2 that plot
the running time as a function of l. These graphs show that our method is signif-
icantly faster than the optimised d-mul overall scalar sizes l and whichever curve
we use. Furthermore, for each curve, we observe an increasing divergence between
the graph of our method and that of d-mul as l increases. This divergence arises
because optimised d-mul consistently processes 4 scalars of l bits, while our method
appears to process only one scalar of l bits due to precomputational advantages.
Consequently, as the parameter l escalates, the processing time naturally increases.
In addition, we evaluate the running time by varying the number of scalars d within
the set {2, 3, 4, 5, 6, 7, 8} while keeping the scalar size at l = 256. This evaluation
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yields four plots in Figure 3, which show that the running time of optimised d-mul
grows linearly with d, while that of our method remains nearly constant as a func-
tion of d. This confirms that the complexity of the main operation in our method
is independent of the number of scalars.

Coordinates Optimised d-mul Our method

Affine l(d+ 1)I+ l( 7
2
+ 11

4
d)M l(2I+ 25

2
M)

Projective l( 43
4

+ 27
2
d)M 97

4
lM

Jacobian l( 17
2

+ 15d)M 47
2
lM

Table 9: Comparison of main operation complexity
for different coordinate systems.

Figure 2: Running time of the main operation as a function of l for d = 4.

Figure 3: Comparison of main operation running time as a function of d for l = 256.
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− The case of a large d:
In this case, we focus on comparing our method to some efficient methods for large
d. We use Table 10 to compare the complexity of our second method to optimised d-
mul and the bucket method in terms of main operation complexity, precomputation
and storage. From Table 10 we can see that all three methods have the same mem-

Method Main operation Precomputation Storage

Bucket method lD +⌈ l
w ⌉(d+ 2w+1)A − d

Optimised d-mul lD+ldA dA d

Our method lD+l d2A − d

Table 10: The comparison of complexity for the some window w ≈
log2(d).

ory requirements. However, optimised d-mul stands out by requiring d additions
for precomputation, which is significant for large d. They all use the same number
of doublings in their main operations but differ in the number of additions. Our
method requires about l d2 additions in the main operation, outperforming d-mul.
However, for large d with w = log(d), the bucket method outperforms our method.
The challenge with the bucket method is that it requires many buckets, each accu-

mulating curve points. For example, with d = 222, it needs to initialize about 222

22 l
buckets, resulting in more memory access. In contrast, our method efficiently tracks
and uses the points Pi in the main operation with simple, low cost operations, with
1 ≤ i ≤ d.
We used the BLS12 − 381 curve to compare the running time of our method to
optimised d-mul over different d values from the set {2s; s ∈ [9, 19]}, keeping l fixed
at 256. This comparison examines our method in three different scenarios:

• In the first scenario, no permutations are applied. This is suitable when the secu-
rity of the scalars αi is not a priority, and the primary focus is on achieving high
computational efficiency,

• The second scenario involves applying random permutations to steps selected by
the set Perm (which contains 50 steps in this comparison). It balances security
and efficiency based on the cardinality of the set Perm,

• In the third scenario, random permutations are applied to all computation steps
with j ∈ [0, l − 1]. This approach provides robust scalar security with minimal
loss of efficiency.

Figure 4 illustrates the comparison using a multiple bar graph. It shows the run-
ning time of both our method (’Mu-D1’, ’Mu-D2’ and ’Mu-D3’ representing the
three scenarios) and the optimised d-mul (’d-mul’). In Figure 4, the main operation
of our method runs faster than the optimised d-mul, even with partial or full use
of permutations. As d increases, the performance gap widens. This is because op-
timised d-mul involves costly computations for scalar bits, and these costs escalate
with higher d values. Furthermore, when we use permutations, the time difference
between our method and optimised d-mul is always more significant than without
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Figure 4: Running time of the main operation as a function of a large d for l = 256.

permutations. This is due to the permutation complexity, which is O(d) for each
permutation on the set {1, · · · , d}.

6 Application

We illustrate the application of our d-mul in BLS multi signatures aggregation in this
section. Permitting d signers to produce a brief signature σ on the same message m
is known as multi signatures. Public key aggregation is supported by certain multi
signatures methods. This means that a brief aggregated public key is needed in place
of an explicit list including all d public keys. This characteristic is crucial to the
scalability of blockchain systems because it permits the compression of public keys and
signatures, which reduces bandwidth [30]. Since BLS signature [31] permits public key
aggregation, it has been progressively deployed on the blockchain, which is of special
relevance to us.

6.1 BLS signature

We begin by reviewing the conventional BLS signature scheme [31], adapting the
notations for additive group operations. Let G0,G1,GT be groups of prime order q,
G1 and G2 be generators of G1 and G2, respectively, H1 : {0, 1}∗ → G1 be a hash
function and e : G1×G2 → GT be an efficiently computable pairing. A signer’s private
key is sk, randomly chosen from Zq. The public key of this signer is Pk = [sk]G2 ∈ G2.
The BLS signature works in the following way:

• BLS.Setup (λ): Given a security parameter λ, this function outputs the settings:

S = (q,G0,G1,GT , e,G1, G2),

• BLS.KeyGen (S): Given the settings S, this function outputs the private and
public keys (sk, Pk = [sk]G2),

• BLS.Sign(S, sk,m): Given the settings S, the private key sk, and the message m,
this function outputs the signature Σ = [sk]H1(m) ∈ G1,
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• BLS.Verify (S, Pk,Σ,m): Given the settings S, the public key Pk, the signature
Σ, and the massage m, this function outputs 1 if e(Σ, G2) = e(H1(m), Pk) and 0
otherwise.

6.2 BLS multi signatures aggregation

The BLS signature scheme can aggregate multi signatures, as mentioned in [30, 32, 33]
and the references therein. Considering this, we introduce the multi signatures aggrega-
tion approach that was suggested in [32]. As mentioned in reference [30], this technique
is denoted by MS. H2 : {0, 1}∗ → Zq is a new hash function that is introduced with
the same parameters as before. Similar to [30], we provide MS as follows:

• MS.Setup (λ): Given a security parameter λ, the output is BLS.Setup (λ),
• MS.KeyGen (S): Given the settings S, the output is BLS.KeyGen(S),
• MS.Sign (S, PKs, ski

,m): Given the settings S, the set of public keys of d signers,
the ith signer’s private key ski

, and the message m, this function computes the
signature Σi = [ski

]H1(m). Σi is sent to a designed combiner that can be one of
the signers or an external entity. This combiner aggregates all the signatures by
computing:

Σ = [α1]Σ1 + [α2]Σ2 + · · ·+ [αd]Σd, (1)

where d is the signers’ number, αi = H2(Pki ||PKs), and PKs = {Pk2 , Pk2 , · · · , Pkd
}

is the set of signers public keys,
• MS.KeyAggr(S, PKs): Given the settings S and the set of public keys, this
function outputs the aggregated form of the public keys:

APK = [α1]Pk1
+ [α2]Pk2

+ · · ·+ [αd]Pkd
, (2)

• MS.Verify(S,APK,Σ,m): Given the settings S, the aggregated form of pub-
lic keys APK, the signature Σ, and the message m, this function outputs
BLS.Verify(S,APK,Σ,m).

6.3 Our improvements

Multi signatures aggregation is generally useful in a wide range of fields, including
finance, healthcare, cryptocurrency, and smart contracts. In certain situations, the
number of signers d is small, whereas it is large in other situations. In several cases,
particularly those based on blockchain technology, the number of signers d is dynamic.
Thus, each time the designed combiner must compute 2d scalar multiplications in (1)
and (2). Consequently, the cost of the calculation increases as d does. To ease the
designed combiner’s workload, the authors of [33] suggest having each signer calculate
their αi = H2(Pki

||PKs) and their signatures Σi = [αiski
]H1(m), with i ∈ [|1, d|].

In many cases, signers lack resources, which could weaken their efforts. Since αi is
public and revealing it doesn’t compromise security, we contribute to the designed
combiner’s work by enhancing computation in (1) and (2) mentioned above. In this
way, we eliminate the need for signers to perform this calculation. To demonstrate our
improvements, we proceed as follows:
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• Case of a small d:

– The multi signatures aggregation (1) :
We use our second method (Algorithm 5) since the signatures Σ1,Σ2, · · · ,Σd

utilized in (1) change as a function of the message m. In this instance, the
computational complexity is at most the same as when we employ optimized
d-mul,

– The aggregation of the public keys (2):
Given that the points Pk1

, Pk2
, · · · , Pkd

are fixed and the scalars α1, α2, · · · , αd are
variables, we use our first method (Algorithm 4). Compared to using optimized
d-mul, this method’s precomputation improves the computation by a factor of
100(1− 1

d )% on the number of additions,

• Case of a large d:
We are unable to utilize precomputation in this situation. Consequently, we compute
(1) and (2) using our second method. Here we gain approximately 50% on the
number of additions compared to using optimised d-mul.

Example 3.
In this example, we take the signers’ number d = 4. Let E be the curve BLS12− 381.
Let G1 = E(Fp)[r], G2 = E(Fp12)[r] and GT = {µ ∈ Fp12 ;µr = 1}. For a message
m ∈ G1, the signers produce the signatures Σ1 = [sk1

]H1(m), Σ2 = [sk2
]H1(m),

Σ3 = [sk3
]H1(m) and Σ4 = [sk4

]H1(m). The designed combiner applies the equation
(1) to compute the following aggregated signature:

Σ = [α1]Σ1 + [α2]Σ2 + [α3]Σ3 + [α4]Σ4.

Using our second method, this aggregation requires the following complexity:

254D+ 510A.

To compute the aggregated form of the public keys, the designed combiner applies (2)
to get:

APK = [α1]Pk1
+ [α2]Pk2

+ [α3]Pk3
+ [α4]Pk4

.

As the points Pk1 , Pk2 , Pk3 , Pk4 are fixed, it uses our first method to perform this com-
putation. Thus, the needed complexity is 11A as a precomputation and 254D+ 254A
for the main operation. The multi signatures verification requires two pairings over
the curve BLS12 − 381. The full complexity of the multi signatures scheme is shown
in Table 11.
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Steps Using our methods Without our methods

Σ 254D+ 510A 254D+ 1020A

APK
Main operation Precomputaion

254D+ 1020A

254D+ 254A 11A

Table 11: The comparison of the multi signatures complex-
ity with and without our methods.

7 Conclusion

In this paper, we have proposed a novel approach for computing multidimensional
scalar multiplication on elliptic curves. Our work has been presented in two distinct
methods to treat two different cases:
The first method is designed for the case where the number of scalars d is small. This
method uses precomputation to efficiently perform the main operation, outperforming
existing methods in this context. Our method is practical for schemes with a small
number of scalars, such as ECDSA with d = 2, and speeds up the classic scalar
multiplication. it is also a strong candidate for improving the efficiency of isogeny
based postquantum cryptosystems such as SQISign. We confirmed the effectiveness
of this method by evaluating the running time by applying it to the secp256k1 [20]
and Montgomery [21] curves used in ECDSA and SQIsign respectively. Note that this
method is preferable when the scalars are prefixed.
The second method is tailored for the case where the number of scalars d is large. In
such cases, there is no precomputation, and all calculations are performed on the fly.
This method is similar to the double and add method. It simultaneously processes the
bits of the scalars arranged in the same column from left to right at each step. Its main
operation is more efficient than that of the optimised d-mul method and requires fewer
memory accesses compared to the bucket method. Our method is highly practical for
proving and verification algorithms such as the Succinct Non interactive Argument of
Knowledge (zkSNARK) protocol that uses a large number of scalars. We tested its
efficiency by evaluating its running time on the BLS12 − 381 curve [23]. Note that
this method incorporates security measures against power attacks.
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