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Abstract. This paper presents a Distributed Oblivious RAM (DORAM)
protocol, MetaDORAM, that is information-theoretically secure and has
lower communication cost than all previous info-theoretically secure DO-
RAM protocols for small block sizes. Specifically, given a memory of
n locations, each of size d bits, MetaDORAM requires only O((d +
log®(n)) log(n)/ log(log(n))) bits of communication per query. When d =
O(log?(n)), this is a O(log(n)/loglog(n)) overhead, compared to the cost
of reading one memory location directly. By comparison, the only existing
statistically secure DORAM with sub-logarithmic overhead has commu-
nication cost O(log, (n)d + aw(1)log®(n)log,(n)) (Abraham et al. PKC
’17), where w(1) is any super-constant function in n and a > 2 is a free
parameter.

MetaDORAM obtains sub-logarithmic communication overhead for smaller
block sizes than previously achieved (any d = w(log?(n)/log(log(n))))
while providing statistical security, i.e., no computational assumptions.
We circumvent the Goldreich-Ostrovsky lower bound by allowing servers
to perform poly(log(n)) work, but without computational assumptions.
By a standard transformation, our protocol also implies a 3-server active
ORAM, Meta30ORAM, with information-theoretic security and O((d +
log?(n)) log(n)/ log(log(n))) communication per query. For small d, this
is lower than all previous statistically-secure multi-server ORAMs. Meta-
DORAM and Meta3ORAM also have low communication costs relative
to DORAM and multi-server ORAM protocols which make use of compu-
tational assumptions. Even compared to several recent works that make
use of O(n) computation, our protocols have lower communication cost.
Our protocols are secure in the semi-honest honest-majority setting. We
also show that perfectly secure DORAM /multi-server ORAM with the
same efficiency can be obtained using a computationally-expensive once-
off setup phase.

1 Introduction

Secure Multi-Party Computation (MPC) protocols allow a set of parties in a
network, of which some unknown subset are dishonest, to securely simulate a
trusted third party. This holds tremendous promise. It allows statistical analysis
of sensitive data from different sources without pooling data with any single



party. It allows the creation of secure systems, which do not have a single point of
failure; using diversification these systems can therefore tolerate attacks affecting
particular operating systems, hardware or local networks. In short, it allows
sensitive data to be combined and used without needing to trust any single
entity or device with that data.

MPC use cases to date, though, have mostly been restricted to tailor-made
protocols for specific applications, such as Private Set Intersection [36], Thresh-
old Signature Schemes [11] and Machine Learning [24]. It was shown in the
1980’s that arbitrary circuits could be evaluated securely [43,17,4]. However,
many computations cannot be represented efficiently as circuits. Rather, it is
often more natural and efficient to represent a computation in the RAM model.
For instance, RAM is assumed in many classic algorithms and data structures,
such as implementations of dictionaries, pointers, graphs and priority queues.
An efficient implementation of a RAM functionality for MPC would therefore
enable the adoption of generic efficient MPC.

Distributed Oblivious RAM (DORAM) is a functionality that implements
RAM for MPC. It stores n d-bit blocks of data in a secret-shared memory, and
allows accesses to that memory (reads or writes) at secret-shared locations. A
DORAM is secure if the views of the parties can be efficiently simulated without
knowledge of any private values. See section 5 for a complete definition of the
DORAM functionality.

DORAM is closely related to the problem of Oblivious RAM, which solves
the problem of a client outsourcing memory to an untrusted server (or servers).
In particular a w-party DORAM can be converted into an ORAM with w active
(i.e. computation-performing) servers and vice-versa, usually without increase
in the communication cost. See section 2 for more details. Therefore, efficient
DORAM is intrinsically tied to efficient multi-server active ORAM. A primary
metric of this efficiency is the total amount of communication per memory access.
This is often measured as the overhead, that is the number of blocks (of size d)
of communication require per memory access.

Our Contribution: In this work, we present MetaDORAM, a novel statistically-
secure 3-party DORAM protocol with sub-logarithmic communication overhead.
Our protocol achieves amortized communication cost O((log?(n) + d)%)
bits per query. MetaDORAM is the first information-theoretic secure DORAM
to achieve sub-logarithmic communication overhead when d = O(log®(n)).

Due to the conversion between DORAMs and ORAMs, MetaDORAM can
be converted to a 3-server statistically-secure active ORAM, Meta30ORAM, with
communication cost ©((log?(n) + d)%).

Note that a passive (non-active) ORAM has a lower bound of ©(log(n)) over-
head even if there are multiple servers [26,27]. Meta30ORAM, like [1], achieves
sub-logarithmic overhead only because the servers perform computation. When
the servers are active, the ©(log(n)) lower bound can be circumvented for com-
munication, and instead applies to the amount of memory accessed by the
servers. Our result, taken with [1], shows that the asymptotic bounds on the
DORAM problem are, as of yet, not well understood, and opens up many inter-



esting questions regarding what lower bounds exist for DORAMs, as well as for
active information-theoretic ORAMs in general (see Section 9).

MetaDORAM also has lower communication overhead than most DORAM
protocols that use computational assumptions. See Table 2 in section 2 for more
details.

Organization: Our paper is organized as follows. Section 2 provides a short
history of prior ORAM and DORAM protocols. Section 3 provides a technical
overview of our results and techniques. Section 4 explains the notation used, in
particular the various types of secret-sharing used and how they are represented.
The formal DORAM functionality is presented in section 5, as well as the func-
tionalities for Secret-Shared Private Information Retrieval (SSPIR) and secure
routing, which are used by our DORAM protocol. Section 6 presents our full
DORAM protocol, and analyzes its security and communication costs. Sections
7 and 8 explain how SSPIR and secure routing, respectively, can be implemented
using standard techniques. Section 9 concludes by discussing some interesting
open questions.

2 Prior Works

Distributed Oblivious RAM is closely related to the problem of Oblivious RAM
(ORAM), which was first formulated by Goldreich in the 1980’s [16]. Imagine
a program which is running in a secure environment with very limited mem-
ory. The program wishes to make use of general memory on a device, but an
adversary may be able to observe access patterns on this device. For instance,
the program may be running in a secure enclave, such as Intel SGX [8], but
needs to hide sensitive information even if the operating system is corrupted.
The program can encrypt the data; this will hide the data’s contents, but will
not hide the memory locations accessed by the program, which might leak sen-
sitive information. An ORAM is an intermediary between the program and the
main memory. It provides a RAM functionality to the program using the device’s
memory in such a way that the access pattern on the device (the physical access
pattern) reveals no information about the memory accesses by the program (the
virtual access pattern), except for the number of accesses.

In a normal RAM, the cost of retrieving a block of data from memory is
equal to the size of the block, denoted d. Adding obliviousness comes at a
price; the overhead is the multiplicative increase in the number of bits that
need to be accessed relative to a normal RAM. Goldreich initially presented
an ORAM that had O(y/nlog(n)) overhead, where n is the number of blocks
of memory [16]. This was improved to O(log®(n)) by Ostrovsky [32], using the
hierarchical approach, which we explain in section 3. A series of improvements*

4 ORAM security is very subtle and improvements came both in reducing overhead
and in fixing security issues in previous protocols. [19] fixed a security issue in [35];
[6] provided a method for oblivious cuckoo hash table construction that was missing
from [25]; [20] observed and fixed a flaw that existed in [19], [25], [34] and [3].



reduced this first to O(log?(n)) [35, 19], then O(log?(n)/ log(log(n))) [25, 6], then
O(log(n)log(log(n))) [34] and finally O(log(n)) [3]. This final result matches the
proven asymptotic lower bounds [18, 26]. These works, and the asymptotic lower
bound, are in the setting where the untrusted memory is passive (i.e. performs no
computation on behalf of the ORAM) and the ORAM only has enough memory
to store ©(1) blocks (and ©(1) s-bit PRF keys).

With the advancement of networking infrastructure in the 1990’s, ORAM
was quickly viewed as a solution to another challenge: outsourcing memory in
a network. Here, a client with limited memory capacity wishes to store data on
an untrusted server such that the access pattern on the servers’ memory leaks
no information about the actual memory access pattern by the client. The for-
malism of the original ORAM use-case was immediately applicable, with the
client taking the place of the secure environment and the server replacing the
device memory. However, this new application led to various extensions of the
model. Firstly, the client could feasibly store much more than ©(d + k) bits
of memory-a laptop or modern smartphone has gigabytes of memory available.
Secondly, the server is likely to also have significant computational resources,
so may be able to perform computation to reduce communication overhead, a
variant referred to as active ORAM. Thirdly, the client could easily interact with
multiple servers, which could reasonably be assumed to not collude. This was
referred to as multi-server ORAM. This new application also caused metrics
to be re-evaluated. Since latency is higher in a network, the number of rounds
of execution between the client and server became a very important efficiency
metric. Additionally, this setting often involved much larger blocks: if the com-
munication cost had a term that did not depend on d, this term could become
asymptotically irrelevant for sufficiently large d. A large number of works arose
examining various combinations of these new models of super-constant client
memory overhead (e.g. [42, 39, 10]), active servers, and multiple servers (e.g. [29,
1,7]).

At the same time, advances in MPC protocols (e.g. [22], [9], [2]) were dramat-
ically reducing the cost of securely evaluating generic circuits. However, many
computations are not efficiently realizable as circuits. It was well-known that
ORAM techniques could be applied to create efficient MPC protocols in the
RAM model [33,15,41]. This is the problem of Distributed Oblivious RAM
(DORAM), accessing secret-shared memory at secret-shared locations without
leaking anything but the number of accesses. Any client-server ORAM could be
transformed into a DORAM by evaluating the client’s circuit inside of a secure
computation and allowing one of the parties to act as a server. There was now
no trusted client, instead there was a “virtual client” that was simulated by a
secure computation.

Some of the extensions to the ORAM model that resulted from the memory
outsourcing application were immediately relevant to DORAMs. Since DORAMs
already had multiple non-colluding parties, they could trivially take advantage
of multi-server ORAMs by having the parties simulate different servers. Fur-
thermore, since the parties were already performing computation as part of the



MPC protocol, they could naturally perform the computation needed by servers
in an active ORAM. On the other hand, like in the secure program use-case, the
DORAM’s virtual client needed to have very limited memory in order for it to
have an efficient circuit representation. Furthermore, in an ORAM, the trusted
client can perform local computation essentially for free, including cryptographic
operations such as PRF evaluations. In the DORAM setting, every computation
performed by the virtual client needs to be evaluated inside of a MPC circuit,
which can require significant communication between the parties. On the per-
formance metric side, since the MPC protocol occurs in a network, the number
of communication rounds again becomes significant, as with memory outsourc-
ing. However, like the application of secure program evaluation, the size of data
blocks is often small (say a single variable), so any terms that do not depend on
d are once again significant.

In general, a s-server active ORAM tolerating ¢ corrupt parties can be trans-
formed into a (w, t)-secure DORAM protocol for any w > s by simulating the
client in a (w,t)-secure MPC and having each server’s role taken by a distinct
party. This transformation could, potentially, increase the communication cost,
depending on the circuit complexity of the virtual client. Going the other way,
any (w,t)-secure DORAM can also be converted to a (w,t)-secure multi-server
active ORAM by each server acting as one party, and by the client initially
secret-sharing their query to the servers, and the servers sending the client the
shares to reconstruct the result. This will not lead to any increases in asymptotic
communication costs.

Through this client simulation, efficient DORAMSs could be produced from
ORAMs. In fact the best statistically secure DORAMSs prior to our work were
achieved by simulating a client in an ORAM. If a client can be represented as
a Boolean circuit with ¢ AND gates, it is possible to simulate this client in a
secure computation using only @(g) communication [4,2]. However, achieving
statistical security for generic MPC requires an honest majority, so simulating
the client without introducing cryptographic assumptions requires the use of
at least 3 parties, even if the ORAM only uses 1 or 2 servers. Wang et al.
[41] created a single-server ORAM specifically designed to have a low client
circuit complexity. This resulted in a DORAM with communication complexity
O(w(1)log(n)d+w(1)log®(n)), where w(1) is any function that is super-constant
in n. In comparison, the MetaDORAM protocol is asymptotically better than
[41] by a factor of w(1)log(log(n)) over all parameter ranges.

Abraham et al. created an efficient 2-server ORAM using PIR [1]. Their
ORAM is Tree-based (see section 3), in which the number of children of each
vertex is a configurable parameter, a > 2. This protocol achieved a communi-
cation cost of O(log,(n)d + aw(1)log,(n)log*(n)). The parameter a should be
set to reduce the amortized cost. For d > 2w(1)log?(n) the cost is minimized

by setting a = m, which results in a cost 112?233 d. For smaller d, the
cost is minimal when a = 2. Table 1 shows the communication cost for various
choices of a. Their protocol has a simple client, which can be simulated without

increasing the asymptotic cost.



In comparison, MetaDORAM has less communication than [1] for small block
sizes, and more communication for large block sizes. When d = O(log?(n)) Meta-

DORAM requires © (lolgoﬁj%) communication whereas [1] is optimized when

a = 2, causing [1] to have cost ©(w(1)log®(n)). For medium blocks, that is
w(1)log®™¢(n) < d < log®(n), for some constants € > 0, ¢ > €+ 2, both protocols

have communication cost © (%d). For large blocks, d = £2(n°), [1] has

better performance, having only ©(d) communication cost, whereas MetaDO-

RAM still has cost © (%d).

ORAM protocol DORAM Communication Cost (bits)| Security

Wang et al. [41] O(w(1)log(n)d + w(1)log®(n))  [Statistical

Abraham et al. [1] 6(log, (n)d + aw(1) log, (n) log®(n))

@ = Sz (if d > 2w(1)log®(n)) O (15 d)

a=2 O (log(n)d + w(1) log®(n)) Statistical
log(n w(1)-log*(n

a = log(n) © <log<li(g<zz>>d + k(,g)(logﬁ,f))))

a=+/n O (d + y/nw(1)log*(n))

: log(n log® (n. ..
’MetaDORAM (This work) ‘ C] (log(i(@;()ﬂ)) d+ log(ig(“z))) ‘Statlstlcal‘

Table 1. Complexity of selected ORAM protocols that can be converted to efficient
DORAMSs. While these ORAMSs require only 1 or 2 servers, achieving statistical security
requires an honest-majority MPC protocol, therefore necessitating at least 3 parties.
These works all have negligible leakage in n, that is the advantage of an adversary in
distinguishing the real and ideal executions is 2~<(°8(™)

Several works also investigated building Distributed Oblivious RAMs directly
without simulating a client-server ORAM. While these works generally did not
achieve the same asymptotic efficiency as [41] and [1], many had good con-
crete efficiency. They took advantage of the existence of multiple non-colluding
servers by using Distributed Point Functions [5, 40], secret-shared PIR (SSPIR)
[23] and secure shuffles/routing [14]. See Table 2 for details. There has also been
work to create DORAMSs that are secure against malicious adversaries [13, 21].
These works all depended on computational assumptions. In comparison, the
MetaDORAM protocol is statistically secure. It also has strictly better com-
munication cost than all protocols over all parameter ranges with one excep-
tion: [14] can have a lower asymptotic communication cost, and that only when

r = o(log?(n)/log(log(n))) and d = o(log®(n)/log(log(n)).

3 Technical Overview

Before explaining our protocol, it is helpful to have an understanding of two
general paradigms which are used in constructing (D)ORAMs.



Protocol Communication Cost (bits) Security

[12] O (w(1)log*(n)d + kw(1)log”(n))|Computational
[23] O (log(n)d + rlog®(n)) Computational
[5] O (dy/n) Computational
[14] O (log(n)d + klog(n)) Computational
DuORAM [40] O (k-d-logn) Computational
MetaDORAM (this work)| 6 (el + ofhs) | Statistical

Table 2. Complexity of several DORAM protocols. k is a cryptographic security pa-
rameter, w(1) is any super-constant function in n.

The first is the Hierarchical approach, initially proposed by Ostrovsky [32],
in which data is stored using hash tables. In the ORAM setting the tables are
held (encrypted) by a single server, in the DORAM setting, they can be secret-
shared between multiple servers. The hash tables use pseudorandom hash func-
tions, so that the physical locations accessed reveal no information about the
corresponding indexes, and are hence called Oblivious Hash Tables (OHTables).
An OHTable does not solve the ORAM problem, however, because an adversary
can typically distinguish repeated queries for the same element into an OHTable
from queries for distinct elements. To solve this, when an item is queried it is
cached from an OHTable into a small sub-ORAM. The sub-ORAM is queried
first and if the item is found there, random locations are accessed in the OHTa-
bles; this is necessary for security since re-querying an item in an OHTable would
cause the same locations to be accessed, compromising security. To ensure the
sub-ORAM remains small, periodically its contents are extracted and built into
a new OHTable. To ensure the number of OHTables remains manageable, pe-
riodically the contents of multiple OHTables are extracted and rebuilt into a
single new OHTable. Typically, the sub-ORAM and OHTables are envisioned as
arranged vertically, with the sub-ORAM at the top and OHTables below it, ar-
ranged from smallest to largest, resulting in a pyramid-shaped hierarchy (hence
the name) of sub-ORAM/OHTable structures.

Shi et al. [37] proposed the alternative Tree approach, which was extended by
many subsequent (D)ORAMs (e.g. [38,41,12]). In this solution data is arranged
in a tree, each item is assigned a path from the root to the leaf and the item
must remain on this path until its next access. To query an item, its path is
first obtained. All locations on this path are accessed and the item is removed
from its location. The item is then assigned a new random path and placed in
the root of the tree. The root is typically a small sub-ORAM, whereas each
other node in the tree typically has capacity for a constant number of items. To
prevent the root sub-ORAM from becoming too large, paths from the root to
leaves are periodically accessed and each item in the path moved as far down
(leafward) as it can be moved, subject to its own path restriction and congestion
from other items. Analysing probability distributions shows that the congestion
is unlikely to cause the sub-ORAM at the root to overflow. The assignment of



indices to paths, which is called the position map, is stored and updated using
a sub-ORAM, which is implemented recursively.

Our DORAM combines ideas from Hierarchical and Tree ORAMs. Data is
arranged in a hierarchy of OHTables, but the locations of items within each
OHTable is stored on a Tree-ORAM style position map. However, MetaDO-
RAM extends the idea of a position map: rather than storing a path of possible
locations in which an item may be located, MetaDORAM stores a position sched-
ule of each item’s ezxact location at every point in time. Like in Tree ORAMs,
a query first accesses a data-structure to gain information about an item. How-
ever, rather than just storing a random path, for each index our data structure
stores a tag called a Random Unique NamE (rune), a position schedule and a
mask schedule. It does this by storing the rune in a sub-DORAM, and having
tables that allow the additional metadata to be obtained using only the rune.
By accessing this data-structure, it is possible to obtain (a secret-sharing of) the
exact location at which an item is stored. The items themselves are stored in a
Hierarchy of OHTables. Unlike a typical OHTable, the potential locations of an
item are based on the rune alone; no pseudorandom functions are used. During a
query, the rune is revealed, which allows the servers to locally narrow down the
possible query location to a small number of locations in each table, or ¢ locations
total. Then, the secret-sharing of the full location is used to securely select the
correct item. The last step is possible using a simple information-theoretic PIR
approach with only ©(v/td + d) communication, rather than td communication
(see section 7).

To allow efficient building of data-structures, the servers have different roles.
One server is the Builder, while the other two servers are Holders. The Holders
hold OHTables of masked blocks. For each rune, the Builder always knows where
the block for that rune should be located, however it does not know, what index
that rune corresponds to. Whenever an item is queried the Holders (and not the
Builder) learn the rune for that item, which allows them to narrow down where
the item can be. At the end of the query, the Builder assigns the item a new
rune, without learning the associated index, and without the Holders learning
the new rune. Therefore, during an access, the Builder learns (or decides) the
item’s new rune and the Holders learn the item’s previous rune, but no single
party learns both, which provides obliviousness.

During a rebuild, items must be securely moved from locations in smaller
tables to locations in a single larger table. The possible locations in which an
item can be located within a given table are determined by its rune. Since the
Builder knows all of the runes of items that are being built into the table, the
Builder can locally compute a satisfying assignment for items in the new table.
Furthermore, since the Builder knows the previous locations of all items, the
Builder can engage in a secure routing protocol with the Holders to permute the
elements from their original locations in the old tables to their new locations in
the new table.

A query works as follows. First, the current rune for an item is determined
using its index, by querying a sub-DORAM. The rune is revealed to the Hold-



ers. This dramatically reduces the possible space in which the Holders need to
search for the item. We will later use (secret-shared) PIR to retrieve the item
from its exact location. A common trick in many (D)ORAM protocols [31,1] is
to use PIR to access the relevant item once its location has been established.
In our construction, the PIR is executed over only o(log®(n)) locations, which
results in low computational cost, and allows us to use information-theoretic
PIR protocols.

Next, the protocol needs to determine (secret-shares of) the exact location in
which the item is located. Since the Builder pre-chooses the runes, the Builder
can also pre-compute at the very beginning of the protocol the location assign-
ments at every point in time. This schedule will be in terms of the rune, and
not the indexes they correspond to, which is not yet necessarily determined even
by the environment. The Builder can secret-share the position schedule between
the Holders. For each rune, the Builder provides ©(log(n)/log(log(n))) secret-
shared time ranges and, for each time range, the position during that time range
(from among the possible locations for a given rune). During a query, the pro-
tocol uses the secret shares of the timestamp (log(n) bits), and compares these
with the timestamp ranges in order to determine a secret-sharing of the item’s
position. This reduces the search space to a new database of polylog size, which
is pairwise replicated. Finally, we use information-theoretic Private Information
Retrieval (PIR), to obtain a secret-sharing of the desired masked element.

Recall that the Holders store masked items, rather than secret-shared items.
This allows the Holders to hold exactly the same tables of masked elements
(rather than secret-sharings of tables, as is normal in DORAM). This is necessary
for the PIR protocol. To achieve information-theoretic security, the items are
masked using One-Time Pads (OTPs). In order to prevent the Holders tracking
how blocks travel through the OHTables it is necessary for blocks to use a new
OTP after each build. Since the Builder never learns the masked blocks, it is
safe for the Builder to pick the OTPs. The Builder therefore knows how to mask
each item. The secure routing protocol can be extended to allow the Builder to
specify OTPs for each block, thereby both permuting and re-masking each block.
Furthermore, the Builder can pick all of the OTPs at the start of the protocol,
and can create a mask schedule, akin to the position schedule. In fact, since the
time-ranges are the same in both cases, the secret-shared OTP can be stored
and retrieved with the secret-shared position. Locally XORing the secret-shared
OTP and the secret-shared masked block results in a secret-sharing of the item.

Our protocol also makes use of “balancing” [25]. Instead of combining con-
stant numbers of small OHTables to create larger OHTables, we wait until there
are O(log”®(n)) OHTables of a given size before rebuilding them into a larger
OHTable. This means that the total number of tables is ©(log'®(n)/ loglog(n)),
but the number of times each item participates in a rebuild is only
O(log(n)/log(log(n)). This reduces the amortized communication cost of re-
builds.

Novel contributions: In addition to providing the communication-efficient
DORAM with information-theoretic security, our paper introduces a number



of new techniques. Specifically, we use time-stamping and novel data structures
to obtain the precise location of data blocks, we make asymmetric use of the
participating compute servers to allow efficient and oblivious construction and
querying of these data structures, we use as a subroutine tiny-size PIR protocols
where the “databases” are constructed on the fly during query execution, and
we show a novel strategy for DORAM that bridges techniques from different
ORAM strategies in conjunction with ideas explained above.

4 Preliminaries

We use lower-case Latin characters to represent parameters in the protocol.
n is the size of the RAM, d is the bit-length of each item. ¢ represents the
(maximum) number of OHTables that may exist in the protocol. h represents
the number of hash functions used by the hash tables. For an explicit integer or
integral parameter, a, [1,a] denotes the set of integers {1,...,a}. We use upper-
case Latin characters to represent arrays and matrices, which are indexed using
standard subscript notation. Most subscripts are one-indexed; zero-indexing is
occasionally used when the first item is somehow special.

We use lg to represent the base-2 log. For asymptotic annotation, any con-
stant base is equivalent, in which case we often use log to represent some arbitrary
constant-base log.

We denote the 3 parties as Py, P; and Ps. Py is the Builder. P; and P, are
the Holders. The Adversary A, is able to corrupt at most one of the parties. The
corruption is semi-honest (passive), that is the corrupted party will still follow
the protocol, but A is able to view all data visible to the corrupted party. The
corruption is static, that is A cannot change which party is corrupted during the
protocol. The protocol is statistically secure. Concretely, A learns no information
about the access pattern except with probability that is negligible in n, regardless
of A’s computational powers.

We utilize hash functions. Our hash functions are fixed and public. We assume
that the hash functions are 2n-wise independent and independent of each other.
The hash functions implicitly map to ranges of different sizes (depending on the
size of the OHTable). In this cases, the hash functions are calculated modulo the
required range. It is assumed that the output of the hash function has sufficient
entropy that even when reduced modulo these ranges, the distribution is still
essentially uniform.

We use several kinds of secret-sharing, all of which are bit-wise (Boolean)
secret-sharings. We can explicitly state the sharing using the following notation:
({yo)o, (y1)1, (y2)2), which means that Py holds share yg, P; holds share y; and P
holds share ys. The most common sharing we use is a 3-party replicated secret
sharing (3RSS) [2]. Here, x € {0,1}* is secret-shared by having zg, 21,72 €
{0,1}* that are uniformly random subject to 23 @ xy @ x3 = 2. P; holds z; and
xi+1. (All such subscript operations are implicitly modulo 3.) When variable z is
held using this secret-sharing, it is represented as [z]. Using the notation above,
we can say [x] = ({(xo,1))o, ((x1,22))1, ((x2,20))2). Operations (AND, OR,
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NOT, XOR) are performed on this secret-sharing using the methods of Araki et
al [2].

We also use a 2-party XOR secret-sharing (2XORS), where 2 parties hold the
secret-sharing and the third party is not involved. If P; and P, hold a 2-party
XOR secret-sharing of variable z, this is denoted as [z]12 = (()o, {(z1)1, (x2)2)
where 1,29 + {0, 1}6 subject to 1 ® ro = x. We also use a variant of XOR
secret-sharing in which 2 parties hold one of the shares, and the third party holds
the other. For instance, when Py holds one share, and P; and P, hold the other
share, this is denoted [z]o(12) = ({z1)0, (z2)1, (x2)2) Where z1, 20 + {0,1}*
subject to x1 @ xo = x. Sometimes a variable is held privately. If = is held
privately, for instance, by Py, we denote this as [z]o = ({(z)o, )1, ()2). Sometimes
a variable is known to 2 parties but not the third. If z is known to P; and P,
but not Py, this is denoted [z](1,2) = ({)o, ()1, (7)2).

It can be easily shown that for any x € {0,1}* it is possible to convert a
sharing of x from any of the above secret-sharings to a fresh resharing of any
other of the above sharings with only ©(¢) bits of communication. For brevity,
we provide here only a single example. To covert [x]o (1,2) = ((x1)0, (2)1,2) to a
fresh [z], Py picks a1, as < {0,1}¢ and sets az = x1 © a1 @ ay. Py picks by, by
{0,1}* and sets b3 = x3 © by @ by. P, does nothing. Py sends a;,a;41 to P; and
likewise P sends b;, b; 11 to P;. Each party P; locally calculates ¢; = a; @& b; and
Cit1 = Gi+1Db;41 and the new sharing is [z] = (((co, ¢1))0, {(c1,¢2))1, {(c2, c0))2).

For conciseness, conversions between types of secret-sharing are typically
implicit in our pseudocode, indicated by the sharing-type of the result. For in-
stance, [C}](1,2) = [Vnew] @ [€] means that variables [vye.] and [e], both stored
using 3RSS, are first XORed to create a result that is shared using 3RSS. This
result is then revealed to P; and P, (but not Fy), who store the result and label
it C.

5 Functionality
We wish to implement the following DORAM functionality:

e '

Functionality Fporanm

I < Init(n, d, [A]): Store array A containing n items of size d.
[v] «+ I.ReadWrite([z], [y], f): Given an index z € [1,n], set v to A,. Set

Ae = f([v]; [y])-

\. J

Our definition of a DORAM combines the Read and Write functionalities,
allowing for reads, writes, or more complex functionalities. This is done by set-
ting the public function f appropriately. For a read, define f(v,y) = v. For a
write, define f(v,y) = y. Allowing the written value to be a function of the in-
put provides additional flexibility, such as writing to only particular bits of the
data-value or applying a bit-mask to the memory value. Implicitly, f must be
representable using a Boolean circuit containing ©(d) AND gates.
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Security is defined using the simulation paradigm, which is standard for prov-
ing the security of MPC protocols [28]. A simulator, given only a party’s inputs
and outputs from a protocol must generate a view consistent with the real view
of a corrupted party during an execution. The DORAM is perfectly secure if the
simulated view is from the same distribution as the real view. It is statistically
secure® if the distance between the distributions of the views is negligible in n.
It is computationally secure if a computationally-bounded adversary has a neg-
ligible advantage in distinguishing views in the simulated and real executions.
All of our protocols are statistically secure.

Our DORAM implementation makes use of the following functionalities. We
show how to implement these using standard techniques in sections 7 and 8
respectively.

e \

Functionality Fssprr

[v] <-SSPIR(m,d, [A](1,2),[2]): Given an array A held (duplicated) by P1 and
P,, containing m elements of size d, and a share of x € [1,m], return a fresh
secret-sharing of A,.

Functionality Froute

[B] < Route([A], [Q]o): Given a secret-sharing of array A, of length m, and an
injective mapping @, held by Py, of length ¢ > m, create a fresh secret-sharing
B such that Bg;y = A; for all i € [1,m] and Bj; is distributed uniformally at
random for all j ¢ {Q(%)}ie[1,m)-

6 DORAM Protocol

6.1 Overview

This section presents the DORAM protocol in full and analyzes its security and
communication complexity. The protocol is first presented at a high level in
section 6.1 and then presented in detail in sections 6.2 and 6.3. Section 6.4 then
demonstrates that the protocol achieves the desired security properties. Finally
section 6.5 analyzes the security and complexity of the protocol respectively. We
assume the existence of functionalities for secret-shared PIR and secure routing,
implementations of which are presented in sections 7 and 8 respectively.

Our protocol maintains a data-structure composed of multiple Oblivious
Hash Tables (OHTables). The data-structure is stored by two parties, called
the Holders (P, and P,). They hold identical copies of the data-structure (this
will facilitate the use of PIR to access elements). To provide privacy, all items in

5 Some works specify a security parameter, say o, such that the statistical distance
should be 279(*) ' We choose instead for the distance negligible in n, which is equiv-
alent to saying we set o = w(log(n)).
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these Oblivious Hash Tables are masked. The masks are information-theoretic,
based on one-time pads.

We refer to the items in the data structure as blocks. Each block is labelled
by a random tag, chosen from [1,2n], which we refer to as a rune (Random
Unique NamE). Although the Holders store the blocks, they are not aware of
the runes for these blocks. The other party, called the Builder (P), does know
the rune of every block, and knows the block’s location in the data-structure,
but never stores any blocks itself.

Every index is assigned a rune. The block for that rune holds the (masked)
data value at that index’s location in memory. When an index is read or written
to, it is assigned a new rune and a new block is created which holds the, po-
tentially updated, value. However, the old block, and the old rune, continue to
exist in the system. The Builder does not learn that that rune was used, and the
Holders do not learn that that block was accessed. Therefore, the data-structure
holds both active and obsolete blocks, and the way that blocks are moved through
the data-structure does not depend on whether the block is active or obsolete.
These obsolete blocks will periodically be deleted, during a refresh phase which
happens every n accesses, which we explain in more detail later.

The mapping of indices to runes is stored in a sub-DORAM. In the sub-
DORAM, adjacent indices are stored together, so there are only n/2 indices in
the sub-DORAM. Each data-value in the sub-DORAM therefore stores 2 runes,
which needs ©(log(n)) space. The sub-DORAM is implemented recursively, so
there are ©(log(n)) levels to the recursion.

We now present the full DORAM protocol. We first describe how writes and
rebuilds occur. Reads depend on data-structures for the metadata, so we then
show how to create these during the initialization and refresh phases. We then
show how reads are achieved. Finally we analyze the communication complexity
and security of the protocol.

6.2 Writes and Rebuilds

We first show how the data-structure storing the blocks is written to and rebuilt.
Initially, all blocks are stored in a single, large, OHTable. When an index is
queried, it is assigned a new rune, which is picked from the correct distribution
by the Builder, and the sub-DORAM is updated with this information. A new
block is then created which holds the new value for that index. This block is
placed in an area called the cache. The cache is filled sequentially. The cache is
of size 1g%(n)/lglg(n). When the cache becomes full, its contents are extracted
and built into an OHTable.

We implement the OHTable using cuckoo hashing with many hash functions.
The block may be stored in locations corresponding to the output of the hash
functions on the block’s rune. Since the Builder knows the runes of every block,
the Builder is able to locally compute an assignment from runes to locations.
It can then collaborate with the Holders to securely route the blocks to their
correct locations. It is important for the Holders not to be able to tell how
the blocks were permuted. It is therefore necessary to re-mask them. All masks
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are achieved information-theoretically using one-time pads (OTPs). The Builder
picks the random OTPs each time a block is masked.

We periodically combine multiple OHTables into a single OHTable. Once
there are b OHTables of a given size, the contents of all of these OHTables
are extracted and then are built into a single new OHTable. We refer to the
OHTables as being arranged in levels. The first, or top, level, Ly, contains the
cache. The next level, Ly, contains OHTables that were built by extracting the
contents of the cache. We label these tables T4 1,...,7T1. Since the cache is of
capacity ¢, each OHTable in L, will also be of capacity c. L; will contain at most
b such OHTables; when there are b such tables, they will be combined into an
OHTable of size be which will be placed in Lo, and so on. Note that, once the bth
OHTable in a level is built, it is immediately combined with all other OHTables
in that level to construct an OHTable in the next level. Therefore, during queries
there are only at most b — 1 tables at any level. Since each level’s capacity is b
times larger than that of the level before it, a total of ©(log,(n/c)) levels will be
needed to store the blocks created by n queries. For the parameters we choose,
log,(n/c) = O(1g(n)/1g(lg(n))). After n queries, the refresh occurs, the contents
of all OHTables and the cache are extracted, and the active blocks are rebuilt
into a single, large OHTable of size n, as at the start of the protocol. The Rebuild
protocol is presented in Figure 1, together with the overall DORAM ReadWrite
function and the Write function.

6.3 Reads and Refreshes

The question remains as to how the function Read([z]) can be implemented
efficiently. Firstly, we reveal the rune of x to the Holders, let it be called 7.
This greatly simplifies the problem. It is known that the block is stored either
in the cache, or in location Hy(r) of some table T; ;, for some i € [1,4],5 €
[1,b—1],k € [1, h]. This reduces the number of possible locations to c+£(b—1)h =
o ( 1383(”) )

log?(log(n))

This is still a significant number of locations. Py knows, for each rune and
each time, the location at which each item is stored. However, r cannot be
revealed to Py during a read, since Py knows when the index with rune r was
last accessed, which would allow P, to link access times of indices. In short, the
Builder knows the location of each rune, but there seems no way to make use of
this without leaking information about the current rune being queried.

Recall that in the description of the DORAM write protocol, Py gets to pick
the rune. Py should pick the runes such that each rune is unique, but apart from
this runes are chosen uniformly at random from [1, 2n]. Therefore, the choice of
runes does not depend on any other activity in the protocol. Hence, P, is able
to pick all of the runes at the beginning of the protocol. In other words, Py can
pre-choose the runes that it will assign at each point in time, and during the
protocol can assign runes consistently with this original assignment.

Observe, further, that Py builds the OHTables based solely on the hash func-
tions and the runes. Since these are both known at the start of the protocol, Py
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DORAM: ReadWrite Write Rebuild

Parameters:

Cache size: ¢ = Ig%(n)/lg(1g(n))

Tables per level: b = 1g°5(n)

Number of levels: £ = [log,(n/c)]

Number of hash functions: h = 1g*®(n)/lglg(n)
Hash functions: Hi,..., Hp

DORAM.ReadWrite([z], [v], f):

AN S

[v] =Read([z]) (Defined in Figure 4)

[Vnew] = f([0]; [y])

Write([z], [vneu])

Rebuild() (Performs rebuilds, if needed)

t =t + 1 (Counter indicating the number of queries)
Return [v]

Write([z], [Unew]):

Ol N

P, picks a new, unused, rune r from [1, 2n]

j=1t mod c

Py picks a OTP, e from {0,1}%, to mask the block.
[Cil(1,2) = [Vnew] © [€]

For future rebuilds and refreshes, the secret-shared vnew, 7 and x are stored

in a matrix:
[Vo.i] = [Unew]
[Ro,;]o = [r]
[Xo,;] = [2]

Rebuild():

1.

for i € [0,£ —1]:

(a) if t =0 mod b'c (i.e. L; is full):
i. uw=(t/(b'c)) mod b ¢ (the number of tables in Lii1).
ii. for j € [1,b'¢]:

[Ri+1,ubic+j]0 = [Ri,]’}o

[Vi+1,ubia+j] = [Vi,]

[Xi+1,ubic+j} = [Xi4]

. Delete [Ri,j](), [‘/iyj] and [Xl,]]

. Py picks a new OTP, E;; i, from {0, 1}

(Zi11,uvic45) = Vigt,ubicrs] © (Bt upics)

TEUQWR

iii. Py locally builds an OHTable using R, ; i., and hash functions
H;,..., Hy. Let [Q]o be the injective mapping from [b'c] to [2(1+¢€)b’c]
that maps R, ;  i. to satisfying locations with these hash functions.

iv. Use this mapping to build an OHTable containing the newly masked
blocks:

[Tit1,ul(1,2) = FRroute([Zit1 ubict1...ut1ivic)s [@lo)

(b) if(t = n) Refresh()

Fig. 1. DORAM protocol overview, write function and rebuild function



can also pre-calculate all assignments in all hash tables at the beginning of the
protocol. This allows P, to locally create a position schedule, that is a data-
structure storing exactly where each rune will be located at each point in time.

This allows us to sidestep the conundrum described above. The Builder can
secret-share the position schedule containing all information about the locations
of all of the runes, once, at the start of the protocol. The Holders can then access
the relevant parts of the position schedule dynamically as they learn the rune
of each queried block. Note that this location is the location among all of the
possible locations that the block may have been located based on the rune (up
to ¢ cache locations, and up to £(b — 1)h table locations).

Given secret-shares of the location of the block, the protocol now engages in
a secret-shared PIR (SSPIR) to obtain a secret-sharing of the block. SSPIR can
be implemented using a simple modification of any 2-party PIR protocol. The
SSPIR protocols we use are explained in more detail in Section 7.

This allows us to obtain secret-sharings of the masked value, but how can
this be unmasked? Py knows which rune is masked using which OTP, but this
information somehow needs to be accessed without revealing to Py which rune
is being queried. This is the same problem we had with the location mapping,
and it can be solved using the same solution! Since the Builder gets to pick the
OTPs, he can pre-determine, at the initialization of the protocol, which OTPs
it will use. He can then secret-share the OTPs that will be used for all runes
at all points in time. Recall that each time a block is moved, it will be masked
using a new OTP. Therefore, Py will secret-share a mask schedule, analogous to
the position schedule, that contains the OTP used to mask each block at each
point in time, and which can be accessed dynamically during reads to unmask
blocks. This allows us to obtain a secret-sharing of the queried value, performing
a read. The read protocol is presented formally in Figure 4.

While we say above that the Builder will pre-determine all runes, locations
and ciphertexts at the initialization of the protocol, this is not quite true. A
new rune is needed for each query, so an arbitrarily large number of queries
would necessitate an arbitary large number of runes, which cannot be achieved
with fixed memory and communication bounds. Instead, we initially set up the
system to handle only n queries. It will therefore have 2n runes (n initial index
runes, and n which are assigned during the queries). The Builder only predicts
the future, so to speak, for the next n queries, and therefore only creates and
shares schedules for locations and masks over n points in time. After n queries,
the entire system will be refreshed.

We now describe the method for refreshing in more detail. The refresh can be
divided into two parts. First, the contents of the up-to-date memory is extracted.
This is achieved by randomly permuting all blocks and revealing their runes to
the Holders. The Holders know which runes have been queried, so can identify
these blocks as obsolete, leaving only the blocks which contain the most recently
written value for each index. The extract protocol returns a secret-shared array
of the current memory; that is using the same format as that provided for the
Init function. The refresh protocol then simply call the Init function using this
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secret-shared array to create all of the data-structures necessary for a further n
queries. The Extract functionality is useful in its own right, and may be called
by the environment at an arbitrary time (i.e. when there have been fewer than n
queries since the last refresh). The Refresh and Extract protocols are presented
formally in Figure 3, while the Init protocol is presented in Figure 2.

17



[ DORAM: Init

1.

10.

Init(n, d, [V]):

Py creates a random permutation which determines the assignment of runes,
[M]o : [1,2n] — [1, 2n]

. Assign the first n of these to be the original runes for the indices. Initialize

a new sub-DORAM containing these runes (with adjacent pairs appended
together into a single entry).
(a) for i € [1,n], [Ri]o = [Mi]o
(b) for i € [1,n/2], [B;] = [M2i—1]o||[M2i]o
(c) subDORAM = Fporam.Init(%,2(1g(n) + 1), [B])
Pp locally builds all the OHTables for the next n queries, based on its knowl-
edge of the runes involved, and the hash functions.
If there is no satisfying assignment for one of the OHTables, Py tells P; and
P> to abort the protocol.
Otherwise, Py can determine where each rune’s block will be when, and it
creates the position schedule which consists of these three matrices:
— [Si,'r]() contains the time rune r’s block started to be in its i*" position.
— [Fi.+]o contains the time rune 7’s block finished to be its i"" position.
— [P;.+]o contains the i*" position of rune r’s block.
Py creates an mask-schedule. Note that the times will be the same as the po-
sition schedule. Therefore all that is needed is one addition matrix containing
the OTPs:
[Ei,r}o contains the OTP used to mask rune r’s block when it is in its i’
position.
Py XOR secret-shares the position schedule and mask schedule between P;
and Po: [S]1,2, [Fl1,2, [Pl12, [E]1,2.
P, provides the masks to the blocks, based on his previous selection: [E;]g =
[Eo,r]o for Mi =T.
Based on the Builder’s previous assignment of the initial locations of the
initial runes, he sets [@]o to be the injection from [1,n] to [1,2(1 4 €)n] that
builds the initial table.

h

. The parties create the OHTable containing the initial items, and P; and P»

store the masked blocks:

[Tev1](1,2) < FRoute([V] ® [Elo, [Qlo)

The runes, values and indices of the initial items are stored for future reference.
That is, for ¢ € [1, n]: [R[+1,i]0 = [Rz]o

[Ver1a] = [Vi]

[(Xe1,4] = [d]

Initialize the query counter: ¢t = 1.

Fig. 2. DORAM: Init functionality
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[ DORAM: Extract and Refresh

[V] + Extract():

1. Concatenate all (non-deleted) R, V and X into a single secret-shared array.
This will contain all runes that have been used thus far, the index they cor-
responded to, and the value that was assigned to that index at the time that
the rune was assigned:

(R = [Rololl[Rio-[[Resaloy V] = [VellVi]...[Vera], [X] =
[(Xolll[X1] ... [Xeqa]

2. Let m (where n < m < 2n) be the length of these arrays.

3. Py picks a random permutation S : [1,m] — [1,m]. Let all items be securely
routed according to [S]1:

[R] = Froute([R], [SIh), [V] = Froute([V]; [Sh), [X] = Froute([X], [S]1)

4. P, similarly picks a random permutation, U : [1, m] — [1, m] which is used to
permute all items:

[R] = Froute([R], [U]2), [V] = Froute([V1], [Ul2), [X] = Froute([X], [Ul2)

5. The values R are revealed to P, and P»>. Note that R will contain a random
subset of m items from [1,2n]: [R](1,2) + [R].

6. P; and P> identify all runes which have already been revealed to them. The
locations of these items in the permuted arrays are made public, and the items
are deleted:

For i € [1,’/71}, I; =0if [Ri](lyg) S [D](LQ), else 1
If I; = 0, delete [X;] and [V;] (and re-assign indices).

7. Reveal [X] to all parties. (This will contain all indices in [1,7] in a random
order.) Sort [V] locally according to [X].

8. Return [V].

9. Delete all variables and the subDORAM.

Refresh():
1. [V] + Extract()
2. Init(n,d, [V])

Fig. 3. Extract and Refresh functionalities

19




| DORAM: Read

Read([z]):

1. Access the subDORAM to learn the rune of . Note that indices are stored in
the subDORAM in pairs, so the subDORAM will return a share of both z’s
rune and a share of z’s neighbor’s rune. The protocol reveals (only) z’s rune
to P and P. Also, in order to access the subDORAM only once per query,
the protocol takes the opportunity to use this access to also write the new
rune that is being assigned to x.

(a) Let [Tin(n)] be the least significant bit of [x] (i.e. if = is odd it is 1, otherwise

0).

(b) Set [zsig] to be the lg(n) — 1 most significant bits of [z], (i.e. drop the last
bit).

(¢) Po supplies the new rune [rnew]o which will be assigned to = when it is
re-written.

(d) We define f to overwrite x with its new rune, while leaving x’s neigh-
bor as is. Formally f(v,y), v € {0,1}208"FD o < {0, 1}8(M+2 i
defined such that if yo = 0 (which will happen when z is even)
f(v,y) = 1, 1g(m)+111¥1,...1e(n)+1 (the second half of the value is over-
written with the remaining bits of y) and if yo = 1 (z is odd), f(v,y) =
Y1, lg(n)+11[Vign)+2,... 21g(n)+1 (the first half is overwritten).

(e) [v] « subDORAM.ReadWrite([Tsig], [Tin(n)]||[Frew], f)-

(f) If [yo] = 1, securely set [roiq] to be the first half of [v], otherwise securely
set it to be the second half of [v].

(g8) Reveal @’s (old) rune to P1 and Ps: [r](1,2) ¢ [Told]-

(h) Append [r](1,2) to [D](1,2), the set of runes which P1 and P, have already
observed.

2. P; and P, create an array Y containing all of the (masked) blocks which may
hold rune r’s block:

(a) [Y1,..,c]Jq1,2) contains the blocks from the cache. These are padded to
length ¢ with empty blocks if the cache is not full.

(b) For i € [1,€+ 1], u e [1,b 1] k€ [1 h] set [ et (i 1)bh+(u 1)h+k](1 2)
(T3 u, 11 (171 (1.2)) (1,2)- This is, the Hy([r D" location in table T} . If table
T;,. does not exist, set location to an empty block.

3. Securely determine which time-slot is being used. That is, for j € [0,£ + 1]:

(a) Set [Sj] <= [Sj ()1 012 21

(b) Set [F ](—[F [](12)]12<t

(c) Set [Jj]1,2 « [S;] A [F]

4. Securely select the correct location and OTP from the position and mask
schedules:

(a) For j € [0,€+ 1], [P;] < [Py, 512

(b) For j € 0,0+ 1], [Ey]  [Eypy s o)1

(¢) For j € [0,£+ 1], securely set [p] to [P;] if [J;] =1

(d) For j € [0,£+ 1], securely set [e] to [Ej] if [J;] =1

5. [v] < Fpatanceasspir(c+£(b— 1)k, d, [Y](1,2), [p]) @ [e]
6. Return [v]

Fig. 4. DORAM read protocol
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6.4 Security Analysis

In this section we show that the DORAM protocol is secure. That is, the views
of all participants in the protocol can be efficiently simulated without knowledge
of any private values. We show that this security holds in the Fapp, Fsspir,
FRoute-hybrid model.

All steps of the protocol are one of three cases. Either:

— A secure functionality is being accessed, that only outputs secret-shared
results. This can either be a basic ABB functionality, like &, or a more
sophisticated functionality like SSPIR.

— The operations are on public, predetermined values (e.g. ¢, u).

— Some value is revealed to some party, or subset of the parties.

We need to examine all revealed values and examine whether they can be
simulated without knowledge of the private inputs.
Init: No information is revealed to Py, rather all private variables it holds are the
result of its own random choices (the runes and OTPs) and public parameters
(the hash functions).
It is revealed to P, and P> whether Py was able to successfully build all OHTables
given his choice of the rune assignment. If Py is unable to, the protocol aborts,
and no information is leaked as this event happens with fixed probability. If
Py is able to build all OHTables, P, and P, learn only this fact, which again
occurs with fixed probability. This leaks no information at this point, but has
the potential to leak information later, as will be discussed.
P, and P, learn Tp41. All of these blocks have been masked by fresh OTPs, so
this is simulatable by generating a uniformly random string.
Read: No information is revealed to F.
Py and P; learn the rune queried. The runes are distributed uniformly at random
from [1,2n], subject to the fact that they are each unique. Nevertheless, the
revealed runes, combined with the knowledge that every OHTable was built
successfully, can leak information. This will be analyzed in more detail.
‘Write: No information is revealed to P.
Py and P; learn C;. This has been masked using a fresh OTP, so can be simulated
by generating a random string.
Rebuild: No information is revealed to Pj.
Py, and P, learn T; ,,. This contains blocks which have been masked under fresh
OTPs, so can be simulated by generating random strings.
Extract: P; learns X. This will contain the items [1, n] in a randomly permuted
order. This can be seen by induction. The protocol maintains the invariant that
at each point in time, each index x has a single rune assigned to it which has
not been observed by P; and P,. In other words, there is a single rune R; ;,
such that X; ; = x and R; ; ¢ D. Therefore, when the indices corresponding to
viewed runes are deleted, a single instance of each index will remain. They will be
in a random order because they have been shuffled according to a permutation
known to no parties.
P, also learns I. This contains n 1s and m — n 0s in a random order, for the
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reasons explained above.

P, and P, additionally learn R. This contains a subset of m runes from [1, 2n]. It
will necessarily include all m — n runes from D, since these runes are definitely
stored in the system. The other n runes are distributed uniformly at random
from the set of the remaining 2n — (m — n) runes, so are efficiently simulatable.
The ordering must be consistent with I, that is the m — n previously observed
runes must have I; = 0.

Therefore, the only challenging part of the security proof is showing that the
distribution of the queried runes (revealed to the Holders), combined with the
knowledge that all OHTables were built successfully, does not leak information
except with negligible probability. Leakage could occur if some queried set of
runes resulted in a set of hash functions that was incompatible with that set
being stored in a given OHTable. We show that this does not occur by showing
that, for all table capacities m < n, the probability that there exists any subset
of size m of the 2n runes that would result in a build failure is negligible.

We prove this making use of Yeo’s analysis of Robust Cuckoo Hashing [44].
Yeo was concerned with an adversary that could pick the indices of items in a
hash table, and attempted to pick these such that would cause a build failure,
given the predetermined hash functions. His analysis works in general for de-
termining the probability that, given a large set of elements there exists some
subset of these that would result in a build failure. Speficially, we can rephrase
his Lemma 3 with our notation. Let there be a cuckoo hash table of size ©(m)
with h hash functions. Then the probability that there exists some subset of
[1,2n] of size m that results in this cuckoo hash table to have a build failure is

at most:
m h+1
(%)

This probability does not depend on m, except for requiring that m < 2n. We
would like this probability to be negligible in n, i.e. log(1/¢) = w(lg(n)) Setting
h =1g""(n)/1g(lg(n)) = w(lg(n)) achieves this.

This indicates that, for any given OHTable, there is a negligible probability
that there exists a set of runes that would be incompatible with this hash ta-
ble. Since there are poly(n) different OHTables ever constructed (in fact only
polylog(n), since all tables at all times within a level can re-use the same hash
functions), the probability that there is any OHTable in the protocol that has
any incompatible set of runes is also negligible in n. Note that the subDORAMs,
even though they have smaller sizes, they should use the same parameter h as
the top level, so that the failure probability remains negligible in the size of the
top DORAM, n.

Therefore, except with negligible probability (over the choice of hash func-
tions), a build failure cannot occur with any choice of runes. This means that,
except with negligible probability, there will never be observed a set of runes
queried that is incompatible with any allocation of runes to tables.

22



An interesting corollary of this is that, for most choices of hash functions,
the protocol is actually perfectly secure, that is no information is leaked about
the access pattern. Given an exp(n)-time setup, it would be possible to test
whether a certain choice of hash functions allows for successful builds under all
appropriately-sized rune sets, and therefore achieves perfect security. It is not
clear whether such a setup for a perfectly-secure protocol can be achieved in
poly(n) time. Instead this section shows that, over the randomness of the choice
of hash functions, the protocol is statistically secure, that is the adversary is
unable to distinguish any access patterns, except with probability negligible in
n.

6.5 Complexity Analysis

In this section, we show that the amortized communication complexity per access
is @((1g2(n)+d) lg(n)/lg(lg(n)) bits. We assume that the cost of FpaiancedsspPir
is ©(v/md + d) and the cost of Froute is ©(q(d 4+ 1g(g)) as instantiated by our
implementations in sections 7 and 8 respectively.

First we analyze the parts of the protocol that have the same cost per-
access: reads and writes. We initially analyze only the first level of the recursion.
We analyze the number of bits of communication by section, using the same
enumeration as the protocols.

Read:

1. The rune of the index is accessed and a new rune written. Apart from the
call to the subDORAM, which will be analyzed later, this involves only
operations on runes, each of which requires at most ©(log(n)) AND gates,
or revealing ©(log(n)) bits, so O(log(n)) communication.

2. The Holders arrange the blocks which may hold the rune’s block. This re-
quires only local operations and no communication.

3. The time slot is obtained. This requires ©(¢) = @(log(n)/log(log(n))) com-
parisons of @(log(n))-bit values, which requires @ (log?(n)/ log(log(n))) com-
munication.

4. The correct position and mask is obtained. This requires ©(¢) = O(log(n)/ log(log(n))
secure if-then-else statements on ©(log(n))-bit and O(d)-bit values for the
positions and masks respectively. The total is therefore ©((log(n)+d) log(n)/ log(log(n)))
communication.

5. Finally the SSPIR is executed. The number of locations is ¢ + £(b — 1)h =
O(log®(n)/log?(log(n))). Therefore, the cost of the Balanced SSPIR. proto-

col is 9(\/10g3(n)d/ log®(log(n)) + d) = O(log(n)/log(log(n))\/log(n)d +
d). For d = 2(log(n)), y/log(n)d = O(d), so the cost above simplifies to
O(log(n)d/ log(log(n)))-

‘Write:

1. The first 3 steps are either local to Py, or on public values, so require no
communication
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2. The masked block is created, required ©@(d) communication
3. The final steps consist only of re-labelling variables and operations on public
values, so require no communication.

Therefore the communication cost of the write is ©(d).

We next analyze the communication cost of the Rebuild function (excluding
the refresh function). The communication cost of this function is variable, so we
calculate the average cost per access.

Rebuild:

A level of capacity m is rebuilt every m accesses. Most steps are simply rela-
belling of variables, which require no communication. The steps that require
communication are:

— The Builder secret-shares the new OTP for each item, which costs ©(md).
— The Routing protocol, which requires ©(m(d + lg(n)) communication.

Therefore, the amortized cost per access per level is O(lg(n) +d). Since there are
O(lg(n)/1g(lg(n))) levels, the total communication cost per access is O((1g(n) +
4)Ig(n), 1g(1g(n))).

Extract:

1. Concatenating the arrays requires only local relabelling of variables, except
for the runes which are reshared from Py to being shared by all parties, at
communication cost ©(nlg(n)).

2. Setting m is a local operation.

m = O(n) elements are routed, each of size ©(log(n) 4+ d) resulting in

O(n(log(n) + d)) communication.

The same occurs again, resulting in ©(nlog(n) + d) communication.

Revealing all runes to Holders requires ©(nlog(n)) communication.

Holders reveal m = ©(n) bits, hence ©(n) communication.

Revealing all (permuted) indices requires ©(nlog(n)) communication.

The last 2 steps are local operations.

@

XN o

Since this occurs every n accesses, the cost is ©(log(n) + d) communication per
access.
Init:

1. The rune assignment is local, so has no communication.

2. The cost of initializing the subDORAM will be evaluated as part of the cost
of recursion.

Creating the position schedule is a local operation

Creating the mask schedule is a local operation

=

5. The position schedule has ©(n) columns (for the runes), ©(¢) = O(log(n)/loglog(n))

rows (for the levels) and has O(log(n)) bits per cell, for both the timestamp
representations and the position representations. Each cell of the mask sched-
ule is O(d) bits. Therefore the total cost of secret-sharing the position and
mask schedules is ©((logn + d)nlog(n)/log(log(n))) communication.

6. Selecting the pre-chosen OTPs is a local operation.
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7. Assigning the mapping to build the OHTable is a local operation.

8. Secret-sharing the mask, and routing the blocks requires a total of ©((log(n)+
D)n) communication.

9. The last step is a local relabelling.

Therefore, the total cost is O((log(n) + d)nlog(n)/log(log(n))), or O((log(n) +
d)log(n)/log(log(n))) per access.

Summing these up, we obtain that the cost at the first level of the recursion
is ©((log(n) +d) log(n)/log(log(n))). In the first level of the recursion, the block
size d can be arbitrary. However, for the recursively implemented subDORAM,
the block size is always ©(log(n)). Therefore, each level of the recursion has
cost O(log?(n)/ log(log(n))). There are O(log(n)) such levels, so the cost of the
recursive calls is @(log®(n)/log(log(n))). Hence, the total communication cost
per access is O((log*(n) + d)log(n)/log(log(n))).

While our focus is amortized total communication per query, for complete-
ness we also provide below the performance of our protocol by other metrics.
The total memory required by the protocol is ©(log(n)dn/log(log(n))): this is
dominated by the size of the mask matrix (assuming d = (2(log(n))) which
must be held in memory by P; and P». The round-complexity is dominated by
the cost of evaluating inequality tests (in step 3 of Read) which uses a circuit
with AND-depth ©(log(log(n))) and therefore needs @ (log(log(n))) rounds. This
is done sequentially in all ©(log(n)) recursions of the subDORAM, leading to
a total round complexity per query of ©(log(n)log(log(n))). The computation
cost depends on the hash function implementation, and in most cases would be
dominated by the evaluation of ¢h = ©(log*”(n)/log®(log(n))) hash functions
per recursion level, or a total of ©(log®®(n)/log*(log(n))) hash function evalu-
ations per query. The protocol accesses ¢ + £(b — 1)h = O(log*(n)/log?(log(n))
memory locations of size d in the top level, and ¢ + £(b — 1)h memory loca-
tions of size ©(log(n)) in each of the recursive levels, resulting in a total of
O(log*(n)d/ log*(log(n)) + log®(n)/log®(log(n))) bits of memory accessed per
query.

7 Secret-Shared Private Information Retrieval

This section presents a simple protocol for secret-shared Private Information
Retrieval that is optimized for our use-case.

In general Private Information Retrieval protocols are designed for the case
that a single bit is to be retrieved. However in our protocols we need to retrieve
d bits, which all occur in a single location in memory. We therefore use the
following “naive” PIR protocol. Let x be the secret location, and m the length
of the memory, that is 1 < x < m. The secret location is represented using a
m-bit array, which is 0 everywhere except for the 2" bit, which is 1. This array is
secret-shared between the two parties, who can locally compute a dot-product of
this string with their memory, to obtain a secret-sharing of the desired element.
While this PIR protocol has a query of length m, a single query can be used
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regardless of the bit-length d. That is the same query string is used for all d bits
of the data. The cost is therefore O(m + d).

The above protocol assumes that there is a PIR client who can safely learn
the location x. It is possible to apply a transformation to obtain a secret-shared
PIR protocol. This technique was used, for instance, in the “Data-Rotations”
of [12]. The PIR servers (P; and P,) are given a location mask x5, and locally
permute their array according to this mask, such that each item is moved from
location 4 to location i @ xo. The PIR client (Py) then searches for a location
x1 = x®ao. This will clearly hold the index that was at location x. The security
of the PIR protocol hides the query from the PIR servers. The client only receives
x1 which is a uniform random value.

The protocol is presented in full in figure 5.

| SSPIR

UnbalancedSSPIR(m, d, [A](1,2), [2])

1. Convert [z] to a XOR sharing in which Py holds one share and P; and P»
both hold the other share:

[]o,(1,2) = ((z1)0, (x2)1, (x2)2) < [2]

2. Py creates a bit-array, @, of length m such that Q; = 1 for ¢ = 1 and is 0

elsewhere.

Py XOR-shares this array between P; and Ps: [Q]1,2 < [Qlo

4. P; and P» permute this array according to 2, that is they create an array
[W]l,g such that Wi = Qi@xrz.

5. P1 and P> compute [v]1,2 = ®721[A:](1,2)[Wi]1,2. Note that the A; are public
to P and P, so the multiplication is simply multiplication of a secret by a
public value, which is a local operation.

6. Return [v]

w

BalancedSSPIR(m, d, [A] (1 2), [z])

1. Let lg(q) = [M] That is ¢ is the smallest power of 2 such that
¢ > m/d.

2. Modify the memory from containing m blocks of length d bits, to containing
m/q blocks of length dq. Let [B](1,2) be the updated memory, that is B; =
Agill - [[Agita—1

3. Let [z] be split into its upper-order In(m) — In(g) bits, labelled [y] and its
lowest-order In(q) bits, labelled [z].

4. Call the main SSPIR protocol to obtain the secret-shared 3" large block:

[u] <= SSPIR(m/q,dq, B2, [y])-

5. Inside of a secure computation, access the z'" small block in this big block:
for ¢ € [17 q] ifi = [Z], [’U} = [uid_,_idﬂ',l].

6. Return [v].

Fig. 5. Implementation of SSPIR
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The SSPIR protocol (figure 5) is secure. Py receives only ¢ which is a uniform
random value. P; and P; receive only shares of @, which are uniform random
bit arrays. The protocol is deterministic and secure.

The protocol presented above has communication cost @(m + d). For some
situations this is sufficient. However, when m = w(d) it is possible to increase
the size of data-blocks to achieve improved complexity, effectively “balancing”
the m and d terms. We do this by increasing the block size from d to qd, for
some balancing factor ¢ > 1, where ¢ is a power of 2.

We present the balanced PIR protocol in the second part of figure 5. All
operations are inside of a secure computation, so the protocol is secure. The
cost of the call to the main SSPIR protocol is ©(m/q + dq). Additionally, there
is a cost of ©(qd) to securely select the relevant small block. The total cost is
therefore ©(m/q+dq). Our protocol picks the optimum g = ©(y/m/d+1) which
results in a communication cost of @(v/md+d). (The last term in both equations
comes from the case when m = O(d).)

8 Secure Routing

We here present an implementation of a secure 3-party routing protocol. That
is, there is some secret-shared array A of length m and one party knows an
injective mapping @ from [1,m] to [1,q], (where ¢ > m). The items are moved
to a new secret-shared array B such that A; is moved to some location B; where
Jj = Q(3). See section 5 for a formal definition of the functionality. Variants of
this protocol have occurred before, for instance as the protocol Ilgw oy in
[30]. We include the protocol here for clarity and completeness. The protocol is
presented in figure 6, and is analyzed below.

Security: Py, knowing a desired permutation, secret-shares this permutation
between P; and Ps, providing them permutation shares R and S respectively.
Each of these permutation-shares is distributed as a uniformly random permuta-
tion, and leaks no information about the true permutation Q. Apart from that,
parties only receive secret-shares, which are distributed uniformly at random.

Complexity: Communicating the permutations requires ©(glg(q)) commu-
nication. There are a constant number of resharings of arrays, each of which
contains g elements of size d bits, resulting in ©(gd) communication. The total
communication cost is therefore O((d + log(q))q).

9 Conclusion and Future Work

In this work, we construct an information-theoretic DORAM with
O((d + log?(n)) log(n)/ log(log(n))) bits of communication per query, which is
below the lower bound on communication for passive ORAMs.

So what is the correct communication lower bound in DORAM setting? [1]
show that constant overhead is possible for polynomial-sized blocks; is it pos-
sible for polylogarithmic sized blocks? Also, does the lower-bound introduce
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e D

Routing

Route([AL [Q}(h d)

1. Pad [A] to length ¢ (if ¢ > m) with random values: for ¢ € [1,m], [B;] = [A{]
for i € [m +1,q|, [B:] + {0,1}%.

2. Py picks permutations R and S which are chosen uniformly at random subject
to R-S = @ (over domain [1,m] and is an arbitrary permutation elsewhere).
Py sends S to P; and sends R to Ps:

[S)0,1) = [So

[Rl0,2) < [Rlo
3. Reshare B to Py and Pi: [Blo,1 < [B]
4. Py and P locally permute [Blo,1 according to [S](0,1) to obtain [C]o 1.
5. Reshare C to Po and PQI [0]072 < [0]0,1
6. Py and P locally permute [C]o 2 according to [R](g,2) to obtain [D],2)
7. Return [D]

Fig. 6. Secure Routing protocol

trade-offs between the amount of communication and the number of memory
locations accessed, the total memory required, the computation cost, the ran-
domness consumed or the round complexity?

Another open question pertains to deamortization. MetaDORAM achieves
amortized communication cost ©((d+log?(n)) log(n)/log(log(n))). In particular,
the cost of rebuilding the OHTables, and refreshing the namespace is amortized
across multiple queries. There are standard techniques for deamortizing the cost
of building OHTables, but it seems more challenging to deamortize the cost of re-
freshing, in particular the cost of refreshing the namespace for runes by reassign-
ing runes to all indices. So the question remains: is it possible to have a DORAM
with worst-case communication cost O((d + log?(n))log(n)/ log(log(n)))?

Every DORAM can be used to implement a multi-server active ORAM: the
client in the multi-server ORAM can simply secret-share the query between the
servers. So our construction implies that @((log® n + d) log(n)/ log log(n)) com-
munication can be achieved, without computational assumptions. An interesting
final open question raised by this work is whether this is possible for a single-
server active ORAM. Due to existing lower bounds, such an ORAM would need
to access at least a logarithmic overhead in memory and therefore perform a log-
arithmic overhead of computation, but this computation could, perhaps, avoid
the introduction of computational assumptions. Concretely is it possible to have
a single-server active ORAM that has sub-logarithmic communication overhead,
but is information-theoretically secure?
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