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Abstract. Universal thresholdizer (UT) was proposed by Boneh et al.
in CRYPTO’18 as a general framework for thresholdizing non-threshold
cryptographic primitives where a set of N servers, each gets a share such
that any set of k servers, each produce a partial result, which can be
combined to generate the final result. In many applications of threshold
cryptography such as the protection of private keys in a digital wallet,
the combining operation of partial results must be protected. In this pa-
per, we extend the UT framework to include password authentication for
such protection. We formalize the notion of password protected univer-
sal thresholdizer (PPUT) that requires the knowledge of a password to
execute the protocol, propose a general construction of PPUT, and prove
its security. Our construction uses threshold password authenticated key
exchange (TPAKE) with simulation-based security as one of the main
building blocks. We define simulation-based security of TPAKE in stand-
alone model and give a construction using threshold fully-homomorphic
encryption. As an application of PPUT, we propose a new primitive called
password protected threshold signature. All the proposed constructions
are secure in the standard model, and can be instantiated from lattices.

1 Introduction

Threshold cryptography aims to distribute a cryptographic task amongN servers
such that any k out of N servers can perform the task, without the need to re-
construct the secret key. An important example of threshold cryptosystems is
threshold digital signature [13,14] where the task of signing a message is dis-
tributed among N servers such that each server can generate a partial signature
on the message using their share, and any k partial signatures can be combined to
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generate a full signature on the message. A signed message can be verified by the
verification key of the signature scheme. An important application of threshold
signatures in digital wallets is distributing shares of private key among servers,
and using partial signatures that are generated by a subset of servers to construct
the signed message. A second example is threshold decryption of a secure public
key encryption system [12,13] where the decryption task is distributed among N
servers such that any set of size k out of N servers, can decrypt the ciphertext.
In CRYPTO’18, Boneh et al. [9] provided a general framework, called “Uni-
versal Thresholdizer” (UT), that gives a general construction for thresholdizing
many non-threshold cryptographic schemes. A universal thresholdizer takes the
secret key of a cryptographic function as input and produces secret states of the
servers, allowing them to compute partial evaluations of the function such that
any k such evaluations produce the final result.

In practice, a user must authenticate themselves to the servers to execute
the protocol and obtain the results. A direct way of achieving this goal is for
the user to establish an individual password with each server and use the pass-
words for authentication when the task needs to be initiated. However, one
needs to carefully define the security model for authentication and the thresh-
oldized function to guarantee the security of the final results, and manage the
significant burden of storing and using N distinct passwords in practice. Pass-
word authenticated cryptographic systems, such as threshold password authen-
ticated key exchange (TPAKE) [1,11,20,23] and password protected secret shar-
ing (PPSS) [4,18,19,10,2,24] aim to integrate password authentication into the
threshold cryptographic task using a single password for user authentication
with all N servers. Security requirements of these systems must also model pro-
tection against the low-entropy password. For example in TPAKE, the goal is
establishing authenticated keys between the user and each server, and the extra
password security requirement is that the best an adversary can do is “guess”
the password correctly and try to impersonate the user. A similar requirement
exists in PPSS that stores the shares of a secret at N servers such that any
k shares can generate the secret that can be combined by a user who knows
the password to recover the secret. Furthermore, security must ensure that the
best strategy for an adversary is to guess the password and attack the system.
More specifically, the security guarantee for any password-based scheme is any
PPT impersonation attack is bounded by O(1/|D|) + negl(λ) for some security
parameter λ and dictionary D.

1.1 Our Work

In this paper, our goal is to equip the universal thresholdizer (UT) of [9] with
password authentication. We propose a general construction that applies to many
cryptographic tasks, converting them into a password protected functionality to
authenticate a user based on its password. As an application of our generic
construction, we present a password authenticated threshold signature that can
be used for distributed storage of wallet-key appropriate for signing transactions
in blockchain technology.
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We design a general framework of password protected universal thresholdizer
(PPUT) which can be used to thresholdize cryptographic primitives and require
password authentication of users to servers to execute a cryptographic task.
From a very high level, each server in a subset of size greater than or equal to
a threshold value participating in the protocol, computes “partial evaluation”
of the functionality which are sent to the user and only a legitimate user hold-
ing the correct password can combine them to output the end result. To this
end, we define a simulation-based security of PPUT to ensure that the partial
evaluations do not reveal any information about the secret states used in the
system. We define simulation-based security of PPUT following the simulation-
based security of UT by Boneh et al. [9]. Note that simulation-security of the
UT proposed in [9] only protects against semi-honest adversaries. However, any
password-authenticated system requires protection against malicious adversaries
and hence we model the simulation-based security of PPUT against malicious
adversaries in stand-alone model. Our construction of PPUT uses UT of [9], and
a threshold password-authenticated key exchange (TPAKE) to introduce user
authentication feature into the UT and provide security against malicious ad-
versaries. We reduce the security of our PPUT construction to the security of
TPAKE which necessitates the design of simulation-based security of the under-
lying TPAKE. To this end, we first propose a Real-Ideal world simulation-based
security for TPAKE in stand-alone model following the simulation-based security
model of PAKE by Goldreich and Lindell [17]. In the proposed security models of
TPAKE and PPUT, we consider the uniform distribution of passwords over the
dictionary. Any TPAKE realizing the proposed security definition can fit into the
proposed design rationale of PPUT construction. To the best of our knowledge,
a quantum-safe construction of TPAKE was not available except [24] which only
outlined a generic methodology to obtain TPAKE; but neither a formal descrip-
tion of the security model nor a security reduction was provided. In this paper,
we exhibit a construction of TPAKE using the threshold fully homomorphic en-
cryption (TFHE) by Boneh et al. [9] to realize the proposed definition, which
is also of independent interest and may have further applications to construct
other quantum-safe password protected systems.

In the proposed PPUT, keeping the spirit of password protected systems,
the user only needs to remember the password and does not need any secure
storage after the one-time Setup phase. Our protocol ensures that if the user’s
password is correct, it obtains a valid output; otherwise, it does not learn any-
thing. Finally, as an application, we propose a new primitive called password
protected threshold signature (PPTS) with construction using an EUF-CMA se-
cure signature scheme and proposed PPUT. It is worth mentioning that all of our
proposed constructions can be instantiated based on the hardness assumptions
from lattices secure in the standard model, which makes them quantum-safe.

Outline of our approach. Our basic approach to constructing PPUT is the
following: (i) the user uses the UT to obtain a thresholdized version of the crypto-
graphic task; (ii) uses a TPAKE to establish an authenticated shared key between
the user and each of the servers; (iii) each server in a set of k (out of N) servers
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encrypts partial evaluations using their shared secret key with the user, and send
the encrypted partial evaluations to the user. The user decrypts the received ci-
phertexts, and combines them to achieve the final result. While TPAKE solves
the problem of establishing a secret key between a server and a user, where the
user authenticates with a password, it is not immediate whether the problem
of creating a general framework for thresholdizing non-threshold cryptographic
primitives allowing user authentication is feasible by a straightforward combina-
tion of UT and TPAKE. We emphasize that using the existing security models
of TPAKE, it is not clear how to define PPUT and its simulation-based security.
A significant redesign of the security model of TPAKE is required to make the
construction of PPUT satisfy its desired security properties. In the following, we
first describe the basic design rationale of our TPAKE construction using TFHE
which only provides security against semi-honest adversaries, and then discuss its
extension which provides protection against malicious adversaries. Subsequently,
we describe overviews of PPUT and PPTS constructions.

Threshold password authenticated key exchange (TPAKE). The basic
idea of TPAKE is to encrypt the secret key of a CCA secure encryption scheme
together with the password using the TFHE, and distribute the shares of the
secret key of the TFHE among the servers. To establish authenticated shared
key, the TPAKE protocol starts by running an interactive authentication pro-
cedure between the servers and the user, and if successful allows the user to
recover the secret key of the CCA secure encryption scheme. Now each server
can individually select a random secret key, and encrypt it with the public key
of the encryption scheme. The user can then recover the keys and the TPAKE
is completed. The protocol has the advantage that the user does not need to
store the secret key of the encryption scheme. The system however is vulnerable
to malicious attacks. The protocol uses a simulation sound NIZK and signature
scheme to satisfy the simulation-based security against malicious adversaries.

In more details, TPAKE consists of two algorithms: (TPAKE.Reg, TPAKE.Login)
involving user U and N servers S1, . . . ,SN . The registration algorithm is per-
formed by a user U with the input of a password pw and the Login is an inter-
active protocol between user U with input p̃w and a subset of k servers Si with
their secret state sti. User U has a public key, private key pair (pkcca, skcca)
corresponding to a CCA secure encryption scheme (Enccca,Deccca) and runs the
TFHE.Setup of k-out-of-N TFHE scheme to obtain (pktfhe, sktfhe1 , . . . , sktfheN ).
The secret keys sktfhei ’s constitute the secret states of the ith server. The en-
cryptions of pw and skcca with respect to the public key pktfhe and the encrypted
values Cpw,Cskcca are kept public.

Servers initiate the Login by sending encryptions w.r.t pktfhe of random ele-
ments to the user (viz. CRj ’s for random Rj ’s) to mask the encryption of pass-
word to resist offline dictionary attack in case adversary tries to impersonate
the valid user. The user then replies to every server with fresh encryption of its
password Cp̃w, an encryption CX of a randomly chosen X and the set of {CRj

}.
We shall see later that X is randomly chosen to perfectly hide the secret skcca

from the eavesdropper during the TFHE.FinDec. Each of the servers computes
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the encryption CFj of
∑
j Rj(p̃w − pw) + skcca + X from the ciphertexts, ob-

tained from the user during the protocol and from the public values, utilizing the
TFHE.Eval algorithm for computation on encrypted values. The servers then run
TFHE.PartDec using their secret state sktfhei and pktfhe on CFi to output partial
decryption Wi of CFi. The user then retrieves skcca +X using the TFHE.FinDec
algorithm and removes the randomly chosen X to obtain skcca. Note that, the
TFHE.FinDec algorithm only takes Wi’s and pktfhe as inputs and hence masking
by a random X is crucial to hide the secret from the adversary. Once the secret
key is recovered by the user, the key exchange is easy - each server Sj partici-
pating in the protocol chooses a uniformly random key keyj from a predefined
key space and sends the encryption Encccapkcca(keyj) to the user who can now
decrypt (using skcca) to obtain the common key keyj with Sj .

We can easily see that the above preliminary design cannot resist malicious
adversarial attacks. To provide security against malicious adversaries in the ab-
sence of secure channels, we use a simulation sound NIZK and to protect against
adversarial tampering of protocol messages, use EUF-CMA signature scheme. In
each transmission, each participating server signs their corresponding messages
using a EUF-CMA signature to protect against any adversarial tampering of the
protocol messages. For this, the user includes the signing keys of servers in their
secret states sti’s and includes all the corresponding verification keys into pp
during the registration phase. In the preliminary design, the user is supposed
to reply with an encryption of its password with fresh randomness. However, a
malicious user may re-randomize the encrypted password stored in pp which will
ultimately prove it as a legitimate user. To resist this attack, we force the user
to forward fresh encryption of the password. To this end, the legitimate user

generates another set of TFHE keys ((p̂ktfhe, ŝktfhe1 , . . . , ŝktfheN ))4 during the reg-

istration and append the public key p̂ktfhe in pp. The user needs to encrypt the

same password, using pktfhe and p̂ktfhe with the same randomness and sends
the two encryptions along with the “proof” of same randomness using a simula-
tion sound NIZK. Lastly, we note that malicious server(s) may try to convince
the user with a different secret sk′ 6= skcca. The user signs the secret message
skcca during registration phase using EUF-CMA signature to output σ. Finally,
the user encrypts skcca||σ instead of just encrypting skcca. At the end of the
recovery phase, the user checks the veracity of the recovered secret by the verifi-
cation key of signature. The user needs to add the verification key of the user’s
signature in pp during the execution of registration.

If no server Sj abort the process, each one of them randomly chooses a
key keyj , signs the key with the EUF-CMA Signature to produce σj , encrypts
(keyj , σj) with pkcca to output ej and sends ej to the user along with Wj . The
user decrypts ej to obtain (keyj , σj) and verifies whether σj is a valid signature

4 The secret keys ŝktfhei ’s do not play any role at any point during the execution of

Login. The user neither requires ŝktfhei ’s to be shared and stored among the servers

nor to keep them with itself - it can delete ŝktfhei ’s after executing the Registration.



6 Dutta et al.

of keyj . If so, then the user locally outputs keyj as its common secret key with
server Sj .

Password protected Universal thresholdizer (PPUT). We use the proposed
TPAKE to define a primitive called a password protected universal thresholdizer
(PPUT) that can be used to thresholdize existing systems including signatures
(Section 5) with the property that a user is authenticated by a set of servers.
The resulting systems are secure threshold systems that also provide robustness
guarantees against malicious share holders.

A PPUT scheme consists of the following algorithms: PPUT.Setup, PPUT.Eval,
PPUT.Verify, PPUT.Combine. The setup of PPUT takes input a secret message x,
a password pw and runs TPAKE.Reg and UT.Setup to generate a set of secret
states S1, . . . , SN , which are distributed to N servers. In the evaluation phase,
on input a circuit C and a password pw (by the user), a threshold number of
servers authenticate a user as a legitimate one by triggering TPAKE.Login. Each
server independently computes partial evaluation Yi of C(x) using their secret
state Si by running the UT.Eval. Note that, the usage of TFHE in the proposed
construction allows us to input any circuit. To transmit the partial evaluation
only to the intended authenticated user, each server emulates a secure channel
by encrypting Yi (using a CPA secure symmetric key encryption) by the key
established during TPAKE.Login. We denote encryption of Yi by yi. To achieve
robustness, we execute the Verify algorithm of PPUT which essentially runs the
UT.Verify algorithm on Yi. Hence, the encrypted value yi needs to be decrypted
first to obtain Yi. Only the authenticated user with the correct password pw
can now perform decryption procedure using the established key, and also can
check whether Yi was computed correctly and (simultaneously) that yi is not
tampered by a channel adversary. We derive the robustness as a consequence
of the robustness property of the UT scheme of Boneh et al. [9]. For any k
many evaluations yi’s which are input to the PPUT.Combine algorithm, only the
authenticated user can obtain the corresponding (plaintext) Yi’s and combine
them to correctly produce Y = C(x) using the combine algorithm of underlying
UT. This makes the combining algorithm of the PPUT password protected.

Password protected Threshold Signature (PPTS). We now use PPUT
to propose password protected threshold signature (PPTS) which distributes
the task of generating a signature among a set of servers on a user supplied
message where the user authenticates itself to the set of servers using a pass-
word. The PPTS scheme is a tuple (Init, PPTS.PartSign, PPTS.PartSignVerify,
PPTS.Combine, PPTS.Vrfy). The proposed construction uses PPUT on an EUF-CMA
signature scheme Sig = (S.KeyGen,S.Sign,S.Verify). The verification key svk of
the signature scheme is also used as the verification key for the PPTS and the
signing key ssk is used as the secret input to the PPUT.Setup algorithm. Except
the PPTS.Vrfy (which is a public verification), all other algorithms take the pw of
the user as an input. In order to trigger the signing procedure and user authen-
tication PPTS.PartSign requires the password pw of the user as an input. Simi-
larly, to resist an illegitimate user from obtaining a valid signature on a message,
the PPTS.Combine algorithm must include pw as an input. On the other hand,
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to protect the legitimate user from accepting any maliciously generated partial
signature(s) for computing the signature, we use the PPTS.PartSignVerify al-
gorithm to detect whether the servers computed the partial evaluations honestly.
PPTS.PartSign, PPTS.PartSignVerify, PPTS.Combine run respectively PPUT.Eval,
PPUT.Verify, PPUT.Combine which necessitates the pw to be used as inputs to
the first three algorithms. PPTS.Vrfy runs S.Verify which keeps the PPTS.Vrfy
algorithm public. We can instantiate PPTS using our lattice-based PPUT from
section 4 and lattice-based adaptive EUF-CMA signature scheme from [3].

2 Preliminaries

We present definitions and properties of some important primitives.

2.1 Secret Sharing

Originally proposed by Blakley [7] and Shamir [26], a secret sharing system
is used to distribute a secret among a set of servers S such that authorized
subsets of servers can reconstruct the secret, and unauthorized set will not learn
anything. Let A be a subset of the power set, 2S , that specifies the subsets of
servers that form an authorized set; i.e. the set of their shares can recover the
secret. A subset F ⊂ S which is not in A, i.e. F /∈ A, is called an unauthorized
(or, forbidden) set and the set of shares (shu)u∈F will be independent of secret
S. We take the set of all unauthorized sets to be the complement of A i.e.,
Ac. This means that for any subset X ⊂ S, either it is an authorized set or
an unauthorized set. Such specifications of authorized and unauthorized subsets
define an access structure on S. We also consider those access structures which
satisfy the following condition: if A1 ∈ A and A1 ⊆ A2, then A2 ∈ A. This
condition is referred to as monotonicity of access structures. In this paper, we
mainly focus on the k-out-of-N threshold access structures where any set of size
at least k is authorized. However, our definitions will be for any access structures
to capture the generality.

Definition 1 ((A, N,M) Secret Sharing Scheme). Let S be a set of N
servers labeled by [N ] = {1, 2, . . . , N}. Let A be an access structure on these
N servers. A secret sharing scheme Π for A consists of a pair of algorithms
(Gen,Rec). Gen is a randomized algorithm that gets as input a secret S (from a
domain of secrets M with at least two elements), A and the number of servers
N , and generates N shares (sh1, . . . , shN ) ←− Gen(S). Rec is a deterministic
algorithm that gets as input the shares of a subset B of servers and outputs a
string. The requirements for defining a secret sharing scheme are as follows:

– Correctness: If {shu}u = Gen(S;R) for some R, then for any B ∈ A, we
always have Rec({shu}u∈B) = S.

– Perfect privacy: For any two distinct secrets s0 6= s1 in M and for any
distinguisher D with output in {0, 1}, it must hold that for any unauthorized
set F

|Pr[D(Gen(s0)F ) = 1]− Pr[D(Gen(s1)F ) = 1]|= 0.
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2.2 Signature Scheme

Definition 2 (Signature Scheme). A signature scheme Sig is a tuple of al-
gorithms Sig = (S.KeyGen,S.Sign,S.Verify) defined as follows:

– S.KeyGen(1λ)→ (sk, vk): On input the security parameter λ, the key gener-
ation algorithm outputs a signing key sk and a verification key vk.

– S.Sign(msg, sk)→ σ: On input a signing key sk, and a message msg ∈ {0, 1}∗,
the signing algorithm outputs a signature σ.

– S.Verify(vk,msg, σ)→ {0, 1}: On input a verification key vk, a message msg
and, a signature σ, the verification algorithm accepts or rejects.

We require a signature scheme Sig to satisfy the following correctness and
security properties.

Definition 3 (Correctness). We say that a signature scheme Sig is correct if
for all λ ∈ N, msg ∈M , (sk, vk)← S.KeyGen(1λ), we have that

Pr[S.Verify(vk,S.Sign(msg, sk) = 1)] = 1.

Definition 4 (Unforgeability). We say that a signature scheme satisfies un-
forgeability or EUF-CMA security if for any PPT adversary A, the following
experiment ExptA,Sig,uf (1λ) outputs 1 with negligible probability:

ExptA,Sig,uf (1λ) :

– The challenger runs (sk, vk)← S.KeyGen(1λ), and provides vk to A.
– A issues a polynomial number of adaptive queries msg. For each query, the

challenger computes σ ← S.Sign(msg, sk) and provides σ to A.
– At the end of the experiment, A outputs a forgery (msg∗, σ∗). The experiment

outputs 1 if S.Verify(vk,msg∗, σ∗) = 1 and msg∗ was not previously queried
as a signing query.

2.3 Threshold Fully Homomorphic Encryption

Definition 5 (Threshold Fully Homomorphic Encryption (TFHE) [9]).
Let S = {S1, · · · ,SN} be a set of servers and let S be a class of efficient access
structures on S. A threshold fully homomorphic encryption scheme for S is a
tuple of PPT algorithms TFHE = (TFHE.Setup, TFHE.Encrypt, TFHE.Eval,
TFHE.PartDec, TFHE.FinDec) with the following properties:

– TFHE.Setup(1λ, 1d,A)→ (pk, sk1, · · · , skN) : On input the security parameter
λ, a depth bound d, an access structure A, the setup algorithm outputs a
public key pk, and a set of secret key shares sk1, · · · , skN.

– TFHE.Encrypt(pk, µ) → ct : On input a public key pk, and a single bit
plaintext µ ∈ {0, 1}, the encryption algorithm outputs a ciphertext ct.

– TFHE.Eval(pk, C, ct1, · · · , ctk)→ ĉt : On input a public key pk, circuit C :
{0, 1}k → {0, 1} of depth at most d, and a set of ciphertexts ct1, · · · , ctk,
the evaluation algorithm outputs a cipehrtext ĉt.
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– TFHE.PartDec(pk, ct, ski)→ pi : On input a public key pk, a ciphertext ct,
and a secret key share ski, the partial decryption algorithm outputs a partial
decryption pi related to the server Si.

– TFHE.FinDec(pk,B)→ µ̂ : On input a public key pk, and a set B = {pi}i∈S
for some S ⊆ {S1, · · · ,SN}, the final decryption algorithm outputs a plaintext
µ̂ ∈ {0, 1,⊥}.

We require that a TFHE scheme satisfies compactness, correctness, and se-
curity.

Definition 6 (Compactness). We say that a TFHE scheme is compact if there
exists polynomials poly1(·) and poly2(·) such that for all λ, depth bound d, circuit
C : {0, 1}k → {0, 1} of depth at most d, and µ ∈ {0, 1}, the following holds: for
(pk, sk1, · · · , skN) ← TFHE.Setup(1λ, 1d,A), ct← TFHE.Encrypt(pk, µ),
ĉt← TFHE.Eval(pk, C, ct1, · · · , ctk), pj ← TFHE.PartDec(pk, ct, skj) for any j ∈
[N ], |ĉt|≤ poly1(λ, d) and |pj |≤ poly2(λ, d,N).

Definition 7 (Evaluation Correctness). We say that a TFHE scheme satisfies
evaluation correctness if for all λ, depth bound d, access structure A, circuit
C : {0, 1}k → {0, 1} of depth at most d, Q ∈ A, and µi ∈ {0, 1} for i ∈
[k], the following holds: for (pk, sk1, · · · , skN) ← TFHE.Setup(1λ, 1d,A), cti ←
TFHE.Encrypt(pk, µi) for i ∈ [k], ĉt← TFHE.Eval(pk, C, ct1, · · · , ctk),

Pr[TFHE.FinDec(pk,{TFHE.PartDec(pk, ct, ski)}i∈Q) = C(µ1, · · · , µk)] = 1−negl(λ).

Definition 8 (Simulation Security). We say that a TFHE scheme satisfies
simulation security if for all λ, depth bound d, access structure A, the following
holds: there exists a stateful PPT algorithm Sim = (Sim1, Sim2) such that
for any PPT adversary A, the following experiments ExptA,Real(1

λ, 1d) and

ExptA,Ideal(1
λ, 1d) are computationally indistinguishable:

ExptA,Real(1
λ, 1d) :

1. On input the security parameter 1λ, circuit depth 1d, the adversary A outputs
an access structure A ∈ S.

2. The challenger runs (pp, s1, · · · , sN ) ← TFHE.Setup(1λ, 1d,A) and provides
pk to A.

3. A outputs a maximal forbidden set S∗ ⊂ {S1, · · · ,SN} and messages {µ1, · · · , µk}
∈ {0, 1}.

4. The challenger provides the shares {skj}j∈S∗ and TFHE.Encrypt(pk, µi) for
i ∈ [k] to A.

5. A submits a polynomial numbers of adaptive queries of the form (S ⊂
{S1, · · · ,SN}, C) for circuits C : {0, 1}k → {0, 1} of depth at most d. For
each query, the challenger computes ĉt← TFHE.Eval(pk, C, ct1, · · · , ctk),
and provides {TFHE.PartDec(pk, ĉt, ski)}i∈S to A.

6. At the end of the experiment, A outputs a distinguishing bit b.

ExptA,Ideal(1
λ, 1d) :
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1. On input the security parameter 1λ, circuit depth 1d, the adversary A outputs
an access structure A ∈ S.

2. The challenger runs (pp, s1, · · · , sN , st) ← Sim1(1λ, 1d,A) and provides pk

to A.
3. A outputs a maximal forbidden set S∗ ⊂ {S1, · · · ,SN} and messages
{µ1, · · · , µk} ∈ {0, 1}.

4. The challenger provides the shares {skj}j∈S∗ and TFHE.Encrypt(pk, µi) for
i ∈ [k] to A.

5. A submits a polynomial numbers of adaptive queries of the form (S ⊂
{S1, · · · ,SN}, C) for circuits C : {0, 1}k → {0, 1} of depth at most d. For
each query, the challenger runs the simulator
{pi}i∈S ← Sim2(C, {ct1, · · · , ctk}, C(µ1, · · · , µk), S, st), and provides {pi}i∈S
to A.

6. At the end of the experiment, A outputs a distinguishing bit b.

2.4 Universal Thresholdizer

Definition 9 (Universal Thresholdizer [9]). Let S = {S1, · · · ,SN} be a set
of servers and let S be a class of efficient access structures on S. A universal
thresholdizer scheme for S is a tuple of PPT algorithms UT = (UT.Setup, UT.Eval,
UT.Verify, UT.Combine) with the following properties:

– UT.Setup(1λ, 1d,A, x) → (pp, s1, · · · , sN ) : On input the security parame-
ter λ, a depth bound d, an access structure A and a message x ∈ {0, 1}k,
the setup algorithm outputs the public parameters pp, and a set of shares
s1, · · · , sN .

– UT.Eval(pp, si, C) → yi : On input the public parameters pp, a share si, and
a circuit C : {0, 1}k → {0, 1} of depth at most d, the evaluation algorithm
outputs a partial evaluation yi.

– UT.Verify(pp, yi, C)→ {0, 1} : On input the public parameters pp, a partial
evaluation yi, and a circuit C : {0, 1}k → {0, 1}, the verification algorithm
accepts or rejects.

– UT.Combine(pp, B)→ y : On input the public parameters pp, a set of partial
evaluations B = {yi}i∈Q where Q ∈ A, the combining algorithm outputs the
final evaluation y.

We require that an UT scheme to satisfy compactness, correctness, robust-
ness, and security.

Definition 10 (Compactness). We say that a UT scheme is compact if there
exists a polynomial poly(·) such that for all λ, depth bound d, circuit C : {0, 1}k →
{0, 1} of depth at most d, and µ ∈ {0, 1}, the following holds: for (pp, s1, · · · , sN )←
UT.Setup(1λ, 1d,A, x), yi ← UT.Eval(pp, si, C) for any i ∈ [N ], yi ≤ poly(λ, d,N).

Definition 11 (Evaluation Correctness). We say that a UT scheme is com-
pact if for all λ, depth bound d, circuit C : {0, 1}k → {0, 1} of depth at most
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d, access structure A, message x ∈ {0, 1}k, Q ∈ A the following holds: for
(pp, s1, · · · , sN )← UT.Setup(1λ, 1d,A, x),

Pr[UT.Combine(pp, {UT.Eval(pp, si, C)}i∈Q) = C(x)] = 1− negl(λ).

Definition 12 (Verification Correctness). We say that a UT scheme sat-
isfies verification correctness if for all λ, depth bound d, password pw, access
structure A, message x ∈ {0, 1}k, and circuit C : {0, 1}k → {0, 1} of depth at
most d, the following holds. For (pp, s1, · · · , sN ) ← UT.Setup(1λ, 1d,A, x) and
yi ← UT.Eval(pp, Si, C) for any i ∈ [N ], we have that

Pr[UT.Verify(pp, yi, C) = 1] = 1.

Definition 13 (Security of UT). We say that a UT scheme satisfies security
if for all λ, and depth bound d, the following holds. There exists a PPT algo-
rithm Sim = (Sim1, Sim2) such that for any PPT adversary A, we have that
the following experiments ExptA,UT,Real(1

λ, 1d) and ExptA,UT,Ideal(1
λ, 1d) are

computationally indistinguishable:
ExptA,UT,Real(1

λ, 1d) :

1. On input the security parameter 1λ, circuit depth 1d, the adversary A outputs
an access structure A ∈ S, and a message x ∈ {0, 1}k .

2. The challenger runs (pp, s1, · · · , sN ) ← UT.Setup(1λ, 1d,A, x) and provides
pp to A.

3. A outputs a maximal forbidden set S∗ ⊂ {S1, · · · ,SN} for A.
4. The challenger provides the shares {si}i∈S∗ to A.
5. A issues a polynomial number of adaptive queries of the form

(S ⊂ {S1, · · · ,SN}, C) for circuits C : {0, 1}k → {0, 1} of depth at most d.
For each query, the challenger provides {yi ← UT.Eval(pp, si, C)}i∈S to A.

6. At the end of the experiment, A outputs a distinguishing bit b.

ExptA,UT,Ideal(1
λ, 1d) :

1. On input the security parameter 1λ, circuit depth 1d, the adversary A outputs
an access structure A ∈ S, and a message x ∈ {0, 1}k .

2. The challenger runs simulator (pp, s1, · · · , sN ) ← Sim1(1λ, 1d,A) and pro-
vides pp to A.

3. A outputs a maximal forbidden set S∗ ⊂ {S1, · · · ,SN} for A.
4. The challenger provides the shares {si}i∈S∗ to A.
5. A issues a polynomial number of adaptive queries of the form

(S ⊂ {S1, · · · ,SN}, C) for circuits C : {0, 1}k → {0, 1} of depth at most d.
For each query, the challenger provides {yi ← Sim2(pp, C, C(x))}i∈S to A.

6. At the end of the experiment, A outputs a distinguishing bit b.

Definition 14 (Robustness of UT). We say that a UT scheme satisfies se-
curity if for all λ, and depth bound d, the following holds. For any PPT adver-
sary A, the following experiment ExptA,UT,Robust(1

λ, 1d) outputs 1 with negligi-
ble probability:

ExptA,UT,Robust(1
λ, 1d) :
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1. On input the security parameter 1λ, circuit depth 1d, the adversary A outputs
an access structure A ∈ S, and a message x ∈ {0, 1}k .

2. The challenger runs (pp, s1, · · · , sN ) ← UT.Setup(1λ, 1d,A, x) and provides
(pp, s1, · · · , sN ) to A.

3. A outputs a fake partial evaluation y∗i .
4. The challenger returns 1 if UT.Eval(pp, si, C) 6= y∗i and UT.Verify(pp, y∗i , C) =

1.

3 Threshold Password Authenticated Key Exchange

Password authenticated key exchange (PAKE) was proposed by Bellovin and
Merritt [6]. Mackenzie et al. [20] first thresholdized the idea of PAKE and intro-
duced TPAKE which required a threshold number of servers to authenticate a
user and securely establish keys with them. Here, we first define simulation-based
security of TPAKE in stand-alone model followed by a construction.

Definition 15 ((k,N)-Threshold Password Authenticated Key Exchange).
A k-out-of-N threshold password authenticated key exchange protocol for a dic-
tionary space D is a tuple (TPAKE.Reg, TPAKE.Login) involving user U and N
servers S1, . . . ,SN :

– (pp, st1, . . . , stN ) ←− TPAKE.Reg(pw) : On input a password pw ∈ D it out-
puts (pp, st1, . . . , stN ), where pp is public parameters/state and sti is the
private state of server Si.

– {keyi}i∈Q/⊥ ←− TPAKE.Login(p̃w, pp, sti∈Q) : TPAKE.Login is an interactive
protocol between user U with input p̃w and a subset of k servers Si(sti)
indexed by Q ⊂ {1, . . . , N} such that at the end either U and Si share a
common key keyi from a key-space Key for all i ∈ Q or ⊥ is output.

Security of TPAKE: Our definition for the task of authenticated key generation
is based on the simulation paradigm. That is, we require that a secure protocol
emulates an ideal execution of a key generation protocol. In such an ideal exe-
cution, a trusted party hands identical, uniformly distributed keys to the honest
parties (in case of an honest user, it is a k-tuple of keys and for an honest server
it is the one key that corresponds to the user). The only power given to the
adversary in this ideal model is to prevent the trusted party from handing keys
to one of the honest parties. We emphasize that in this ideal model of execution,
the adversary learns nothing about the password and the established keys corre-
sponding to the honest parties. However, if the user or a qualified set of servers
is corrupted, then the adversary is given the power to fully determine the session
key. The rationale for this is that the aim of key exchange is to enable honest
parties to generate a key that is unknown to an external adversary. If the user or
a qualified set of servers is corrupted, then the adversary will learn the generated
key (because it is one of the legitimate participants), and so the security require-
ment is meaningless. Furthermore, A controls the communication line between
the (honest) user and the (honest) servers. Thus, it can block all communication
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between the user and servers, and cause any protocol to fail. This (unavoidable)
adversarial capability is modeled in the functionality by letting A input a single
bit b indicating whether or not the execution is to be successful. Specifically, if
b = 1 (i.e., success) then the user and participating servers receive session-key.
On the other hand, if b = 0 then the servers receive a uniformly random string,
whereas the user receives a special abort symbol ⊥ instead5. In conclusion, the
problem of TPAKE is cast as the following functionality:

({sti}i∈Q, pw, b)→



({Ui}i∈Q, {Ui}i∈Q) if b = 1,

U & {Si}i∈Q are honest;

(⊥, {Ui}i∈Q) if b = 0,

U & {Si}i∈Q are honest;

(⊥, {Ui}i∈F ) if b = 0 or 1,

{Si}i∈F ;

({U∗i }i∈Q, {U∗i }i∈Q) if b = 1,

U or {Si}i∈Q are dishonest;

where Ui denotes uniform random variable over the space Key and U∗i is
adversarially chosen distribution over Key , Q is a qualified set of servers, and F
is a forbidden set of servers.

The Ideal Model : Let U and {S1, . . . ,SN} denote the user and the set of servers
respectively. Let A denote a PPT adversary in the ideal model (with arbitrary
auxiliary input aux). An ideal-model execution proceeds in the following phases:

– Setup: A password pw ∈R D is uniformly chosen from the dictionary and
given to the user U. st1, st2, · · · , stN are chosen and given to S1,S2, · · · ,SN ,
respectively.

– Sending inputs to trusted party: If the user U is not dishonest, U
sends the trusted party the password pw it has received in the setup stage;
otherwise, U sends p̂w which is adversarially chosen. The adversary A sends
either 1 (denoting a successful protocol execution) or 0 (denoting a failed
protocol execution). Moreover, some servers may be captured by A. The
server Si sends the trusted party sti he has received in the setup stage if Si
is not captured by A; Otherwise, server Si sends the trusted party ŝti, which
is adversarially chosen.

– The trusted party answers all parties: In the caseA sends 1 and {Si}i∈Q
are not corrupted, the trusted party chooses uniformly distributed strings
key1, key2, · · · , keyQ and sends keyi to both U and Si. In the case A sends 0,
the trusted party sends ⊥ to U and uniformly random string to {Si}i∈Q. In
the case only a forbidden set servers are corrupted, the trusted party sends

5 This lack of symmetry in the definition is inherent as it is not possible to guarantee
that the user and the servers both terminate with the same “success/failure bit”. For
sake of simplicity, we (arbitrarily) choose to have servers always receive a uniformly
distributed session key and to have the user always output ⊥ when b = 0.
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⊥ to U and uniformly random string to {Si}i∈Q. In all the above cases, A
receives no output. In the case A sends 1 and {Si}i∈Q are corrupted or the
user U is corrupted, the trusted party chooses strings key1, key2, · · · , keyQ ∈
Key and sends keyi to both U, {Si}i∈Q and A.

The ideal distribution is defined as follows:

idealA(D, aux) = (pw, output(U(pw)), {outputSi(sti)}i∈Q, output(A(aux))).

The Real Model : As in the ideal model, the real model begins with a setup
stage in which the user U receives uniformly distributed password pw ∈ D,
and S1,S2, · · · ,SN receive st1, st2, · · · , stN , respectively. Then, the protocol is
executed among U and {Si}i∈Q communicating via A. The execution of this
protocol is denoted AU(pw),{Si(sti)}i∈Q(aux) and we augment A′s view with the
accept/reject decision bits (this decision bit denotes whether a party’s private
output is a session-key or ⊥). The real distribution is defined as follows:

realA(D, aux) =

(pw, output(U(pw)), {outputSi(sti)}i∈Q, output(AU(pw),{Si(sti)}i∈Q(aux)).

An important observation in the context of password-based security is that,
during an online attack, an adversary can always attempt impersonation by
simply guessing the secret password and participating in the protocol, claiming
to be the user U. If the adversary’s guess is correct, then impersonation always
succeeds (and, for example, the adversary knows the generated session-key).
Furthermore, by executing the protocol with k many servers, the adversary can
verify whether or not its guess is correct, and thus can learn information about
the password (e.g., it can rule out an incorrect guess from the list of possible
passwords). Since the dictionary D may be small, this information learned by
the adversary in a protocol execution may not be negligible at all. User and
servers merely want to establish that they are talking to one another. Repeating
an observation made above, we note that if the adversary initiates ` ≤ |D|
instances of the (k,N)-TPAKE protocol, guessing a different password in each of
them, then with probability `/|D| it will succeed in impersonating user to servers
(and furthermore find the password). Therefore, in the context of a password-
only setting, a (k,N)-TPAKE protocol is said to be secure if the above-mentioned
ideal-model emulation results in an output distribution that can be distinguished
from a real execution by (a gap of) at most O(1/|D|) + negl(λ), where ` is the
number of sessions initiated by the adversary.

Definition 16. A protocol for threshold password authenticated key generation
is secure if the following two requirements hold:

1. Semi-honest adversaries: For every PPT real-model semi-honest adversary
A there exists a PPT ideal-model adversary A∗ such that for every dictionary
D and every auxiliary input aux ∈ {0, 1}poly(λ) it should hold that
{idealA∗(D, aux)}D,aux ≈c {realA(D, aux)}D,aux
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2. Malicious adversaries: For every PPT real-model adversary A there exists a
PPT ideal-model adversary A∗ such that for every dictionary D and every
auxiliary input aux ∈ {0, 1}poly(λ) it should hold that
{idealA∗(D, aux)}D,aux ≈O( 1

D )+ε {realA(D, aux)}D,aux

3.1 A Construction of TPAKE from TFHE

In the following, we describe a construction of TPAKE using TFHE scheme of
Boneh et al. [9], an EUF-CMA signature, a CCA secure public key encryption
scheme, and a simulation sound NIZK (SS-NIZK). In Figure 1 we present the
TPAKE.Reg algorithm and in Figure 2, the TPAKE.Login algorithm.

Parties: User U, Servers S1, . . . ,SN .
Building Blocks: CCA secure encryption scheme (Enccca,Deccca); EUF-CMA
Signature (Sig,Ver); and the k-out-of-N TFHE scheme based on Shamir SS
of [9].

TPAKE.Reg (secure channels between U and each Si is assumed only for
registration phase): On input a password pw ∈ D,

1. Run Keygencca to obtain (pkcca, skcca)
2. Run TFHE.Setup twice independently to obtain

(pktfhe, sktfhe1 , . . . , sktfheN ) and (p̂ktfhe, ŝktfhe1 , . . . , ŝktfheN ).
3. Generate EUF-CMA Signature algorithm {(Sigi,Veri)}Ni=1 for servers and

(SigU,VerU) for user.
4. Compute σu = SigU(skcca) and run TFHE.Encpktfhe to encrypt pw and

skcca||σu and obtain Cpw,Cskcca .

5. Output (pp, st1, . . . , stN ), where pp ← {pktfhe, p̂ktfhe, pkcca,Cpw,Cskcca ,
{Veri}Ni=1,VerU}, and {sti ← {sktfhei ,Sigi}}Ni=1.

6. U memorizes pw and erases all other information.

Fig. 1. (k,N)-TPAKE.Reg algorithm

Security Analysis.

Lemma 1. For every PPT adversary A′ interacting with servers S1, . . . ,Sk−1,Sk
there exists a non-interactive machine A′′, such that

{pw, st1, . . . , stk−1, stk, key1, . . . , keyk−1,U , output(A′′(aux))} ≈

{pw, st1, . . . , stk−1, stk, key1, . . . , keyk−1, keyk, output(A′{Si(sti)}1≤i≤k(aux))}

Proof. Let the real model adversary A corrupts (without loss of generality) the
first k − 1 servers S1, . . . ,Sk−1 and obtains their private states st1, . . . , stk−1 in
the beginning of the Login protocol. Also, suppose the user U interacts with
S1, . . . ,Sk−1 (corrupted servers) and Sk (uncorrupted server) during the Login

phase for the sake of simplicity. Therefore, after the Login phase (if it succeeds
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TPAKE.Login: On input pp and secret states sti of k many servers indexed
by Q and password pw ∈ D, U and {Si}i∈Q perform the following steps

– Server 1: Server Sj (for each j ∈ Q) performs the following steps:
1. Randomly choose Rj and run TFHE.Enc to encrypt Rj w.r.t pktfhe:
• Compute CRj = TFHE.Encpktfhe(Rj).

2. Compute Sigj(CRj
).

3. Send CRj
and Sigj(CRj

) to the user U.

– User 1: User U does the following:
1. Check {Veri(Sigi(CR̃i

)) = accept or reject}i∈Q.
• If Veri(Sigi(CR̃i

)) 6= accept for any i ∈ Q, send ⊥ to {Sj}j∈Q.
2. Otherwise,

(a) Randomly choose X and Run TFHE.Enc

• to encrypt p̃w w.r.t pktfhe and p̂ktfhe with the same randomness

Rp̃w and obtain Cp̃w, Ĉp̃w

• encrypt X with respect to pktfhe and obtain CX .

(b) Compute {πj ← P[Lpp
U ]((Cp̃w, Ĉp̃w), (p̃w,Rp̃w))}j∈Q.

(c) Send (Cp̃w, Ĉp̃w,CX , πj , {CR̃j
,Sigj(CR̃j

)}j∈Q) to {Sj}j∈Q.

– Server 2: Server Sj (for all j ∈ Q) proceeds as follows:
1. Check {Veri(Sigi(CR̃i

)) = accept or reject}i∈Q.
• If Veri(Sigi(CR̃i

)) 6= accept for any i ∈ Q, send ⊥ to user U.

2. If V[Lpp
U ]((Cp̃w, Ĉp̃w), (p̃w,Rp̃w)) = reject, send ⊥ to user U.

3. Otherwise,
• Using TFHE.Eval(pktfhe, C, {CR̃i

}i 6=j , CRj
, Cp̃w, Cpw, Cskcca ,

CX) compute CFj =
(∑

i∈Q\{j}CR̃i
+ CRj

)
· Cp̃w −(∑

i∈Q\{j}CR̃i
+ CRj

)
·Cpw + (Cskcca + CX).

• Run TFHE.PartDec(pktfhe, CFj , sk
tfhe
j ) to output Wj .

• compute Sigj(Wj)
• choose random keyj ; compute σj ← Sigj(keyj) and compute cj ←
Enccca(keyj , σj)

4. Send
(
Wj ,Sigj(Wj), cj

)
to the user U.

– User 2: User U performs the following steps:
1. If receives ⊥ from any server Si (for i ∈ Q) then outputs ⊥.
2. Checks {Veri(Sigi(Wi)) = accept or reject}i∈Q.
• If any Veri(Sigi(Wi)) 6= accept for i ∈ Q, outputs ⊥.

3. Otherwise,
• skcca||σu +X ← TFHE.FinDec(pktfhe, {Wj}j∈Q).
• compute skcca||σu = (skcca||σu +X)−X.

• if VerU(σu) = reject then output ⊥; otherwise compute
(keyj , σj)← Decccaskcca(cj)

• if Verj(σj) = reject for any j output ⊥; otherwise, output
keyj .

Fig. 2. (k,N)-TPAKE.Login algorithm
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and does not get aborted by the user) the adversary A will obtain the keys of
the corrupted servers viz. key1, . . . , keyk−1. Thus, the real view {realA(D, aux)}
always include {key1, . . . , keyk−1}. Also, note that the secret states st1, . . . , stk−1
are under adversarial capture.

We note that it is enough to prove that for every PPT A′,

{pw, st1, . . . , stk−1, stk, key1, . . . , keyk−1, keyk, output(A′{Si(sti)}1≤i≤k(aux))} ≈

{pw, st1, . . . , stk−1, stk, key1, . . . , keyk−1,U , output(A′{Si(sti)1≤i≤k−1,Sk(s̃tk)}(aux))}

The reason for this is that once we have the above then we can define the
non-interactive A′′ as follows. It chooses random state s̃tk. Then A′′ can emulate

an execution of A′{Si(sti)1≤i≤k−1,Sk(s̃tk)}(aux) by playing the role of server Sk as
it selects s̃tk. Lastly, A′′ outputs whatever A′ outputs. Therefore, the resulting

output is distributed exactly like output(A′{Si(sti)1≤i≤k−1,Sk(s̃tk)}(aux)).

Now since the distributions

{pw, st1, . . . , stk−1, stk, key1, . . . , keyk−1,U , output(A′{Si(sti)1≤i≤k−1,Sk(s̃tk)}(aux))}

and

{p̃w, st1, . . . , stk−1, s̃tk, key1, . . . , keyk−1,U , output(A′{Si(sti)}1≤i≤k(aux))}

are equivalent we only show that

{pw, st1, . . . , stk−1, stk, key1, . . . , keyk−1, keyk, output(A′{Si(sti)}1≤i≤k(aux))} ≈

{p̃w, st1, . . . , stk−1, s̃tk, key1, . . . , keyk−1,U , output(A′{Si(sti)}1≤i≤k(aux))}.

Note that keyk is chosen uniformly randomly from the key space and thus is
identically distributed as uniform U . Thus, the distribution
{pw, st1, . . . , stk−1, stk, key1, . . . , keyk−1, keyk} is 1− εSigk indistinguishable from

{p̃w, st1, . . . , stk−1, s̃tk, key1, . . . , keyk−1, keyk} due to the perfect privacy of Shamir
secret sharing and EUF-CMA security of signature scheme.

This completes the proof.

Lemma 2. For every PPT adversary A interacting with user U and servers
S1, . . . ,Sk−1,Sk there exists an A′ interacting with only S1, . . . ,Sk−1,Sk, such
that

{pw, st1, . . . , stk−1, stk, key1, . . . , keyk−1, keyk, output(A′{Si(sti)}1≤i≤k(aux))} ≈
{pw, st1, . . . , stk−1, stk, key1, . . . , keyk−1, keyk, output(AU(pw),{Si(sti)}1≤i≤k(aux))}

Proof. As before, let A corrupt (without loss of generality) the first k−1 servers
S1, . . . ,Sk−1 and obtain their private states st1, . . . , stk−1 in the beginning of
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the Login protocol. Also, suppose the user U interacts with S1, . . . ,Sk−1 and
Sk during the Login phase.

We note that the keys are chosen uniformly randomly by the servers (in
particular, honest Sk chooses keyk uniformly) and the user U ultimately outputs
accept (or reject). This accept/reject bit can be easily simulated and noting
that at the end of the protocol, the probability U accepts and yet the keys keyk
(chosen by Sk) and key′k (obtained by U) are different is at most εSigU + εcca.

Thus, what we need to show is that barring the step when U accepts or
rejects; the entire interaction of adversary AU(pw),{Si(sti)}1≤i≤k(aux) can be sim-
ulated by an adversary A′ who interacts only with {Si(sti)}1≤i≤k. We first note
that in the User 1 step, the user U uses a simulation-sound NIZK to prove his
statement and all the rest of the sent values are encrypted values. Therefore, even
if U uses some fixed pw′ ∈ D instead of pw, the adversary AU(pw),{Si(sti)}1≤i≤k

cannot distinguish between
{pw, st1, . . . , stk−1, stk, output(AU(pw),{Si(sti)}1≤i≤k(aux))} and
{pw, st1, . . . , stk−1, stk, output(AU(pw′),{Si(sti)}1≤i≤k(aux))}.
Now, we can define our intended adversary A′ as follows – it chooses a

fixed password pw′ and emulates AU(pw′),{Si(sti)}1≤i≤k , while interacting with
the servers {Si(sti)}1≤i≤k and using pw′ while emulating U(pw). Ultimately, it
outputs whatever A outputs.

Now the proof follows from the observation that we made in the beginning
of the proof of Lemma 1 and thereby including the output keys.

Theorem 1. For every PPT real-model adversary A there exists a PPT ideal-
model adversary A∗, such that {idealA∗(D, aux)} ≈O(1/|D|)+ε {realA(D, aux)}.

Proof. Let the real model adversary A corrupts (without loss of generality) the
first k − 1 servers S1, . . . ,Sk−1 and obtains their private states st1, . . . , stk−1 in
the beginning of the Login protocol. Also, suppose the user U interacts with
S1, . . . ,Sk−1 and Sk during the Login phase for the sake of simplicity, consid-
ering k many servers are needed for the login to happen. Therefore, after the
Login phase (if it succeeds and does not get aborted by the user) the adversary
A will obtain the keys of the corrupted servers viz. key1, . . . , keyk−1. Thus, the
real view {realA(D, aux)} always include {key1, . . . , keyk−1}.

Suppose for every PPT adversary A, there exists a non-interactive machine
A′′ such that

{pw, key1, . . . , keyk−1,U , output(A′′(aux))} ≈O(1/|D|)

{pw, key1, . . . , keyk−1, keyk, output(AU(pw),{Si(sti)}1≤i≤k(aux))}.

We now start by describing the ideal model adversary A∗. It first invokes the
non-interactive machine A′′ and receives the output of A′′ (which contains A’s
view and in particular U’s accept/reject bit), A∗ sets the value of b (the bit sent
by it to the trusted party) as follows:
• If U accepted in the view output by A′′ , then A∗ sends b = 1 to the trusted
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party.
• If U rejected in the view output by A′′ , then A∗ sends b = 0 to the trusted
party.

Note that upon receiving b = 1, the trusted party hands the same uniformly
distributed key to Sk and U. On the other hand, upon receiving b = 0, the
trusted party hands a uniformly distributed key to Sk, and U receives ⊥. Also,
in each case, key1, . . . , keyk−1 are chosen uniformly by the trusted party and is
handed over to U and S1, . . . ,Sk−1. Finally, A∗ halts and outputs the output of
A′′.

Therefore, from the definition of A∗, it follows that

{pw, key1, . . . , keyk−1,U , output(A∗)} ≈

{pw, key1, . . . , keyk−1, keyk, output(AU(pw),{Si(sti)}1≤i≤k(aux))} · · · · · · (∗∗)
The distribution on the left is “almost” the ideal-model distribution and the

right hand side distribution is “almost” the real-model distribution, where in
both cases the only thing missing is user U’s local output (which may or may
not be equal to Sk’s local output). We will now show that in case U rejects and
this output is included into the distributions then a PPT distinguisher is able
to tell the difference between ideal and real distributions is negligible. Later, we
will show the same in case U accepts.

Suppose D is any PPT distinguisher attempting to distinguish between the
IDEAL and REAL distributions. When referring to U’s decision (i.e. accept or
reject), within the context of idealA∗ , we mean U’s decision as included in the
emulated view of A (which is part of the output of A∗, by definition of A∗ ). More
precisely, by the construction of A∗, it holds that U’s decision in the emulated
view matches the output of U in the ideal-model; i.e. decisionU = reject if
and only if the output of U in the ideal-model is ⊥. Thus,

|Pr[D(idealA∗(D, aux)) = 1 & U rejects]−Pr[D(realA(D, aux)) = 1 & U rejects]|

= |Pr[D(pw, {keyi}i∈[k−1],U ,⊥, output(A′′(aux))) & U rejects]

−Pr[D(pw, {keyi}i∈[k−1], keyk,⊥, output(AU(pw),{Si(sti)}1≤i≤k(aux)) & U rejects]|.
We obtain the above from the protocol definition that states that when U

rejects it outputs ⊥, and from the construction of the ideal-model adversary A∗
who sends b = 0 to the trusted party (causing U’s output to be ⊥) in the case
that U rejects in the view output by A′′. Noting that A’s view includes U’s
accept/reject decision bit (and thus implicitly U’s output of ⊥ in the case that
U rejects). Combining the above with Eqn.(∗∗) (from the last page) we obtain,

|Pr[D(idealA∗(D, aux)) = 1 & U rejects]

−Pr[D(realA(D, aux)) = 1 & U rejects]| ≤ O(1/|D|) + negl(λ).

Now we turn our attention to the case when U accepts. We will show that
in case the adversary behaves maliciously during the protocol execution the dis-
tinguisher D still cannot distinguish between ideal execution and real execution.
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Note that, in the ideal execution, Pr[U accepts & A is malicious] = 0. This
is due to the fact that in the simulated transcript output by A′′, U accepts if
and only if A acts passively. In a real execution, A acts maliciously and still U
accepts is possible if A can

– break the EUF-CMA security of signature algorithm (Sigi,Veri) for any hon-
est server or (SigU,VerU) for the user in TPAKE.Login phase;

– break the CPA security of TFHE in TPAKE.Reg or TPAKE.Login phase;
– break CCA security of (pkcca, skcca) in the round Server 2;
– deceive a honest server during verification of NIZK in the round Server 2.

Hence, in a real execution, ignoring constant multipliers and considering union
bound, A acts maliciously and U accepts is possible only with probability at
most (O( 1

|D| ) + εTFHE + εSig + εSS + εSigU + εcca). �

Lattice-based Instantiation in the Standard Model. We instantiate using
the CCA secure lattice based encryption scheme (Enccca,Deccca) [21] (based on
the hardness of dLWE problem); Adaptive EUF-CMA Signature (Sig,Ver) of [3];
the k-out-of-N TFHE scheme [9] based on Shamir secret sharing with parameters
B (noise bound of FHE) and Bsm satisfying the conditions B+(N ! )3·N ·Bsm ≤ q

4
and B/Bsm = negl(λ); and a Lattice-based SS-NIZK. Peikert et al. [22, Theorem
5.4] proposed non-interactive zero-knowledge proof system for any NP language
based on the hardness of dLWE. Generic conversion proposed by Sahai [25] trans-
form any ordinary non-interactive zero-knowledge proof system into SS-NIZK.
Thus, we have SS-NIZK based on the hardness of dLWE for the language Lpp

U

corresponding to the one protocol message from User to Servers parameterized

by public parameters pp← {pktfhe, p̂ktfhe,Cpw,Cskcca , {Veri}Ni=1}, where

Lpp
U = {(Cp̃w, Ĉp̃w) | ∃ (p̃w,Rp̃w) where Cp̃w = TFHE.Encrypt(pktfhe, p̃w,Rp̃w) &

C̄p̃w = TFHE.Encrypt(p̂ktfhe, p̃w,Rp̃w)}.

4 Password Protected Universal Thresholdizer

We now propose a new primitive which makes the universal thresholdizer [9]
password protected. A user can execute such a protocol if it inputs the pass-
word with which it has registered with the system. We begin with defining the
primitive.

Definition 17 (Password Protected Universal Thresholdizer). Let S =
{S1, · · · ,SN} be a set of parties/servers, U be the user and let S be a class of effi-
cient access structures on S. A password protected universal thresholdizer scheme
for User and S is a tuple of PPT algorithms PPUT = (PPUT.Setup, PPUT.Eval,
PPUT.Verify, PPUT.Combine) with the following properties:

– PPUT.Setup(1λ, 1d,A, pw, x) → (pp, S1, · · · , SN ) : On input the security pa-
rameter λ, a depth bound d, an access structure A ∈ S, a password pw ∈R D
and a message x ∈ {0, 1}k, the setup algorithm outputs the public parameters
pp and a set of shares S1, · · · , SN to S1, · · · ,SN .
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– PPUT.Eval(pp, Si, pw, C) → yi : On input the public parameters pp, a share
si, and a circuit C : {0, 1}k → {0, 1} of depth at most d and a password pw,
the evaluation algorithm outputs a partial evaluation yi to Si.

– PPUT.Verify(pp, pw, yi, C) → {0, 1} : On input the public parameters pp, a
password pw, a partial evaluation yi, and a circuit C : {0, 1}k → {0, 1}, the
verification algorithm accepts or rejects.

– PPUT.Combine(pp, pw, B) → y : On input the public parameters pp, a pass-
word pw, a set of partial evaluations B = {yi}i∈Q where Q ∈ A, the combin-
ing algorithm outputs the final evaluation y to the user U.

A PPUT is required to satisfy the following properties.

Definition 18 (Compactness). We say that a PPUT scheme is compact if
there exists a polynomial poly(·) such that for all λ, depth bound d, circuit
C : {0, 1}k → {0, 1} of depth at most d, µ ∈ {0, 1} and password pw, the
following holds. For (pp, s1, · · · , sN ) ← PPUT.Setup(1λ, 1d,A, pw, x) and yi ←
PPUT.Eval(pp, Si, pw, C) for any i ∈ [N ], we have |yi|≤ poly(λ, d,N).

Definition 19 (Evaluation Correctness). We say that a PPUT scheme sat-
isfies evaluation correctness if for all λ, depth bound d, password pw, access
structure A, message x ∈ {0, 1}k, circuit C : {0, 1}k → {0, 1} of depth at most
d, and Q ∈ A, the following condition holds.
For (pp, s1, · · · , sN ) ← PPUT.Setup(1λ, 1d,A, pw, x),
Pr[PPUT.Combine(pp, {PPUT.Eval(pp, si, pw, C)}i∈Q) = C(x)] = 1− negl(λ).

Definition 20 (Verification Correctness). We say that a PPUT scheme sat-
isfies verification correctness if for all λ, depth bound d, password pw, access
structure A, message x ∈ {0, 1}k, and circuit C : {0, 1}k → {0, 1} of depth at
most d, the following holds. For (pp, s1, · · · , sN ) ← PPUT.Setup(1λ, 1d,A, pw, x)
and yi ← PPUT.Eval(pp, Si, pw, C) for any i ∈ [N ], we have that

Pr[PPUT.Verify(pp, pw, yi, C) = 1] = 1.

Security of PPUT: Our definition for the task of PPUT is based on the sim-
ulation paradigm. That is, we require that a secure protocol emulates an ideal
execution of a PPUT protocol. In such an ideal execution, a trusted party hands
partial circuit evaluations to the servers and the combination of evaluations to
the user. The only power given to the adversary in this ideal model is to prevent
the trusted party from handing outputs to one of the honest parties and the
user. We emphasize that in this ideal model of execution, the adversary learns
nothing about the password, partial circuit evaluations of honest participants,
and combination of partial evaluation for the honest user. However, if the user
or a qualified set of participants is corrupted, then the adversary is given the
power to fully determine all the evaluations and combination. The rationale for
this is that the aim of PPUT is to enable honest parties to evaluate the circuit
partially and their combination by the honest user, which are unknown to an
external adversary. If the user or a qualified set of participants is corrupted, then
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the adversary will learn the combination of partial evaluations (because it is one
of the legitimate participants), and so the security requirement is meaningless.
Furthermore, A controls the communication line between the (honest) user and
the (honest) participants. Thus, it can block all communication between the user
and participants, and cause any protocol to fail. This (unavoidable) adversarial
capability is modeled in the functionality by letting A input a single bit b indi-
cating whether or not the execution is to be successful. Specifically, if b = 1 (i.e.,
success) then the user and participating participants receive the desire outputs.
On the other hand, if b = 0 then participants receive a uniformly random string,
whereas the user receives a special abort symbol ⊥ instead. It is worth men-
tioning that PPUT is a single output functionality, and the participants always
output some special symbol λ. In conclusion, the problem of PPUT is cast as the
following functionality:

({Si}i∈Q, pw, C, x, b)→



((C(x) = y), λ) if b = 1,

U & {Si}i∈Q are honest;

(⊥, λ) if b = 0,

U & {Si}i∈Q are honest;

(⊥, λ) if b = 0 or 1,

{Si}i∈F ;

(y∗, λ) if b = 1,

U or {Si}i∈Q are dishonest;
where Q ∈ A, y∗ is adversarially chosen output, and F is a forbidden set of

servers.

The Ideal Model : Let U and {S1, . . . ,SN} denote the user and the set of servers
respectively. Let A denote an PPT adversary in the ideal model (with arbitrary
auxiliary input aux). An ideal-model execution proceeds in the following phases:

– Setup: A password pw ∈R D is uniformly chosen from the dictionary, x and
a circuit C are given to the user U. S1, S2, · · · , SN are chosen and given to
S1,S2, · · · ,SN , respectively.

– Sending inputs to trusted party: If the user U is not dishonest, U sends
the trusted party the password pw, x and the circuit C it has received in the
setup stage; otherwise, U sends p̂w and Ĉ which are adversarially chosen.
The adversary A sends either 1 (denoting a successful protocol execution) or
0 (denoting a failed protocol execution). Moreover, some participants may
be captured by A. The server Si sends the trusted party Si he has received
in the setup stage if Si is not captured by A; Otherwise, server Si sends the
trusted party Ŝi, which is adversarially chosen.

– The trusted party answers all parties: Without loss of generality, the
trusted party only answers the user U. In the case A sends 1 and {Si}i∈Q
are not corrupted, the trusted party computes C(x) and sends y to U. In the
case A sends 0, the trusted party sends ⊥ to U. In the case only a forbidden
set of servers is involved in the protocol, the trusted party sends ⊥ to U. In
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the case A sends 1 and {Si}i∈Q are corrupted or the user U is corrupted,
the trusted party sends y∗ to U.

The ideal distribution is defined as follows:

idealA(D, aux) = (pw, output(U(pw)), output(A(aux))).

The Real Model : As in the ideal model, the real model begins with a setup
stage in which the user U receives uniformly distributed password pw ∈ D,
and S1,S2, · · · ,SN receive S1, S2, · · · , SN , respectively. Then, the protocol is
executed among U and {Si}i∈Q communicating via A. The execution of this
protocol is denoted by AU(pw,C),{Si(Si)}i∈Q(aux). The real distribution is defined
as follows:

realA(D, aux) = (pw, output(U(pw)), output(AU(pw),{Si(Si)}i∈Q(aux)).

As in TPAKE, a PPUT protocol is said to be secure if the above-mentioned
ideal-model emulation results in an output distribution that can be distinguished
from a real execution by (a gap of) at most O(1/|D|) + negl(λ).

Definition 21 (Security). A PPUT is secure if the following two requirements
hold:

1. Semi-honest adversaries: For every PPT real-model semi-honest adversary
A there exists a PPT ideal-model adversary A∗ such that for every dictionary
D and every auxiliary input aux ∈ {0, 1}poly(λ) it should hold that
{idealA∗(D, aux)}D,aux ≈c {realA(D, aux)}D,aux

2. Malicious adversaries: For every PPT real-model adversary A there exists a
PPT ideal-model adversary A∗ such that for every dictionary D and every
auxiliary input aux ∈ {0, 1}poly(λ) it should hold that
{idealA∗(D, aux)}D,aux ≈O( 1

D )+ε {realA(D, aux)}D,aux

Definition 22 (Robustness of PPUT). We say that a PPUT scheme satisfies
robustness if for all λ, and depth bound d, the following holds. For any PPT
adversary A, the following experiment ExptA,PPUT,Robust(1

λ, 1d) outputs 1 with
negligible probability:

ExptA,PPUT,Robust(1
λ, 1d) :

1. On input the security parameter 1λ, circuit depth 1d, the adversary A outputs
(k,N)-threshold access structure, a message x ∈ {0, 1}k, and a password
dictionary D.

2. The challenger runs (pp, S1, · · · , SN )← PPUT.Setup(1λ, 1d, (k,N),D, x) and
provides (pp, S1, · · · , SN ) and the password pw ∈ D to A.

3. A outputs a fake partial evaluation y∗i .
4. The challenger returns 1 if PPUT.Eval(pp, Si, sti, pw, C) 6= y∗i and

PPUT.Verify(pp, pw, y∗i , C) = 1.
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4.1 Construction of PPUT

In this section, we describe a generic construction of secure PPUT from TPAKE
and UT. In Figure 3, we give the description of the construction. As building
blocks, we use (k,N)-threshold UT, a (k, n)-TPAKE and a CPA secure symmet-
ric encryption scheme. In Theorem 2 we prove the simulation security of our
construction.

– PPUT.Setup(1λ, 1d, (k,N),D, x) → (pp, S1, · · · , SN ) :
• User chooses password pw← D.
• Set TPAKE(k,N) = (TPAKE.Reg , TPAKE.Login)
• Set UT(k,N) = (UT.Setup, UT.Eval, UT.Verify, UT.Combine),
• A CPA secure symmetric-key encryption scheme E = (enc, dec).
• Execute UT.Setup(1λ, 1d, (k,N), x) to obtain (pp′, s1, · · · , sN )
• Execute TPAKE.Reg(pw) with N servers S1, . . . ,SN to obtain
(pp′′, st1, st2, . . . , stN ).
• Store: Si = (si, sti) in Si for all 1 ≤ i ≤ N and publish pp = pp′ ∪ pp′′.

– PPUT.Eval(pp, Si, pw, C) → yi :
User contacts an available set {Si1 , . . . ,Sik} of servers indexed by Q =
{i1, . . . , ik}.
• (User ⇀↽ Servers)
∗ Run TPAKE.Login(pw) with servers indexed by Q
∗ outputs: (keyi1 , . . . , keyik)← User(pw) and keyij ← Server(stij )
∗ Run: UT.Eval(pp, sij , C) to output partial evaluation Yij for ij ∈
Q at the server side.

∗ User receives yij ← enc(keyij , Yij ) for ij ∈ Q. // keyij is the key
used for encryption.

– PPUT.Verify(pp, pw, yi, C)→ {0, 1} :
• User runs dec(keyj , yij ) to obtain Yij for ij ∈ Q
• Run UT.Verify to verify {Yi}i∈Q and output 0 if any verification

fails.
– PPUT.Combine(pp, pw, {yi}i∈Q, Q)→ Y :
• User obtains Yij ’s from dec(keyij , yij ).
• User runs UT.Combine(pp, Yij , Q) to compute Y .
• outputs Y .

Fig. 3. Construction for Password Protected Universal Thresholdizer

The compactness property (Definition 18), the evaluation correctness (Def.
19), verification correctness (Definition 20) and the robustness property (Defini-
tion 22) follow from the corresponding properties of the underlying UT. In the
following, we prove the security.

Security Analysis.
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Theorem 2. Suppose UT and TPAKE satisfy simulation security. Then, the
PPUT scheme from Fig. 3 satisfies security according to Definition 21.

Proof. Our proof proceeds via a sequence of hybrid experiments between an
adversary A and a challenger.

– H0 : This is the PPUT real security experiment ExptA,PPUT,Real(1
λ, 1d) be-

tween an adversary A and a challenger.
– H1 : For ease of the representation, we denote TPAKE simulator as Sim.TPAKE.Reg

to simulate TPAKE.Reg and Sim.TPAKE.Login to simulate TPAKE.Login. H1 is
same as H0, except that the challenger simulates TPAKE.Reg in PPUT.Setup.
Specifically, on input (k,N)-threshold access structure, a random password
p̄w and a message x ∈ {0, 1}k from A, the challenger runs
PPUT.Setup(1λ, 1d, (k,N),D, x) by invoking
(st1, st2, . . . , stN )← Sim.TPAKE.Reg(p̄w), and
(pp, s1, · · · , sN ) ← UT.Setup(1λ, 1d, (k,N), x).
By the simulation security of TPAKE, the hybrid experiments H0 and H1 are
computationally indistinguishable.

– H2 : Same as H1, except that the challenger simulates TPAKE.Login in PPUT.Eval
to compute (key∗i1 , . . . , key

∗
ij )← Sim.TPAKE.Login(p̄w). Challenger runs

UT.Eval(pp, sij , C) in PPUT.Eval and computes y∗ij ← enc(key∗j , Yij ) for 1 ≤
j ≤ |Q|. Finally, the challenger runs PPUT.Verify and PPUT.Combine. By
the simulation security of TPAKE, the hybrid experiments H1 and H2 are
computationally indistinguishable.

– H3 : Same as H2, except that the challenger uses the zero string 0 instead of x
during setup. Specifically, on input a (k,N)-threshold access structure, and a
message x ∈ {0, 1}k from A, the challenger ignores x and runs setup as in H2
but with the zero string UT.Setup(1λ, 1d, (k,N),0). The challenger carries
out the rest of the experiments as before. By the perfect security of the
Shamir secret sharing scheme and the CPA security of encryption scheme,
the hybrid experiments H2 and H3 are computationally indistinguishable.
Hence, assuming the simulation security of TPAKE, the hybrid experiments
H3 is computationally indistinguishable with ExptA,PPUT,Ideal(1

λ, 1d).

�

Lattice-based Instantiation in the Standard Model. We instantiate using
the lattice-based TPAKE from section 3, lattice-based UT from [9], and lattice-
based CPA secure symmetric-key encryption using a pseudorandom function
(PRF) from [5].

5 Password Protected Threshold Signature: An
Application

In a threshold signature scheme, the signing algorithm is delegated to a set of
servers each holding a share such that for signing a message, each of the servers
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creates a partial signature with its own share. A combining algorithm then com-
bines the partial signatures to generate signature. Several important examples
include thresholdizing RSA signatures [27], Schnorr signatures [?], (EC)DSA sig-
natures [16,15,14] and BLS signatures [8]. We use password based authentication
for verifying the correct user who with the knowledge of the correct password can
execute the threshold signing process with an authorized set of servers. We first
give a definition of a password protected threshold signature scheme followed by
a construction.

Definition 23 ((k,N)-Password Protected Threshold Signature).
A (k,N)-PPTS is a tuple (Init, PPTS.PartSign, PPTS.PartSignVerify, PPTS.Combine,
PPTS.Vrfy) which involves user U and N servers S1, . . . ,SN :

– ({ski}Ni=1, vk, pp)←− Init(1λ, (k,N),D) : On input security parameter, num-
ber of servers N and the dictionary of passwords D as inputs, it outputs
secret states sk1, . . . , skN for the servers, a verification key vk and the public
parameters pp.

– Σi/⊥ ←− PPTS.PartSign(pp, pw,msg, ski) : It is an interactive protocol be-
tween user U and a subset of k servers indexed by Q ⊂ {1, . . . , N} such that
partial signature Σi for the message msg is a function of the password pw6

and is produced under the key ski.
– 1/0 ←− PPTS.PartSignVerify(pp, pw,msg,Σi): On input a message msg

and a partial signature Σi, the algorithm outputs either 1 or 0.
– σ/⊥ ←− PPTS.Combine(pp, pw, {Σi)}i∈Q:|Q|=k): On input the public param-

eters pp and the partial signatures {Σi}i∈Q, the combining algorithm outputs
a signature σ of msg.

– 1/0←− PPTS.Vrfy(vk,msg, σ): On input a message-signature pair (msg, σ),
the algorithm outputs either 1 or 0.

Definition 24 (Compactness). We say that a (k, n)-PPTS scheme satisfies
compactness if there exist polynomials poly1(·), poly2(·) such that for all λ, and
any set Q of servers with size at least k the following holds.
For ({ski}Ni=1, vk, pp)←− Init(1λ, (k,N),D), Σi ←− PPTS.PartSign(pp, pw,msg, ski)
for i ∈ Q, σ ←− PPTS.Combine(pp, pw, {Σi)}i∈Q:|Q|=k), we have that |σ|≤ poly1(λ)
and |vk|≤ poly2(λ).

Definition 25 (Evaluation Correctness). If an honest user U interacts with
a set of k or more uncorrupted servers, say, Q then it must output a valid signa-
ture σ on a message msg; i.e., for any msg, any pw ∈ D with ({ski}Ni=1, vk, pp)←−
Init(1λ, (k,N),D) and
σ/⊥ ←− PPTS.Combine(pp, pw, {PPTS.PartSign(pp, pw,msg, ski)}i∈Q), it holds
that Pr[PPTS.Vrfy(vk,msg, σ) = 1] = 1− negl(λ).

Definition 26 (Partial Verification Correctness). We say that a (k, n)-
PPTS scheme satisfies partial verification correctness if for all λ and any set
Q of servers with size at least k, the following holds. for any msg, any pw ∈
6 Technically, we should write Σi(pw) but for brevity we omit the pw.
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D with ({ski}Ni=1, vk, pp) ←− Init(1λ, (k,N),D), it holds that for every i ∈ Q,
Pr[PPTS.PartSignVerify(pp, pw,msg,Σi) = 1] = 1− negl(λ).

Definition 27 (Unforgeability). A (k,N)-PPTS scheme on dictionary D is
said to be unforgeable if for any PPT adversary APPTS, as described in the follow-

ing game Exptuf,APPTS
(1λ, k,N,D), outputs 1 with probability at most |O||D|+negl(λ)

for a negligible function negl(λ), where |O| denotes the number of total queries
APPTS makes to the challenger for PPTS.PartSign, PPTS.PartSignVerify and
PPTS.Combine :

Exptuf,APPTS
(1λ, k,N,D) :

– On input the security parameter 1λ, the adversary A outputs an threshold
access structure (k,N).

– The challenger samples ({ski}Ni=1, vk, pp)←− Init(1λ, (k,N),D) and provides
pp and vk to A.

– A outputs a maximal unauthorized set S∗ ⊂ P of size k − 1.

– The challenger provides the set of keys {ski}i∈S∗ to A.

– A issues a polynomial number of following adaptive queries:

• A issues a message and server index (msg, i). For each query, the chal-
lenger computes PPTS.PartSign(pp, pw,msg, ski) and returns Σi to A.

• A issues a partial signature Σi corresponding to server Si. For each
query, the challenger computes PPTS.PartSignVerify(pp, pw,Σi) and
returns 0 or 1.

• A issues a set of partial signatures {Σi}i∈T , where |T |≥ k. For such a
query, the challenger computes PPTS.Combine(pp, T, pw, {Σi}i∈T , T ) and
outputs σ.

– At the end of the experiment, A outputs a forgery (msg∗, σ∗). The experiment
outputs 1 if PPTS.Vrfy(vk,msg∗, σ∗) = 1 and msg∗ was not previously queried
as a partial signing query.

Definition 28 (Robustness of PPTS). We say that a PPTS scheme for
threshold access structure satisfies robustness if for all λ, the following holds.
For any PPT adversary A, the following experiment ExptA,PPTS,Robust(1

λ, 1d)
outputs 1 with negligible probability:

ExptA,PPTS,Robust(1
λ, 1d) :

1. On input the security parameter 1λ, the adversary A outputs (k,N)-threshold
access structure.

2. The challenger runs ({ski}Ni=1, vk, pp) ← Init(1λ, (k,N),D) and provides
(pw, {ski}Ni=1, vk, pp) to A.

3. A outputs a partial signature forgery (msg∗,Σ∗i , i).

4. The challenger returns 1 if PPTS.PartSign(pp, pw,msg∗, ski) 6= Σ∗i and
PPTS.PartSignVerify(pp, pw,msg∗,Σ∗i ) = 1.
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– Initialization ({ski}Ni=1, vk, pp)←− Init(1λ, (k,N),D):
• User chooses password pw← D.
• Set PPUT(k,N) = (PPUT.Setup, PPUT.Eval, PPUT.Verify, PPUT.Combine)
• Set Sig = (S.KeyGen,S.Sign,S.Verify). For our construction, we assume
that the signing algorithm S.Sign is a deterministic algorithm. This is
without loss of generality since any randomized signature scheme can
be derandomized (i.e. using PRFs).
• Execute S.KeyGen(1λ) to obtain (svk, ssk)
• Obtain (pppput, S1, · · · , SN ) ← PPUT.Setup(1λ, 1d, (k,N), pw, ssk) for
N servers S1, . . . ,SN .
• Sets: pp = pppput; vk = svk; ski = Si for all 1 ≤ i ≤ N .

– PPTS.PartSign(pp, pw,msg, ski):
User contacts an available set {Si1 , . . . ,Sik} of servers indexed by
Q = {i1, . . . , ik}, and runs Σi ← PPUT.Eval(pppput, ski, pw, C), where
the circuit C defined as

C(ssk) = S.Sign(ssk,msg).

– PPTS.PartSignVerify(pp, pw,msg,Σi):
User runs PPUT.Verify(pppput, pw,Σi, C) and outputs 0 or 1.

– PPTS.Combine(pp, pw, {Σi}i∈Q:|Q|=k)
• User runs PPUT.Combine(pppput, pw, {Σi}i∈Q, Q) to compute σ
• outputs (msg, σ)

– PPTS.Vrfy(vk,msg, σ) :
• Run S.Verify(svk,msg, σ) to output 1/0.

Fig. 4. Construction for Password Protected Threshold Signature

5.1 A Construction for PPTS

In this section, we describe a generic construction (Fig. 4) of secure PPTS from
PPUT and a deterministic unforgeable signature scheme Sig.

5.2 Security Analysis

The compactness property (Definition 24), the evaluation correctness (Def. 25),
verification correctness (Definition 26) and the robustness property (Definition
28) of our PPTS construction follow from the corresponding properties of the
underlying PPUT. In the following, we prove the unforgeability.

Theorem 3. Suppose the underlying signature scheme is an unforgeable signa-
ture scheme. Then the PPTS obtained using the compiler construction as de-
scribed in Fig. 4 is unforgeable satisfying Definition 27.
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Proof. The adversary can always try guessing a password and attack the system

which gives him a probability of |O|D to forge a signature.
The proof proceeds via a sequence of hybrid experiments between A and the

challenger.

– H0 : This is the PPTS real security experiment Exptuf,APPTS
(1λ, (k,N),D)

between an adversary A and a challenger.
– H1 : This experiment is the same as H0, except that, the challenger invokes

the PPUT simulator Sim.PPUT for initialization, partial signature, partial
signature verification and combine. For ease of the representation, we de-
note PPUT simulator as Sim.PPUT.Setup to simulate setup, Sim.PPUT.Eval
to simulate partial evaluation, Sim.PPUT.Verify to simulate verification, and
Sim.PPUT.Combine to simulate the combination of partial evaluations. The
challenger first executes S.KeyGen(1λ) to obtain (svk, ssk). Then invokes
(pppput, S1, · · · , SN )← Sim.PPUT.Setup(1λ, 1d, (k,N), p̄w) by choosing a ran-
dom password p̄w, and sets pp = pppput, vk = svk, ski = Si for all 1 ≤ i ≤ N ,
and sends {ski}i∈B to A. To reply partial signature against (msg, i), the chal-
lenger first computes σ = S.Sign(ssk,msg) and sets C(ssk) = σ. Then invokes
Σi ← Sim.PPUT.Eval(pppput, ski, p̄w, σ). Similarly, for partial signature ver-
ification and combine queries, the challenger invokes Sim.PPUT.Verify and
Sim.PPUT.Combine, respectively.

The only difference between the experiments H0 and H1 is the way the chal-
lenger runs PPUT setup and the way it answers the queries. In particular, the
challenger uses Sim.PPUT in H1. Hence,

|Pr[H0(A) = 1]− Pr[H1(A) = 1]|=

|Pr[ExptA,PPUT,Real(1
λ, 1d) = 1]− Pr[ExptA,PPUT,Ideal(1

λ, 1d) = 1]|∈ negl(λ).

Reduction to Sig = (S.KeyGen,S.Sign,S.Verify):
Let A be any adversary in H1. We use A to construct an algorithm B that wins
the unforgeability experiment ExptA,Sig,uf (1λ). Algorithm B works as follows:

– At the beginning of the game, B receives svk from the unforgeability chal-
lenger. It instantiates PPUT setup
(pppput, S1, · · · , SN )← Sim.PPUT.Setup(1λ, 1d, (k,N), p̄w) by choosing a ran-
dom password p̄w, and sets pp = pppput, vk = svk, ski = Si for all 1 ≤ i ≤ N ,
and provides pp = pppput, vk = svk to A. Note that by the definition of the
unforgeability challenger, the view of A until this point is exactly the view
in H1.

– When A outputs a maximal corrupted S∗, B provides {Si}i∈S∗ . This is, also,
a perfect simulation of H1.

– To reply partial signature against (msg, i) that A makes, B submits msg
as its own signing query to the unforgeability challenger and receives σ =
S.Sign(ssk,msg) and sets C(ssk) = σ. Then invokes
Σi ← Sim.PPUT.Eval(pppput, ski, p̄w, σ) by choosing a random password p̄w.
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Similarly, for partial signature verification and combine queries, B invokes
Sim.PPUT.Verify and Sim.PPUT.Combine, respectively. Therefore, each par-
tial signatures Σi and signature σ are simulated exactly as in H1.

– At the end of the experiment, A outputs a forgery (msg, σ∗). Recall that
(msg, σ∗) is a valid forgery if

• PPTS.Vrfy(vk,msg∗, σ∗) = 1
• msg∗ was not previously queried as a partial signing query.

By definition, PPTS.Vrfy(vk,msg∗, σ∗) = S.Verify(svk,msg∗, σ∗). Furthermore,
B invokes the signing query to the unforgeability challenger only when A
makes its partial signing queries. Therefore, the message, signature pair
(msg, σ∗) is a valid forgery for B. The algorithm B outputs (msg, σ∗) as
its valid forgery.

Finally, by the correctness of B, we have

Pr[H1(A) = 1] = Pr[ExptA,Sig,uf (1λ) = 1] ∈ negl(λ),

which concludes the proof. �

Lattice-based Instantiation in the Standard Model. We instantiate using
the lattice-based PPUT from section 4 and lattice-based adaptive EUF-CMA
signature scheme by [3].

6 Conclusion

We presented a password protected universal thresholdizer scheme which can be
seen as a general framework for introducing threshold functionality to a large
class of non-threshold cryptographic schemes assuring user authentication. Our
construction is based on the universal thresholdizer of [9] and a threshold pass-
word authenticated key exchange protocol and provides simulation-based secu-
rity. As a relevant application, we presented a password protected threshold
signature scheme. All constructions can be instantiated using the hardness as-
sumptions from lattices in the standard model making the primitives quantum-
safe. Modeling the security in the UC framework and exhibiting other possible
applications are left as open problems.
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