
Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures
From VOLE-in-the-Head∗

Carsten Baum1,2 ID , Lennart Braun1 ID , Cyprien Delpech de Saint Guilhem3 ID , Michael

Klooß4† ID , Emmanuela Orsini5 ID , Lawrence Roy1, and Peter Scholl1 ID

1 Aarhus University
2 Technical University of Denmark

3 imec-COSIC, KU Leuven
4 Aalto University

5 Bocconi University

Abstract. We present a new method for transforming zero-knowledge protocols in the designated
verifier setting into public-coin protocols, which can be made non-interactive and publicly verifiable.
Our transformation applies to a large class of ZK protocols based on oblivious transfer. In particular, we
show that it can be applied to recent, fast protocols based on vector oblivious linear evaluation (VOLE),
with a technique we call VOLE-in-the-head, upgrading these protocols to support public verifiability.
Our resulting ZK protocols have linear proof size, and are simpler, smaller and faster than related
approaches based on MPC-in-the-head.
To build VOLE-in-the-head while supporting both binary circuits and large finite fields, we develop
several new technical tools. One of these is a new proof of security for the SoftSpokenOT protocol
(Crypto 2022), which generalizes it to produce certain types of VOLE correlations over large fields.
Secondly, we present a new ZK protocol that is tailored to take advantage of this form of VOLE, which
leads to a publicly verifiable VOLE-in-the-head protocol with only 2x more communication than the
best, designated-verifier VOLE-based protocols.
We analyze the soundness of our approach when made non-interactive using the Fiat-Shamir transform,
using round-by-round soundness. As an application of the resulting NIZK, we present FAEST, a post-
quantum signature scheme based on AES. FAEST is the first AES-based signature scheme to be smaller
than SPHINCS+, with signature sizes between 5.6 and 6.6kB at the 128-bit security level. Compared
with the smallest version of SPHINCS+ (7.9kB), FAEST verification is slower, but the signing times
are between 8x and 40x faster.

Table of Contents

Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures From VOLE-in-the-
Head . 1

Carsten Baum ID , Lennart Braun ID , Cyprien Delpech de Saint Guilhem ID , Michael

Klooß ID , Emmanuela Orsini ID , Lawrence Roy, and Peter Scholl ID

1 Introduction . 2
1.1 Our Contributions . 3
1.2 Technical Overview . 5

2 Preliminaries . 7
2.1 Zero-Knowledge Proofs of Knowledge . 8

∗This is the full version of [BBD+23], for citations please use the conference version.
†Research was conducted at Karlsruhe Institute of Technology.

https://orcid.org/0000-0001-7905-0198
https://orcid.org/0000-0001-9164-305X
https://orcid.org/0000-0002-0147-2566
https://orcid.org/0000-0003-3466-0675
https://orcid.org/0000-0002-1917-1833
https://orcid.org/0000-0002-7937-8422
https://orcid.org/0000-0001-7905-0198
https://orcid.org/0000-0001-9164-305X
https://orcid.org/0000-0002-0147-2566
https://orcid.org/0000-0003-3466-0675
https://orcid.org/0000-0002-1917-1833
https://orcid.org/0000-0002-7937-8422

2.2 Polynomial Constraint Systems . 9
2.3 Random Vector Commitment Schemes . 9
2.4 Extractable Functions . 11

3 Compiling
(

N
N−1

)
-OT-based zero-knowledge protocols . 11

3.1 Tree-PRG Vector Commitments . 12
3.2 The Compiler . 13

4 Fiat–Shamir Transformation . 18
5 Generalized Subspace VOLE Protocol . 22

5.1 VOLE with Small-Domain ∆ . 22
5.2 Subspace VOLE with Small-Domain ∆ . 24

6 Zero-Knowledge from Generalized Subspace VOLE . 27
6.1 ZK for Degree-2 Relations from Generalized sVOLE . 27
6.2 ZK for Degree-2 from Small-Sized sVOLE . 31

7 FAEST: AES-based Signature . 35
7.1 The FAEST Signature Scheme . 36
7.2 Implementation . 36
7.3 Comparison with other PQ Signatures. 37

A Additional Preliminaries . 43
A.1 Zero-Knowledge Proofs of Knowledge . 43
A.2 Commitments . 45
A.3 Extractable functions . 46

B Details on the Instantiations . 46
B.1 ZK from Generalized sVOLE for Arbitrary Degree-d Relations 46

1 Introduction

Zero-knowledge (ZK) proofs allow a prover to convince a verifier of the truth of a statement, without
revealing any further information. Since their inception in 1985 [GMR85], ZK proofs have become
an essential part of a cryptographer’s toolbox, being used for a range of applications including
CCA-secure encryption, digital signatures, anonymous credentials, anonymous cryptocurrencies
and more.

MPC-in-the-Head (MPCitH) is a method of using secure multi-party computation (MPC) pro-
tocols to build efficient ZK proof systems [IKOS07]. The idea is for the prover to emulate, in its
head, the execution of an MPC protocol related to the statement being proven. The verifier then
checks parts of this execution in order to verify the truth of the statement. MPCitH proofs can be
based on relatively simple MPC protocols, which often allows them to be very efficient in terms of
computational complexity [GMO16, KKW18, BN20, dOT21]. MPCitH proofs are also public-coin6,
so can be easily made non-interactive (hence, publicly verifiable) using the Fiat-Shamir transform.

The main drawback of many MPCitH protocols is that their proof size scales linearly with
the size of the (Boolean or arithmetic) circuit representation of the statement being proven. In
practice, however, improvements that lowered the constants in linear-size proofs [GHS+21, KZ22]
have allowed MPCitH to shine in settings where a small prover runtime is critical, and/or when
proving statements of small-to-medium sized circuits, where the linear proof size may not have a
big impact. Another advantage is that MPCitH protocols are usually based on standard, symmetric

6Meaning that the verifier’s messages are always sampled uniformly at random.

cryptography, which can easily be made secure against quantum adversaries. This has led to them
being used for post-quantum digital signature schemes such as Picnic [CDG+17] and follow-up
constructions [BdK+21, KZ22, FJR22a]. These are non-interactive ZK proofs (NIZKs), where the
verification key of the signature is the output y of a one-way function f while the secret the prover
shows knowledge of is an input x such that y = f(x). These signatures can be particularly efficient
if f has a nice circuit representation that is efficient to evaluate in MPCitH [dDOS19, BdK+21,
FJR22a].

One exception to the linear proof size is Ligero [AHIV17]. For a circuit C, Ligero achieves
O(
√
|C|) proof size by building upon an actively secure, honest-majority MPC protocol. A major

downside of Ligero is that the computational costs of the prover and verifier are higher, due to the
need for many Reed-Solomon encoding operations and consistency checks, as well as the fact that
addition gates are no longer “free” (unlike in most other MPCitH protocols). Ligero also has an
inherent “startup cost”, so that its proof size only drops below the size of linear proofs [GMO16,
KKW18, BN20, dOT21] if |C| is large enough.

VOLE-based ZK. Another approach to prover-efficient, linear-sized ZK is to use vector oblivious
linear evaluation (VOLE), a tool which has recently seen a lot of progress [BCGI18, WYKW21].
VOLE-based proofs use preprocessed random VOLE correlations to implement highly efficient
proofs with a commit-and-prove type structure, where VOLE is used to commit to the wit-
ness, and then relations are proven about the commitments using information-theoretic tech-
niques [WYKW21, DIO21, YSWW21, BMRS21, WYY+22, BBMHS22]. These proofs communi-
cate as little as 1 field element per multiplication gate and are computationally very efficient. They
also permit optimizations such as efficient verification of low-degree polynomials [YSWW21] or
disjunctions [BMRS21].

The main disadvantage of all these protocols is that they are inherently designated verifier
proofs. This is because they require the verifier to keep a secret state, namely his parts of the
VOLE correlation, to ensure soundness.

Succinct ZK. ZK proofs can be done with poly-logarithmic or even constant size, using techniques
such as SNARKs [GGPR13] and STARKs [BBC+17]. Later works obtain succinct proofs with a
linear prover runtime [BCG20, XZS22], however, the hidden constants are fairly large, meaning
that in practice, the prover in these constructions is usually slower than MPCitH. In this work,
we instead focus on proofs with a fast prover runtime that only achieve low communication for
small-to-medium sized statements.

1.1 Our Contributions

We present VOLE-in-the-head, a new approach to building efficient ZK. Like MPCitH, VOLE-
in-the-head proofs are based on standard symmetric cryptographic primitives and are publicly
verifiable. At the same time, they inherit the simplicity and expressiveness of VOLE-based protocols,
which allows them to be much smaller and faster than previous MPC-in-the-head methods.

From OT/VOLE-Based ZK to Public Verifiability. We start by presenting a simple compiler
that takes a ZK protocol in the OT-hybrid model and converts it into a publicly verifiable protocol.
We then extend this to compile ZK protocols in the VOLE-hybrid model, by giving a suitable
VOLE based on OT. Unfortunately, our approach is not compatible with previous LPN-based

3

Table 1. Comparison of linear-size zero-knowledge proof systems

Protocol Field∗ Model Comm./gate† Assumption

VOLE-ZK [YSWW21]‡ F2 deg-d constraints 1 LPN

VOLE-ZK [DIO21, YSWW21]‡ Fp deg-d constraints 1 LPN

Limbo [dOT21] F2 Circuits (free XOR) 42 (11) Hash

Limbo [dOT21] Fp Circuits (free add) 40 (11) Hash

VOLE-in-the-head (§6.2) F2 deg-d constraints 16 (5) Hash

VOLE-in-the-head (§6.1) Fp deg-d constraints 3 (2) Hash

∗ p ≈ 264
† Soundness error at most 2−128 (2−40). Cost is average number of field elements sent per
AND/mult. gate, for a circuit with 220 such gates.

‡ Designated-verifier only

VOLE protocols [BCGI18, BCG+19, WYKW21], since we require the prover to play the role of
the OT sender, while in LPN-based VOLE, the prover is the OT receiver. We instead adapt the
VOLE protocol from SoftSpokenOT [Roy22], where the VOLE sender is also the OT sender. This
protocol is restricted to VOLEs where the sender’s message is over a small field. To allow for more
general ZK, we give a generalized version of the protocol that (with some constraints) works over
large fields; to prove this secure, we devise a new proof strategy for SoftSpokenOT.

Instantiations and Concrete Efficiency. We give two main instantiations of our compiler, using
VOLE-based ZK. The first is a variant of the QuickSilver protocol [YSWW21] using (subfield)
VOLE over F2, aimed at Boolean computations. We tweak QuickSilver to allow mixing constraints
over F2 and any extension field F2k , which is particularly useful for AES. As shown in Table 1,
the communication cost of the protocol is as small as 5 bits per AND gate (or, when proving
low-degree relations, per bit of the witness) with 40-bit statistical security. The runtime of the
prover should be at least as fast as QuickSilver; the only difference is that instead of LPN-based
VOLE, we use VOLE-in-the-head based on SoftSpokenOT; despite the higher communication, this
is computationally cheaper than LPN-based methods [Roy22].

Our second instantiation is designed for proving statements in Fpk when pk is large. This case
is more challenging, due to some subtle issues and limitations of our VOLE protocol over large
fields. For κ-bit security and a finite field of size ≥ 2κ, the resulting protocol has roughly 2× the
communication cost of the best designated-verifier VOLE-based protocol.

Application: Post-Quantum Signatures From AES. As an example application, we present
a new post-quantum signature scheme based on proving knowledge of an AES pre-image, called
FAEST. FAEST significantly outperforms prior AES-based signatures [BdK+21, KZ22], while ob-
taining signature sizes under 7kB. We also compare FAEST to other efficient post-quantum schemes,
showing that it achieves the smallest signature size, as well as better prover running time, among all
the schemes based on symmetric primitives and code-based assumptions, while SPHINCS+[HBD+22]
still has better verification time.

4

1.2 Technical Overview

We now give a more detailed overview of our techniques.

Compiling OT-Based Zero-Knowledge Proofs. At the heart of our approach is a compiler
that starts with a ZK protocol based on oblivious transfer (OT) — where the prover is the OT
sender and verifier is the receiver — and converts it into a publicly verifiable one. If the ZK protocol
satisfies a natural public-coin type property, this is easily done by replacing the oblivious transfer
with the prover committing to its OT messages; at the end of the proof, the verifier simply sends
its OT choices in the clear to the prover, who opens the corresponding commitments. When using
standard 1-out-of-2 OT, this approach (which is similar to e.g. MPC-in-the-head [IKOS07] and
homomorphic commitments [CDD+19]) does not seem enough to transform ZK based on VOLE,
because it is not compatible with efficient, LPN-based VOLE used in these ZK constructions: in
these, the prover plays the role of the OT receiver and not the sender.

We therefore present a generalized version of the compiler, which starts with a ZK protocol
based on (N − 1)-out-of-N OT (all-but-one OT) on random strings, for some parameter N . By
having the prover commit to a key for a puncturable PRF that defines N pseudorandom strings,
the prover can later reveal all-but-one of these with only O(logN) communication by opening a
punctured key.

Fiat–Shamir and Signatures. We show how to apply the notion of round-by-round sound-
ness [CCH+19, CMS19] to our compiled protocols when made non-interactive using the Fiat-Shamir
transformation. To this end, we interpret our interactive protocol as an IOP (only for soundness,
not for SHVZK), by treating the (malicious) prover’s OT inputs as PCP-strings and the verifier’s
OT choices as queries to the PCP oracles. This allows also to build a Picnic-like post-quantum
signature scheme based on AES.

Using VOLE Instead of OT. VOLE can be viewed as an arithmetic form of OT, where one
party, who we call the prover P, learns a pair u ∈ Fℓ

p,v ∈ Fℓ
pk
, while the verifier V learns a random

∆ ∈ Fpk and q = u∆ + v ∈ Fℓ
pk
. VOLE is used in ZK proofs as a kind of linear homomorphic

commitment; P is committed to the vector u towards the verifier, and cannot open any component
of u to a different value without guessing ∆. Note that u can be chosen in a small subfield Fp,
while ∆ is in an extension Fpk , giving soundness error p−k.

Our goal is to find a suitable VOLE protocol based on (N − 1)-out-of-N OT, so we can use our
compiler to transform VOLE-based ZK. We adapt the construction of [Roy22], which is based on
the observation that if N = pk, then a single (N − 1)-out-of-N OT can be converted into a VOLE
correlation. Let t0, . . . , tN−1 ∈ Fp be the messages held by P, and let ∆ ∈ [1..N] be a random index
chosen by V, who then learns tx for all x ̸= ∆. The idea is that ∆ can be viewed as the secret in a
VOLE correlation, given by:

q =
∑

x∈F
pk
\{∆}

tx(∆− x) =
∑

x∈F
pk

tx(∆− x) =
∑

x∈F
pk

tx∆+
∑

x∈F
pk

tx(−x) = u∆+ v

P can compute u and v, while V gets q = ∆u + v. This approach is only efficient when pk is
small; however, as long as p is small, it can be extended to handle arbitrarily large pk with some

5

extra communication, via parallel repetition. We can directly combine this VOLE protocol with
our OT-based compiler to get publicly verifiable ZK. We call this technique VOLE-in-the-head.

This approach for small p is loosely connected to MPCitH approaches like KKW [KKW18]
and Limbo [dOT21]. We can view the OT setup as splitting the secret u into N shares ri, where
the verifier learns all-but-one of the shares. The key difference is that, instead of evaluating the
circuit on all N sets of shares using MPC, we compress the shares into a VOLE (-in-the-head)
correlation. Then, by adopting the simple multiplication checks of VOLE-based proofs, the circuit
verification procedure becomes much simpler than MPCitH checks, in terms of both communication
and computation.

Handling Large Fields. Unfortunately, the above method is limited to efficiently proving con-
straints over small fields, since the VOLE from [Roy22] requires O(p) computation. To circumvent
this, we first observe that the VOLE idea can easily support any large field Fp, under the constraint
that the sender’s secret ∆ is sampled from a small subset of S∆ ⊆ Fp.

One remaining issue is that even though we can now use a large field, ∆ has low entropy, which
means the ZK protocol will have a large soundness error. We fix this by using an encoded form of
VOLE, called subspace VOLE, where P’s input u is committed as

q = C(u) ∗∆+ v

for some linear code C. Here, ∆ is a vector of length nC field elements and ∗ is the component-wise
product. If the code has minimum distance dC and the nC VOLE secrets are independent (one for
each symbol of C(u)), then to open to a different codeword C(u′), a malicious P must guess dC
entries of ∆ instead of just one.

On its own, this type of subspace VOLE is incompatible with the standard VOLE used in
previous ZK protocols. We therefore present a new ZK protocol based on subspace VOLE, with
around 2× overhead on standard VOLE-based protocols over large fields. Our protocol is based
on a simple code-switching technique, which translates a vector that is committed under subspace
VOLE, into one committed under (standard) VOLE-in-the-head. Using our compiler, we can then
replace subspace VOLE with VOLE-in-the-head, obtaining a publicly verifiable protocol.

Consistency Checking. While adjusting the VOLE to handle large fields Fp, with S∆ ⊆ Fp, is
straightforward, we still need a consistency check to argue that subspace VOLE is secure against
a malicious prover. Proving security of this consistency check is not straightforward, requiring a
new analysis of the SoftSpokenOT consistency check. SoftSpokenOT makes much use of ∆ being
uniform in a linear space, making the distribution invariant under invertible linear transformations.
This invariance no longer holds when ∆ is sampled from an arbitrary subset S∆.

Another difficulty is proving that the consistency check works together with both the Fiat–
Shamir transformation and the commitment-based “OT”s. The verifier’s choice of a hash function
for the consistency check and its revelation of ∆ at the end must take place in two separate rounds,
and a tight bound for Fiat–Shamir requires these rounds to be analyzed separately from each other.
However, combining these bounds together is essential to the proof in SoftSpokenOT, as attackers
can trade off success probability between these two rounds.

We address both these issues by giving a column-by-column analysis of the security, in the style
of [OOS17] (but without the issue in its proof), rather than the linear subspaces style of [Roy22].
By defining it on columns, we do not need S∆ to form a linear subspace; we only need each entry

6

∆i to be independently random. To fix the Fiat–Shamir analysis, we first define a property defined
on subsets of columns of the prover’s secret U, and show that if this property is preserved by the
hash function then the protocol is secure. We then bound the probability that this property is not
preserved by the hash function, independently from ∆.

2 Preliminaries

Here we recall some preliminaries that will be useful in the rest of the paper.

Basic Notation. The security parameter is denoted by λ, and given as an implicit input to all
algorithms; all other parameters in our schemes are viewed as functions of λ. A function f which
satisfies limλ→∞ negl(λ) ·λc = 0 for any constant c is called negligible, and we use negl(λ) to denote
such a function. We write AdvDistX,Y

D for the distinguishing advantage of algorithm D for probability

ensembles (Xλ,z), (Yλ,z), i.e. AdvDist
X,Y
D = Pr[D(1λ, z,Xλ,z) = 1]− Pr[D(1λ, z, Yλ,z) = 1].

Given two machines, A,B, we let BA(x) denote the output of machine B on input x and given
oracle access to A.

For a set S, we denote by s ← S the process of sampling s from S uniformly at random. For
n ∈ N, we denote by [n] the set {1, . . . , n}; for a, b ∈ N with a ≤ b, we use [a..b] = {a, . . . , b} and
[a..b) = {a, . . . , b− 1}.

We use bold lower-case letters for column vectors and bold upper-case letters for matrices. We
denote the ith row (resp. column) of a matrix A by Ai (resp. Ai), by A[a..b] (resp. A

[a..b]) the
submatrix of A containing rows (resp. columns) a through b; we denote by xi the i-th component
of vector x and x[a..b] the vector of components xa, . . . , xb. Given a vector x, we denote by diag(x)
the diagonal matrix having x on the diagonal.

Linear Codes. An [nC , kC , dC]p linear code C over Fp is a kC-dimensional subspace of FnC
p , where

nC is the length and dC the minimum distance of the code, i.e., the minimum Hamming distance
between any two codewords. A matrix GC ∈ FkC×nC

p is a generator matrix for C if its rows are a

basis for C as a linear subspace, that is C = {xTGC : x ∈ FkC
p }. We denote C(x) = xTGC . We let

TC ∈ FnC×nC
p contain GC in its first kC rows, with the remaining rows chosen linearly independently,

so that TC is invertible and forms a basis of FnC×nC
p . We recall that a code C is systematic if it has

a generator matrix GC of the form [A | IkC], where IkC is the kC × kC identity matrix.

Given a matrix A ∈ Fn×kC
p and an [nC , kC , dC]p linear code C, by abuse of notation, we will write

C(A) to denote the n × nC matrix whose rows are the encoding C(Ai), i ∈ [n], of A’s rows, i.e.,
C(A) = A ·GC .

Universal Hash Functions. Several of our protocols take advantage of linear structure to perform
a consistency check, where a number of equations are checked at once by taking a random linear
combination. For such checks, it is often more efficient to use a linear universal hash function rather
then taking a truly random linear combination.

Definition 1. A linear ε-almost universal family of hashes is a family of matrices H ⊆ Fr×ℓ
q such

that for any nonzero v ∈ Fℓ
q,

Pr
H←H

[Hv = 0] ≤ ε.

7

We also borrow the notion of a Fℓ
p-hiding hash from [Roy22].

Definition 2. Let p and q = pk be prime powers. A matrix H ∈ Fr×(ℓ+h)
q is Fℓ

p-hiding if the

distribution of Hv is independent from v[1..ℓ] when v ← Fℓ+h
p . Equivalently, if H′ ∈ Frk×(ℓ+h)

p is
H reinterpreted as a Fp-linear map, then the column space of H′ must equal the column space of

H′[ℓ+1..ℓ+h]. A hash family H ⊆ Fr×(ℓ+h)
q is Fℓ

p-hiding if every H ∈ H is Fℓ
p-hiding.

2.1 Zero-Knowledge Proofs of Knowledge

We define zero-knowledge proof systems in the combined common reference string (CRS) and
random oracle (RO) model, short CRS+RO model. Our definition roughly corresponds to real-
ideal multi-use zero-knowledge proofs of knowledge definitions, i.e. our definitions are sequentially
composable.

An interactive zero-knowledge proof system Π for NP-relation R is a tuple Π = (Setup,P,V) of
PPT algorithms, the setup algorithm Setup which generates the CRS, the prover P and the verifier
V.

– SetupH(1λ)→ crs: Given the security parameter, output a CRS.
– PH(crs, x,w) and VH(crs, x) interact on common input x. The prover’s private input is w such

that (x,w) ∈ R. The verifier outputs a bit b indicating whether it accepts (1) or rejects (0). The
prover has no output.

Note that all algorithms have access to crs and the random oracle(s), usually denoted H. Thus,
we consider these as implicit inputs in the rest of the paper. We write tr← ⟨PH(x),VH(y)⟩ for the
transcript of an interaction where P (resp. V) has input x (resp. y) and implicit input crs and access
to H. We also write b = ⟨PH(x),VH(y)⟩ for the verifier’s output. A proof system is public-coin if
the verifier’s messages are parts of its random tape and it outputs b = VerifyH(crs, x, tr) for a PPT
algorithm Verify.

For concreteness, we provide explicit definitions of zero-knowledge and knowledge soundness
in the combined CRS and RO model. In particular, our definitions allow CRS and RO dependent
statements and are sequentially composable. For these properties in the FOT-1̄-hybrid or FVOLE-
hybrid model,7 we instead use the standard real-ideal notion of zero-knowledge proofs of knowledge.
Most of these formal definitions are deferred to Appendix A.1.

Remark 1. Since CRS and RO are only used to “realize” FOT-1̄ in our compiler, but not our VOLE
(Section 5) or ZK proofs Section 6, we need not consider combinations of CRS+RO model with
FOT-1̄-hybrid models, etc.

Since the notions are less common, we define public-coin and special honest-verifier ZK in the
FN,ℓ
OT-1̄

-hybrid model here. See Figure 1 for the FN,ℓ
OT-1̄

-functionality.

Definition 3 (Public-coin verifier). A public-coin verifier V in the FOT-1̄-hybrid model sends
parts of its random tape as messages to the prover or as choices to FOT-1̄. The output is computed
via a function Verify(viewV) depending on verifier’s view at the end of the protocol.

7We use standard notions of hybrid models, see for example [Lin17]. That is, we consider access to an (unbounded)
number of instances (or sessions), distinguished of the hybrid functionality, which are distinguished by an identifier
sid . Both CRS and RO model can be viewed as hybrid models as well, although we do not do this (and limit the
CRS and RO to a single one in our protocols).

8

Definition 4 (SHVZK). Let Π = (P,V) be a public-coin proof system in the FN,ℓ
OT-1̄

-hybrid model.

A semi-honest public-coin verifier V̂ = (V,V ′′) for Π acts as follows.

– V̂ treats its auxiliary input as its random tape and splits into two parts r′, r′′.
– To handle all “normal” protocol messages, V̂ executes the honest verifier V(x; r′) with r′ as

random tape.
– To handle the requests of FN,ℓ

OT-1̄
for corrupt verifiers, V̂ executes algorithm V ′′(view; r′′) which

decides how to program the FN,ℓ
OT-1̄

outputs F i to the prover, given the view view of V above and
random tape r′′.

A protocol in the FN,ℓ
OT-1̄

-hybrid model is special honest-verifier zero-knowledge (SHVZK), if for every

PPT semi-honest verifier V̂ as specified above, a straightline zero-knowledge simulator S exists such
that AdvZKΠ,S

V̂
(λ) is negligible, with advantage defined analogously to Definition 17.

2.2 Polynomial Constraint Systems

Our ZK protocols can prove NP relations defined by a set of degree-d constraints on a witness.
This is a natural generalization of the standard models of arithmetic circuits and rank-1 constraint
systems (R1CS). A statement x for an NP relation R is defined by a set of t degree-d polynomials
fi ∈ Fpk [X1, . . . , Xℓ]≤d, for i ∈ [t]. The witness is a vector w ∈ Fℓ

p, where

(x,w) ∈ R⇔ fi(w) = 0,∀i ∈ [t]

Note that even though the constraints are defined over an extension field Fpk , the witness is a
vector over Fp, embedded into Fpk in the natural way.

2.3 Random Vector Commitment Schemes

We define vector commitments w.r.t. common reference strings (CRS) and random oracles (RO),
so as to cover the plain model, CRS model, RO model, and CRS plus RO model simultaneously.

Informally, a vector commitment scheme is a two-phase protocol between two PPT machines,
a sender and a receiver . In the first phase, also called commitment phase, it enables the sender to
commit to a vector of messages while keeping it secret; in the second phase, called decommitment
phase, a subset of indices of the commitment is opened. The commitment scheme satisfies two
main properties: the binding property ensures that the sender cannot open the commitment in
two different ways; the hiding property guarantees that the commit phase does not reveal any
information about the committed message before opening and that messages at unopened indices
are hidden, even after opening a subset of indices.

Definition 5 (VC). Let H be a random oracle. A (non-interactive) vector commitment scheme VC
(with message spaceM) in the CRS+RO model is defined by the following PPT algorithms:

– SetupH(1λ, N) → crs: Given security parameter λ and vector length N = poly(λ) as input,
output a commitment key crs.

– CommitHcrs()→ (com, decom, (m1, . . . ,mN)): Given crs as input, output a commitment com with
opening information decom for messages (m1, . . . ,mN) ∈ MN .

– OpenHcrs(decom, I): On input crs, opening decom and a subset I ⊆ [N] of indices, output an
opening decomI for I.

9

– VerifyHcrs(com, decomI , I)→ {(mi)i∈I} ∪ {⊥}: Given crs, a commitment com, an opening decom
for a subset I as well as the subset I, either output the messages (mi)i∈I at indices I (accept
the opening) or ⊥ (reject the opening).

As indicated, all algorithms have access to the random oracle H.

If in the definition above, instead of general I ⊆ [N] only I ∈ I is allowed (otherwise, algorithms
output ⊥), then VC is restricted to I-openings, where I is a fixed subset of [N]. If I = {[N]\{i} | i ∈
[N]}, then VC has all-but-one openings. We will explicitly state definitions for general VC, but they
apply to VCs with I-opening verbatim.

Remark 2. Our definition of VC is a random vector commitment scheme. By making the message
vector an input to Commit instead of an output, one obtains the more common notion of (vector)
commitments. However, our restricted definition is sufficient for our construction and has simpler
security notions.

Definition 6 (Correctness). A vector commitment scheme VC is (perfectly) correct if for all
N = poly(λ), all oracles H and all λ ∈ N:

∀ crs← SetupH(1λ, N), ∀ (com, decom, (m1, . . . ,mN))← CommitHcrs()

∀ I ⊆ [N], ∀ decomI ← OpenHcrs(decom, I) : VerifyHcrs(com, decom, I) = (mi)i∈I

Definition 7 (Extractable-Binding). Let VC be a vector commitment in the CRS+RO-model
with RO H. Let (TSetup,Ext) be PPT algorithms such that:

– TSetupH(1λ, N)→ (crs, td): Given security parameter λ and vector length N , output a commit-
ment key crs and a trapdoor td.

– Ext(td, Q, com) → (mi)i∈[N]: Given the trapdoor td, a set of query-response pairs of random
oracle queries, and a commitment com, output the committed messages. (Ext may output mi =
⊥, e.g. if committed value at index i is invalid.)

For any N = poly(λ), define the straightline extractable-binding game for VC and stateful adversary
A as follows:

1. (crs, td)← TSetupH(1λ, N)

2. com← AH(1λ, crs)

3. (m∗1, . . . ,m
∗
N) = Ext(td, Q, com), where Q is the set {(xi, H(xi))} of query-response pairs of

queries A made to H.

4. ((mi)i∈I , decomI , I)← AH(open)

5. Output 1 (success) if VerifyHcrs(com, decomI , I) = (mi)i∈I but mi ̸= m∗i for any i ∈ I. Else output
0 (failure).

We say VC is straightline extractable w.r.t. (TSetup,Ext) if

1. {crs | crs← SetupH(1λ, N)} and {crs | (crs, td)← TSetupH(1λ, N)} are computationally indis-

tinguishable for any N = poly(λ). We denote the advantage of a distinguisher A by AdvDistSetup,TSetupA .

2. Any PPT adversary A has negligible probability to win the extractable binding game. We denote
the advantage, i.e. probability to win, by AdvEBVC

A .

10

The definition of the hiding property for VC forces all unopened components of the message vector
to be independent uniform (pseudo-)random elements.

Definition 8 (Hiding (real-or-random)). Let VC be a vector commitment scheme in the CRS+RO-
model with random oracle H. The adaptive hiding experiment for VC with N = poly(λ) and stateful
A is defined as follows.

1. crs← SetupH(1λ, N), b∗ ← {0, 1}
2. (com, decom, (m∗1, . . . ,m

∗
N))← CommitHcrs()

3. I ← AH(1λ, crs, com)
4. decomI ← Opencrs(decom, I)
5. mi ← m∗i for i ∈ I.

6. For i /∈ I set mi ←

{
m∗i if b∗ = 0

random fromM if b∗ = 1

7. b← A((mi)i∈[N], decomI).
8. Output 1 (success) if b = b∗, else 0 (failure).

In the selective hiding experiment, A must choose I prior to receiving com, i.e. steps 2 and 3 are
swapped but A still learns crs.

The advantage AdvSelHideVCA (resp. AdvAdpHideVCA) of an adversary A is defined by Pr[A wins]−
1
2 in the selective (resp. adaptive) hiding experiment. We say VC is selectively (resp. adaptively)
hiding if every PPT adversary A has negligible advantage.

2.4 Extractable Functions

In analogy to extractable commitments, we define extractable function families.

Definition 9. A function (family) in the CRS+RO model is a tuple (Setup,Eval) of PPT algo-
rithms where

– SetupH(1λ)→ crs: Given the security parameter λ generate a CRS crs.
– EvalHcrs(x) → y: Given a CRS crs and input x ∈ Xcrs , output y. Here, Xcrs is the efficiently

recognizable domain of Evalcrs .

In the rest of this work, we will usually write F instead of (Setup,Eval) and F(x) instead of
F.Evalcrs(x). The definition of a (straightline) extractable function (family) (Setup,Eval) is analogous
to extractable VC. Again, there is a pair (TSetup,Ext) of trapdoor setup and straightline extractor
algorithms. The adversary’s goal is to find a value y such that the extracted preimage x′ differs
from the preimage x which the adversary provides. (That is essentially the same as extractable
binding, but with preimages instead of decommitments.) We refer to Appendix A.3 for more formal
definitions.

3 Compiling
(

N

N−1

)
-OT-based zero-knowledge protocols

We begin by constructing a compiler that replaces random OT instances with random vector
commitments VC, where all but one committed (random) value is opened to the verifier. This will
later allow us to design our protocols in the (more natural) random OT-hybrid model. Moreover,
we believe that presenting this compilation step separately is of independent interest.

11

Towards achieving this, we first construct an efficient VC construction using a tree PRG, similar
to prior works such as [KKW18, BdK+21]. We then describe which properties a protocol must have
such that our compiler can be applied and specify which flavor of OT it must use. We then describe
the compiler, which directly replaces every call to an Oblivious Transfer instance to an appropriate
VC instance instead, and show that the resulting protocol is still a ZKPoK.

3.1 Tree-PRG Vector Commitments

We now give a VC construction with all-but-one openings, which we later directly use in our
compiler. VC will make commitments to N random seeds, where N − 1 are later opened. Towards
optimizing openings, we generate the seeds via a GGM tree of length-doubling PRGs, similarly to
previous works [KKW18, BdK+21].

Let PRG : {0, 1}λ → {0, 1}2λ be a PRG, H : {0, 1}∗ → {0, 1}2λ be a collision-resistant hash
function (CRHF), G : {0, 1}λ → {0, 1}λ×{0, 1}2λ be a PRG and CRHF and N = 2d. We define the
scheme VCGGM below. If H and G are instantiated as (independent) random oracles, then VCGGM

is (secure) in the RO model (without CRS). If H is replaced by the identity function and G is an
injective trapdoor function, then VCGGM is (secure) in the CRS model.

– SetupH(1λ, N = 2d):
1. Compute crsG ← G.Setup(1λ) resp. crsH ← H.Setup(1λ).
2. Define crs = (λ, d, crsG, crsH), which is implicitly input to all other algorithms. Moreover,

crsG (resp. crsH) are implicit inputs to G, (resp. H).
– Commit():

1. Sample k ← {0, 1}λ and let k00 ← k
2. For each level i ∈ [d], for j ∈ [0..2i−1), compute (ki2j , k

i
2j+1)← PRG(ki−1j)

3. Let (sd0, . . . , sdN−1)← (kd0 , . . . , k
d
N−1)

4. Compute (mi, comi)← G(sdi), for i ∈ [0..N)
5. Compute h← H(com0, . . . , comN−1)
6. Output the commitment com = h, the opening decom = k and the messages (m0, . . . ,mN−1)

– Open(decom = k, I = [0..N) \ {j∗}): (where j∗ ∈ [0..N)):
1. Write j∗ =

∑d−1
i=0 2ibi, for bi ∈ {0, 1}

2. Define the prefixes of j∗ as j∗|i ←
∑i−1

k=0 2
kbk for i ∈ [1..d]

3. Recompute kij , for i ∈ [d] and j ∈ [0..2i) as in Commit

4. Output the opening information decomI = (comj∗ , {ki2j∗|i+bi
}i∈[d])

– Verify(com = (h), decomI = (comj∗ , {ki2j∗|i+bi
}i∈[d]), I = [0..N) \ {j∗}):

1. Recompute sdi from decomI , for i ̸= j∗, and compute (m′i, com
′
i)← G(sdi)

2. Let com′j∗ = comj∗

3. If h ̸= H(com′0, . . . , com
′
N−1) output ⊥. Otherwise output (m′i)i∈I

We denote the above (all-but-one) vector commitment scheme by VCGGM. Clearly, VCGGM is
perfectly correct. We prove that it is extractable-binding and hiding in the two lemmas below.
Note that we use 1-based indexing in the definition of VCGGM, because it is more suitable here than
the 1-based indexing used in general VC definitions.

Remark 3 (Optimizations). Instead of hashing the comi’s, they could be sent in the clear as well.
However, for the equality check in Verify, a (extractable) collision-resistant hash function H is

sufficient. If multiple VCGGM commitments are made in parallel, one can hash the all com
(j)
i where

j ranges over the parallel instances, or hash the hashes comi, further reducing communication.

12

Lemma 1. Decompose G : {0, 1}λ → {0, 1}λ × {0, 1}2λ along the outputs into (G1,G2), such that
G(x) = (G1(x),G2(x)). Suppose G2 and H are straightline extractable. Then VCGGM is straightline
extractable-binding. More concretely, for any adversaries D, A there exist adversaries DG, DH, resp.
AG, AH with roughly the same running time as D resp. A, such that

AdvDistVCGGM.Setup,VCGGM.TSetup
D ≤ AdvDistG.Setup,G.TSetupDG

+ AdvDistH.Setup,H.TSetup
DH

AdvEBVCGGM
A ≤ N · AdvExtGAG

+ AdvExtHAH

where N = 2d is the vector length of VCGGM and the advantages are defined in Definition 23 and
Definition 7.

Proof (Sketch). The extraction algorithms (TSetup,Ext) are defined in the obvious way: TSetup
uses the trapdoor setups for G (i.e. G2) and H. Given a commitment com = h, Ext first extracts the
preimage (com0, . . . , comN−1) of h under H, and then extracts preimages sdi for each of the comi

under G2. Now, we derive the claimed advantages.
For indistinguishability of the setup, first replace the honest setup of G with the trapdoor setup,

and then do the same for H. These are direct reductions.
For extractability, observe that the extractor Ext of VCGGM only fails if:

– Extracting H for com = h yielded (com0, . . . , comN−1) (or ⊥), but the adversary presented a
(different) preimage during an opening of com.

– Extracting G2 for some comi yielded sdi (or ⊥), but the adversary presented a (different) preim-
age during an opening of com.

In both cases, the reduction to the extractable-binding property of H (resp. G2) is a straightforward
(hybrid/guessing) argument. ⊓⊔

Lemma 2. Suppose PRG and G are PRGs. Then VCGGM is all-but-one selectively hiding. More
precisely, for any adversary A there exist adversaries APRG, AG, with roughly the same running
time as A, such that AdvSelHideVCGGM

APRG
≤ d · AdvPRGPRG

APRG
+ AdvPRGG

AG
, where N = 2d.

Proof (Sketch). In the all-but-one selective hiding experiment, the adversary’s index vector I =
[N] \ i is chosen prior to commitment generation. Using knowledge of i, we can rely on the GGM
construction being a secure puncturable PRF [BW13]. The respective security reduction replaces
PRG calls along the path of i to the root of the GGM construction by true randomness. This is
possible since only the seeds for the co-path nodes for i are given out as part of the commitment.
Hence, a hybrid with d = log(N) steps replaces sdi by a truly random output. In a final step,
using that G is a PRG, and G(sdi) is a PRG output where sdi is truly random and unknown to the
adversary, we can replace the committed value mi by a truly random committed value. ⊓⊔

3.2 The Compiler

We now present our compiler, which takes ZKPoKs in the FOT-1̄-hybrid model which satisfy certain
properties and replaces the FOT-1̄ calls with VC instances. The FOT-1̄ functionality is given in
Figure 1. Intuitively, our compiler uses the same approach as [CDD+19], that is, it replaces OTs
by mere commitments.

To receive an OT output, the compiled verifier reveals its choice bit to the prover, which then
opens the commitments as appropriate. Clearly, this limits the protocols which can be securely

13

Functionality FN,ℓ
OT-1̄

The functionality interacts with a sender P, a receiver V and an adversary A which may corrupt either of the
parties.
It is parametrized by integers N (number of choices) and ℓ (number of parallel instances).

1. Upon receiving (init) from P: For i ∈ [ℓ]
– Sample F i ← ({0, 1}λ)[N].
– If P is corrupted, receive F i ∈ ({0, 1}λ)[N] from A.
– If V is corrupted, receive xi ∈ [N], F i,∗ ∈ ({0, 1}λ)[N]\{xi} from A and set F i(x) = F i,∗(x) for all

x ∈ [N] \ {xi}, i ∈ [ℓ].
2. Send F 1, . . . , F ℓ to P and (done) to V.
3. Upon receiving (get, (x1, . . . , xℓ)) from V, send ((F i(x))x̸=xi)i=1,...,ℓ to V.

Figure 1. FN,ℓ
OT-1̄

functionality adapted from SoftSpokenOT [Roy22]

compiled. Namely, the verifier’s actions should not depend on any intermediate OT outputs, so that
all choice bit queries can be delayed to the very end of the protocol, as part of a final verification
step. (Otherwise, a malicious prover would gain the power to make its responses dependent on
choice bits, making typical protocols completely insecure8.) To formalize this protocol structure,
we use a functionality FOT-1̄ which outputs done to the OT receiver when inputs are provided by
the OT sender, instead of the value. Only later, by sending get to FOT-1̄, the actual value can be
obtained by the OT receiver.

Definition 10. A ZKPoK (P,V) in the FOT-1̄-hybrid model is OT-admissible, if the following
holds:

1. The prover P always plays the role of the sender in FOT-1̄.
2. The verifier V can be split into two phases V1, V2, where:

– V1(inputs) never sends get to FOT-1̄ (and outputs a state state for V2).
– V2(state) only sends get to FOT-1̄ (and outputs the verdict).

Compiler. We describe the compiler under the assumption that the prover (resp. verifier) never

sends multiple messages/choice bits or get to the same FN,ℓ
OT-1̄

instance, as they would be ignored by

FN,ℓ
OT-1̄

(and hence may be ignored by the compiler). By O2C[Π], we denote the result of protocol

compilation, where Π is an interactive proof system in the FN,ℓ
OT-1̄

-hybrid model. We also write
(PO2C,VO2C) := O2C[(P,V)] to denote the compiled prover and verifier. We make the assumption

that each FN,ℓ
OT-1̄

instance has a unique identifier sid .

Changes to any setup.
1. A trusted entity securely runs crs← VC.Setup(1λ, N) and sends it to PO2C,VO2C.
2. Additionally, run any setup that the original protocol may require.

The compiled prover PO2C.
– Let PO2C run a copy of P and forward all messages of P, except for messages to/from

FN,ℓ
OT-1̄

-instances.

8As an example, MPC-in-the-head approaches [IKOS08, IPS08] leaking their watch-lists during execution allow
a cheating prover to specifically maul unopened parties.

14

– When P would send (init) to FN,ℓ
OT-1̄

with identifier sid , PO2C instead first runs (comi
sid , decom

i
sid ,

(mi
1, . . . ,m

i
N)) = Commit() for i ∈ [ℓ] and returns the functions (F i)i∈[ℓ] to P where

F i(x) = mi
x. Then PO2C sends (sid , init, (comi

sid)i∈ℓ) to VO2C.

– Upon receiving (sid , get, (x1, . . . , xℓ)) from VO2C, with xi ∈ [N], i ∈ [ℓ], compute decomi
sid ,x =

Open(decomi
sid , [N] \ {xi}) and send (sid , get, (decomi

sid ,x)i∈[ℓ]) to VO2C.

Changes to the verifier V.
– Let VO2C run a copy of V and forward the messages of V, except for messages to/from

FN,ℓ
OT-1̄

-instances.

– Upon receiving (sid , init, (comi)i∈[ℓ]) from PO2C, store comi as comi
sid . Then pass (done) on

to the simulated V in place of FN,ℓ
OT-1̄

with identifier sid .

– Upon V sending (get, (xisid)i∈[ℓ]) to FN,ℓ
OT-1̄

with identifier sid , send (sid , get, (xisid)i∈[ℓ]) to
PO2C.

– Upon receiving (sid , get, (decomi
sid ,x)i∈[ℓ]), for i ∈ [ℓ], compute the following messages outi ←

Verify(comi
sid , decom

i
sid ,x, [N] \ {xisid}). If outi = ⊥ for any i ∈ [ℓ] then reject. Else, output

outi = (mi
x)x∈[N]\{xi

sid}
as the function values of F to V.

Remark 4. The compiler O2C preserves public-coin verifiers.

Remark 5 (Public-coin =⇒ OT-admissible). Any public-coin verifier is automatically OT-admissible.
To see this, observe that a public-coin verifier by definition chooses challenges which are indepen-
dent of the OT outputs, hence any call to get can be delayed until the final response is received,
and then all OT outputs are gathered for Verify(viewV). Clearly, this “modification” does not affect
V’s visible behaviour in any way.

Security of the Compiler for Interactive Protocols. For interactive zero-knowledge protocols
Π in the FN,ℓ

OT-1̄
-hybrid model, our compiler is able to translate them into protocols with almost

identical security parameters for SHVZK9 and knowledge soundness, essentially by replacing FN,ℓ
OT-1̄

instances with vector commitments (in the CRS and/or RO model).

Lemma 3. Suppose the commitment scheme VC used in O2C is perfectly correct, straightline
extractable-binding and real-or-random hiding in the CRS+RO model. Let Π be an OT-admissible
proof system. Then, in the CRS+RO model, O2C[Π], when compiled with VC as specified above,
satisfies the following properties.

– Correctness, if Π is correct.

– Public-coin, if Π is public-coin.

– Knowledge soundness, with asymptotic error κ(λ) + negl(λ), if Π has a black-box knowledge
extractor EΠ with knowledge error κ(λ).

– SHVZK, if Π has a black-box SHVZK simulator SΠ .

Moreover, if Π has a straightline extractor or a special extractor, so has O2C[Π].

9We note that a modification of the compiler, which additionally forces the verifier to commit to its OT choices
(with an extractable-binding commitment scheme), yields full zero-knowledge. However, this modification does not
preserve public-coin.

15

Proof. Let Π = (P,V) and O2C[Π] = (PO2C,VO2C).

Correctness. Observe that replacing the outputs F i chosen by an instance of FN,ℓ
OT-1̄

by pseudo-
random outputs generated as VC outputs is an indistinguishable change (in the honest protocol
execution), by a direct reduction to the real-or-random hiding property. More precisely, the hiding
property asserts that all unopened commitments are (pseudo-)random, and via a hybrid argument
over the messages indices 1, . . . , N , one shows that given only the random messages mi from VC
without any decommitments, the tuple (m1, . . . ,mN) is pseudo-random. Therefore, the correctness
error of O2C[Π] differs by a negligible amount from the correctness error of Π. If Π is perfectly
complete, so is O2C[Π].

Special Honest-Verifier Zero-Knowledge. By assumption, there exists a black-box simula-
tor SΠ for special honest verifiers for the original protocol Π. We now describe how to translate
a distinguishing attack of a corrupted V̂O2C on an honest PO2C in O2C[Π] into an attack of a cor-
rupted V̂ on an honest P in Π. For this, we construct a simulator SO2C for the compiled protocol
as follows:

1. Initially, SO2C will generate the commitment key crs by running SetupH to generate crs.
2. Then SO2C runs the simulator SΠ for the SHVZK adversary V̂ = (V,V ′′) against Π, where V̂ is

defined as follows:
– V is the honest verifier, as required for SHVZK adversaries (cf. Definition 4). Suppose the

random/auxiliary tape of V̂O2C is interpreted such that the choice bits are xi for i = 1, . . . , ℓ.

– V ′′ programs the F i-values of FN,ℓ
OT-1̄

. This means that V ′′ executes, for i = 1, . . . , ℓ,

(comi, decomi, (F i(1), . . . , F i(N)))← CommitHcrs(),

in order to generate the prover’s inputs F i to be used in FN,ℓ
OT-1̄

(except for F i(xi), which
the functionality chooses randomly).

3. After obtaining the view viewV̂ , SO2C transforms it into the view viewV̂O2C
for the protocol

O2C[Π]. This is done by replaying V̂ to recover
– the VC commitments com to reconstruct (init, com1, . . . , comℓ) (purportedly sent by PO2C in

viewV̂O2C
).

– the VC decommitments (get, decom1, . . . , decomℓ) (purportedly sent by PO2C in viewV̂O2C
).

By construction, the choice bits that V̂ uses and those of V̂O2C coincide. Moreover, by correctness
of VC, the prover’s decommitments are accepted by V̂O2C.

10 Thus, the (re)construction of a view
of V̂O2C succeeds.

Clearly, SO2C runs in polynomial time if SΠ runs in polynomial time. We argue indistinguishability
via hybrid games as follows.

The first game G1 is the real protocol O2C[Π] running with the special honest verifier V̂O2C.
(The output is the verifier’s view).

In the second game G2, for the ℓ-parallel invocations of VC for a compiled FN,ℓ
OT-1̄

call of PO2C we
output a truly random F i(xi) = mxi to PO2C, that it uses throughout the protocol. Here (xi)i∈[ℓ]
are the honest verifier’s choice bits in this call. Since by construction of the compiled verifier VO2C,

10If VC is not perfectly correct, this must be taken into account. E.g., by adapting V̂ to deal with it (as it can
predict which index is opened).

16

all xi are fixed beforehand in the SHVZK setting, this reduces to selective real-or-random hiding
of VC via a straightforward sequence of hybrids. We find

Pr[G1 = 1]− Pr[G2 = 1] ≤ poly(λ) · ℓ(λ) · AdvSelHideVCA′ (λ)

for suitable hybrid adversary A′, where poly bounds the number of sessions/instances of FN,ℓ
OT-1̄

used
in Π, and hence poly · ℓ bounds the total number of VC instances in the hybrid argument.

In the third game G3, we consider the SHVZK verifier V̂ for Π described in the simulation
above, instead of using V̂O2C. More precisely, the special fixed randomness of V̂ is just that of V̂O2C.
The prover’s commitments are generated by V̂. And the output of G3 is the translation of the
view of V̂ to a view of V̂O2C in the same way as outlined above for the simulator. This change is
merely conceptual, and thus, G2 and G3 have identically distributed output.11 Also observe that G3

essentially corresponds to the real distribution of the SHVZK game for V̂ against protocol Π.
Finally G4 is using the simulator SΠ to generate messages instead of the implicit execution of

Π with V̂. Indistinguishability of G3 and G4 follows by security of the SHVZK simulator SΠ . Hence
Pr[G1 = 1]− Pr[G4 = 1] ≤ AdvZKΠ

(A,V̂)(λ).

Strictly speaking, we still need to show that this simulation composes sequentially. However,
since the SVHZK simulator does not use any trapdoors, this is automatic. Overall, we find that if A
makes at most QS queries to the oracle O in the zero-knowledge game, then by a hybrid argument

Pr[G1 = 1]− Pr[G4 = 1] ≤ QS ·
(
poly(λ) · ℓ(λ) · AdvSelHideVCA′ (λ) + AdvZKΠ

(A,V̂)(λ)
)
.

Knowledge Soundness. By assumption, there exists an knowledge-extractor EΠ for the original
protocol Π which is straightline and black-box. Similar to zero-knowledge, we translate an attack
against O2C[Π] into an attack against Π by instantiating a suitable adversary. We rely on the
extractor Ext for VC, which requires the CRS trapdoor and all random oracle queries. Since EO2C

implements the CRS setup and learns all random oracle queries, this is trivial to provide. Intuitively,
EO2C simply runs VC.Ext to extract the commitments and uses these values as input to FN,ℓ

OT-1̄
. With

this, translation of P̂O2C to P̂ is straightforward.

1. Initially, EO2C for O2C[Π] runs (crs, td)← TSetupH(1λ, N) to create a trapdoored commitment
key crs.

2. EO2C defines a malicious prover P̂ against Π which runs the malicious prover P̂O2C against
O2C[Π] in its head and acts as follows:
– By abuse of formalism, we let P̂ access the random oracle H, even though it is defined in the
FN,ℓ
OT-1̄

-hybrid model (without other setups, in particular, without access to a RO). Formally,
this is justified (and does not pose any problems) since we consider a black-box extractor
EΠ . Thus, we could “embed” the function table of H (or the algorithm sampling H) within
P̂, as this is opaque to EΠ .

– Whenever P̂O2C sends a message m = (sid , init, (comi)i∈[ℓ]), then P̂ runs VC.Ext(td, Q, comi)

on all i to obtain the committed functions F i. Then P̂ sends (init, F 1, . . . , F ℓ) to FN,ℓ
OT-1̄

.

– Whenever P̂O2C sends a message m = (sid , get, (decomi
xi
)i∈[ℓ]), then P̂ runs VC.Verify and

aborts if verification succeeds, but the opened messages are different from the previously
extracted messages. (Note that if F i(x) = ⊥, i.e., extraction failed, but VC.Verify passed, this
also leads to an abort.) If verification succeeds, then P̂ allows delivery of the OT outputs.

11This is obvious if VC is perfectly correct, but if it isn’t, then SO2C can correctly generate an aborting view given
viewV̂ during the translation process.

17

– All other messages of P̂O2C are forwarded by P̂.
3. Finally, EO2C outputs the witness (or ⊥) which the extractor EΠ for Π outputs when run on P̂.

We argue by game hops. Game G1 is the real game which outputs 1 if the verifier accepts.

In game G2, we replace the CRS. Note that since VC is extractable-binding, changing the CRS
to a trapdoored key changes is indistinguishable, i.e. Pr[G1 = 1]− Pr[G2 = 1] ≤ AdvDistSetup,TSetupD
for straightforward PPT D.

In game G3, we extract all VC commitments made during a protocol run and upon Verify we
check whether an unveiled commitment broke the extractable-binding property. If such a break
happens (or extraction fails), the game aborts. The probability that VC.Ext fails or extractable-
binding is broken (and hence game G3 aborts) can be bounded via a hybrid argument, reducing to
the extractable-binding property. As the only changes between games G2 and G3 are aborts, we find
Pr[G2 = 1]−Pr[G3 = 1] ≤ poly ·AdvEBVC

B for a straightforward hybrid PPT adversary B, assuming
poly upper-bounds the number of VC commitments made during an execution of P̂O2C.

In game G4, we employ the extractor EΠ for Π, i.e. we now consider the actual the extraction
procedure. This is the ideal game. Observe that P̂ convinces the verifier V if and only if P̂O2C

convinces VO2C. And the probability to convince is the probability that G3 outputs 1. Thus, by
knowledge soundness of Π the probability that EΠ outputs a witness is at most κ less than the
probability that V̂ outputs 1 in game G3, i.e. |Pr[G3 = 1]− Pr[G4 = 1]| ≤ κ.

Overall, we find

AdvKEΠ,E
A,P̂

(λ) = RealA(λ)− IdealA(λ)

≤ κ+ AdvDistSetup,TSetupD (λ) + poly(λ) · AdvEBVC
B (λ).

Since P̂ is PPT, the black-box extractor EΠ , and hence EO2C is efficient.12 Moreover, it is not
hard to see that if EΠ is an straightline extractor, then EO2C can be made straightline by translating
the messages directly, i.e. actively taking the role of P̂ in the protocol Π. Indeed, this even simplifies
the setting. If E is a special extractor, so is EΠ (since the verifier’s messages are never modified). ⊓⊔

4 Fiat–Shamir Transformation

In this section, we prove that a protocolΠ that has been compiled using the O2C[Π]-transformation
from Section 3 can securely be made non-interactive using the Fiat–Shamir transformation. For this,
we reinterpret our protocols as a form of IOPs [BCS16, RRR16], which are multi-round extensions of
PCPs. This allows us to apply the concept of round-by-round (RBR) soundness [CCH+19, CMS19]
to analyze the security loss due to the Fiat-Shamir transform. We make this change of perspective
to IOPs, because it is easier to define RBR knowledge in this setting, and the relation to RBR
soundness from [CCH+19] will be clear.13 The definition of RBR knowledge for IOPs from [CMS19]
does not apply to our protocols (at least not immediately). Thus, we define and use on a different
notion of RBR knowledge. To avoid a full-fledged definition of IOP parameters and security notions,
we consider a simplified notion of IOP where the verifier is given all PCP oracles in the plain (instead
of letting it query a limited number of positions). While this may sound insecure, we only use the

12Strictly speaking, we have to consider the implementation of the random oracle with which P̂ interacts to justify
that. If the using the usual lazy sampling approach is used, efficiency is clear.

13Moreover, while possible, defining a notion of RBR knowledge in the FN,ℓ
OT-1̄

-hybrid model makes things unwieldy.

18

IOP point-of-view to prove soundness of the Fiat–Shamir transformation. The zero-knowledge
property is much simpler to see.

Definition 11 (Interactive Oracle Proof (IOP)). A (public-coin) interactive oracle proof
(IOP) [BCS16, RRR16] for NP-relation R is a pair of PPT ITMs Π = (P,V), which are defined
as follows: The prover P throughout the protocol sends strings m = (mi, fi) in each round, where
mi ∈ {0, 1}∗ is called message and fi{0, 1}∗ is called oracle. The verifier V learns mi in round i,
but not fi. It sends random challenges γi ∈ Ci in round i in response. In a final step, the receiver
learns all fi and outputs b = Verify(x, ((m0, . . . ,mn), (f0, . . . , fn), (γ1, . . . , γn))).

Remark 6 (From OT to IOP). The mapping from a protocol in the FN,ℓ
OT-1̄

-hybrid model with
corrupted prover and honest verifier to an IOP is as follows: The prover, i.e. adversary, inputs
(F 1, . . . , F ℓ) ∈ (({0, 1}λ)N)ℓ to FN,ℓ

OT-1̄
corresponding to an oracle fi of the IOP. The verifier’s picks

(x1, . . . , xℓ) ∈ [N]ℓ and looks at the corresponding values in (f0, . . . , fn) to compute the output bit.

(Sequential (or parallel) sessions/instances of FN,ℓ
OT-1̄

are handled in the obvious manner.)

Definition 12 (Transcripts). We use following notation for partial transcripts of IOPs, namely,
tr = (m,γ) where

– m = (mi, fi)
ℓ
i=0 are the messages sent by the prover,

– γ = (γ)ℓi=1 are the messages sent by the receiver.

We write tr ∥ (m, f) if the prover is about to move and sends (m, f). Analogously, we write tr ∥ γ
for the verifier. For a public-coin IOP, a transcript is called full, if the verifier outputs its verdict
(and halts) given the transcript.

Definition 13. Let (P,V) be an IOP. A bad challenge function badch is a (deterministic not nec-
essarily efficiently computable) function which takes as input a statement x and a partial transcript
of an execution of Π, and outputs a bit such that the following holds:

1. badch(x, (∅, ∅)) = 0, i.e. if no challenge is input to badch, then it outputs 0.

2. If tr is a prefix of tr′, then badch(x, tr) = 1 =⇒ badch(x, tr′) = 1, i.e. a bad challenge occurring
is “a monotone event”.

Moreover, we say that badch has (round-by-round) error κ if for any transcript tr where the verifier
moves next, we have

3. Pr[badch(x, tr ∥ γ) = 1 | badch(x, tr) = 0] ≤ κ, i.e. the probability that a good transcript turns
bad is bounded by κ, where the probability is over γ.

Our definition of round-by-round knowledge soundness asserts that, unless a bad challenge event
occurred, an accepting verifier ensures that a witness can be extracted from the transcript.

Definition 14. Let (P,V) be an IOP for L and badch be a bad challenge function. Then (P,V)
has round-by-round knowledge error κ with extractor Ext if

– badch has round-by-round error κ

– For every full transcript tr, if badch(x, tr) = 0 and V.Verify(x, tr) = 1, then (x,Ext(x, tr)) ∈ R.
– Ext is a PPT algorithm.

19

Remark 7. If the IOP Π = (P,V) comes from reinterpreting a protocol in the FN,ℓ
OT-1̄

-hybrid model
as an IOP (Remark 6), then Definition 14 requires thatΠ has a special extractor Ext (Definition 20).

For concreteness, we define one variant of the Fiat–Shamir transformation for which our results
apply.

Definition 15. Let Π be a public-coin proof system. Then the Fiat–Shamir transformation of Π
with random oracle H is denoted by FS[Π] and yields a NIZK NIZK which is defined as follows:

– NIZK.Setup is identical to Π.Setup.
– NIZK.ProveH(x,w) runs the interactive prover Π.PH(x,w) and computes verifier challenges as

γi+1 = H(x, (m0, . . . ,mi)), where m0, . . . ,m1 the messages the prover would send. The proof is
π = (m0, . . . ,mµ), assuming a µ-round protocol.

– NIZK.VerifyH(x, π) reconstructs the challenges γi+1 = H(x, (m0, . . . ,mi)), where π = (m0, . . . ,mµ).
Then it constructs the interactive transcript tr and outputs Π.Verify(x, tr).

If Π is in the CRS+RO model, then we consider the obvious generalization of FS, and we also
include crs in the hashes, i.e. γi+1 = H(crs, x, (m0, . . . ,mi)). Moreover, we generally want inde-
pendent random oracles for the Fiat–Shamir transformation and Π.

Instead of doing a modular analysis by (1) compiling an interactive proof systemΠ in the FOT-1̄-
hybrid model via O2CHO2C [Π] to the CRS+RO model (using VC), (2) establishing its round-by-
round knowledge error, and (3) applying this to FSHFS [O2CHO2C [Π]], we now combine this analysis
into one Lemma.14 Since both the Fiat-Shamir transform and the VC within the O2C compiler use
random oracles (but these are separate instances), we denote them as HFS and HO2C.

Lemma 4 (FS ◦ O2C). Suppose Π = (P,V) is a µ-round public-coin proof system for R in
the FOT-1̄-hybrid model with special extractor ExtΠ and round-by-round knowledge error κ. Let
M denote an upper bound on the number of VC commitments sent during an (interactive) run of
O2C[Π]. Then NIZK = (P ′,V ′) = FSHFS [O2CHO2C [(P,V)]] is a non-interactive proof system in the
CRS+RO model such that:

1. There exists a special extractor ExtNIZK such that for any adversary A which makes at most QFS

(resp. QO2C, QVerify) queries to HFS (resp. HO2C, Verify-oracle) the advantage AdvKENIZK
A of A

is bounded by

µ · (QFS +QVerify) · κ+M ·QVerify · AdvEBVC
A′ [QHO2C

]

+ AdvDistVC.Setup,VC.TSetupD
(1)

where A′ and D are adversaries with roughly the same running time as A.
2. Suppose that Π is SHVZK. Moreover, suppose that the first message which the prover of O2C[Π]

sends is δ-unpredictable, i.e. has min-entropy − log(δ). Then NIZK is a zero-knowledge in the
(programmable) ROM.

Proof. We start by proving knowledge soundness.
Knowledge soundness. To simplify our analysis, we modify the adversary as follows: A will
never make duplicate queries to HFS or HO2C (as it can simply cache the response). Moreover,

14Otherwise, we would need to define IOPs in the CRS+RO model (since this is the setting of O2CHO2C [Π]). We
want to avoid extending the notion of IOPs in this work.

20

instead of considering the protocol Π in the FOT-1̄-hybrid model, we interpret Π as an IOP, cf.
Remark 6. Hence, we write ExtIOP (instead of ExtΠ) for the assumed special extractor of protocol
Π.

The special extractor ExtNIZK for NIZK = FSHFS [O2CHO2C [(P,V)]] is defined as follows:

– Given (x, π) with NIZK.VerifyHFS,HO2C(crs, x, π) = 1, extract all commitments of the prover’s
messages in π = m.

– Assemble an IOP transcript denoted asIOPHFS(π) from the extracted values. For messages where
extraction (partially) failed, dummy values are used.

– Output w← ExtIOP(x, asIOP
HFS(π)).

Now, we argue about the knowledge error of NIZK via game hops. Let game G1 be defined like real
knowledge soundness game (Definition 22) for NIZK.

In game G2, the CRS crs is generated using VC.TSetup instead of VC.Setup. The obvious dis-
tinguisher D, namely just running the “real” knowledge experiment but with the crs provided by
the challenger, yields Pr[G1 = 1] ≤ Pr[G2 = 1] + AdvDistVC.Setup,VC.TSetupD .

In game G3, whenever the adversary calls Verify(x, π) where π = m is a complete proof, all
(fresh) VC commitments in m are extracted. If the oracle call Verify(x, π) returns 1, that is, if
NIZK.VerifyHFS,HO2C(crs, x, π) = 1, but any extraction of commitments in π is inconsistent with the
decommitments contained in π (in particular, if extraction yields ⊥ but A successfully decommits),
the experiment immediately outputs 0 (making A lose). Note that there are (at most) QVerify oracle
calls, with at most M commitments to extract in each call, hence at most M · QVerify calls to
VC.Ext in G2. By a hybrid argument, this change reduces to an adversary against the straightline
extractability of VC used in O2C. Thus

Pr[G2 = 1] ≤ Pr[G3 = 1] +M ·QVerify · AdvEBVC
A [QHO2C

].

Game G4 is defined as the ideal NIZK knowledge experiment, with special extractor ExtNIZK as
described in the beginning. Recall that we interpret our protocol in G3 as a µ-round IOP. Now,
consider some call Verify(x, π) ofA where VerifyHFS,HO2C(crs, x, π) = 1. The proof π is then a sequence
of prover messagesm which yields (via Fiat–Shamir withHFS) a full accepting transcript of O2C[Π].
Since in game G3, we ensured that Ext extracts all VC commitments (that is, the adversary cannot
open to a message which was not extracted), this allows us to recover the committed values, which
correspond to the IOP oracles fi (which are the malicious OT inputs). By definition, E recomputes
such an IOP transcript asIOPHFS(x, π) for (x, π) and runs the IOP extractor to obtain a witness
for x from asIOPHFS(x, π). Moreover, we can recover partial IOP transcripts (m,γ) from random
oracle queries HFS(tr) where tr is a partial transcript of O2C[Π].

By definition of round-by-round knowledge soundness, for any full IOP transcript tr which does
not contain a bad challenge, i.e. with badch(x, tr) = 1, the extraction of the IOP succeeds. Thus,
the failure event F = {G3 ̸= G4} is bounded by the probability that badch(asIOPHFS(x, π)) = 1
occurs for some query VerifyH(crs, x, π) = 1. By monotonicity, there is a unique first bad prefix
of asIOPHFS(x, π). If the adversary always queries all prefixes of a transcript to HFS in order, and
if it also checks that Verify accepts if called, then by a simple guessing argument one can embed
round-by-round knowledge and obtain Pr[F] ≤ QFS ·κ. However, an adversary might try to “guess”
challenges, i.e. proceed without ever querying HFS to know the challenge. This can be handled by
replacing A with an adversary A′ which emulates A but always queries all (unqueried) prefixes.
This increases the number of queries to µ · (QFS +QVerify) in the worst case. Thus, we find

Pr[G3 = 1] ≤ Pr[G4 = 1] + µ · (QFS +QVerify) · κ

21

By a union bound over all games, the knowledge soundness bound follows.

Zero-Knowledge. We sketch the proof of zero-knowledge. As shown in Lemma 3, the compiled
protocol O2C[Π] inherits SHVZK and public-coin from Π, with a (straightline black-box) SHVZK
simulator. Thus, by choosing a random tape for VO2C, and by programming random oracle responses
according to corresponding challenges, (multi-instance) zero-knowledge of FSHFS [O2CHO2C [Π]] re-
duces to SHVZK for O2C[Π] via a hybrid argument. More precisely, either programming a par-
tial transcript tr fails, because HFS(tr) is defined, or the SHVZK game can be embedded. By
δ-unpredictability (i.e. min-entropy − log(δ)) of the first message of the prover in O2C[Π], (and
since HFS and HO2C are independent), the probability that programming fails is bounded by
δ · (QFS + QS) · QS , which is negligible. Since O2C[Π] is SHVZK by Lemma 3, this shows that
NIZK is zero-knowledge. More precisely, the advantage of A against zero-knowledge of NIZK =
FSHFS [O2CHO2C [Π]] is bounded by

AdvZKNIZK
A (λ) ≤ δ · (QFS +QS) ·QS + AdvZK

O2C[Π]
A′ (λ)

where A′ denotes the straightforward SHVZK adversary, and QS denotes a (polynomial) bound for
the number (adaptive) simulations A can see.

Remark 8. The loss of µ ·QVerify ·κ is inherent to our notion of round-by-round (knowledge) sound-
ness. Suppose κ = k/2λ > 0 and consider a µ-round protocol for a language L in P, where the
prover just sends (ack), and the verifier sends random challenges γi ← [0, 2λ1). Finally, the verifier
accepts if any γi satisfies γi < k, or if x ∈ L. Clearly, the round-by-round (knowledge) soundness
error is κ, but the soundness error is µκ. Moreover, a prover can generate a random transcript and
wins with probability at least µκ even without querying the random oracle. From this example, it
also follows that the term µ · (QFS +QVerify) · κ in Lemma 4 is essentially tight.

5 Generalized Subspace VOLE Protocol

The VOLE protocols presented in SoftSpokenOT [Roy22] achieve subspace VOLE over a polynomial-
order field Fq. Here, we generalize to exponentially large fields Fq, with the limitation that the
receiver’s secret ∆ must be sampled from a subset S∆ ⊆ FnC

q , such that the projected set Si
∆, which

contains the i-th coordinate of every element of S∆, has polynomial size. We also reorder the oper-
ations so that the protocols fit the (get), (init) model required for ZKP compilation (Definition 10).
The subspace VOLE functionality we realize is in Figure 2.

5.1 VOLE with Small-Domain ∆

The first step is to construct VOLE (that is, subspace VOLE where nC = kC = 1) from oblivious
transfer. In Figure 3, we’ve adapted the small field VOLE from SoftSpokenOT to work over an
arbitrary field Fq, as long as ∆ is sampled from a polynomial-sized subset S∆. The security proof
requires very few changes, so we have deferred it to the appendix.

Theorem 1. The protocol Πp,q,S∆,ℓ
small-VOLE, given in Figure 3, securely realizes Fp,q,S∆,Fp,ℓ,{2S∆}

sVOLE in the

FN,1
OT-1̄

-hybrid model, with malicious security.15

15Note that setting L = {2S∆} is equivalent to no leakage, i.e., not allowing a corrupt P to perform a selective
failure attack.

22

Functionality Fp,q,S∆,C,ℓ,L
sVOLE

The functionality interacts with a sender P, a receiver V and an adversary A.
It is parametrized by integers ℓ and p, q, such that q = pk, as well as an [nC , kC , dC]p linear code C over Fp and a
generator matrix GC ∈ FkC×nC

p for C.

1. Upon receiving (init) from P and V, sample U← Fℓ×kC
p , V← Fℓ×nC

q and ∆← S∆ ⊆ FnC
q and set

Q := V +UGCdiag(∆).
– If P is corrupt, receive U,V from A, and recompute Q as above.
– If V is corrupt, receive ∆,Q from A and compute V := Q−UGCdiag(∆).
– Send (U,V) to P.
– If P is corrupt, receive a leakage query L ∈ L from A.

2. Upon receiving (get) from V, if ∆ ̸∈ L, send (check-failed) to V and abort. Otherwise, send (∆,Q) to V.

Figure 2. Subspace VOLE functionality adapted from SoftSpokenOT [Roy22]

Protocol Πp,q,S∆,ℓ
small-VOLE

Requires S∆ = {f1, . . . , fN} ⊆ Fq, where N = |S∆| = poly(λ). Also requires S∆ \ {f1} to span Fq, viewed as a
vector space over Fp. Let PRG : {0, 1}λ → Fℓ

p be a PRG.

On (init), P does as follows:
1. Call FN,1

OT-1̄
with (init), and receive the messages s1, . . . , sN ∈ {0, 1}λ.

2. For i ∈ [N], let tfi = PRG(si).
3. Compute and output u :=

∑
x∈S∆

tx and v := −
∑

x∈S∆
txx.

On (init), V passes the (init) message on to FN,1
OT-1̄

.

On (get), V does as follows:
1. Sample j ← [N], and let ∆ = fj .
2. Call FN,1

OT-1̄
with input (get, j), and receive si for i ∈ [N] \ {j}.

3. For i ∈ [N] \ {j}, let tfi := PRG(si).
4. Compute q :=

∑
x∈S∆\{∆} tx(∆− x).

5. Output (∆,q).

Figure 3. VOLE protocol in the (init), (get) model, with ∆ from a small domain S∆. Note that we notate the
subspace VOLE here with vectors u instead of matrices U, because they all only have 1 column.

Proof. The protocol and its proof are very similar to SoftSpokenOT [Roy22, Theorem 3.1], with
sampling ∆ from S∆ being the only important difference. As with SoftSpokenOT, the following
equation shows correctness, and will be useful for all cases of the security proof.

q =
∑

x∈S∆\{∆}

tx(∆− x) =
∑
x∈S∆

tx(∆− x) =
∑
x∈S∆

tx∆−
∑
x∈S∆

txx = u∆+ v (2)

Both honest. The ideal functionality will proceed by sampling u, v, and ∆, and then compute q
according to the VOLE correlation. Equation (2) shows that the correct q will be computed, so we
only need to show that the distribution of (u,v, ∆) is correct.

The PRG seeds {si}i∈[N] ∈ {0, 1}λ are independent and uniformly random, and are only given
to the PRG, so the PRG outputs {tx}x∈S∆

are also independent and uniformly random. The vectors
(u,v) are a Fp-linear map applied to {tx}x∈S∆

. Since {x}x∈S∆\{f1} spans Fq as a k-dimensional
vector space over Fp, {(1, x)}x∈S∆

spans a k + 1-dimensional vector space representing all possible
values of (u,v). Therefore, u ∈ Fℓ

p and v ∈ Fℓ
q are independent and uniformly random. Finally, ∆

is sampled by V as a uniformly random element of S∆.

23

Protocol Πp,q,S∆,C,ℓ
VOLE

H ⊆ Fr×(ℓ+h)
q is a family of ℓ-hiding, ε-universal linear hash functions.

L must contain all single variable constraints: {∆ ∈ S∆ | ∆i = y} ∈ L, ∀i, y.

On (init), P and V run the following protocol:

1. P & V: Send (init) to Fp,q,S∆,FnC
p ,ℓ+h,{2S∆}

sVOLE .

2. P: Receive U′ ∈ F(ℓ+h)×nC
p and V ∈ F(ℓ+h)×nC

q from Fp,q,S∆,FnC
p ,ℓ+h,{2S∆}

sVOLE .
3. P: Compute [UC] := U′T−1

C and send the correction C ∈ F(ℓ+h)×(nC−kC)
q .

4. P: Output (U[1..ℓ],V[1..ℓ]).
5. V: Sample and send a uniformly random challenge H← H.
6. P: Send Ũ := HU and Ṽ := HV.

On (get), V does as follows:

1. Send (get) to Fp,q,S∆,FnC
p ,ℓ+h,{2S∆}

sVOLE , and receive ∆ ∈ S∆ and Q′ = U′∆+V.
2. Compute Q := Q′ − [0C]TCdiag(∆).

3. Abort if Ṽ ̸= HQ− ŨGCdiag(∆).
4. Output (∆,Q[1..ℓ]).

Figure 4. Subspace VOLE protocol in the (init), (get) model, with each ∆i from a small domain S∆.

Malicious V. This case is similar to the previous, except that the adversary gets to see every seed
si, except for sj . Therefore, we can only rely on t∆ being random. Luckily, this is sufficient to make
u =

∑
x∈S∆

tx uniformly random in Fp. And v will be set correctly, by Equation (2).
More precisely, have the simulator program ∆ and q into the ideal functionality, which will

sample u randomly and set v = q − u∆. In both the real and ideal worlds, u is indistinguishable
from random, and v is computed correctly according to the VOLE correlation. Therefore, these
worlds are indistinguishable.

Malicious P. Let the simulator pretend to be FN,1
OT-1̄

, and receive s1, . . . , sN from P. Next, compute u

and v, then send these to Fp,q,S∆,Fp,ℓ,{2S∆}
sVOLE . Both the real and ideal worlds will sample ∆ uniformly

from S∆, then compute q = u∆ + v, by Equation (2). Therefore, the real and ideal worlds are
indistinguishable.

5.2 Subspace VOLE with Small-Domain ∆

From Fp subspace VOLE to Fn
p . Suppose S∆ = S1

∆×· · ·×Sn
∆, where each Si

∆ ⊆ Fq. By running

n parallel instances of Fp,q,Si
∆,Fp,ℓ,{2S

i
∆}

sVOLE , we can obtain a single instance of subspace16 VOLE for S∆,
where the vectors u ∈ Fℓ

p,v ∈ Fℓ
q,q ∈ Fℓ

q have been stacked into matrices U ∈ Fℓ×n
p ,V ∈ Fℓ×n

q ,Q ∈

Fℓ×n
q . This is exactly the functionality Fp,q,S∆,Fn

p ,ℓ,{2S∆}
sVOLE . We skip the trivial security proof for this

transformation.

From Fn
p VOLE to C subspace VOLE. However, we want to construct an actual subspace

VOLE, where the rows of U can be constrained to lie in the subspace defined by an arbitrary linear
code C. When P is honest this is easily achieved with derandomization, but P could lie, leading to
rows of U that are not in C.

In Figure 4, we adapt the SoftSpokenOT consistency check to our problem, rearranging the
protocol to fit the (init), (get) model, and restricting ∆ to be sampled from a subset S∆ ⊆ FnC

q .

16In this case, the “subspace” is just the whole vector space Fn
p .

24

We’ve made two changes that drastically change the proof of security for malicious V: first, ∆ is
sampled from an arbitrary set S∆, while SoftSpokenOT’s analysis requires that ∆ be uniform in a
linear space, because it makes much use of ∆’s distribution being invariant under invertible linear
transformations.

Second, we want our bound to be compatible with Fiat–Shamir, which lets the adversary restart
the proof between sampling H and the consistency check as many times as it wants. This means
that our analysis of the hash H must be independent of ∆, so we give a bad event for H and show
that it’s unlikely on its own, whether or not the adversary succeeds in guessing (part of) ∆. These
two changes unfortunately make our bound looser than SoftSpokenOT’s, but it is good enough to
be practically useful.

Theorem 2. The protocol Πp,q,S∆,C,ℓ
small-VOLE, given in Figure 4, securely realizes the functionality Fp,q,S∆,C,ℓ,L

sVOLE

using Fp,q,S∆,FnC
p ,ℓ+h,{2S∆}

sVOLE . The distinguisher has advantage at most ε
(

nC
kC+1

)
. This advantage comes

from a single bad event in the malicious P case that is decided once H is sampled.

Proof. By comparing with the SoftSpokenOT subspace VOLE, notice that the adversary can only
gain an additional advantage when V is honest. Indeed, when V is malicious, the underlying FsVOLE

functionality lets the adversary choose ∆ however it wants, so it makes no difference what distri-
bution an honest V would sample ∆ from.

Both honest. This case follows easily from SoftSpokenOT’s security proof, because the only change
is to ∆’s distribution. ∆ is passed straight through from the underlying FsVOLE functionality, so
our protocol’s distribution is identical to conditioning SoftSpokenOT on ∆ being in S∆. Because
SoftSpokenOT is perfectly secure in the honest–honest case (in the FsVOLE-hybrid model), our pro-

tocol then realizes Fp,q,FnC
q ,C,ℓ,L

sVOLE , but with the distribution conditioned on ∆ ∈ S∆. This conditioned

distribution is exactly the same as Fp,q,S∆,C,ℓ,L
sVOLE .

Malicious P. While our consistency-checking protocol is most directly based on SoftSpokenOT, for
this case our simulator and proof also take inspiration from OOS [OOS17]. In particular, our proof
is based on erasure decoding, like with OOS. SoftSpokenOT pointed out an error in OOS’s proof,
so to use their proof technique we will need to patch this error. We will use a union bound to fix
the problem, which is why our security bound is considerably looser than OOS’s.

We present the simulator in Figure 5. The simulator first extracts U′′, the derandomization
of U′, and samples a challenge H. Based on U′′, H, and the errors (Ū, V̄) in the adversary’s
consistency check messages (Ũ, Ṽ), we can rewrite the consistency check as follows.

Ṽ = HQ− ŨGCdiag(∆)

Ṽ = HV +HU′′diag(∆)− ŨGCdiag(∆)

−V̄ = Ū diag(∆)

From this equation, the simulator extracts guesses ∆∗i for ∆i for all i in a subset G of the columns.
The consistency check is equivalent to the correctness of these guesses.

The guessed columns G represent lies that the adversary has made while derandomizing U.
The simulator attempts to extract P’s real output U∗ by erasure decoding U′′ using only the
columns that are not in G, hoping that these columns represent the truth about U, as the erasure
removes the lies present in the consistency check. That is, let C−G be the punctured code created
by removing all columns in G from C, and let U′′−G be the corresponding punctured matrix. If

25

On (init) sent to Fp,q,S∆,FnC
p ,ℓ+h,{2S∆}

sVOLE :
1. Receive U′,V from A and send them to P.
2. Receive C from P.
3. Compute the derandomization U′′ := U′ − [0C]TC . We have:

Q = Q′ − [0C]TCdiag(∆)

= V +U′diag(∆)− [0C]TCdiag(∆)

= V +U′′diag(∆).

4. Sample and send a uniformly random challenge H← H to P.
5. Receive the response Ũ and Ṽ from P.
6. Compute the response errors: Ū := HU′′ − ŨGC and V̄ := HV − Ṽ.
7. The consistency checking equation is −V̄ = Ū diag(∆). Abort if no solutions for ∆ exist. Otherwise, there

exists a set G of guessed columns (the nonzero columns of Ū) and values ∆∗
i such that the solution set is

{∆ ∈ S∆ | ∀i ∈ G.∆i = ∆∗
i }.

8. Decode U′′
−G with C−G to get U∗ ∈ Fℓ×kC

p , aborting if any row of U′′
−G isn’t in C−G.

9. Recover V∗ := V + (U′′ −U∗GC)diag(∆
∗) from the adversary’s guesses. We have V∗ = V +U′′diag(∆)−

U∗GCdiag(∆) = Q−U∗GCdiag(∆) if the consistency check passes, because U′′ −U∗GC is zero except for
the columns in G, and ∆i = ∆∗

i for i ∈ G.
10. Send {∆ ∈ S∆ | ∀i ∈ G.∆i = ∆∗

i } ∈ L to Fp,q,S∆,C,ℓ,L
sVOLE .

11. Send U∗
[1..ℓ],V

∗
[1..ℓ] to F

p,q,S∆,C,ℓ,L
sVOLE .

Figure 5. Simulator for Πp,q,S∆,C,ℓ
small-VOLE with malicious P.

|G| ≥ dC , then C−G may have 0 minimum distance, which means that decoding isn’t unique; it is
sufficient to pick an arbitrary decoding. The simulator can then extract the P’s other real output
V∗ as V+ (U′′ −U∗GC)diag(∆

∗), using that U′′ must match U∗GC on all columns that were not
erased, and that ∆i = ∆∗i for the erased columns i ∈ G. If this all works, the simulation is perfect
– the consistency check is correctly represented by the leakage test, and (U∗,V∗,Q, ∆) satisfy the
subspace VOLE correlation.

The flaw is that some lies might not be present in the consistency check. That is, there may
be some row of U′′−G that isn’t in C−G, making the erasure decoding fail. The simulator aborts in
this case. Next we present a bad event that must occur for the erasure decoding to fail, and then
bound it’s probability. This bad event is described in terms of the set of all circuits C in the matroid
represented by the columns of GC . Recall that the definition of a circuit in a matroid is a set c that
is linearly dependent, and is minimal in the sense that all proper subsets are independent. That is,
C is the collection of all subsets c of columns of GC such that c is linearly dependent, but every
c′ ⊊ c is linearly independent.

Bad event: For all c ∈ C, all rows of U′′c must be in Cc (the punctured code containing only the
columns in c) if and only if the rows of HU′′c are all in Cc. The bad event triggers if this does not
hold.

The simulator fails if a row u−G of U′′−G is not in C−G. For this to occur, there must be some
vector p−G in column space of the parity check matrix PC−G

of C−G (equivalently, p−G is in the
null space of GC−G

) such that u−G · p−G ̸= 0. Out of all such p−G, pick a maximally sparse p−G,
minimizing the number of nonzero entries. The set c of nonzero entries of p−G forms a circuit
in C. The parity check matrix PCc of Cc is then pc. We have uc · pc = u−G · p−G ̸= 0, yet
HU′′cpc = HU′′−Gp−G = 0, because the rows of HU′′−G are in C−G. Therefore, the rows of HU′′c are
in Cc, but the rows of U′′c are not all in Cc, so the bad event must trigger.

26

Next, we bound the probability of the bad event occurring for any fixed c ∈ C. Let pc ∈ F|c|p be
the parity check matrix of Cc, i.e., a vector such that uc ∈ Cc if and only if uc · pc = 0. Then all
rows of U′′c are in Cc if and only if U′′cpc = 0, and similarly all rows of HU′′c are all in Cc if and only
if HU′′cpc = 0. The first clearly implies the second, so we only need to bound the probability that
U′′cup ̸= 0 but HU′′cpc = 0. Since H is sampled from an ε-almost universal family, if U′′cpc ̸= 0 we
have that Pr[HU′′cpc = 0] ≤ ε.

Finally, |C| ≤
(

nC
kC+1

)
[DSL04, Theorem 2.1], so a union bound shows that the bad event occurs

with probability at most ε
(

nC
kC+1

)
.

6 Zero-Knowledge from Generalized Subspace VOLE

We give two instantiations of the compiler from Section 3, by presenting two public coin, interactive
ZK protocols in the FsVOLE-hybrid model. The first one allows to prove statements over large fields
using the generalized subspace VOLE given in Section 5. We start by describing a general ZK
protocol for degree-2 relations, Πt

2D−LC, as specified in Figure 6 and, in Appendix B.1, we show
how to generalize it to any degree-d polynomials, for small d.

Our second protocol, Πt
2D-Rep, can be seen as a variant of the QuickSilver protocol [YSWW21]

and is more tailored for proving statements over small fields. It permits to prove degree-2 constraints
over any extension field F2r . The protocol is described in Section 6.2 and its security is stated in
Theorem 4.

6.1 ZK for Degree-2 Relations from Generalized sVOLE

Our 7-round ZK protocol for degree-2 relations allows for circuit satisfiability over any large field,
while also cheaply proving useful operations like inner products, without unrolling them to a cir-
cuit. We highlight that the protocol uses subspace VOLE for a general code, rather than the
trivial 1-dimensional code Fp (or the repetition code) used in previous VOLE-based ZK construc-
tions [BMRS21, YSWW21]. The main challenge here is that, while VOLE with the repetition code
can be viewed as a linearly homomorphic commitment scheme for messages in Fp, with a general
code, we only get a restricted form of homomorphic commitment to vectors in FkC

p , where linear
operations must be applied across the vectors.

We let C be an [nC , kC , dC]p linear code with large enough distance, which for simplicity is
given in systematic form. We assume the witness w can be divided into ℓ vectors (w1, . . . ,wℓ) ∈
(FkC

p)ℓ, where we also write w ∈ FkCℓ
p to mean the concatenation of these vectors. Let Fp[X]≤2 :=

Fp[X1, . . . , XkCℓ]≤2 be the set of polynomials over Fp in kCℓ variables with degree at most 2. Notice
each fi ∈ Fp[X]≤2 can be written as fi = fi,0 + fi,1 + fi,2 such that deg(fi,h) = h. The prover P
wants to prove that fi(w) = 0, for i ∈ [t]. Here we consider the case where p is large.

The intuition of the scheme is as follows. Let S′∆ be a polynomially sized subset of Fp and

S∆ = (S′∆)
nC . First, both P and V call the subspace VOLE functionality Fp,C,S∆,2ℓ+2,L

sVOLE , so that P
receives the matrices U ∈ F(2ℓ+2)×kC

p ,V ∈ F(2ℓ+2)×nC
p , while the verifier V gets the notification done.

Let W be the ℓ×kC matrix whose ith are wi. The idea is to use the first ℓ+1 rows of the output of
the ideal functionality to commit to the witness, and the remaining ℓ+1 rows as auxiliary random
commitments. More precisely, we split the matrices as

V =

(
V1

V2

)
and U =

(
U1

R

)
,

27

Protocol Πt
2D−LC

The protocol is parametrized by an [nC , kC , dC]p linear code C, set S∆ = (S′
∆)nC ⊂ FnC

p and a leakage space L
(used in FsVOLE).
Inputs: Both parties hold a set of polynomials fi ∈ Fp[X1, . . . , XkCℓ]≤2, i ∈ [t]. P also holds a witness w ∈ FkCℓ

p

such that fi(w) = 0, for all i ∈ [t].

Round 1. P does as follows:
1. P and V call Fp,p,S∆,C,2(ℓ+1),L

sVOLE , P receives U ∈ F(2ℓ+2)×kC
p ,V ∈ F(2ℓ+2)×nC

p , while V gets the message
done.

2. P sets V1 = V[1..ℓ+1], V2 = V[ℓ+2..2ℓ+2] and R = U[ℓ+2..2ℓ+2]

3. P commits to its witness by sending D = W −U[1..ℓ].
Round 2. V samples χ← Ft

p and sends it to P.
Round 3. P proceeds as follows.

1. For each i ∈ [t], compute

gi(Y) :=
∑

h∈[0,2]
fi,h(r1 +w1 · Y, . . . , rℓ +wℓ · Y) · Y 2−h

=
∑

h∈[0,1]
Ai,h · Y h

2. Compute b̃ =
∑

i∈[t] χi ·Ai,0 + rℓ+1 and ã =
∑

i∈[t] χi ·Ai,1 + u1,ℓ+1, where u1,i is the ith row of U.

3. Send (b̃, ã) to V.
Round 4. V samples ∆′ ← Fp and sends it to the prover.

Round 5. P sends S = R+U[1..ℓ+1] ·∆′ ∈ F(ℓ+1)×nC
p to V

Round 6. V samples η ← Fℓ+1
p and sends it to P

Round 7. P computes ṽ = η⊤(V2 +V1 ·∆′) and sends it to V.
Verification. V runs the following checks.

1. Check the constraints:

– Compute S′ = S+

[
D

0

]
·∆′ = R+

[
W

uℓ+1

]
·∆′.

– For each i ∈ [t], compute

ci(Y) =
∑

h∈[0,2]

fi,h(s
′
1, . . . , s

′
ℓ) · Y 2−h.

– Let s̃ =
∑

i∈[t] χi · ci(∆′) + s′ℓ+1.

– Check that s̃ = b̃+ ã ·∆′.
2. Check the opening of S:

– Call Fp,p,S∆,C,2ℓ+1,L
sVOLE on input (get) and obtain ∆ ∈ S∆ and Q ∈ F(2ℓ+2)×nC

p such that Q =
V + C(U) · diag(∆)

– Set Q1 = Q[1..ℓ+1] and Q2 = Q[ℓ+2..2ℓ+2].
– Check that

η⊤(Q2 +Q1 ·∆′) = ṽ + η⊤ · C(S) · diag(∆)

Figure 6. ZK for Arbitrary Degree-2 Relation

where each sub-matrix consists of ℓ + 1 rows. Hence, P commits to the witness by sending D =
W −U1,[1..ℓ].

The idea is that P will run a VOLE-based ZK proof “in-the-head”, as if U1 and R were a set
of VOLE outputs where V held S = R1 +U1 ·∆′ for some random ∆′ ∈ Fp. Even though V does
not (yet) have S, it can send a random challenge for the proof and get the prover’s response. We
then have V send a random ∆′, and have P open S so that V can check the proof. V can verify that
S was opened reliably using the original subspace VOLE instance — if P tries to cheat, it must
guess at least dC entries of the secret ∆ ∈ S∆.

28

The underlying VOLE-based proof that is run in-the-head is essentially the same as the protocol
for proving degree-2 constraints from QuickSilver [YSWW21], and can be seen in round 3 (for P)
and the first part of round 7 (for V). Once P receives the random challenge χ← Ft

p it computes:

gi(Y) =
∑

h∈[0,2]

fi,h(r1 +w1 · Y, . . . , rℓ +wℓ · Y) · Y 2−h

=
∑

h∈[0,2]

fi,h(w1, . . . ,wℓ) · Y 2 +
∑

h∈[0,1]

Ai,h · Y h

= fi(w1, . . . ,wℓ) · Y 2 +
∑

h∈[0,1]

Ai,h · Y h,

where Ai,h ∈ FkC
p is the aggregated coefficient of Y h. The key observation is that, if the prover P is

honest, then fi(w1, . . . ,wℓ) = 0 and gi(Y) =
∑

h∈[0,1]Ai,h · Y h. Using the challenge χ, P computes
and sends to V

ã =
∑
i∈[t]

χi ·Ai,1 + u1,ℓ+1 b̃ =
∑
i∈[t]

χi ·Ai,0 + rℓ+1,

where uℓ+1 and rℓ+1 are extra rows of the original VOLE output used to mask the check values.

Next, V sends a challenge ∆′ ∈ Fp to P, who opens the matrix S = R+U[1..ℓ+1] ·∆′. This will
be used as V’s “VOLE-in-the-head” output, to check the QuickSilver proof values just sent by P.
First, though, it needs P to prove that S was sent correctly. To do this, V sends the last challenge
η ← Fℓ+1

p , and gets ṽ = η⊤(V2 +V1 ·∆′) in response.17 This is later verified in the second part of
round 7, once V learns the subspace VOLE output Q = V+ C(U) · diag(∆). V can then use this to
check the subspace VOLE relation between ṽ and η⊤C(S), ensuring that S was correctly sent.

In the first part of the verification, V first computes

S′ = S+

[
D

0

]
·∆′,

to adjust its subspace VOLE output to be a valid commitment to the prover’s input W. It then uses
the rows of S′ to compute polynomials ci(Y), similarly to the prover’s polynomials gi(Y). These
are used to check the constraints, by taking a linear combination and verifying that they form a
valid VOLE correlation.

We can formally prove the result below.

Theorem 3. The protocol Πt
2D−LC (Figure 6) is a SHVZKPoK for arbitrary degree-2 relations with

soundness error 3/p+ 2 |S′∆|
−dC in the Fp,S∆,C,2(ℓ+1),L

sVOLE -hybrid model.

Proof. Correctness follows by inspection of the protocol. We now consider the case of a malicious
prover and describe a simulator S as follows.

– S emulates FsVOLE, it receives U and V from A, samples ∆ ← S∆ at random and computes
Q = V + C(U) · diag(∆).

17The challenge η is only used to save communication. P could instead directly send V2 +V1 ·∆ for V to check.

29

– It receives D from A and extracts the witness w̃. Then, it executes the rest of the protocol as
an honest verifier would do. If the honest verifier aborts, then S returns ⊥, otherwise it accepts
w̃ as valid witness.

The ideal and real executions are identically distributed. Hence, we only need to bound the proba-
bility that the real-world verifier accepts a proof when the witness obtained by S is not valid. Let
P∗ be a malicious prover that commits to a witness w̃ such that exists at least one fi such that
fi(w̃) = ei ̸= 0. We want to compute the probability that an honest verifier accepts the proof. In
this case, once P∗ receives the challenges χ← Ft

p, and later η ← Fℓ
p, from V, it can send incorrect

values ã∗, b̃∗, ṽ∗1 and ṽ∗2, i.e.

b̃∗ =
∑
i∈[t]

χi ·Ai,0 + rℓ+1 + Eã

ã∗ =
∑
i∈[t]

χi ·Ai,1 + u1,ℓ+1 + E
b̃

ṽ∗ =η⊤ · (V1 +V2 ·∆′) + Eṽ

where Eã, Eb̃
∈ FkC

p and Eṽ ∈ FnC
p are adversarially chosen values. In addition, in Round 5, P∗ can

either send a matrix S∗ = (R + ER) + (U + EU) · ∆′ not consistent with the values previously
committed or send a correct S.

We consider the last two cases above separately, and first analyse the case when P sends the
correct matrix S corresponding to the values previously committed. In particular, this means that
P will always pass the final consistency check. Given S and D, V honestly computes

ci(∆
′) = fi(w̃1, . . . , w̃ℓ) ·∆′2 +Ai,1 ·∆′ +Ai,0

and then

s̃ =
∑
i

χi · ei ·∆′2 +
(∑

i

χi ·Ai,1 +∆′ + uℓ+1

)
·∆′ +

∑
i

χi ·Ai,0 + rℓ+1

Finally, it must hold that s̃ = ã∗ ·∆′ + b̃∗. More precisely, we should have:∑
i

χi · ei ·∆′2 +
(∑

i

χi ·Ai,1 +Uℓ+1

)
·∆′ +

∑
i

χi ·Ai,0 +Rℓ+1 =(∑
i∈[t]

χi ·Ai,1 +Uℓ+1 + Eã

)
·∆′ +

∑
i∈[t]

χi ·Ai,0 +U1,ℓ+1 + E
b̃

⇐⇒
∑
i

χi · ei ·∆′2 = Eã ·∆′ + E
b̃
.

Again, we can have two different cases.

–
∑

i χiei = 0: since we are assuming that exists at least one ei such that at least one of its
coordinate ei,j is non-zero, then Pr[

∑
i χiei = 0] ≤ 1/p.

–
∑

i χiei ̸= 0: if this is the case, the probability that the relation above holds is at most 2/p,
since ∆′ ← Fp and unknown to the prover until Round 4.

30

Now, we can consider the case where a malicious prover sends an incorrect matrix S∗ and bound
the probability P will pass the MAC check. Recall that S′∆ is a polynomially sized subset of Fp and
S∆ = (S′∆)

nC . Let S∗ = R+U ·∆′ +ES be the value sent by the prover. The following must hold:

η⊤(Q2 +Q1 ·∆′) = ṽ +Eṽ + η⊤ · C(S+ES) · diag(∆)

⇐⇒ −Eṽ = η⊤C(ES) · diag(∆)

If Eṽ ̸= 0, the relation above is satisfied with probability at most |S′∆|
−dC . This is because diag(∆)

is unknown to P and each entry of ∆ is sampled uniformly from S′∆ in FsVOLE. So, the probability
that at least dC coordinates of C(ES) · diag(∆) ∈ FnC

p are equal to the corresponding coordinates of

Eṽ is at most |S′∆|
−dC .

Otherwise, if Eṽ = 0, then we must have η⊤C(ES)·diag(∆) = 0. This happens either if C(ES) =
0, in which case S = S∗, or if exist at least two indices i, j such that ηj ·C(ES,j) = −ηi ·C(ES,i) which

happens again with probability at most |S∆|−dC , since ηi and ηj are unknown to the prover when
it commits to S and C(ES,j) and C(ES,i) are non-zero codewords. Summing up, the probability for

a malicious prover to pass the verification step is at most 3/p+ 2 |S∆|−dC . ⊓⊔

Boosting the soundness. We can improve the soundness of our protocol by using a challenge χ in
an extension field Fq, where q = pr, r ≤ kC . However, this requires the masking values in ã and b̃
to be in Fq too. This can be achieved by calling the VOLE functionality with parameters 2(ℓ+ r)
instead of 2(ℓ+ 2) and lifting rows [ℓ+ 1..ℓ+ r] and [2ℓ+ 1..2ℓ+ r] to Fq. To boost the soundness
related to challenge ∆′, the most efficient way is that of sending two (or more) challenges ∆′, ∆′′

and repeating the check twice (or more, if needed).

We describe a more efficient protocol for small values of p in the next section.

Communication cost. In Πt
2D−LC, given in Figure 6, other than the cost of the sVOLE step, the

prover has to send the initial commitment, consisting of a matrix in Fℓ×kC
p , then two vectors in FkC

p ,

one vectors in FnC
p and finally a matrix in Fℓ×kC

q . Summing up the cost is

CommCostΠt
2D−LC

= CommCostsVOLE + (2ℓ+ 2) ·
(
kC · log2 p

)
+ nC · log2 p.

Note that is roughly 2 times the cost of QuickSilver and other VOLE-based protocols in the
designated-verifier setting. Using our protocol from Section 5, CommCostsVOLE is dominated by
ℓ · (nC − kC) field elements, so this part is sublinear in the witness length (ℓ · kC) if C has a good
enough rate.

6.2 ZK for Degree-2 from Small-Sized sVOLE

For small fields, the previous protocol would not perform so well, since we’d need many repeti-
tions to achieve a good soundness error. Instead, a better approach is to adopt the QuickSilver
protocol [YSWW21] with subspace VOLE based on the [τ, 1, τ] repetition code. This avoids the
need for the code-switching step of the previous protocol, with the additional ∆′ challenge, since
the ZK proof can be done directly on repetition coded VOLE. To help with our AES use-case, we
generalize QuickSilver slightly to allow for proving constraints over an extension field Fpk , even
when the witness is committed over Fp.

31

Protocol Πt
2D-Rep

Parameters: Code CRep = [τ, 1, τ]p with GC = (1 . . . 1) ∈ F1×τ
p . VOLE size q = pr.

Inputs: Polynomials fi ∈ Fpk [X1, . . . , Xℓ]≤2, i ∈ [t]. The prover P also holds a witness w ∈ Fℓ
p such that

fi(w) = 0 for all i ∈ [t].

Round 1. P does the following:

1. Call the functionality Fp,q,S∆,CRep,ℓ+rτ,L
sVOLE and receive u ∈ Fℓ+rτ

p ,V ∈ F(ℓ+rτ)×τ
q .

V receives done.
2. Compute d = w − u[1..ℓ] ∈ Fℓ

p and send d to V.
3. For i ∈ [ℓ+ 1..ℓ+ rτ], embed ui ↪→ Fqτ .

For i ∈ [ℓ+ rτ], lift vi ∈ Fτ
q into vi ∈ Fqτ .

For i ∈ [ℓ], also embed wi ↪→ Fqτ .
Round 2. V sends challenges χi ∈ Fqτ , i ∈ [t].
Round 3. P does the following:

1. For each i ∈ [t], compute Ai,0, Ai,1 ∈ Fqτ such that

ci(Y) = f̄i(w1, . . . , wn) · Y 2 +Ai,1 · Y +Ai,0.

2. Compute

u∗ =
∑

i∈[rτ]

uiX
i−1 v∗ =

∑
i∈[rτ]

viX
i−1,

where Fqτ ≃ Fp[X]/F (X).
3. Compute b̃ =

∑
i∈[t] χi ·Ai,0 + v∗ ∈ Fqτ and ã =

∑
i∈[t] χi ·Ai,1 + u∗ ∈ Fqτ and send (ã, b̃) to V.

Verification. V runs the following check:

1. Call Fp,q,S∆,CRep,ℓ+rτ,L
sVOLE on input (get) and obtain ∆ ∈ Fτ

q , Q ∈ F(ℓ+rτ)×τ
q such that Q = V +

uTGCdiag(∆).
2. Compute Q′ = Q[1..ℓ] + dTGCdiag(∆) = V[1..ℓ] +wTGCdiag(∆).
3. Lift ∆,q′

1, . . . ,q
′
ℓ,qℓ+1, . . . ,qℓ+rτ ∈ Fτ

q into ∆, q′1, . . . , q
′
ℓ, qℓ+1, . . . , qℓ+rτ ∈ Fqτ .

4. For each i ∈ [t], compute

ci(∆) =
∑

h∈[0,2]

f̄i,h(q
′
1, . . . , q

′
ℓ) ·∆2−h

5. Compute q∗ =
∑

i∈[rτ] qℓ+i ·Xi−1 such that q∗ = v∗ + u∗∆.

6. Compute c̃ =
∑

i∈[t] χi · ci(∆) + q∗.

7. Check that c̃
?
= ã ·∆+ b̃.

Figure 7. ZK protocol for t degree-2 relations from small sVOLE with repetition code.

In Figure 7, we present our public-coin ZK protocol in the FsVOLE-hybrid model over small-
to medium-sized fields which uses a repetition code CRep with parameters [τ, 1, τ] for soundness
amplification.

As for the Πt
2D−LC protocol of Figure 6, protocol Πt

2D-Rep of Figure 7 proves knowledge of

a witness vector w ∈ Fℓ
p which satisfies a set ot t degree-2 constraints fi ∈ Fpk [X1, . . . , Xℓ]≤2

expressed over a degree-k extension of Fp. As before, we note that each fi can be expressed as
fi = fi,0 + fi,1 + fi,2 such that deg fi,h = h.

The sVOLE functionality we use here is parametrised with prime p and tag size q = pr which is
a small- to medium-size extension (in practice we will take q ≈ 210). Due to the non-cryptographic
size of q, we design the protocol so that each output u of FsVOLE receives τ independent tags
vi ∈ Fq, each under a distinct VOLE key ∆i ∈ Fq. In effect, this protocol uses the subfield VOLE

functionality Fp,q,S∆,CRep,ℓ+rτ,L
sVOLE of Figure 2 where S∆ is the whole of Fq. By taking rτ ≈ λ, we

achieve soundness amplification.

32

The intuition of the scheme is that the prover will first use ℓ sVOLE outputs to mask its ℓ input
values over the base field Fp. After sending these masked inputs, the prover then embeds each input
value wi ↪→ Fqτ together with lifting each corresponding tag vector vi ∈ Fτ

q into vi ∈ Fqτ . This
allows the prover to compute the following polynomial, for i ∈ [t]:

ci(Y) =
∑

h∈[0,2]

f̄i,h(v1 + w1 · Y, . . . , vℓ + wℓ · Y) · Y 2−h

= f̄i(w1, . . . , wn) · Y 2 +Ai,1 · Y +Ai,0,

where f̄i ∈ Fqτ [X1, . . . , Xℓ] is the embedding of fi ∈ Fpk [X1, . . . , Xℓ] and Ai,h ∈ Fqτ is the aggregated

coefficient of Y h.

Note. The embedding of fi into f̄i requires that k | rτ , which we assume to be the case in our
presentation of Πt

2D-Rep in Figure 7. If k ∤ rτ , then it is possible to truncate the embedded and
lifted elements of Fqτ down to elements of Fpr̃k for a suitable multiple r̃k.

Having received t independent challenges χi ∈ Fqτ from the verifier (after sending its masked
inputs), the prover can compress its t pairs of aggregated coefficients (Ai,0, Ai,1)i by computing

b =
∑
i∈[t]

χi ·Ai,0 a =
∑
i∈[t]

χi ·Ai,1.

Since b and a contain information about the input values wi, the prover must also mask them with
v∗ ∈ Fqτ and u∗ ∈ Fqτ respectively.

Due to the nature of the QuickSilver-style check that protocol Πt
2D-Rep performs, these masks

must also satisfy the VOLE correlation that v∗ = q∗ − u∗∆ for some q∗ ∈ Fqτ and with ∆ ∈ Fqτ

corresponding to the lift of the τ values ∆i. Since u
∗ must be a uniform mask in Fqτ , and not just Fp

in which live the sVOLE output values u, the correlated values u∗ and v∗ must be constructed from
rτ independent sVOLE correlations, similarly to the VOPE instruction of the Πp,r

ext-sVOLE protocol
of Yang et al. [YSWW21]. This is why Π2D-Rep requires a total of ℓ+ rτ sVOLE outputs.

After receiving the masked values ã = a + v∗ and b̃ = b + u∗, the verifier can then proceed to
the final round of the protocol. First, it receives the sVOLE global keys ∆ ∈ Fτ

q and the value keys

Q ∈ F(ℓ+rτ)×τ
q and adjusts the first ℓ rows of Q using the masked input values d it received from

the prover in Round 1.

Next, after lifting ∆ and the ℓ adjusted rows q′i into Fqτ , the verifier can compute its half of
the QuickSilver-style check:

ci(∆) =
∑

h∈[0,2]

f̄i(q
′
1, . . . , q

′
ℓ)∆

2−h.

Before checking this against ã and b̃ received from the prover, the verifier must also compress its
t values using the χi challenges and apply the corresponding q∗ mask, computed from the last rτ
rows of the sVOLE output.

Finally, the verifier can verify the equality c̃
?
= ã · ∆ + b̃, which will hold if the prover acted

honestly.

Theorem 4. The protocol Πt
2D-Rep (Figure 7) is a SHVZKPoK for arbitrary degree-2 relations with

soundness error 1/prτ + 2|S∆|−1 in the Fp,q,τ,ℓ+τr
sVOLE -hybrid model.

33

Proof. We prove security of Πt
2D-Rep in the FsVOLE-hybrid model against (1) a malicious prover P∗

and (2) a malicious verifier V∗. In both cases we construct a simulator S which interacts with the
malicious party A.
Malicious prover. The simulator emulates Fp,q,S∆,CRep,ℓ+rτ

sVOLE for A by sampling τ uniform values

∆i ∈ Fq, receiving u ∈ Fℓ+rτ
p and V ∈ F(ℓ+rτ)×τ

q from A, and computing Q ∈ F(ℓ+rτ)×τ
q as shown in

Figure 2. When A sends d ∈ Fℓ
p in step 2 of Round 1, S computes w = d+ u[1..ℓ]. S then executes

the rest of the protocol as an honest verifier, sampling the t challenges χi ∈ Fqτ at random and

using ∆ and Q as defined during the emulation of Fp,q,CRep,ℓ+rτ
sVOLE to perform the verification step. If

the check at step 7 of the verification fails, S returns w = ⊥; if it passes, S outputs w as a valid
witness.

Due to the honest sampling of the ∆i and χi values, the view of A in the simulation is identically
distributed to the real-world execution; also, if a real-world verifier would reject A’s proof, so would
the ideal-world verifier since S returns ⊥. We therefore bound the error probability ϵ of a real-world
verifier accepting the proof when in fact the witnessw extracted by S does not satisfy the constraint
system fi.

Let fi(w) = yi for some yi ∈ Fpk , for each i ∈ [t], where w is extracted from A by S as above.
Following from the definition of ci(∆), for i ∈ [t], we have

ci(∆) = f̄i(w) ·∆2 +Ai,1 ·∆+Ai,0

= yi ·∆2 +Ai,1 ·∆+Ai,0,

where the embedded constraints f̄i produce an embedded yi ↪→ Fqτ .
At step 3 of Round 3, the simulator receives b̃′ = b̃+ eb and ã′ = ã+ ea from A, where b̃ and ã

are the values computed according to w and the additional rτ sVOLE correlations used for u∗ and
v∗, and eb, ea ∈ Fqτ are error terms chosen by A. By expanding the computation of c̃, we have:

c̃ =
∑
i∈[t]

χi · ci(∆) + q∗ =
∑
i∈[t]

χi ·
(
yi ·∆2 +Ai,1 ·∆+Ai,0

)
+ v∗ + u∗∆

= ∆2 ·
∑
i∈[t]

yiχi +∆ ·

∑
i∈[t]

Ai,1χi + u∗

+
∑
i∈[t]

Ai,0 + v∗

= ∆2 ·
∑
i∈[t]

yiχi +∆ · (ã′ − ea) + (b̃′ − eb)

For the real-world verifier to accept the proof, then it must hold that c̃ = ã′ ·∆ + b̃′, which then
implies

∆2 ·
∑
i∈[t]

yiχi −∆ea − eb = 0. (3)

If the random choice of χi is such that
∑

i∈[t] yiχi = 0, then the best prover strategy is to set

ea = eb = 0, i.e. compute b̃ and ã honestly, which means that Equation (3) will hold with probability
1 for any value of ∆. By assumption that the extracted witness w does not satisfy the constraint
system, there must be at least one yi ̸= 0, which implies that

∑
i∈[t] yiχi = 0 with probability at

most 1/prτ since the χi ∈ Fqτ are sampled after the yi are committed to.
If
∑

i∈[t] yiχi ̸= 0 then Equation (3) can be solved for at most two values of ∆ by the simulator
based on the values it received from A. If there are no solutions, S aborts; otherwise, it submits the

34

solution(s) ∆i ∈ Fτ
q to its internally simulated FsVOLE which aborts if they differ from the sampled

values.

Since ∆← S∆ uniformly at random and it is hidden from A, the solutions to Equation (3) will
equal the sampled ∆ with probability at most 2/|S∆|. Overall, the soundness is therefore bounded
by 1/prτ + 2|S∆|−1.

Malicious verifier. The simulator emulates Fp,q,S∆,CRep,ℓ+rτ
sVOLE for A by receiving τ uniform values

∆i ∈ Fq and ℓ + rτ outputs Q ∈ F(ℓ+rτ)×τ
q . It then simulates Round 1 of the prover by sending ℓ

uniform values d ∈ Fℓ
p to A. To simulate ã and b̃, S first computes c̃ according to the ∆ and Q it

received before sampling ã at random and setting b̃ = c̃− ã ·∆.

Since u and V are kept secret from A, the communication simulated by S is indistinguishable
from a real-world execution. ⊓⊔

Communication cost. In Πt
2D-Rep of Figure 7, in addition to the cost of the sVOLE step, the prover

sends the initial commitment d ∈ Fℓ
p, as well as two values ã, b̃ ∈ Fqτ . Summing up the cost is

CommCostΠt
2D-Rep

= CommCostsVOLE + ℓ · log2 p+ 2 · rτ log2 p.

In addition, the verifier sends t values in Fqτ but this can be optimized in the interactive setting
and does not contribute to the final proof size in the non-interactive setting.

We can extend both Πt
2D−LC and Πt

2D-Rep to handle degree-d relations, for small d, with the
technique described in Appendix B.1.

7 FAEST: AES-based Signature

We can use our non-interactive zero-knowledge protocol, obtained by applying the methodology
described in Section 4 with the ZK scheme from small-sized subspace VOLE of Section 6.2 to build
a Picnic-like post-quantum signature scheme based on AES.

More precisely, given a block cipher E, AES in our case, we define a family of one-way functions
(OWF) {fx} such that fx(k) = Ek(x), where Ek(x) denotes the encryption of x under the key k.
In this way, the private key k and public values (x, y), with x sampled uniformly at random and
y = Ek(x), define the OWF relation ((x, y), k) ∈ R ⇐⇒ Ek(x) = y. Hence, a signature on a
message µ is generated by binding µ with a non-interactive zero-knowledge proof of knowledge of
k.

Recent works, starting with [GMO16, CDG+17], have used this approach to build efficient post-
quantum secure signatures from MPCitH-based non-interactive zero-knowledge schemes [IKOS07].
One such scheme is Picnic [CDG+17, KKW18] which is a third-round alternate candidate for
the NIST post-quantum standardization process. While Picnic relies on the LowMC block ci-
pher [ARS+15] as the underlying OWF, a non-standard assumption, more recent works replaced
LowMC with AES [dDOS19] or other well-studied problems such as the syndrome decoding (SD) [FJR22b].

Another scheme solely based on symmetric-key primitives is SPHINCS+ [HBD+22] which is one
of three recently standardized by NIST, while the other two, Falcon [PFH+22] and Dilithium [LDK+22]
are based on public-key lattice problems.

In the rest of this section, we first describe our signature scheme, FAEST, in more detail and
then compare it to other post-quantum secure schemes.

35

7.1 The FAEST Signature Scheme

The main tool to build our signature scheme is a NIZK scheme, ΠFAEST, obtained by applying
Lemma 4 to the QuickSilver-style protocol Π2D-Rep-OT set in the FOT-1̄-hybrid model, given by

composing Πt
2D-Rep of Figure 7 (in Section 6.2) with Πp,q,S∆,C,ℓ

small-VOLE of Figure 4, where S∆ = Fq, q = pr,

C = CRep = [τ, 1, τ] and H is an ε-universal hash family such that ε
(
τ
2

)
≤ 2/prτ . In particular, we

prove the following result.

Theorem 5. The ΠFAEST protocol, defined as

ΠFAEST = FSHFS [O2CHO2C [Π2D-Rep-OT]],

is a zero-knowledge non-interactive proof system in the CRS+RO model with knowledge error

2 · (QFS +QVerify) ·
2

prτ
+M · (QFS +QVerify) · AdvEBVC

A′ [QHO2C
]

+ AdvDistVC.Setup,VC.TSetupD ,

where M is an upper bound on the number of VC commitments sent during a run of O2C[Π2D-Rep-OT].

Proof. We apply Lemma 4 to the composed protocol Π2D-Rep-OT in the FOT-1̄-hybrid model. First,

by looking at the init phase of Πsmall-VOLE, we see that the sending of Ũ and Ṽ by the prover can be
combined with the sending of d from Πt

2D-Rep. The combined protocol Π2D-Rep-OT therefore contains
a total of µ = 2 verifier messages and runs in a total of 2µ + 1 = 5 rounds. Next, we analyse the
round-by-round knowledge error κ of Π2D-Rep-OT.

1. When the prover sends the correction C in Πsmall-VOLE, the probability that applying the uni-
versal hash H← H hides any cheating in U and V is ε

(
τ
2

)
, where H is ε-universal.

2. Similarly, when the prover sends the correction d in Πt
2D-Rep, the probability that the random

challenges χi hide a non-zero result of the constraint system is 1/prτ .
3. Given the responses ã, b̃ for Πt

2D-Rep and Ũ, Ṽ for Πsmall-VOLE, the probability that the implicit
challenge ∆ hides errors in both of these at the same time is upper-bounded by the probability
it hides errors in ã, b̃ and is therefore at most 2/prτ .

Since H is such that ε
(
τ
2

)
≤ 2/prτ , this gives κ = 2/prτ as round-by-round knowledge error.

Finally, since both Πsmall-VOLE and Πt
2D-Rep are SHVZK, then the FS-trans-formed compiled

protocol is indeed a NIZK in the programmable ROM. ⊓⊔

To implement the signature scheme FAEST, we expressed the AES-128 algorithm, including its
key schedule, as a set of 200 degree-2 constraints over an extension Fqτ of F28 . Since the AES S-box
is a field inversion over F28 (for non-zero inputs), each constraint checks that the output of each
inversion is the valid inverse of a linear combination of the outputs of the previous layer, where this
linear combination represents the AES linear layer.

7.2 Implementation

We implemented FAEST in Rust18 for AES-128 using F2128 as well as the fields Fq with q =
27, . . . , 211. In the implementation we used AES in counter mode and ChaCha20 as PRGs and the
Blake3 hash and extendable output function. We ran our experiments on an Intel Core i9-9900

36

Table 2. Runtimes for signing and verification as well as signature sizes for FAEST with AES-128 and λ = 128.

q tP in ms tV in ms |sign| in B

27 2.631 2.431 7 506

28 2.279 2.109 6 583

29 4.303 3.952 6 435

210 6.447 5.941 5 803

211 11.053 10.184 5 559

CPU. For comparison, we also benchmarked Limbo [dOT21] and SPHINCS+[HBD+22] on the
same hardware. The runtimes and signatures sizes for FAEST are given in Table 2.

Varying the field size parameter q gives a trade-off between computation time and signature
size: With larger q the signature size shrinks, but both the signer and the verifier need to perform
computation linear in q. The fastest instantiation with about 2.2ms for signing and verification is
obtained by setting q = 28, which also exploits that an Fq element fits exactly into a byte.

7.3 Comparison with other PQ Signatures.

We focus on MPCitH protocols based on AES or code-based assumptions which we recall below.

AES-based MPCitH signature schemes While AES is the first natural choice as block cipher in
MPCitH schemes, it leads to large signatures since the AES circuit over F2 is far more complex
than LowMC in term of non-linear AND gates. In BBQ [dDOS19], it was proposed to evaluate
AES directly on F28 instead, such that the only non-linear operation remaining are the S-box in-
versions; this reduced the proof size by about 40%. Further improvements were introduced in Ban-
quet [BdK+21], Limbo [dOT21] and the Helium proof system [KZ22]. We report in Table 3 runtimes
of Limbo [dOT21], as well as the numbers for the AES-based scheme Helium+AES from [KZ22],
which outperforms Limbo. With FAEST, we managed to obtain signatures that are around 2×
smaller then the fast version of Helium+AES, while having comparable runtimes for signing and
verification. Compared with the short variant of Helium+AES, our two FAEST variants both per-
form faster and have around 35–45% smaller signatures.

Non-Standard Variants of AES [DKR+22]. To reduce the size of AES-based signatures, Dobraunig
et al. proposed new methods which also improved the overall performance of signature and ver-
ification [DKR+22]. Their approach differs from previous ones mainly with their use of different
OWF that are more ZK-friendly. First, they show how to safely remove the key-schedule from the
MPC protocol using the single-key Even-Mansour (EM) scheme [DKS12], effectively reducing the
number of S-boxes from 200 to 160 for AES-128. Secondly, they propose a different variant of AES
with larger S-boxes (LSAES), which is more amenable to zero-knowledge schemes over large fields.
Finally, they describe a new OWF, Rain, specifically tailored for MPCitH schemes, which combines
both the EM and LSAES tricks mentioned above and additionally modifies the AES linear lay-
ers. These techniques were also incorporated into subsequent improvements on the zero-knowledge
side [KZ22] (building on [BN20]), and led to signatures as small as 5kB, with a conservative 4-round
version of Rain. In Table 3, we show timings from [KZ22] for BN++Rain, a signature based on the
4-round version of Rain.

18Source code is available at https://github.com/faest-sign/faest-rs/tree/crypto-2023.

37

https://github.com/faest-sign/faest-rs/tree/crypto-2023

Table 3. Comparison of timings and signature sizes at the 128-bit security level for some standardized schemes
from the NIST PQC standardization project, new alternatives and the designs explored in this work. The results for
FAEST, Limbo [dOT21], and SPHINCS+ [HBD+22] were obtained on the system described in Section 7.2. The other
numbers are taken from [FJR22b] and [KZ22].

Scheme
tP tV |sign|

Assumption
(ms) (ms) (B)

SDitH [FJR22b] (fast) 13.40 12.70 17 866 SD F2

SDitH [FJR22b] (short) 64.20 60.70 12 102 SD F2

SDitH [FJR22b] (fast) 6.40 5.90 12 115 SD F256

SDitH [FJR22b] (short) 29.50 27.10 8 481 SD F256

BN++Rain4 [KZ22] (fast) 2.52 2.36 5 536 Rain4

BN++Rain4 [KZ22] (short) 4.79 4.53 4 992 Rain4

Helium+AES [KZ22] (fast) 9.87 9.60 11 420 Hash/AES

Helium+AES [KZ22] (short) 16.53 16.47 9 888 Hash/AES

Limbo [dOT21] (fast) 2.61 2.25 23 264 Hash/AES

Limbo [dOT21] (short) 24.51 21.82 13 316 Hash/AES

SPHINCS+-SHA2 [HBD+22] (fast) 4.40 0.40 17 088 Hash

SPHINCS+-SHA2 [HBD+22] (short) 88.21 0.15 7 856 Hash

Falcon-512 [PFH+22] 0.12 0.03 666 Lattice

Dilithium2 [LDK+22] 0.06 0.03 2 420 Lattice

FAEST (this work, fast, q = 28) 2.28 2.11 6 583 Hash/AES

FAEST (this work, short, q = 211) 11.05 10.18 5 559 Hash/AES

In parameter settings with a similar signature size, FAEST seems to perform several times slower
than using Rain, while using the standard AES. However, the runtimes were obtained on different
hardware, which prohibits an exact comparison. We could also use these alternative OWFs in
FAEST — we estimate that Even-Mansour-based AES could reduce sizes by 10–15%, while using
Rain could give a 30–40% reduction, giving smaller signatures than BN++Rain4.

Code-based MPCitH schemes. In a recent work, Feneuil et al. proposed an MPCitH-based signature
scheme where the 5-round ZK protocol is a PoK of a vector x such that y = Hx, where x is a
vector with Hamming weight wt(x) less than a fixed t [FJR22b]. The resulting scheme, in addition
to being competitive with SPHINCS+, outperforms all the known code-based signatures. Another
very recent work, [AMGH+22], presents a new approach to amplify the soundness of MPCitH
protocols. When applied to build code-based signature schemes, it shows concrete improvement
over [FJR22b] in running time. In Table 3, we also include the scheme of Feneuil et al., reporting
directly the estimations given in their paper [FJR22b]. Compared to this scheme, we achieve both
smaller signature sizes and faster running time.

38

Acknowledgments

The work of Michael Klooß was supported by KASTEL Security Research Labs and by Helsinki
Institute for Information Technology HIIT. Carsten Baum, Lennart Braun, Cyprien Delpech de
Saint Guilhem, Emmmanuela Orsini, Lawrence Roy and Peter Scholl have been supported by the
Defense Advanced Research Projects Agency (DARPA) under Contract No. HR001120C0085. Any
opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of any of the funders. The U.S. Government
is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any
copyright annotation therein. Lennart Braun has been further supported by the European Research
Council (ERC) under the European Unions’s Horizon 2020 research and innovation programme un-
der grant agreement No 803096 (SPEC). Cyprien Delpech de Saint Guilhem is a Junior FWO
Postdoctoral Fellow under project 1266123N and was also supported by CyberSecurity Research
Flanders with reference number VR20192203. Peter Scholl was also supported by the Aarhus Uni-
versity Research Foundation, and the Independent Research Fund Denmark under project number
0165-00107B (C3PO).

39

References

AHIV17. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. In Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 2087–2104. ACM Press, October / Novem-
ber 2017.

AMGH+22. Carlos Aguilar-Melchor, Nicolas Gama, James Howe, Andreas Hülsing, David Joseph, and Dongze Yue.
The return of the SDitH. Cryptology ePrint Archive, Paper 2022/1645, 2022. https://eprint.iacr.

org/2022/1645.
ARS+15. Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael Zohner. Ci-

phers for MPC and FHE. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I,
volume 9056 of LNCS, pages 430–454. Springer, Heidelberg, April 2015.

BBC+17. Eli Ben-Sasson, Iddo Bentov, Alessandro Chiesa, Ariel Gabizon, Daniel Genkin, Matan Hamilis, Evgenya
Pergament, Michael Riabzev, Mark Silberstein, Eran Tromer, and Madars Virza. Computational in-
tegrity with a public random string from quasi-linear PCPs. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, EUROCRYPT 2017, Part III, volume 10212 of LNCS, pages 551–579. Springer, Hei-
delberg, April / May 2017.

BBD+23. Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß, Emmanuela Orsini,
Lawrence Roy, and Peter Scholl. Publicly verifiable zero-knowledge and post-quantum signatures from
VOLE-in-the-Head. In CRYPTO. Springer, 2023.

BBMHS22. Carsten Baum, Lennart Braun, Alexander Munch-Hansen, and Peter Scholl. MozZ2karella: Efficient
vector-OLE and zero-knowledge proofs over Z2k . In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part IV, volume 13510 of LNCS, pages 329–358. Springer, Heidelberg, August 2022.

BCG+19. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl.
Efficient two-round OT extension and silent non-interactive secure computation. In Lorenzo Cavallaro,
Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 291–308. ACM
Press, November 2019.

BCG20. Jonathan Bootle, Alessandro Chiesa, and Jens Groth. Linear-time arguments with sublinear verification
from tensor codes. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part II, volume 12551 of
LNCS, pages 19–46. Springer, Heidelberg, November 2020.

BCGI18. Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector OLE. In David Lie,
Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 896–912.
ACM Press, October 2018.

BCS16. Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In Martin Hirt and
Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 31–60. Springer, Heidelberg,
October / November 2016.

BdK+21. Carsten Baum, Cyprien de Saint Guilhem, Daniel Kales, Emmanuela Orsini, Peter Scholl, and Greg
Zaverucha. Banquet: Short and fast signatures from AES. In Juan Garay, editor, PKC 2021, Part I,
volume 12710 of LNCS, pages 266–297. Springer, Heidelberg, May 2021.

BMRS21. Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter Scholl. Mac’n’cheese: Zero-knowledge
proofs for boolean and arithmetic circuits with nested disjunctions. In Tal Malkin and Chris Peikert,
editors, CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 92–122, Virtual Event, August 2021.
Springer, Heidelberg.

BN20. Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge arguments for arithmetic circuits
and their application to lattice-based cryptography. In Aggelos Kiayias, Markulf Kohlweiss, Petros
Wallden, and Vassilis Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS, pages 495–526. Springer,
Heidelberg, May 2020.

BW13. Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In Kazue
Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 280–300.
Springer, Heidelberg, December 2013.

CCH+19. Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D. Rothblum, and
Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar and Edith Cohen, editors, 51st
ACM STOC, pages 1082–1090. ACM Press, June 2019.

CDD+19. Ignacio Cascudo, Ivan Damg̊ard, Bernardo David, Nico Döttling, Rafael Dowsley, and Irene Giacomelli.
Efficient UC commitment extension with homomorphism for free (and applications). In Steven D.
Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part II, volume 11922 of LNCS, pages 606–
635. Springer, Heidelberg, December 2019.

40

https://eprint.iacr.org/2022/1645
https://eprint.iacr.org/2022/1645

CDG+17. Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Christian Rech-
berger, Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan
Xu, editors, ACM CCS 2017, pages 1825–1842. ACM Press, October / November 2017.

CMS19. Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. Succinct arguments in the quantum random
oracle model. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS,
pages 1–29. Springer, Heidelberg, December 2019.

dDOS19. Cyprien de Saint Guilhem, Lauren De Meyer, Emmanuela Orsini, and Nigel P. Smart. BBQ: Using AES
in picnic signatures. In Kenneth G. Paterson and Douglas Stebila, editors, SAC 2019, volume 11959 of
LNCS, pages 669–692. Springer, Heidelberg, August 2019.

DIO21. Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-point zero knowledge and its applications. In
2nd Conference on Information-Theoretic Cryptography (ITC 2021). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2021.

DKR+22. Christoph Dobraunig, Daniel Kales, Christian Rechberger, Markus Schofnegger, and Greg Zaverucha.
Shorter signatures based on tailor-made minimalist symmetric-key crypto. In Heng Yin, Angelos Stavrou,
Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 843–857. ACM Press, November 2022.

DKS12. Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in cryptography: The Even-Mansour
scheme revisited. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 336–354. Springer, Heidelberg, April 2012.

dOT21. Cyprien de Saint Guilhem, Emmanuela Orsini, and Titouan Tanguy. Limbo: Efficient zero-knowledge
MPCitH-based arguments. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 3022–3036.
ACM Press, November 2021.

DSL04. György Dósa, István Szalkai, and Claude Laflamme. The maximum and minimum number of cir-
cuits and bases of matroids. Pure Mathematics and Applications, 15(4):383–392, 2004. https:

//math.uni-pannon.hu/~szalkai/Szalkai-2006-DosaGy-PUMA.pdf.

FJR22a. Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome decoding in the head: Shorter sig-
natures from zero-knowledge proofs. Cryptology ePrint Archive, Report 2022/188, 2022. https:

//eprint.iacr.org/2022/188.

FJR22b. Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome decoding in the head: Shorter signa-
tures from zero-knowledge proofs. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022,
Part II, volume 13508 of LNCS, pages 541–572. Springer, Heidelberg, August 2022.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and suc-
cinct NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013.

GHS+21. Yaron Gvili, Julie Ha, Sarah Scheffler, Mayank Varia, Ziling Yang, and Xinyuan Zhang. TurboIKOS:
Improved non-interactive zero knowledge and post-quantum signatures. In Kazue Sako and Nils Ole
Tippenhauer, editors, ACNS 21, Part II, volume 12727 of LNCS, pages 365–395. Springer, Heidelberg,
June 2021.

GI08. Jens Groth and Yuval Ishai. Sub-linear zero-knowledge argument for correctness of a shuffle. In Nigel P.
Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 379–396. Springer, Heidelberg, April
2008.

GMO16. Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster zero-knowledge for Boolean
circuits. In Thorsten Holz and Stefan Savage, editors, USENIX Security 2016, pages 1069–1083. USENIX
Association, August 2016.

GMR85. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof-
systems (extended abstract). In 17th ACM STOC, pages 291–304. ACM Press, May 1985.

HBD+22. Andreas Hulsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer, Stefan-
Lukas Gazdag, Panos Kampanakis, Stefan Kolbl, Tanja Lange, Martin M Lauridsen, Florian Mendel,
Ruben Niederhagen, Christian Rechberger, Joost Rijneveld, Peter Schwabe, Jean-Philippe Aumasson,
Bas Westerbaan, and Ward Beullens. SPHINCS+. Technical report, National Institute of Standards
and Technology, 2022. available at https://csrc.nist.gov/Projects/post-quantum-cryptography/

selected-algorithms-2022.

IKOS07. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty
computation. In David S. Johnson and Uriel Feige, editors, 39th ACM STOC, pages 21–30. ACM Press,
June 2007.

41

https://math.uni-pannon.hu/~szalkai/Szalkai-2006-DosaGy-PUMA.pdf
https://math.uni-pannon.hu/~szalkai/Szalkai-2006-DosaGy-PUMA.pdf
https://eprint.iacr.org/2022/188
https://eprint.iacr.org/2022/188
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

IKOS08. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with constant compu-
tational overhead. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 433–442.
ACM Press, May 2008.

IPS08. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer - ef-
ficiently. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 572–591. Springer,
Heidelberg, August 2008.

KKW18. Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive zero knowledge with
applications to post-quantum signatures. In David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, ACM CCS 2018, pages 525–537. ACM Press, October 2018.

KZ22. Daniel Kales and Greg Zaverucha. Efficient lifting for shorter zero-knowledge proofs and post-quantum
signatures. Cryptology ePrint Archive, Report 2022/588, 2022. https://eprint.iacr.org/2022/588.

LDK+22. Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe, Gregor Seiler, Damien
Stehlé, and Shi Bai. CRYSTALS-DILITHIUM. Technical report, National Institute of Standards
and Technology, 2022. available at https://csrc.nist.gov/Projects/post-quantum-cryptography/

selected-algorithms-2022.
Lin03. Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party computation. Journal of

Cryptology, 16(3):143–184, June 2003.
Lin17. Yehuda Lindell. How to simulate it - A tutorial on the simulation proof technique. In Yehuda Lindell,

editor, Tutorials on the Foundations of Cryptography, pages 277–346. Springer International Publishing,
2017.

OOS17. Michele Orrù, Emmanuela Orsini, and Peter Scholl. Actively secure 1-out-of-N OT extension with
application to private set intersection. In Helena Handschuh, editor, CT-RSA 2017, volume 10159 of
LNCS, pages 381–396. Springer, Heidelberg, February 2017.

PFH+22. Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas
Pornin, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. FALCON. Technical
report, National Institute of Standards and Technology, 2022. available at https://csrc.nist.gov/

Projects/post-quantum-cryptography/selected-algorithms-2022.
Roy22. Lawrence Roy. SoftSpokenOT: Quieter OT extension from small-field silent VOLE in the minicrypt

model. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of
LNCS, pages 657–687. Springer, Heidelberg, August 2022.

RRR16. Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive proofs for del-
egating computation. In Daniel Wichs and Yishay Mansour, editors, 48th ACM STOC, pages 49–62.
ACM Press, June 2016.

WYKW21. Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolverine: Fast, scalable, and
communication-efficient zero-knowledge proofs for boolean and arithmetic circuits. In 2021 IEEE Sym-
posium on Security and Privacy, pages 1074–1091. IEEE Computer Society Press, May 2021.

WYY+22. Chenkai Weng, Kang Yang, Zhaomin Yang, Xiang Xie, and Xiao Wang. AntMan: Interactive zero-
knowledge proofs with sublinear communication. In Heng Yin, Angelos Stavrou, Cas Cremers, and
Elaine Shi, editors, ACM CCS 2022, pages 2901–2914. ACM Press, November 2022.

XZS22. Tiancheng Xie, Yupeng Zhang, and Dawn Song. Orion: Zero knowledge proof with linear prover time.
In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part IV, volume 13510 of LNCS,
pages 299–328. Springer, Heidelberg, August 2022.

YSWW21. Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. QuickSilver: Efficient and affordable zero-
knowledge proofs for circuits and polynomials over any field. In Giovanni Vigna and Elaine Shi, editors,
ACM CCS 2021, pages 2986–3001. ACM Press, November 2021.

42

https://eprint.iacr.org/2022/588
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

A Additional Preliminaries

A.1 Zero-Knowledge Proofs of Knowledge

We recall that a witness relation for a language L ∈ NP is a binary relation RL that is polynomially
bounded, polynomial time recognizable and characterizes L by L = {x : ∃w s.t. (x,w) ∈ RL}. We
say that w is a witness for the statement x ∈ L if (x,w) ∈ RL.

Definition 16 (Correctness). A proof system (Setup,P,V) for R in the CRS+RO model has
correctness error γerr if for every (not necessarily efficient) adversary A

Pr

[
crs ← SetupH(1λ); (x,w)← AH(1λ, crs) :

⟨PH(crs, x,w),VH(crs, x)⟩ = 1

]
≥ 1− γerr(λ)

We call (Setup,P,V) correct if γerr = negl(λ). It is perfectly correct if γerr = 0.

Remark 9 (Sequential composition and proof systems in hybrid models). In the FOT-1̄-hybrid models
or FVOLE-hybrid models, we rely on the stand-alone real-ideal notion of zero-knowledge proofs of
knowledge (with static corruption). However, in the CRS+RO model (i.e. after our compilation),
we define a game-based notion instead. The reason is that we want to share the setup (i.e. use
a single CRS and RO for any number of protocol runs) and allow any party to participate. This
requires a suitable definition of (non-interactive) zero-knowledge proof of knowledge. Since our
compiled protocols are not UC-secure (because non-malleability is not ensured), it is simpler to use
a game-based definition instead of an ideal functionality.

Our game-based definitions of zero-knowledge and proof of knowledge in the CRS+RO model
below are made in such a way, that they compose sequentially. For zero-knowledge simulation, this
is explicit in the definition, and for knowledge soundness, the adversary has the same (trapdoor)
information as the extractor, hence composition is simple.

Definition 17 (Zero-Knowledge). A simulator S for a proof system Π = (Setup,P,V) for R
is a PPT algorithm with input a statement x for which (x,w) ∈ R and implicit inputs 1λ, crs, and
output a transcript tr. Let A be a stateful algorithm and V̂ be an interactive deterministic algorithm.
Let

RealA(λ) = Pr
[
crs ← SetupH(1λ); b← AH,OP (1λ, crs) : b = 1

]
IdealA(λ) = Pr

[
crs ← SetupH(1λ); b← AH,OS (1λ, crs) : b = 1

]
The adversary has black-box access to the random oracle H and to an oracle OP or OS , which both
take input (x,w, aux), check if (x,w) ∈ R (and output ⊥ otherwise) and then

– OP(x,w, aux) outputs tr← ⟨PH(crs, x,w), V̂H(crs, x, aux)⟩
– OS(x,w, aux) outputs tr← SH,V̂(crs,x,aux)(crs, x, aux).

The simulator S has black-box access to the next-message function for V̂(crs, x, aux) (and in partic-
ular, implements the random oracle for V̂). In the programmable ROM, the simulator S is allowed
to program the random oracle H on any fresh input to H, i.e. if H(m) has not been queried by any
party before, then A resp. S is free to choose H(m), otherwise, programming fails.

43

We define the advantage of (A, V̂) by AdvZKΠ,S
A,V̂

(λ) = RealA,V̂(λ)− IdealA,V̂(λ). We call S (non-

uniform) zero-knowledge black-box simulator for Π if for any (non-uniform) PPT A and any DPT
V̂ the advantage AdvZKΠ

A,V̂ is negligible.

If V̂ is the honest verifier (and ignores aux), then S is called an honest verifier zero-knowledge
(HVZK) simulator, if S is straightline and for every (non-uniform) PPT A, AdvZKΠ

A,V is negligible.

If similarly, V̂ interprets aux as the random tape for V and Π is public-coin, then we call S
a special HVZK (SHVZK) simulator if S is straightline and for every (non-uniform) PPT A,
AdvZKΠ

A,V̂ is negligible..

Remark 10 (Abuse of notation). Instead of pairs (A, V̂) (resp. (A, P̂)), we often only speak of A
(or V̂ resp. P̂) as the adversary. With universal machines for V̂ (resp. P̂), and their code as part of
aux , this abuse of notation is justifiable. Similarly, we leave the trapdoor setups TSetup associated
with extractors implicit.

We only define a specific form of knowledge soundness for black-box extraction in the extractable
ROM.

Definition 18 (Knowledge Soundness). Let Π = (Setup,P,V) be a public-coin proof system
for R. Let TSetup be a trapdoor PPT setup associated with extractor E, which is a PPT algorithm
with implicit inputs 1λ, crs, td. Let A be a probabilistic algorithm and P̂ be a deterministic algorithm.

RealA(λ) = Pr

[
(crs, td)← TSetupH(1λ); (x, aux)← AH(1λ, crs, td);

(out P̂ , bV)← ⟨P̂
H(x, aux),VH(x)⟩ : bV = 1

]

IdealA(λ) = Pr

[
(crs, td)← TSetupH(1λ); (x, aux)← AH(1λ, crs, td);

(out P̂ , bV ,w)← E
H,P̂(x,aux) : bV = 1 ∧R(x,w) = 1

]

The extractor E has black-box access to the next-message function for P̂(crs, x, aux). Moreover, it
is allowed to learn all adversarial queries made to H, i.e. those made by A and P̂.

W.l.o.g. E sets w = ⊥ if bV = 0. The advantage of (A, P̂) is AdvKEΠ,E
A,P̂

(λ) = RealA(λ) −
IdealA(λ). We say E has (asymptotic) knowledge error κerr = κerr(λ) if for any PPT pair (A, P̂),
there exists a negligible function negl(λ) such that AdvKEΠ,E

A,P̂
≤ κerr+negl(λ). We call Π knowledge

sound if an extractor with negligible knowledge error exists, and the associated trapdoored setup
TSetup and real Setup are indistinguishable19.

In practice, one wants not only knowledge soundness, but also the ability to continue the simula-
tion, which is called witness-extended emulation [Lin03, GI08]. This can be achieved by introducing
the requirements that the malicious prover’s output out P̂ in the real and ideal experiments are in-
distinguishable. Since all of our extractors are black-box and obtain out P̂ by emulating an honest
verifier, they trivially have perfect emulation, i.e. the distribution of out P̂ is unchanged.

Definition 19 (Straightline black-box simulation and extraction). A simulator (resp. ex-
tractor) for a proof system Π is called straightline, if the next-message function is only used as in
an actual interaction, i.e. if the malicious verifier (resp. prover) is never rewound.

19Of course, omitting the td output of TSetup, i.e., {crs | crs ← SetupH(1λ)}
c
≈ {crs | (crs, td)← TSetupH(1λ)}.

44

In fact, our extractors satisfy the following even stronger notion, namely, they run the honest
verifier completely unchanged. In other words, the extractor only needs the transcript and its
trapdoor information; it does not require any (black-box) access to the malicious prover at all. We
formalize this below.

Definition 20 (Special extractor). Let Π = (Setup,P,V) be a public-coin proof system for R.
Let TSetup be a trapdoor PPT setup associated with special extractor Ext, which is a PPT algorithm
with input a CRS trapdoor td, a set Q of random-oracle query-response pairs, a statement x, and a
transcript tr, and it outputs a witness w for x or ⊥. The advantage of adversary A against knowledge
soundness of special extractor Ext is20

Pr

crs ← TSetupH(1λ); (x, aux)← AH(1λ, crs, td);

(out P̂ , bV , tr)← ⟨P̂
H(x, aux),VH(x)⟩;

w← Ext(td,Q, x, tr) : bV = 1 ∧R(x,w) = 0


where Q contains A’s queries. In the FN,ℓ

OT-1̄
-hybrid model, the transcript contains the (malicious)

prover’s messages to the FN,ℓ
OT-1̄

-functionality.

Definition 21 (Non-interactive zero-knowledge (NIZK)). A proof system Π where the prover
sends only a single message, called proof and denoted by π, is called non-interactive (NI). We use
the notation π ← Π.ProveHcrs(x,w) and Π.VerifyHcrs(x, π) for computing and verifying the proof. If
Π is zero-knowledge, we call it a NIZK (proof system).

For NI proof systems, we use a simplified notion of straightline extraction.

Definition 22. Let Π be a non-interactive proof system and E be a PPT algorithm with associated
trapdoor setup TSetup. Define the knowledge soundness experiment as follows:

– (crs, td)← TSetup(1λ)

– AH,VerifyH(crs,·,·)(1λ, crs, td)
– Return 1 if A made a call to Verify such that VerifyH(crs, x, π) = 1 call but (x, E(x, π,Q, td)) /∈ R,

where Q contains all random oracle query-response pairs (m,H(m)) of A. Else return 0.

The advantage AdvKEΠ
A of A is defined as the probability that the experiment returns 1. If for every

PPT A the advantage AdvKEΠ,E
A (λ) is negligible, and Setup and TSetup are indistinguishable, then

we call Π knowledge sound.

A.2 Commitments

With standard arguments, we can prove the following lemma.

Lemma 5 (Selective all-but-one hiding implies adaptive all-but-one hiding). Consider
real-or-random hiding security of a vector commitment VC for all-but-one sets, i.e. sets of the form
I = [N] \ {i∗}. For any adversary A against all-but-one adaptive hiding, there is an adversary B
against all-but-one selective hiding with roughly the same running time such that AdvAdpHideVCA ≤
N · AdvSelHideVCB .

Proof (Sketch). The reduction B simply guesses i∗ and sends I = [N] \ {i∗} to its (static) hiding
challenger and receives c. Then A′ runs I ′ ← A(1λ, crs, c). If the guess i∗ was wrong (i.e. I ̸= I ′),
A′ outputs a random bit. Otherwise it outputs whatever A eventually outputs.

20This coincides with the advantage in Definition 18 of the obvious (straightline) extractor Ext which can be
constructed from Ext.

45

A.3 Extractable functions

We define when a function family is extractable. In a sense, this is a weakening of trapdoor functions
where only in the security proof an invertibility trapdoor is needed. Hence, random oracles can be
extractable functions.

Definition 23. Let F = (Setup,Eval) be a function family in the CRS+RO model. Let (TSetup,Ext)
be pair of PPT algorithms such that

– TSetupH(1λ)→ (crs, td): Given security parameter λ, output a CRS crs and trapdoor td.
– Ext(td, Q, y)→ (mi)i∈[N]: Given the trapdoor td, a set of query-response pairs of random oracle

queries, and a purported image y, output a preimage x.

The extractability experiment (w.r.t. (TSetup,Ext)) for stateful adversary A is defined as follows:

1. (crs, td)← TSetupH(1λ)

2. y ← AH(1λ, crs)

3. x′ ← Ext(td, Q, y) where Q is the set {(xi, H(xi))} of query-response pairs of queries A made
to H.

4. x← AH()

5. If x = x′, or Evalcrs(x) ̸= y, or x /∈ Xcrs , output 0. Else output 1 (success).

The distinguishing advantage AdvDist
(Setup,TSetup)
D for Setup and TSetup of an adversary D is defined

as usual. The advantage AdvExt
(TSetup,Ext)
A of an adversary A is defined by as probability to win the

experiment. By abuse of notation, we write AdvExtFA if the algorithms are clear from the context. A
function family is (straightline) extractable w.r.t. (TSetup,Ext) if for any PPT adversaries A and

D, their advantages AdvDist
(Setup,TSetup)
D and AdvExt

(TSetup,Ext)
A are negligible.

Our notion of extractability is tailored to our setting and by definition straightline. We allow
extraction to fail if A cannot produce a preimage, while requiring the exact same preimage if A
has a preimage (implying a form collision resistance).

Example 1 (Straightline extractable functions).

1. Random oracles are extractable functions for any superpolynomial codomain Y. Indeed, any
q-query adversary has advantage at most (q + 1)2/ |Y|.

2. Any (injective) trapdoor one-way function TDF is straightline extractable. For this, let TSetup(1λ)
run the key generation algorithm for TDF, and define crs as the function key of TDF and td as
the invertibility trapdoor.

B Details on the Instantiations

B.1 ZK from Generalized sVOLE for Arbitrary Degree-d Relations

We can easily generalize the method described in Section 6 for degree-2 relations to prove arbitrary
degree-d polynomials. Let (w1, . . . ,wℓ) ∈ FkC ·ℓ

p be a witness and fi ∈ Fp[X1, . . . , Xℓ]≤d, i ∈ [t], be
the set of polynomials over Fp with degree at most d, we want to prove that fi(w1, . . .wℓ) = 0, for
each i ∈ [t].

46

We can proceed similarly to [YSWW21]. First, P and V call the sVOLE functionality with

parameters p, C, 2(ℓ + d), so that P obtains matrices U ∈ F2(ℓ+d)×kC
p , V ∈ F2(ℓ+d)×nC

p . As before,

we can split these matrices as U =

(
U1

R

)
and V =

(
V1

V2

)
, where each sub-matrix consists of

ℓ + d − 1 rows. The prover uses the first ℓ rows of U to commit to its witness, as described in
Figure 6. Then, P opens S = R+W ·∆′, where ∆′ ← Fp is the challenge sent by V. The following
relation holds:

gi(Y) =
∑

h∈[0,d]

fi,h(r1 +w1 · Y, . . . , rℓ +wℓ · Y) · Y d−h

=
∑

h∈[0,d]

fi,h(w1, . . . ,wℓ) · Y d +
∑

h∈[0,d−1]

Ai,h · Y h

= fi(w1, . . . ,wℓ) · Y d +
∑

h∈[0,d−1]

Ai,h · Y h,

where Ai,h ∈ FkC
p is the aggregated coefficient of Y h.

The key observation is that, if the prover P is honest, then fi(w1, . . . ,wn) = 0 and gi(Y) =∑
h∈[0,d−1]Ai,h ·Y h. In order to send the aggregated values

∑
i∈[t]Ai,h, h ∈ [0, d− 1], as in Πt

2D−LC,
P needs d extra independent masks ah. These are computed using the matrices U1,[ℓ+1..ℓ+d−1] and
R[ℓ+1..ℓ+d−1] as follows:

– P sets p1(Y) = rℓ+1+uℓ+1 ·Y and iteratively computes pi+1(Y) = pi(Y) · (rℓ+i+1+uℓ+i+1 ·Y),
for each i ∈ [2, d− 2] and the coefficients ah, h ∈ [d− 1], such that pd−1(Y) =

∑
[0,d−1] ah · Y h

– V locally computes b1 = qℓ+1 and bi+1 = bi ·qi+1, i ∈ [2, d− 2]. So that
∑

h∈[0,d−1] ah · (∆′)h =
bd−1.

After the first commitment to the witness, the proof proceeds with the prover sending values
ãh =

∑
i∈[t] χi · Ai,h + ah, h ∈ [0, d − 1], where χi ∈ Fp are the challenges sent by the verifier.

After the opening of S, the proof proceeds similarly to Πt
2D−LC. In particular, V first computes

ci(∆
′) =

∑
[0,d] fi,h(s

′
1, . . . , s

′
ℓ) · (∆′)d−h, where s′i are defined as in Πt

2D−LC, then it checks that∑
h∈[0,d−1]

χi · ci + bd−1 =
∑

h∈[0,d−1]

ãh · (∆′)h

and finally performs the consistency check.

47

	 Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures From VOLE-in-the-Head
	Introduction
	Our Contributions
	Technical Overview

	Preliminaries
	Zero-Knowledge Proofs of Knowledge
	Polynomial Constraint Systems
	Random Vector Commitment Schemes
	Extractable Functions

	Compiling all-but-one-OT-based zero-knowledge protocols
	Tree-PRG Vector Commitments
	The Compiler

	Fiat–Shamir Transformation
	Generalized Subspace VOLE Protocol
	VOLE with Small-Domain
	Subspace VOLE with Small-Domain

	Zero-Knowledge from Generalized Subspace VOLE
	ZK for Degree-2 Relations from Generalized sVOLE
	ZK for Degree-2 from Small-Sized sVOLE

	FAEST: AES-based Signature
	The FAEST Signature Scheme
	Implementation
	Comparison with other PQ Signatures.

	Additional Preliminaries
	Zero-Knowledge Proofs of Knowledge
	Commitments
	Extractable functions

	Details on the Instantiations
	ZK from Generalized sVOLE for Arbitrary Degree-d Relations

