
Demystifying Just-in-Time (JIT) Liquidity Attacks
on Uniswap V3

Xihan Xiong, Zhipeng Wang, William Knottenbelt, Michael Huth
Department of Computing, Imperial College London

London, United Kingdom
{xihan.xiong20, zhipeng.wang20, w.knottenbelt, m.huth}@imperial.ac.uk

Abstract—Uniswap is currently the most liquid Decentralized
Exchange (DEX) on Ethereum. In May 2021, it upgraded to the
third protocol version named Uniswap V3. The key feature update
is “concentrated liquidity”, which supports liquidity provision
within custom price ranges. However, this design introduces a
new type of Miner Extractable Value (MEV) source called Just-
in-Time (JIT) liquidity attack, where the adversary mints and
burns a liquidity position right before and after a sizable swap.

We begin by formally defining the JIT liquidity attack and
subsequently conduct empirical measurements on Ethereum. Over
a span of 20 months, we identify 36,671 such attacks, which have
collectively generated profits of 7,498 ETH. Our analysis suggests
that the JIT liquidity attack essentially represents a whales’ game,
predominantly controlled by a select few bots. The most active
bot, identified as 0xa57...6CF, has managed to amass 92% of
the total profit. Furthermore, we find that this attack strategy
poses significant entry barriers, as it necessitates adversaries
to provide liquidity that is, on average, 269 times greater than
the swap volume. In addition, our findings reveal that the JIT
liquidity attack exhibits relatively poor profitability, with an
average Return On Investment (ROI) of merely 0.007%. We also
find this type of attack to be detrimental to existing Liquidity
Providers (LPs) within the pool, as their shares of liquidity
undergo an average dilution of 85%. On the contrary, this attack
proves advantageous for liquidity takers, who secure execution
prices that are, on average, 0.139% better than before. We further
dissect the behaviors of the top MEV bots and evaluate their
strategies through local simulation. Our observations reveal that
the most active bot, 0xa57...6CF, conducted 27% of non-optimal
attacks, thereby failing to capture at least 7,766 ETH (equivalent
to 16.1M USD) of the potential attack profit.

Index Terms—Decentralized Exchange, Blockchain, Decentral-
ized Finance, Miner Extractable Value

I. INTRODUCTION

Smart contracts enable building an ecosystem of financial
products and services on top of permissionless blockchains,
commonly referred to as Decentralized Finance (DeFi). DeFi
is becoming increasingly popular, with the Total Value Locked
(TVL) hitting an all-time-high of 178B USD on Novem-
ber 9th, 20211. In addition to the fundamental functions drawn
from traditional finance, DeFi also brings new innovative
designs such as Automated Market Maker (AMM) DEX.

In contrast to centralized exchanges that rely on custodial
infrastructures, DEXs allow users to trade cryptocurrencies
directly in a non-custodial environment. AMM DEXs replace
the traditional order matching system with smart-contract-
enabled algorithmic models that determine the prices at which

1https://defillama.com/, last accessed on April 14th, 2023.

observe1 P2P
network

Local tx
simulation

simulate2

optimal parameters

MEV Botsissue JIT3

Fig. 1: Overview of JIT liquidity attack.

buyers and sellers can trade assets in liquidity pools. Constant
Function Market Maker is a board class of AMMs that is
widely adopted by most DEXs (e.g., Uniswap, SushiSwap,
Curve). Uniswap is the most liquid DEX on Ethereum, with
TVL of 3.85B USD and daily trading volume of 1.86B USD.

Adams et al. launched Uniswap V1 [1] in November 2018.
Uniswap V2 [2] went alive in May 2020, and further upgraded
to V3 [3] in May 2021. The Uniswap V1 contract supports
only the ETH–ERC-20 liquidity pool, while V2 allows the
swap between any ERC-20–ERC-20 token pairs. Besides,
Uniswap V2 also introduces Wrapped Ether (WETH) into
its core contract. However, Uniswap V2 requires the LPs to
provide liquidity in the entire price range (e.g., from 0 to
+∞), which results in capital inefficiency because only a small
fraction of assets are available at a given price [3]. To improve
capital efficiency, Uniswap V3 introduces a new design called
“concentrated liquidity”, which allows LPs to concentrate their
liquidity in custom price ranges smaller than [0,+∞] to supply
more liquidity at targeted prices. Uniswap V3 also introduces
the concept of “active liquidity”. If the price of assets trading
in the liquidity pool moves outside LP’s specified price range
[pl, pu], the LP’s position becomes inactive and stops earning
fees. Therefore, a rational LP is incentivized to concentrate its
liquidity in a profitable price range yet keep its position active.

Nevertheless, Uniswap V3’s concentrated liquidity design
introduces a new type of MEV source, known as “JIT liquidity
attack”, where the adversary mints and burns a position
immediately before and after a sizable swap transaction
(cf. Figure 1). More specifically, the adversary monitors the
mempool via its spy node. Once observing a sizable pending
swap, the adversary simulates the JIT liquidity attack locally
with chosen parameters and launches the attack if profitable.

While the common MEV sources (e.g., arbitrage, liquidation

1

https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf
https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf
https://defillama.com/
https://uniswap.org/
https://sushi.com/
https://curve.fi/
https://uniswap.org/

and sandwich attack) have been comprehensively examined in
recent academic literature, the mechanism underlying JIT liq-
uidity attacks has received relatively scant attention. This study
aims to provide a scientific formalization of JIT liquidity attack,
understand the attack impact through empirical measurement,
and evaluate the adversarial strategies via local simulation. The
main contributions of this paper are summarized as follows:

Attack Formalization. We formalize the JIT liquidity attack
and adversarial utility function. The price range [pl, pu] and
liquidity amount LA are parameters that require optimization.

Empirical Measurement. We conduct empirical measure-
ments of JIT liquidity attacks on Ethereum. During the course
of 20 months, we identify 36,671 attacks with a total profit
of 7,498 ETH. Our analysis reveals that the JIT liquidity
attack indeed functions as a game for ’whales’, overwhelmingly
controlled by a handful of powerful bots. The most active bot
0xa57...6CF seizes 92% of the total attack profit. We detect
an extremely high barrier to entry for this type of attack, as
it necessitates the adversary to contribute liquidity that is, on
average, 269 times greater than the swap volume. In addition,
we observe that the profitability of the attack is relatively poor,
with an average ROI ratio of only 0.007%. Furthermore, we find
the attack detrimental to existing LPs in the pool, resulting in
an average dilution of their liquidity shares by 85%. Conversely,
it appears to favor liquidity takers, who benefit from improved
execution prices by an average of 0.139%.

Comparision Study. We undertake a comparative analysis of
JIT liquidity attacks and sandwich attacks. Our findings indicate
that sandwich attacks present lower entry barriers and superior
profitability performance. The initial capital required to launch
a sandwich attack is merely 6 times the swap volume.

Strategy Analysis. We first analyze how top MEV bots choose
attack parameters. We find that the top first bot 0xa57...6CF
consistently deploys its entire token balance to add liquidity
during each attack. We then assess the strategies of these top
bots through local simulation. Interestingly, our simulation
results indicate that 0xa57...6CF executed 27% of attacks
suboptimally, thereby failing to seize at least 7,766 ETH
(equivalent to 16.1M USD) of the potential attack profit.

II. RELATED WORK

Heimbach et al. [4] empirically investigate Uniswap V3’s
resilience to unexpected price shocks and find that the price
on Uniswap is inaccurate during UST–USDT stablecoin price
shocks. Loesche et al. [5] studied the impermanent loss in
Uniswap V3 by analyzing 17 liquidity pools. The result shows
that providing liquidity in V3 pools makes around 50% of
the LPs unprofitable compared to simply holding the assets.
Heimbach et al. [6] examined the risks and returns of Uniswap
V3 LPs and find that high returns can only be obtained by
accepting high risks. Hashemseresht et al. [7] analyze the effect
of concentrated liquidity on the return of the liquidity providers.
Aigner et al. [8] discusses the impermanent loss and risk profile
of Uniswap V2 and V3 LPs. Wan et al. [9] investigate the

historical JITs on Uniswap V3 and discuss the microeconomic
considerations. The principal differences distinguishing this
study from [9] can be outlined as follows: Firstly, we offer a
formal definition of the adversarial utility function and identify
the parameters that require optimization. Secondly, we conduct
a more comprehensive empirical analysis. Lastly, we dissect the
behaviors of the top bots and evaluate their attack strategies.

III. UNISWAP LIQUIDITY MATH

A. Uniswap V2: Zero to Infinity

For a simple X–Y liquidity pool, the V2 contracts require
the token reserves to satisfy x ∗ y = k, where k is a constant.
Liquidity Taker. Let p0 be the marginal price of X (i.e., p0 =
y0

x0
). Given the spot price p0, for a liquidity taker who is willing

to trade ∆x amount of X for ∆y amount of Y, the pool reserve
should change to x1 = x0 +∆x and y1 = y0 −∆y such that
(x0 +∆x) ∗ (y0 −∆y) = k holds when the swap ends.
Liquidity Provider. An LP who provides liquidity to the X–Y
token pool must provide liquidity across the entire price range
of [0,+∞]. Such liquidity provision design results in capital
inefficiency because most of the liquidity remains unused [3].

B. Uniswap V3: Concentrated Liquidity

Y
R

es
er

ve

X Reserve

Fig. 2: Uniswap V3 price curve. Given the spot price pc, an
LP who wants to mint a position in the price range [pl, pu]
only needs to provide the real reserve of xr and yr.

1) Liquidity and Price: To improve capital efficiency,
Uniswap V3 introduces a novel AMM design called “con-
centrated liquidity”, which allows LPs to add liquidity in a
customized price range of [pl, pu]. In Uniswap V3, a liquidity
pool can be thought of as having virtual liquidity L and
virtual reserves x and y such that x ∗ y = k = L2. The pool
contract tracks Liquidity (L) and the marginal token price
sqrtPriceX96 (

√
P). As such, the relationship between

price and liquidity can be expressed as follows:

L =
√
xy,

√
P =

√
y

x

x =
L√
P
, y = L

√
P

(1)

2

https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf
https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf
https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf

2) Positions and Ticks: When an LP adds liquidity in [pl, pu],
a new liquidity Position is minted, which is represented by
a corresponding Non-fungible Token (NFT). Uniswap V3 uses
discrete ticks to facilitate customized liquidity provision,
with each tick representing a price where the contract’s virtual
liquidity can change. The price at tick i is 1.0001i.

p(i) = 1.0001i,
√
p(i) = 1.0001

i
2 (2)

Every pool in Uniswap V3 is initialized with a given
tickSpacing. Uniswap V3 supports fee tiers of {0.01%,
0.05%, 0.3%, 1%}, which corresponds to the tickSpacing
of {1, 10, 60, 200}. Tick i is initialized when liquidity is added
to a range where tick i serves as the lower/upper bound and
tick i is not referenced by any existing position. Note that only
ticks that are divisible by tickSpacing can be initialized.

3) Liquidity Provision: Given spot price pc, consider an
LP who aims to provide liquidity in the price range [pl, pu]
(pl < pc < pu) (cf. Figure 2). Recall that Uniswap v3 always
ensures that the virtual reserves satisfy x ∗ y = L2. As such,
the LP must provide xr amount of X token and yr amount of
Y token, such that when the provided token amounts are added
to the virtual reserves of X and Y in [pl, pu], the resulting
curve will behave according to the Constant Product Market
Maker pricing curve. From Equation 1, the virtual reserves of
X token at price pu is xv(u) =

L√
pu

, and the virtual reserves
of Y token at price pl is yv(l) = L

√
pl. Hence, the xr and yr

reserve provided by the LP must satisfy Equation 3 as follows:

(xr +
L

√
pu

)(yr + L
√
pl) = L2 (3)

From pc, we know that the reserves are xc = L√
pc

and
yc = L

√
pc. Hence, we can derive xr and yr by Equation 4:

xr =
L

√
pc

− L
√
pu

, yr = L
√
pc − L

√
pl (4)

Note that this position only needs to hold enough amounts
of token X and Y to support trading in the price range [pl, pu].
Particularly, when the marginal price P (i.e., the price of X
in terms of Y) moves to the upper bound pu, the reserve of
X is fully depleted and the LP’s position only holds Y token.
Similarly, when the marginal price P moves to the lower bound
pl, the LP’s position only holds X token. In other words, a
position is active only if the pool’s current price is within the
specified price range. While Figure 2 describes the scenario
where the current price is within [pl, pu], it can be generalized
to a broader format to resolve xr and yr (cf. Equation 5).

xr =


L√
pl

− L√
pu

pc < pl
L√
pc

− L√
pu

pl ≤ pc ≤ pu

0 pu < pc

yr =


0 pc < pl

L
√
pc − L

√
pl pl ≤ pc ≤ pu

L
√
pu − L

√
pl pu < pc

(5)

4) Transaction Fees: The LPs of a given liquidity pool earn
fees when traders transact one asset for another. For instance, a
trader who aims to swap ∆x amount of USDC for ETH in the
USDC–WETH pool with a fee tier of 0.05% pays 0.05%∆x
as the trading fee. The trading fees will be distributed among
active LPs based on the liquidity they provide. For Uniswap
V3, an LP receives fees only if the corresponding position is
active. In case the price moves outside the specified range,
the LP’s position becomes inactive and thus stops earning
fees. When the price reenters the range, the position becomes
active and receives fees again. It is worth noting that while
fees earned in Uniswap V2 are auto-compounded in the pool,
they are stored separately in Uniswap V3 and held as tokens
in Uniswap V3 [3]. Furthermore, there might be multiple V3
pools with different fee tiers for the same X–Y asset pair.

IV. MODELS

A. System Model

We consider a blockchain peer-to-peer (P2P) network and
assume the existence of the following participants in the system:
Trader T : who initiates a swap txT on Uniswap V3;
Adversary A: who observes the pending transaction txT

through its own spy node (e.g., a custom Ethereum client) and
launches a JIT liquidity attack over the targeted transaction;
LPs L: who served liquidity to the liquidity pool implied by
txT , supporting the swaps in the pool and earning fees;
Miners and Validators M: a set of miners (in a Proof-of-
Work blockchain) or validators (in a Proof-of-Stake blockchain)
who have the capacity to manipulate the order of transactions.

B. Threat Model

We consider an economically rational adversary A who is
well-connected to the P2P network and is able to monitor
unconfirmed transactions in the mempool through its spy node.
We also assume that A holds a sufficient balance of assets
required by the corresponding JIT liquidity attack to issue
transactions. In addition, A can participate in auctions for
priority transaction inclusion, in an attempt to extract the MEV
contained in the JIT liquidity attack. More specifically, A
can submit transactions to miners/validators either (i) publicly
through the P2P network or (ii) privately through a centralized
Front-running as a Service (e.g., Flashbots). To compete with
other MEV searchers, A can bribe the miners/validators by
offering high gas prices or through direct Coinbase transfer.

C. Attack Model

1) Pool Mechanism: We consider the following pool actions.
Mint: An LP add liquidity ∆L to Pool(X,Y,ϕ) by specifiying
a price range [pl, pu] and the amount (∆Xd, ∆Yd) desired to
be added (cf. Equation 6). A unique NFT is minted accordingly
to represent this position. The periphery contract computes ∆L
automatically (cf. Equation 7). It first calculates ∆L according
to the amount (∆Xd, ∆Yd), and then computes the actual
amounts (∆Xa, ∆Ya) added to the pool based on ∆L.

(L,
√
P)

Mint(pl,pu,∆Xd,∆Yd)−−−−−−−−−−−−−−→
∆X∈R+, ∆Y ∈R+

(L+∆L,
√
P) (6)

3

L =


∆Xd(

1√
pl

− 1√
pu

) pc < pl

min{∆Xd(
1√
pc

− 1√
pu

),∆Yd
1√

pc−
√
pl
} pl ≤ pc ≤ pu

∆Yd
1√

pu−
√
pl

pu < pc
(7)

Burn: An LP burns its position by removing liquidity ∆L
from Pool(X,Y,ϕ). The LP will collect the remaining X, Y
reserves, and the swap fees (held separately in tokens) up to a
maximum amount of fees owed to its position to the recipient.

(L,
√
P)

Burn(NFTID)−−−−−−−−→
NFTID∈R+

(L−∆L,
√
P) (8)

Swap: A liquidity taker can swap one token for another.
ZeroForOne is a boolean variable and is true when swapping
X for Y. AmountSpecified configures the swap as exact
input when it is positive, and exact output when it is negative.
While a Swap changes

√
P , it does not necessarily change L.

(L,
√
P)

Swap(ZeroForOne, AmountSpecified)−−−−−−−−−−−−−−−−−−−−−−→
ZeroForOne∈{0,1}, AmountSpecified∈R

(L′,
√
P ′) (9)

(Mint)

(Burn)

(Swap) pending

pending

pending

Block N

...
...

Block N+K

...
...

The appearance on the blockchain P2P network

Tr
an

sa
ct

io
n

or
de

rin
g

Fig. 3: JIT liquidity attack mechanism.

2) Attack Mechanism: 1 The adversary A observes a
sizable pending (zero-confirmation) swap txT in the mempool
via its spy node; 2 A predicts the price range [pl, pu] into
which the txT will be in range for, and issues txA1 right before
txT to mint a new position by adding liquidity in [pl, pu]. 3
A issues txA2 immediately after txT to burn its position by
removing liquidity in [pl, pu] and collect the earned fees .

3) Utility Formalization: By launching a JIT liquidity attack,
a rational adversary A aims to maximize its financial gain.

Revenue. The adversarial revenue comes from two sources:
(i) the swap fee taken unfairly from other LPs; and (ii) the
portfolio value change caused by price impact of the trade.

Revenue = Fee +∆Value (10)

The liquidity taker is responsible for paying fees for swap
execution. The adversary earns swap fees proportional to how
much liquidity it contributes compared to the total liquidity
during the swap interval (cf. Equation 11). If the swap is
executed crossing ticks, A earns swap fees only for the swap
range covered by the price range in which A supplies liquidity.

Fee(LA) =

{
∆xin · ϕ · LA/LT · P(ETH/X) ZeroForOne
∆yin · ϕ · LA/LT · P(ETH/Y) !ZeroForOne

(11)

A may also benefit from the change in its portfolio value. The
marginal price of asset X (i.e., sqrtPriceX96) changes
because of the swap execution, thus affecting the adversarial
portfolio value. Equation 12 calculates the adversarial portfolio
value change (in ETH) as the difference between the value
after (p1 ·x1+y1) and before (p0 ·x0+y0) swap, where P0 and
P1 denote X’s marginal prices before and after respectively.

∆Value(p1, x1, y1) = [(p1 ·x1+y1)−(p0 ·x0+y0)]·P(ETH/Y) (12)

Let V0 = p0·x0+y0 and LT = LA+L0, Equation 13 represents
∆Value as the function of LA, pl and pu (cf. Appendix A).

∆Value(LA, pl, pu) =

[LA(
√
pu−
√
pl)−V0] · P(ETH/Y)

if pu < p1, which implies !ZeroForOne;

[LA(
1√
pl
− 1√

pu
)

(LA+LO)
√

p0
(LA+LO)+

√
p0∆xin

−V0] · P(ETH/Y)

if p1 < pl, which implies ZeroForOne;

[LA(
√
pu−
√
pl − 1√

pu
(

(LA+LO)
√
p0

(LA+LO)+
√

p0∆xin
−√pu)2)−V0] · P(ETH/Y)

if pl ≤ p1 ≤ pu and ZeroForOne;

[LA(
√
pu−
√
pl − 1√

pu
((
√
p0 +

∆yin
LA+LO

)−√pu)2)−V0] · P(ETH/Y)

if pl ≤ p1 ≤ pu and !ZeroForOne;
(13)

Cost. The adversarial cost comes from two sources: (i) the
gas cost of the mint (txA1) and burn (txA2) transaction; and
(ii) the amount of ETH transferred to miners/validators for
priority inclusion. A may participate in auctions for the priority
transaction ordering in the block. As such, in addition to the
gas cost, A may also bribe the miners/validators with direct
Coinbase transfer through smart contracts.

Cost = gas(txA1) + gas(txA2) + transfer (14)

Profit. A aims to maximize its profit by choosing optimal
values (cf. Equation 15) for the following parameters: (i) the
upper and lower bound for the price range [pl, pu] in which A
adds liquidity; and (ii) the amount liquidity LA to add. Without
loss of generality, we assume that the cost is invariant to the
parameter values. Hence, maximizing profit is equivalent to
maximizing revenue (cf. Equation 15).

(LA, pl, pu) = argmax
(LA,pl,pu)

(Fee+∆Value) (15)

V. EMPIRICAL MEASUREMENT

This section presents empirical measurement on JIT liquidity
attacks based on real-world data of Uniswap V3. We provide the
overall statistics of JIT liquidity attacks, analyze the adversarial
revenue and cost, and dissect the adversarial attack strategies.

A. Data Collection

We conduct our empirical measurement for JIT liquidity
attacks on Ethereum from blocks 12545219 (June 1st, 2021) to
16530247 (Jan 31st, 2023), during the course of 20 months. We
apply the following heuristic to identify JIT liquidity attacks.

Heuristic 1 (JIT Liquidity Attack Heuristics). A mints
(txA1) and burns (txA2) an LP position in the same block.

4

The target transaction (txT) is a swap in the same pool. The
issuer of txA1 and txA2 is different from the issuer of txT .
The transaction indices of txA1, txT and txA2 are consecutive.

B. Overall Statistics

By applying Heuristic 1, we have successfully identified
36,671 JIT liquidity attacks on Ethereum. We calculate the
distance between the tick before and after the swap as |i1 −
i0|/tickSpacing. We discover that 97.84% the price change
is less than or equal to one tickSpacing (cf. Table I).

|i1 − i0|/tickSpacing ≤1 (1, 2] (2, 3] (3, 4] >4

Number of Attacks 35878 1210 218 78 77
Percentage of Attacks 97.84% 1.65% 0.30% 0.11% 0.11%

TABLE I: Summarization of the distance between i0 and i1.

20
21

-0
6

20
21

-0
7

20
21

-0
8

20
21

-0
9

20
21

-1
0

20
21

-1
1

20
21

-1
2

20
22

-0
1

20
22

-0
2

20
22

-0
3

20
22

-0
4

20
22

-0
5

20
22

-0
6

20
22

-0
7

20
22

-0
8

20
22

-0
9

20
22

-1
0

20
22

-1
1

20
22

-1
2

20
23

-0
1

Year-month

10
2

10
3

10
4

10
5

M
ill

io
n

U
S

D
 (L

og
 S

ca
le

)

JIT Swap Volume Per Month
JIT Liquidity Volume Per Month

100

150

200

250

300

350
R

at
io

 (L
iq

ui
di

ty
 V

ol
um

e/
S

w
ap

 V
ol

um
e)

JIT Liquidity to Swap Volume Ratio

Fig. 4: The average JIT liquidity to swap volume ratio is 269×.

Insight 1. The JIT liquidity attacks pose high entry barriers,
necessitating participants to hold substantial initial funds.

Our data show that the total swap volume impacted by JIT
liquidity attacks is 5.64B USD, and the average swap volume is
153.8K USD. Hence, we can infer that A only targets sizable
swaps in the mempool to maximize its utility. Interestingly,
we discover that the total liquidity provided by adversaries
amounts to 602.3B USD, and the average liquidity volume
exceeds 16.4M USD. This result indicates that to initiate a
JIT liquidity attack against txT , an adversary needs to provide
liquidity that is on average 269 times higher than the swap
volume of txT (cf. Figure 4). Hence, we conclude that the JIT
liquidity attack presents extremely high barriers to entry.

Upon examining the pool statistics, we discover that the
USDC–WETH–0.03% (0x88e...640) is the most frequently
targeted liquidity pool for JIT liquidity attacks. We find that
the USDC–WETH-0.03% pool attracts 47% of the attacks
(17,368 / 36,671) and 60% of the revenue (6,123 / 10,125
ETH). The USDC–WETH–0.03% takes up most of the JIT
liquidity volume (72%) and swap volume (61%). Besides, while
comparing different fee tiers, we observe that the 0.05% fee
tier captures most of the JIT liquidity volume (51%) and swap
volume (33%). Clearly, adversaries tend to avoid stable pools
with a 0.01% fee tier. This could be attributed to these pools
exhibiting minimal volatility and limited financial prospects.

C. Profitability Analysis
While the accumulative attack profit is growing, the profit-

making potential of various JIT attackers varies. In the follow-
ing, we provide a detailed analysis of adversarial profitability.

1) Revenue: We detect that the total attack revenue amounts
to 10,125 ETH, and the average attack revenue is 0.276 ETH.

Insight 2. JIT liquidity attacks significantly impact existing
LPs, diluting their liquidity shares by an average of 85%
and thereby substantially affecting their financial interests.

JIT adversaries have taken a tremendous amount of swap
fees from existing LPs in the liquidity pool. Our data show
that the total revenue of 10,125 ETH earned by JIT adversaries
consists of 7,111 ETH of portfolio change revenue and 3,014
ETH of swap fee revenue taken from other LPs. For each attack,
an average of 85% swap fees are exploited by adversaries.

Additionally, we observe that the change in portfolio value is
not consistently advantageous for adversaries. From November
2022, the main source of JIT revenue is portfolio value change,
with up to 83% of the total contribution (c.f. Figure 5). However,
before November 2022, the swap fee and portfolio revenue
dominate the revenue generation alternatively. We detect that
the portfolio value change results in a positive contribution only
in 48.4% of JIT liquidity attacks (17, 743/36,671), indicating
that the adversary must carefully consider the impact of
portfolio value change before executing such attacks.

20
21

-0
6-

13

20
21

-0
7-

18

20
21

-0
8-

29

20
21

-1
0-

03

20
21

-1
1-

07

20
21

-1
2-

12

20
22

-0
1-

16

20
22

-0
2-

20

20
22

-0
3-

27

20
22

-0
5-

01

20
22

-0
6-

05

20
22

-0
7-

10

20
22

-0
8-

14

20
22

-0
9-

18

20
22

-1
0-

23

20
22

-1
1-

27

20
23

-0
1-

01

20
23

-0
2-

05

Year-month-day

0

100

200

300

400

500

600

700

W
ee

kl
y

R
ev

en
ue

 in
 E

TH

Portfolio Value Change in ETH
Swap Fee in ETH

Fig. 5: Weekly portfolio change and swap fee revenue.

2) Cost: We calculate adversarial cost using Equation 13.

Insight 3. Instead of the gas fee, the direct transfer incurs
most of the cost. Over 99% of the detected JIT liquidity
attacks do not use the gas fee to reward miners/validators.

The primary source of JIT cost is the direct Coinbase transfer
used to bribe miners/validators. We find that the average attack
cost is 0.072 ETH, with a total cost amounting to 2,027 ETH,
consisting of 539 ETH for gas cost and 2,088 ETH for direct
transfer to miners/validators. We further perform a detailed
breakdown of JIT cost (c.f. Figure 6) and observe that the
direct Coinbase transfer increasingly serves as the main cost
component, accounting for 81% of total cost in January 2023.
This indicates a rising level of competition in the MEV game.
Moreover, on average, JIT adversaries are willing to sacrifice
43.7%± 25.5% of their revenue to bribe the miners/validators.

Interestingly, in most of the attacks, adversaries do not
use gas fees to bribe miners/validators. Before EIP-1559, the

5

https://etherscan.io/address/0x88e6a0c2ddd26feeb64f039a2c41296fcb3f5640#notes

20
21

-0
6-

30

20
21

-0
7-

31

20
21

-0
8-

31

20
21

-0
9-

30

20
21

-1
0-

31

20
21

-1
1-

30

20
21

-1
2-

31

20
22

-0
1-

31

20
22

-0
2-

28

20
22

-0
3-

31

20
22

-0
4-

30

20
22

-0
5-

31

20
22

-0
6-

30

20
22

-0
7-

31

20
22

-0
8-

31

20
22

-0
9-

30

20
22

-1
0-

31

20
22

-1
1-

30

20
22

-1
2-

31

20
23

-0
1-

31

Year-month-day

0

100

200

300

400

500

W
ee

kl
y

C
os

t i
n

E
TH

Gas Cost in ETH
Direct Transfer in ETH

Fig. 6: Gas cost and direct transfer to miners/validators.

adversary could set the gas price of a transaction to zero,
and bribe the miners only via direct transfer. We detect 2,464
(99.91%) such JIT attacks. After EIP-1559, the adversary pays
both the base fee and priority fee as the gas cost. The gas
price cannot be set as zero because the adversary must pay
the base fee. However, the adversary can set the priority fee
to zero and only use direct transfer as the reward to miners.
We detect 34,048 (99.54%) attacks with zero priority fee.

3) Profit: We calculate adversarial profit using Equation 15.

10000

20000
Revenue in ETH
Profit in ETH

10 5 0 5 10 15 20 25 30
Amount (ETH)

0

100

200

C
ou

nt

Fig. 7: Histogram of JIT revenue and profit.

Insight 4. JIT liquidity attacks exhibit subpar profitability
due to their notably low ROI ratio.

The adversaries obtain a total profit of 7,498 ETH, and
an average profit of 0.204 ETH. Surprisingly, only 20,068
(54.7%) JIT liquidity attacks are profitable. Figure 7 shows
the distribution of adversarial revenue and profit, which is
right-skewed with a tail in the positive region. For unprofitable
attacks, the adversary’s loss concentrates in [−0.1, 0] ETH.
The adversary earns more when the attack is profitable.

Besides, we observe that JIT liquidity attacks demonstrate
extremely low ROI. ROI is a metric to evaluate the performance
of an investment. It is calculated as the profit over the invested
capital. The average ROI for JIT liquidity attacks is only
0.007%, indicating poor profitability performance.

4) Top MEV Bots: We proceed to analyze the strategy and
behavior of top MEV bots who have the highest profitability
(i.e., 0xa57...6CF, 0x57C...c94 and 0xCD9...5C4).

Insight 5. The JIT liquidity attack is predominantly con-
trolled by “whales”, making it inaccessible to retail users.

Interestingly, the 36,671 detected JIT liquidity attacks were
related only to 18 MEV bots. By tracing the coin flow of
the top first MEV-bot 0xa57...6CF, we detect that it uses 308
Externally-Owned Accounts to launch attacks, but the earned
funds are all transferred to the same receiver 0x561...Bf9 (cf.
Figure 8). Surprisingly, 0xa57...6CF has issued 27,983 (76%)
attacks, consumed 435 ETH (81%) as the gas fee, transferred
1,628 (78%) ETH to bribe miners/validators, and siphoned
6,900 ETH (92%) as attack profit (cf. Table III). It is evident
that 0xa57...6CF has dominated the entire JIT game, leaving few
opportunities for retail users. Does the top first bot 0xa57...6CF
surpass in profitability? Indeed, 0xa57...6CF garners an average
profit of 0.247 ETH, exceeding the general average. However,
it’s worth noting that 0xa57...6CF’s average ROI stands at a
mere 0.013%. This further underscores that JIT liquidity attacks,
while sometimes profitable for top players, typically represent
low-yield investments with underwhelming profitability.

0x479...790

0xa57...d6C

0xCD9...95C

 0x57C...2c9

0x561...5Bf

 0xCD9...95C

 0x57C...2c9

EOAs MEV Bots Receivers

Fig. 8: The coin flow of JIT MEV bots. The attack revenue of
0xa57...6CF always flows to 0x56...Bf9.

D. Impact on Liquidity Takers

How do JIT liquidity attacks affect liquidity takers (i.e., the
issuer of txT)? In order to answer the question, for every JIT
liquidity attack, we simulate the pool state for the same swap
txT as if the attack (i.e., txA1 and txA2) had never happened.

Insight 6. Liquidity takers gain advantages from JIT liquid-
ity attacks, obtaining more favorable swap prices.

We compare the liquidity taker’s price slippage with/without
JIT liquidity attack. Interestingly, we find that liquidity takers
obtain better execution prices with JIT liquidity attacks. The
average price improvement is 0.139%. This is reasonable,
since after the adversary mints its position, the pool’s liquidity
increases and the price slippage decreases. We further compare
the price improvement across pools with different fee tiers (cf.
Table II). We detect that liquidity takers in 1% fee tier pools
obtain the highest average price improvement of 0.699%.

E. Comparison Study

This section compares JIT liquidity attacks with sandwich
attacks by analyzing their attack mechanisms and statistics.

1) Attack Mechanism: A JIT liquidity attacker A attempts to
mint and burn a concentrated position immediately before and
after the target swap transaction. In contrast, upon observing
a target pending swap txT (e.g, swap X for Y), a sandwich

6

https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf
https://etherscan.io/address/0x57C1e0C2ADf6EECDb135BcF9ec5F23b319be2c94
https://etherscan.io/address/0x9799b475dEc92Bd99bbdD943013325C36157f383
https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf
https://etherscan.io/address/0x56178a0d5F301bAf6CF3e1Cd53d9863437345Bf9
https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf
https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf
https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf
https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf
https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf
https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf
https://etherscan.io/address/0x56178a0d5F301bAf6CF3e1Cd53d9863437345Bf9

Quantiles (%) Statistics (%)

Fee 10% 25% 50% 75% min max mean std

1% 0.135 0.232 0.466 0.911 0.014 12.611 0.699 0.737
0.3% 0.022 0.046 0.110 0.252 0.119 22.752 0.194 0.341
0.05% 0.008 0.014 0.029 0.052 0.000 0.734 0.040 0.039
0.01% 0.000 0.000 0.000 0.001 0.000 0.662 0.009 0.066

TABLE II: Price improvement statistics for different fee tiers.

attacker A′ attempts to front-run txT by purchasing asset Y
and back-run txT by purchasing asset X . As such, the liquidity
taker bears higher slippage than anticipated.

2) Attack Statistics: We proceed to compare the JIT and
sandwich attack statistics on Uniswap V3. We conduct our
empirical measurement on Ethereum from blocks 12545219
(June 1st, 2021) to 16530247 (Jan 31st, 2023). We apply the
heuristics mentioned in [10] to identify sandwich attacks.

Insight 7. Compared with JIT liquidity attacks, sandwich
attacks have lower entry barriers, offer greater profitability,
and are more accessible to retail users.

Overall Statistics. we identify in total 208,149 sandwich
attacks, which is 5.7× the number of JIT liquidity attacks. We
observe that the sandwich attacks present lower entry barriers.
In contrast to JIT liquidity attacks which require the adversarial
to hold a significant amount of initial funds that is on average
269 times higher than the swap volume, a sandwich attack
requires an initial capital of 8.37 ETH, which is on average 6
times higher than the swap volume, indicating that the sandwich
game is more accessible to retail MEV searchers.

Profitability. Our data show that sandwich attackers earn
a total and an average profit of 12,242 ETH and 0.059 ETH
respectively. The average ROI for sandwich attacks is 1.629%,
implying a better profitability performance than JIT liquidity
attacks. In addition, we observe that on average, sandwich
attackers are willing to sacrifice 11.5%± 25.9% of their attack
revenues to bribe the miners/validators, which is much lower
than that of JIT liquidity attacks.

Top MEV Bots Statistics. We detect 143 bots participating
in the sandwich game. The top sandwich MEV bots by profits
are 0x000...B40, 0x000...e7D and 0x000...94e, who siphon
38%, 18% and 16% of the total profit respectively. This result
indicates that the sandwich game is less monopolized than the
JIT game. Surprisingly, while the top first JIT bot 0xa57...6CF
only achieves an average ROI of 0.013%, the top first sandwich
bot 0x000...B40 manages to achieve an average ROI of 1.642%.

Impact on Liquidity Takers. While JIT liquidity attacks
improve the liquidity takers’ execution price by an average
of 0.139%, our simulation results show that sandwich liquidity
takers’ execution prices are worsened by an average of −5.93%.

VI. JIT STRATEGY ANALYSIS

A. Attack Stratgy

As shown in Figure 1, we observe that the existing JIT
attackers all adopt the following strategies in practice:

1 The adversary A observes a sizable pending and potentially
profitable swap transaction txT in the network via its spy node;
2 A simulates txT locally to predict the pool price after the

execution of txT . In this step, A searches the optimal values
for price range[pl, pu] and the amount liquidity LA to add.
3 A issues the mint transaction txA1

and the burn transaction
txA2

by calling the MEV bot contract. The input data of txA1

includes the optimal parameters generated in Step 2 .
Note that Step 2 is performed off-chain and the adversary
searches the optimal values privately. However, we can leverage
the on-chain public data to decode txA1’s input and execution
process, which can help analyze how the adversary chooses
the liquidity amount LA and the price range [pl, pu].

1) Liquidity Amount LA Choice: We observe two methods to
choose the liquidity amount LA: (i) For all of the 7,932 (22%)
JIT attacks launched by the bots 0x57C...c94 and 0x596...87E,
LA is explicitly specified in the add transaction input. (ii) For
add transactions issued by other JIT bots, e.g., 0xa57...6CF,
LA is not specified in the transaction input data. Instead, the
bots input ∆Xd and ∆Yd that they desire to add to the pool.

We take 0xa57...6CF and 0x57C...c94 as examples to
compare their adding token amounts with the corresponding
pool liquidity and their balances. We observe that, although
the bot 0x57C...c94 does not always choose to supply all its
token balance to add liquidity to the pool (cf. Figure 9a), the
average liquidity share occupied by 0x57C...c94 is larger than
that occupied by 0xa57...6CF (cf. Figures 9b and 9c).

2) Price Range [pl, pu] Choice: We fetch the tick ranges
[il, iu] by decoding the adversarial mint transactions, and
compare them with the i0 (tick before the swap) and the tick
i1 (tick after the swap). We observe that 18,766 (51%) swap
transactions do not trigger the tick update in the liquidity pool
(i.e., i0 = i1), and 17,112 (47%) swap transactions only trigger
the tick update less than one tick space (i.e., |i1 − i0| ≤ 1×
tickSpacing, cf. Table I and IV). This can well explain
why almost all (more than 99.99%) JIT attacks only cover one
single tick space when setting the tick range [il, iu].

Algorithm 1: Attack Simulation for 0xa57...6CF
Data: Original JIT transactions txA1 , txT and txA2

Result: optimal lower tick ioptimal
l , maximum profit Pmax

1 iactuall ,tickSpacing← decode txA1 input data ;
2 ioptimal

l ← iactuall ;
3 Pmax ← 0;
4 while −4 ≤ δ ≤ 4 do
5 ˆtxA1 ← modify txA1 by setting the lower tick provided

in the input data as iactuall + δ · tickSpacing;
6 P ← execute ˆtxA1 , txT and txA2 sequentially;
7 if P > Pmax then
8 Pmax ← P ;
9 ioptimal

l ← iactuall + δ · tickSpacing;

10 δ ← δ + 1;

3) Simulating the Attacks of 0xa57...6CF: Our analysis
in Section VI-A indicates that bot 0xa57...6CF adopts the
following strategy: (i) providing the maximum amount of

7

https://etherscan.io/address/0x00000000003b3cc22aF3aE1EAc0440BcEe416B40
https://etherscan.io/address/0x00000000008C4FB1c916E0C88fd4cc402D935e7D
https://etherscan.io/address/0x000000000035B5e5ad9019092C665357240f594e
https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf
https://etherscan.io/address/0x00000000003b3cc22aF3aE1EAc0440BcEe416B40
https://etherscan.io/address/0x57C1e0C2ADf6EECDb135BcF9ec5F23b319be2c94
https://etherscan.io/address/0x596183aD5b82a845F43CE6826CB80BDFAA38187E
https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf
https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf
https://etherscan.io/address/0x57C1e0C2ADf6EECDb135BcF9ec5F23b319be2c94
https://etherscan.io/address/0x57C1e0C2ADf6EECDb135BcF9ec5F23b319be2c94
https://etherscan.io/address/0x57C1e0C2ADf6EECDb135BcF9ec5F23b319be2c94
https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf
https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf
https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf
https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf

num. Attacks Revenue Avg. Rev. Gas Fee Avg. Gas Transfer Avg. Trans. Profit Avg. Pro. Liq. Share Bribe Ratio ROI

All 36,671 10,125 0.276 539 0.015 2,088 0.057 7498 0.204 85.42% 23.94% 0.007%
0xa57 27,983 (76%) 8,963 (88%) 0.320 435 (81%) 0.016 1628 (78%) 0.058 6900 (92%) 0.247 85.27% 23.39% 0.013%
0x57C 7,808 (21%) 981 (10%) 0.126 94 (17%) 0.012 403 (19%) 0.052 484 (6%) 0.062 88.85% 26.30% 0.005%
0xCD9 454 (1%) 84 (1%) 0.186 1 (0%) 0.002 30 (1%) 0.066 53 (1%) 0.117 45.16% 21.78% 0.033%
Others 426 (1%) 95 (1%) 0.225 10 (2%) 0.022 26 (1%) 0.062 60 (1%) 0.141 75.32% 18.81% -0.325%

TABLE III: Overview of top MEV bots statistics. The revenue, gas fee, Coinbase transfer, and profit are measured in ETH.

15.6M 15.8M 16.0M 16.2M 16.4M
Block Number

0

20

40

60

80

100

Li
qu

id
ity

 /
B

al
an

ce
 (%

)

Token X
Token Y

(a) The liquidity/balance ratio for 0x57C...c94.

15.6M 15.8M 16.0M 16.2M 16.4M
Block Number

0

20

40

60

80

100

A
dv

er
sa

ria
l L

iq
ui

di
ty

 S
ha

re
 (%

)

(b) Adversarial liquidity share for 0x57C...c94.

13.0M 13.5M 14.0M 14.5M 15.0M 15.5M 16.0M 16.5M
Block Number

0

20

40

60

80

100

A
dv

er
sa

ria
l L

iq
ui

di
ty

 S
ha

re
 (%

)

(c) Adversarial liquidity share for 0xa57...6CF.

Fig. 9: Statistics of top MEV bots behaviors.

Distribution # Attacks

d =ts

i0 < i1

i1 < il 2
i0 < il, il ≤ i1 ≤ iu 2,727

il ≤ i0 ≤ iu, il ≤ i1 ≤ iu 5,441
il ≤ i0 ≤ iu, i1 > iu 83

i0 = i1 il ≤ i0 = i1 ≤ iu 18,766

i0 > i1

i1 < il, il ≤ i0 ≤ iu 27
il ≤ i1 ≤ iu, il ≤ i0 ≤ iu 5,980

il ≤ i1 ≤ iu, i0 > iu 3,614
i1 > iu 6

d >ts 5

TABLE IV: Distribution of JIT adversaries’ choices of tick
parameters il and iu. i0 and i1 denote the tick before and
after swap respectively, and ds denotes tickSpacing. d =
|iu − il| represents the distance between il and iu.

available token balance to add liquidity in each JIT, and
(ii) setting the lower tick il and the upper tick iu with
the constraints of |iu − il| = 1× tickSpacing. Through
analyzing the input data of 0xa57...6CF’s mint transactions,
we find that the adversary only explicitly specifies the distance
between the lower tick and the current tick in the transaction
data. Because the current tick is obtained by calling the
Uniswap V3 pool smart contract, upon receiving the transaction
data, the bot contract can execute the JIT liquidity attack with
the corresponding parameters chosen by the adversary.

As shown in Algorithm 1, we simulate the JIT liquidity
attacks issued by 0xa57...6CF with modified parameter values,
in an attempt to test whether the modified attacks yield higher
profits. For each JIT, we first decode the input data of the
mint transaction to extract to actual lower tick iactuall chosen
by the adversary. We then modify the add transaction data by
changing the lower tick to iactuall + δ ·tickSpacing, where
−4 ≤ δ ≤ 4. We finally output the optimal parameter ioptimal

l

4 3 2 1 0 1 2 3 4
(ioptimal

l iactual
l)/tickSpacing

101

102

103

104

JIT

 (l
og

 sc
al

e)

Fig. 10: Distribution of optimal tick ranges after simulating
JITs of 0xa57...6CF. ioptimal

l is the optimal lower tick obtained
via simulation, and iactuall is the actual lower tick. 0xa57...6CF
always ensures |iu − il| = 1× tickSpacing.

-4 -3 -2 -1 0 1 2 3 4
(ioptimal

l iactual
l)/tickSpacing

10 2

10 1

100

101

In
cr

ea
se

d
Pr

of
it

 in
 E

TH
 (l

og
 sc

al
e)

Fig. 11: Distribution of the increased profit through simulation.

which yields the highest attack profit Pmax.

Insight 8. The most active bot 0xa57...6CF does not always
choose the optimal parameters to launch attacks, thus failing
to capture at least 7,766 ETH attack profit.

After simulating the attacks issued by bot 0xa57...6CF, we
observe that 73% of them indeed achieve the maximum attack

8

https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf
https://etherscan.io/address/0x57C1e0C2ADf6EECDb135BcF9ec5F23b319be2c94
https://etherscan.io/address/0x9799b475dEc92Bd99bbdD943013325C36157f383
https://etherscan.io/address/0x57C1e0C2ADf6EECDb135BcF9ec5F23b319be2c94
https://etherscan.io/address/0x57C1e0C2ADf6EECDb135BcF9ec5F23b319be2c94
https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf
https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf
https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf
https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf
https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf
https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf
https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf

profit, i.e., iactuall = ioptimal
l (cf. Figure 10). For the remaining

27% JITs, we check whether a different il in the range of
[iactuall − 4 · tickSpacing, iactuall + 4 · tickSpacing]
could achieve higher attack profits. While the original profit
for these non-optimal attacks is 6,900 ETH, we detect that the
bot could have achieved a total profit 14,667 ETH if it had
chosen the optimized lower tick values. As a result, 0xa57...6CF
failed to capture at least 7,766 ETH (equivalent to 16.1M USD)
of the potential attack profit (cf. Figure 11).

VII. DISCUSSION

In this study, we provide an overview of JIT liquidity
attacks on Uniswap V3. Based on the findings of our empirical
measurement, we suggest the following potential future research
avenues. First, it is worth investigating the existence of analytic
solutions for maximizing adversary utility. While it is difficult
to solve Equation 15, the adversarial strategies could be
evaluated more effectively if an analytical solution could be
found. Second, the protocol should consider how to defend
JIT liquidity attacks for existing LPs. A potential solution
could be to prevent minting and burning in the same block.
However, this may negatively impact the traders who have
rebalancing needs (e.g., 0x9ec...832, 0x2b0...dd3, 0x8a6...e2d).
Consequently, it’s crucial for academic researchers to devise
robust metrics that evaluate the net impact of JIT liquidity
attacks on market efficiency, market fairness, and blockchain
security. Such insights could guide protocol developers in
formulating elegant countermeasures while taking the welfare
economics of various market participants into account.

VIII. CONCLUSION

This paper provides an empirical analysis of JIT liquidity
attacks, a new type of MEV source introduced by the concen-
trated liquidity design of Uniswap V3. We find that the attack
poses notably high entry barriers, necessitating a significant
initial capital. Moreover, the JIT game remains out of reach for
retail users, as a handful of bots overwhelmingly dominate the
landscape. In addition, we find that such attacks represent low-
yield investments, with an average ROI ratio of only 0.007%.
Additionally, we detect such attacks detrimental to existing
LPs, but beneficial to liquidity takers. We further dissect the
JIT strategies of top MEV bots and evaluate their strategies
through local simulation. We find that 27% of the attacks
issued by 0xa57...6CF are non-optimal, thus failing to capture
at least 7,766 ETH of the potential attack profit. Based on our
measurement result, we advise academic researchers to devise
robust metrics to assess the net social impact of JIT liquidity
attacks. Furthermore, we recommend that protocol developers
implement appropriate features to address potential concerns.

REFERENCES

[1] “Uniswap whitepaper,” https://hackmd.io/@HaydenAdams/HJ9jLsfTz.
[2] “Uniswap v2 core,” https://docs.uniswap.org/whitepaper.pdf.
[3] H. Adams, N. Zinsmeister, M. Salem, R. Keefer, and D. Robinson,

“Uniswap v3 core,” Tech. rep., Uniswap, Tech. Rep., 2021.
[4] L. Heimbach, E. Schertenleib, and R. Wattenhofer, “Exploring price

accuracy on uniswap v3 in times of distress,” in Proceedings of the 2022
ACM CCS Workshop on Decentralized Finance and Security, 2022.

[5] S. Loesch, N. Hindman, M. B. Richardson, and N. Welch, “Impermanent
loss in uniswap v3,” arXiv preprint arXiv:2111.09192, 2021.

[6] L. Heimbach, E. Schertenleib, and R. Wattenhofer, “Risks and returns of
uniswap v3 liquidity providers,” arXiv preprint arXiv:2205.08904, 2022.

[7] S. Hashemseresht and M. Pourpouneh, “Concentrated liquidity analysis
in uniswap v3,” in Proceedings of the 2022 ACM CCS Workshop on
Decentralized Finance and Security, 2022, pp. 63–70.

[8] A. A. Aigner and G. Dhaliwal, “Uniswap: Impermanent loss and risk
profile of a liquidity provider,” arXiv preprint arXiv:2106.14404, 2021.

[9] X. Wan and A. Adams, “Just-in-time liquidity on the uniswap protocol,”
Available at SSRN 4382303, 2022.

[10] L. Zhou, K. Qin, C. F. Torres, D. V. Le, and A. Gervais, “High-frequency
trading on decentralized on-chain exchanges,” in 2021 IEEE Symposium
on Security and Privacy (SP). IEEE, 2021, pp. 428–445.

APPENDIX A
DERIVATION OF EQUATION 13

Equation 12 can be written as ∆Value(p1, x1, y1) = [(p1 ·
x1 + y1)− V0] · P(ETH/Y). Therefore, we only need to focus
on p1 · x1 + y1. To represents ∆Value as the function of LA,
pl and pu, we discuss the following scenarios.

Scenario 1: pu < p1. In this scenario, txT swaps Y for X
(i.e., !ZeroForOne). According to Equation 5, when pu < p1,
A’s portfolio after swap consists of asset Y only. Plugging
x1 = 0 and y1 = LA(

√
pu −

√
pl) into Equation 12, we have:.

∆Value = [LA(
√
pu −√

pl)− V0] · P(ETH/Y) (16)

Scenario 2: p1 < pl. In this scenario, txT swaps X for Y
(i.e., ZeroForOne). According to Equation 5, when p1 < pl,
A’s portfolio after swap consists of asset X only. Plugging
x1 = LA(

1√
pl

− 1√
pu

) and y1 = 0 into Equation 12, we have:

∆Value = [LA(
1

√
pl

− 1
√
pu

)p1 − V0] · P(ETH/Y) (17)

When swapping X for Y , Equation 18 holds.

∆xin = ∆
1
√
p
LT = (

1
√
p1

− 1
√
p0

)LT (18)

Hence, p1 can be derived by Equation 19:

√
p1 =

LT
√
p0

LT +
√
p0∆xin

=
(LA + LO)

√
p0

(LA + LO) +
√
p0∆xin

, if ZeroForOne

(19)
Plugging Equation 19 into Equation 17 we have:

∆Value = [LA(
1
√
pl
− 1
√
pu

)
(LA + LO)

√
p0

(LA + LO) +
√
p0∆xin

−V0]·P(ETH/Y)

(20)
Scenario 3: pl ≤ p1 ≤ pu. In this scenario, A’s portfolio
after swap consists of both asset X and Y. Plugging x1 =
LA(

1√
p1

− 1√
pu

) and y1 = LA(
√
p1 −

√
pl) into Equation 12:

∆Value = [LA · (
√
pu −

√
pl −

1
√
pu

(
√
p1 −

√
pu)

2)− V0] · P(ETH/Y)

(21)

Since the swap direction (i.e., the value of ZeroForOne) is
unknown, we should further discuss Scenario 3(a) and 3(b).

9

https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf
https://etherscan.io/tx/0x9ec8bf44803023dc8eff6c2f157886f608970a1ca696570170aa0364a0cbc832
https://etherscan.io/tx/0x2b00107b6b3fd7133c59197fa4cf511bcb7ff611ab85837ceb288f46abca2dd3
https://etherscan.io/tx/0x8a67d21be8da72c21358f7bc8fee0524b4e3370167c40aca6f236b6575b4fe2d
https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf
https://hackmd.io/@HaydenAdams/HJ9jLsfTz
https://docs.uniswap.org/whitepaper.pdf

Scenario 3(a): pl ≤ p1 ≤ pu and ZeroForOne. When
swapping X for Y, we can derive p1 using Equation 19.

∆Value = [LA(
√
pu −

√
pl −

1
√
pu

(
(LA + LO)

√
p0

(LA + LO) +
√
p0∆xin

−
√
pu)

2)− V0] · P(ETH/Y)

(22)
Scenario 3(b): pl ≤ p1 ≤ pu and !ZeroForOne. When
swapping Y for X , Equation 23 holds.

∆yin = ∆
√
pLT = (

√
p1 −

√
p0)LT (23)

Hence, p1 can be derived by Equation 24:

√
p1 =

√
p0 +

∆yin

LT
=

√
p0 +

∆yin

LA + LO
, if !ZeroForOne

(24)
Plugging Equation 24 into Equation 21 we have:

∆Value = [LA(
√
pu −

√
pl −

1
√
pu

((
√
p0 +

∆yin

LA + LO
)−√pu)2)

− V0] · P(ETH/Y)

(25)

10

	Introduction
	Related Work
	Uniswap Liquidity Math
	Uniswap V2: Zero to Infinity
	Uniswap V3: Concentrated Liquidity
	Liquidity and Price
	Positions and Ticks
	Liquidity Provision
	Transaction Fees

	Models
	System Model
	Threat Model
	Attack Model
	Pool Mechanism
	Attack Mechanism
	Utility Formalization

	Empirical Measurement
	Data Collection
	Overall Statistics
	Profitability Analysis
	Revenue
	Cost
	Profit
	Top MEV Bots

	Impact on Liquidity Takers
	Comparison Study
	Attack Mechanism
	Attack Statistics

	JIT Strategy Analysis
	Attack Stratgy
	Liquidity Amount LA Choice
	Price Range [pl, pu] Choice
	Simulating the Attacks of 0xa57...6CF

	Discussion
	Conclusion
	References
	Appendix A: Derivation of Equation 13

