
Revisiting the Nova Proof System on a Cycle of Curves

Wilson Nguyen Dan Boneh Srinath Setty
Stanford University Microsoft Research

{wdnguyen, dabo}@cs.stanford.edu srinath@microsoft.com

Abstract. Nova is an efficient recursive proof system built from an elegant folding scheme for (relaxed)
R1CS statements. The original Nova paper (CRYPTO’22) presented Nova using a single elliptic curve
group of order p. However, for improved efficiency, the implementation of Nova alters the scheme to use
a 2-cycle of elliptic curves. This altered scheme is only described in the code and has not been proven
secure. In this work, we point out a soundness vulnerability in the original implementation of the 2-cycle
Nova system. To demonstrate this vulnerability, we construct a convincing Nova proof for the correct
evaluation of 275 rounds of the Minroot VDF in only 1.46 seconds. We then present a modification
of the 2-cycle Nova system and formally prove its security. The modified system also happens to be
more efficient than the original implementation. In particular, the modification eliminates an R1CS
instance-witness pair from the recursive proof. The implementation of Nova has now been updated to
use our optimized and secure system. We also show that Nova’s IVC proofs are malleable and discuss
several mitigations.

1 Introduction

In a recent work, Kothapalli, Setty, and Tzialla introduced an elegant folding scheme for relaxed R1CS state-
ments [11]. The scheme leads to the Nova proof system: an efficient succinct proof system for incrementally
verifiable computation, or IVC [18]. The description and analysis of Nova in [11] restricts itself to a single
chain of incremental computation, namely a series of identical computation steps that produce an output
which is fed directly into the next step. At every step, a single application of some function F is applied, and
a statement about the validity of the prior step is folded into an ongoing statement of validity. We refer to
this as a single IVC chain.

To improve efficiency, the implementation of Nova [13] uses a 2-cycle of elliptic curves. This leads to a
proof system that uses two parallel IVC chains that must be linked together. Until this work, the 2-cycle
Nova system was only described in the implementation code and there was no public proof of security.

In this short note, we begin by formally describing the two IVC chains approach used in the Nova
implementation. Instead of describing the original scheme, we present in Sections 4 and 5 a modified version
of Nova that results in shorter IVC proofs. As detailed later, the modification eliminates an R1CS instance-
witness pair from IVC proofs. In Section 6 we prove knowledge soundness of this modified system. The
Nova implementation has now been updated [17] to use this optimized system. In Section 8 we show that
Nova’s IVC proofs are malleable, which can lead to a security vulnerability in some applications. We discuss
strategies to mitigate this concern in Section 8.2. Sections 2 and 3 establish the terminology needed to
describe Nova on a cycle of elliptic curves.

In Appendix B we describe an attack on the original implementation. The attack is able to produce
proofs for false statements. For example, we compute a convincing proof for an evaluation of 275 rounds of
the Minroot VDF [9] in only 1.46 seconds on a single laptop. The core issue that this attack exploits is that
the original 2-cycle Nova system produces an IVC proof that contains an additional R1CS instance-witness
pair that is not sufficiently constrained by the verifier.

2 Preliminaries

2.1 Incrementally Verifiable Computation (IVC)

Incrementally verifiable computation, or IVC, was introduced by Valiant [18]. For a function F : {0, 1}a ×
{0, 1}b → {0, 1}a, and some public values z0, zi ∈ {0, 1}a, an IVC scheme lets a prover generate a succinct

proof that it knows auxiliary values aux0, . . . , auxi−1 ∈ {0, 1}b such that

aux0 aux1 auxi−1

↓ ↓ ↓
z0 → F → F → · · · → F → zi

The following definition gives the syntax and security properties for an IVC scheme. The prover P in this
definition computes a proof for one step in the IVC chain. Iterating the prover will produce a proof πi for
the entire chain of length i.

Definition 1 (IVC [18]). An IVC Scheme is a tuple of efficient algorithms (Setup,P,V) with the fol-
lowing interface:

– Setup(1λ, n) → pp: Given a security parameter 1λ, a poly-size bound n ∈ ℕ, outputs public parameters
pp.

– P(pp,F, (i, z0, zi), auxi, πi)→ πi+1: Given public parameters pp, a function F : {0, 1}a×{0, 1}b → {0, 1}a
computable by a circuit of size at most n, an index i ∈ ℕ, an initial input z0 ∈ {0, 1}a, a claimed output
zi ∈ {0, 1}a, advice auxi ∈ {0, 1}b, and an IVC proof πi, outputs a new IVC proof πi+1.

– V(pp,F, (i, z0, zi), πi)→ 0/1: Given public parameters pp, a function F, an index i, an initial input z0, a
claimed output zi, and an IVC proof πi, outputs 0 (accept) or 1 (reject).

An IVC Scheme satisfies the following properties:

Completeness: For every poly-size bound n ∈ ℕ, for every pp in the output space of Setup(1λ, n), for every
function F : {0, 1}a × {0, 1}b → {0, 1}a computable by a circuit within the poly-size bound n, for every
collection of elements (i ∈ ℕ, z0, zi ∈ {0, 1}a), auxi ∈ {0, 1}b, and IVC proof πi,

Pr

 V(pp,F, (i, z0, zi), πi) = 1
⇓

V(pp,F, (i+ 1, z0, zi+1), πi+1) = 1
:

πi+1 ← P(pp,F, (i, z0, zi), auxi, πi),
zi+1 ← F (zi, auxi)

 = 1

Knowledge Soundness: Let n ∈ ℕ be a poly-size bound and ℓ(λ) be a polynomial in the security parameter.
Let F be an efficient function sampling adversary that outputs a function F : {0, 1}a × {0, 1}b → {0, 1}a
computable by a circuit within the poly-size bound n. Then for every efficient IVC prover P ∗, there exists an
efficient extractor E such that

Pr


V(pp,F, (i, z0, zi), πi) = 1ww�
zi = F(zi−1, auxi−1) ∧
(i = 1 ⇒ zi−1 = z0) ∧

(i > 1 ⇒ V(pp,F, (i− 1, z0, zi−1), πi−1) = 1)

:
pp← Setup(1λ, n),
ρ← {0, 1}ℓ(λ),
F← F(pp; ρ),
(i, z0, zi, πi)← P ∗(pp; ρ),
(zi−1, auxi−1), πi−1 ← E(pp; ρ)

 ≥ 1− negl(λ)

Remark 1 (Full Extraction). Our definition of knowledge soundness implies other notions of IVC knowledge
soundness, which require the extraction of all the auxiliary values in the execution chain [1, 2, 10, 11].
Informally, consider some ρ and pp sampled at random, and an adversary P ∗(pp; ρ) that outputs a proof
for i iterations of the IVC. Then the knowledge extractor E can be used to construct an IVC prover for a
proof of i − 1 iterations. Applying the definition again to the prover derived from E implies that there is a
knowledge extractor E ′ that outputs a valid (zi−2, auxi−2), πi−2 with all but negligible probability. We can
repeat this argument inductively to extract a vector of auxiliary values (auxi−1, . . . , aux0) that shows that
the zi output by P ∗ is computed correctly from z0. Note that if time(E) > c · time(P ∗) for some constant
c > 1, then this argument only works for O(log λ) steps before the running time of the extractor becomes
super-polynomial in λ. We use this sequential IVC model for consistency with the original Nova [11, 13]. In
certain applications, a tree-like IVC proof system might be preferable.

2

Remark 2 (Succinct Verifier). The verifier in Definition 1 takes as input the description of the function F
which implies that its running time must be at least linear in the size of F. One can include an additional
Keygen algorithm that outputs a prover-verifier key pair (pk, vk) specialized to a function F, where the size
of vk is sub-linear in the size of F. This shifts the work of processing the description of F to a preprocessing
phase. The verifier then takes vk as input, instead of F, which may lead to a faster online verifier. In fact,
Nova [11] includes a Keygen algorithm that enables a succinct verifier.

Remark 3 (Zero Knowledge). In some settings one also wants the IVC scheme to be zero knowledge, but in
this writeup we focus on knowledge soundness of the scheme.

2.2 Committed Relaxed R1CS over a Ring

The Nova Proof system over a cycle of curves makes use of two finite fields 𝔽1 and 𝔽2 simultaneously. As such,
it is convenient to treat the primitives used in Nova as operating on the finite commutative ring R := 𝔽1×𝔽2,
where addition and multiplication are defined component wise. That is, for a = (a1, a2) and b = (b1, b2) in R,
we define a+ b = (a1 + a2, b1 + b2) and a · b = (a1b1, a2b2).

Definition 2. (Commitment Scheme) Let R be a finite commutative ring. A commitment scheme for vectors
over R is a pair of efficient algorithms (Setupcom,Commit) with the following interface:

– Setupcom(1
λ,R, n)→ ppcom: Given a security parameter 1λ ∈ 1ℕ, a description of a ring R, and a poly-size

bound n ∈ ℕ, outputs public parameters ppcom.
– Commit(ppcom, x)→ c: Given public parameters ppcom and input x ∈ Rn, outputs a commitment c.

These algorithms need to satisfy the following properties,

– Binding: Let n ∈ ℕ be a poly-size bound. For every efficient adversary A and for every finite commutative
ring R whose size is at most exponential in λ,

Pr

[
Commit(ppcom, x0) = Commit(ppcom, x1) ∧

x0 ̸= x1
:

ppcom ← Setupcom(1
λ,R, n)

(x0, x1)← A(ppcom)

]
≤ negl(λ)

– Additively Homomorphic: Given two commitments c ← Commit(ppcom, x), c′ ← Commit(ppcom, x
′) to

vectors x, x′ ∈ Rn (not necessarily distinct), there is an efficient homomorphism ⊕ on commitments
such that c⊕ c′ = Commit(ppcom, x+ x′).

– Succinct: For any x ∈ Rn, the commitment c← Commit(ppcom, x) must have size |c| ≤ poly(λ, log(n)).

Definition 3. (Committed Relaxed R1CS over a Ring) Consider m,n, ℓ ∈ ℕ where m > ℓ and a finite
commutative ring R. Further, consider a commitment scheme Commit for vectors over R, where ppW and
ppE are commitment parameters for vectors of size m− ℓ− 1 and n respectively.

– A committed relaxed R1CS instance is a tuple 𝕌 := (Ē, s, W̄ , x), where Ē and W̄ are commitments,
s ∈ R, and x ∈ Rℓ.

– A committed relaxed R1CS instance 𝕌 = (Ē, s, W̄ , x) is satisfiable with respect to an R1CS constraint
system R1CS := (A,B,C ∈ Rn×m) if there exist a relaxed witness 𝕎 := (E ∈ Rn, W ∈ Rm−ℓ−1) such
that

Ē = Commit(ppE , E), W̄ = Commit(ppW ,W), and (A · Z) ◦ (B · Z) = s · (C · Z) + E

where Z = (W,x, s). We refer to E as the error vector and W as the extended witness.

– An instance-witness pair (𝕌,𝕎) satisfies a constraint system R1CS if 𝕎 is a satisfying relaxed witness
for 𝕌. An instance-witness pair (𝕦,𝕨) pair strictly satisfies an R1CS constraint system R1CS if (1)
the pair satisfies R1CS and (2) 𝕦.Ē = 0̄ is the commitment to the zero vector and s = 1.

Remark 4 (Trivially Satisfiable Instance-Witness Pairs). A committed instance-witness pair (𝕌⊥,𝕎⊥) will
denote a trivially satisfying pair for an R1CS constraint system R1CS over R. In Nova [11], this pair is
constructed by setting E,W, and x to appropriately sized zero vectors, Ē, W̄ to be commitments to the zero
vectors, and s equal to 0.

3

2.3 A Folding Scheme for Committed Relaxed R1CS over a Ring

Folding schemes give an efficient approach to IVC. In recent years, several works [1, 2, 10–12, 15] constructed
efficient folding schemes for different problems. Nova [11] introduces an elegant folding scheme, for folding
two committed relaxed R1CS instances and their witnesses. Nova’s folding scheme is a public-coin, one-
round interactive protocol that is made non-interactive in the random oracle model using the Fiat-Shamir
transform. Additionally, Nova heuristically instantiates the random oracle with a concrete hash function and
assumes that this heuristic produces a protocol that is knowledge sound. A similar assumption is used in
other recursive proof systems [1, 2, 10].

Definition 4. A Non-Interactive Folding Scheme for Committed Relaxed R1CS consists of an
underlying commitment scheme (Setupcom,Commit) (Definition 2) for committed relaxed instances (Defini-
tion 3) and a tuple of efficient algorithms (FoldSetup,FoldK,FoldP ,FoldV) with the following interface:

– FoldSetup(1
λ, n) → pp: Given a security parameter 1λ ∈ 1ℕ, a poly-size bound n ∈ ℕ, outputs public

parameters pp which contain the description of a finite commutative ring R and commitment parameters
ppcom for vectors over R within the size bound n.

– FoldK(pp,R1CS)→ (pk, vk) Given public parameters pp, an R1CS constraint system R1CS over R within
the poly-size bound n, outputs proving key pk and verifier key vk.

– FoldP (pk, (𝕦,𝕨), (𝕌,𝕎))→
(
T̄, (𝕌′,𝕎′)

)
: Given a proving key pk, two committed relaxed R1CS instance-

witness pairs (𝕦,𝕨), (𝕌,𝕎), outputs a folding proof T̄ in the commitment space, and a new committed
relaxed R1CS instance-witness pair (𝕌′,𝕎′).

– FoldV
(
vk, 𝕦,𝕌, T̄

)
→ 𝕌′: Given a verification key vk, two committed relaxed R1CS instances 𝕦,𝕌, and a

folding proof T̄, outputs a new committed relaxed R1CS instance 𝕌′.

These algorithms need to satisfy the following properties:

Completeness: For every poly-size bound n′ ∈ ℕ, for every pp in the output space of FoldSetup(1
λ, n′), for

every poly-size m,n, ℓ ∈ ℕ where m > ℓ, n′ > m − ℓ − 1, n′ > n, for every R1CS constraint system
R1CS := (A,B,C ∈ Rn×m), for every committed relaxed instance-witness pair (𝕦,𝕨), (𝕌,𝕎) for R1CS,

Pr


𝕌′ = 𝕌′′

∧
(𝕦,𝕨), (𝕌,𝕎) satisfy R1CS

=⇒ (𝕌′,𝕎′) satisfies R1CS

:

(pk, vk)← FoldK(pp,R1CS),(
T̄, (𝕌′,𝕎′)

)
← FoldP (pk, (𝕦,𝕨), (𝕌,𝕎)) ,

𝕌′′ ← FoldV
(
vk, 𝕦,𝕌, T̄

)
 = 1

Knowledge Soundness: Let n ∈ ℕ be a poly-size bound and ℓ(λ) be a polynomial in the security parameter.
For every efficient adversary P∗, there exist an efficient extractor E such that

Pr


𝕌′ = FoldV(vk, 𝕦,𝕌, T̄) ∧
(𝕌′,𝕎′) satisfies R1CSw�

(𝕦,𝕨), (𝕌,𝕎) satisfy R1CS

:

pp← FoldSetup(1
λ, n),

ρ← {0, 1}ℓ(λ),(
R1CS, (𝕦,𝕌, T̄), (𝕌′,𝕎′)

)
← P∗(pp; ρ),

(pk, vk)← FoldK(pp,R1CS),

(𝕨,𝕎)← E(pp; ρ)

 ≥ 1− negl(λ)

In words, the definition of knowledge soundness states that if an adversary P∗ can create a folded
statement 𝕌′ of two statements 𝕦 and 𝕌 and a satisfying witness 𝕎′ for 𝕌′, then an extractor E for P∗ can
produce satisfying witnesses 𝕨 for 𝕦 and 𝕎 for 𝕌.

Collision resistance. The Nova construction also uses collision resistant hash functions. To be compre-
hensive, we define these next.

4

Definition 5 (Collision Resistant Hash Functions). Let R be a finite commutative ring such that
|R| ≈ 2λ. A hash function for R is a pair of efficient algorithms (SetupH,H) with the following interface:

– SetupH(1
λ,R)→ ppH: Given a security parameter 1λ ∈ 1ℕ and a description of R, outputs public param-

eters ppH.
– H(ppH, x)→ h: Given public parameters ppH and input x ∈ R∗, outputs a hash h ∈ R.

A hash function is collision resistant if for every efficient adversary A,

Pr

[
H(ppH,m0) = H(ppH,m1) ∧

m0 ̸= m1
:

ppH ← SetupH(1
λ,R)

(m0,m1)← A(ppH)

]
≤ negl(λ)

3 The Nova Proof System over a Cycle of Curves: Preliminary Details

In this section and the next, we describe details about the underlying primitives in the Nova Proof System [13].
Section 5 describes the explicit operation of the modified IVC verifier and modified IVC prover.

Cycle of Elliptic Curves To reduce the number of constraints related to group operations, the implemen-
tation of Nova uses a cycle of elliptic curves for which the discrete log problem is hard. Specifically, the
Nova implementation is generic over any cycle of elliptic curves that implements certain Rust traits (Nova
implements those traits for the pasta cycle of two curves [14]). We denote the elliptic curve groups as 𝔾1

and 𝔾2. We refer to the scalar field of an elliptic curve group 𝔾 as the field 𝔽 whose order is |𝔾|, and the base
field of 𝔾 as the field 𝔽 ′ over which the elliptic curve is defined (i.e. the points have the form (x, y) ∈ 𝔽 ′×𝔽 ′).

The group 𝔾1 has scalar field 𝔽1 and base field 𝔽2, while 𝔾2 has scalar field 𝔽2 and base field 𝔽1. Group
operations for 𝔾1 can be efficiently expressed as constraints over the base field 𝔽2. Symmetrically, group
operations for 𝔾2 can be efficiently expressed as constraints over the base field 𝔽1. The groups 𝔾1 and 𝔾2

will be the commitment spaces for Pedersen vector commitments for vectors over 𝔽1 and 𝔽2 respectively.

Groups and Rings We define the ring R := 𝔽1 × 𝔽2 as the set of tuples with one element in 𝔽1 and another
in 𝔽2. We can naturally define the ring operations as the component-wise field operations. Similarly, define
the group 𝔾 := 𝔾1 × 𝔾2 and it’s group operation as the component-wise group operation.

Commitments In Nova, the folding procedure requires additively homomorphic commitments to vectors over
a field 𝔽 . Their specific construction [11] uses Pedersen vector commitments belonging to a group 𝔾 of order
|𝔽 |, for which the discrete log problem is hard. Nova’s implementation [13] is generic over the commitment
scheme and one can supply a different commitment scheme for vectors, but we restrict our attention to
Pedersen vector commitments in this paper.

We generalize the Pedersen vector commitment to the ring R := 𝔽1× 𝔽2 by composing a Pedersen vector
commitment over 𝔽1 with commitment space 𝔾1 and a Pedersen vector commitment over 𝔽2 with commitment
space 𝔾2. We write x(1) ∈ 𝔽n

1 and x(2) ∈ 𝔽n
2 for the left and right projections of a vector x ∈ Rn. Then, the

commitment to x is a pair of commitments: a commitment to x(1) ∈ 𝔽n
1 and a commitment to x(2) ∈ 𝔽n

2 .
Concretely, this commitment to the vector x ∈ Rn will be an element in 𝔾 := 𝔾1 × 𝔾2.

Committed relaxed instances Consider two R1CS constraint systems

R1CS(1) := (A1, B1, C1 ∈ 𝔽n1×m1
1) and R1CS(2) := (A2, B2, C2 ∈ 𝔽n2×m2

1)

defined over 𝔽1 and 𝔽2, respectively. A committed relaxed instance for R1CS(1) is a tuple

𝕌(1) :=
(
Ē(1), s(1), W(1), x(1)

)
where Ē(1),W(1) ∈ 𝔾1, s(1) ∈ 𝔽1, x(1) ∈ 𝔽 ℓ1

1 .

The corresponding relaxed witness 𝕎(1) = (E(1),W (1)) has an error vector E(1) ∈ 𝔽n1
1 and extended witness

W (1) ∈ 𝔽m1−ℓ1−1
1 . Symmetrically, a committed relaxed instance for R1CS(2) is a tuple

𝕌(2) :=
(
Ē(2), s(2), W(2), x(2)

)
where Ē(2),W(2) ∈ 𝔾2, s(2) ∈ 𝔽2, x(2) ∈ 𝔽 ℓ2

2 .

5

The corresponding relaxed witness 𝕎(2) = (E(2),W (2)) has error vector E(2) ∈ 𝔽n2
2 and W (2) ∈ 𝔽m2−ℓ2−1

2 .

The two constraint systems R1CS(1) over 𝔽1 and R1CS(2) over 𝔽2 can be treated as a single constraint
system R1CS := (A,B,C ∈ Rn×m) over R := 𝔽1 × 𝔽2. The constraint systems R1CS(1) and R1CS(2) are
simply the left and right projections of R1CS. A strict projection of R1CS would require the dimensions
of R1CS(1) and R1CS(2) to be identical to the dimensions of R1CS. In practice, R1CS(1) and R1CS(2) can
have different dimensions. When abstractly combining the constraint systems to obtain R1CS, we can pad
the systems with dummy rows and columns so that R1CS(1) and R1CS(2) have the same dimension. In
particular, m = max(m1,m2), n = max(n1, n2), and l = max(l1, l2). Similarly, we can treat instance-witness
pairs (𝕌(1),𝕎(1)), (𝕌(2),𝕎(2)) as the left and right projection of an instance-witness pair (𝕌,𝕎) for R1CS.

Hash Functions Hash functions H1 : 𝔽 ∗
1 → 𝔽1 and H2 : 𝔽 ∗

2 → 𝔽2 are collision resistant hash functions that
take as input an arbitrary number of field elements and output a single field element which encodes the hash.
In Nova, this single field element can be represented as a scalar whose bit representation is at most 250 bits
long. Thus, the output hash has a unique representation in both fields, whose elements are 256 bits.1

Concretely, define h1 := H1(. . .) as the output of H1 for some arbitrary input elements (. . .) ∈ 𝔽 ∗
1 . The

hash can be expressed as h1 =
∑

i≤250 b
(1)
i · (2(1))i where 2(1) ∈ 𝔽1 and for all i ≤ 250, b

(1)
i ∈ 𝔽1 are bits in

{0, 1}. The hash output h1 :=
∑

i≤250 b
(1)
i · (2(1))i in 𝔽1 can be represented as an element h′

1 in 𝔽2. To do so,

define h′
1 :=

∑
i≤250 b

(2)
i ·(2(2))i where for all i, the bit b

(2)
i ∈ 𝔽2 is the same the bit b

(1)
i ∈ 𝔽1 (i.e. if b

(1)
i = 1(1),

we define b
(2)
i = 1(2) otherwise b

(2)
i = 0(2)). Symmetrically, a hash output h2 :=

∑
i≤250 b

(2)
i · (2(2))i in 𝔽2 can

be represented as an element h′
2 in 𝔽1 in the same way.

Similarly, the hash function H : {0, 1}∗ → {0, 1}λ is a collision resistant hash function whose outputs
can be represented uniquely in both fields. We omit the hash parameters for H for ease of presentation. The
Nova implementation [13] uses the Poseidon hash function [7] for H1 and H2 and SHA-3 [5] for H.

3.1 Folding over a Cycle of Curves

In Nova [11], a non-interactive folding scheme in the random oracle model is constructed by applying the
Fiat-Shamir transform [6] to an interactive folding scheme. By instantiating the random oracle with an
appropriate cryptographic hash function, they heuristically obtain a non-interactive folding scheme in the
plain model. The construction described in [11] is limited to an R1CS constraint system R1CS defined over
a field 𝔽 with commitments belonging to a group 𝔾 (with scalar field 𝔽).

We extend the construction to R1CS constraint systems R1CS defined over a ring R := 𝔽1 × 𝔽2 by
composing a folding scheme for R1CS constraint systems defined over 𝔽1 and a folding scheme for R1CS
constraint systems defined over 𝔽2. When we fold committed relaxed instances for R1CS(1), we implicitly
mean run the folding scheme for systems over 𝔽1. Symmetrically, when we fold committed relaxed instances
for R1CS(2), we implicitly mean run the folding scheme for systems over 𝔽2. However, the random oracle calls
used in both folding scheme will need to take in an argument vk, which is derived from both systems. We
describe this in more detail in the description of FoldK.

Folding Setup FoldSetup takes in as input:

– A security parameter 1λ.
– A poly-size bound n ∈ ℕ.

The algorithm performs the following steps:

1. Sample a cycle of elliptic curves (𝔾1, 𝔽1,𝔾2, 𝔽2)← SampleCycle(1λ).
2. Sample collision resistant hash parameters ppH1

← SetupH(1
λ, 𝔽1), ppH2

← SetupH(1
λ, 𝔽2).

3. Sample commitment parameters ppcom1
← Setupcom(1

λ, 𝔽1, n) and ppcom2
← Setupcom(1

λ, 𝔽2, n). 2

4. Output pp :=
(
(𝔾1, 𝔽1,𝔾2, 𝔽2), ppH1

, ppH2
, ppH, ppcom1

, ppcom2

)
.

1The size of a digest is configurable, but a digest length of 250 bits was chosen to support a variety of popular
curve cycles e.g., secp/secq, pallas/vesta (pasta curves), BN254/Grumpkin.

2The commitment parameters ppE , ppW will be prefixes of ppcom where the length is max
(
|E|, |W |

)
.

6

Folding Keygen FoldK takes in as input:

– Public parameters pp
– An R1CS constraint system R1CS over R within the poly-size bound n.

The algorithm performs the following steps:

1. Assign the verification key vk to a hash digest of the public parameters and constraint systems

vk← H
(
pp, R1CS := (R1CS(1),R1CS(2))

)
(1)

2. Assign the proving key pk← (pp, R1CS) to be the public parameters and constraint systems.
3. Output (pk, vk).

The Verification Key The Nova folding scheme is derived from an interactive protocol via the Fiat-Shamir
transform [6]. As such, queries to the random oracle must include a description of the entire environment.
Concretely, let H be an appropriate cryptographic hash function that heuristically instantiates a random
oracle and whose outputs can be represented uniquely in both fields. The vk element (assigned in (1))
denotes a hash digest of the environment. FoldV incorporates the elements vk, 𝕦,𝕌, T̄ as arguments to its
random oracle. We stress that this is needed to preserve the soundness of the Fiat-Shamir transform [3], as
these digest elements represent inputs to the folding verifier when viewed as an interactive protocol.

4 The Augmented Constraint Systems Used in Nova

The Nova IVC Scheme operates on a pair of functions F1 and F2, one for each field. Abstractly, one can treat
Nova as an IVC scheme for the combined function F : (𝔽 a1

1 × 𝔽 a2
2)× (𝔽 b1

1 × 𝔽 b2
2)→ (𝔽 a1

1 × 𝔽 a2
2) of the form(

(z(1), z(2)), (aux(1), aux(2))
) F7−→

(
F1(z

(1), aux(1)), F2(z
(2), aux(2))

)
where F1 : 𝔽 a1

1 × 𝔽 b1
1 → 𝔽 a1

1 and F2 : 𝔽 a2
2 × 𝔽 b2

2 → 𝔽 a2
2 are poly-size arithmetic circuits over 𝔽1 and 𝔽2

respectively.

The Nova IVC scheme aims to prove that (z
(1)
i , z

(2)
i) is the result of iterating the function F = (F1,F2)

a total of i times starting from the input (z
(1)
0 , z

(2)
0) and using some auxiliary inputs. Every iteration of

the IVC uses two R1CS constraint systems, one over 𝔽1 and one over 𝔽2, to verify that the functions F1

and F2 were evaluated correctly in that iteration. However, Nova augments these core constraint systems
with additional constraints to verify that folding is done correctly at every iteration, and that the outputs
of the previous iteration are properly forward to the current iteration. In this section we describe the two
augmented constraint systems in detail.

The augmented constraint systems Nova defines two augmented R1CS constraint systems R1CS(1) and
R1CS(2) over 𝔽1 and 𝔽2. As noted in Section 3, a group operation for 𝔾1 can be efficiently expressed as
constraints in the base field 𝔽2. Since the folding operation requires group operations in 𝔾1, the Nova im-
plementation does the folding of the committed instances 𝕦(1) and 𝕌(1) for R1CS(1) in the constraints of

R1CS(2). Symmetrically, the Nova implementation does the folding of the committed instances 𝕦(2) and 𝕌(2)

for R1CS(2) in the constraints of R1CS(1).

The constraint systems R1CS(1) and R1CS(2) are defined as follows:

– let R1CS(1) be the R1CS constraint system for the relation R1 defined in Figure 1a.

– let R1CS(2) be the R1CS constraint system for the relation R2 defined in Figure 1b.

Intuitively, each constraint system applies one step of its function zi+1 := F(zi, auxi), folds a prior committed
instance 𝕦 into a running committed instance 𝕌 for the opposite constraint system, maintains the original
inputs z0, and updates the iteration index i. We will explain these constraint systems in more detail when
we describe the operation of the prover in Section 5.3.

7

R1 :=




𝕦(1)
i+1.x := (x0, x1 ∈ 𝔽1) ;

ŵ
(1)
i+1 :=

(
vk ∈ 𝔽1, i(1) ∈ 𝔽1, z

(1)
0 , z

(1)
i ∈ 𝔽 a1

1 , aux
(1)
i ∈ 𝔽 b1

1 , 𝕌(2)
i , 𝕦(2)

i ∈ U (2), T̄
(2)
i ∈ 𝔾2

)
where U (2) := 𝔾2 × 𝔽2 × 𝔾2 × 𝔽 2

2

 :

If i(1) = 0(1) :

Then set 𝕌(2)
i+1 := 𝕌(2)

⊥

Else set 𝕌(2)
i+1 := FoldV

(
vk, 𝕦(2)

i ,𝕌(2)
i , T̄

(2)
i

)
Accept if :

If i(1) = 0(1) then z
(1)
i = z

(1)
0

𝕦(2)
i .Ē = 0̄(2)

𝕦(2)
i .s = 1(2)

𝕦(2)
i .x0 = H1

(
vk, i(1), z

(1)
0 , z

(1)
i , 𝕌(2)

i

)
x0 = 𝕦(2)

i .x1

x1 = H1

(
vk, (i+ 1)(1), z

(1)
0 , z

(1)
i+1 := F1(z

(1)
i , aux

(1)
i), 𝕌(2)

i+1

)


(a) The relation R1 defining the R1CS constraint system R1CS(1) on instance-witness pairs

(
𝕦(1)
i+1.x ; ŵ

(1)
i+1

)

R2 :=




𝕦(2)
i+1.x := (x0, x1 ∈ 𝔽2) ;

ŵ
(2)
i+1 :=

(
vk ∈ 𝔽2, i(2) ∈ 𝔽2, z

(2)
0 , z

(2)
i ∈ 𝔽 a2

2 , aux
(2)
i ∈ 𝔽 b2

2 , 𝕌(1)
i , 𝕦(1)

i+1 ∈ U (1), T̄
(1)
i ∈ 𝔾1

)
where U (1) := 𝔾1 × 𝔽1 × 𝔾1 × 𝔽 2

1

 :

If i(2) = 0(2) :

Then set 𝕌(1)
i+1 := 𝕦(1)

i+1

Else set 𝕌(1)
i+1 := FoldV

(
vk, 𝕦(1)

i+1,𝕌
(1)
i , T̄

(1)
i

)
Accept if :

If i(2) = 0(2) then z
(2)
i = z

(2)
0

𝕦(1)
i+1.Ē = 0̄(1)

𝕦(1)
i+1.s = 1(1)

𝕦(1)
i+1.x0 = H2

(
vk, i(2), z

(2)
0 , z

(2)
i , 𝕌(1)

i

)
x0 = 𝕦(1)

i+1.x1

x1 = H2

(
vk, (i+ 1)(2), z

(2)
0 , z

(2)
i+1 := F2(z

(2)
i , aux

(2)
i), 𝕌(1)

i+1

)


(b) The relation R2 defining the R1CS constraint system R1CS(2) on instance-witness pairs

(
𝕦(2)
i+1.x ; ŵ

(2)
i+1

)

8

Representation of Non-native Field elements and Arithmetic Folding two committed instances 𝕦(1) and 𝕌(1)

requires not only group operations over 𝔾1, but also field operations over 𝔽1. However, the R1CS constraint
system R1CS(2) over 𝔽2 has to encode the folding operation as constraints over 𝔽2. To account for this, 𝔽1
elements are encoded appropriately as 𝔽2 elements such that non-native arithmetic can be expressed as 𝔽2
constraints. The same strategy is symmetrically applied for folding constraints in R1CS(1).

Hash parameters The hash parameters ppH1
and ppH2

for H1 and H2 are hard-coded in the respective
constraint systems. We omit the hash parameters in our paper for ease of notation, but implicitly call the
hash function with their respective parameters generated in the IVC Setup.

Symmetry If we omit the base case constraints, R1CS(1) and R1CS(2) are essentially symmetric constraint

systems. The difference in indexing, 𝕦(2)i versus 𝕦(1)i+1, is a notional choice that does not affect the symmetry.

Additionally, we want to highlight that the only constraint on 𝕦(1)i+1.x0 and 𝕦(2)i+1.x0 are that they equal 𝕦(2)i .x1

and 𝕦(1)i+1.x1 respectively. As described in Section 3, hash values can be represented in both fields uniquely;
thus, this equality is well-defined. Essentially, these copy constraints pass along the hashes meant for the
public IO of the opposite instance. We will describe this strategy in more detail in Section 5.3.

5 The Modified Nova IVC Scheme

This section describes a modification to the prior (vulnerable) Nova proof system on a two-cycle of curves.
In Section 5.2, our modifications are highlighted in red text. In Section 6, we prove that this modified Nova
System is knowledge sound (Definition 1). In Section 7 we describe two approaches to further shrink the
Nova proof.

5.1 Setup

The Nova Setup algorithm Setup takes in as input:

– A security parameter 1λ.
– A poly-size bound n ∈ ℕ.

The algorithm outputs pp← FoldSetup(1
λ, n).

5.2 The Modified Nova Verifier

The Nova Verifier V takes in as input:

– IVC public parameters pp,

– a description of functions F1 : 𝔽 a1
1 × 𝔽 b1

1 → 𝔽 a1
1 and F2 : 𝔽 a2

2 × 𝔽 b2
2 → 𝔽 a2

2 ,

– an index i ∈ ℕ,
– starting values z

(1)
0 ∈ 𝔽 a1

1 and z
(2)
0 ∈ 𝔽 a2

2 ,

– claimed evaluations z
(1)
i ∈ 𝔽 a1

1 and z
(2)
i ∈ 𝔽 a2

2 , and

– an IVC Proof for iteration i, namely πi :=
(
(𝕦(2)i ,𝕨(2)

i), (𝕌(1)
i ,𝕎(1)

i), (𝕌(2)
i ,𝕎(2)

i)
)
.

The verifier first runs the following initial procedure, which can be treated as a preprocessing phase (as
discussed in Remark 2):

1. Given functions F1 and F2, deterministically generate augmented R1CS constraint systems R1CS(1) and
R1CS(2) which implement relations R1 and R2 from Figures 1a and 1b

9

2. Compute the folding verification key

(· , vk)← FoldK
(
pp, R1CS := (R1CS(1),R1CS(2))

)
Then, the verifier accepts if the following six conditions are met:

1. The index i must be greater than 0.

2. 𝕦(2)i .x0 = H1

(
vk, i(1), z

(1)
0 , z

(1)
i ,𝕌(2)

i

)
3. 𝕦(2)i .x1 = H2

(
vk, i(2), z

(2)
0 , z

(2)
i ,𝕌(1)

i

)
4. The pair (𝕌(1)

i ,𝕎(1)
i) satisfies R1CS(1).

5. The pair (𝕌(2)
i ,𝕎(2)

i) satisfies R1CS(2).

6. The pair (𝕦(2)i ,𝕨(2)
i) strictly satisfies R1CS(2).

Vulnerability in Nova The old IVC proof πi contained an additional instance-witness pair (𝕦(1)i ,𝕨(1)
i).

πi :=
(
(𝕦(1)i ,𝕨(1)

i), (𝕌(1)
i ,𝕎(1)

i), (𝕦(2)i ,𝕨(2)
i), (𝕌(2)

i ,𝕎(2)
i)

)
Here we denote modifications to the verifier in red font. The old verifier checked that (𝕦(1)i ,𝕨(1)

i) strictly sat-

isfied R1CS(1), and that 𝕦(1)i .x1 = H1

(
vk, i(1), z

(1)
0 , z

(1)
i ,𝕌(2)

i

)
instead of 𝕦(2)i .x0 = H1

(
vk, i(1), z

(1)
0 , z

(1)
i ,𝕌(2)

i

)
.

An assumption made in the implementation was that the instance 𝕦(1)i was folded into 𝕌(1)
i . However, there

were no checks that guaranteed this to be true. With the additional symmetry of the relations R1 and R2,

an attacker could generate adversarial instances 𝕦(1)i , 𝕦(2)i that were trivially satisfiable for any choice of
i > 2. The attack required only two iterations of the IVC prover. To demonstrate the attack, we generated
a convincing IVC proof of 275 iterations of the Minroot VDF [9] in 1.46 seconds on a laptop, which should
be impossible for a secure IVC scheme.

To remediate this issue, we removed the pair (𝕦(1)i ,𝕨(1)
i) from the IVC proof. Additionally, we shifted the

hash check to 𝕦(2)i .x0 = H1

(
vk, i(1), z

(1)
0 , z

(1)
i ,𝕌(2)

i

)
. This change also pleasantly reduces the IVC proof size.

For a complete description of the old Nova verifier see Appendix A. Additionally, a complete description of
the vulnerability can be found in Appendix B, along with a proof of concept attack on Nova’s implementation
of the Minroot VDF.

5.3 The Modified Nova Prover

In this section, we describe a modified Nova prover. The algorithm is similar to the old Nova prover, but the

generated IVC proof πi+1 omits the pair (𝕦(1)i+1,𝕨
(1)
i+1), which caused the original vulnerability (Appendix B).

We first describe an initial procedure, then the base case step of the Nova prover, and then the recursive
step as illustrated in Figure 2.

Initial Procedure The prover performs an initial procedure identical to the initial procedure of the verifier:

1. Given functions F1 and F2, deterministically generate augmented R1CS constraint systems R1CS(1) and
R1CS(2) which implement relations R1 and R2.

2. Compute the folding prover and verifier key

(pk, vk)← FoldK
(
pp, R1CS := (R1CS(1),R1CS(2))

)
10

prover steps (1)+(2)

H1(…,)𝕌(2)
𝑖+1

 𝕦(1)
𝑖+1 𝕦(2)

𝑖

 𝕌(2)
𝑖 𝕌(2)

𝑖+1Fold(,) 𝕦(2)
𝑖 𝕌(2)

𝑖

prover steps (3)+(4)

H2(…,)𝕌(1)
𝑖+1

 𝕦(2)
𝑖+1 𝕦(1)

𝑖+1

 𝕌(1)
𝑖

 𝕌(1)
𝑖+1Fold(,) 𝕦(1)

𝑖+1 𝕌(1)
𝑖

prover steps (1)+(2)

H1(…,)𝕌(2)
𝑖+2

 𝕦(1)
𝑖+2

 𝕌(2)
𝑖+2Fold(,) 𝕦(2)

𝑖+1 𝕌(2)
𝑖+1

prover steps (3)+(4)

H2(…,)𝕌(1)
𝑖+2

 𝕦(2)
𝑖+2

 𝕌(1)
𝑖+2Fold(,) 𝕦(1)

𝑖+2 𝕌(1)
𝑖+1

 𝕦(1)
𝑖+2

 𝕦(2)
𝑖+1 𝕦(2)

𝑖+2

 𝕦(2)
𝑖

Fig. 2: An illustration of the key parts of the prover’s operation in the non-base case.

The Base Case The Nova Prover P takes in as input:

– IVC public parameters pp.

– A description of functions F1 : 𝔽 a1
1 × 𝔽 b1

1 → 𝔽 a1
1 and F2 : 𝔽 a2

2 × 𝔽 b2
2 → 𝔽 a2

2 .

– Starting values z
(1)
0 ∈ 𝔽 a1

1 and z
(2)
0 ∈ 𝔽 a2

2 .

– Auxiliary inputs aux
(1)
0 ∈ 𝔽 b1

1 and aux
(2)
0 ∈ 𝔽 b2

2 .

The prover proceeds as follows:

– Compute New Pair for R1CS(1): Compute the new committed pair (𝕦(1)1 ,𝕨(1)
1) for R1CS(1) as follows:

• Define an initial dummy instance as 𝕦(2)0 :=
(
0̄(2), 1(2), 0̄(2), x := (x0, x1)

)
where

x0 := H1

(
vk, 0(1), z

(1)
0 , z

(1)
0 , 𝕌(2)

⊥
)

and x1 := H2

(
vk, 0(2), z

(2)
0 , z

(2)
0 , 𝕌(1)

⊥
)

This instance will not be folded into any running instance.

• Define ŵ
(1)
1 := (vk, 0(1), z

(1)
0 , z

(1)
0 , aux

(1)
0 ,𝕌(2)

⊥ , 𝕦(2)0 , 0̄(2)) as the relation witness for R1. Then, compute

the extended witness w
(1)
1 by performing the computation on ŵ

(1)
1 required to satisfy the constraints

expressed in R1CS(1).

• Commit to the extended witness w̄
(1)
1 ← Commit

(
pp

(1)
W , w

(1)
1

)
.

• Define 𝕌(2)
1 := 𝕌(2)

⊥ and 𝕎(2)
1 := 𝕎(2)

⊥ .

• Define x0 := 𝕦(2)0 .x1 and compute x1 := H1

(
vk, 1(1), z

(1)
0 , z

(1)
1 := F1(z

(1)
0 , aux

(1)
0),𝕌(2)

1

)
.

• Assign 𝕦(1)1 :=
(
0̄(1), 1(1), w̄

(1)
1 , (x0, x1)

)
and 𝕨(1)

1 :=
(⃗
0(1), w

(1)
1

)
.

– Compute New Pair for R1CS(2): Compute the new committed pair (𝕦(2)1 ,𝕨(2)
1) for R1CS(2) as follows:

11

• Define ŵ
(2)
1 := (vk, 0(2), z

(2)
0 , z

(2)
0 , aux

(2)
0 ,𝕌(1)

⊥ , 𝕦(1)1 , 0̄(2)) as the relation witness for R2. Then, compute

the extended witness w
(2)
1 by performing the computation on ŵ

(2)
1 required to satisfy the constraints

expressed in R1CS(2).

• Commit to the extended witness w̄
(2)
1 ← Commit(pp

(2)
W , w

(2)
1).

• Define 𝕌(1)
1 := 𝕦(1)1 and 𝕎(1)

1 := 𝕨(1)
1 .

• Define x0 := 𝕦(1)1 .x1 and compute x1 := H2

(
vk, 1(2), z

(2)
0 , z

(2)
1 := F2(z

(2)
0 , aux

(2)
0),𝕌(1)

1

)
.

• Assign 𝕦(2)1 :=
(
0̄(2), 1(2), w̄

(2)
1 , (x0, x1)

)
and 𝕨(2)

1 :=
(⃗
0(2), w

(2)
1

)
.

– Output Prover State: Output IVC Proof for step 1

π1 :=
(
(𝕦(2)1 ,𝕨(2)

1), (𝕌(1)
1 ,𝕎(1)

1), (𝕌(2)
1 ,𝕎(2)

1)
)

along with new evaluations z
(1)
1 := F1(z

(1)
0 , aux

(1)
0) and z

(2)
1 := F2(z

(2)
0 , aux

(2)
0). These outputs are sufficient

to execute another step of the Nova prover for iteration 1.

The Non-Base Case The Nova Prover P takes in as input:

– IVC public parameters pp.

– Constraint Systems R1CS(1) and R1CS(2).

– An index i ∈ ℕ, where i ≥ 1.

– Starting values z
(1)
0 ∈ 𝔽 a1

1 and z
(2)
0 ∈ 𝔽 a2

2 .

– Evaluations z
(1)
i ∈ 𝔽 a1

1 and z
(2)
i ∈ 𝔽 a2

2 .

– Auxiliary inputs aux
(1)
i ∈ 𝔽 b1

1 and aux
(2)
i ∈ 𝔽 b2

2 .

– An IVC Proof for Iteration i πi :=
(
(𝕦(2)i ,𝕨(2)

i), (𝕌(1)
i ,𝕎(1)

i), (𝕌(2)
i ,𝕎(2)

i)
)
.

The prover proceeds as follows (see also Figure 2):

1. Fold Prior Pairs for R1CS(2): Fold the committed pairs (𝕦(2)i ,𝕨(2)
i) and (𝕌(2)

i ,𝕎(2)
i) for R1CS(2).

FoldP
(
pk, (𝕦(2)i ,𝕨(2)

i), (𝕌(2)
i ,𝕎(2)

i)
)
→

(
T̄
(2)
i , (𝕌(2)

i+1,𝕎
(2)
i+1)

)
Obtain a folding proof T̄

(2)
i and new committed relaxed instance-witness pair (𝕌(2)

i+1,𝕎
(2)
i+1).

2. Compute New Pair for R1CS(1): Compute the new committed pair (𝕦(1)i+1,𝕨
(1)
i+1) for R1CS

(1) as follows:

– Define ŵ
(1)
i+1 := (vk, i(1), z

(1)
0 , z

(1)
i , aux

(1)
i ,𝕌(2)

i , 𝕦(2)i , T̄
(2)
i) as the relation witness forR1. Then, compute

the extended witness w
(1)
i+1 by performing the computation on ŵ

(1)
i+1 required to satisfy the constraints

expressed in R1CS(1).

– Commit to the extended witness w̄
(1)
i+1 ← Commit(pp

(1)
W , w

(1)
i+1).

– Define x0 := 𝕦(2)i .x1 and compute x1 := H1

(
vk, (i+ 1)(1), z

(1)
0 , z

(1)
i+1 := F1(z

(1)
i , aux

(1)
i),𝕌(2)

i+1

)
.

– Assign 𝕦(1)i+1 :=
(
0̄(1), 1(1), w̄

(1)
i+1, (x0, x1)

)
and 𝕨(1)

i+1 :=
(⃗
0(1), w

(1)
i+1

)
.

3. Fold Pairs for R1CS(1): Fold the newly computed pair (𝕦(1)i+1,𝕨
(1)
i+1) with the committed pair (𝕌(1)

i ,𝕎(1)
i)

for R1CS(1).
FoldP

(
pk, (𝕦(1)i+1,𝕨

(1)
i+1), (𝕌

(1)
i ,𝕎(1)

i)
)
→

(
T̄
(1)
i , (𝕌(1)

i+1,𝕎
(1)
i+1)

)
Obtain a folding proof T̄

(1)
i and new committed relaxed instance-witness pair (𝕌(1)

i+1,𝕎
(1)
i+1).

12

4. Compute New Pair for R1CS(2): Compute the new committed pair (𝕦(2)i+1,𝕨
(2)
i+1) for R1CS

(2) as follows:

– Define ŵ
(2)
i+1 := (vk, i(2), z

(2)
0 , z

(2)
i , aux

(2)
i ,𝕌(1)

i , 𝕦(1)i+1, T̄
(1)
i) as the relation witness for R2. Then, com-

pute the extended witness w
(2)
i+1 by performing the computation on ŵ

(2)
i+1 required to satisfy the

constraints expressed in R1CS(2).

– Commit to the extended witness w̄
(2)
i+1 ← Commit(pp

(2)
W , w

(2)
i+1).

– Define x0 := 𝕦(1)i+1.x1 and compute x1 := H2

(
vk, (i+ 1)(2), z

(2)
0 , z

(2)
i+1 := F2(z

(2)
i , aux

(2)
i),𝕌(1)

i+1

)
.

– Assign 𝕦(2)i+1 :=
(
0̄(2), 1(2), w̄

(2)
i+1, (x0, x1)

)
and 𝕨(2)

i+1 :=
(⃗
0(2), w

(2)
i+1

)
.

5. Output Prover State: Output IVC Proof for step i+ 1

πi+1 :=
(
(𝕦(2)i+1,𝕨

(2)
i+1), (𝕌(1)

i+1,𝕎
(1)
i+1), (𝕌(2)

i+1,𝕎
(2)
i+1)

)
along with new evaluations z

(1)
i+1 := F1(z

(1)
i , aux

(1)
i) and z

(2)
i+1 := F2(z

(2)
i , aux

(2)
i). These outputs are suffi-

cient to execute another step of the Nova prover for iteration i+ 1.

This completes our description of the prover.

6 Proof of security

Theorem 1. If the non-interactive folding scheme is knowledge sound (Definition 4) and the hash function
is collision resistant (Definition 5), then our modified Nova IVC scheme is knowledge sound (Definition 1).

Proof Let n ∈ ℕ be a poly-size bound and ℓ(λ) be a polynomial in the security parameter. Let pp and ρ
be public parameters and randomness sampled as pp ← Setup(1λ) and ρ ← {0, 1}ℓ(λ). Consider an ad-
versary F(pp; ρ) that outputs functions (F1,F2), and a malicious prover P ∗(pp; ρ) that outputs a tuple(
i, (z

(1)
0 , z

(2)
0), (z

(1)
i , z

(2)
i), πi

)
with

πi :=
(
(𝕦(2)i ,𝕨(2)

i), (𝕌(1)
i ,𝕎(1)

i), (𝕌(2)
i ,𝕎(2)

i)
)
. (2)

We assume that V(pp, (F1,F2), (i, (z
(1)
0 , z

(2)
0), (z

(1)
i , z

(2)
i)), πi) = 1. We need to construct an efficient extractor

E(pp; ρ) that outputs valid (z
(1)
i−1, aux

(1)
i−1), (z

(2)
i−1, aux

(2)
i−1), and πi−1 with high probability.

Since the verifier accepts the proof πi in equation (2) the following conditions must hold:

Condition 1. The index i must be greater than 0.

Condition 2. 𝕦(2)i .x0 = H1

(
vk, i(1), z

(1)
0 , z

(1)
i ,𝕌(2)

i

)
Condition 3. 𝕦(2)i .x1 = H2

(
vk, i(2), z

(2)
0 , z

(2)
i ,𝕌(1)

i

)
Condition 4. The pair (𝕌(1)

i ,𝕎(1)
i) satisfies R1CS(1).

Condition 5. The pair (𝕌(2)
i ,𝕎(2)

i) satisfies R1CS(2).

Condition 6. The pair (𝕦(2)i ,𝕨(2)
i) strictly satisfies R1CS(2).

6.1 The case i = 1

Here we consider the case when i is equal to 1.

By (Condition 6), the pair (𝕦(2)1 ,𝕨(2)
1) strictly satisfies R1CS(2) which implements relation R2. This implies

that the extended witness 𝕨(2)
1 .w(2) contains an R2 witness ŵ

(2)
1 of the form

ŵ
(2)
1 :=

(
vk′ ∈ 𝔽2, j ∈ 𝔽2, z, z′ ∈ 𝔽 a2

2 , aux
(2)
0 ∈ 𝔽 b2

2 , 𝕌(1)
0 , 𝕦(1)1 ∈ U (1), T̄

(1)
0 ∈ 𝔾1

)
.

13

The relation R2 enforces that

𝕦(2)1 .x1 = H2

(
vk′, j + 1(2), z, F2(z

′, aux
(2)
0), 𝕌

)
(3)

for some instance 𝕌 ∈ U (1) (dependent on j). By (Condition 3), we know that

𝕦(2)1 .x1 = H2

(
vk, 1(2), z

(2)
0 , z

(2)
1 ,𝕌(1)

1

)
. (4)

Therefore, by equations (3) and (4) and the collision resistance of H2, we can conclude that(
vk′, j + 1(2), z, F2(z

′, aux
(2)
0), 𝕌

)
=

(
vk, 1(2), z

(2)
0 , z

(2)
1 ,𝕌(1)

1

)
, (5)

otherwise there is an explicit collision finder on the hash function H2. By equation (5), we can conclude that

j = 0(2), z = z
(2)
0 , F2(z

′, aux
(2)
0) = z

(2)
1 , 𝕌 = 𝕌(1)

1 (6)

Since j = 0(2), the relation R2 enforces that

z = z′ and 𝕌 = 𝕦(1)1 (7)

By equation (6) and (7), we can conclude

z
(2)
1 = F2(z

(2)
0 , aux

(2)
0) (8)

𝕌(1)
1 = 𝕦(1)1 (9)

Furthermore, R2 enforces that

𝕦(1)1 .Ē = 0̄(1) and 𝕦(1)1 .s = 1(1) (10)

By (Condition 4) and equations (9) and (10), the pair (𝕦(1)1 ,𝕎(1)
1) strictly satisfies R1CS(1) which imple-

ments the relation R1. This implies that the extended witness 𝕎(1)
1 .w(1) contains an R1 witness ŵ

(1)
1 of the

form
ŵ

(1)
1 :=

(
vk′ ∈ 𝔽1, j ∈ 𝔽1, z, z′ ∈ 𝔽 a1

1 , aux
(1)
0 ∈ 𝔽 b1

1 , 𝕌(2)
0 , 𝕦(2)0 ∈ U (2), T̄

(2)
0 ∈ 𝔾2

)
. (11)

The relation R1 enforces that

𝕦(1)1 .x1 = H1

(
vk′, j + 1(1), z, F1(z

′, aux
(1)
0), 𝕌

)
(12)

for some instance 𝕌 ∈ U (2) (dependent on j). By (Condition 2), we know

𝕦(2)1 .x0 = H1

(
vk, 1(1), z

(1)
0 , z

(1)
1 ,𝕌(2)

1

)
. (13)

The relation R2 enforces that
𝕦(2)1 .x0 = 𝕦(1)1 .x1 (14)

By equations (13) and (14), we can conclude that

𝕦(1)1 .x1 = H1

(
vk, 1(1), z

(1)
0 , z

(1)
1 ,𝕌(2)

1

)
. (15)

Therefore, by equations (12) and (15) and the collision resistance of H1, we can conclude that(
vk′, j + 1(1), z, F1(z

′, aux
(1)
0), 𝕌

)
=

(
vk, 1(1), z

(1)
0 , z

(1)
1 ,𝕌(2)

1

)
, (16)

otherwise there is an explicit collision finder on the hash function H1. By (16), we can conclude that

j = 0(1), z = z
(1)
0 , F1(z

′, aux
(1)
0) = z

(1)
1 . (17)

14

Since j = 0(1), the relation R1 enforces that
z = z′ (18)

By equations (17) and (18), we can conclude that

z
(1)
1 = F1(z

(1)
0 , aux

(1)
0). (19)

In summary, the extractor E outputs the elements (z
(1)
0 , aux

(1)
0), (z

(2)
0 , aux

(2)
0), and any IVC proof π0. We

argued that

– By (8) we have z
(2)
1 = F2(z

(2)
0 , aux

(2)
0).

– By (19) we have z
(1)
1 = F1(z

(1)
0 , aux

(1)
0).

Therefore, these output elements satisfy the requirements for the IVC extractor.

6.2 The case i > 1

Here we consider the case when i is greater than 1.

By (Condition 6), the pair (𝕦(2)i ,𝕨(2)
i) strictly satisfies R1CS(2) which implements relation R2. This implies

that the extended witness 𝕨(2)
i .w(2) contains an R2 witness ŵ

(2)
i of the form

ŵ
(2)
i :=

(
vk′ ∈ 𝔽2, j ∈ 𝔽2, z, z

(2)
i−1 ∈ 𝔽 a2

2 , aux
(2)
i−1 ∈ 𝔽 b2

2 , 𝕌(1)
i−1, 𝕦

(1)
i ∈ U (1), T̄

(1)
i−1 ∈ 𝔾1

)
The relation R2 enforces that

𝕦(2)i .x1 = H2

(
vk′, j + 1(2), z, F2(z

(2)
i−1, aux

(2)
i−1), 𝕌

)
(20)

for some instance 𝕌 ∈ U (1) (dependent on j). By (Condition 3), we also know

𝕦(2)i .x1 = H2

(
vk, i(2), z

(2)
0 , z

(2)
i ,𝕌(1)

i

)
. (21)

Therefore, by equations (20) and (21) and the collision resistance of H2, we can conclude that(
vk′, j + 1(2), z, F2(z

(2)
i−1, aux

(2)
i−1), 𝕌

)
=

(
vk, i(2), z

(2)
0 , z

(2)
i ,𝕌(1)

i

)
, (22)

otherwise there is an explicit collision finder on the hash function H2. By equation (22), we can conclude
that

vk′ = vk, j = (i− 1)(2), z = z
(2)
0 , F2(z

(2)
i−1, aux

(2)
i−1) = z

(2)
i , 𝕌 = 𝕌(1)

i (23)

Since i > 1 and j = (i− 1), we must have j ̸= 0(2). Thus, the relation R2 enforces that

𝕌 = FoldV
(
vk, 𝕌(1)

i−1, 𝕦(1)i , T̄
(1)
i−1

)
. (24)

Now, by equations (23) and (24), we must have

ŵ
(2)
i =

(
vk, (i− 1)(2), z

(2)
0 , z

(2)
i−1, aux

(2)
i−1, 𝕌(1)

i−1, 𝕦
(1)
i , T̄

(1)
i−1

)
(25)

for which we know

z
(2)
i = F2

(
z
(2)
i−1, aux

(2)
i−1

)
(26)

𝕌(1)
i = FoldV

(
vk, 𝕌(1)

i−1, 𝕦(1)i , T̄
(1)
i−1

)
(27)

15

By (Condition 4), equation (27), and knowledge soundness of the folding scheme, we can extract satisfying
witnesses

𝕨(1)
i for 𝕦(1)i and 𝕎(1)

i−1 for 𝕌(1)
i−1 (28)

with respect to R1CS(1). Otherwise, we could use the prover P ∗ to construct an adversary that breaks the
knowledge soundness of the folding scheme. The relation R2 enforces that

𝕦(1)i .Ē = 0̄(1) and 𝕦(1)i .s = 1(1) (29)

Thus, by (28) and (29), the extracted pair (𝕦(1)i ,𝕨(1)
i) must strictly satisfy R1CS(1) which implements the

relation R1. This implies that the extended witness 𝕨(1)
i .w(1) contains an R1 witness ŵ

(1)
i of the form

ŵ
(1)
i :=

(
vk′ ∈ 𝔽1, j ∈ 𝔽1, z, z

(1)
i−1 ∈ 𝔽 a1

1 , aux
(1)
i−1 ∈ 𝔽 b1

1 , 𝕌(2)
i−1, 𝕦

(2)
i−1 ∈ U

(2), T̄
(2)
i−1 ∈ 𝔾2

)
.

The relation R1 enforces that

𝕦(1)i .x1 = H1

(
vk′, j + 1(1), z, F1(z

(1)
i−1, aux

(1)
i−1), 𝕌

)
(30)

for some instance 𝕌 ∈ U (2) (dependent on j). By (Condition 2), we know

𝕦(2)i .x0 = H1

(
vk, i(1), z

(1)
0 , z

(1)
i ,𝕌(2)

i

)
. (31)

The relation R2 enforces that
𝕦(2)i .x0 = 𝕦(1)i .x1 (32)

By equations (31) and (32), we can conclude

𝕦(1)i .x1 = H1

(
vk, i(1), z

(1)
0 , z

(1)
i ,𝕌(2)

i

)
. (33)

Therefore, by equations (30) and (33) and the collision resistance of H1, we can conclude that(
vk′, j + 1(1), z, F1(z

(1)
i−1, aux

(1)
i−1), 𝕌

)
=

(
vk, i(1), z

(1)
0 , z

(1)
i ,𝕌(2)

i

)
, (34)

otherwise there is an explicit collision finder on the hash function H1. By equation (34), we can conclude
that

vk′ = vk, j = (i− 1)(1), z = z
(1)
0 , F1(z

(1)
i−1, aux

(1)
i−1) = z

(1)
i , 𝕌 = 𝕌(2)

i (35)

Since i > 1 and j = (i− 1), we must have j ̸= 0(1). Thus, the relation R1 enforces that

𝕌 = FoldV
(
vk, 𝕌(2)

i−1, 𝕦(2)i−1, T̄
(2)
i−1

)
(36)

Thus, by equations (35) and (36), we must have

ŵ
(1)
i =

(
vk, (i− 1)(1), z

(1)
0 , z

(1)
i−1, aux

(1)
i−1, 𝕌(2)

i−1, 𝕦
(2)
i−1, T̄

(2)
i−1

)
(37)

for which we know

z
(1)
i = F1

(
z
(1)
i−1, aux

(1)
i−1

)
(38)

𝕌(2)
i = FoldV

(
vk, 𝕌(2)

i−1, 𝕦(2)i−1, T̄
(2)
i−1

)
(39)

By (Condition 5), equation (39), and knowledge soundness of the folding scheme, we can extract satisfying
witnesses

𝕨(2)
i−1 for 𝕦(2)i−1 and 𝕎(2)

i−1 for 𝕌(2)
i−1 (40)

16

with respect to R1CS(2). Otherwise, we could use the prover P ∗ to construct an adversary that breaks the
knowledge soundness of the folding scheme. The relation R1 enforces that

𝕦(2)i−1.Ē = 0̄(2) and 𝕦(2)i−1.s = 1(2) (41)

Thus, by (40) and (41), the extracted pair (𝕦(2)i−1,𝕨
(2)
i−1) must strictly satisfy R1CS(2) which implements

relation R2. By equation (37), the relation R1 enforces that

𝕦(2)i−1.x0 = H1

(
vk, (i− 1)(1), z

(1)
0 , z

(1)
i−1, 𝕌(2)

i−1

)
(42)

𝕦(1)i .x0 = 𝕦(2)i−1.x1 (43)

By equation (25), the relation R2 enforces that

𝕦(1)i .x0 = H2

(
vk, (i− 1)(2), z

(2)
0 , z

(2)
i−1, 𝕌(1)

i−1

)
. (44)

Thus, by equations (43) and (44), we can conclude that

𝕦(2)i−1.x1 = H2

(
vk, (i− 1)(2), z

(2)
0 , z

(2)
i−1, 𝕌(1)

i−1

)
. (45)

In summary, the extractor E works as follows:

– It parses witness 𝕨(2)
i to obtain the R2 witness in (25).

– It runs the folding extractor on a folding prover derived from P ∗ to obtain the relaxed witnesses in (28).

– It parses witness 𝕨(1)
i to obtain the R1 witness in (37).

– It runs the folding extractor on a folding prover derived from P ∗ to obtain the relaxed witnesses in (40).

– It then outputs the elements (z
(1)
i−1, aux

(1)
i−1), (z

(2)
i−1, aux

(2)
i−1), and πi−1 where

πi−1 :=
(
(𝕦(2)i−1,𝕨

(2)
i−1), (𝕌(1)

i−1,𝕎
(1)
i−1), (𝕌(2)

i−1,𝕎
(2)
i−1)

)
.

We argued that

– By (38) we have z
(1)
i = F1

(
z
(1)
i−1, aux

(1)
i−1

)
.

– By (26) we have z
(2)
i = F2

(
z
(2)
i−1, aux

(2)
i−1

)
.

– By assumption, the index i− 1 is greater than 0.

– By (42) we have 𝕦(2)i−1.x0 = H1

(
vk, (i− 1)(1), z

(1)
0 , z

(1)
i−1, 𝕌(2)

i−1

)
.

– By (45) we have 𝕦(2)i−1.x1 = H2

(
vk, (i− 1)(2), z

(2)
0 , z

(2)
i−1, 𝕌(1)

i−1

)
.

– By (28), the pair (𝕌(1)
i−1,𝕎

(1)
i−1) satisfies R1CS

(1).

– By (40), the pair (𝕌(2)
i−1,𝕎

(2)
i−1) satisfies R1CS

(2).

– By (40) and (41), the pair (𝕦(2)i−1,𝕨
(2)
i−1) strictly satisfies R1CS(2).

Therefore, we must have V
(
pp, (F1,F2), (i − 1, (z

(1)
0 , z

(2)
0), (z

(1)
i−1, z

(2)
i−1)), πi−1

)
= 1. This shows that the ele-

ments output by the extractor E satisfy the requirements for the IVC extractor. ⊓⊔

7 Further IVC Proof Compression

In this section, we informally describe two additional strategies to compress IVC proofs. The combination of
both strategies is used in the original Nova paper and its implementation to produce a compressed IVC proof
π′′
i (49). We highlight that even without a SNARK (Section 7.2) an IVC proof πi (46) can be compressed

and still maintain an incremental property.

17

7.1 Compression without SNARKs

Prover The prover given a convincing proof

πi :=
(
(𝕦(2)i ,𝕨(2)

i), (𝕌(1)
i ,𝕎(1)

i), (𝕌(2)
i ,𝕎(2)

i)
)
. (46)

can perform the following procedure to produced a compressed proof π′
i

1. Fold Pairs for R1CS(2): Fold the committed pairs (𝕦(2)i ,𝕨(2)
i) and (𝕌(2)

i ,𝕎(2)
i) for R1CS(2).

FoldP
(
pk, (𝕦(2)i ,𝕨(2)

i), (𝕌(2)
i ,𝕎(2)

i)
)
→

(
T̄
(2)
i , (· , 𝕎(2)

i+1)
)

2. Output New Compressed Proof: Output the following compressed proof

π′
i :=

(
𝕦(2)i , 𝕌(2)

i , (T̄
(2)
i ,𝕎(2)

i+1), (𝕌(1)
i ,𝕎(1)

i)
)

(47)

Verifier Then, the verifier given a compressed proof π′
i (47) performs an initial folding procedure

𝕌(2)
i+1 := FoldV

(
vk, 𝕦(2)i ,𝕌(2)

i , T̄
(2)
i

)
and accepts if the following six conditions are met:

1. The index i must be greater than 0.

2. 𝕦(2)i .x0 = H1

(
vk, i(1), z

(1)
0 , z

(1)
i ,𝕌(2)

i

)
3. 𝕦(2)i .x1 = H2

(
vk, i(2), z

(2)
0 , z

(2)
i ,𝕌(1)

i

)
4. The pair (𝕌(1)

i ,𝕎(1)
i) satisfies R1CS(1).

5. The pair (𝕌(2)
i+1,𝕎

(2)
i+1) satisfies R1CS

(2).

6. 𝕦(2)i .Ē = 0̄(2) and 𝕦(2)i .s = 1̄(2)

Knowledge Soundness We omit the proof of knowledge soundness as the proof in Section 6 can be trivially
extended to cover this additional folding step.

Incremental Operation with Compressed Proofs The compressed proof π′
i (47) along with evaluations z

(1)
i+1 :=

F1(z
(1)
i , aux

(1)
i) and z

(2)
i+1 := F2(z

(2)
i , aux

(2)
i) are sufficient to execute another step of the Nova prover for

iteration i + 1. In our paper, we describe the IVC scheme using the non-compressed proof πi (46) instead
of the compressed proof π′

i. However, we could also describe the IVC scheme with π′
i being the IVC proof

instead. We decided to describe the IVC scheme with πi because our construction is easier to understand
without the additional compression step.

In Nova (Construction 4 in Section 5.2 of [11]), this approach is used in tandem with a SNARK to
produced a compressed proof π′′

i . However, we highlight that this final folding step without a SNARK also
produces a valid IVC proof that is compressed and readily incremental.

7.2 Compression with SNARKs

A generic SNARK for the relation Rsat (48) can be used to compress the IVC proof further. Nova uses the
Spartan SNARK [16] in the original paper [11] and implementation [13].

18

Prover The prover given a compressed IVC proof π′
i (47) as produced in Section 7.1

π′
i :=

(
𝕦(2)i , 𝕌(2)

i , (T̄
(2)
i ,𝕎(2)

i+1), (𝕌(1)
i ,𝕎(1)

i)
)

can perform the following procedure to produce a new compressed proof π′′
i

1. Compress Witnesses with SNARK proof: Produce a SNARK proof πsat for the following relation

Rsat :=

{(
𝕌(2)
i+1, 𝕌(1)

i ; 𝕎(2)
i+1, 𝕎(1)

i

)
:

(𝕌(1)
i ,𝕎(1)

i) satisfies R1CS(1)

∧ (𝕌(2)
i+1,𝕎

(2)
i+1) satisfies R1CS

(2)

}
(48)

2. Output New Compressed Proof: Output the following new compressed proof

π′′
i :=

(
𝕦(2)i , 𝕌(2)

i , 𝕌(1)
i , T̄

(2)
i , πsat

)
(49)

Verifier Then, the verifier given compressed proof π′′
i (49) performs an initial folding procedure

𝕌(2)
i+1 := FoldV

(
vk, 𝕦(2)i ,𝕌(2)

i , T̄
(2)
i

)
and accepts if the following five conditions are met:

1. The index i must be greater than 0.

2. 𝕦(2)i .x0 = H1

(
vk, i(1), z

(1)
0 , z

(1)
i ,𝕌(2)

i

)
3. 𝕦(2)i .x1 = H2

(
vk, i(2), z

(2)
0 , z

(2)
i ,𝕌(1)

i

)
4. πsat is a convincing SNARK proof for the relation Rsat (48) with instance

(
𝕌(2)
i+1, 𝕌(1)

i

)
.

5. 𝕦(2)i .Ē = 0̄(2) and 𝕦(2)i .s = 1̄(2)

Knowledge Soundness We defer to Nova [11] for the construction of a SNARK for relation Rsat (48).

Compression in Nova’s Implementation Nova’s implementation [13] performs the compression step described
in Section 7.2 using Spartan [16]. They refer to the composition of the IVC Scheme and both compression
steps (Section 7.1 and Section 7.2) as the CompressedSNARK.

8 Malleability of Nova’s IVC proofs

In this section, we show that the Nova’s IVC proofs, described in Section 5 are malleable. This readily applies
to the original Nova construction as well [11]. We first explain the issue and then present several mitigations.

Suppose an adversary is given a valid Nova IVC proof πi with respect to the following parameters

– IVC public parameters pp,

– a description of functions F1 : 𝔽 a1
1 × 𝔽 b1

1 → 𝔽 a1
1 and F2 : 𝔽 a2

2 × 𝔽 b2
2 → 𝔽 a2

2 ,

– an index i ∈ ℕ,
– starting values z

(1)
0 ∈ 𝔽 a1

1 and z
(2)
0 ∈ 𝔽 a2

2 , and

– claimed evaluations z
(1)
i ∈ 𝔽 a1

1 and z
(2)
i ∈ 𝔽 a2

2 .

We show in Section 8.1 that the adversary can construct a proof πprime for the same iteration i, but for some

z
(2)
prime different from z

(2)
i . In particular, running the IVC verifier with arguments(

pp, (F1,F2), i, (z
(1)
0 , z

(2)
0), (z

(1)
i , z

(2)
prime), πprime

)
causes the verifier to accept. We stress that our adversary does not need to know the auxiliary values

(aux
(2)
0 , aux

(2)
1 , . . . , aux

(2)
i−1) used to compute z

(2)
i . By choosing an alternate final auxiliary value aux

(2)
prime ̸=

aux
(2)
i−1, our adversary can construct a proof πprime for an alternate value z

(2)
prime for i iterations, without

knowledge of the first i− 1 auxiliary values.

19

Discussion. Why does malleability matter? A malleable proof system [4] can lead to a real world security

vulnerability. Suppose Alice uses her secret auxiliary values to compute z
(2)
i and this z

(2)
i encodes her payment

address. She sends the z
(2)
i and the proof to a payment contract. An attacker could intercept her message and

maul z
(2)
i to a z

(2)
prime which encodes the attackers payment address instead, along with a valid proof πprime.

The payment contract will then send the funds to the attacker instead of Alice. Concretely, if Tornado Cash
had used a proof system that were malleable on statements, it would have been possible to steal funds.

Remark 5 (Non-malleability does not apply to deterministic functions). Our malleabilty attack in Section 8.1
does not apply when the function F is deterministic, namely it does not take an auxiliary argument as input.
The reason is that in this case the value zi at the i-th iteration of F is determined by the starting value z0,
and the adversary is committed to z0. Hence, the adversary cannot cause a different zi to be accepted at
iteration i when starting at z0. There are several widely used examples where IVC is applied to a deterministic
function. One example, is the MinRoot construction [9] for a Verifiable Delay Function. Another example is
when repeatedly applying a simple state machine to an initial state z0.

Mitigations. Applications that use Nova IVC with auxiliary inputs often require non-malleability. In Sec-
tion 8.2 we present three mitigation strategies to ensure that Nova IVC is non-malleable:

– Compression: The prover in Section 5 outputs the final folded instance along with a satisfying witness.
Instead, the prover could output a final folded instance along with a zkSNARK proof that it has a valid
witness for this folded instance. If the zkSNARK is simulation extractable [8] then the final proof is
non-malleable. In fact, the current Nova implementation uses this approach, which has the additional
benefit of compressing the final proof. However, this is not compatible with the notion of IVC: with post
compression, it is no longer possible for another party to further extend the IVC chain efficiently via
folding. Consequently, the entire computation of the IVC chain has to be done by a single party.

– Context: A different mitifation is to expand the verification key vk to include an additional context
element ctx, as defined in Section 8.2. This ensures non-malleability, but this approach is again incom-
patible with IVC. The additional context element contains the very last step of the computation, and
this prevents another party from further extending the IVC chain using folding.

– Incremental context: To ensure non-malleability while supporting the incremental aspect of IVC we
describe a third strategy that extends the context method in the previous bullet. Our approach is to
update the verification key vk on every hand-off from one party to the next as they extend the IVC
chain.

We discuss these in more detail in Section 8.2. First, let us see the details of the malleability attack.

8.1 The Malleability Attack

We present a malleability attack on the last step of the IVC chain. Recall that the Nova IVC proof πi contains
the following elements

πi :=
(
(𝕦(2)i ,𝕨(2)

i), (𝕌(1)
i ,𝕎(1)

i), (𝕌(2)
i ,𝕎(2)

i)
)
.

The malleability attack proceeds as follows:

1. Parse witness: In Section 6, we argued that we can parse the witness 𝕨(2)
i to obtain relational witness

ŵ
(2)
i =

(
vk, (i− 1)(2), z

(2)
0 , z

(2)
i−1, aux

(2)
i−1, 𝕌(1)

i−1, 𝕦
(1)
i , T̄

(1)
i−1

)
for which we know

z
(2)
i = F2

(
z
(2)
i−1, aux

(2)
i−1

)
𝕌(1)
i = FoldV

(
vk, 𝕌(1)

i−1, 𝕦(1)i , T̄
(1)
i−1

)
Thus, we parse 𝕨(2)

i to obtain ŵ
(2)
i .

20

2. Find a different auxiliary value: Using z
(2)
i−1, choose some aux

(2)
prime such that

z
(2)
prime := F2

(
z
(2)
i−1, aux

(2)
prime

)
̸= F2

(
z
(2)
i−1, aux

(2)
i−1

)
= z

(2)
i

We assume that finding such an aux
(2)
prime is efficient for F2.

3. Compute a new pair for R1CS(2): Compute the pair (𝕦(2)prime,𝕨
(2)
prime) for R1CS

(2) as follows:

– Define ŵ
(2)
prime := (vk, (i−1)(2), z(2)0 , z

(2)
i−1, aux

(2)
prime,𝕌

(1)
i−1, 𝕦

(1)
i , T̄

(1)
i−i) as the relation witness forR2. Then,

compute the extended witness w
(2)
prime by performing the computation on ŵ

(2)
prime required to satisfy the

constraints expressed in R1CS(2).

– Commit to the extended witness w̄
(2)
prime ← Commit(pp

(2)
W , w

(2)
prime).

– Define x0 := 𝕦(1)i .x1 and compute x1 := H2

(
vk, i(2), z

(2)
0 , z

(2)
prime := F2(z

(2)
i−1, aux

(2)
prime),𝕌

(1)
i

)
.

– Assign 𝕦(2)prime :=
(
0̄(2), 1(2), w̄

(2)
prime, (x0, x1)

)
and 𝕨(2)

prime :=
(⃗
0(2), w

(2)
prime

)
.

4. Output the mauled new proof: Output πprime :=
(
(𝕦(2)prime,𝕨

(2)
prime), (𝕌(1)

i ,𝕎(1)
i), (𝕌(2)

i ,𝕎(2)
i)

)
.

By construction, the proof πprime is convincing.

Remark 6 (Generalizing the Malleability Attack). Consider an IVC proof system where the final proof for
validity of zi contains enough information to reconstruct a valid pre-image zi−1 to zi along with a proof of
validity for zi−1. Then an attacker can re-execute the last step of the IVC prover with a different choice of the
final auxiliary value auxi−1 and obtain a z′i that is likely different from zi, along with a validity proof for z′i.
The attacker thus obtains a validity proof for z′i ̸= zi despite having no knowledge of the first i− 1 auxiliary
values. Using this generalized view we can readily show that IVC proofs in the original Nova construction [11]
are also malleable.

8.2 Preventing This Malleability Attack

In this section we present three strategies to defend Nova IVC against the malleability attack from Section 8.1.
First, recall that an important property of IVC is that it is incremental, hence the ‘I’ in IVC. This means
that one party can start at z0 and compute zi, the i-th iteration of a function F, along with a proof πi that
zi is valid. Another party can then continue the computation and produce zj which is the j-th iteration of
F, for some j > i, along with a proof πj that zj is valid. A third party can then take over, and so on. We
refer to the points along the IVC chain, where one party hands off the computation to another party, as the
hand-off point. With this incremental property in mind, let us consider three strategies to make the Nova
folding scheme non-malleable.

(1) Compression The most direct mitigation strategy is to use the compressed IVC proof π′′
i defined in (49),

namely

π′′
i :=

(
𝕦(2)i , 𝕌(2)

i , 𝕌(1)
i , T̄

(2)
i , πsat

)
Here the SNARKmust be zero knowledge so that πsat contains no information about the underlying witnesses.

Similarly, the witness commitment w̄
(2)
i in 𝕦(2)i must be a hiding commitment. Furthermore, the SNARK

should also be simulation extractable [8].
While this approach prevents our non-malleability attack, it also ruins the ability of the first prover

(Fiona) to hand off the computation to a second prover (Sam) to continue the folding process. Sam does not
see the witness for the final folding instance computed by Fiona, and consequently Sam cannot fold further
iterations of F into this instance. Note that Fiona must apply compression to her proof, otherwise Sam could
use the malleability attack before doing his part of the computation. As a result, when applying this strategy
to Nova folding, the entire IVC chain must be computed by a single party. Hence, again, this approach is
incompatible with efficiently incremental IVC.

21

(2) Incorporating Context Elements in the Verification Key A very different mitigation strategy is to expand
the verification key vk to include a context string ctx defined as follows:

(· , vk)← FoldK
(
pp, (R1CS(1),R1CS(2)), ctx

)
where ctx← (i, z

(1)
i , z

(2)
i).

This inductively binds the proof to a particular choice of (i, z
(1)
i , z

(2)
i). However, this again breaks the in-

cremental property because the prover cannot hand off this proof to another prover to continue folding to

some iteration j > i. Note also that the first (and only) IVC prover must compute the final (z
(1)
i , z

(2)
i) before

starting to construct the IVC proof.

(3) Incremental context Our third mitigation strategy prevents the malleability attack while preserving the
incremental property of Nova folding. We do so by updating the verification key at every hand off point in
the IVC chain.

Consider two provers: Pprior and Pcurr. The prover Pprior was given a proof at position a in the IVC chain
and continued the computation to position b > a. The prover Pcurr is given the proof produced by Pprior and
continues the computation to position c > b in the IVC chain. Both provers incorporate private auxiliary
data into their respective portions of the computation. Prover Pcurr wants to produce an IVC proof πc for c
executions of F with the same auxiliary values that the previous provers used in the first b iterations while
using its own auxiliary values for the remaining c− b iterations.

Briefly, to enable this while preventing a malleability attack, we introduce the notion of a range parameter
range which is incorporated into the verification key. This range parameter enables Pcurr to specify when a
verification key should be swapped for a new one. In more detail, we define a new digest parameter dig which
is identical to the old verification key vk:

dig := H
(
pp, (R1CS(1),R1CS(2))

)
.

Furthermore, for a given a < b < c define

rangeprior :=
(
(a, z(1)a , z(2)a), (b, z

(1)
b , z

(2)
b)

)
, vkprior := H

(
dig, rangeprior

)
, (50)

and

rangecurr :=
(
(b, z

(1)
b , z

(2)
b), (c, z(1)c , z(2)c)

)
, vkcurr := H

(
dig, rangecurr

)
, (51)

where (a, z
(1)
a , z

(2)
a) is the claimed evaluation after a iterations of F, and similarly for b and c.

To verify the computation after c iterations, the IVC verifier is explicitly given the evaluations (b, z
(1)
b , z

(2)
b)

and (c, z
(1)
c , z

(2)
c). It verifies that b < c and computes parameters dig and vkcurr. In addition, the relations

R1 and R2 from Figures 1a and 1b will take in additional witness inputs dig, (a, z
(1)
a , z

(2)
a), and (b, z

(1)
b , z

(2)
b)

and incorporate these additional constraints:

– The indices respect a < b < i, where i is the input iteration index.
– If input iteration index i ̸= b, proceed as usual. The verification key included in the input committed

instance 𝕦i is identical to the one included in 𝕦i+1.
– If input iteration index i = b, then the relation swaps the verification keys. Check that the input instance

𝕦b contains the verification key vkprior as computed in (50). Additionally, compute the verification key
vkcurr as computed in (51). Use vkcurr in the fold operation and include vkcurr in the output hash contained
in the instance 𝕦b+1.

As explained above, this approach prevents the malleability attack while preserving the incremental property
using Nova folding. The cost is a slightly larger IVC proof which includes, as usual, the final evaluation values

(c, z
(1)
c , z

(2)
c), but now also needs to include the second-to-last handoff values, namely (b, z

(1)
b , z

(2)
b). Of course,

the very last prover in the IVC chain can still apply a zkSNARK to compress the final proof.

Acknowledgments. This work was partially funded by NSF, DARPA, the Simons Foundation, and NTT
Research. Opinions, findings, and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of DARPA.

22

Bibliography

[1] B. Bünz and B. Chen. ProtoStar: Generic efficient accumulation/folding for special sound protocols,
2023. https://eprint.iacr.org/2023/620.

[2] B. Bünz, A. Chiesa, W. Lin, P. Mishra, and N. Spooner. Proof-carrying data without succinct arguments.
Advances in Cryptology – CRYPTO 2021, Part I, 2021.

[3] Q. Dao, J. Miller, O. Wright, and P. Grubbs. Weak Fiat-Shamir attacks on modern proof systems, 2023.
https://eprint.iacr.org/2023/691.

[4] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust non-interactive zero
knowledge. Advances in Cryptology – CRYPTO 2001, 2001.

[5] M. Dworkin. SHA-3 standard: Permutation-based hash and extendable-output functions, 2015.
[6] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature

problems. Advances in Cryptology – CRYPTO’86, 1987.
[7] L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger. Poseidon: A new hash function

for zero-knowledge proof systems. USENIX Security 2021: 30th USENIX Security Symposium, 2021.
[8] J. Groth. Simulation-sound NIZK proofs for a practical language and constant size group signatures.

Advances in Cryptology – ASIACRYPT 2006, 2006.
[9] D. Khovratovich, M. Maller, and P. R. Tiwari. MinRoot: Candidate sequential function for Ethereum

VDF, 2022. https://eprint.iacr.org/2022/1626.
[10] A. Kothapalli and S. Setty. HyperNova: Recursive arguments for customizable constraint systems, 2023.

https://eprint.iacr.org/2023/573.
[11] A. Kothapalli, S. Setty, and I. Tzialla. Nova: Recursive zero-knowledge arguments from folding schemes.

Advances in Cryptology – CRYPTO 2022, Part IV, 2022.
[12] N. Mohnblatt. Sangria: A folding scheme for PLONK, 2023. link.
[13] Nova Contributors. Nova implementation, 2022. https://github.com/Microsoft/Nova.
[14] Pasta Contributors. Pasta curves, 2020. https://github.com/zcash/pasta_curves.
[15] C. Ràfols and A. Zacharakis. Folding schemes with selective verification, 2022. https://eprint.iacr.

org/2022/1576.
[16] S. Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup. Advances in Cryp-

tology – CRYPTO 2020, Part III, 2020.
[17] S. Setty. Nova pull request 167, 2023. https://github.com/Microsoft/Nova/pull/167.
[18] P. Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space efficiency.

TCC 2008: 5th Theory of Cryptography Conference, 2008.

https://eprint.iacr.org/2023/620
https://eprint.iacr.org/2023/691
https://eprint.iacr.org/2022/1626
https://eprint.iacr.org/2023/573
https://github.com/geometryresearch/technical_notes/blob/main/sangria_folding_plonk.pdf
https://github.com/Microsoft/Nova
https://github.com/zcash/pasta_curves
https://eprint.iacr.org/2022/1576
https://eprint.iacr.org/2022/1576
https://github.com/Microsoft/Nova/pull/167

Appendix
In this Appendix, we describe the prior implementation of the Nova Verifier and the vulnerability in

detail. At the end, we provide a proof of concept attack against the Minroot VDF [9] Nova verifier.

A The Old Nova Verifier

The old Nova Verifier V takes in as input:

– Constraint Systems R1CS(1) and R1CS(2).
– An index i ∈ ℕ.
– Starting values z

(1)
0 ∈ 𝔽1, z

(2)
0 ∈ 𝔽2.

– Claimed evaluations z
(1)
i ∈ 𝔽1, z

(2)
i ∈ 𝔽2

– An IVC Proof for iteration i is πi :=
(
(𝕦(1)i ,𝕨(1)

i), (𝕌(1)
i ,𝕎(1)

i), (𝕦(2)i ,𝕨(2)
i), (𝕌(2)

i ,𝕎(2)
i)

)
.

The verifier performs an initial procedure:

1. Given functions F1 and F2, deterministically generate augmented R1CS constraint systems R1CS(1) and
R1CS(2) which implement relations R1 and R2 from Figures 1a and 1b

2. Compute the folding verification key

(· , vk)← FoldK
(
pp, R1CS := (R1CS(1),R1CS(2))

)
The verifier accepts if the following conditions are met:

1. The index i must be greater than 0.

2. 𝕦(1)i .x1 = H1

(
vk, i(1), z

(1)
0 , z

(1)
i ,𝕌(2)

i

)
3. 𝕦(2)i .x1 = H2

(
vk, i(2), z

(2)
0 , z

(2)
i ,𝕌(1)

i

)
4. Pair (𝕌(1)

i ,𝕎(1)
i) satisfies R1CS(1).

5. Pairs (𝕌(2)
i ,𝕎(2)

i) satisfies R1CS(2).

6. Pair (𝕦(1)i ,𝕨(1)
i) strictly satisfies R1CS(1).

7. Pair (𝕦(2)i ,𝕨(2)
i) strictly satisfies R1CS(2).

B The Vulnerability

In this section we first break down the implications of the verifier checks. Then, we explore a vulnerability
with the approach. Finally, we describe a process to forge convincing IVC proofs in two stages.

Informally, for i > 2, the security argument for Nova IVC proceeds as follows:

– The verifier checks that 𝕦(1)i .x1 = H1

(
vk, i(1), z

(1)
0 , z

(1)
i ,𝕌(2)

i

)
. This ensures that 𝕦(1)i .x1 is derived from

the inputs z
(1)
i and 𝕌(2)

i that are provided to the verifier.

– The verifier checks that the pair (𝕦(1)i ,𝕨(1)
i) satisfies R1CS(1) which implements the relation R1. This

implies two things:

• First, 𝕌(2)
i is the result of folding the instances 𝕦(2)i−1 and 𝕌(2)

i−1 specified in 𝕨(1)
i ,

• Second, 𝕦(2)i−1.x0 = H1

(
vk, (i− 1)(1), z

(1)
0 , z

(1)
i−1, 𝕌(2)

i−1

)
where z

(1)
i = F1(z

(1)
i−1, aux

(1)
i−1) for some

element aux
(1)
i−1.

24

– The verifier checks that (𝕌(2)
i ,𝕎(2)

i) satisfies R1CS(2), which implements the relation R2. Then by knowl-

edge soundness of the folding scheme, one can extract valid witnesses 𝕨(2)
i−1 for 𝕦(2)i−1 and 𝕎(2)

i−1 for 𝕌(2)
i−1

with respect to R1CS(2).

– Now, since 𝕨(2)
i−1 is a valid witness for 𝕦(2)i−1, there are instances 𝕦(1)i−1 and 𝕌(1)

i−2 specified in 𝕨(2)
i−1. By

definition of R2, the instance 𝕦(1)i−1 must satisfy 𝕦(1)i−1.x1 = 𝕦(2)i−1.x0 = H1

(
vk, (i− 1)(1), z

(1)
0 , z

(1)
i−1,𝕌

(2)
i−1

)
.

We would now like to conclude that both 𝕦(1)i−1 and 𝕌(1)
i−2 are satisfiable for R1CS(1). However, none of the

verifier checks or invariants induced by the relations imply that either 𝕦(1)i−1 or 𝕌(1)
i−2 are satisfiable with

respect to R1CS(1). To see why, observe that R2 verifies that 𝕦(1)i−1 and 𝕌(1)
i−2 fold into some 𝕌(1)

i−1. Then this

𝕌(1)
i−1 is hashed into 𝕦(2)i−1.x1, which gets copied to 𝕦(1)i .x0. The verifier is given an instance 𝕌(1)

i that it expects

to be the result of folding 𝕦(1)i and 𝕌(1)
i−1, but this need not be the case. In fact, 𝕌(1)

i can be the result of

folding entirely different 𝕦(1) and 𝕌(1).

Our attack exploits this by running the honest Nova prover for two stages. The first stage generates a

satisfiable instance 𝕦(2)i−1 with x0 containing our own adversarially chosen values of (i− 1)(1) and z
(1)
i−1. Then,

the second stage generates pairs (𝕦(1)i ,𝕨(1)
i), (𝕌(2)

i ,𝕎(2)
i) by running the honest prover again with 𝕌(2)

⊥ , 𝕦(2)i−1

as relational witness inputs. The attack proceeds symmetrically to generate pairs (𝕦(2)i ,𝕨(2)
i), (𝕌(1)

i ,𝕎(1)
i).

B.1 Attack Procedure

Our adversary A takes in as input:

– Constraint Systems R1CS(1) and R1CS(2).
– An attack index i > 2 ∈ ℕ.
– Arbitrary starting values z

(1)
0 ∈ 𝔽1 and z

(2)
0 ∈ 𝔽2.

– Arbitrary claimed evaluations z
(1)
i ∈ 𝔽1 and z

(2)
i ∈ 𝔽2.

– Preimages (z
(1)
i−1, aux

(1)
i−1) ∈ 𝔽1 and (z

(2)
i−1, aux

(2)
i−1) ∈ 𝔽2 such that z

(1)
i = F1(z

(1)
i−1, aux

(1)
i−1) and z

(2)
i =

F2(z
(2)
i−1, aux

(2)
i−1).

A will produce a false but convincing IVC proof πi that the elements z
(1)
i = F

(i)
1 (z

(1)
0 , ·) and z

(2)
i =

F
(i)
2 (z

(2)
0 , ·) are produced by iteratively applying the non-deterministic functions F1, F2 i-times on z

(1)
0 , z

(2)
0

for some collection of auxillary values {aux(1)j , aux
(2)
j }0≤j<i.

Stage One A will imitate an honest Nova Prover to produce a satisfying pair (𝕦(2)i−1,𝕨
(2)
i−1) for R1CS

(2), but
with adversarial inputs.

1. Produce Adversarial Instance: We will produce an adversarial 𝕦(1)i−1 by performing the following
steps:

(a) Compute x0 := H2

(
vk, (i− 2)(2), z

(2)
0 , z

(2)
i−2,𝕌

(1)
⊥

)
, where z

(2)
i−2 can be set to anything, such as 0⃗(2).

(b) Compute x1 := H1

(
vk, (i− 1)(1), z

(1)
0 , z

(1)
i−1,𝕌

(2)
⊥

)
.

(c) Commit to the extended witness w̄
(1)
i−1 ← Commit(pp

(1)
W , w

(1)
i−1), where the extended witness w

(1)
i−1 can

be set to anything, such as 0⃗(2).

(d) Assign 𝕦(1)i−1 :=
(
0̄(1), 1(1), w̄

(1)
i−1, (x0, x1)

)
and 𝕨(1)

i−1 :=
(
0⃗(1), w

(1)
i−1

)
.

2. Fold Pair for R1CS(1): Fold the newly computed pair (𝕦(1)i−2,𝕨
(1)
i−2) with the trivially satisfiable pair

(𝕌(1)
⊥ ,𝕎(1)

⊥) for R1CS(1).

FoldP
(
pk, (𝕦(1)i−1,𝕨

(1)
i−1), (𝕌

(1)
⊥ ,𝕎(1)

⊥)
)
→

(
T̄
(1)
i−2, (𝕌

(1)
i−1,𝕎

(1)
i−1)

)
Obtain a folding proof T̄

(1)
i−2 and new committed relaxed instance-witness pair (𝕌(1)

i−1,𝕎
(1)
i−1).

25

3. Compute New Pair for R1CS(2): Compute the new committed pair (𝕦(2)i−1,𝕨
(2)
i−1) for R1CS

(2) as follows:

– Define ŵ
(2)
i−1 := (vk, (i− 2)(2), z

(2)
0 , z

(2)
i−2, aux

(2)
i−2,𝕌

(1)
⊥ , 𝕦(1)i−1, T̄

(1)
i−2) as the relation witness for R2, where

aux
(2)
i−2 can be set to anything, such as 0⃗(2). Then, compute the extended witness w

(2)
i−1 by performing

the computation on ŵ
(2)
i−1 required to satisfy the constraints expressed in R1CS(2).

– Commit to the extended witness w̄
(2)
i−1 ← Commit(pp

(2)
W , w

(2)
i−1).

– Define x0 = 𝕦(1)i−1.x1 and compute x1 = H2

(
vk, (i− 1)(2), z

(2)
0 ,F

(2)
2 (z

(2)
i−2, aux

(2)
i−2),𝕌

(1)
i−1

)
.

– Assign 𝕦(2)i−1 :=
(
0̄(2), 1(2), w̄

(2)
i−1, (x0, x1)

)
and 𝕨(2)

i−1 :=
(
0⃗(2), w

(2)
i−1

)
.

This new committed instance-witness pair (𝕦(2)i−1,𝕨
(2)
i−1) is valid, because the computation performed above

explicitly satisfies the constraints of R1CS(2). Furthermore, 𝕦(2)i−1.x0 = 𝕦(1)i−1.x1, which is maliciously set to

H1

(
vk, (i− 1)(1), z

(1)
0 , z

(1)
i−1,𝕌

(2)
⊥

)
.

Stage Two A will imitate an honest Nova Prover for R1CS(1), but with witness input derived in stage one.

1. Fold Pair for R1CS(2): Fold the newly computed pair (𝕦(2)i−1,𝕨
(2)
i−1) with the trivially satisfiable pair

(𝕌(2)
⊥ ,𝕎(2)

⊥) for R1CS(2).

FoldP
(
pk, (𝕦(2)i−1,𝕨

(2)
i−1), (𝕌

(2)
⊥ ,𝕎(2)

⊥)
)
→

(
T̄
(2)
i−1, (𝕌

(2)
i ,𝕎(2)

i)
)

Obtain a folding proof T̄
(2)
i−1 and new committed relaxed instance-witness pair (𝕌(2)

i ,𝕎(2)
i). Note that

since both pairs are satisfiable, this new pair (𝕌(2)
i ,𝕎(2)

i) is also satisfiable.

2. Compute New Pair for R1CS(1): Compute the new committed pair (𝕦(1)i ,𝕨(1)
i) for R1CS(1) as follows:

– Define ŵ
(1)
i := (vk, (i− 1)(1), z

(1)
0 , z

(1)
i−1, aux

(1)
i−1,𝕌

(2)
⊥ , 𝕦(2)i−1, T̄

(2)
i−1) as the relation witness for R1. Then,

compute the extended witness w
(1)
i by performing the computation on ŵ

(1)
i required to satisfy the

constraints expressed in R1CS(1).

– Commit to the extended witness w̄
(1)
i ← Commit(pp

(1)
W , w

(1)
i).

– Define x0 = 𝕦(2)i−1.x1 and compute x1 = H1

(
vk, i(1), z

(1)
0 , z

(1)
i := F1(z

(1)
i−1, aux

(1)
i−1),𝕌

(2)
i

)
.

– Assign 𝕦(1)i :=
(
0̄(1), 1(1), w̄

(1)
i , (x0, x1)

)
and 𝕨(1)

i :=
(
0⃗(1), w

(1)
i

)
.

This new committed instance-witness pair (𝕦(1)i ,𝕨(1)
i) is satisfiable, because the computation performed

above explicitly satisfies the constraints of R1CS(1). Furthermore, 𝕦(1)i .x1 = H1

(
vk, i(1), z

(1)
0 , z

(1)
i ,𝕌(2)

i

)
. To

recap, after these two stages we obtained pairs (𝕦(1)i ,𝕨(1)
i) and (𝕌(2)

i ,𝕎(2)
i) such that the following hold:

– 𝕦(1)i .x1 = H1

(
vk, i(1), z

(1)
0 , z

(1)
i ,𝕌(2)

i

)
– (𝕦(1)i ,𝕨(1)

i) strictly satisfies R1CS(1).

– (𝕌(2)
i ,𝕎(2)

i) satisfies R1CS(2).

Symmetry Since the relations expressed by the augmented constraint systems R1CS(1) and R1CS(2) are sym-

metric (Section 4) when i > 2. We can repeat both stages above symmetrically to produce pairs (𝕦(2)i ,𝕨(2)
i)

and (𝕌(1)
i ,𝕎(1)

i) such that the following hold:

– 𝕦(2)i .x1 = H2

(
vk, i(2), z

(2)
0 , z

(2)
i ,𝕌(1)

i

)
– (𝕦(2)i ,𝕨(2)

i) strictly satisfies R1CS(2).

– (𝕌(1)
i ,𝕎(1)

i) satisfies R1CS(1).

Finally, adversary A outputs an IVC proof πi :=
(
(𝕦(1)i ,𝕨(1)

i), (𝕌(1)
i ,𝕎(1)

i), (𝕦(2)i ,𝕨(2)
i), (𝕌(2)

i ,𝕎(2)
i)

)
. By

construction, πi is a convincing IVC proof (i.e. all the verifier checks pass).

26

B.2 Proof of Concept Attack Against the Minroot Verifier

We implement our attack against the Nova Proof System generically for any choice of F1 and F2 and
parameters specified in Section B.1. Our implementation can be found in our repo MercysJest/NovaBreak-
ingTheCycleAttack, which is a direct fork of the original microsoft/Nova repo. To demonstrate the attack,
we can compute a convincing Nova proof for the correct evaluation of 275 rounds of the Minroot VDF in
only 1.46 seconds on a Macbook. The demonstration code can be found in examples/vuln.rs.

==

Demonstrating exploit against Nova-based VDF with MinRoot delay function

==

Producing public parameters...

PublicParams::setup, took 49.787099416s

...

Each IVC Step Performs 4096 iterations of Minroot.

Generating fake proof of 9223372036854775808 IVC Steps.

In total, faking 37778931862957161709568 Minroot iterations.

Generating fake proof took 1.462871375s

Verifying a RecursiveSNARK...

RecursiveSNARK::verify: true, took 110.942375ms

Generating a CompressedSNARK using Spartan with IPA-PC...

CompressedSNARK::prove: true, took 24.981085s

CompressedSNARK::len 9713 bytes

Verifying a CompressedSNARK...

CompressedSNARK::verify: true, took 194.277833ms

27

https://github.com/MercysJest/NovaBreakingTheCycleAttack/blob/4c691527089bc680123f2360e5a75b954d656ac0/src/lib.rs#L186
https://github.com/MercysJest/NovaBreakingTheCycleAttack/blob/4c691527089bc680123f2360e5a75b954d656ac0/src/lib.rs#L186
https://github.com/microsoft/Nova
https://github.com/MercysJest/NovaBreakingTheCycleAttack/blob/4c691527089bc680123f2360e5a75b954d656ac0/examples/vuln.rs#L145

	Introduction
	Preliminaries
	Incrementally Verifiable Computation (IVC)
	Committed Relaxed R1CS over a Ring
	A Folding Scheme for Committed Relaxed R1CS over a Ring

	The Nova Proof System over a Cycle of Curves: Preliminary Details
	Folding over a Cycle of Curves

	The Augmented Constraint Systems Used in Nova
	The Modified Nova IVC Scheme
	Setup
	The Modified Nova Verifier
	The Modified Nova Prover

	Proof of security
	The case i=1
	The case i>1

	Further IVC Proof Compression
	Compression without SNARKs
	Compression with SNARKs

	Malleability of Nova's IVC proofs
	The Malleability Attack
	Preventing This Malleability Attack

	The Old Nova Verifier
	The Vulnerability
	Attack Procedure
	Proof of Concept Attack Against the Minroot Verifier

