
Limits on Adaptive Security for Attribute-Based Encryption

Zvika Brakerski∗ Stav Medina∗

Abstract

This work addresses the long quest for proving full (adaptive) security for attribute-based
encryption (ABE). We show that in order to prove full security in a black-box manner, the
scheme must be “irregular” in the sense that it is impossible to “validate” secret keys to
ascertain consistent decryption of ciphertexts. This extends a result of Lewko and Waters
(Eurocrypt 2014) that was only applicable to straight-line proofs (without rewinding). Our
work, therefore, establishes that it is impossible to circumvent the irregularity property using
creative proof techniques, so long as the adversary is used in a black-box manner.

As a consequence, our work provides an explanation as to why some lattice-based ABE
schemes cannot be proven fully secure, even though no known adaptive attacks exist.

1 Introduction
An Attribute-Based Encryption scheme (ABE) [SW05, GPSW06] is one that allows fine-grained
access to encrypted data by issuing multiple secret keys, each with its own permissions, and
protecting the privacy of ciphertext even against colluding unauthorized parties. More explicitly,
an ABE scheme consists of a global pair of “master” public-key (also known as the public
parameters of the scheme) and secret-key, where the former is used to encrypt messages, and
the latter is used to issue individual decryption keys. Messages are encrypted, using the public
parameters, with respect to an attribute x (for our purposes x ∈ {0, 1}n). Secret keys are
generated using the master secret-key, with respect to predicate functions f , so that SKf can
decrypt all ciphertexts with attributes x for which f(x) = 1.1 The security requirement is
collusion resilience. Namely, even if an attacker has as many SKfi

as they want, if fi(x) = 0
for all i, then the attacker cannot decrypt ciphertexts with attribute x. ABE schemes that
support sufficiently rich function classes (even the class of shallow circuits or the class of boolean
formulae) are known to exist only under two types of cryptographic assumptions: assumptions on
groups with bilinear maps [SW05, GPSW06, OSW07, Wat11, LOS+10, LW12, KL15, CGKW18,
KW20, GW20, LL20] and lattice assumptions [AFV11, ABV+12, Boy13, GVW13, BGG+14].

ABE proved to be a useful primitive for many purposes (see [LOS+10, AFV11, DDM15,
GKW17, DGP21] for just a few samples among many). However, proving security for ABE is a
challenging task. In the security reduction, the ABE adversary is used to violate the underlying
hardness assumption. Since the ABE adversary is allowed to request multiple keys SKfi

, the
proof needs to be designed so that such keys can be generated and fed to the adversary, where
at the same time, there is a challenge of the underlying assumption that remains unsolved in
the eyes of the reduction algorithm. Therefore, in many cases, security is proved in a relaxed
model, which is known as selective security. In this model, the adversary needs to declare, ahead

∗Weizmann Institute of Science, Israel, {zvika.brakerski,stav.medina}@weizmann.ac.il. Supported by the
Israel Science Foundation (Grant No. 3426/21), and by the European Union Horizon 2020 Research and Innovation
Program via ERC Project REACT (Grant 756482).

1The description here is for a variant known as Key-Policy ABE (KP-ABE). There is another variant known as
Ciphertext-Policy ABE (CP-ABE) where encryption is with respect to f , and secret-key generation is with respect
to x. The distinction is not very important for our purposes, so we adopt the KP-ABE notation throughout this
manuscript.

1

of time, the value x∗ on which it wishes to violate security [CHK03]. This allows the reduction
to design the public parameters so that it is possible to generate SKfi

for which fi(x∗) = 0.
However, this naturally restricts the attacker’s power since, in an actual attack, the adversary
may be exposed to some SKfi

and only then choose x∗. Protecting against the latter is known as
full security, or as adaptive security, to emphasize the possibility of the aforementioned adaptive
attacks. An intermediate notion, semi-adaptive security, allows x∗ to be chosen after seeing
the public parameters but before seeing any actual key. This latter notion appears to be more
similar to selective than to adaptive security and can be achieved in similar ways to the selective
case [BV16, GKW16].

Adaptive security is notoriously hard to prove. Intuitively, this is because the reduction needs
to be prepared to “feed” the adversary with a key of their choice. For example, the reduction
does not know whether the adversary will ask for a key for a function f or for its complement.
Therefore, in a sense, the reduction should have the ability to decrypt any ciphertext without
the adversary’s help. Indeed, until recently, fully secure ABE was only known to exist under
assumptions on bilinear maps, mostly using the dual-system technique of Waters and its suc-
cessors [Wat09]. 2 Recently, Tsabary [Tsa19] showed an approach towards full security in the
lattice regime, but only for a very restricted class of functions f (in particular, this is still not
known for general shallow circuits or for the class of boolean formulae).

Nevertheless, as hard as it is to prove adaptive security, actual adaptive attacks are not so
common. In fact, we are not aware of adaptive attacks against the lattice-based schemes of
[GVW13, BGG+14]. It is, therefore, quite puzzling that we need to apply involved techniques
and lose a lot of functionality (as of yet) in order to prove this property.

Lewko and Waters [LW14] tried to formalize the above intuition on the hardness of proving
adaptive security. They noticed that since the reduction needs to be able to produce keys that
essentially violate the security of any individual ciphertext, one can extract from the reduction
itself information that allows violating the hardness assumption, thus trivializing the proof.
This extraction is done via rewinding. At a high level, we consider an algorithm that runs the
reduction as an adversary, asks for a key for the function f0, and then rewinds the reduction to the
point before the key was asked. It then asks for a different key f1 and claims to violate security
for some x∗ for which f0(x∗) = 1 and f1(x∗) = 0. Indeed, security is violated by using SKf0 that
was obtained in the rewound part of the execution. The current thread of the reduction “thinks”
that only f1 was queried and, therefore, that it is interacting with a legitimate successful ABE
adversary. This should lead to the reduction of violating the hardness assumption in polynomial
time.

One has to be careful when applying this argument (especially given that adaptive security
via black-box reductions is possible to achieve in some cases). In order for it to work, the
reduction should not notice that the challenge ciphertext is being decrypted by a key that was
obtained in another thread. Therefore, SKf0 should decrypt ciphertexts in a “canonical” manner
that does not expose the origins of the key. Lewko and Waters, therefore, defined a criterion for
secret keys and ciphertexts, essentially requiring that it is not possible to distinguish different
decryptions of a ciphertext, even if they were obtained using different keys (so long as all secret
keys and ciphertext involved pass a public validation procedure). This is a very natural property,
and thus the Lewko-Waters result has the following very strong implication. In order to achieve
provable adaptive security, one must forgo the ability to validate secret keys and ciphertexts to
ensure that decryption is done in a consistent manner. We are not aware of a setting where this
“checkability” property is explicitly required, but we imagine that the ability to validate keys
and ciphertexts may be desirable in a multi-user system.

Existing methods for constructing fully-secure ABE do this by making their scheme impos-
2We note that there is a way to generically upgrade selective to adaptive security, at the cost of a 2n factor

degradation in security, by simply guessing the value of x∗. This is known as complexity leveraging. However, the
cost is prohibitive in many cases, and furthermore, this method cannot be applied if n is not a-priori bounded.

2

sible to validate. This applies to Waters’s aforementioned dual-system technique, where the
proof utilizes “semi-functional” keys and ciphertexts, which differ in functionality from “reg-
ular” keys, thus inherently violating the checkability property. Tsabary’s approach relies on
generating a special ciphertext that some policy-agreeing honestly-generated secret keys cannot
decrypt. Therefore, in the security proof, the challenge ciphertext would decrypt to different
values if the attacker attempted to decrypt it with different (policy-agreeing) secret keys. Here
again, it is inherently not possible to come up with a validation procedure for the scheme.

An important limitation of the Lewko-Waters result is that it does not apply when the
reduction itself rewinds the adversary. Indeed, rewinding is a very common proof technique in
cryptography. For example, the reduction, upon receiving a request to provide a key for f0,
may rewind the adversary and test it on public parameters that the reduction generated by
itself in order to see that it actually manages to solve ABE “dummy challenges” before actually
providing it with keys with respect to the “real” public parameters.

If we then try to apply the outline above, our algorithm tries to rewind the reduction, but
then the reduction, in turn, attempts to rewind the attacker. Our algorithm, therefore, needs to
pretend to have been rewound and solve the dummy challenges, which again requires rewinding
the reduction. Rewinding seems to complicate the above outline significantly, and indeed Lewko
and Waters only applied their techniques to straight-line reductions – ones that do not use
rewinding. This still leaves hope that maybe, if we are clever enough about proof techniques, we
can come up with a fully secure ABE scheme that is as simple as our existing selective schemes.
In fact, perhaps it is even possible to prove adaptive security for [GVW13, BGG+14] using a
sufficiently clever reduction.

1.1 Our Results

Our main result is to extend the result of Lewko and Waters to handle rewinding reductions.
Along the way, we introduce a simpler notion of checkability. Therefore, our result shows that
the Lewko-Waters argument cannot be circumvented by clever proof techniques (so long as the
adversary is used in a black-box manner), and necessarily there is a cost for the ability to prove
adaptive security. Both in terms of naturalness and possibly performance.

As an implication of our main theorem, we show that (the delegatable version of)3 the cele-
brated lattice-based scheme of [BGG+14] cannot be proven adaptively secure, at least without
modifications. To this end, we observe that the security definition of an ABE scheme does not
involve the decryption algorithm. Indeed, an attacker receives keys and a challenge ciphertext
and attempts to recover the message that has been encrypted. The entire security game is con-
ducted without any party being “instructed” to use the decryption algorithm.4 We show that
these schemes have an alternative decryption algorithm and that, with respect to this decryption
algorithm, it is possible to validate secret keys and ciphertexts. Therefore, our result can be
applied to rule out adaptive security reductions for this scheme. An important takeaway here
is that in order to rule out validation, one must consider all possible decryption circuits (that
decrypt correctly) and effectively show that it is impossible to validate secret keys and cipher-
texts with respect to all of them. We then discuss some modifications to the aforementioned
scheme and their impact on the ability to validate. Our conclusion is that apparently a more
radical change, as per [Tsa19], maybe required in order to be able to prove adaptive security in
the lattice setting.

3In the delegatable version, the secret key contains a lattice trapdoor rather than a single vector. See Section 1.2
for further explanation and discussion on the implications for the non-delegatable version.

4This property is not unique to ABE, and it also occurs in standard CPA secure encryption.

3

1.2 Technical Overview

To prove our main theorem, we consider a Turing reduction R from some intractability assump-
tion C to violating the adaptive security of some ABE scheme. The assumption C is stated in
terms of a possibly-interactive security game (using the framework of [Nao03]). The reduction
asserts that if there existed a successful ABE adversary A, then R could use it in a black-box
manner in order to break the assumption C. Following [LW14], the underlying idea of our proof
is to use the reduction R directly in order to break the assumption C, without the help of an
actual ABE attacker. In order to do so, we wish to efficiently emulate an ABE attacker for R,
in a way that R would not be able to distinguish from a real attacker.

Adaptive security is defined by an interactive game between the reduction R, i.e. the chal-
lenger, and the attacker A. The game begins with the challenger declaring the public parameters
of the ABE scheme. Then, the attacker can make key-queries to the challenger for secret keys
of predicates of its choice. Next, it declares a challenge attribute x∗, and receives from the
challenger a challenge ciphertext CTx∗ encrypted w.r.t. x∗ (say, encrypting either the message 0
or 1). Afterward, A can make more key-queries, until finally, it sends a guess of which message
was encrypted in CTx∗ . The adversary wins the game if it has not received any secret key that
accepted x∗, and the guess has been correct.

Recall that in order to emulate an attacker for R, our algorithm should be able to solve pos-
sible “dummy challenges” and properly decrypt ciphertexts provided by the reduction. Naively,
this could be achieved by rewinding the reduction and extracting additional secret keys. How-
ever, as we explained above, two issues arise: (1) First, the reduction may notice when the
simulated attacker decrypts the challenge ciphertext using a secret key that was extracted by
rewinding the reduction, and then behave unexpectedly as a result, so we would not be able
to use it to violate. (2) Second, once we allow the reduction to rewind the attacker, the naive
strategy could lead to many “nested” rewindings of the reduction and the attacker, which in turn
may result in an exponential running time. Furthermore, when considering a general assumption
C, we have to ensure that the rewinding of the reduction does not affect the interaction between
R and C, since C itself is not in our control and we are unable to rewind it.

In [LW14], Lewko and Waters addressed the first obstacle and defined a checkability criterion
for ABE schemes, which states that each secret key and each ciphertext can be validated to ensure
“canonical” decryption. Namely, the checkability property requires that a valid ciphertext is
decrypted to the same message using any valid secret key. This way, the simulated attacker can
validate the challenge ciphertext and the secret key used for decryption, and the reduction would
not detect which secret key was used. We present a looser checkability requirement, which states
that each secret key can be validated and that the decryption of ciphertext using any valid secret
key results in the same decryption distribution. This property is sufficient to ensure consistent
decryption by applying the same attacker strategy. Note that every scheme that satisfies Lewko
and Waters’s checkability requirement can be trivially transformed to satisfy our checkability
requirement by validating the ciphertext at the beginning of the decryption procedure, and
outputting ⊥ if found invalid. We further observe that the implementation of the decryption
procedure of an ABE scheme does not play any role in the adaptive security proof. Therefore,
if we modified the decryption procedure of an ABE scheme so it would satisfy our checkability
property, and show it cannot be proved adaptively secure, then we would conclude that the
original scheme could not be proven adaptively secure as well.

To overcome the second obstacle, our starting point is the more delicate rewinding technique
introduced by Pass [Pas11] in the context of witness-hiding special-sound protocols for unique
relations. Pass used the rewinding technique in order to obtain a sufficient amount of interac-
tion transcripts, which are essentially proofs of some statement x with different suffixes. The
transcripts are then fed to the special-soundness extractor in order to recover a witness for x.
We would like to use similar tools in order to rewind an ABE challenger, obtain multiple keys
with respect to the same public parameters, and use them for the purpose of decrypting the

4

challenge ciphertext.
Adopting Pass’s terminology, we define the notion of a slot, a “time window” during the

execution of R. This window “opens” when the emulated ABE attacker sends a key query to
obtain a secret key for a predicate function, and it “closes” right after the reduction responds
with one, and the attacker validates it. Intuitively, this is the shortest time frame that could be
rewound in order to extract additional validated secret keys from the reduction. As previously
described, due to the recursive nature of rewinding both the reduction and the simulated at-
tacker, the reduction may rewind the attacker at some point during a slot, so another “nested”
slot may open. We consider a slot to be “good” for rewinding if, between the time that it opens
and the time that it closes, there is no communication between R and C, and in addition, R does
not rewind the attacker “too many times” within the slot. We also require that the extracted
key was indeed a valid one. Intuitively, the first condition ensures that rewinding the slot does
not disturb the interaction between R and C, and the second condition allows us to bound the
recursion depth and limit the growth in runtime due to possible nested slots being rewound as
well. Once we encounter a good slot in the execution, we rewind it several times to extract
multiple secret keys. The precise criterion for a slot being good is determined with respect to
the maximal running time of the reduction, which is assumed to be efficient, and according to
the recursive depth of the slot. This, combined with the fact that R is an efficient algorithm and
cannot make “too many” queries to the attacker, allows us to ensure the existence of good slots
while maintaining the bound on the running time of the emulation. Note that an ABE attacker
may query the challenger (embodied by the reduction in our case) many times. It suffices for us
that just one of the slots induced by these queries is good because once a slot is good, we can
rewind it many times and obtain many secret keys that will allow us to decrypt the challenge
ciphertext.

Being able to rewind the reduction is a necessary step toward simulating an attacker, but we
must also argue that the rewinding reduction will indeed provide us with a valid secret key that
will decrypt x∗. To this end, we need to design the function class for which we make queries, as
well as the challenge attribute x∗. We want these values to meet the following conditions: On
the one hand, the secret keys queried during the “mainline” execution of R should not accept
the selected challenge attribute x∗. On the other hand, to successfully decrypt the challenge,
we wish to use the rewound executions to query at least one secret key that does accept x∗.
Finally, we must meet these two conditions in a way such that the reduction would not be able
to detect when it is being rewound, otherwise, it may abort.

We approach this challenge as follows: The challenge attribute x∗ is sampled uniformly
at random from the set of possible attributes, and each secret key is sampled randomly from
a specific set of functions, exactly the same way during the rewound queries as during the
“mainline” ones. The set of functions is constructed from a pairwise independent hash family,
so the fraction of any subset of attributes covered by a uniformly random function from the
set is statistically close to the mean fraction (a property also known as mixing). This is a key
ingredient in our analysis to ensure any attribute has a high enough probability of being covered
by the secret keys we extract by rewinding (this is true even when the reduction may choose not
to disclose a fraction of the keys, as we explain shortly). The probability of a function in the set
to cover some attribute is chosen to be small enough so that with high enough probability, the
uniformly random challenge x∗ is not covered by the functions queried during the “mainline”
execution of R, but large enough so that with high enough probability, x∗ is covered by at
least one key that was extracted during a rewound execution. By specifying the functions to be
queried, we require the ABE scheme to support them as predicates. Fortunately, since pairwise
hash families can be implemented by NC1 circuits [IKOS08], the requirement is commonly
satisfied.

Computing the probability of x∗ being covered by a secret key that was extracted by rewind-
ing, requires delicate care since we must not make any presumptions about the behavior of the

5

reduction. In particular, R may refuse to provide secret keys for certain queries in an unex-
pected way. By assumption, the reduction, given access to an attacker, violates the C with a
noticeable probability, and C is assumed to be impossible to violate without access to an at-
tacker. Therefore, the reduction must rely on the attacker breaking adaptive security with a
noticeable probability, and so it must cooperate according to the security game protocol with
a noticeable probability as well. For the same reason, if the reduction would only accept a
negligible portion of the possible challenge attributes, it would fail to successfully violate C with
a noticeable probability. This behavior is a generalization of a method known as complexity
leveraging, in which the challenger guesses the challenge attribute x∗ in advance and rejects any
other challenge. The method is used to upgrade a selectively secure scheme to be adaptively
secure generically, but at the cost of exponential degradation in security, which, as explained,
makes it irrelevant to our scenario.

Implications to Lattice-Based ABE Schemes. We now turn our attention to applying
our result to the lattice-based ABE scheme of Boneh et al. [BGG+14]. This scheme supports
policy functions represented by boolean circuits of a polynomially a-priori bounded depth (the
depth bound is a parameter in the initialization of the scheme), and security is based on the
hardness of the Learning with Errors problem (LWE) [Reg05].

We start by outlining the high-level structure of the scheme. In particular, we consider the
version that supports key delegation (see discussion on other variants and on other lattice-based
ABE schemes at the end of this outline). The public parameters are designed so that each input
attribute x is associated with a lattice Ax (we do not define what a lattice is since this is a
high-level overview, but we will explain all properties that are relevant for our outline). This
lattice can be publicly derived from the public parameters of the scheme. A ciphertext with
respect to x consists of a noisy vector that is close to the lattice Ax. More explicitly, Ax is
represented as a matrix in Zn×m

q , and the ciphertext consists of a vector of the form c = sAx + e
(mod q), where s is a uniform vector in Zn

q , and the noise e is sampled from a distribution over
short vectors. The message to be encrypted is then encoded by adding an “offset” to c, which
depends on the message. Importantly, being able to recover e from c suffices in order to recover
the message m, so the exact encoding procedure is immaterial for our purposes. In terms of
key generation, every possible predicate function f is also associated with a (public) lattice Af .
In this version of [BGG+14], the secret key for the predicate f consists of a trapdoor for the
lattice Af . A lattice trapdoor can take many forms (that are interchangeable). The simplest
one, perhaps, is a “short basis” for the so-called dual lattice. The details are immaterial, but
the important property is that given a trapdoor TA for a lattice A and given a vector c = sA + e
(mod q), where ∥e∥ ≤ B (for some parameter B that relates to the “quality” of the trapdoor), it
is possible to recover e (and furthermore this e is unique). We refer to this operation as decoding
(due to the similarity of decoding in error correcting codes). Thus, secret keys allow to decode
with respect to Af , but ciphertexts are encoded with respect to different lattices Ax.

The ingenious component of the scheme is a mechanism that allows, for every f, x s.t.
f(x) = 1, to come up with a low-norm matrix H = Hf,x s.t. Af = AxHf,x (we do not define
what we mean by a norm of a matrix, one can think about its spectral norm, for example). This
means that given c = sAx + e (mod q), it is possible to multiply by H and obtain c′ = sAf + e′

(mod q), where e′ has a possibly higher norm than e, but the degradation of the norm is bounded
and respective to the norm of H. This new c′ can be decoded using TAf

in order to decrypt
ciphertexts. (We did not explain why recovering e′ suffices for decryption, but this can be done.)

In order to apply our theorem to this scheme, we require the following observation, which
follows from the analysis of trapdoor properties in the literature, e.g. [MP12]. It can be shown
that Hf,x can also be used to translate a trapdoor for Af into a trapdoor for Ax, with somewhat
lower quality.5 This means that an alternative decryption procedure would be to deduce the

5This is a general property. If A = BH, and H is short, then given H, a trapdoor for A implies a trapdoor

6

trapdoor for Ax and then decode the vector c directly.
For our purposes, we wish to ensure that two different keys, with respect to f1 or f2, will

decrypt all ciphertext in the same way. We, therefore, take the following strategy. Given a secret
key for a function f , we first check that its “quality” as a trapdoor TAf

for Af is good enough.
That is, the honest key generation is guaranteed to produce trapdoors of a certain quality, and
when we are given a candidate trapdoor we check that it is indeed of this quality. Then, given
a vector c, we derive a trapdoor TAx for Ax, and use it to decode c. This is the end of the
“standard” decryption procedure, but our “validated” decryption has additional steps. Note
that it is quite possible that c is not a legitimate ciphertext at all, and perhaps the outcome e
that we obtained is “garbage” and does not actually describe the difference from a nearby lattice
point. In such a case, different trapdoors could lead to different “garbage” which contradicts
the consistency property we are interested in. Therefore, once we recover the noise vector e,
we check whether c − e is indeed of the form sAx (i.e. is a vector in the lattice Ax), and also
that ∥e∥ is sufficiently short (in this case, that its norm is consistent with the norm of a noise
vector that is selected by the honest encryption procedure). If either check fails, we return
⊥, otherwise, we return e (or rather, the message m that is induced by the value of e). The
important observation is that any trapdoor for Ax that has been derived by taking a trapdoor
for some Af of the prescribed quality and converting it into a trapdoor for Ax using Hf,x, should
be able to decode “legal” values of e. Therefore, if we get c with an “illegal” value of e, then we
always output ⊥, and if the value of e is “legal” then it should be correctly decoded.

This concludes our alternative decryption algorithm for the [BGG+14] scheme, for which ev-
ery validated secret key will produce the same output on any given input ciphertext c. Therefore,
by our main result, this scheme cannot have a black-box proof of security.

If we wish to construct an adaptively secure scheme, we need to eliminate the checkability
property. One direction that comes to mind is to degenerate the [BGG+14] scheme so that it is
no longer possible to obtain a trapdoor for Ax. We could try, for example, to change the secret
keys of the scheme so that they no longer contain a trapdoor for Af . Indeed, such a modification
is possible, where the secret key for f is modified to only contain a single short vector from the
dual lattice, rather than a basis. The non-delegatable version of the [BGG+14] scheme indeed
works in this way. The predecessor of the [BGG+14] scheme, namely the [GVW13] scheme, also
has a similar structure to the non-delegatable [BGG+14], where the secret key does not allow
obtaining a full trapdoor for Ax, but only a partial trapdoor (a number of short vectors in the
dual lattice, that do not form a basis).

In order for this approach to indeed allow an adaptive security proof, the scheme needs to
have properties that seem quite implausible. In particular, it would still be possible to apply
our result to obtain a barrier, if, instead of querying just one f , the attacker can query many
different f ’s that all accept the same value x. This would allow obtaining a large number of
short vectors in the dual lattice of Ax, thus obtaining a trapdoor for x, which would allow for
canonical decryption as described above. Due to the convoluted structure of Hf,x, it is hard to
prove that a full basis will be generated in this way, but it seems very implausible that this will
not be the case. The situation that we are considering is querying the key generation process on
multiple functions f , and finding out that on all of the x’s that we consider (except a negligible
fraction), if we take the dual-lattice vectors for Ax that are generated by all f ’s that accept x,
it holds that they all fall into a proper subspace and do not form a full rank set. Note that
the degrees of freedom of the key generation are fairly limited, and the number of x’s we can
consider is far greater than the number of vectors produced by the key generation. Still, coming
up with proof is non-trivial, and we leave it as an open problem. Nevertheless, any attempt to
prove adaptive security would require proving the opposite, which seems quite difficult.

Our conclusion, therefore (and others may draw their own), is that one has to deviate from
the known methods in order to achieve adaptive security. Indeed, Tsabary’s construction [Tsa19]

for B, with the “quality” of the trapdoor degrading respective to the norm of H.

7

achieves this, for a very limited function class, by significantly deviating from the above blueprint
so as to make it not possible to validate the decryption process.

2 Preliminaries

2.1 Basic Definitions

Let n be a natural number. We denote by 1n the unary expansion of n, that is, the concatenation
of n 1’s. We also denote [n] def= {1, . . . , n}.

Definition 2.1. (Negligible Function.) A function f : N→ R≥0 is said to be negligible if for all
c there exists N such that f(n) < n−c for all n > N . We denote by negl(·) a negligible function.

Definition 2.2. (Computational Indistinguishability.) Let {Xλ}λ∈N and {Yλ}λ∈N be two dis-
tribution ensembles. We say they are computationally indistinguishable if for any probabilistic
polynomial-time algorithm A, it holds that∣∣∣∣ Pr

x←Xλ

[A(x) = 1]− Pr
x←Yλ

[A(x) = 1]
∣∣∣∣ = negl(λ) (1)

Definition 2.3. (Statistical Distance.) Let X and Y be two random variables over a finite
domain Ω, we define their statistical distance by

D(X, Y) def= 1
2

∑
ω∈Ω
|Pr[X = ω]− Pr[Y = ω]| (2)

Definition 2.4. (Statistical Indistinguishability.) Let {Xλ}λ∈N and {Yλ}λ∈N be two distribution
ensembles over a finite domain Ω. We say they are statistically indistinguishable if D(Xλ, Yλ) =
negl(λ).

Definition 2.5. (Pairwise-Independent Hash Functions.) A family H of functions h : [n]→ [m]
is called pairwise independent if for every i, j ∈ [n] such that i ̸= j and every x, y ∈ [m] it holds
that

Pr
h

$←H

[h(i) = x ∧ h(j) = y] = 1
m2 (3)

2.2 Algorithms

The following algorithms have various alternative definitions, we present here the definitions
relevant to our analysis and results, and assume familiarity with Turing machines.

Definition 2.6. (Probabilistic Algorithm.) A probabilistic algorithm is a Turing machine that
receives an auxiliary random tape as input.

Definition 2.7. (Interactive Algorithm and Interactive Protocol.) An interactive algorithm,
or interactive machine, is a Turing machine that has two additional communication tapes, a
read-only one and a write-only one. An interactive protocol consists of two interactive machines
π = (A, B) such that A’s write-only communication tape is B’s read-only communication tape,
and A’s read-only communication tape is B’s write-only communication tape. The machines
take turns (also called “rounds”) in being active, each turn ends with the active machine either
halting or sending a message to the other machine.

Definition 2.8. (Oracle Machine.) An oracle machine is a Turing machine with access to
another machine, called the oracle. The access is implemented using an additional tape, called
oracle tape, and two special states, ASK and RESPONSE. The oracle machine may enter the
ASK state, which invokes an execution of an oracle on the input received through the oracle

8

tape. The contents of the oracle tape are then replaced with the output of the oracle, and the
state is changed to RESPONSE. Let A be an oracle machine and B an oracle; we denote AB

the execution of A with oracle access to B.

Remark 2.1. (Relation between Oracle Machines and Interactive Machines.) Throughout the
paper we treat interactive machines and oracle machines in a similar way, according to the
following equivalency: Consider an interactive protocol (A, B). The execution of the machines
interactively is equivalent to executing A as an oracle machine with oracle access to a stateless
version of machine B (i.e, machine B without a state register), where every oracle query contains
the partial transcript of the interactive protocol, and the output of the oracle is B’s next message
according to the interactive protocol. Similarly, given an oracle machine A with oracle access to
B, we can consider an interactive protocol (A, B) that contains the oracles queries made by A
to B and the corresponding responses.

Remark 2.2. (Rewinding an Oracle.) Consider an interactive protocol (A, B) and the corre-
sponding execution of oracle machine A with oracle access to B. Machine A can “rewind” B by
making a query to B with input that is a strict prefix of the partial transcript of the interactive
protocol, i.e. “rewind” B to a previous state in the interaction.

Definition 2.9. (Decision Problem.) A decision problem is an algorithm that outputs either 0
or 1.

Definition 2.10. (Black-box Reduction.) A black-box reduction from a decision problem A
to a decision problem B is a Turing machine that solves problem A given oracle access to a
machine that solves problem B.

2.3 Intractability Assumption

In the following definition, we formally describe the notion of intractability assumption to model
a problem that is assumed to be “hard to solve”. The assumption C is stated in terms of a
possibly-interactive security game (using the framework of [Nao03]).

Definition 2.11. (r(·)-round Intractability Assumption with Threshold t(·).) An r(·)-round
intractability assumption with threshold t(·) is an interactive probabilistic decision problem C,
called the challenger, that interacts with another algorithm A, called the attacker, such that:
(1) both algorithms take as input 1λ where λ is the security parameter; and (2) the interaction
is a-priori bounded by r(λ) rounds. We define the advantage of the attacker A with respect to
C as

Adv(A) def=
∣∣∣Pr

[
⟨A, C⟩

(
1λ

)
= 1

]
− t(λ)

∣∣∣ (4)

C is associated with a computational assumption that states that for any polynomial-time at-
tacker A there exists a negligible function µ(·) such that for all λ ∈ N

Adv(A) ≤ µ(λ) (5)

We say that a polynomial-time attacker A breaks the assumption C with non-negligible advan-
tage p if Adv(A) = p.

2.4 Attribute-Based Encryption

Definition 2.12. (Key-Policy Attribute-Based Encryption Scheme.) Let X be a set of objects
and F be a set of functions of the form f : X → {0, 1}. A key-policy Attribute Encryption (KP-
ABE) scheme for attribute set X and policy set F is a tuple of probabilistic polynomial-time
algorithms S = (Setup, Encrypt, KeyGen, Decrypt) as follows:

9

• Setup(1λ)→ PP, MSK The setup algorithm takes the security parameter λ as input.
It outputs the public parameters PP of the scheme and a master secret key MSK.

• Encrypt(x, M, PP)→ CTx The encryption algorithm takes in an attribute x ∈ X , a
message M ∈ {0, 1} and public parameters PP. It outputs a ciphertext CTx, which is an
encryption of M under x. Assume w.l.o.g. that CTx contains x.

• KeyGen(MSK, f, PP)→ SKf The key generation algorithm takes in the master secret
key MSK, a policy f ∈ F and public parameters PP. It outputs a secret key SKf for f .
Assume w.l.o.g. that SKf contains f .

• Decrypt(CTx, SKf , PP)→ M The decryption algorithm takes in a ciphertext CTx, a
secret SKf and public parameters PP. It outputs a message M ∈ {0, 1}.

Remark 2.3. Another variant of ABE is Ciphertext-Policy ABE (CP-ABE), where ciphertexts
are associated with policies and secret keys with attributes. The distinction is immaterial for
our purposes, so we adopt the notation of KP-ABE scheme and simply refer to it as ABE for
convenience.

Definition 2.13. ((Perfect) Correctness of KP-ABE.) Let S = (Setup, Encrypt, KeyGen, De-
crypt) be a key-policy ABE scheme for attribute set X and policy set F . We say that S is (per-
fectly) correct if the following holds: Let (PP, MSK) = Setup(1λ), f ∈ F , x ∈ X and M ∈ {0, 1}
and suppose f(x) = 1. Denote CTx = Encrypt(x, M, PP) and SKf = KeyGen(MSK, f, PP). It
holds that

Decrypt(CTx, SKf , PP) = M (6)

Definition 2.14. (Adaptive Security of KP-ABE.) Let S = (Setup, Encrypt, KeyGen, Decrypt)
be a key-policy ABE scheme for attribute set X and policy set F . We define adaptive security
to be the intractability assumption that consists of the following interactive “game”:

1. Setup Phase The challenger runs Setup(1λ) and sends PP to the adversary.

2. Key Query Phase I The adversary makes key-queries for policies in F of her choice:
that is, in each key-query the adversary sends a policy of her choice to the challenger,
the challenger runs the KeyGen algorithm to produce a secret key and sends it to the
adversary.

3. Challenge Phase The adversary declares two messages M0, M1 and a challenge attribute
x∗ ∈ X . The challenger samples a uniformly random bit b ∈ {0, 1}, computes CTx∗ =
Encrypt (x∗, Mb, PP) and sends the result to the adversary.

4. Key Query Phase II Same as Key Query Phase I.

5. Guess The adversary sends a guess b′ for the bit b.

The output of the game is defined as follows: If every queried policy f satisfies f (x∗) = 0,
the output is the adversary’s guess b̃ = b′; otherwise, the output is a uniformly random bit
b̃

$← {0, 1}. The threshold of the intractability assumption is 1/2, so the advantage of the
adversary is

∣∣∣Pr[b̃ = b]− 1/2
∣∣∣.

Remark 2.4. We observe that the adaptive security of an ABE scheme depends only on the
Setup, KeyGen, and Encrypt procedures, and not on the Decrypt procedure. Therefore, any
two ABE schemes that differ only in their implementations of the decryption, must be either
both adaptively secure or both not.

10

Next, we formally define a condition on an ABE scheme that essentially requires the policy
set to include a set of policies derived from a pairwise-independent hash family. Intuitively, a
random sample of policies from such a set has a significant probability of agreeing on a uniformly
random attribute. This property will be used in our proof to ensure that an attacker that requests
secret keys for many policies in that set, can use them to decrypt a challenge ciphertext with a
large enough probability.

Definition 2.15. (Pairwise-Friendly ABE Scheme.) Let S be a key-policy ABE scheme for
attribute set X and policy set F . We say that S is pairwise friendly if for every a, b ∈ N such
that a > b and a = O(log |X |), there exists a pairwise independent hash family H = {h : X →
[a]} so that the following holds: For every h ∈ H, the function fh : X → {0, 1} defined by
fh(x) = 1 ⇐⇒ h(x) ≤ b is in F .

Remark 2.5. For every n ∈ N and m ≤ n there exists a pairwise independent hash family
H = {h : {0, 1}n → {0, 1}m} such that every h ∈ H can be computed by an NC1 circuit
[IKOS08].

Remark 2.6. Following the previous remark let S be an ABE scheme with attribute set X and
policy set F such that F contains the class of functions with depth-d circuits for d = O(log |X |),
then S is pairwise friendly.

The following definitions describe our checkability criterion for an ABE scheme. Intuitively,
the checkability condition requires a validation procedure for secret keys, which ensures that vali-
dated keys decrypt any ciphertext the same. In particular, it makes it impossible for a challenger
to distinguish which key was used for the decryption of a challenge ciphertext. More precisely,
checkability correctness requires that honestly generated keys are indeed valid (according to the
validation procedure), and checkability soundness requires that any two valid keys decrypt any
ciphertext the same way.

Definition 2.16. (Checkable ABE Scheme.) We say that an ABE scheme is “checkable” if it
has an additional algorithm:

• SKCheck(PP, SK, f) → {True, False} The ciphertext checking algorithm takes in
public parameters PP, a key SK and a policy f ∈ F . It outputs either True or False.

Definition 2.17. (Checkability Correctness.) Let S = (Setup, Encrypt, KeyGen, Decrypt,
SKCheck) be a key-policy ABE scheme for attribute set X and policy set F . We say that S sat-
isfies the checkability-correctness property if the following holds: Let (PP, MSK) = Setup(1λ),
f ∈ F , and SKf = KeyGen(MSK, f, PP), then SKCheck(PP, SKf , f) = True.

Definition 2.18. (Checkability Soundness.) Let S = (Setup, Encrypt, KeyGen, Decrypt,
SKCheck) be a key-policy ABE scheme for attribute set X and policy set F . We say that
S satisfies the checkability-soundness property if the following holds: Let PP, SK1, SK2 and
f1, f2 ∈ F . Let CTx, i.e. a ciphertext claimed to be encrypted w.r.t. attribute x ∈ X ,6
s.t. f1(x) = f2(x) = 1. If SKCheck(PP, SK1, f1) = SKCheck(PP, SK2, f2) = True, then

Decrypt(CTx, SK1, PP) = Decrypt(CTx, SK2, PP) (7)

Remark 2.7. To obtain our result, it suffices to assume a looser condition on a checkable ABE
scheme: Instead of requiring that any two policy keys decrypt the ciphertext exactly the same,
it suffices to require that for any two policy keys, the distributions of the decryption outputs
are computationally indistinguishable.

6Recall our convention (Definition 2.12) that ciphertexts contain their attribute as a part of their description.

11

3 The Main Theorem and Proof
Informally, our main theorem asserts the following: Any pairwise-friendly checkable ABE scheme
cannot be proven adaptively secure by constructing a black-box reduction that reduces a possibly-
interactive intractability assumption to breaking the security of the scheme, even if the reduction
is rewinding. We show this by proving that in this case, it is possible to construct an efficient
algorithm that violates the intractability assumption (by using the reduction alone, without
requiring a successful ABE adversary).

Theorem 3.1. Let λ a security parameter, and two additional parameters d = θ(log λ), n =
poly(λ). Let S be a pairwise friendly and checkable ABE scheme with attribute-space X =
{0, 1}n and policy-space F . Let C be an r(·)-round intractability assumption with threshold
t(·), where r, t are polynomials. Suppose that for every polynomial l(·) there exists a black-box
reduction R such that the following holds: If R is given oracle access to an attacker A that
makes l(·) key-queries and has a non-negligible advantage in the adaptive security game of S,
then RA has non-negligible advantage w.r.t. the assumption C.

Let l(λ) = ω(n(λ) + r(λ)) and a corresponding reduction R. Denote A to be a hypothetical
attacker that has a non-negligible advantage in the adaptive security game of S. Then there
exist a polynomial-time algorithm B and a negligible function µ(·) such that∣∣∣Pr

[
⟨A,R, C⟩

(
1λ

)
= 1

]
− Pr

[
⟨R,B, C⟩

(
1λ

)
= 1

]∣∣∣ ≤ µ(λ) (8)

In particular, BR is a polynomial-time algorithm that has a non-negligible advantage w.r.t. the
assumption C.

In the remainder of the section, we prove the theorem:

Proof. Let λ denote the security parameter and suppose there exist S and C as described in the
theorem. Let l(λ) = ω(n(λ) + r(λ)) and let R be the corresponding reduction as described in
the theorem. By definition of R, if there were an attacker A with non-negligible advantage in
the security game of S, and R would be given oracle access to A, then R could use A during
an interaction with C to gain non-negligible advantage w.r.t. C. We will prove that the oracle
access to A can be simulated in a way that preserves R’s advantage w.r.t. C, even if it does not
have oracle access to an actual attacker A.

More explicitly, we will construct a machine B that has oracle access to the reduction R and
simulates the interaction between C and RA for properly defined A so that B has non-negligible
advantage w.r.t. C. To simulate the interaction properly, B simulates for R oracle access to an
attacker A so that R observes that A has a non-negligible advantage in the adaptive security
game of S. Moreover, the expected running time of B is polynomial, and in particular, the
simulation of the attacker is efficient.

First, we introduce an inefficient hypothetical attacker A with a non-negligible advantage
in the adaptive security game of S, and that can be used by R so that RA has non-negligible
advantage w.r.t. the assumption C. Second, we describe the algorithm B that has oracle access
to the reduction R, but instead of giving R an oracle access to an attacker, it simulates an
attacker for R that is indistinguishable from A by R. As we will show, B simulates A by
rewinding the reduction R and exploiting the fact that R runs in polynomial time and cannot
make too many queries to A. Finally, we analyze the running time and advantage of BR to prove
that there exists a polynomial-time algorithm that breaks the assumption C with non-negligible
advantage.

To summarize notations:

12

Parameter Size Meaning

n n(λ) = poly(λ) The dimension of X = {0, 1}n, the attribute
space of S on input 1λ.

d d(λ) = θ(log λ) The circuit-depth of the functions in class
F on input 1λ.

r r(λ) = poly(λ) The number of communication rounds in
the intractability assumption C on input 1λ.

t t(λ) = poly(λ) The threshold associated with the
intractability assumption C on input 1λ.

l l(λ) = ω(n(λ) + r(λ)) The number of key-queries made by the
attacker A on input 1λ.

M M(λ) = poly(λ) The bound on the running time of R on
input 1λ.

m m(λ) ≥ 4l(λ) A parameter of B to be defined later.
k k(λ) = ω(l(λ) log λ) A parameter of B to be defined later.

Recall that S is pairwise friendly, and let H = {h : {0, 1}n → [m]} be the pairwise indepen-
dent hash family such that for every h ∈ H, the function fh defined by fh(x) = 1 ⇐⇒ h(x) ≤ m

4l
is in F .

3.1 Hypothetical Attacker A

The hypothetical attacker algorithm performs as follows:

Algorithm A(1λ)

1. Receive PP from the challenger.

2. Initialize F = ∅ the set of functions to be queried during the key query phases and
their corresponding keys.

3. Make l key-queries, for each one:

(a) Sample a uniformly random h
$← H and make a key query by sending the policy

f
def= fh to the challenger.

(b) Receive SKf and update F ← F ∪ {(f, SKf)}.
(c) Run SKCheck(PP, SKf , f), if the output is False then abort.

4. Sample a uniformly random challenge attribute descriptor x∗
$← {0, 1}n and send it

to the challenger. Receive a ciphertext CTx∗ .

5. Brute-force search to find h′ ∈ H such that fh′ (x∗) = 1. If no such h′ exists, then
abort.

6. Iterate over all possible secret keys and check for every key SK if SKCheck(PP, SK, fh′) =
True. If so, stop the iteration. If no such key was found, then abort.

7. Decrypt CTx∗ using SK and submit the result.

Success Probability. We show that A breaks the adaptive security of S:

Claim 3.1. A wins the adaptive security game of S with advantage ≥ 3
8 .

13

Proof. We first observe that in the adaptive-security game of S, all values (public parame-
ters, ciphertexts and keys) are honestly generated, so due to the checkability correctness of
S, all the checks of SKCheck in step (3c) pass. Furthermore, if step (5) does not abort,
then by the definition of the policy set of S, there necessarily is a secret key SK such that
SKCheck(PP, SK, fh′) = True, so step (6) does not abort as well.

Next, we claim that there must exist h ∈ H such that fh(x∗) = 1, since by definition of
pairwise independence of H, there is a non-zero probability to sample a random h

$← H such
that fh(x∗) = 1. Therefore, step (5) never aborts.

So far, we conclude that if A samples a challenge x∗ such that there is no (f, SKf) ∈ F
for which f (x∗) = 1, then A necessarily retrieves a secret key SK that decrypts CTx and wins
the game. We highlight the role of checkability soundness of S: The retrieved key is validated
using SKCheck, therefore the decryption of the ciphertext is the same as it were under any other
validated secret key, so the challenger cannot distinguish which key was used to decrypt. The
probability to sample a challenge x∗ such that there exists (f, SKf) ∈ F for which f (x∗) = 1 is
bounded by

Pr
x,F

[∃(f, SKf) ∈ F s.t. f(x) = 1] ≤ l · Pr
x,f

[f(x) = 1] = l · Pr
h

[
h(x) ≤ m

4l

]
(9)

≤ l · 1
4l

= 1
4 (10)

When that happens, the winning probability is 1/2 by the definition of the security game. We
conclude that the overall winning probability is lower-bounded by 7

8 , as desired.

3.2 Algorithm B

Overview. Recall that we wish to construct B so that it simulates oracle access to an attacker
A for R, without truly having oracle access to a real attacker. In such a simulation, R starts the
interaction with the attacker by sending public parameters to the oracle, and then they interact
according to the adaptive security game of S until finally, the attacker sends a decryption to
the oracle. Naively, B could simulate the attacker by rewinding R to a previous state during
the interaction, extracting a secret key, and using it to decrypt the ciphertext. We emphasize
that the extracted secret key should be validated by the attacker using the SKCheck procedure
in order to ensure canonical decryption, as guaranteed by the checkability soundness of the
scheme. A major problem with this naive approach is that R can make “intertwined” queries
to A for many different public parameters. Therefore, if B would rewind R whenever it would
be required to provide decryption, we could get an exponential blow-up in running time. Our
solution is to have B rewind the reduction R only under certain conditions and have a more
delicate rewinding process, as we will describe shortly.

Before diving into a formal description of the rewinding process, we try to provide a high-
level intuition. Consider the tape of the Turing machine BR, i.e. the execution of B given oracle
access to R. At a high level, B initiates an execution of R, forwards all communication between
C and R, and whenever R tries to access the attacker oracle, simulates the attacker for R. Under
certain conditions to be specified later, B “forks” the execution into two parallel executions, a
process which could be thought of as “duplicating” the machine tape, and rewinds R in the
forked execution to a previous state. In other words, B makes a copy of the current state of
execution and then rewinds the copied execution so that it would continue differently from the
original one. We think of the relationship between the original execution and the duplicated
one as “parent” and “child”, respectively. B then continues running the child execution until a
certain event occurs, when it terminates it (and all its child executions if they exist), and finally
continues the parent execution.

More precisely, we define the notion of a “slot”, denoted by s, to be a time window within the
execution of R that “opens” just before the simulated attacker sends a policy to the reduction,

14

and “closes” right after the reduction sends back a corresponding secret key and the simulated
attacker runs SKCheck on it. Whenever a slot closes, B decides whether to rewind R back to
the opening of the slot, depending on three conditions that determine if the slot was “good”:

1. Between the time the slot s opened and the time it closed, R did not send (and thus did
not receive) any external message (to or from C).

2. Between the time the slot s opened and the time it closed, the number of other slots that
opened is “small”, where “small” will be defined below.

3. The received key passed the check, i.e., the result of SKCheck was True.
Whenever such a slot s closes, B “duplicates” the execution, rewinds R in the duplicated execu-
tion back to the opening of the slot, and sends a different policy than the one sent in the original
execution. B runs the duplicated execution until the slot either closes or stops being “good”,
and then terminates it (along with all its child executions if they exist). B repeats this process
of duplicating the execution and rewinding the slot several times until it finally returns to the
original execution and continues running it. We highlight that the rewinding process could be
recursive – recall that R might make intertwined queries, thus there might be a slot that opens
and closes within another slot.

Next, we describe this procedure formally.

The Algorithm. We will use the notion of a machine state, or simply a state, to formally
describe the control flow of the algorithm. Intuitively, we could think of a state as a pointer to
the machine tape of B. W.l.o.g., we assume a state includes a record of all the messages sent
and received by C, B and R, up to the point that the state points to.

We define a state v to be d-good with respect to a previous state u if: (1) R does not attempt
to send messages to C during the time between u and v, and (2) the number of slots that open
between u and v is at most M

nd . We say that a slot s = (u, v) is d-good if the closing of s is
d-good with respect to its opening, and the result of SKCheck at the end of the slot is True.

The algorithm we describe is BR, that is, the algorithm B given oracle access to the reduction
R. The formal description uses the definition of the hypothetical attacker A and a recursive
procedure SIM that simulates the attacker oracle for R.

Recall that the interactive protocol between the reduction and the attacker oracle begins
with the reduction sending public parameters to the attacker. Since R can make queries to the
attacker that corresponds to intertwined interactive transcripts, we associate each message with
the public parameters that initiated the corresponding transcript. Similarly, we associate each
slot with the public parameters that initiated the transcript that contains the policy message
that “opened” the slot.

Algorithm BR(1λ)

1. Initialize a global set F̃ = ∅.

2. Receive a message from C.

3. Initiate an execution of the reduction oracle R, and send the message received from
C to R.

4. Run SIMR(1λ, 0, 0, 0).

Algorithm SIMR(1λ, d, u, v)
On input the recursive depth d, a state u, and a state v, check for the following mutually
exclusive conditions and perform accordingly:

15

1. If d = 0 and R attempts to send a message to C, forward the message and feed R the
response received from C. Note that only at depth d = 0 the reduction R can interact
with C.

2. If d > 0 and v is not a d-good state with respect to u, return ⊥.

3. If d > 0 and s = (u, v) is a d-good slot, then return (PP, f, SKf) where f and SKf

are the policy and secret key retrieved during the slot s and PP is the corresponding
public parameters.

4. If v is the closing of a slot that opened strictly after u, and that slot is (d + 1)-good:
Let s be the opening of the slot; Let i = 0; Repeat the following until i = k(n) 7:

(a) Let r = SIM(1n, d + 1, s, s).
(b) If r ̸=⊥, increment i and store r = (PP, f, SKf) in F̃ .

If non of the above conditions applied, check if according to the interactive protocol between
R and the hypothetical attacker A, R is expecting to receive a response message from the
attacker:

1. If R is expecting to receive a decryption of a ciphertext associated with public param-
eters PP, then perform as follows: Let CTx∗ be the ciphertext and x∗ the challenge
under which the ciphertext was encrypted;

(a) Search F̃ for a tuple that has the same PP and also satisfies f (x∗) = 1.
(b) If there exists such a tuple, use SKf to decrypt CTx∗ and send the result.
(c) Otherwise, send a uniformly random guess.

2. If R is expecting to receive a policy, then respond in the same way as the attacker
oracle; that is,

(a) Sample a uniformly random h
$← H and send fh.

(b) Receive a secret key SK. Run SKCheck(PP, SK, f), if the output is False then
return ⊥.

3. If R is expecting to receive a challenge attribute, then responds in the same way as
the hypothetical attacker oracle; that is, sample a uniformly random x∗

$← {0, 1}n and
send it to R.

Finally, update v to be the current state (that includes all messages up to the current
point), and return SIMR

(
1λ, d, u, v

)
.

3.3 Running Time.

Claim 3.2. There exists some polynomial t(·) such that the expected running time of BR
(
1λ

)
is bounded by t(λ).

Proof. To analyze the running time of BR, we use a recursion tree to describe how B executes
and rewinds R: The root of the tree is the initial (and single) execution of R at level d = 0.
Whenever B forks a child execution at recursive level d, that is, what we previously described as
“duplicating the tape”, it is translated into a new node at level d + 1 that is a child of the node

7This condition could result in an endless loop.

16

from which it was forked at level d. Recall that this is performed whenever there we encounter
a (d + 1)-good slot during an execution at recursive level d, which we then rewind in the forked
execution.

First, by definition of a d-good slot, the depth of the tree is bounded by a constant c =
logλ M · θ(1). Second, at each execution of R at recursive level d, R opens at most M slots,
so there are at most M points from which we can fork child-executions and rewind the slot.
Next, we argue that each slot is expected to be forked and rewound at most k times. Recall
that k was a parameter of B that was used in the rewinding process to indicate how many secret
keys B tries to retrieve by rewinding the same slot. The key observation is that in each of the
rewindings on level d+1, rewinding and sampling a new policy does not change the distribution
of the state as viewed by the reduction R, so it remains identically distributed as the original
state (before rewinding). Therefore the probability that a slot s is (d + 1)-good at level d + 1
is at least the probability that it is (d + 1)-good on level d. Since B rewinds the slot on level
d until it obtains k valid keys, it is expected to be rewound (at most) k times. We prove this
formally in the following lemma:

Lemma 3.1. Any slot on any recursion level d is expected to be rewound (at most) k times.

Proof. Let s be the opening of a slot at level d. Let ϵs denote the probability that s is (d + 1)-
good, where the random variables are the random coins used by B and R during s. As explained
above, this probability does not depend on the current recursive depth. Denote Gs to be the
event that s is a (d + 1)-good slot, and Zs to be the random variable that represents the number
of child-executions of s on level d + 1, i.e., how many executions were forked from s on recursive
level d. Then

E [Zs] = Pr [Gs] · E [Zs | Gs] + Pr
[
Gs

]
· 0 (11)

By definition, we have Pr[Gs] = ϵs. The random variable [Zs|Gs] represents the number of
rewindings required to retrieve k secret keys, given that s was a (d + 1)-good slot. Recall that
a secret key is retrieved when the rewinding results in a (d + 1)-good slot, which occurs with
probability ϵs, thus the distribution of [Zs|Gs] is bounded by a geometric distribution with
parameter ϵs/k. Therefore, the expected number of child-executions satisfies

E [Zs] = ϵs ·
1
ϵs
· k = k (12)

In conclusion, each execution-node in the recursion tree has at most M slots that have
an expected number of O(k) children each, and overall an expected number of O(Mk) child-
executions. By the law of total expectation, counting from bottom up inductively, we find that
the expected number of nodes in the recursion tree up to level d (including the descendant
executions) is bounded by

E [#executions up to level d] =
= E [E [#executions up to level (d− 1) | #executions at level d]]
= E [#executions up to level (d− 1)] · E [#executions at level d]
= E [#executions up to level (d− 1)] ·O(Mk)
= O(Mk)c−1−(d−1) ·O(Mk) = O(Mk)c−d+1

(13)

Where the step before the last is the substitution of the induction assumption for d − 1. Thus
the total expected running time is polynomial in n, as desired.

17

3.4 Success Probability.

In order to analyze the success probability of BR, we compare the transcript of the interaction
between C and BR with the transcript of the interaction between C and RA. We show that the
distributions of both transcripts are indistinguishable, therefore the probability that C outputs
1 is the same in both scenarios except some negligible probability. In other words, we show that
there exists some negligible function µ(·) such that

Pr
[
⟨R,B, C⟩

(
1λ

)
= 1

]
≥ Pr

[
⟨A,R, C⟩

(
1λ

)
= 1

]
− µ(λ) (14)

Recall that by the definition of B, it forwards all messages from C to the (single) execution
of R at recursive level d = 0 and vice versa. For simplicity, denote the execution of R at
level d = 0 by R0. If B would perfectly simulate the hypothetical attacker A for R, that is,
respond to all queries from R to the attacker oracle exactly the same as A, then R0 would act
exactly the same as RA (all other recursive calls at level d > 0 would be irrelevant to R0),
and it would immediately follow that the transcripts in both scenarios have the exact same
distribution. Although this is not necessarily the case, we show that the probability that B
responds differently from A is negligible, so the transcripts are indistinguishable as desired.

By the definitions of the hypothetical attacker A and the algorithm B, they respond exactly
the same to all queries that R makes to the attacker oracle, with the exception of queries in
which R sends a ciphertext for the oracle to decrypt. For those queries, if there exists a valid
key that decrypts the ciphertext, then the hypothetical attacker responds with the decryption,
whereas the simulated attacker might fail to decrypt. We argue that the probability that B fails
to decrypt a ciphertext is negligible.

Denote

• E1 the event that B is required to decrypt a ciphertext CTx associated with public pa-
rameters PP without having previously rewound any slot associated with the same PP.

• E2 the event that B is required to decrypt a ciphertext CTx, and some slot associated
with the same PP was successfully rewound, but every (PP, f, SKf) ∈ F̃ (with the same
PP) satisfies f(x) = 0.

We note that if neither E1 nor E2 occur, then necessarily B succeeds in decrypting the received
ciphertext.

Claim 3.3. The probability that E1 happens in an execution between BR and C is 0.

Proof. Recall that every time R sends a ciphertext to the attacker to decrypt that is associated
with public parameters PP, it must have sent l(λ) = ω(n + r + 1) keys associated with the same
PP. The recursive depth of the simulation is bounded by c, so whenever an interaction between
the reduction and the attacker reaches the point where R sends a ciphertext, there necessarily
is some level d such that the number of those keys on level d is at least l

c . For sufficiently large
λ, l

c ≥ n + r + 1. Since the number of openings of slots during a slot s at level d is bounded
by M

nd , there must be at least r + 1 key queries that have no more than M
nd+1 openings of inner

slots. Since r bounds the total number of external messages, we conclude that there exists at
least one (d + 1)-good slot, which can then be rewound, as desired.

Claim 3.4. There exists some negligible function µ(·) such that the probability that E2 happens
in an execution between BR and C on input 1λ is bounded by µ(λ).

Proof. By Claim 3.3, the probability that some slot during the interaction was rewound is 1.
Let s be that slot, so that k keys were retrieved and stored in F̃ . Let x be the selected challenge.
We prove the claim by showing that the probability that f(x) = 0 for every (PP, f, SKf) that
was recovered by rewinding the slot, is bounded by a negligible function. When computing this

18

probability, we must take into account that the reduction can behave differently in the different
child-executions. More precisely, recall that in each of the child-executions, the reduction’s view
is the same as in the original parent-execution, except for the policy sent by attacker (as part
of the query phase of the adaptive security game). Therefore the reduction can respond with
either a valid key to that policy or an invalid one, depending on the requested policy.

We use the following notation:

• Let H be the hash family defined earlier.

• Let T = {1, . . . ,
⌊

m
4l

⌋
}, which is the set of values such that h(x) ∈ T ⇐⇒ fh(x) = 1.

• Let W ⊆ H be the set of hash functions h ∈ H such that requesting a secret key for a
policy f

def= fh results in the reduction responding with a valid key SKf , i.e. a key for
which SKCheck(PP, SKf , f) outputs True.

• Let Sδ =
{

x ∈ {0, 1}n
∣∣∣∣ Pr

h
$←W

[h(x) ∈ T] < δ

}
i.e., the set of all challenges such that if

we sample a uniformly random h
$←W , the probability that h(x) ∈ T is < δ.

• For all δ and all Y ⊆ H, let Xδ
Y be the random variable |h−1(T) ∩ Sδ| when sampling a

uniformly random h
$← Y .

Intuitively, suppose the reduction responded with a valid key for every requested policy.
In that case, we could show that the coverage of k random hash functions in H, which is a
pairwise independent family, is the set X except for some negligible fraction. The problem with
this analysis is that R can indeed refuse to send valid secret keys for some policies during the
interaction, so the naive statistical argument does not hold. For this reason, we consider the
coverage of random hash functions in W instead of H. As we will show formally, this will not
change the final result because for the reduction to win the security game with a non-negligible
advantage, W must contain all functions in H except some negligible fraction.

By definition of Sδ, this is intuitively a set of “bad challenges” – challenges that have a small
probability (≤ δ) to be covered by a random hash function in W . Note that the smaller δ is,
the smaller the set Sδ.

Since the attacker samples random hash functions in H, which is a pairwise independent
family, the fraction of Sδ that is covered by a uniformly random h ∈ H is statistically close
to the mean fraction. In other words, there is only a small fraction of functions in H whose
intersection with Sδ is very small. Those are “bad functions” because their contribution to the
coverage of Sδ, the set of “bad challenges”, is little. We will show that even if all those “bad
functions” are in W , W must be a large enough fraction of H, so the probability to sample a “bad
function” from W is small; thus, the coverage of Sδ is still sufficiently large. From this, we will
further conclude that the entire set of challenges is covered with all but negligible probability.

Next, we continue with a formal analysis:

Lemma 3.2. There exists a polynomial p(·) such that |W ||H| ≥
1

p(λ) .

Proof. Recall that a slot is rewound only if the simulated attacker samples a hash function
h

$← H such that the reduction responds with a valid secret key; in other words, only if the
sampled hash function is in W . Given that the slot s was rewound, the probability to sample a
function in W must be non-negligible, therefore there exists a polynomial p(·) such that

1
p(λ) ≤ Pr

h
$←H

[h ∈W] = |W |
|H|

(15)

19

Lemma 3.3. For every δ we have

δ >
|T |
2m

(
1− 4|H|m
|W ||T ||Sδ|

)
(16)

Proof. By the definition of Xδ
Y , for every δ and every Y ⊆ H

E
[
Xδ

Y

]
= E

h
$←Y

[
|h−1(T) ∩ Sδ|

]
= E

h
$←Y

 ∑
x∈{0,1}n

1x∈Sδ
· 1h(x)∈T

 (17)

= E
h

$←Y

 ∑
x∈Sδ

1h(x)∈T

 (18)

By the definition of Xδ
H ,

E
[
Xδ

H

]
= E

h
$←H

 ∑
x∈Sδ

1h(x)∈T

 =
∑

x∈Sδ

Pr
h

$←H

[h(x) ∈ T] = |T | · |Sδ|
m

(19)

E
[(

Xδ
H

)2
]

= E
h

$←H


 ∑

x∈Sδ

1h(x)∈T

2
 (20)

= E
h

$←H

 ∑
x∈Sδ

1h(x)∈T +
∑

x,y∈Sδ

x ̸=y

1h(x)∈T 1h(y)∈T

 (21)

= |T ||Sδ|
m

+ |T |
2 · |Sδ|(|Sδ| − 1)

m2 (22)

Var
[
Xδ

H

]
= E

[(
Xδ

H

)2
]
− E

[
Xδ

H

]2
= |T ||Sδ|

m

(
1− |T |

m

)
(23)

Applying Chebyshev’s inequality, we get

Pr
[∣∣∣∣Xδ

H −
|T ||Sδ|

m

∣∣∣∣ ≥ |T ||Sδ|
2m

]
≤ |T ||Sδ|

m
· 4m2

|T |2|Sδ|2
= 4m

|T ||Sδ|
(24)

⇒ Pr
[
Xδ

H ≤
|T ||Sδ|

2m

]
≤ 4m

|T ||Sδ|
(25)

In other words, the fraction of Sδ that is covered by a uniformly random h
$← H, which is Xδ

H
|Sδ| ,

is statistically close to the mean fraction |T |m .
Let Vδ be the set of hash functions h ∈ H such that |h−1(T) ∩ Sδ| < |T ||Sδ|

2m . Intuitively, this
is the set of “bad functions” because their contribution to the coverage of Sδ is less than |T ||Sδ|

2m .
Note that by Eq. (25)

Vδ ≤ |H| · Pr
h

$←H

[
|h−1(T) ∩ Sδ| <

|T ||Sδ|
2m

]
= |H| · Pr

[
Xδ

H ≤
|T ||Sδ|

2m

]

≤ 4|H|m
|T ||Sδ|

(26)

By the law of total expectation,

E
[
Xδ

W

]
≥ E

[
Xδ

W\Vδ

]
· Pr

h
$←W

[h /∈ Vδ] ≥ |T ||Sδ|
2m

·
(

1− |Vδ|
|W |

)

≥ |T ||Sδ|
2m

·
(

1− 4|H|m
|W ||T ||Sδ|

) (27)

20

By definition of W and Sδ, we get the following lower bound

E
[
Xδ

W

]
= E

h
$←W

 ∑
x∈Sδ

1h(x)∈T

 < δ · |Sδ| (28)

Combining equations (28) and (27), we get

δ >
|T |
2m

(
1− 4|H|m
|W ||T ||Sδ|

)
(29)

Next, we use Lemma (3.1) and Lemma (3.2) to complete the proof of the claim. Recall that
|T |
m ≥

1
8l , combining the two lemmas, we get that for every δ

δ >
1

8l(λ)

(
1− 4p(λ) · 8l(λ)

|Sδ|

)
(30)

For simplicity, denote l′(n) = 8l(n) and p′(n) = 4p(n). Fix δ′ = 1
2l′ , substituting into (30)

1
2l′(λ) >

1
l′(λ)

(
1− p′(λ) · l′(λ)

|Sδ′ |

)
⇒ |Sδ′ | < 2p′(λ)l′(λ) (31)

By the law of total expectation,

Pr
x

$←{0,1}n

h
$←W

[h(x) ∈ T] ≥ Pr
x

$←{0,1}n

h
$←W

[h(x) ∈ T | x /∈ Sδ′] · Pr
x

$←{0,1}n

[x /∈ Sδ′]

> δ′
(

1− |Sδ′ |
2n

)
>

1
2l′(λ)

(
1− 2p′(λ)l′(λ)

2n(λ)

) (32)

For sufficiently large λ it holds that 2p′(λ)l′(λ) < 2n(λ)−1, so we get

Pr
x

$←{0,1}n

h
$←W

[h(x) ∈ T] ≥ 1
4l′(λ) (33)

Therefore, the probability that a uniformly random x
$← {0, 1}n is not covered by F̃ (that

is, h(x) /∈ T for every h ∈ F̃) is upper bound by

Pr
x

$←{0,1}n

[∀h ∈ F̃ : h(x) /∈ T] =

1− Pr
x

$←{0,1}n

h
$←W

[h(x) ∈ T]


k

≤
(

1− 1
4l′

)k

≤ e−k/4l′

(34)

Finally, we conclude that by definition of E2, the probability that it happens is upper-
bounded by the probability that a uniformly random x

$← {0, 1}n is not covered by F̃ given that
some slot was rewound, thus is upper-bounded by a negligible function µ2(λ) = e−k(λ)/32l(λ), as
desired.

21

By the two previous claims, the attacker simulated by B is indistinguishable by R from
the hypothetical attacker A, therefore the transcript of the interaction between C and R0 is
indistinguishable from the transcript of the interaction between C and RA, and so

Pr
[
⟨BR, C⟩

(
1λ

)
= 1

]
= Pr

[
⟨RA, C⟩

(
1λ

)
= 1

]
− negl(λ) (35)

By claim 3.2, the expected running time of B is polynomial, thus by Markov’s inequality, we
can truncate B to run in strictly polynomial time while preserving its non-negligible advantage
w.r.t. the assumption C. Overall we conclude that there exists a polynomial-time machine such
that, if given oracle access to R, has a non-negligible advantage w.r.t. the assumption C. This
completes the proof.

4 The Case of Lattice-Based ABE
As an example of applying our framework, we consider the celebrated [BGG+14] KP-ABE
candidate and show that a its delegatable version conforms with the conditions of our main
theorem. The [BGG+14] scheme has been proven selectively secure based on the hardness of
Learning with Errors (LWE), and while we are not aware of it being conjectured adaptively
secure, we do not know of concrete adaptive attacks. We consider a variant of the scheme where
function secret keys consist of lattice trapdoors. This version can be adapted to our framework
fairly straightforwardly.

4.1 Lattice Cryptography Background

We start by presenting a few necessary definitions of lattice cryptography on the subjects of
LWE and lattice trapdoors, which are required in order to describe the ABE scheme formally.

Definition 4.1 (Decisional LWEn,m,q,χ). Let λ be a security parameter, n = n(λ), m = m(λ)
and q = q(λ) be integers, and χ = χ(λ) be a noise distribution over Z. The (n, m, q, χ)-LWE
decision problem is to distinguish between the following two distributions: Letting A

$← Zn×m
q ,

s
$← Zn

q , e← χm, u
$← Zm

q , the first distribution is (A, AT s + e) and the second is (A, u).

Definition 4.2 (Gadget Matrix). We define the “gadget matrix” by G = g ⊗ In ∈ Zn×n⌈log q⌉
q

where g = (1, 2, 4, . . . , 2⌈log q⌉−1) ∈ Z⌈log q⌉
q . We define the inverse of the gadget matrix function

G−1 : Zn×m
q → {0, 1}n⌈log q⌉×n which expends each entry a ∈ Zq of the input matrix into a

column of size ⌈log q⌉ which is a binary representation of a, so for any matrix A ∈ Zn×m
q it holds

that G ·G−1(A) = A.

Definition 4.3 (Matrix Norms). Let T ∈ Zn×m be a matrix and T̃ the result of applying Gram-
Schmidt orthogonalization to the columns of T . We define the GS-norm ∥T∥GS as the l2 length of
the longest column of T̃ . Let ∥T∥2 be the operator norm of T defined as ∥T∥2 = sup∥x∥=1 ∥Tx∥.

The following are properties of lattice trapdoors, see [BGG+14] for references.

Lemma 4.1. Let m, n, q > 0 be integers with q prime.

• There is an efficient randomized algorithm TrapGen(1n, 1m, q) that when m = Θ(n log q),
outputs a full-rank matrix A ∈ Zn×m

q along with a basis TA ∈ Zm×m for Λ⊥q (A) = {z ∈ Zm |
A · z = 0 mod q} such that A is statistically indistinguishable from a uniformly-sampled
matrix and ∥TA∥GS = O(

√
n log q), with all but negligible probability.

• There is an efficient algorithm TrapExtend(A, B, TA) that given a full-rank matrix A ∈
Zn×m

q , a basis TA of Λ⊥q (A), and B ∈ Zn×m
q , outputs a basis T[A|B] of Λ⊥q ([A | B]) such

that ∥T[A|B]∥GS = ∥TA∥GS.

22

• There is a randomized algorithm SampleD(A, D, TA, σ) that given a full-rank matrix A ∈
Zn×m

q , a basis TA of Λ⊥q (A), a matrix D ∈ Zn×k
q , and σ = ∥TA∥GS · ω(

√
log m), outputs a

random matrix R ∈ Zm×k such that AR = D, and ∥RT ∥2 < mσ with all but negligible
probability.

Lemma 4.2. Let A ∈ Zn×m
q be a full rank matrix with a basis TA ∈ Zm×m for Λ⊥q (A), and

let B ∈ Zn×k
q and C ∈ Zk×m

q such that A = BC. Let D ∈ Zm×k
q such that AD = B (which

necessarily exists since A has a trapdoor TA). Then the matrix TB = [CTA | I − CD] is a basis
for Λ⊥q (B) such that ∥TB∥GS = ∥CTA∥GS.

Proof. We can immediately verify that BTB = 0, thus TB ∈ Λ⊥q (B). TB is also full-rank since

TB

[
T−1

A D
I

]
= I (36)

For the same reason, the GS-norm of TB∥GS is the same as [CTA | I], which is ∥CTA∥GS, as
desired.

Key-Homomorphic Evaluation. Let f be a boolean circuit of depth d computing a function
{0, 1}k → {0, 1}, and assume that f contains only NAND gates. We “translate” the operation
of f into a computation on matrices: We associate with every input wire of f a matrix Ai, and
for every other wire we assign a matrix recursively as follows: Let Aα, Aβ be the matrices of the
input wires, then the output wire is associated with the matrix Aγ = G− Aα ·G−1(Aβ). Note
that for every input values xα, xβ ∈ {0, 1},

[Aα + xαG | Aβ + xβG] ·
[
G−1(Aβ)
−xαI

]
= Aγ + (1− xαxβ)G

= Aγ + NAND(xα, xβ)G
(37)

Denote by Af the matrix of the output wire of f . We define Eval(f, (A1, . . . , Ak)) to be the
procedure that takes as inputs f and A⃗ = (A1, . . . , Ak) and outputs Af . Note that for input
wires x1, . . . , xk, the homomorphic evaluation satisfies

[A1 + x1G | · · · | Ak + xkG] ·Hf,x,A⃗ = Af + f(x1, . . . , xk)G (38)

for some short matrix Hf,x,A⃗ ∈ Zmk×m that has norm O(n log q)O(d).

4.2 The [BGG+14] Scheme

Next, we describe the properties of [BGG+14] scheme and show their sufficiency for applying
our theorem. For simplicity, we assume that the policies of the scheme accept attributes if and
only if f(x) = 0 (instead of f(x) = 1).

Let λ denote the security parameter, the parameters of the scheme are an integer n = n(λ), a
prime q = q(λ), an integer m = Θ(n log q), a noise distribution χ = χ(λ) over Zm, and d = d(λ).
The noise distribution is chosen to be χmax-bounded. The attribute set is X = {0, 1}k for k
which is given as input, and the policy set is the class of functions with depth-d circuits.

The public parameters of the scheme are matrices A0, A1, . . . , Ak, D ∈ Zn×m
q . Every attribute

x is associated with a public key Ax ∈ Zn×m
q computed by

Ax
def= [A0 | A1 + x1G | · · · | Ak + xkG] ∈ Zn×m(k+1)

q
(39)

Every predicate f is also associated with a public key Af ∈ Zn×m
q , computed by Eval(f, (A1, . . . , Ak)).

23

At high-level, the encryption procedure of the scheme is a variant of dual Regev encryption
[Reg05], so a ciphertext encrypted under a public key A ∈ Zn×l

q is essentially a noisy vector
close to the lattice spanned by A, and has the form cT = sT A + eT where s

$← Zn
q is a uniformly

random vector, and e ∈ Zl is a noise vector sampled from a distribution over short vectors. A
message is encoded into the ciphertext by adding an “offset” that depends on the message. A
secret key SK for A is a lattice trapdoor TA, i.e., a low-norm basis for the dual lattice Λ⊥q (A).
The trapdoor can be used to decrypt a ciphertext so long as its noise vector ∥e∥ is small enough
w.r.t. ∥TA∥GS and q.

Formally, the encryption of a message M ∈ {0, 1}m under public key Ax is

CTT
x =

[
cT

0 | cT
1 | · · · | cT

k | cT
out

]
= sT [A0 | x1G + A1 | · · · | xkG + Ak | D]

+
[
eT

0 | eT
1 | · · · | eT

k | eT
out + ⌈q/2⌉MT

] (40)

where s
$← Zn and e0, . . . , ek, eout ← χ.

To decrypt a ciphertext CTx using a key SKf for which f(x) = 0, one first homomorphi-
cally evaluates the ciphertext by applying a publicly known low-norm matrix Hf,x,A⃗ ∈ Zmk×m

(described in the key-homomorphic evaluation) such that

[A1 + x1G | · · · | Ak + xkG]Hf,x,A⃗ = Af + f(x)G ∈ Zn×m
q (41)

The result of evaluating a ciphertext with respect to policy f is an encryption of the original
message under the public matrix [A0 | Af + f(x)G] as follows:

cT
f =

[
cT

1 | · · · | cT
k

]
Hf,x,A⃗

= sT [x1G + A1 | · · · | xkG + Ak] Hf,x,A⃗ +
[
eT

1 | · · · | eT
k

]
Hf,x,A⃗

= sT Af +
[
eT

1 | · · · | eT
k

]
Hf,x,A⃗

(42)

It holds that
∥∥∥HT

f,x,A⃗

∥∥∥
2
≤ ∆ where ∆ is a parameter of the scheme.

The secret key for predicate f is a trapdoor Tf for [A0 | Af], whose GS-norm is ρ =
O(
√

n log q). The trapdoor is used to sample a matrix R ∈ Z2m×m
q such that [A0 | Af]R = D

and ∥RT ∥2 < 2mρσ for σ that is a parameter of the scheme. Decryption is computed by

cT
out −

[
cT

0 | cT
f

]
R = sT D + eT

out + ⌈q/2⌉MT

−
[
sT A0 + eT

0 | sT Af +
[
eT

1 | · · · | eT
k

]
Hf,x,A⃗

]
R

= ⌈q/2⌉MT + eT
out +

[
eT

0 |
[
eT

1 | · · · | eT
k

]
Hf,x,A⃗

]
R

(43)

The parameters of the scheme are chosen such that the norm of the noise vector

eT
out +

[
eT

0 |
[
eT

1 | · · · | eT
k

]
Hf,x,A⃗

]
R ,

which depends on χmax, ∆, k, m, ρ and σ, is small enough compared to q/4, so one can round
the result to extract M .

4.3 Applying Theorem 3.1

First, following Remark 2.6, the parameters of the scheme can be chosen to satisfy pairwise
friendliness. Second, we claim that there exists an alternative decryption procedure, denote

24

Decrypt’, and a procedure SKCheck, such that the ABE scheme equipped with (SKCheck,
Decrypt’) satisfies the checkability property. Proving the claim is sufficient to apply our theorem
to the scheme equipped with (SKCheck, Decrypt’), and by Remark 2.4 we conclude that the
original scheme cannot be proved adaptively secure as well.

The implementation of SKCheck is relatively straightforward: Given the public parameters,
a secret key SK, and a predicate f , verify that SK is a basis for Λ⊥q ([A0 | Af]) and that its
GS-norm is smaller than ρ. By definition of the scheme, we immediately get that any honestly-
generated secret key passes check, as desired.

Our strategy for the alternative decryption procedure is the following. Let SKf be a (valid)
secret key for predicate f and let CTx be a ciphertext such that f(x) = 0. Note that

Ax

[
I 0
0 Hf,x,A⃗

]
= [A0 | Af] (44)

So by Lemma 4.2, the secret key, which is a trapdoor Tf for [A0 | Af], can be used to obtain
a trapdoor Tx such that ∥Tx∥GS ≤ ∆ρ. We use the “secret key” SKx = Tx for Ax to “decode”
and decrypt the ciphertext CTx according to the following procedure. The procedure takes in
a ciphertext, a secret key and public parameters.

• Decode(CTx, SKx, PP): Denote the components of the ciphertext by c0, . . . , ck, cout as
defined in (40). Denote ρ′ the GS-norm of SKx. Use Tx = SKx to obtain a matrix R ∈
Zm(k+1)×m such that AxR = D and ∥RT ∥2 ≤ (k+1)mρ′σ. Compute cT

out−
[
cT

0 | · · · | cT
k

]
R

and round the result to extract M ∈ {0, 1}m such that

⌈q/2⌉MT = round
(
cT

out −
[
cT

0 | · · · | cT
k

]
R

)
(45)

Use Tx again to obtain a basis R′ for Λ⊥q ([Ax | D]) such that ∥R′∥GS ≤ ρ′. Compute the
vector

yT =
[
cT

0 | cT
1 | · · · | cT

k | cT
out − ⌈q/2⌉MT

]
R (46)

Lift y to its canonical representative ỹ ∈
[
− q

2 , q
2
)m(k+2), compute R′−1 over the rationals,

and compute zT = ỹT R′−1. Let z0, z1, . . . , zk, zout ∈ Zm such that z = (z0, z1, . . . , zk, zout).
Check that the norms of z0, z1, . . . , zk, zout are smaller than χmax. If not, output ⊥,
otherwise, output M .

Finally, we prove the following lemma to conclude the checkability of the alternative decryp-
tion:

Lemma 4.3. Let T1, T2 be two trapdoors for Ax such that ∥T1∥GS, ∥T1∥GS ≤ ∆ρ. For any
ciphertext CTx it holds that Decode(CTx, T1, PP) = Decode(CTx, T2, PP).

Proof. Denote c0, c1, . . . , ck, cout as before. For i = 1, 2 let Ri, R′i be the low-norm matrices
sampled during Decode(CTx, Ti, PP) such that AxRi = D and R′i is low-norm basis for Λ⊥q ([Ax |
D]). Let M be the binary vector extracted by Decode(CTx, T1, PP), and let

yT
1 =

[
cT

0 | cT
1 | · · · | cT

k | cT
out − ⌈q/2⌉MT

]
R1 (47)

If both decodings output ⊥, the claim follows immediately. Therefore, assume w.l.o.g. that
Decode(CTx, T1, PP) ̸=⊥. Let ỹ1 ∈

[
− q

2 , q
2
)m(k+2) be the canonical representative of y1, and let

R′−1
1 be the inverse of R′1 over the rationals. Let zT = ỹT

1 R−1
1 and z0, z1, . . . , zk, zout ∈ Zm such

that z = (z0, z1, . . . , zk, zout). By the assumption that Decode(CTx, T1, PP) ̸=⊥ we get that
the norms of z0, z1, . . . , zk, zout are smaller than χmax. Since R′1 is a basis for Λ⊥q ([Ax|D]) we
conclude that there exists some vector s ∈ Zn

q such that[
cT

0 | · · · | cT
k | cT

out − ⌈q/2⌉MT
]

=sT [Ax | D] +
[
zT

0 | · · · | zT
k | zT

out

]
(48)

25

We get that

cT
out −

[
cT

0 | · · · | cT
k

]
R2 = sT D + ⌈q/2⌉MT + zT

out − sT AxR2 +
[
zT

0 | · · · | zT
k

]
R2

= ⌈q/2⌉MT +
(
zT

out +
[
zT

0 | · · · | zT
k

]
R2

) (49)

By the requirement on the parameter of the scheme, the vector zT
out +

[
zT

0 | · · · | zT
k

]
R2 is small

enough compared to q/4, therefore the binary vector M ′ extracted by Decode(CTx, T2, PP)
satisfies

⌈q/2⌉M ′T = round
(
cT

out −
[
cT

0 | · · · | cT
k

]
R2

)
= ⌈q/2⌉MT (50)

i.e., M ′ = M . It remains to prove that Decode(CTx, T2, PP) outputs the extracted vector M ′

and not ⊥. We have

yT
2 =

[
cT

0 | · · · | cT
k | cT

out − ⌈q/2⌉M ′T
]

R′2 =
[
zT

0 | · · · | zT
k | zT

out

]
R′2 (51)

Lifting y2 to its canonical representative and applying R′−1
2 results in

z′T = ỹT
2 R′−1

2 =
[
zT

0 | zT
1 | · · · | zT

k | zT
out

]
(52)

Therefore, the checks on the norms of z0, . . . , zk, zout pass the same, and so

Decode(CTx, T1, PP) = M = M ′ = Decode(CTx, T2, PP) (53)

References
[ABV+12] Shweta Agrawal, Xavier Boyen, Vinod Vaikuntanathan, Panagiotis Voulgaris, and

Hoeteck Wee. Functional encryption for threshold functions (or fuzzy IBE) from lat-
tices. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors, Public Key
Cryptography - PKC 2012 - 15th International Conference on Practice and Theory
in Public Key Cryptography, Darmstadt, Germany, May 21-23, 2012. Proceedings,
volume 7293 of Lecture Notes in Computer Science, pages 280–297. Springer, 2012.
doi:10.1007/978-3-642-30057-8_17.

[AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional
encryption for inner product predicates from learning with errors. In Dong Hoon
Lee and Xiaoyun Wang, editors, Advances in Cryptology - ASIACRYPT 2011 -
17th International Conference on the Theory and Application of Cryptology and
Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings, volume
7073 of Lecture Notes in Computer Science, pages 21–40. Springer, 2011. doi:
10.1007/978-3-642-25385-0_2.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In
Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Copenhagen,
Denmark, May 11-15, 2014. Proceedings, pages 533–556, 2014.

[Boy13] Xavier Boyen. Attribute-based functional encryption on lattices. In Amit Sahai, ed-
itor, Theory of Cryptography - 10th Theory of Cryptography Conference, TCC 2013,
Tokyo, Japan, March 3-6, 2013. Proceedings, volume 7785 of Lecture Notes in Com-
puter Science, pages 122–142. Springer, 2013. doi:10.1007/978-3-642-36594-2\
_8.

26

https://doi.org/10.1007/978-3-642-30057-8_17
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-642-36594-2_8
https://doi.org/10.1007/978-3-642-36594-2_8

[BV16] Zvika Brakerski and Vinod Vaikuntanathan. Circuit-abe from LWE: unbounded
attributes and semi-adaptive security. In Advances in Cryptology - CRYPTO 2016 -
36th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
14-18, 2016, Proceedings, Part III, pages 363–384, 2016.

[CGKW18] Jie Chen, Junqing Gong, Lucas Kowalczyk, and Hoeteck Wee. Unbounded ABE
via bilinear entropy expansion, revisited. In Jesper Buus Nielsen and Vincent Ri-
jmen, editors, Advances in Cryptology - EUROCRYPT 2018 - 37th Annual In-
ternational Conference on the Theory and Applications of Cryptographic Tech-
niques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part I, volume
10820 of Lecture Notes in Computer Science, pages 503–534. Springer, 2018.
doi:10.1007/978-3-319-78381-9_19.

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryp-
tion scheme. In Eli Biham, editor, Advances in Cryptology - EUROCRYPT 2003, In-
ternational Conference on the Theory and Applications of Cryptographic Techniques,
Warsaw, Poland, May 4-8, 2003, Proceedings, volume 2656 of Lecture Notes in Com-
puter Science, pages 255–271. Springer, 2003. doi:10.1007/3-540-39200-9_16.

[DDM15] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Compact attribute-based
encryption and signcryption for general circuits from multilinear maps. In Alex
Biryukov and Vipul Goyal, editors, Progress in Cryptology - INDOCRYPT 2015 -
16th International Conference on Cryptology in India, Bangalore, India, December
6-9, 2015, Proceedings, volume 9462 of Lecture Notes in Computer Science, pages
3–24. Springer, 2015. doi:10.1007/978-3-319-26617-6_1.

[DGP21] Cécile Delerablée, Lénaïck Gouriou, and David Pointcheval. Key-policy ABE with
delegation of rights. IACR Cryptol. ePrint Arch., page 867, 2021. URL: https:
//eprint.iacr.org/2021/867.

[GKW16] Rishab Goyal, Venkata Koppula, and Brent Waters. Semi-adaptive security and
bundling functionalities made generic and easy. In Martin Hirt and Adam D. Smith,
editors, Theory of Cryptography - 14th International Conference, TCC 2016-B, Bei-
jing, China, October 31 - November 3, 2016, Proceedings, Part II, volume 9986 of
Lecture Notes in Computer Science, pages 361–388, 2016.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In
Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 612–621.
IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.62.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In Ari Juels, Rebecca N.
Wright, and Sabrina De Capitani di Vimercati, editors, Proceedings of the 13th ACM
Conference on Computer and Communications Security, CCS 2006, Alexandria,
VA, USA, Ioctober 30 - November 3, 2006, pages 89–98. ACM, 2006. doi:10.
1145/1180405.1180418.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based en-
cryption for circuits. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, ed-
itors, Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA,
USA, June 1-4, 2013, pages 545–554. ACM, 2013. doi:10.1145/2488608.2488677.

27

https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/978-3-319-26617-6_1
https://eprint.iacr.org/2021/867
https://eprint.iacr.org/2021/867
https://doi.org/10.1109/FOCS.2017.62
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1145/2488608.2488677

[GW20] Junqing Gong and Hoeteck Wee. Adaptively secure ABE for DFA from k-lin and
more. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology - EU-
ROCRYPT 2020 - 39th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceed-
ings, Part III, volume 12107 of Lecture Notes in Computer Science, pages 278–308.
Springer, 2020. doi:10.1007/978-3-030-45727-3_10.

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with
constant computational overhead. In Cynthia Dwork, editor, Proceedings of the 40th
Annual ACM Symposium on Theory of Computing, Victoria, British Columbia,
Canada, May 17-20, 2008, pages 433–442. ACM, 2008. doi:10.1145/1374376.
1374438.

[KL15] Lucas Kowalczyk and Allison Bishop Lewko. Bilinear entropy expansion from the
decisional linear assumption. In Rosario Gennaro and Matthew Robshaw, editors,
Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, volume 9216 of
Lecture Notes in Computer Science, pages 524–541. Springer, 2015. doi:10.1007/
978-3-662-48000-7_26.

[KW20] Lucas Kowalczyk and Hoeteck Wee. Compact adaptively secure ABE for NC1 from
k-lin. J. Cryptol., 33(3):954–1002, 2020. doi:10.1007/s00145-019-09335-x.

[LL20] Huijia Lin and Ji Luo. Compact adaptively secure ABE from k-lin: Beyond nc1
and towards NL. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptol-
ogy - EUROCRYPT 2020 - 39th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020,
Proceedings, Part III, volume 12107 of Lecture Notes in Computer Science, pages
247–277. Springer, 2020. doi:10.1007/978-3-030-45727-3_9.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent
Waters. Fully secure functional encryption: Attribute-based encryption and (hierar-
chical) inner product encryption. In Henri Gilbert, editor, Advances in Cryptology -
EUROCRYPT 2010, 29th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Monaco / French Riviera, May 30 - June 3,
2010. Proceedings, volume 6110 of Lecture Notes in Computer Science, pages 62–91.
Springer, 2010. doi:10.1007/978-3-642-13190-5_4.

[LW12] Allison B. Lewko and Brent Waters. New proof methods for attribute-based encryp-
tion: Achieving full security through selective techniques. In Reihaneh Safavi-Naini
and Ran Canetti, editors, Advances in Cryptology - CRYPTO 2012 - 32nd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings,
volume 7417 of Lecture Notes in Computer Science, pages 180–198. Springer, 2012.
doi:10.1007/978-3-642-32009-5_12.

[LW14] Allison B. Lewko and Brent Waters. Why proving HIBE systems secure is diffi-
cult. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptol-
ogy - EUROCRYPT 2014 - 33rd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15,
2014. Proceedings, volume 8441 of Lecture Notes in Computer Science, pages 58–76.
Springer, 2014. doi:10.1007/978-3-642-55220-5_4.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. In David Pointcheval and Thomas Johansson, editors, Advances in

28

https://doi.org/10.1007/978-3-030-45727-3_10
https://doi.org/10.1145/1374376.1374438
https://doi.org/10.1145/1374376.1374438
https://doi.org/10.1007/978-3-662-48000-7_26
https://doi.org/10.1007/978-3-662-48000-7_26
https://doi.org/10.1007/s00145-019-09335-x
https://doi.org/10.1007/978-3-030-45727-3_9
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-32009-5_12
https://doi.org/10.1007/978-3-642-55220-5_4

Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-
19, 2012. Proceedings, volume 7237 of Lecture Notes in Computer Science, pages
700–718. Springer, 2012. doi:10.1007/978-3-642-29011-4_41.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In Dan Boneh, editor,
Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology
Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings, vol-
ume 2729 of Lecture Notes in Computer Science, pages 96–109. Springer, 2003.
doi:10.1007/978-3-540-45146-4_6.

[OSW07] Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption with
non-monotonic access structures. In Peng Ning, Sabrina De Capitani di Vimer-
cati, and Paul F. Syverson, editors, Proceedings of the 2007 ACM Conference on
Computer and Communications Security, CCS 2007, Alexandria, Virginia, USA,
October 28-31, 2007, pages 195–203. ACM, 2007. doi:10.1145/1315245.1315270.

[Pas11] Rafael Pass. Limits of provable security from standard assumptions. In Lance
Fortnow and Salil P. Vadhan, editors, Proceedings of the 43rd ACM Symposium
on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages
109–118. ACM, 2011. doi:10.1145/1993636.1993652.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. In Harold N. Gabow and Ronald Fagin, editors, Proceedings of the 37th Annual
ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005,
pages 84–93. ACM, 2005. doi:10.1145/1060590.1060603.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald Cramer,
editor, Advances in Cryptology - EUROCRYPT 2005, 24th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Aarhus,
Denmark, May 22-26, 2005, Proceedings, volume 3494 of Lecture Notes in Computer
Science, pages 457–473. Springer, 2005. doi:10.1007/11426639_27.

[Tsa19] Rotem Tsabary. Fully secure attribute-based encryption for t-cnf from lwe. Cryptol-
ogy ePrint Archive, Paper 2019/365, 2019. https://eprint.iacr.org/2019/365. URL:
https://eprint.iacr.org/2019/365.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In Shai Halevi, editor, Advances in Cryptology - CRYPTO
2009, 29th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2009. Proceedings, volume 5677 of Lecture Notes in Computer Science,
pages 619–636. Springer, 2009. doi:10.1007/978-3-642-03356-8_36.

[Wat11] Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, effi-
cient, and provably secure realization. In Dario Catalano, Nelly Fazio, Rosario
Gennaro, and Antonio Nicolosi, editors, Public Key Cryptography - PKC 2011
- 14th International Conference on Practice and Theory in Public Key Cryp-
tography, Taormina, Italy, March 6-9, 2011. Proceedings, volume 6571 of Lec-
ture Notes in Computer Science, pages 53–70. Springer, 2011. doi:10.1007/
978-3-642-19379-8_4.

29

https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1145/1315245.1315270
https://doi.org/10.1145/1993636.1993652
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/11426639_27
https://eprint.iacr.org/2019/365
https://eprint.iacr.org/2019/365
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-642-19379-8_4

	Introduction
	Our Results
	Technical Overview

	Preliminaries
	Basic Definitions
	Algorithms
	Intractability Assumption
	Attribute-Based Encryption

	The Main Theorem and Proof
	Hypothetical Attacker A
	Algorithm B
	Running Time.
	Success Probability.

	The Case of Lattice-Based ABE
	Lattice Cryptography Background
	The BGGHNSVV14 Scheme
	Applying Theorem 3.1

