
A new approach based on quadratic forms to
attack the McEliece cryptosystem

Alain Couvreur1, Rocco Mora2, and Jean-Pierre Tillich2

1 Inria Saclay, LIX, CNRS UMR 7161, École Polytechnique, 1 rue Honoré d’Estienne
d’Orves, 91120 Palaiseau Cedex

2 Inria Paris, 2 rue Simone Iff, 75012 Paris, France
{alain.couvreur,rocco.mora,jean-pierre.tillich}@inria.fr

Abstract. We introduce a novel algebraic approach for attacking the
McEliece cryptosystem which is currently at the 4-th round of the NIST
competition. The contributions of the article are twofold. (1) We present
a new distinguisher on alternant and Goppa codes working in a much
broader range of parameters than [FGO`11]. (2) With this approach we
also provide a polynomial–time key recovery attack on alternant codes
which are distinguishable with the distinguisher [FGO`11].
These results are obtained by introducing a subspace of matrices repre-
senting quadratic forms. Those are associated with quadratic relations
for the component-wise product in the dual of the Goppa (or alternant)
code of the cryptosystem. It turns out that this subspace of matrices con-
tains matrices of unusually small rank in the case of alternant or Goppa
codes (2 or 3 depending on the field characteristic) revealing the secret
polynomial structure of the code. MinRank solvers can then be used to
recover the secret key of the scheme. We devise a dedicated algebraic
modeling in characteristic 2 where the Gröbner basis techniques to solve
it can be analyzed. This computation behaves differently when applied
to the matrix space associated with a random code rather than with a
Goppa or an alternant code. This gives a distinguisher of the latter code
families, which contrarily to the one proposed in [FGO`11] working only
in a tiny parameter regime is now able to work for code rates above 2

3
. It

applies to most of the instantiations of the McEliece cryptosystem in the
literature. It coincides with the one of [FGO`11] when the latter can be
applied (and is therefore of polynomial complexity in this case). However,
its complexity increases significantly when [FGO`11] does not apply any-
more, but stays subexponential as long as the co-dimension of the code
is sublinear in the length (with an asymptotic exponent which is below
those of all known key recovery or message attacks). For the concrete
parameters of the McEliece NIST submission [ABC`22], its complexity
is way too complex to threaten the cryptosystem, but is smaller than
known key recovery attacks for most of the parameters of the submis-
sion. This subspace of quadratic forms can also be used in a different
manner to give a polynomial time attack of the McEliece cryptosystem
based on generic alternant codes or Goppa codes provided that these
codes are distinguishable by the method of [FGO`11], and in the Goppa
case we need the additional assumption that its degree is less than q´1,
where q is the alphabet size of the code.
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1 Introduction

The McEliece Cryptosystem

The McEliece encryption scheme [McE78], which is only a few months younger
than RSA [RSA78], is a code-based cryptosystem built upon the family of binary
Goppa codes. It is equipped with very fast encryption and decryption algorithms
and has very small ciphertexts but large public key size. Contrarily to RSA which
is broken by quantum computers [Sho94], it is also widely viewed as a viable
quantum-safe cryptosystem. A variation of this public key cryptosystem intended
to be IND-CCA secure and an associated key exchange protocol [ABC`22] is one
of the three remaining code-based candidates in the fourth round of the NIST
post-quantum competition on post-quantum cryptography. Its main selling point
for being standardized is that it is the oldest public key cryptosystem which has
resisted all possible attacks be they classical or quantum so far, this despite very
significant efforts to break it.

The consensus right now about this cryptosystem is that key-recovery at-
tacks that would be able to exploit the underlying algebraic structure are way
more expensive than message-recovery attacks that use decoding algorithms for
generic linear codes. Because of this reason, the parameters of McEliece en-
cryption scheme are chosen according to the latest algorithms for decoding a
linear code. This is also actually another selling point for this cryptosystem,
since despite significant efforts on improving the algorithms for decoding lin-
ear codes, all the classical algorithms for performing this task are of exponen-
tial complexity and this exponent has basically only decreased by less than 20
percent for most parameters of interest after more than 60 years of research
[Pra62, Ste88, Dum89, CC98, MMT11, BJMM12, MO15, BM17]. The situation
is even more stable when it comes to quantum algorithms [Ber10, KT17].

Key Recovery Attacks

The best key recovery attack has not changed for many years. It was given in
[LS01] and consists in checking all Goppa polynomials and all possible supports
with the help of [Sen00]. Its complexity is also exponential with an exponent
which is much bigger than the one obtained for message recovery attacks. There
has been some progress on this issue, not on the original McEliece cryptosys-
tem, but on variations of it. This concerns very high rate binary Goppa codes
for devising signature schemes [CFS01], non-binary Goppa codes over large al-
phabets [BLP10, BLP11], or more structured versions of the McEliece system,
based on quasi-cyclic alternant codes [BCGO09, CBB`17] (a family of algebraic
codes containing Goppa codes retaining the essential algebraic features of Goppa
codes) or on quasi-dyadic Goppa codes such as [MB09, BLM11, BBB`17].

The quasi-cyclic or quasi-dyadic alternant/Goppa codes have been attacked
in [FOPT10, GUL09, BC18] by providing a suitable algebraic modeling for the
secret key and then solving the algebraic system with Gröbner bases techniques.
This algebraic modeling tries to recover the underlying polynomial structure of
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these codes coming from the underlying generalized Reed-Solomon structure by
using just an arbitrary generator matrix of the alternant or Goppa code which
is given by the public key of the scheme. This is basically the secret key of
the scheme. It allows to decode the alternant or Goppa code and therefore all
possible ciphertexts. Recall that a generalized Reed-Solomon code is defined by

Definition 1 (Generalized Reed-Solomon (GRS) code ). Let x “ px1, . . . ,
xnq P Fn be a vector of pairwise distinct entries and y “ py1, . . . , ynq P Fn a vec-
tor of nonzero entries, where F is a finite field. The generalized Reed-Solomon
(GRS) code over F of dimension k with support x and multiplier y is

GRSkpx,yq
def
“ tpy1P px1q, . . . , ynP pxnqq | P P Frzs,degP ă ku.

Alternant codes are defined as subfield subcodes of GRS codes, meaning that an
alternant code A of length n is defined over some field Fq whereas the underlying
GRS code C is defined over an extension field Fqm of degree m. The alternant
code is defined in this case as the set of codewords of the GRS code whose entries
all belong to the subfield Fq, i.e

A “ C X Fnq .

Rather than trying to recover the polynomial structure of the underlying GRS
code, the algebraic attack in [FOPT10] actually recovers the polynomial struc-
ture of the dual code. Recall that the dual code of a linear code is defined by

Definition 2 (dual code). The dual CK of a linear code C of length n over
Fq is the subspace of Fnq defined by CK

def
“ td P Fnq : d ¨ c “ 0, @c P C u, where

d ¨ c “
řn
i“1 cidi with c “ pciq1ďiďn and d “ pdiq1ďiďn.

The dual code of an alternant code has also a polynomial structure owing to the
fact that the dual of a GRS code is actually a GRS code:

Proposition 1 ([MS86, Theorem 4, p. 304]). Let GRSrpx,yq be a GRS
code of length n. Its dual is also a GRS code. In particular GRSrpx,yqK “
GRSn´rpx,yKq, with yK

def
“

´

1
π1xpx1qy1

, . . . , 1
π1xpxnqyn

¯

, where πxpzq
def
“

śn
i“1pz´

xiq and π1x is its derivative.

It is actually the dual of the underlying GRS code which serves to define the
multiplier and the support of an alternant code as shown by

Definition 3 (alternant code). Let n ď qm, for some positive integer m. Let
GRSrpx,yq be the GRS code over Fqm of dimension r with support x P Fnqm
and multiplier y P pF˚qmqn. The alternant code with support x and multiplier y,
degree r over Fq is

Arpx,yq
def
“ GRSrpx,yqK X Fnq “ GRSn´rpx,yKq X Fnq .

The integer m is called extension degree of the alternant code.



4 A. Couvreur, R. Mora, J.-P. Tillich

It is much more convenient to recover with an algebraic modeling the support
and the multiplier of the dual of the underlying GRS code because any codeword
c “ pciq1ďiďn of the alternant code Arpx,yq is readily seen to be orthogonal
to any codeword d of GRSrpx,yq, i.e. c ¨ d “ 0. The algebraic modeling of
[FOPT10] is based on such equations where the unknowns are the entries of x
and y. Goppa codes can be recovered from this approach too, since they are
particular alternant codes:

Definition 4 (Goppa code). Let x P Fnqm be a support vector and Γ P Fqmrzs
a polynomial of degree r such that Γ pxiq ‰ 0 for all i P t1, . . . , nu. The Goppa
code of degree r with support x and Goppa polynomial Γ is defined as G px, Γ q

def
“

Arpx,yq, where y
def
“

´

1
Γ px1q

, . . . , 1
Γ pxnq

¯

.

The algebraic modeling approach of [FOPT10] worked because the quasi cyclic/
dyadic structure allowed to reduce drastically the number of unknowns of the
algebraic system when compared to the original McEliece cryptosystem. A vari-
ant of this algebraic modeling was introduced in [FPdP14] to attack certain
parameters of the variant of the McEliece cryptosystem [BLP10, BLP11] based
on wild Goppa codes/wild Goppa codes incognito. It only involves equations
on the multiplier y of the Goppa code induced by the wild Goppa structure.
The McEliece cryptosystem based on plain binary Goppa codes seems immune
to both the approaches of [FOPT10] and [FPdP14]. The first one because the
degree and the number of variables of the resulting system are most certainly
too big to make such an approach likely to succeed if not at the cost of a very
high exponential complexity (but this has to be confirmed by a rigorous analysis
which is hard to perform because Gröbner bases techniques perform here very
differently from a generic system). The second one because this modeling does
not apply to binary Goppa codes. In particular, it needs a very small extension
degree and a code alphabet size that are prime powers rather than prime.

It was also found that Gröbner bases techniques when applied to the algebraic
system [FOPT10] behaved very differently when the system corresponds to a
Goppa code instead of a random linear code of the same length and dimension.
This approach led to [FGO`11] that gave a way to distinguish high-rate Goppa
codes from random codes. It is based on the kernel of a linear system related to
the aforementioned algebraic system. It was shown there to have an unexpectedly
high dimension when instantiated with Goppa codes or the more general family
of alternant codes rather than with random linear codes. Another interpretation
was later on given to this distinguisher in [MP12], where it was proved that
the kernel dimension is related to the dimension of the square of the dual of
the Goppa code. Very recently, [MT22] revisited [FGO`11] and gave rigorous
bounds for the dimensions of the square codes of Goppa or alternant codes and
a better insight into the algebraic structure of these squares. Recall here that the
component-wise/Schur product/square of codes is defined from the component-
wise/Schur product of vectors a “ paiq1ďiďn and b “ pbiq1ďiďn

a ‹ b
def
“ pa1b1, . . . , anbnq
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by

Definition 5. The component-wise product of codes C ,D over F with the same
length n is defined as

C ‹D
def
“ x c ‹ d | c P C ,d P D yF .

If C “ D , we call C ‹2
def
“ C ‹ C the square code of C .

The reason why Goppa codes behave differently from random codes for this
product is essentially because the underlying GRS code behaves very abnormally
with respect to the component-wise product. Indeed,

Proposition 2 ([CGG`14]). Let GRSkpx,yq be a GRS code with support x,
multiplier y and dimension k. We have GRSkpx,yq‹2 “ GRS2k´1px,y ‹ yq.
Hence, if k ď n`1

2 , dimFqm
pGRSkpx,yqq‹2 “ 2k ´ 1.

On the other hand, random linear codes behave very differently, because they
attain with probability close to 1 [CCMZ15] the general upper bound on the
dimension given by dimF C ‹2 ď min

´

n,
`

dimF C`1
2

˘

¯

. In other words, the dimen-
sion of the square of a random linear code scales quadratically as long as the
dimension is k “ O p

?
nq and attains after this the full dimension n, whereas the

dimension of the square of a GRS code of dimension k increases only linearly in
k. This peculiar property of GRS codes survives in an attenuated form in the
square of the dual of an alternant/Goppa code as shown by [MT22].

This tool was also instrumental in another breakthrough in this area, namely
that for the first time a polynomial attack [COT14, COT17] was found on the
McEliece scheme when instantiated with Goppa codes. This was done by using
square code considerations. However, this attack required very special parame-
ters to be carried out: (i) the extension degree should be 2, (ii) the Goppa code
should be a wild Goppa code. It is insightful to remark that this attack exploits
the unusually low dimension of the square of wild Goppa codes when their di-
mension is low enough whereas the distinguisher of [FGO`11] actually uses the
small dimension of the square of the dual of a Goppa or alternant code. The dual
of such codes has a much more involved structure, in particular it loses a lot of
the nice polynomial structure of the Goppa code (this was essential in the attack
performed in [COT14]). This is probably the reason why for a long time the dis-
tinguisher of [FGO`11] has not turned into an actual attack. However, recently
in [BMT23] it has been found out that in certain cases (i) very small field size
q “ 2 or q “ 3 over which the code is defined, (ii) being a generic alternant code
rather than being in the special case of Goppa code, (iii) being in the region of
parameters where the distinguisher of [FGO`11] applies, then this distinguisher
can actually be turned into a polynomial-time attack. Note that [BMT23] also
made some crucial improvements in the algebraic modeling of [FOPT10] (in par-
ticular by adding low-degree equations that take into account that the multiplier
and support of the alternant/Goppa code should satisfy certain constraints).
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A new approach

A first idea: non generic quadratic relations on the extended dual
alternant/Goppa code. We devise in this work a radically new approach
toward attacking the McEliece cryptosystem when it is based on alternant or
Goppa codes. This leads to two new contributions : (1) a new distinguisher on
alternant and Goppa codes and (2) a polynomial time key-recovery attack on the
alternant and part of the Goppa codes that are distinguishable by [FGO`11].
Both exploit the structure of the extension over a larger field of the dual of an
alternant/Goppa code. The extension of a code over a field extension is given by

Definition 6 (Extension of a code over a field extension). Let C be a
linear code over Fq. We denote by CFqm

the Fqm-linear span of C in Fnqm .

Definition 7 (Image of a code by the Frobenius map). Let C Ď Fqm be
a code, we define C pqq as

C pqq
def
“ tpcq1, . . . , c

q
nq | pc1, . . . , cnq P C u.

It turns out that the extension of the dual of an alternant code actually contains
GRS codes and their images by the Frobenius map:

Proposition 3 ([BMT23]). Let Arpx,yq be an alternant code over Fq. Then
`

Arpx,yq
K
˘

Fqm
“
řm´1
j“0 GRSrpx,yqpq

j
q “

řm´1
j“0 GRSrpxq

j

,yq
j

q.

Observe now that a GRS code contains non-zero codewords c1, c2, c3 satisfying
a very peculiar property, namely

c1 ‹ c3 “ c‹22 . (1)

This can be seen by choosing c1 “ yxa “ pyix
a
i q1ďiďn, c2 “ yxb “ pyix

b
i q1ďiďn

and c3 “ yxc “ pyix
c
i q1ďiďn for any a, b, c in J0, r ´ 1K satisfying b “ a`c

2 . Such
a relation is unlikely to hold in a random linear code of dimension k, unless it is
of rate k{n close to 1. Therefore the dual code of our alternant or Goppa code
contains very peculiar codewords. The issue is now how to find them?

A new concept: the code of quadratic relations. Equation (1) can be
viewed as a quadratic relation between codewords. There is a natural object
that can be brought in that encodes in a natural way quadratic relations

Definition 8 (Code of quadratic relations). Let C be an rn, ks linear code
over F and let V “ tv1, . . . ,vku be a basis of C . The code of relations between
the Schur’s products with respect to V is

CrelpVq
def
“ tc “ pci,jq1ďiďjďk |

ÿ

iďj

ci,jvi ‹ vj “ 0u Ď Fp
k`1
2 q.



A new approach based on quadratic forms to attack McEliece 7

Such an element c “ pci,jq1ďiďjďk of CrelpVq defines a quadratic form as

Qcpx1, ¨ ¨ ¨ , xkq “
ÿ

iďj

ci,jxixj .

When a basis V containing the aforementioned ci’s is chosen, there exists an
element in CrelpVq whose associated quadratic form is of the form xixj ´ x2

`

(for vi “ c1, vj “ c3, v` “ c2). In other words, this quadratic form is of rank
3 (in odd characteristic). To find such non–generic elements in CrelpVq, it is
convenient to represent the elements of CrelpVq as matrices corresponding to the
bilinear map given by the polar form of the quadratic form, i.e. the matrix Mc

corresponding to c P CrelpVq that satisfies for all x and y in Fkqm

xMcy
ᵀ “ Qcpx` yq ´Qcpxq ´Qcpyq. (2)

This definition allows to have a matrix definition of the quadratic form which
works both in odd characteristic and characteristic 2 and which satisfies the
crucial relation (3) when the basis is changed. Note that Mc is symmetric in
odd characteristic, whereas it is skew-symmetric in characteristic 2.

Remark 1. By skew symmetric matrices in characteristic 2 we mean symmetric
matrices with zero diagonal.

Definition 9 (Matrix code of relations). Let C be an rn, ks linear code over
F and let V “ tv1, . . . ,vku be a basis of C . The matrix code of relations
between the Schur’s products with respect to V is

CmatpVq
def
“ tMc “ pmi,jq1ďiďk

1ďjďk
| c “ pci,jq1ďiďjďk P CrelpVqu Ď Sympk,Fq,

where Mc is defined as

#

mi,j
def
“ mj,i

def
“ ci,j , 1 ď i ă j ď k,

mi,i
def
“ 2ci,i, 1 ď i ď k.

The previous discussion shows that if V contains the triple c1, c2, c3, then
there exists a matrix of rank 3 in the matrix code of relations in odd char-
acteristic. Note that the matrix is of rank 2 in characteristic 2 since the po-
lar form corresponding to the quadratic form Qpxq “ xixj ´ x2

` is given by
pxi ` yiqpxj ` yjq ´ px` ` y`q

2 ´ xixj ` x
2
` ´ yiyj ` y

2
` “ xiyj ` xjyi.

Now the point is that even if we do not have a basis containing the ci’s, there
are still rank 3 (or 2) matrices in the matrix code of relations. This holds because
a change of basis basically amounts to a congruent matrix code. Indeed if A and
B are two different bases of the same code, there exists (see Proposition 4) an
invertible P P Fkˆk such that

CmatpAq “ P ᵀCmatpBqP . (3)

Therefore for any choice of basis, there exists a rank 3 matrix in the correspond-
ing matrix code of relations. Finding such matrices can be viewed as a MinRank
problem for rank 3 with symmetric matrices
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Problem 1 (Symmetric MinRank problem for rank r). Let M1, ¨ ¨ ¨ ,MK be K
symmetric matrices in FNˆN . Find an M P xM1, ¨ ¨ ¨ ,MK yF of rank r.

Of course, the dimension of the matrix code could be so large that there are
rank 3 (or 2) matrices which are here by chance and which are not induced by
these unusual quadratic relations between codewords of the GRS code. We will
study this problem and will give in Section 4 bounds on the parameters of the
problem which rule out this possibility. Basically, the parameters that we will
encounter for breaking McEliece-type systems will avoid this phenomenon.

A dedicated algebraic approach for finding rank 2 elements in a skew-
symmetric matrix code. There are many methods which can be used to
solve the MinRank problem, be they combinatorial [GC00], based on an alge-
braic modeling and solving them with Gröbner basis or XL type techniques, such
as [KS99, FLP08, FSEDS10, VBC`19, BBC`20] or hybrid methods [BBB`22].
Basically all of them can be adapted to the symmetric MinRank problem. One of
the most attractive methods for solving the problem for the parameters we have
is the Support Minors approach introduced in [BBC`20]. Unfortunately due to
the symmetric or skew-symmetric form of the matrix space, solving the corre-
sponding system with the proposed XL type approach behaves very differently
from a generic matrix space and its complexity seems very delicate to predict.
For this reason, we have devised another way of solving the corresponding Min-
Rank problem in characteristic 2. First, we took advantage that the algebraic
system describing the variety of skew-symmetric matrices of rank ď 2 has al-
ready been studied in the literature and Gröbner bases are known. Next, we add
to this Gröbner basis the linear equations expressing that the skew-symmetric
matrix should also belong to the matrix code of relations. This allows us to un-
derstand the complexity of solving the corresponding algebraic system. It turns
out that the Gröbner basis computation behaves very differently when applied
to the skew-symmetric matrix space associated with a random code rather than
with a Goppa or an alternant code. This clearly yields a way to distinguish a
Goppa code or more generally an alternant code from a random code. Contrarily
to the distinguisher that has been devised in [FGO`11] which works only for a
very restricted set of parameters, this new distinguisher basically works already
for rates above 2

3 . This concerns an overwhelming proportion of code parameters
that have been proposed (and all parameters of the NIST submission [ABC`22]).
Interestingly enough, for the code parameters where [FGO`11] works, our new
distinguisher coincides with it. Despite the fact that its complexity increases
significantly when [FGO`11] does not apply anymore, it stays subexponential
as long as the co-dimension of the code is sublinear in the length. Interestingly
enough in this regime, its asymptotic exponent is below those of all known key
recovery or message attacks. For the concrete parameters of the McEliece NIST
submission [ABC`22], its complexity is too complex to threaten the cryptosys-
tem, but is smaller than known key recovery attacks for most of the parameters
of the submission.
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A new attack exploiting rank defective matrices in the matrix code
of relations. There is another way to exploit this matrix code which consists
in observing that for a restricted set of code parameters (i) the degree r of the
alternant code is less than q ` 1 or q ´ 1 in the Goppa case, (ii) the code is
distinguishable with the method of [FGO`11], a rank defective matrix in the
matrix code of relations leaks information on the secret polynomial structure of
the code. This can be used to mount a simple attack by just (i) looking for such
matrices by picking enough random elements in the matrix code and verifying
if they are rank defective (ii) and then exploiting the information gathered here
to recover the support and multiplier of the alternant/Goppa code.

Summary of the contributions. In a nutshell, our contributions are

– We introduce a new concept, namely the matrix code of quadratic relations
which can be derived from the extended dual of the Goppa/alternant code
for which we want to recover the polynomial structure. This is a subspace of
symmetric or skew-symmetric matrices depending on the field characteristic
over which the code is defined which has the particular feature of containing
very low-rank matrices (rank 3 in odd characteristic, rank 2 in character-
istic 2) which are related to the secret key of the corresponding McEliece
cryptosystem.

– We devise a dedicated algebraic approach for finding these low-rank matri-
ces in characteristic 2 when this subspace of matrices is formed by skew-
symmetric matrices. It takes advantage of the fact that we know a Gröbner
basis for the algebraic system expressing the fact that a skew-symmetric
matrix is of rank ď 2 based on the nullity of all minors of size greater than
2. This system can be solved with the help of Gröbner bases techniques.
It turns out that the solving process behaves differently when applied to
the matrix code of quadratic relations associated with a random linear code
rather than with a Goppa or an alternant code. This gives a way to dis-
tinguish a Goppa code or more generally an alternant code from a random
code which contrarily to the distinguisher of [FGO`11, FGO`13] works for
virtually all code parameters relevant to cryptography (recall that the latter
works only for very high rate Goppa or alternant codes). Moreover, the com-
plexity of this system solving can be analyzed and an upper bound on the
complexity of the distinguisher can be given. It is polynomial in the same
regime of parameters when the distinguisher of [FGO`11] works. Even if its
complexity increases significantly outside this regime, it is less complex than
all known attacks in the sublinear co-dimension regime. For the concrete
NIST submission parameters [ABC`22] its complexity is very far away from
representing a threat, but is below the known key attacks for most of these
parameters. This can be considered as a breakthrough in this area.

– Rank defective elements in this matrix space also reveal something about
the hidden polynomial structure of the Goppa or alternant code in a certain
parameter regime, namely when (i) the degree r of the alternant code is less
than q`1 or q´1 in the Goppa case, (ii) the code is distinguishable with the
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method of [FGO`11]. We use this to give a polynomial-time attack in such
a case by just looking for rank defective elements with a random search.
This complements nicely the polynomial attack which has been found in
[BMT23] which also needs that the code is distinguishable with [FGO`11],
but works in the reverse parameter regime r ě q`1 (and has also additional
restrictions, code alphabet size either binary or ternary and it does not work
for Goppa codes). Note that in conjunction with the filtration of [BMT23],
this new attack works for any distinguishable generic alternant code. This
gives yet another example of a case when the distinguisher of [FGO`11]
turns into an actual attack of the scheme.

2 Notation and preliminaries

2.1 Notation

General notation Ja, bK indicates the closed integer interval between a and b.
We will make use of two notations for finite fields, Fq denotes the finite field
with q elements, but sometimes we do not indicate the size of it when it is not
important to do so and simply write F. Instead, a general field (not necessarily
finite) is denoted by K and its algebraic closure by K.

Vector and matrix notation. Vectors are indicated by lowercase bold letters
x and matrices by uppercase bold letters M . Given a function f acting on F and
a vector x “ pxiq1ďiďn P F, the expression fpxq is the component-wise mapping
of f on x, i.e. fpxq “ pfpxiqq1ďiďn. We will even apply this with functions f
acting on F ˆ F: for instance for two vectors x and y in Fn and two positive
integers a and b we denote by xayb the vector pxai ybi q1ďiďn. We will use the
same operation over matrices, but in order to avoid confusion with the matrix
product, we use for a matrix A “ pai,jqi,j the notation Apqq which stands for
the entries of A all raised to the power q, i.e. the entry pi, jq of Apqq is equal to
aqi,j . The scalar product between x “ pxiq1ďiďn P Fn and y “ pyiq1ďiďn P Fn is
denoted by x ¨ y and is defined by x ¨ y “

řn
i“1 xiyi.

Symmetric and skew-symmetric matrices. The set of k ˆ k symmetric
matrices over F is denoted by Sympk,Fq, whereas the corresponding set of skew-
symmetric matrices is denoted by Skewpk,Fqq.

Vector spaces. Vector spaces are indicated by C . For two vector spaces C and
D , the notation C ‘D means that the two vector spaces are in direct sum, i.e.
that C XD “ t0u. The F-linear space generated by x1, . . . ,xm P Fn is denoted
by xx1, . . . ,xm yF.

Codes. A linear code C of length n and dimension k over F is a k dimensional
subspace of Fn. We refer to it as an rn, ks-code.



A new approach based on quadratic forms to attack McEliece 11

Ideals. Ideals are indicated by calligraphic I. Given a sequence S of polynomi-
als, IpSq refers to the polynomial ideal generated by such sequence. Given the
polynomials f1, . . . , fm, we denote by I pf1, . . . , fmq the ideal generated by them.
The variety associated with a polynomial ideal I Ď Krx1, . . . , xns is indicated
by V pIq and defined as V pIq “ ta P Kn | @f P I, fpaq “ 0u.

2.2 Distinguishable Alternant or Goppa Code

We will frequently use here the term distinguishable alternant/Goppa (in the
sense of [FGO`11]) code. They are defined as

Definition 10 (Square–distinguishable alternant/Goppa code). A (generic)
alternant code Arpx,yq of length n over Fq and extension degree m is said to be
square–distinguishable if

n ą

ˆ

rm` 1

2

˙

´
m

2
pr ´ 1q

ˆ

p2eA ` 1qr ´ 2
qeA`1 ´ 1

q ´ 1

˙

(4)

where eA
def
“ maxti P N | r ě qi ` 1u “

X

logqpr ´ 1q
\

.
A Goppa code G px, Γ q of the same parameters is said to be square–distinguishable
if

n ą

ˆ

rm` 1

2

˙

´
m

2
pr ´ 1qpr ´ 2q, if r ă q ´ 1 (5)

n ą

ˆ

rm` 1

2

˙

´
m

2
r
`

p2eG ` 1qr ´ 2pq ´ 1qqeG´1 ´ 1
˘

, otherwise, (6)

where eG
def
“ minti P N | r ď pq ´ 1q2qiu ` 1 “

Q

logq

´

r
pq´1q2

¯U

` 1.

This definition is basically due to the fact that there is a way to distinguish such
codes from random codes in this case [FGO`11]. For our purpose, it is better
to use the point of view of [MT22] and to notice that they are distinguishable
because the computation of the dimension of the square of the dual code leads to
a result which is different from n and

`

rm`1
2

˘

(which is the expected dimension
of the square of a dual code of dimension rm). This is shown by

Theorem 1 ([MT22]) For an alternant code Fq of length n and extension de-
gree m we have

dimFq
pArpx,yq

Kq‹2 ď min

"

n,

ˆ

rm` 1

2

˙

´
m

2
pr ´ 1q

ˆ

p2eA ` 1qr ´ 2
qeA`1 ´ 1

q ´ 1

˙*

.

(7)
where eA

def
“ maxti P N | r ě qi ` 1u “

X

logqpr ´ 1q
\

.
For a Goppa code G px, Γ q of length n over Fq with Goppa polynomial Γ pXq P
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FqmrXs of degree r we have

dimpG px, Γ qKq‹2 ď min

"

n,

ˆ

rm` 1

2

˙

´
m

2
pr ´ 1qpr ´ 2q

*

, if r ă q ´ 1 (8)

dimpG px, Γ qKq‹2 ď min

"

n,

ˆ

rm` 1

2

˙

´
m

2
r
`

p2eG ` 1qr ´ 2pq ´ 1qqeG´1 ´ 1
˘

*

, otherwise,

(9)

where eG
def
“ minti P N | r ď pq ´ 1q2qiu ` 1 “

Q

logq

´

r
pq´1q2

¯U

` 1.

3 Invariants of the Matrix Code of Quadratic Relations

3.1 Changing the basis

The fundamental objects that we have introduced, namely the code of relations
CrelpVq and the corresponding matrix code CmatpVq both depend on the basis
V which is chosen. However, all these matrix codes are isometric for the rank
metric, namely the metric d between matrices given by

dpX,Y q
def
“ RankpX ´ Y q.

This holds because of the following result:

Proposition 4. Let A and B be two bases of a same rn, ks F-linear code C ,
with F. Then CmatpAq and CmatpBq are isometric matrix codes, i.e. there exists
P P GLkpFq such that

CmatpAq “ P ᵀCmatpBqP . (10)

The matrix P coincides with the change of basis matrix between A and B.

This Proposition is proved in Appendix B. This result implies that there are
several fundamental quantities which stay invariant when considering different
bases, such as for instance

– the distribution of ranks tni, 0 ď i ď ku where ni is the number of matrices
in CmatpVq of rank i;

– the dimension of CmatpVq.

We will sometime avoid specifying the basis, and simply write Cmat, when
referring to invariants for the code.

3.2 Dimension

We can be a little bit more specific concerning the dimension. In general, two
different bases of a same code provide different codes of relations. The corre-
sponding dimension, instead, is an invariant:
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Proposition 5. Let C Ď Fn be an rn, ks linear code with ordered basis V. Then

dimF CrelpVq “
ˆ

k ` 1

2

˙

´ dimF C ‹2

dimF CmatpVq “ dimF CrelpVq.

Proof. The first point directly follows by applying the rank-nullity theorem with
respect to the map T : Fp

k`1
2 q Ñ Fn, T pcq “

ř

iďj ci,jvi ‹ vj :
ˆ

k ` 1

2

˙

“ dimF Fp
k`1
2 q “ dimF ImpT q`dimF kerpT q “ dimF C ‹2`dimF CrelpVq.

For the second point, consider the linear map
"

CrelpVq ÝÑ CmatpVq
c ÞÝÑ Mc,

where Mc is defined in Definition 9. Note that CmatpVq is defined as the image
of the above map, hence the map is surjective by design. Let us prove that it
is injective. In odd characteristic, it is straightforward to see that the kernel of
this map is zero. In even characteristic the kernel of this map is composed of
“diagonal” relations, i.e., relations of the form

k
ÿ

i“1

ci,ivi ‹ vi “ 0. (11)

Note that writing vi “ pvi1, . . . , vinq we have vi ‹ vi “ pv2
i1, . . . , v

2
inq which is

nothing but the vector vp2qi obtained by applying the componentwise Frobenius
map on the entries of vi. Next, by the additivity of the Frobenius map, rela-
tion (11) becomes

˜

n
ÿ

i“1

c
1{2
i,i vi

¸p2q

“ 0 and hence,
n
ÿ

i“1

c
1{2
i,i vi “ 0.

The latter identity is a linear relation between the vi’s which form a basis of V,
hence, we deduce that ci,i “ 0 for all i. Thus, the kernel of the map is also zero
in characteristic 2. [\

4 Low-rank matrices in Cmat

4.1 Low-rank matrices from quadratic relations in [FGO`13]

By Proposition 4, all the matrix codes CmatpBq are isometric for any choice of
basis B. We will be interested here in showing that the matrix code of quadratic
relations associated to the extension over Fqm of the dual of an alternant code
Arpx,yq defined over Fq contains many low rank matrices. This is due to the
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fact that this code contains the GRS codes GRSrpxq
i

,yq
i

q for all i P J0,m´ 1K
(Proposition 3). This will be clear if we choose the basis appropriately. We can
namely choose the ordered basis

A “ py,xy, . . . ,xr´1y, . . . ,yq
m´1

, pxyqq
m´1

, . . . , pxr´1yqq
m´1

q. (12)

We call this the canonical basis. It will be convenient to denote the r first basis
elements by a0

def
“ y, a1

def
“ xy, . . . ,ar´1

def
“ xr´1y and view the basis as

A “ pa0, ¨ ¨ ¨ ,ar´1,a
q
0, ¨ ¨ ¨ ,a

q
r´1, ¨ ¨ ¨ ,a

qm´1

0 , ¨ ¨ ¨ ,aq
m´1

r´1 q.

There are simple quadratic relations between the aq
j

i owing to the trivial alge-
braic relations introduced in [FGO`13]: pxayqq

l

‹ pxbyqq
u

“ pxcyqq
l

‹ pxdyqq
u

if
aql ` bqu “ cql ` dqu. This amounts to the quadratic relation between the basis
elements

aq
l

a ‹ a
qu

b ´ aq
l

c ‹ a
qu

d “ 0. (13)

It is readily seen that matrix of CmatpBq corresponding to this quadratic relation
is of rank 4 with the exception of the case c “ d and l “ u where it is of rank 3
(odd characteristic) or rank 2 (characteristic 2). Indeed, if we reorder the basis
B such that it starts with aq

l

a , a
ql

b , a
ql

c , then it is readily seen that the matrix
M P CmatpBq corresponding to (13) has only zeros with the exception of the
first 3ˆ 3 block M 1 which is given by

M 1
“

»

–

0 1 0
1 0 0
0 0 ´2

fi

fl (odd characteristic), M 1
“

»

–

0 1 0
1 0 0
0 0 0

fi

fl (characteristic 2).

This leads to the following fact

Fact 1 Consider the alternant code Arpx,yq of extension degree m and let
CmatpAq be the corresponding matrix code associated to the basis choice (12).
Let l P J0,m´1K and a, b, c in J0, r´1K be such that a` b “ 2c. Then the matrix

of CmatpAq corresponding to the quadratic relation aq
l

a ‹ a
ql

b ´

´

aq
l

c

¯‹2

“ 0 is of
rank 3 in odd characteristic and of rank 2 in characteristic 2.

This already shows that there are many rank 2 or 3 matrices in Cmat correspond-
ing to an alternant code. But it will turn out some subsets of the set of rank ď 2
matrices of Cmat form a vector space of matrices. Moreover, depending on the
fact that the alternant code has a Goppa structure we will have even more low
rank matrices as we show below. We namely have in characteristic 2

Proposition 6. Let Arpx,yq be an alternant code of extension degree m and
order r over a field of characteristic 2. Then Cmat contains

X

r´1
2

\

-dimensional
subspaces of rank-(ď 2) matrices. If Arpx,yq is a binary Goppa code with a
square-free Goppa polynomial, then Cmat contains pr´ 1q-dimensional subspaces
of rank-(ď 2) matrices.
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This proposition is proved in Appendix §C.1. We can also give a lower bound
on the number of such matrices as shown by

Proposition 7. Let Arpx,yq be an alternant code in characteristic 2 and ex-
tension degree m. The matrix code of quadratic relationships Cmat contains at
least Ωpmpqmpr´2qq matrices of rank 2.

In the particular case of binary Goppa codes associated to a square-free
polynomial (i.e. the standard choice in a McEliece cryptosystem) we have

Proposition 8. Let G px, Γ q be a binary Goppa code of extension degree m with
Γ a square-free polynomial of degree r. Then Cmat contains at least

m
pqmr ´ 1qpqmpr´1q ´ 1q

q2m ´ 1

matrices of rank 2.

These propositions are proved in Appendix §C.1. It also turns out that for the
“canonical” choice mentioned above (namely when choosing the basis A given in
(12)) under certain circumstances, Cmat contains the subspace of block diagonal
skew symmetric matrices with blocks of size r

Proposition 9. Let G px, Γ q be a binary rn, n´rms Goppa code with Γ a square-
free polynomial of degree r and let A be the canonical basis of G px, Γ qKFqm

given
in (12) with y “ 1

Γ pxq . Then CmatpAq contains the space of block-diagonal skew-
symmetric matrices with r ˆ r blocks.

4.2 The random case

We have described in the previous subsection a family of matrices in CmatpAq
with a small rank. In particular, we found rank 3 matrices for odd character-
istic and rank 2 matrices for even characteristic. In the case of binary Goppa
codes with square-free Goppa polynomial, the subspace generated by such rank
2 matrices is even bigger. Since the two codes CmatpAq and CmatpBq have the
same weight distribution, the same number of low-rank matrices must exist for
CmatpBq as well. We may wonder if such low-rank matrices exist in the matrix
code of relationships CmatpRq of an rn, rms random Fqm-linear code R with basis
R. This can be determined by computing the Gilbert-Varshamov distance dGV
for spaces of symmetric (resp. skew-symmetric) matrices, which is the smallest
d such that

|CmatpRq||BpSymqd | ě |Symprm,Fqmq|, (14)

|CmatpRq||BpSkewqd | ě |Skewprm,Fqmq|, (15)

where BpSymqd (resp. BpSkewqd ) is the ball of radius d (with respect to the rank
metric) of the space of symmetric (resp. skew-symmetric) matrices. The rationale
of this definition is that it can be proved that for a random linear code C the
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probability of having a non zero matrix of rank ď d in C is upper-bounded by

the ratio |C ||BpSymq
d |

|Symprm,Fqm q| in the symmetric case. A similar bound holds in the skew-
symmetric case. In a low dimension scenario, more precisely when

`

rm`1
2

˘

ď n,
the code CmatpRq is expected to be trivial. This corresponds indeed to the square
distinguishable regime. We will then assume

`

rm`1
2

˘

ą n.

Proposition 10. Let R Ă Fnqm be a random code of dimension rm with basis
R and let

`

rm`1
2

˘

ą n. Under the assumption that CmatpRq has the same the
rank weight distribution as a random linear matrix code, it contains matrices of
rank ď d with non-negligible probability iff

n ď drm´

ˆ

d

2

˙

(symmetric case)

n ď pd` 1qrm´

ˆ

d` 1

2

˙

(skew-symmetric case)

This proposition is proved in §C.2. In particular, we expect rank-3 symmetric
matrices in CmatpRq for

n ď 3rm´ 3 (16)
and rank-2 skew-symmetric matrices in CmatpRq in characteristic 2 for

n ď p2` 1qrm´

ˆ

2` 1

2

˙

“ 3rm´ 3

as well. We observe that for all security levels of Classic McEliece [ABC`22],
the code rate is such that n “ αrm with α P p3.5, 5q. This means that any
algorithm that finds low-rank matrices in CmatpRq represents a distinguisher
between Goppa codes (and more in general alternant codes) and random linear
codes for Classic McEliece rates.

5 A New Distinguisher of Alternant and Goppa Codes in
Characteristic 2

We are going to focus here on the particular case of characteristic 2 where we
want to find rank 2 matrices in the matrix code of quadratic relations. We are
going to consider a particular algebraic modeling for finding matrices of this
kind for which we can estimate the running time of Gröbner bases algorithms
for solving it. We will show that the behavior of the Gröbner basis computation is
quite different when applied to the matrix code corresponding to an alternant (or
a Goppa) code rather than to the matrix code corresponding to a random code
of the same dimension and length as the alternant/Goppa code. This provides
clearly a distinguisher of an alternant or Goppa code whose complexity can
be estimated. Interestingly enough, it coincides with the square distinguisher
of [FGO`11] for the parameters where the latter applies, but it also permits
to distinguish other parameters and can distinguish Goppa or alternant codes
of rate in the range r 23 , 1s, contrarily to the former which works only for rate
extremely close to 1.
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5.1 A modeling coming from the Pfaffian ideal.

We are first going to give an algebraic modelling expressing that a skew-symmetric
matrix M with arbitrary entries is of rank ď 2. To do so, we express the fact
that all minors of size 4 should be zero. This implies that M should be of rank
ď 2, because any skew-symmetric matrix is of even rank and therefore cannot
have rank 3. In other words, let us consider the generic skew-symmetric matrix
M “ pmi,jqi,j P Skewps,Fqmq, whose entries mi,j with 1 ď i ă j ď s are inde-
pendent variables. Let m “ pmi,jq1ďiăjďs. We will write sometimes mj,i with
i ă j, this must just be seen as an alias for mi,j and not as another variable.
We denote by MinorspM , dq the set of all minors of M of size d. The set of
specializations of M that provide rank 2 matrices is the variety of the determi-
nantal ideal generated by MinorspM , 3q. We refer the reader to [MS05, § 15.1]
Since there do not exist rank 3 matrices in Symps,Fqmq, the ideal generated by
each possible 4ˆ 4 minor of M leads to the same variety:

V pIpMinorspM , 3qqq “ V pIpMinorspM , 4qqq.

The homogeneous ideal IpMinorspM , 2lqq is not radical. The determinant of a
generic skew-symmetric matrix of size 2l ˆ 2l is the square of a polynomial of
degree l, called Pfaffian [Wim12, § 1.1]. It is well-known that the corresponding
radical ideal is generated by the square roots of a subset of minors, namely those
corresponding to a submatrix with the same subset for row and column indexes.
Note that such matrices are skew-symmetric as well, and thus their determinant
is the square of a Pfaffian polynomial. In particular, we define

Definition 11 (Pfaffian ideal for rank 2). The Pfaffian ideal of rank 2 for
M in characteristic 2 is

P2pMq
def
“ I pmi,jmk,l `mi,kmj,l `mi,lmj,k | 1 ď i ă j ă k ă l ď sq , (17)

Remark 2. Note that in the definition of the Pfaffian ideal (17), the 4-tuple
pi, j, k, lq is given by distinct values. Indeed, if two indexes are equal then the
following expression

mi,jmk,l `mi,kmj,l `mi,lmj,k

vanishes identically. Thus these equations do not have to be considered.

We have

Proposition 11 ([HT92, Theorem 5.1]). The basis tmi,jmk,l `mi,kmj,l `

mi,lmj,k | 1 ď i ă j ă k ă l ď su is a Gröbner basis of P2pMq with respect to a
suitable order.

Another straightforward result is that

Proposition 12. We have V pP2pMqq “ V pIpMinorspM , 4qqq.
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Proof. One can verify that for any f PMinorspM , 4q, f P P2pMq and for any
f in the basis of P2pMq, f P

a

IpMinorspM , 4qq. By Hilbert’s Nullstellensatz,
the thesis follows. [\

Our modeling takes advantage of the deep knowledge we have about this
ideal. We express now the fact that a matrix M of size s belongs to some matrix
code Cmat associated to an rn, ks code (which implies that s “ n ´ k since we
are looking at quadratic relations on the dual code) by t def

“
`

s
2

˘

´dim Cmat linear
equations L1 “ 0, . . . , Lt “ 0 linking the mi,j ’s. The linear relations can be
obtained as follows:

– We start from a parity–check matrix H P Fsˆnq of the code.
– We compute a basis of the code of quadratic relations described in Defini-

tion 8 and deduce basis of the space space Cmat of symmetric (resp. skew
symmetric) matrices as described in Definition 9.

– Once we have a basis of Cmat, we compute a basis of its dual which can be de-
scribed as a basis of symmetric (resp. skew symmetric) matrices D1, . . . ,Dt

satisfying
@M P Cmat, @i P t1, . . . , tu, TrpDiMq “ 0.

This provides the expected t linear relations L1, . . . , Lt on symmetric (resp.
skew symmetric) which are satisfied by the elements of Cmat.

The algebraic modeling we use to express that an element M of Cmat is of rank
ď 2 uses these t linear equations and the Gröbner basis of the Pfaffian ideal. In
other words, we have the following algebraic modeling

Modeling 1 (M P Cmat, RankpMq ď 2)

–
`

s
4

˘

quadratic equations mi,jmk,l `mi,kmj,l `mi,lmj,k “ 0 where 1 ď i ă
j ă k ă l ď s

– t
def
“

`

s
2

˘

´ dim Cmat linear equations L1 “ 0, . . . , Lt “ 0 linking the mij’s
expressing the fact that M belongs to Cmat.

5.2 Gröbner bases and Hilbert series

We will be interested in computing the Hilbert series of the ideal corresponding
to Modeling 1 because it will turn out to behave differently depending on the
code we use for defining the associated matrix code Cmat. This will lead to a
distinguisher of alternant or Goppa codes. Given a homogeneous ideal I P Krzs,
z “ pz1, . . . , znq, the Hilbert function of the ring R “ Krzs{I is defined as

HFRpdq
def
“ dimKpRq “ dimKpKrzsdq ´ dimKpIdq,

where Krzsd “ tf P Krzs | degpfq “ du and Id “ I X Krzsd. Then the Hilbert
series of R is the formal series

HSRptq
def
“

ÿ

dě0

HFRpdqt
d.
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We are interested in computing individual terms HFRpdq. This can be done by
computing the rank of the Macaulay matrix at degree d by taking m generators
of the ideal I (see Appendix A). An upper bound on its cost can therefore be
derived directly from [BFS15, Proposition 1]:

Proposition 13. Let F “ tf1, . . . , fmu Ă Krz1, . . . , zns be a homogeneous sys-
tem. Let I be the corrresponding ideal. The term HFRpdq of degree d of the
Hilbert function of R “ Krzs{I can be computed in time bounded by

O
ˆ

md

ˆ

n` d´ 1

d

˙ω˙

,

where ω is the linear algebra exponent.

Fortunately, the Hilbert function for our Pfaffian ideal is known. We define
the quotient ring

RpMq “ Fqmrms{P2pMq.

The Hilbert function (or equivalently the Hilbert series) of RpMq is well-known:

Proposition 14 ([GK04, (from) Theorem 1]). Let M “ pmi,jqi,j be the
generic sˆ s skew-symmetric matrix over F. Then dimV pP2pMqq “ 2s´ 3 and

HFRpMqpdq “

ˆ

s` d´ 2

d

˙2

´

ˆ

s` d´ 2

d` 1

˙ˆ

s` d´ 2

d´ 1

˙

,

HSRpMqpzq “

řs´3
d“0

´

`

s´2
d

˘2
´
`

s´3
d´1

˘`

s´1
d`1

˘

¯

zd

p1´ zq2s´3
.

The term corresponding to HFRpMqpdq can also be rewritten as a Narayana
number:

HFRpMqpdq “
1

s` d´ 1

ˆ

s` d´ 1

d` 1

˙ˆ

s` d´ 1

d

˙

.

Modeling 1 adds linear equations to it expressing the fact that the matrix should
also be in the matrix code of quadratic relations. There is one handy tool that
allows to compute the Hilbert series obtained by enriching with polynomials an
ideal whose Hilbert series is known.

Proposition 15 ([Bar04, Lemma 3.3.2]). As long as there are no reductions
to 0 in the F5 algorithm, the Hilbert function HFKrxs{Ipf1,...,fmqpdq satisfies the
following recursive formula:

HFKrxs{Ipf1,...,fmqpdq “ HFKrxs{Ipf1,...,fm´1qpdq ´HFKrxs{Ipf1,...,fm´1qpd´ dmq

where dm “ degpfmq.

Essentially, reductions to 0 in F5 correspond to “non generic” reductions to 0
and experimentally we have not observed this behavior for Modeling 1 when we
add the linear equations expressing that M belongs to the matrix code Cmat of
relations associated to a random linear code.
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5.3 Analysis of the Hilbert series for the Pfaffian ideal

We will from now on consider that the matrix code Cmat of quadratic relations
is associated to a code C over Fqm of parameters rn,mrs which are the same
as those of the extended dual code Arpx,yq

K
Fqm

of an alternant code Arpx,yq
K

of length n over Fq and extension degree m which we assume to be of generic
dimension k “ n´mr. We will from now on also assume that the rn,mrs code
C we consider satisfies

dim C ‹2 “ n. (18)
Equivalently, we suppose that the code is not square distinguishable and will look
for another and more powerful distinguisher. This corresponds to the generic case
of a random code as soon as

`

rm`1
2

˘

ě n and to duals of alternant codes/Goppa
codes that are not square–distinguishable. Recall that, from Proposition 5,

dimFqm
CmatpVq “

ˆ

mr ` 1

2

˙

´ dimF C ‹2 “

ˆ

mr

2

˙

`mr ´ n “

ˆ

mr

2

˙

´ k,

where k def
“ n ´ rm is given above and corresponds to the dimension of the

alternant code we are interested in. Notice that k is also the cardinality of the
set of independent linear equations expressing in Modeling 1 that the rmˆ rm
matrix M belongs to Cmat since

`

rm
2

˘

´dim Cmat “ k. We are now going to show
that the Hilbert function of the ring Fqmrms{pPpMq`xLiyiq differs starting from
some degree d̄ depending on how the linear relations Li’s are defined (coming
from Cmat associated to a random C or to the extended dual of an alternant or
Goppa code). We will assume that the parameters of our matrix code are such
that we do not expect a matrix or rank 2 when C is random, which according
to Proposition 10 holds as soon as n ą 3rm´ 3, i.e essentially for k{n ą 2{3.

Random case. We assume that there are no reductions to 0 in F5 and that we
can apply Proposition 15

HFKrzs{pI`IpL1,...,L`qqpdq “ HFKrzs{pI`IpL1,...,L`´1qqpdq ´HFKrzs{pI`IpL1,...,L`´1qqpd´ 1q

“ ¨ ¨ ¨

“ HFKrzs{Ipdq ´
`´1
ÿ

i“0

HFKrzs{pI`IpL1,...,Liqqpd´ 1q,

which, by induction, leads to

HFKrzs{pI`IpL1,...,L`qqpdq “
d
ÿ

i“0

p´1qi
ˆ

`

i

˙

HFKrzs{Ipd´ iq.

This holds as long as there are no reductions to 0 in F5. When there are, we ex-
pect that the Hilbert series at this degree is zero, which means that the induction
formula should be

HFKrzs{pI`Ipfqqpdq “ maxpHFKrzs{Ipdq ´HFKrzs{Ipd´ d̄q, 0q.

This leads to the following conjecture, experimentally supported.
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Conjecture 1 (Random case) Let L1, . . . , Lk be the k “ n ´ rm linear re-
lations relative to the matrix code Cmat associated to a random rn, rms-code as
above. Let P`2 pMq

def
“ P2pMq` I pL1, . . . , Lkq. If HFFrms{P`2 pMq

pd1q ą 0 for all
d1 ă d, then

HFFrms{P`2 pMq
pdq “ max

˜

0,
d
ÿ

i“0

p´1qi
ˆ

k

i

˙

HFFrms{P2pMqpd´ iq

¸

“ max

˜

0,
d
ÿ

i“0

p´1qi

rm` d´ i´ 1

ˆ

k

i

˙ˆ

rm` d´ i´ 1

d´ i` 1

˙ˆ

rm` d´ i´ 1

d´ i

˙

¸

.

(19)

Otherwise HFFrms{P`2 pMq
pdq “ 0.

Because we assume that Modeling 1 has only zero for solution in the case of
a random code, there exists a d such that HFFrms{P`2 pMq

pdq “ 0. Experiments
(see Appendix D.2) lead to conjecture the following behavior:

Conjecture 2 Let Cmat be the matrix code of relations originated by a random
rn, rms code as above. Let P`2 pMq the corresponding Pfaffian ideal and dreg “
mintd : HFFrms{P`2 pMq

pdq “ 0u. Then

dreg „ c
prmq2

n´ rm

for a constant c equal or close to 1
4 .

The value dreg is known in the literature as the degree of regularity.

Alternant/Goppa case. In the alternant/Goppa case however the Hilbert se-
ries never vanishes because the variety of solutions has always positive dimension.
We can even lower its dimension by a rather large quantity.

Proposition 16. Let Cmat be the matrix code of quadratic relations correspond-
ing to the extended dual of an rn, n ´ rms binary Goppa code with a square-
free Goppa polynomial. Let P`2 pMq be the corresponding Pfaffian ideal. Then
dimV pP`2 pMqq ě 2r ´ 3.

Proof. Consider the matrix space D of all skew-symmetric matrices that are 0
outside the top-left rˆr diagonal block and let M 1 be the generic matrix in this
space. We have that dimV pP`2 pM

1
qq “ dimV pP2pNqq, where N is the generic

skew-symmetric matrix of size r ˆ r. We recall from Proposition 14 that the
dimension of the variety of the generic Pfaffian ideal P2pNq is 2r´3. Proposition
9 states that CmatpAq contains the subspace of block-diagonal skew-symmetric
matrices (with r ˆ r blocks). This implies D Ď CmatpAq and thus

dimV pP`2 pMqq ě dimV pP2pM
1
qq “ dimV pP2pNqq “ 2r ´ 3.

[\
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More in general, we can upper bound the dimension of the variety using the
following proposition, whose proof is given in Appendix D.1.

Proposition 17. Let Cmat be the matrix code of quadratic relations correspond-
ing to the extended dual of an rn, n´rms alternant code over a field of even char-
acteristic. Let P`2 pMq be the corresponding Pfaffian ideal. Then dimV pP`2 pMqq ě

r ´ 2.

Remark 3. Equalities in the two previous propositions were met in the experi-
ments we performed. Note that, comparing with Proposition 6, the Pfaffian ideal
contains subspaces of dimension roughly half the dimension of the variety.

Now, as a consequence of the variety not being trivial, we have

Proposition 18. Let Cmat be the matrix code of quadratic relations correspond-
ing to the extended dual of an rn, n ´ rms alternant code. Let P`2 pMq be the
corresponding Pfaffian ideal. For all d P N, HFFrms{P`2 pMq

pdq ą 0.

Proof. Assume by contradiction that Dd P N such that HFFrms{P`2 pMq
pdq “ 0.

Therefore
dimFqm

pP`2 pMqqd “ dimFqm
Fqmrmsd,

i.e. all the monomials of degree d belong to P`2 pMq, in particular all the mono-
mials md

i,j . This implies that the only element in the variety of P`2 pMq is the
zero matrix (with some multiplicity). This is in contradiction with the existence
of rank 2 matrices in Cmat that must therefore be solutions of the Pfaffian sys-
tem. [\

Computing the Hilbert function up to some degree d provides a distinguisher as
soon as it assumes a different value depending on whether it refers to random or
alternant/Goppa codes. Thanks to Proposition 18, this will happen at the latest
at the degree of regularity dreg corresponding to a random code.

An extension of the distinguisher of [FGO`11]. All these considerations
lead to a very simple distinguisher of alternant or more specifically of Goppa
codes, we compute for a code HFFqm rms{P`2 pMq

pdq at a certain degree (where
P`2 pMq is the associated Pfaffian ideal), and say that it does not behave like
a random code if this Hilbert function evaluated at degree d does not coincide
with the formula we expect from a random code which is given in Conjecture 1.
This leads us to the following definition

Definition 12 (d-distinguishable). An rn, rms Fqm-linear code C is said to be
d-distinguishable from a generic rn, rms linear code over Fqm when the following
holds

HFFqm rms{P`2 pMq
pdq ‰ max

˜

0,
d
ÿ

i“0

p´1qi

rm` d´ i´ 1

ˆ

n´ rm

i

˙ˆ

rm` d´ i´ 1

d´ i` 1

˙ˆ

rm` d´ i´ 1

d´ i

˙

¸

where P`2 pMq is the Pfaffian ideal associated to C .



A new approach based on quadratic forms to attack McEliece 23

Note that in general

HFFqm rms{P`2 pMq
p1q “ dimFqm

CmatpBq.

Hence, a different evaluation of the Hilbert function in degree 1 witnesses an un-
usually large dimension of CmatpBq and consequently an atypically small dimen-
sion of the square code. Indeed, this corresponds to the square distinguisher from
[FGO`11]. Being 1-distinguishable is therefore being square-distinguishable. In
this sense, this new distinguisher generalizes the square-distinguisher of [FGO`11].

We can readily find examples of codes which are not square-distinguishable
(or what is the same 1-distinguishable), but are distinguishable for higher values
of d. For instance, Table 1 gives examples of generic alternant codes which are
not 1-distinguishable for the lengths n ď 124 but which are 2-distinguishable
in the range n P J76, 256K. Goppa codes are for the same parameters not 1-
distinguishable as soon as n ď 96, but are distinguishable in the range n P
J75, 256K. Note that in the same range we can even distinguish a generic al-
ternant code from a Goppa code. As was the case for the square distinguisher
of [FGO`11], Goppa codes are easier to distinguish from random codes than
generic alternant codes. This also holds for our new distinguisher. We give in
Table 2 an example of this kind. The binary Goppa codes in this table are 2-
distinguishable in the length range n P J59, 64K, whereas the generic alternant
codes are not distinguishable at all. Note that none of the examples in this table
are square-distinguishable.

HFFqm rms{P
`
2 pMq

p2q 256 ě n ě 77 n “ 76 n “ 75 n “ 74 n “ 73 . . .

Random code 0 10 71 133 196 . . .

Alternant code 20 20 71 133 196 . . .

Goppa code 80 80 80 133 196 . . .

Table 1: Hilbert function at degree 2 with respect to random, alternant and
Goppa codes with parameters q “ 4,m “ 4, r “ 4. The evaluations in bold
correspond to distinguishable lengths.

HFFqm rms{P
`
2 pMq

p2q n “ 64 n “ 63 n “ 62 n “ 61 n “ 60 n “ 59 n “ 58 . . .

Random code 2718 2826 2935 3045 3156 3268 3381 . . .

Alternant code 2718 2826 2935 3045 3156 3268 3381 . . .

Goppa code 2971 2971 2971 3048 3158 3269 3381 . . .

Table 2: Hilbert function at degree 2 with respect to random, alternant and
Goppa codes with parameters q “ 2,m “ 6, r “ 3. The evaluations in bold
correspond to distinguishable lengths.
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For the time being, we have only a limited understanding of howHFFrms{P`2 pMq
pdq

behaves for alternant/Goppa codes. However in the case of binary square-free
Goppa code, i.e. those used in McEliece’s schemes, we can significantly improve
upon the HFFrms{P`2 pMq

pdq ą 0 lower bound as shown by

Theorem 2 Let G px, Γ q be a non distinguishable binary rn, k “ n´rms Goppa
code with Γ a square-free polynomial of degree r and extension degree m. Let
P`2 pMq be the corresponding Pfaffian ideal. Then, for all d ą 0,

HFF2m rms{P`2 pMq
pdq ě m

˜

ˆ

r ` d´ 2

d

˙2

´

ˆ

r ` d´ 2

d` 1

˙ˆ

r ` d´ 2

d´ 1

˙

¸

.

The proof is given in Appendix D. Theorem 2 has some theoretical interest,
because it shows that the distinguisher can be further improved by analyzing
the matrix code of relations obtained from a Goppa code.

5.4 Complexity of computing the distinguisher and comparison
with known key and message attacks

Complexity of computing the distinguisher. The complexity of computing
the distinguisher is upper-bounded by using Proposition 13

Proposition 19. The computation of HFFqm rms{P`2 pMq
pdq for the Pfaffian ideal

associated to an rn,mrs-code has complexity

O
ˆ

d

ˆ

n´ rm`

ˆ

rm

4

˙˙ˆ

`

rm
2

˘

` d´ 1

d

˙ω˙

,

where ω is the linear algebra exponent.

Proof. This proposition follows on the spot from Proposition 13, since the num-
ber of variables is

`

rm
2

˘

(the number of independent entries in a skew symmetric
of size rm), the number of independent linear equations is n´ rm and the num-
ber of quadratic equations is

`

rm
4

˘

. [\

However, in the case at hand, we can use Wiedemann’s algorithm, because
(i) we know the Hilbert function for the Pfaffian ideal associated to an rn,mrs
random code, and know when it is equal to 0, namely for d “ dreg (ii) we only
have to check whether at degree d “ dreg the Macaulay matrix MacpF, dregq has a
non zero kernel, (iii) this Macaulay matrix is sparse, since the Pfaffian equations
contain only 3 quadratic monomials, and therefore the number of entries in a
row of MacpF, dregq is upper-bounded with the number of nonzero entries of the
polynomialmαLpmq, wherem is the variable vector of the matrix entries, L “ 0
is one of the k linear equations and α is a multi-index exponent of multi-degree
dreg´ 1. This quantity clearly coincides with the number of nonzero entries of L
itself and can be upper bounded by

`

rm
2

˘

´k`1 thanks to Gaussian elimination.
Therefore the complexity of the sparse linear algebra approach becomes by using
Wiedemann’s algorithm



A new approach based on quadratic forms to attack McEliece 25

Proposition 20. Checking whether a code is an alternant code or a generic
linear code can be performed with a complexity upper-bounded by

O

˜

ˆˆ

rm

2

˙

´ k ` 1

˙ˆ

`

rm
2

˘

` dreg ´ 1

dreg

˙2
¸

.

Complexity of the standard approach for key recovery. Recall that it
consists in guessing the irreducible Goppa polynomial Γ and the support set of
coordinates. After that, the Support Splitting Algorithm (SSA) [Sen00] checks
whether the public code is permutation equivalent to the guessed Goppa code.
The cost of the SSA on the Goppa code C has been estimated with

O
`

n3 ` qhn2 logpnq
˘

,

where n is the code length and h def
“ dimpC XCKq. Despite being exponential in

the hull dimension, the latter is typically trivial or it has a very small dimension.
Therefore the permutation equivalence code verification usually boils down to a
polynomial-time subroutine and we ignore its cost in the comparison. The num-
ber of possible support coordinate sets is

`

qm

n

˘

, while the number of irreducible
degree-r polynomials over Fqm is given by

1

r

ÿ

a|r

µpaqpqmq
r
a ,

where µ is the Möbius function. Therefore the total complexity of this approach
can be estimated as

O

¨

˝

`

qm

n

˘

r

ÿ

a|r

µpaqpqmq
r
a

˛

‚. (20)

Comparison of distinguisher with the key-attack. The comparison of all
the methods we have just presented is given in Table 3 with respect to Classic
McEliece parameters. We remark that, using sparse linear algebra, we can im-
prove upon the classical method for all parameters except those for category 5.
Note that in this case the Goppa code is full-support and therefore the support
coordinates do not need to be guessed, leading to a big improvement upon non-
full support instances. However, our distinguisher suffers less than the standard
key-recovery algorithm from taking instances that are not full support. Indeed,
if we consider the same r and m used in Category 5, but a smaller length n,
then our distinguisher approach outperforms the previous one. In fact, this can
be seen directly from Category 3, which shares the same r and m with Category
5, but it is not full support.

We also remark that our distinguishing modeling works for any alternant
code, while the classical key-recovery procedure described here is specific for
Goppa codes. Indeed, guessing a valid pair of support x and multiplier y for a
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Category n r m dreg R classical key-recovery

C “ p2
m

n q
r

ř

a|r µpaqp2
m
q
r
a

dense linear algebra
C “

`

rm
4

˘

dreg
`prm2 q´k`dreg´1

dreg

˘

ω
sparse linear algebra

C “ 3p
`

rm
2

˘

´ k ` 1q
`prm2 q`dreg´1

dreg

˘

2

1 3488 64 12 84 0.7798 22476 ¨ 2762 “ 23238 23141 22231

2 4608 96 13 212 0.7292 28093 ¨ 21241 “ 29334 27931 25643

3 6688 128 13 229 0.7512 25629 ¨ 21657 “ 27286 29030 26425

4 6960 119 13 169 0.7777 24997 ¨ 21540 “ 26537 26779 24822

5 8192 128 13 154 0.7969 20 ¨ 21657 “ 21657 26329 24501

Table 3: Computational cost comparison between this distinguisher and retriev-
ing the permutation equivalence

generic alternant code is dramatically more costly for two reasons. First of all,
the n multiplier coordinates yi’s are independent and do not have a compact
representation through a degree-r polynomial. Moreover, in order to guess a
correct code permutation, the support and multiplier coordinate indexes must
correspond.

In Figure 1 we show the growth of the degree of regularity dreg for a random
rn “ 2m, n´ rms code, for fixed m. The graph is defined on the integer interval
whose endpoints are given by the smallest value of r for which [FGO`11] is
not able to distinguish a binary Goppa code and the largest value for which this
new modeling is able to distinguish respectively. Note that in this case the rate is
decreasing. On the other hand, Figure 2 provides the degree of regularity dreg and
the complexity estimate using sparse linear algebra, for m fixed, r growing and
n “ 5rm, i.e. for the fixed rate R “ 4{5. The domain of the graph is computed
in the same way as for Figure 1.

(a) dreg (b) complexity (logarithmic scale)

Figure 1: Growth of the degree regularity in function of r for fixed m
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(a) dreg (b) complexity (logarithmic scale)

Figure 2: Degree of regularity and complexity cost with respect to sparse linear
algebra for the fixed rate R “ 4{5

Sublinear regime. It is insightful to study the asymptotic complexity of dis-
tinguishing an rn, rms-code in the sublinear regime, when the dimension rm is
sublinear in the codelength n and to compare it with key and message attacks.
Assume that rm “ Θ pnαq where α P r 12 , 1q. We will also be interested in the case
where the code is a binary Goppa code. To simplify a little bit the discussion
and to minimize the complexity of the known key attack, we will assume that
we have a Goppa code of full support, i.e. n “ 2m.

A binary Goppa code of length n, extension degree m and degree r allows
to correct r errors. Because the number of errors to decode is sublinear in the
codelength, the complexity Cmess of message attacks for binary rn, n´mrsGoppa
codes (namely that of decoding r errors in an rn, n ´mrs code) is of the form
2´r log2p1´Rqp1`op1qq for the best known generic decoding algorithms by [CS16]
where R is the code rate, i.e. R “ n´mr

n . We clearly have log2pCmessq “ p1 ´
αqrmp1` op1qq since ´ log2p1´Rq “ ´ log2

`

rm
n

˘

“ p1´ αq log np1` op1qq.

On the other hand, the complexity Ckey of key attacks is of the formO
`

2rmp1`op1qq
˘

in the full support case. Here we have log2pCkeyq “ rmp1 ` op1qq. Our dis-
tinguisher has complexity Cdist which can be estimated through Proposition
20 and dreg by Conjecture 2, from which we readily obtain that log2pCdistq “

4αc prmq
2

n log np1`op1qq, where c is the constant appearing in Conjecture 2. This
whole discussion is summarized in Table 4. The complexity of key attacks is
bigger than the complexity of message attacks, however now asymptotically the
complexity of the distinguisher is significantly lower than both attacks: message
attacks gain a constant factor 1 ´ α in the exponent when compared to key
attacks, whereas the distinguisher gains a polynomial factor Θ

`

rm
n log n

˘

“ op1q
in the exponent with respect to both key and message attacks.
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type Key attack Message attack distinguisher
log2 C rmp1` op1qq p1´ αqrmp1` op1qq 4αc prmq

2

n
lognp1` op1qq

Table 4: Logarithm of the complexity C of different attacks for full support
n “ 2m binary rn, n ´ mrs Goppa codes in the sublinear codimension regime
rm “ Θ pnαq, where α P r 12 , 1q.

6 An attack on distinguishable random alternant codes,
without the use of Gröbner bases

We are going to present now a polynomial time attack on square-distinguishable
generic alternant codes defined over Fq as soon as the degree r satisfies r ă q`1
by using this new notion of the matrix code of quadratic relations. We also recall
that a square-distinguishable alternant code must have degree r ě 3 [FGO`11].
If we combine this together with the filtration technique of [BMT23] which allows
to compute from a square-distinguishable alternant code of degree r satisfying
r ě q` 1 an alternant code with the same support but of degree r´ 1 we obtain
an attack on all square-distinguishable generic alternant codes. This is a big
improvement on the attack presented in [BMT23] which needed two conditions
to hold (1) a square-distinguishable alternant code (2) q is either 2 or 3. Moreover
[BMT23] could not handle the subcase where the alternant code is actually a
Goppa code, whereas our new attack is able to treat this case at least in the case
r ă q ´ 1. We present in Table 5 a summary of the attacks. In other words, all
square-distinguishable generic alternant codes can now be attacked. The reason
why for the time being the square-distinguishable Goppa codes are out of reach,
is that the filtration technique of [BMT23] for reducing the degree of the code
does not work for the special case of Goppa codes.

code technique/paper rpě 3q q

(generic) square-distinguishable alternant code [BMT23] any P t2, 3u

(generic) square-distinguishable alternant code this paper ă q ` 1 any
(generic) square-distinguishable alternant code this paper + filtration techn. of [BMT23] any any

square-distinguishable Goppa codes this paper ă q ´ 1 any
Table 5: Summary of the attacks against square-distinguishable codes . The
column q corresponds to the restrictions on q for the attack to work and the
column r has the same meaning for the parameter r.

Thus, from now on, we will consider an alternant code Arpx,yq Ď Fnq of
extension degree m which is such that r ă q`1. For generic alternant codes, this
corresponds to the square-distinguisher case with e “ 0. If instead the alternant
code is also Goppa, then we restrict ourselves to the case of r ă q ´ 1. We will
show now how to recover x and y from the knowledge of a generator matrix of
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this code by making use of the matrix code of quadratic relations associated to
the extended dual code over Fqm .

The idea

We first present the underlying idea by picking the canonical basisA (12) and the
parity-check matrix HA of Arpx,yqFqm

whose rows correspond to the elements
of A in that same order. Recall that this basis can be written as

A “ pa1, ¨ ¨ ¨ ,ar,a
q
1, ¨ ¨ ¨ ,a

q
r, ¨ ¨ ¨ ,a

qm´1

1 , ¨ ¨ ¨ ,aq
m´1

r q.

We also assume q is odd for now. The crucial point is that, with the assumption of
a square-distinguishable generic alternant code (resp. Goppa code) with r ă q`1
(resp. r ă q ´ 1), the analysis provided in [FGO`11] implies that the matrix
code is generated by all and only relations of the kind

yq
l

xaq
l

‹ yq
l

xbq
l

“ yq
l

xcq
l

‹ yq
l

xdq
l

where l is arbitrary in J0,m´1K and a, b, c, d in J0, r´1K such that a` b “ c`d.
This corresponds to the quadratic relation

aq
l

a`1 ‹ a
ql

b`1 ´ aq
l

c`1 ‹ a
ql

d`1 “ 0.

The related code of relations CmatpAq has therefore a block diagonal structure
with blocks of size r, i.e. , for each element in CmatpAq, the entries outside the
m diagonal blocks of size r ˆ r are 0. Thus, an element A of CmatpAq has the
following block shape:

A “

»

—

—

—

–

A0,0

A1,1 0

0
. . .

Am´1,m´1

fi

ffi

ffi

ffi

fl

(21)

where the diagonal blocksAi,i are symmetric and of size r. ClearlyRankpAi,iq ď

r and, because of the block diagonal shape, RankpAq “
ř

iRankpAi,iq. Now
assume that A happens to be minimally rank defective, i.e.

RankpAq “ rm´ 1.

It means that for exactly one index j P J0,m ´ 1K, RankpAj,jq “ r ´ 1, and
for all i P J0,m ´ 1Kztju, RankpAi,iq “ r. We consider the left kernel of (the
map corresponding to) the matrix A, simply denoted by kerpAq. Note that, if we
identify row vectors with column vectors, left and right kernels are the same in
this case, asA is symmetric. SinceRankpAq “ rm´1, we have dimpkerpAqq “ 1.
Let v “ pv0, . . . ,vm´1q P Frmqm be a generator of kerpAq, with vi P Frqm . Because
of the block diagonal structure of A, v must satisfy

v “ p0r, . . . ,0r,vj ,0r, . . . ,0rq.
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In other words, the computation of this nullspace provides information about
the position of the vectors generating a single GRS code GRSrpxq

j

,yq
j

q. The
key idea is that if enough of such vectors are found, a basis of the corresponding
GRS code can be retrieved.

6.1 Choosing B with a special shape

Consider an ordered basis

B “ pb1, . . . , br, b
q
1, . . . , b

q
r, . . . , b

qm´1

1 , . . . , bq
m´1

r q (22)

of Arpx,yq
K
Fqm

. Such a basis can be computed by drawing b1, . . . , br P Arpx,yq
K
Fqm

at random, applying the Frobenius map m´1 times and checking if the obtained
family generates Arpx,yq

K
Fqm

, or equivalently if its dimension is rm. If not, draw
another r-tuple b1, . . . , br at random until the construction provides a basis. We
remark that even sampling a basis as in (22) does not provide a basis with the
same properties of A, i.e. pb1, . . . , brq is not an ordered basis of GRSrpx,yq,
except with negligible probability.

When B is chosen as in (22), the transition matrix P has a special shape.

Lemma 1. The matrix P is blockwise Dickson. That is to say, there exist
P 0, . . . ,Pm´1 P Frˆrqm such that

P “

¨

˚

˚

˚

˚

˝

P 0 P 1 ¨ ¨ ¨ Pm´1

P
pqq
m´1 P

pqq
0 ¨ ¨ ¨ P

pqq
m´2

...
...

. . .
...

P
pqm´1

q

1 P
pqm´1

q

2 ¨ ¨ ¨ P
pqm´1

q

0

˛

‹

‹

‹

‹

‚

. (23)

Proof. This is a direct consequence of the structure of the bases A and B. [\

Let S P GLmrpFqmq be the right r-cyclic shift matrix, i.e.

S
def
“

¨

˚

˚

˚

˚

˚

˝

Ir
Ir 0

0
. . .

Ir
Ir

˛

‹

‹

‹

‹

‹

‚

. (24)

Note that S´1
“ Sᵀ is the left r-cyclic shift matrix. The block-wise Dickson

structure of P can be re-interpreted as follows:

Proposition 21. Let S be defined as in (24) and P satisfy the blockwise Dick-
son structure of (23). Then P “ SᵀP pqqS.

Proof. Direct computation. [\

The following result will also be used frequently in what follows
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Algorithm 1 Sketch of the attack in odd characteristic
Input: (a basis of) an alternant code Arpx,yq
Output: a pair px1,y1q of support and multiplier for Arpx,yq

1: Choose a basis B “ pb1, . . . , br, bq1, . . . , bqr, . . . , b
qm´1

1 , . . . , bq
m´1

r q for Arpx,yq
K
Fqm .

2: Saux Ð t0u
3: repeat
4: Sample B P CmatpBq of rank rm´ 1 at random
5: v Ð generator of kerpBq

6: Saux Ð Saux `

A

v,vqS, . . . ,vqm´1

Sm´1
E

Fqm
7: until dimFqm Saux “ pr ´ 1qm
8: Sample B1 P CmatpBq of rank rm´ 1 at random
9: u1 Ð generator of kerpB1q

10: V Ð xu1y

11: for j P J2, rK do
12: Sample Bj P CmatpBq of rank rm´ 1 at random
13: uj Ð generator of kerpBjq

14: repeat
15: uj Ð uq

jS
16: until dimFqm Saux ` xu1,ujy “ pr ´ 1qm` 1
17: V Ð V ` xujy

18: D Ð V K

19: G Ð D
20: for j P J1,m´ 2K do
21: D Ð DpqqS
22: G Ð G XD
23: Apply the Sidelnikov-Shestakov attack [SS92] on G ¨HB
24: Return the support-multiplier pair px1,y1q found from Sidelnikov-Shestakov attack

Proposition 22. Whenever a basis B has the form given in (22), CmatpBq is
stable by the operation

M ÞÝÑ SᵀM pqqS.

The proof is given in Appendix E. Note that Spq
i
q
“ S for any i. Therefore, by

applying i times the map M ÞÝÑ SᵀM pqqS, we obtain M ÞÝÑ pSᵀ
qiM pqiq

pSqi.

We say that M and pSᵀ
qiM pqiq

pSqi are blockwise Dickson shift of each other.

6.2 The full algorithm with respect to a public basis B

Algorithm 1 provides a sketch of the attack in the case of odd chacteristic field
size. We will then justify why this algorithm is supposed to work with non-
negligible probability, elaborate on some subroutines (as sampling matrices of
rank rm ´ 1) and adapt it to the even characteristic case. We now show the
structure of the attack. Starting form a public basis, compute a basis as in (22),
i.e., a basis of the following form

B “ pb1, . . . , br, b
q
1, . . . , b

q
r, . . . , b

qm´1

1 , . . . , bq
m´1

r q.
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How to compute such a basis has already been explained in a previous section.
Similarly to HA, we define HB as the parity-check matrix of Arpx,yqFqm

whose
rows correspond to the elements of B in that same order. The correctness of
the whole algorithm follows immediately from the following propositions whose
proofs can be found in Appendix D. The first one explains why when we have
one kernel element in Algorithm 1 at line 6 we can find m´ 1 other ones.

Proposition 23. Let v be in the kernel of a matrix B in CmatpBq of rank rm´1.
Then vqS, . . . ,vq

m´1

Sm´1 are m ´ 1 elements that are also kernel elements
of matrices in CmatpBq of rank rm ´ 1 which are respectively SᵀBpqqS, ¨ ¨ ¨ ,
pSᵀ

qm´1Bpqm´1
qSm´1.

Then we are going to give a description of the space V produced in line 17.
Basically this a vector space of elements that correspond to a similar GRS code,
in the following sense.

Definition 13. Let A,B be the two bases introduced before and P the change
of basis, i.e.HB “ PHA. Let u1,u2 P Frmqm be two vectors such that

@t P t1, 2u, utpP
´1
q
ᵀ
P´1HB P GRSrpx,yqq

jt

for some values jt P J0,m ´ 1K. We say that u1 and u2 correspond to the
same GRS code with respect to the basis B if and only if j1 “ j2.

Two vectors u1 and u2 obtained by computing the nullspaces of rank rm ´ 1
matrices may or may not correspond to the same GRS code. In any case, from
them, we can easily exhibit two vectors corresponding to the same GRS code by
choosing among their shifts uq

i

t Si. More precisely, we have

Proposition 24. Let A,B be the two bases introduced before and P the change
of basis, i.e.HB “ PHA. Let u1,u2 P Frmqm be two vectors such that

@t P t1, 2u, utpP
´1
q
ᵀ
P´1HB P GRSrpx,yqpq

jt q

for some values jt P J0,m´ 1K. There exists a unique l P J0,m´ 1K such that u1

and uq
l

2 Sl correspond to the same GRS code.

To detect which shift of u2 corresponds to the same GRS code of u1, we rely
on the following proposition.

Proposition 25. Let v1, . . . ,vr´1,u1,u2 P Frmqm be the generators of the kernels
of B1, . . . ,Br´1,B

1,B2
P CmatpBq respectively, for randomly sampled matrices

of rank rm´ 1. Define

Saux
def
“

A

vq
l

j S
l
| j P J1, r ´ 1K, l P J0,m´ 1K

E

Fqm

.

If the following conditions are satisfied:
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– dimFqm
Saux “ pr´ 1qm (i.e. the pr´ 1qm vectors that generate Saux are

linearly independent);
– dimFqm

Saux ` xut yFqm
“ pr ´ 1qm` 1, t “ 1, 2;

then the two following statements are equivalent:

1. dimFqm
Saux `

A

u1,u
ql

2 Sl
E

Fqm

“ pr ´ 1qm` 1;

2. u1 and uq
l

2 Sl correspond to the same GRS code with respect to B.

We are therefore able to construct a space of dimension r whose elements all
correspond to a same GRS code. Then we use

Proposition 26. Let j P J0,m ´ 1K. Let Vj be the rrm, rs linear code gen-
erated by r linearly independent vectors corresponding to the same GRS code
GRSrpx,yqpq

j
q with respect to B. Then the linear space V K

j orthogonal to Vj is
such that

V K
j HB “

ÿ

iPJ0,m´1Kztju

GRSrpx,yqpq
i
q. (25)

Given V K
j , the other codes V K

i HB that are sums of m ´ 1 GRS codes can
be obtained according to the the following chain of equalities

ÿ

iPJ0,m´1Kztj`l mod mu

GRSrpx,yqpq
i
q

“

¨

˝

ÿ

iPJ0,m´1Kztju

GRSrpx,yqpq
i
q

˛

‚

pqlq

“ pV K
j HBq

pqlq “ pV K
j q

pqlqH
pqlq
B “ pV K

j q
pqlqSHB.

After this, we are ready to compute a basis of a GRS code.

Proposition 27. Let V K
j be a linear space satisfying Equation (25), for all

j P J0,m ´ 1K. Then with the standard assumption that all GRSrpx,yqpq
j
q are

in direct sum, we obtain, for any j P J0,m´ 1K,

GRSrpx,yqpq
j
q “

č

iPJ0,m´1Kztju

V K
i HB.

Remark 4. In the q odd case, the only exception to what was said until now
occurs for r “ 3. In this case a non-full rank diagonal block Bj,j becomes the
null block, because there are no matrices of rank 1 or 2. In this case, the kernel
of a rank rpm ´ 1q “ 3m ´ 3 matrix is a three-dimensional subspace, which
immediately provides the subspace Vj from which to recover the associated GRS
codes.
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How to sample matrices in CmatpBq of rank rm ´ 1

This is the most costly part of the algorithm. We first address the case of odd
characteristic, as the case of even characteristic needs an ad hoc discussion. It
is not too difficult to estimate that the density of rank rm ´ 1 matrices inside
CmatpBq is of order q´m (see E.7) and therefore it is desirable to have a better
technique than just a brute force approach. We proceed instead as follows. We
take two matrices D1,D2 at random in CmatpBq and solve over Fqm the equation

detpwD1 `D2q “ 0.

The determinant detpwD1 `D2q is a univariate polynomial of degree rm and
since w is taken over Fqm we can expect to have solutions with non-negligible
probability. A root w0 of detpwD1`D2q determines a matrix w0D1`D2 whose
rank is strictly smaller than rm but not necessarily equal to rm ´ 1. However,
the rank rm´1 is by far the most likely outcome. Repeating the process enough
times (Θp1q times on average) then provides a matrix of rank rm´ 1.

6.3 Complexity

The bottelneck of the attack is the computation of rank rm ´ 1 matrices in
CmatpBq which is explained in the previous paragraph. The computation of
the polynomial detpwD1 `D2q can be done by choosing rm distinct elements
α1, . . . , αrm of Fqm , compute the values detpα1D1`D2q, . . . ,detpαrmD1`D2q

and then recover the polynomial detpwD1 `D2q by interpolation. This repre-
sents the calculation of rm “ Opnq determinants of rmˆrm matrices and hence
a cost Opnω`1q, where ω is the complexity exponent of linear algebra. Once this
polynomial (in the variable w) is computed, the cost of the root–finding step is
negligible compared to that of the previous calculation.

Since the latter process should be repeated Opnq times, we get an overall
complexity of

Opnω`2q operations in Fqm .

6.4 Even characteristic

This case is treated in Appendices E.8, E.9 and E.10.

7 Conclusion

A general methodology for studying the security of the McEliece cryp-
tosystem with respect to key–recovery attacks. Trying to find an attack
on the key of the McEliece scheme based on Goppa codes, has turned out over
the years to be a formidable problem. The progress on this issue has basically
been non existent for many years and it was for a long time judged that the
McEliece scheme was immune against this kind of attacks. This changed a little
bit when many variants of the original McEliece came out, either by turning
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to a slightly larger class of codes namely the alternant codes which retain the
main algebraic structure of the Goppa code and/or adding additional structure
on it [BCGO09, BBB`17], changing the alphabet [BLP10, BLP11], or going
to extreme parameters [CFS01]. This has lead to devise many tools to attack
these variants such as algebraic modeling to recover the alternant stucture of a
Goppa code which is basically enough to recover its structure [FOPT10], using
square code considerations [COT14, COT17, BC18], or trying to solve a sim-
pler problem which is to distinguish these algebraic codes from random codes
[FGO`11, FGO`13, MT22]. We actually believe that in order to make further
progress on this very hard problem, it is desirable to move away now from study-
ing particular schemes proposed in the literature, by exploring and developing
systematically tools for solving this problem and study the region of parameters
(alphabet size q, code length n, degree r of the code, extension degree m) where
these methods work. We suggest the following research plan

– Studying the slightly more general problem of attacking alternant codes
might be the right way to go because it retains the essential algebraic fea-
tures of Goppa codes and it allows to find attacks that might not work in
the subcase of Goppa codes where the additional structure can be a nui-
sance. An example which is particularly enlightening here is the recent work
[BMT23] (attack on generic alternant codes in a certain parameter regime
which amazingly does not work in the particular case of Goppa codes where
the additional structure prevents the attack to work).

– A particularly fruitful research thread is to study the potentially easier prob-
lem of finding a distinguisher for alternant/Goppa codes first.

– Turn later on this distinguisher into an attack (such as [BMT23] for the
distinguisher of [FGO`11]).

This is the research plan we have followed to some extent here.

A distinguisher in odd characteristic. It is clear that any algebraic modeling
for solving the symmetric MinRank problem for rank 3 could be used to attack
the problem in odd characteristic. The Support Minors modeling of [BBC`20]
would be for instance a good candidate for this. The difficulty is here to predict
the complexity of system solving, since the fact that the matrices are symmetric
gives many new linear dependencies that do not happen in the generic MinRank
case. This is clearly a promising open problem.

Turning the distinguisher of §5 into an attack. The Pfaffian modeling for
the distinguisher can be used in principle to attack the key-recovery problem
as well. This problem is strictly harder than just distinguishing because of the
algebraic structure in the code CmatpAq that is much stronger than in CmatpRq
(random case). In particular, rank 2 matrices are found at a potentially larger
degree than d̄ at which the Hilbert function in the random case becomes 0. The
fact that the solution space is very large, in particular it contains a rather large
vector space (see Section 4), suggests though that we can safely specialize a
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rather large number of variables to speed up the system solving. Once a rank 2
matrix is found, the attack is not finished yet, but it is tempting to conjecture
that the main bottleneck is to find such a matrix first and that some of the tools
developed in the attack given in Section 6 might be used to finish the job.

Indeed, since rank 2 matrices in CmatpAq are identically zero outside the
main block diagonal, we can consider a matrix subcode spanned by many of
them, obtained by solving the Pfaffian system with different specializations. This
subcode will have a block diagonal shape and that is why the attack of the last
section is expected to apply on such subspace.
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A Gröbner bases and Computing the Hilbert Series

Gröbner basis techniques are the main tool at hand to solve multivariate polyno-
mial systems and therefore to perform algebraic cryptanalysis. One crucial no-
tion for this kind of computation and for the complexity analysis is the Macaulay
matrix [Mac94]. We give the definition that is relevant in the homogeneous case.

Definition 14 (Macaulay Matrix [Mac94]). Let F “ tf1, . . . , fmu Ă Krxs
be a homogeneous system such that degpfiq “ di. Let d be a positive integer. The
(homogeneous) Macaulay matrix MacpF, dq of F in degree d is a matrix whose
rows are each indexed by a polynomial mjfi, for any fi P F and any monomial
mj of degree d´di, and whose columns are indexed by all the monomials of degree
d. The entry corresponding to the row indexed by mjfi and column indexed by
ml is the coefficient of ml in mjfi. In particular, if mjfi “

ř

αPNn aαx
α and

ml “ xβ, then the corresponding entry of MacpF, dq is aβ:

ml

MacpF, dq “ mjfi

»

—

—

–

...
¨ ¨ ¨ aβ ¨ ¨ ¨

...

fi

ffi

ffi

fl

.

A Gröbner basis can be computed using linear algebra, in particular [Laz83]
showed that it is enough to perform Gaussian elimination on a Macaulay matrix
in degree equal to the degree of regularity dreg. Several algorithms and variants
are linear-algebra based, for instance F4 [Fau99], F5 [Fau02] or XL [CKPS00].
Differently from methods not exploiting the Macaulay matrix construction, this
approach allows to derive complexity estimates for this task. Computing the
Hilbert series can also be done with these methods and this is the only result we
need here, which is derived from [BFS15, Proposition 1] as

Proposition 13. Let F “ tf1, . . . , fmu Ă Krz1, . . . , zns be a homogeneous sys-
tem. Let I be the corrresponding ideal. The term HFRpdq of degree d of the
Hilbert function of R “ Krzs{I can be computed in time bounded by

O
ˆ

md

ˆ

n` d´ 1

d

˙ω˙

,

where ω is the linear algebra exponent.

Furthermore, these methods can take advantage of algorithms that bene-
fit from matrix sparsity [Wie86],[CCNY12]. The cost of the XL Wiedemann
algorithm to solve a Macaulay matrix in degree d has been evaluated [DY09,
Proposition 3, p. 219] with

3nr

ˆ

n` d´ 1

d

˙2

,

where nr is the average weight of a row in MacpF, dq.
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B Proof related to Section 3

Let us recall the proposition we prove.

Proposition 4. Let A and B be two bases of a same rn, ks F-linear code C ,
with F. Then CmatpAq and CmatpBq are isometric matrix codes, i.e. there exists
P P GLkpFq such that

CmatpAq “ P ᵀCmatpBqP . (10)

The matrix P coincides with the change of basis matrix between A and B.

Proof. Let A and B be related as HB “ PHA. where HA, resp. HB is a
matrix whose rows are the basis elements of A, resp. B. It will be helpful to
view an element c “ pci,jq1ďiďjďk of Crel as a matrix C “ pCi,jq1ďiďk

1ďjďk
where

Cij “ cij for i ď j and Cij “ 0 otherwise. We can write the matrix Mc of Cmat
corresponding to c as Mc “ C ` Cᵀ. Consider an element M P CmatpBq. By
definition of CmatpBq there is an element c “ pci,jq1ďiďjďk of CrelpBq such that
M “ Mc. Consider the matrix C corresponding to c that we just introduced.
By definition of CrelpBq we have

ÿ

1ďiďjďk

ci,jbi ‹ bj “ 0. (26)

We have for all i in J1, kK: bi “
řk
s“1 pisas, where pi,j denotes the entry pi, jq of

P . Therefore

ÿ

1ďiďjďk

ci,jbi ‹ bj “
ÿ

1ďiďjďk

ci,j

¨

˝

ÿ

sPJ1,kK

pi,sas

˛

‚‹

¨

˝

ÿ

tPJ1,kK

pj,tat

˛

‚

“
ÿ

s,tPJ1,kK

˜

ÿ

1ďiďjďk

pi,spj,tci,j

¸

as ‹ at

“
ÿ

1ďsătďk

˜

ÿ

1ďiďjďk

ppi,spj,t ` pi,tpj,sqci,j

¸

as ‹ at

`
ÿ

sPJ1,kK

˜

ÿ

1ďiďjďk

pi,spj,sci,j

¸

as ‹ as

Let D “ pds,tq1ďsďk
1ďtďk

where

ds,t
def
“

ÿ

1ďiďjďk

ppi,spj,t ` pi,tpj,sqci,j for 1 ď s ă t ď k

ds,s
def
“

ÿ

1ďiďjďk

pi,spj,sci,j for s P J1, kK

ds,t
def
“ 0 otherwise.
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d
def
“ pdi,jq1ďiďjďk is because of (26) an element of CrelpAq. Now from the def-

inition of D is clear that we have D `Dᵀ
“ P ᵀ

pC `Cᵀ
qP . In other words,

the matrix Md in CmatpAq corresponding to d satisfies

Md “D `Dᵀ

“ P ᵀ
pC `Cᵀ

qP

“ P ᵀMcP .

This holds for any c in CrelpBq. This leads to P ᵀCmatpBqP Ď CmatpAq. Since P
is invertible, this implies CmatpAq “ P ᵀCmatpBqP . [\

C Proofs of some results given in Section 4

C.1 Proofs of the results given in §4.1

For all the proofs given here we recall that we have fixed the basis

A def
“ ty,xy, . . . ,xr´1y, . . . ,yq

m´1

, pxyqq
m´1

, . . . , pxr´1yqq
m´1

u.

We will also consider the following block form of the matrices M P CmatpBq:

Mc “

¨

˚

˚

˚

˚

˝

M0,0 M0,1 . . . M0,m´1

M1,0
. . .

...
...

Mm´1,0 . . .Mm´1,m´1

˛

‹

‹

‹

‹

‚

,

with M l,u “ pm
pl,uq
i,j q0ďiďr´1

0ďjďr´1
P Frˆrqm .

We are first going to prove Proposition 9 which is given by

Proposition 9. Let G px, Γ q be a binary rn, n´rms Goppa code with Γ a square-
free polynomial of degree r and let A be the canonical basis of G px, Γ qKFqm

given
in (12) with y “ 1

Γ pxq . Then CmatpAq contains the space of block-diagonal skew-
symmetric matrices with r ˆ r blocks.

Proof. Recall from [Pat75] that, if G px, Γ q “ Arpx,yq and Γ is a square-free
polynomial of degree r, then

G px, Γ q “ G px, Γ 2q “ A2rpx,y
2q.

Thus
xi2

l

y2pl`1 mod mq

P G px, Γ qKFqm
,

for all i P J0, 2r ´ 1K, l P J0,m´ 1K. Consequently each equation

pxayq2
l

pxbyq2
l

“ pxa`by2q2
l´1

pxa`by2q2
l´1

, (27)
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with l P J1,mK, 0 ď b ă a ă r corresponds to a codeword c in CrelpAq. Let us fix
pa, b, lq. Since pxa`by2q2

l´1

pxa`by2q2
l´1

is a square and the field characteristic
is 2, the matrix M P CmatpAq corresponding to the relation (27) is such that

Mu,v “ 0rˆr, if pu, vq ‰ pl, lq

and

m
pl,lq
i,j “

#

1 if pi, jq P tpa, bq, pb, aqu
0 otherwise

,

where Mu,v “ pm
pu,vq
i,j q P Frˆrqm is the block of M with row-column block index

pu, vq. Hence
RankpMq “ RankpM l,lq “ 2.

It is trivial to check that the set of matrices obtained by any possible choice
of a, b and l generates the space of all block-diagonal skew-symmetric matrices
with r ˆ r blocks. [\

Let us prove Proposition 6 that we recall here

Proposition 6. Let Arpx,yq be an alternant code of extension degree m and
order r over a field of characteristic 2. Then Cmat contains

X

r´1
2

\

-dimensional
subspaces of rank-(ď 2) matrices. If Arpx,yq is a binary Goppa code with a
square-free Goppa polynomial, then Cmat contains pr´ 1q-dimensional subspaces
of rank-(ď 2) matrices.

Proof. Let us consider the matrix subspace originated by choosing all the ma-
trices corresponding to (13) for a fixed l “ u and such that c “ d, a` b “ 2c, a
and b are even and one of them equals a fixed even value j (alternatively one can
choose a, b both odd and one equal to an odd j). Any matrix M in this subspace
is zero outside the union of the plr ` j ` 1q-th column and the plr ` j ` 1q-th
row. Its rank is therefore upper bounded by 2. In other words, any such matrix
M has the following shape

M “

»

—

—

—

—

—

—

–

0
. . . 0

M l,l

0
. . .

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, with M l,l “

»

—

—

—

—

—

—

—

—

—

–

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

0 ˚ 0
0

˚ 0 0 0 ˚ 0 ˚ 0 Ð pj ` 1q-th row
0
˚

0 0 0
˚

0

,

(28)
where all the ˚’s in the pj`1q-th row of M l,l can be chosen independently. Thus,
the subspace dimension is

X

r´1
2

\

, because each of the
X

r`1
2

\

odd entries of the
pj ` 1q-th column of M l,l is a ˚, with the exception of the pj ` 1, j ` 1q entry,
which is 0.
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If Arpx,yq is a Goppa code G px, Γ q, we consider instead the matrix subspace
originated by choosing all the matrices corresponding to (27) for a fixed l and
such that one element among a, b equals a fixed value j. Any matrix M in
this subspace is null outside the union of the plr ` j ` 1q-th column and the
plr ` j ` 1q-th row. Its rank is therefore upper bounded by 2. In other words,
any such matrix M has the following shape

M “

»

—

—

—

—

—

—

–

0
. . . 0

M l,l

0
. . .

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, with M l,l “

»

—

—

—

—

—

—

—

—

—

–

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

0 ˚ 0
˚

˚ ˚ 0 ˚ ˚ ˚ ˚ ˚ Ð pj ` 1q-th row
˚

˚

0 ˚ 0
˚

˚

,

(29)
where all the ˚’s in the pj`1q-th row of M l,l can be chosen independently. Thus,
the subspace dimension is r ´ 1, because each of the r entries of the pj ` 1q-th
column of M l,l is a ˚, with the exception of the pj ` 1, j ` 1q entry, which is
0. [\

We will prove now Proposition 7 that we recall here

Proposition 7. Let Arpx,yq be an alternant code in characteristic 2 and ex-
tension degree m. The matrix code of quadratic relationships Cmat contains at
least Ωpmpqmpr´2qq matrices of rank 2.

Proof. It directly follows from Lemmas 2 and 3 that we will give below. [\

To understand what is going on in this case, it is insightful to have a look
at some examples first. Let us fix a value l “ u P J0,m ´ 1K and consider the
subspace of CmatpAq spanned by all the matrices corresponding to a quadratic
relation

pxayqq
l

‹ pxbyqq
l

“ pxcyqq
l

‹ pxdyqq
l

,

for any possible choice of r´ 1 ě a ą c ě d ą b ě 0. It follows from the analysis
of the distinguisher in [FGO`13] and [MT22] that this space has dimension
`

r´1
2

˘

. Let M l,lpuq be the generic diagonal block matrix of such subspace, where
u “ pu1, . . . , upr´1

2 q
q is the vector of coefficients with respect to the basis. We

give examples for some small values of r.

Example 1. – For r “ 3:

M l,lpuq “

»

–

0 0 u1

0 0 0
u1 0 0

fi

fl . (30)
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– For r “ 4:

M l,lpuq “

»

—

—

–

0 0 u1 u2

0 0 u2 u3

u1 u2 0 0
u2 u3 0 0

fi

ffi

ffi

fl

. (31)

– For r “ 5:

M l,lpuq “

»

—

—

—

—

–

0 0 u1 u2 u4

0 0 u2 u3 u5

u1 u2 0 u5 u6

u2 u3 u5 0 0
u4 u5 u6 0 0

fi

ffi

ffi

ffi

ffi

fl

. (32)

– For r “ 6:

M l,lpuq “

»

—

—

—

—

—

—

–

0 0 u1 u2 u4 u7

0 0 u2 u3 u5 ` u7 u8

u1 u2 0 u5 u6 u9

u2 u3 u5 0 u9 u10

u4 u5 ` u7 u6 u9 0 0
u7 u8 u9 u10 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (33)

Table 6 illustrates the experimental number of rank 2 matrices in CmatpAq
such that RankpM1,1q “ 2 and all the other blocks are null, for small values of
r and over the field Fqm .

Size r ˆ r 3 4 5 6 7 8
n. of rank 2 matrices qm ´ 1 q2m ´ 1 2q3m ´ q2m ´ 1 2q4m ´ q2m ´ 1 3q5m ´ q4m ´ q2m ´ 1 3q6m ´ q5m ´ q2m ´ 1

Table 6: Number of rank-2 block matrices

Table 6 suggests that these blocks have a number of rank 2 specializations
that roughly grows as

X

r´1
2

\

pqmqr´2. We are now going to show the shape of
a number of rank-2 matrices in the order of pqmqr´2. Despite not being all the
rank-2 matrices, this is interesting in order to determine the dimension of the
variety corresponding to a determinantal ideal, which indeed can be proved to
be at least r ´ 2. The explanation can be split into odd and even matrix sizes.

From the matrices M l,lpuq with odd size rˆ r, by specializing some of the u
variables and selecting some row/column indexes, we can determine submatrices
of size rr{2s ˆ rr{2s that are skew-symmetric but without any other additional
relation. Again, we first give examples for some small values of r.

Example 2. – For r “ 3, the submatrix of (30) obtained by taking row/column
indexes in t1, 3u is

„

0 u1

u1 0



.
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– For r “ 5, the submatrix of (32) obtained by taking row/column indexes in
t1, 3, 5u is

»

–

0 u1 u4

u1 0 u6

u4 u6 0

fi

fl .

More generally, it is enough to build the rr{2s ˆ rr{2s “ r`1
2 ˆ r`1

2 submatrix
selecting the odd row/column indexes. By specializing all the ui’s not appearing
in the submatrix, this gives a lower bound on the number of matrices of rank 2.
In particular

Lemma 2. The number of choices of u for which M l,lpuq (r odd) has rank 2
is lower bounded by N0

`

r`1
2 , 2

˘

, where N0ps, rq stands for the number of skew-
symmetric matrices of size s over Fq and rank r.

Since (see Proposition 29)

N0

ˆ

r ` 1

2
, 2

˙

“ pqmq2
r`1
2 ´3 ` oppqmq2

r`1
2 ´3q “ qmpr´2q ` opqmpr´2qq,

and we have m blocks, we expect that the number of solutions is at least in the
order of mqmpr´2q. Analogously for M l,lpuq matrices with even size, we do not
construct generic skew-symmetric submatrices but we provide specializations of
M l,lpuq related to such submatrices. We first give the examples for some small
values of r.

Example 3. – For r “ 4:
»

—

—

–

0 0 u1 λu1

0 0 λu1 λ
2u1

u1 λu1 0 0
λu1 λ

2u1 0 0

fi

ffi

ffi

fl

,

i.e.we take in (31)the specialization
#

u2 “ λu1

u3 “ λ2u1

,

with the parameter λ P Fqm .
– For r “ 6:

»

—

—

—

—

—

—

–

0 0 u1 λu1 u4 λu4

0 0 λu1 λ
2u1 λu4 λ

2u4

u1 λu1 0 0 u6 λu6

λu1 λ
2u1 0 0 λu6 λ

2u6

u4 λu4 u6 λu6 0 0
λu4 λ

2u4 λu6 λ
2u6 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,
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i.e.we take in (33)the specialization
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

u2 “ λu1

u3 “ λ2u1

u5 “ 0

u7 “ λu4

u8 “ λ2u4

u9 “ λu6

u10 “ λ2u6

,

with the parameter λ P Fqm .

More generally we can replace each entry ui of a generic anti-symmetric matrix

of size r
2ˆ

r
2 with the 2ˆ2 block

„

ui λui
λui λ

2ui



and each null element of the diagonal

with the null 2ˆ 2 block. It is clear that if the starting r
2 ˆ

r
2 matrix has rank 2,

then the same occurs for the r ˆ r block matrix. Moreover, the variable λ adds
one degree of freedom. Hence we have

Lemma 3. The number of choices for ui’s such that the specialized rˆr matrix
W puq (r even) has rank 2 is lower bounded by qm ¨N0p

r
2 , 2q.

Since

qm ¨N0

´r

2
, 2
¯

“ pqmq ¨ pqmq2
r
2´3 ` oppqmq ¨ pqmq2

r
2´3q “ qmpr´2q ` opqmpr´2qq,

and we have m blocks, we have proved that the number of rank-2 matrices in
CmatpAq is again at least in the order of mqmpr´2q.

We are now going to prove a refinement of this counting for binary Goppa
codes

Proposition 8. Let G px, Γ q be a binary Goppa code of extension degree m with
Γ a square-free polynomial of degree r. Then Cmat contains at least

m
pqmr ´ 1qpqmpr´1q ´ 1q

q2m ´ 1

matrices of rank 2.

Proof. We have seen that each choice of pa, b, lq from (27) leads to a different
matrixM in CmatpAq which is null outside the diagonal blockM l,l and such that
RankpMq “ RankpM l,lq “ 2. Furthermore, the block submatrix M l,l is such
that only one element below the diagonal is nonzero, i.e. the entry pa` 1, b` 1q.
Hence the set over all possible choices of pa, b, lq of these matrices generates the
full subspace of skew-symmetric block diagonal matrices. Therefore, by counting
the rank-2 matrices in this subspace, the number of rank-2 matrices in CmatpAq
can be lower bounded by

mN0pr, 2q “ m
pqmr ´ 1qpqmpr´1q ´ 1q

q2m ´ 1
.

[\
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C.2 Proof of Proposition 10

Let us first recall this proposition.

Proposition 10. Let R Ă Fnqm be a random code of dimension rm with basis
R and let

`

rm`1
2

˘

ą n. Under the assumption that CmatpRq has the same the
rank weight distribution as a random linear matrix code, it contains matrices of
rank ď d with non-negligible probability iff

n ď drm´

ˆ

d

2

˙

(symmetric case)

n ď pd` 1qrm´

ˆ

d` 1

2

˙

(skew-symmetric case)

For this proof, we will need the following results giving the number of symmetric/skew-
symmetric matrices of a given rank. The number of symmetric matrices over a
finite field of a given rank can be found in [Mas69].

Proposition 28 ([Mac69, Theorem 2]). Let Npt, rq denote the number of
symmetric matrices of size tˆ t, rank r, with entries in Fq. Then

Npt, 2sq “
s
ź

i“1

q2i

q2i ´ 1

2s´1
ź

i“0

pqt´i ´ 1q, 2s ď t

Npt, 2s` 1q “
s
ź

i“1

q2i

q2i ´ 1

2s
ź

i“0

pqt´i ´ 1q, 2s` 1 ď t.

When the field characteristic is 2, the number of skew-symmetric matrices has
also been computed.

Proposition 29 ([Mac69, Theorem 3]). Let N0pt, rq denote the number of
symmetric matrices of size t ˆ t, rank r, with entries in Fq, q “ 2n, and 0 on
the main diagonal. Then

N0pt, 2sq “
s
ź

i“1

q2i´2

q2i ´ 1

2s´1
ź

i“0

pqt´i ´ 1q, 2s ď t

N0pt, 2s` 1q “ 0.

Remark 5. Proposition 29 implies that skew-symmetric matrices defined over a
field of characteristic 2 have always even rank.

We are ready now to give a proof of Proposition 10.

Proof (of Proposition 10). For a random code R with basis R, dimpCmatpRqq “
`

rm`1
2

˘

´ n is expected with probability 1 ´ op1q when
`

rm`1
2

˘

ą n [CCMZ15].
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From Propositions 28,29 we have respectively

|BpSymqd | „Nprm, dq

“

td{2u
ź

i“1

pqmq2i

pqmq2i ´ 1

d´1
ź

i“0

ppqmqrm´i ´ 1q

„

d´1
ź

i“0

pqmqrm´i

“pqmqdrm´p
d
2q.

and (in characteristic 2)

|BpSkewqd | „N0prm, 2 td{2uq

“

td{2u
ź

i“1

pqmq2i´2

pqmq2i ´ 1

2td{2u´1
ź

i“0

ppqmqrm´i ´ 1q

„pqmq´2td{2u

d´1
ź

i“0

pqmqrm´i

“pqmq2td{2urm´p2td{2u`1
2 q.

Therefore, from Gilbert-Varshamov bounds (14),(15) we get that rank-d ma-
trices belong to CmatpRq with non negligible probability iff

– (for symmetric matrices)

pqmqp
rm`1

2 q´npqmqdrm´p
d
2q ě pqmqp

rm`1
2 q

ðñ

ˆ

rm` 1

2

˙

´ n` drm´

ˆ

d

2

˙

ě

ˆ

rm` 1

2

˙

ðñ n ď drm´

ˆ

d

2

˙

.

– (for skew-symmetric matrices in characteristic 2)

pqmqp
rm`1

2 q´npqmqd´p
d`1
2 q ě pqmqp

rm
2 q

ðñ

ˆ

rm` 1

2

˙

´ n` drm´

ˆ

d` 1

2

˙

ě

ˆ

rm

2

˙

ðñ n ď pd` 1qrm´

ˆ

d` 1

2

˙

.

[\

D Proofs and experimental evidence corresponding to
Section 5

D.1 Proof of Proposition 17

Let us first recall the Proposition.
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Proposition 17. Let Cmat be the matrix code of quadratic relations correspond-
ing to the extended dual of an rn, n´rms alternant code over a field of even char-
acteristic. Let P`2 pMq be the corresponding Pfaffian ideal. Then dimV pP`2 pMqq ě

r ´ 2.

Proof. We recall from Proposition 14 that the dimension of the variety of the
generic Pfaffian ideal P2pMq is 2s ´ 3, where s is the matrix size. The result
follows from the construction given in Appendix §C.1, for estimating the num-
ber of rank 2 matrices, where we have shown that CmatpAq contains subspaces
of matrices that are isomorphic to the full space of skew-symmetric matrices
for some smaller size. This allows to lower bound dimV pP`2 pMqq in terms of
dimV pP2pNqq, where N is the generic skew-symmetric matrix of smaller size.
More precisely:

– if r is odd: let N be the generic skew-symmetric matrix of size r`1
2 ˆ r`1

2 .
Then the construction explained before Lemma 2 in Appendix §C.1 implies
that

dimV pP`2 pMqq ě dimV pP2pNqq “ 2
r ` 1

2
´ 3 “ r ´ 2;

– if r is even: this is the most subtle case, because we do not construct
generic skew-symmetric matrices. Let N be the generic skew-symmetric
matrix of size r

2 ˆ
r
2 and N 1 be the skew-symmetric matrix of size r ˆ r

with indeterminates given as in the construction explained before Lemma 3
in Appendix §C.1. We identify ni,j “ n12i´1,2j´1 and define the function

fpiq “

#

0 i odd
1 i even

. Using the ideintification above, we can rewrite the gen-

erators of the Pfaffian ideal for N 1 in function of ni,j ’s and λ. If i, j, k, l are
such that there are not two consecutive indexes with the smallest being odd,
then

n1i,jn
1
k,l ` n

1
i,kn

1
j,l ` n

1
i,ln

1
j,k

“λfpiq`fpjqnr i
2 s,r j

2 sλ
fpkq`fplqnr k

2 s,r l
2 s ` λ

fpiq`fpkqnr i
2 s,r k

2 sλ
fpjq`fplqnr j

2 s,r l
2 s

` λfpiq`fplqnr i
2 s,r l

2 sλ
fpjq`fpkqnr j

2 s,r k
2 s

“λfpiq`fpjq`fpkq`fplqpnr i
2 s,r j

2 snr k
2 s,r l

2 s ` nr i
2 s,r k

2 snr j
2 s,r l

2 s ` nr i
2 s,r l

2 snr j
2 s,r k

2 sq.

Otherwise, if for instance j “ i` 1, i odd, then

n1i,jn
1
k,l ` n

1
i,kn

1
j,l ` n

1
i,ln

1
j,k “ 0 ¨ n1k,l ` n

1
i,kpλn

1
i,lq ` n

1
i,lpλn

1
i,kq “ 0

Therefore P2pN
1
q “ P2pNq seen as ideals in Fqmrpni,jqi,j , λs. Hence

dimV pP`2 pMqq ě dimV pP`2 pNq1q “ 1`dimV pP2pNqq “ 1`2
r

2
´3 “ r´2,

where the summand 1 corresponds to the free parameter λ used in the con-
struction.

[\
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D.2 Experiments about the Hilbert function convergence

In Conjecture 2, we claimed that d0 „ c s
2

k for some constant c. We experimen-
tally verified this in the following way. We define k “ tβsαu for several positive
values of β and α P p1, 2q. We start from a value s “ 2i such that the parameters
are above Gilbert-Varshamov bound and not distinguishable and then we let s
double each time and update k accordingly. The ratio d0k

s2 is eventually a de-
creasing function and seems to converge to c “ 1

4 (or something very close to it)
from above, even though with a different speed depending on α. In particular,
let us choose β “ 1 and let us test the convergence for different values of α in
Table 7.

α 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
d0k
s2
ă 0.28 starting from s “ 218 s “ 214 s “ 214 s “ 215 s “ 218 s “ 224 s “ 236 s “ 272

d0k
s2
ă 0.255 starting from s “ 221 s “ 220 s “ 223 s “ 229 s “ 238 s “ 257 s “ 2114

d0k
s2
ă 0.252 starting from s “ 223 s “ 228 s “ 234 s “ 245 s “ 267 s “ 2133

d0k
s2
ă 0.251 starting from s “ 237 s “ 250

Table 7: Experiments for the convergence of the Hilbert function

D.3 Proof of Theorem 2

Let us first recall the Theorem.

Theorem 2 Let G px, Γ q be a non distinguishable binary rn, k “ n´rms Goppa
code with Γ a square-free polynomial of degree r and extension degree m. Let
P`2 pMq be the corresponding Pfaffian ideal. Then, for all d ą 0,

HFF2m rms{P`2 pMq
pdq ě m

˜

ˆ

r ` d´ 2

d

˙2

´

ˆ

r ` d´ 2

d` 1

˙ˆ

r ` d´ 2

d´ 1

˙

¸

.

Proof. For our convenience we denoteR def
“ F2mrms. Definemplq def

“ pmi,jqlr`1ďiăjďpl`1qr

and mpzlq the sequence of monomials that are in m but not in mplq, for all
l P J0,m ´ 1K. Moreover, we define the sequence of variables mpoutq that are
not in any of the mplq’s. We consider the corresponding polynomial rings Rl

def
“

F2mrmplqs, Rzl
def
“ F2mrmpzlqs and Rout

def
“ F2mrmpoutqs and, with some abuse

of notation, the monomial ideals over F2mrms generated by these sequences
of variables: Iplq “ Ipmplqq, Ipzlq “ Ipmpzlqq, Ipoutq “ Ipmpoutqq. Finally, we
define the monomial ideal Ipquadq generated by all possible quadratic mono-
mials with two unknowns belonging to two different diagonal blocks. We re-
call from Proposition 9 that each skew-symmetric block diagonal matrix be-
longs to CmatpAq. Therefore, the homogeneous linear relations Li’s such that
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P`2 pMq “ P2pMq ` xLiyi can be chosen in such a way that only the variables
in mpoutq can appear in them, i.e.Lj P Ipoutq.

Let us take an element in the basis of P2pMq as in (17):

Qa,b,c,d “ ma,bmc,d `ma,cmb,d `ma,dmb,c.

We analyze two cases:

– If there exists l P J0,m ´ 1K such that lr ` 1 ď a ă b ă c ă d ď pl ` 1qr,
then Qa,b,c,d P P2pM l,lq, i.e. the Pfaffian ideal corresponding to the pl`1q-th
diagonal block submatrix.

– Otherwise, the monomials ma,bmc,d,ma,cmb,d and ma,dmb,c belong to either
Ipoutq or Ipquadq.

In both cases we obtain

Qa,b,c,d P

˜

m´1
ÿ

i“0

P2pM l,lq

¸

` Ipoutq ` Ipquadq.

Hence

P`2 pMq “ P2pMq ` xL1, . . . , Lky Ď

˜

m´1
ÿ

l“0

P2pM l,lq

¸

` Ipoutq ` Ipquadq.

One can readily verify that, for any l P J0,m ´ 1K, the monomial ideal Ipzlq
contains:

– Ipoutq;
– Ipquadq;
– P2pM l1,l1q, for all l1 P J0,m´ 1Kztlu.

This results in
˜

m´1
ÿ

l“0

P2pM l,lq

¸

` Ipoutq ` Ipquadq Ď
č

lPJ0,m´1K

´

P2pM l,lq ` Ipzlq
¯

.

Note now that, for any l̄ P J1,m´ 1K,

č

lPJ0,l̄´1K

´

P2pM l,lq ` Ipzlq
¯

` P2pM l̄,l̄q ` Ipzl̄q “ xmy (34)

and

HSR{xmypzq “ HSF2m
pzq “ 1.
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By applying recursively relation (34) on the quotient rings, we obtain

HFR{P`2 pMq
pdq ěHFR{

Ş

lPJ0,m´1KpP2pM l,lq`Ipzlqqpdq

“HFR{
Ş

lPJ0,m´2KpP2pM l,lq`Ipzlqqpdq `HFR{pP2pMm´1,m´1q`Ipzm´1qqpdq ´HFF2m
pdq

“HFR{
Ş

lPJ0,m´3KpP2pM l,lq`Ipzlqqpdq `HFR{pP2pMm´2,m´2q`Ipzm´2qqpdq

`HFR{pP2pMm´1,m´1q`Ipzm´1qqpdq ´ 2HFF2m
pdq

“ . . .

“

m´1
ÿ

l“0

HFR{pP2pM l,lq`Ipzlqqpdq ´ pm´ 1qHFF2m
pdq

“

m´1
ÿ

l“0

HFRl{P2pM l,lqpdq ´ pm´ 1qHFF2m
pdq

“

#

m´ pm´ 1q “ 1 if d “ 0

m
´

`

r`d´2
d

˘2
´
`

r`d´2
d`1

˘`

r`d´2
d´1

˘

¯

if d ą 0
.

[\

E Proofs for some of the Results of Section 6

E.1 Proof of Proposition 22

Let us recall first the proposition

Proposition 22. Whenever a basis B has the form given in (22), CmatpBq is
stable by the operation

M ÞÝÑ SᵀM pqqS.

Proof. Let B “ pbi,jqi,j P CmatpBq Ď Frmˆrmqm . Then, by definition,
ÿ

iăj

2bi,jbi ‹ bj `
ÿ

i

bi,ibi ‹ bi “ 0.

Then, by applying the Frobenius map z ÞÑ zq component-wise,

0 “
ÿ

iăj

2qbqi,jb
q
i ‹ b

q
j `

ÿ

i

bqi,ib
q
i ‹ b

q
i “

ÿ

iăj

2bqi,jb
q
i ‹ b

q
j `

ÿ

i

bqi,ib
q
i ‹ b

q
i .

From now on, the indexes are considered modulo rm. The structure of the basis
B yields

ÿ

iăj

2bqi,jb
q
i`r ‹ b

q
j`r `

ÿ

i

bqi,ib
q
i`r ‹ b

q
i`r “ 0

and hence
ÿ

iăj

2bqi´r,j´rb
q
i ‹ b

q
j `

ÿ

i

bqi´r,i´rb
q
i ‹ b

q
i “ 0

The matrix pbqi´r,j´rqi,j is nothing but SᵀBpqqS and hence SᵀBpqqS P CmatpBq.
[\
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E.2 Proof of Proposition 23

Let us recall this proposition

Proposition 23. Let v be in the kernel of a matrix B in CmatpBq of rank rm´1.
Then vqS, . . . ,vq

m´1

Sm´1 are m ´ 1 elements that are also kernel elements
of matrices in CmatpBq of rank rm ´ 1 which are respectively SᵀBpqqS, ¨ ¨ ¨ ,
pSᵀ

qm´1Bpqm´1
qSm´1.

Proof. Given B P CmatpBq, it follows from Proposition 22 that

pSᵀ
qiBpqiq

pSqi P CmatpBq, for any i P J0,m´ 1K

and all these matrices have the same rank, namely rm´ 1. Moreover, if v gen-
erates the nullspace of B, then vq

i

Si is in the kernel of pSᵀ
qiBpqiqSi since

pvq
i

Siq ¨ pSᵀ
qiBpqiqSi

“vq
i

BpqiqSi

“pvBqpq
i
qSi

“0.

[\

E.3 Proof of Proposition 24

The proposition states that

Proposition 24. Let A,B be the two bases introduced before and P the change
of basis, i.e.HB “ PHA. Let u1,u2 P Frmqm be two vectors such that

@t P t1, 2u, utpP
´1
q
ᵀ
P´1HB P GRSrpx,yqpq

jt q

for some values jt P J0,m´ 1K. There exists a unique l P J0,m´ 1K such that u1

and uq
l

2 Sl correspond to the same GRS code.

Proof. Let B P CmatpBq such that u2 generates kerpBq. By Proposition 23, we
know that uq

l

2 Sl generates the kernel of pSᵀ
qlBpqlqSl. We get

0 “uq
l

2 Bpqlq

“uq
l

2 pP
pqlq

ᵀ
q´1Apq

l
q
pP pq

l
q
q´1

“uq
l

2 pP
pqlq

ᵀ
q´1pSlpSᵀ

qlqApq
l
q
pSlpSᵀ

qlqpP pq
l
q
q´1

“puq
l

2 pP
pqlq

ᵀ
q´1SlqppSᵀ

qlApq
l
qSlqpSᵀ

qlpP pq
l
q
q´1

“puq
l

2 ppS
ᵀ
qlP pq

l
q
ᵀ
q´1qppSᵀ

qlApq
l
qSlqpSᵀ

qlpP pq
l
q
q´1 by Proposition 21

“puq
l

2 SlP ᵀ´1
qppSᵀ

qlApq
l
qSlqpSᵀ

qlpP pq
l
q
q´1,
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which implies

puq
l

2 SqP ᵀ´1P´1HB “ pu
ql

2 SP ᵀ´1
qHA P GRSrpx,yqpq

j2`l
q,

since the diagonal block of rank r´1 in pSᵀ
qlApq

l
qSl is the one indexed by j2` l

mod m. Therefore, u1 and uq
l

2 Sl correspond to the same GRS code with respect
to B for the unique value l P J0,m´ 1K such that j1 “ j2 ` l mod m. [\

E.4 Proof of Proposition 25

This proposition says that

Proposition 25. Let v1, . . . ,vr´1,u1,u2 P Frmqm be the generators of the kernels
of B1, . . . ,Br´1,B

1,B2
P CmatpBq respectively, for randomly sampled matrices

of rank rm´ 1. Define

Saux
def
“

A

vq
l

j S
l
| j P J1, r ´ 1K, l P J0,m´ 1K

E

Fqm

.

If the following conditions are satisfied:

– dimFqm
Saux “ pr´ 1qm (i.e. the pr´ 1qm vectors that generate Saux are

linearly independent);
– dimFqm

Saux ` xut yFqm
“ pr ´ 1qm` 1, t “ 1, 2;

then the two following statements are equivalent:

1. dimFqm
Saux `

A

u1,u
ql

2 Sl
E

Fqm

“ pr ´ 1qm` 1;

2. u1 and uq
l

2 Sl correspond to the same GRS code with respect to B.

Proof. Let j P J0, r ´ 1K. For each i P J0,m ´ 1K, there exists a unique v
pqlq
j Sl,

l P J0,m´ 1K, such that

vq
l

j S
l
pP´1

q
ᵀ
P´1HB Ď GRSrpx,yqpq

i
q.

As this holds for all j P J0, r ´ 1K, we obtain that

SauxpP
´1
q
ᵀ
P´1HB “

m´1
ÿ

i“0

Gi,

where Gi is an rn, r ´ 1s linear code contained into GRSrpx,yqpq
i
q. From the

standard assumption that all the codes GRSrpx,yqpq
i
q’s are in direct sum, we

get SauxpP
´1
q
ᵀ
P´1HB “

Àm´1
i“0 Gi. Analogously for ut, t “ 1, 2, we have

utpP
´1
q
ᵀ
P´1HB P GRSrpx,yqpq

it q.
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The condition dimFqm
Saux`xut yFqm

“ pr´1qm`1 “ dimFqm
Saux`1 implies

that

´

Saux ` xut yFqm

¯

pP´1
q
ᵀ
P´1HB “

˜

à

iPJ0,m´1Kztitu

Gi

¸

‘ G 1it ,

with G 1it Ď GRSrpx,yqpq
it q. But

dimFqm
G 1it “ dimFqm

Saux`xut yFqm
´dimFqm

à

iPJ0,m´1Kztitu

Gi “ pr´1qm`1´pr´1qpm´1q “ r,

hence G 1it “ GRSrpx,yqpq
it q. Note that, with the same argument,

ˆ

Saux `

A

uq
l

2 Sl
E

Fqm

˙

pP´1
q
ᵀ
P´1HB

“

˜

à

iPJ0,m´1Kztpi2`lq mod mu

Gi

¸

‘GRSrpx,yqpq
i2`l

q.

We can conclude that
ˆ

Saux `

A

u1,u
ql

2 Sl
E

Fqm

˙

pP´1
q
ᵀ
P´1HB

“

˜

à

iPJ0,m´1Kzti1,pi2`lq mod mu

Gi

¸

‘GRSrpx,yqpq
i1 q ‘GRSrpx,yqpq

i2`l
q.

Hence

dimFqm
Saux `

A

u1,u
ql

2 Sl
E

Fqm

“

#

pr ´ 1qm` 1 if i1 “ i2 ` l mod m

pr ´ 1qm` 2 otherwise
.

and the first case is equivalent to say that
A

u1,u
ql

2 Sl
E

Fqm

pP´1
q
ᵀ
P´1HB Ď GRSrpx,yqpq

i1 q,

i.e.u1 and uq
l

2 Sl correspond to the same GRS code with respect to B. [\

E.5 Proof of Proposition 26

Let us recall this proposition

Proposition 26. Let j P J0,m ´ 1K. Let Vj be the rrm, rs linear code gen-
erated by r linearly independent vectors corresponding to the same GRS code
GRSrpx,yqpq

j
q with respect to B. Then the linear space V K

j orthogonal to Vj is
such that

V K
j HB “

ÿ

iPJ0,m´1Kztju

GRSrpx,yqpq
i
q. (25)
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Proof. Since dimFqm
pVjq “ r and each of its elements correspond to the j-th

GRS code, a generator matrix of VjpP
´1
q
ᵀ
is

r0rˆr | ¨ ¨ ¨ | 0rˆr | Ir
loomoon

j-th block

| 0rˆr | ¨ ¨ ¨ | 0rˆrs.

Let us pick vK P V K
j . For any v P Vj , we can write

0 “xv,vKy

“xvIrm,v
Ky

“xvpP ᵀ
q´1P ᵀ,vKy

“xvpP´1
q
ᵀ
,vKP y.

Therefore vKP is zero on the j-th block. Hence

V K
j HB “ pV

K
j P qHA Ď

ÿ

iPJ0,m´1Kztju

GRSrpx,yqpq
i
q,

and since dimFqm
pV K
j q “ rm´ dimFqm

Vj “ pr ´ 1qm,

V K
j HB “

ÿ

iPJ0,m´1Kztju

GRSrpx,yqpq
i
q.

[\

E.6 Proof of Proposition 27

Let us recall this proposition

Proposition 27. Let V K
j be a linear space satisfying Equation (25), for all

j P J0,m ´ 1K. Then with the standard assumption that all GRSrpx,yqpq
j
q are

in direct sum, we obtain, for any j P J0,m´ 1K,

GRSrpx,yqpq
j
q “

č

iPJ0,m´1Kztju

V K
i HB.

Proof. Since GRSrpx,yqpq
j
q Ă V K

i for all i ‰ j, it follows that

GRSrpx,yqpq
j
q Ď

č

iPJ0,m´1Kztju

V K
i HB.

On the other hand, since the GRS codes are in direct sum, we get

dimFqm

č

iPJ0,m´1Kztju

V K
i “ rpm´ 1q ´ rpm´ 2q “ r,

which leads to the equality. [\
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E.7 Estimate of matrices of rank rm ´ 1 in CmatpBq

We start by recalling that CmatpAq and CmatpBq have the same weight distribu-
tion, thus it is convenient to consider the block diagonal structure of CmatpAq.
Let us also define the matrix space containing all possible block diagonal (with
m blocks of size r ˆ r) symmetric matrices D Ă Symprm,Fqmq. The ratio of
rank rm´ 1 matrices in CmatpDq is given by

Npr, r ´ 1q ¨Npr, rqm´1

pqmqmp
r`1
2 q

,

where N is defined as in Proposition ??. Note that, for qm Ñ8,

Npt, sq Ñ
s´1
ź

i“0

pqmqt´i “ pqmq
řs´1

i“0 t´i “ pqmqp
t`1
2 q´p

t´s`1
2 q “ pqmqts´s

2
{2`s{2.

Hence the ratio above tends to

Npr, r ´ 1qNpr, rqm´1

pqmqmp
r`1
2 q

Ñ
pqmqrpr´1q´pr´1q2{2`pr´1q{2pqmqpm´1qpr2´r2{2`r{2q

pqmqmp
r`1
2 q

“
1

qm
.

The ratios of matrices of a given rank in CmatpBq is not the same as for CmatpDq,
and a more detailed analysis would be useful to derive the exact probability of
sampling matrices of rank rm ´ 1. However, we expect the distribution not to
deviate too much from this behavior. We provide in Table 8 the number of
different diagonal blocks in CmatpBq of a given rank in for small values of qm

(odd case) and r. Note that the total number is given by pqmqp
r´1
2 q.

E.8 Characteristic 2

Recall that skew-symmetric matrices in characteristic 2 can only have even rank.
This immediately invalidates the search arguments explained before: either rank
rm or rm´1 do not exist in CmatpAq and CmatpBq. The same constraint occurs for
the rˆr diagonal blocks with respect to the canonical basis A, on which we focus
now. However, the previous strategy can be adapted to even characteristic by
limiting the search to even-rank matrices. Indeed, in our setting, the maximum
rank achievable in CmatpAq is 2

X

r
2

\

m, because for each rˆ r diagonal block the
rank is at most the largest even integer bounded by r, i.e. 2

X

r
2

\

. Consequently,
the second largest rank achievable by a matrix in A P CmatpAq with the block
diagonal structure as in (21) is

2
Yr

2

]

m´ 2.

– In the case where r is even, 2
X

r
2

\

m ´ 2 “ rm ´ 2, and A as in (21) is
such that there exists a unique j P J1,mK for which RankpAj,jq “ r ´ 2
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r qm [rank 0, rank 1, ..., rank r]
3 3 [1, 0, 0, 2]
3 5 [1, 0, 0, 4]
3 7 [1, 0, 0, 6]
3 9 [1, 0, 0, 8]
3 11 [1, 0, 0, 10]
4 3 [1, 0, 0, 8, 18]
4 5 [1, 0, 0, 24, 100]
4 7 [1, 0, 0, 48, 294]
4 9 [1, 0, 0, 80, 648]
4 11 [1, 0, 0, 120, 1210]
5 3 [1, 0, 0, 44, 378, 306]
5 5 [1, 0, 0, 224, 5500, 9900]
5 7 [1, 0, 0, 636, 30870, 86142]
5 9 [1, 0, 0, 1376, 110808, 419256]
5 11 [1, 0, 0, 2540, 306130, 1462890]
6 3 [1, 0, 0, 152, 4374, 18072, 36450]
6 5 [1, 0, 0, 1224, 157500, 1919400, 7687500]
7 3 [1, 0, 0, 638, 55566, 587502, 4754538, 8950662]

Table 8: Experimental number of different diagonal blocks in CmatpBq of a given
rank (qm odd case).

and RankpAj,jq “ r otherwise. Indeed, the parity constraint on the skew-
symmetric matrices prohibits having two diagonal blocks of rank r´ 1. This
time, the nullspace of A is generated by two linearly independent vectors u
and v, and these vectors are zero outside the same j-th length-r blocks:

v “ p0, . . . ,0,vi,0, . . . ,0q

and
u “ p0, . . . ,0,ui,0, . . . ,0q.

With similar arguments to the q odd case, it is therefore possible to retrieve
a basis of a GRS code GRSrpx,yqq

j

. We only need to give an estimate of
the ratio of rank rm ´ 2 matrices in CmatpAq, to ensure that we can find
them with non-negligible probability.
We consider the rm ˆ rm matrix space D Ă Skewprm,Fqmq containing
all possible block diagonal (with m blocks of size r ˆ r) skew-symmetric
matrices. The ratio of rank rm´ 2 matrices in D is given by

N0pr, r ´ 2q ¨N0pr, rq
m´1

pqmqmp
r
2q

. (35)

Note that for q Ñ8,

N0pt, 2sq Ñ
s
ź

i“0

1

q2

2s´1
ź

i“0

pqmqt´i “ pqmq´2s`
ř2s´1

i“0 t´i “ pqmqp
t`1
2 q´p

t´2s`1
2 q´2s

“ pqmqsp2t´2s´1q.
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Hence the ratio above tends to

N0pr, r ´ 2q ¨N0pr, rq
m´1

pqmqmp
r
2q

Ñ
pqmq

pr`1qpr´2q
2 pqmqpm´1qpr2q

pqmqmp
r
2q

“
1

qm
,

i.e. the same as for rank rm ´ 1 matrices in the q odd case. The approach
for finding matrices of rank rm´ 1 described above is therefore expected to
work with high probability in this case as well.

Remark 6. In the case of a binary Goppa code with a square-free Goppa
polynomial, we have shown in Proposition 9 that CmatpAq contains the space
of block-diagonal skew-symmetric matrices with r ˆ r blocks. Under the
condition that r ă q´1, these matrices generates CmatpAq, i.e.CmatpAq “ D .
Therefore, in this special case, (35) provides the exact ratio of rank rm´ 2
matrices in CmatpAq (or CmatpBq).

Similarly to what done for the q odd case, we provide in Table 9 the number
of different diagonal blocks in CmatpBq (when the latter is not originated
by a binary Goppa code with square-free polynomial) of a given rank in for
small values of qm (even case) and r (even case). The total number is given
by pqmqp

r´1
2 q, as before.

r qm [rank 0, rank 1, ..., rank r]
4 2 [ 1, 0, 3, 0, 4 ]
4 4 [ 1, 0, 15, 0, 48 ]
4 8 [ 1, 0, 63, 0, 448]
6 2 [ 1, 0, 27, 0, 612, 0, 384 ]
6 4 [ 1, 0, 495, 0, 286224, 0, 761856 ]
8 2 [ 1, 0, 171, 0, 51348, 0, 1181376, 0, 864256 ]

Table 9: Experimental number of different diagonal blocks in CmatpBq of a given
rank (qm even, r even case).

Remark 7. In all instances where a filtration has been initially applied, r “ q
is even, therefore they fall in this case.

The case q even and r even requires only small changes in Algorithm 1. At
lines 5,9 and 13, the vectors v, u1 and uj respectively are defined as gener-
ators of kernels of rank rm´ 1 matrices. However, the nullspace of a square
matrix of rank rm´ 2 and size rm is generated by two linearly independent
elements. In this case, it suffices to define such vectors as any non-zero ele-
ment in the kernel and the algorithm still works correctly. It is even possible
to exploit the knowledge that two linearly independent generators of a kernel
correspond to the same GRS code and roughly halve the number of matrices
of rank rm´ 2 that need to be sampled.
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– In the case where r is even, 2
X

r
2

\

m ´ 2 “ pr ´ 1qm ´ 2 and a similar
computation shows that the ratio of rank rpm´1q´2 matrices in D is given
by

N0pr, r ´ 3q ¨N0pr, r ´ 1qm´1

pqmqmp
r
2q

(36)

and, for q Ñ8,

N0pr, r ´ 3q ¨N0pr, r ´ 1qm´1

pqmqmp
r
2q

Ñ
pqmq

pr`2qpr´3q
2 pqmqpm´1qpr2q

pqmqmp
r
2q

“
1

pqmq3
.

Remark 8. Similarly to the r even case, for binary Goppa codes with square-
free Goppa polynomials, (36) provides the exact ratio of rank pr ´ 1qm´ 2
matrices in CmatpAq (or CmatpBq).

We provide in Table 10 the number of different diagonal blocks in CmatpBq
(when the latter is not originated by a binary Goppa code with square-free
polynomial) of a given rank in for small values of qm (even case) and r (odd
case). The total number is given by pqmqp

r´1
2 q, as before.

r qm [rank 0, rank 1, ..., rank r]
3 2 [ 1, 0, 1, 0 ]
3 4 [ 1, 0, 3, 0 ]
3 8 [ 1, 0, 7, 0 ]
5 2 [ 1, 0, 11, 0, 52, 0 ]
5 4 [ 1, 0, 111, 0, 3984, 0 ]
5 8 [ 1, 0, 959, 0, 261184, 0 ]
7 2 [ 1, 0, 75, 0, 5748, 0, 26944, 0 ]

Table 10: Experimental number of different diagonal blocks in CmatpBq of a given
rank (qm even, r odd case).

Rank rm ´ 3 matrices are therefore less probable to be sampled. This is-
sue can be overcome at an asymptotic cost of a factor q3m. Furthermore, a
Gröbner basis approach leads in practice to an even better complexity. More
specifically, we can generalize the argument for the previous cases by sam-
pling at random B1,B2,B3,B4 P CmatpBq and solving the trivariate affine
polynomial detpw1B1`w2B2`w3B3`B4q with Gröbner basis techniques.
As the number of variables is small and constant, this approach seems to
be much more efficient than brute force. However, there is another more
problematic issue. The nullspace of a matrix A P CmatpAq has in this case
dimension rm ´ ppr ´ 1qm ´ 2q “ m ` 2 and its generators are not all zero
outside a length-r block. Therefore the strategy explained before does not
apply directly here. We treat this case in E.9.
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E.9 The attack for q even and r odd

As already mentioned, the case where q is even and r is odd raises the additional
problem that the nullspace of a matrix A P CmatpAq of rank pr ´ 1qm ´ 2 is
not zero outside a length-r block. The key idea to adapt the attack is that
such nullspace is still “unbalanced” with respect to the m blocks. Indeed, let us
consider B “ pP´1

q
ᵀ
ApP´1

q P CmatpBq of rank pr´1qm´2. Since RankpBq “

RankpAq “
řm´1
l“0 RankpAl,lq and for any l, RankpAl,lq ď r´1 and it is even,

we have that

D!l P J0,m´1K s.t. RankpAl,lq “ r´3^@i P J0,m´1Kztlu, RankpAi,iq “ r´1.

Therefore, the kernel can be written as

kerB “ xv0, . . . ,vl´1,vl,1,vl,2,vl,3,vl`1, . . . ,vm´1y

so that for all i P t1, 2, 3u

vl,ipP
´1
q
ᵀ
P´1HB “ vl,ipP

´1
q
ᵀ
HA P GRSrpx,yqpq

l
q,

and for all j P J0,m´ 1Kztlu

vjpP
´1
q
ᵀ
P´1HB “ vjpP

´1
q
ᵀ
HA P GRSrpx,yqpq

j
q.

We do not know how to identify such vectors, though. Assume, however, that
we are able to determine different matrices B1, . . . ,Bs of rank pr ´ 1qm´ 2 in
CmatpBq such that their counterparts in CmatpAq have the rank-pr ´ 3q block
indexed by the same j P J0,m ´ 1K, for some value s ă r that we are going to
determine later. We will see how to achieve this in E.10. We define the rrm,ď
spm ´ 1q ` minp3s, rqs linear code Vj

def
“

řs
i“1 kerBi. This construction can

be seen as an adaptation of the definition given in Proposition 26, where Vj is
spanned by r vectors, each generating the nullspace of a matrix of rank rm´ 1.
If the matrices Bi’s have been sampled independently, as is the case, we expect,
with a non-negligible probability, that a generator matrix of the code VjpP

´1
q
ᵀ

is the block diagonal matrix
»

—

—

—

–

G0,0

G1,1 0

0
. . .

Gm´1,m´1

fi

ffi

ffi

ffi

fl

where Gj,j has minp3s, rq rows while Gi,i has s rows (and they all have r
columns). This is equivalent to say that dimFqm

Vj “ spm` 2q. Hence, by sam-
pling s ě rr{3s, we ensure Gj,j “ Ir with non-negligible probability. From now
on, we then assume that dimFqm

Vj “ spm ´ 1q ` r. We define the rrm, pr ´
sqpm´ 1qs dual code V K

j and, by repeating the computation made in the proof
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of Proposition 26, we get that, for any vK P V K
j , vKP is zero on the j-th block.

However, this time we can only assert that

V K
j HB “ pV

K
j P qHA Ď

ÿ

iPJ1,mKztju

GRSrpx,yqpq
i
q

with dimFqm
pV K
j HBq “ dimFqm

pV K
j q “ pr ´ sqpm ´ 1q. In order to obtain

the code
ř

iPJ1,mKztjuGRSrpx,yqpq
i
q it is then enough to repeat the process

and analogously compute other linear codes V 1
j ,V

2
j , . . . such that pV 1

j q
KHB Ď

ř

iPJ1,mKztjuGRSrpx,yqpq
i
q as well (by sampling each time different matrices of

rank pr´1qm´2). Since all these codes are constructed independently, we expect
at some point

pVj ` V 1
j ` V 2

j ` . . . q
KHB “

ÿ

iPJ1,mKztju

GRSrpx,yqpq
i
q.

Since pVj ` V 1
j ` V 2

j ` . . . qKHB Ď
ř

iPJ1,mKztjuGRSrpx,yqpq
i
q, one can put

dimFqm
pVj ` V 1

j ` . . . q
K “ pr´ 1qm as an exit condition for the construction of

such codes.

Remark 9. A good choice for s is r´1
2 . In this way, Gj,j “ Ir with very high

probability and at the same time, since 2prm´ spm´ 1q ´minp3s, rqq ě 2pr ´
sqpm´ 1q ě rpm´ 1q, computing just two codes Vj and V 1

j is typically enough
to recover

ř

iPJ1,mKztjuGRSrpx,yqpq
i
q.

Once the codes
ř

iPJ1,mKztjuGRSrpx,yqpq
i
q have been retrieved for any j P

J0,m´ 1K, a GRS block code can be obtained from intersections as done previ-
ously according to Proposition 27.

E.10 Computing Vj

In this technical subsection, we tackle the problem of determining, given two
matrices B1,B2 P CmatpBq of rank pr ´ 1qm´ 2, which blockwise Dickson shift
of P ᵀB2P has the diagonal block of rank r´3 for the same index l as B1. This
represents the basic step to produce elements in Vj in this case.

Remark 10. Note that, in the q odd case, this would be equivalent to determining
which shift of v2 corresponds to the same GRS code of v1 where v1 and v2 are
the generators of the kernels of two matrices B1 and B2 respectively of rank
rm´ 1. In the case we examine now, however, the dimension of the nullspace is
larger than 1 and not all its elements belong to the same GRS code. This explains
why we need to move to the matrix formalism. Analogously, in the q odd case,
vectors corresponding to the same GRS code were identified by making use of an
auxiliary linear code Saux spanned by kernel generators of a set of matrices. We
will see that here we directly employ a set of auxiliary matrices Baux,i’s instead.
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Analogously to what shown in Proposition 23, we still have that if vB “ 0, then

pvq
i

Siq ¨ pSᵀ
qiBpqiqSi “ pvBqpq

i
qSi “ 0,

therefore the nullspaces of blockwise Dickson shift matrices can be easily com-
puted from the others. Let r1, r2 be the unique integers such that r “ r1pm `
2q ` r2 with r2 P J1,m` 2K. We split the analysis into different cases:

– Case 4 ď r2 ď m ` 2. Let B1,B2 P CmatpBq of rank pr ´ 1qm ´ 2. Let us
first consider the case r1 “ 0. Consider the linear code

˜

r´4
ÿ

i“0

ker
´

pSᵀ
qiB

pqiq
2 Si

¯

¸

.

A generator matrix of
´

řr´4
i“0 ker

´

pSᵀ
qiB

pqiq
2 Si

¯¯

pP´1
q
ᵀ
can be written as

»

—

—

—

–

G0,0

G1,1 0

0
. . .

Gm´1,m´1

fi

ffi

ffi

ffi

fl

(37)

where r´ 3 cyclically consecutive diagonal blocks have r´ 1 rows while the
others have r´ 3 rows (and they all have r columns). A generator matrix of
kerpB1qpP

´1
q
ᵀ
is instead given by

»

—

—

—

—

—

—

—

—

—

—

–

v1 0 0
. . .

vl,1
0 vl,2 0

vl,3
. . .

0 0 vm

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(38)

for some l P J0,m´ 1K. If RankpGl,lq “ r ´ 1, then

dimFqm

˜

kerpB1q `

r´4
ÿ

i“0

ker
´

pSᵀ
qiB

pqiq
2 Si

¯

¸

“ dimFqm

˜˜

kerpB1q `

r´4
ÿ

i“0

ker
´

pSᵀ
qiB

pqiq
2 Si

¯

¸

pP´1
q
ᵀ

¸

ďpr ´ 4qppr ´ 1q ` 1q ` prq ` pm´ r ` 3qppr ´ 3q ` 1q

“rm` 2r ´ 2m´ 6.

On the other hand, if RankpGl,lq “ r ´ 3, then we expect with good prob-
ability that the dimension of kerpB1q `

řr´4
i“0 ker

´

pSᵀ
qiB

pqiq
2 Si

¯

attains

pr ´ 3qppr ´ 1q ` 1q ` pm´ r ` 2qppr ´ 3q ` 1q ` ppr ´ 3q ` 3q

“rm` 2r ´ 2m´ 4.
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Therefore, by computing the dimension of kerpB1q`
řr´4
i“0 ker

´

pSᵀ
qiB

pqiq
2 Si

¯

we determine whether the rank-pr ´ 3q block of B1 corresponds to a rank-
pr ´ 3q block of some of the

´

pSᵀ
qiB

pqiq
2 Si

¯

’s for some i P J0, r ´ 4K. By
replacing J0, r ´ 4K with other subsets of J0,m´ 1K of cardinality r ´ 3 and
repeating the process, we finally detect the sought

´

pSᵀ
qiB

pqiq
2 Si

¯

. In the
case where r1 ą 0, we need to sample independent rank-ppr ´ 1qm ´ 2q
matrices Baux,1, . . . ,Baux,r1 P CmatpBq. In this case a generator matrix of

˜

r1
ÿ

j“1

m´1
ÿ

i“0

ker
´

pSᵀ
qiB

pqiq
aux,jS

i
¯

`

r2´4
ÿ

i“0

ker
´

pSᵀ
qiB

pqiq
2 Si

¯

¸

pP´1
q
ᵀ

is with non-negligible probability as in (??), where r2 ´ 3 cyclically consec-
utive diagonal blocks have r1pm` 2q ` r2 ´ 1 “ r ´ 1 rows while the others
have r1pm` 2q ` r2 ´ 3 “ r ´ 3 rows (and they all have r columns). Hence,
the computation of

dimFqm
kerpB1q `

r1
ÿ

j“1

m´1
ÿ

i“0

ker
´

pSᵀ
qiB

pqiq
aux,jS

i
¯

`

r2´4
ÿ

i“0

ker
´

pSᵀ
qiB

pqiq
2 Si

¯

$

’

’

’

&

’

’

’

%

ď pr2 ´ 4qppr ´ 1q ` 1q ` prq ` pm´ r2 ` 3qppr ´ 3q ` 1q

“ rm` 2r2 ´ 2m´ 6 if RankpGl,lq “ r ´ 1,

“ pr2 ´ 3qppr ´ 1q ` 1q ` pm´ r2 ` 2qppr ´ 3q ` 1q ` ppr ´ 3q ` 3q

“ rm` 2r2 ´ 2m´ 4 otherwise (with high probability)

reveals again whether the rank-pr´3q block of B1 corresponds or not to one
of the rank-pr ´ 3q blocks of the ker

´

pSᵀ
qiB

pqiq
2 Si

¯

’s.
– Case r2 “ 1 and r1 ě 1. The reasoning is very similar to the one in the

previous case. An analogous computation shows that

dimFqm
kerpB1q `

r1´1
ÿ

j“1

m´1
ÿ

i“0

ker
´

pSᵀ
qiB

pqiq
aux,jS

i
¯

`

m´2
ÿ

i“0

ker
´

pSᵀ
qiB

pqiq
2 Si

¯

$

’

’

’

&

’

’

’

%

ď pm´ 2qppr ´ 2q ` 1q ` prq ` ppr ´ 4q ` 1q

“ rm´m´ 1 if RankpGl,lq “ r ´ 2,

“ pm´ 1qppr ´ 2q ` 1q ` ppr ´ 4q ` 3q

“ rm´m otherwise (with high probability)

,

for the index l P J0,m´ 1K such that a generator matrix of kerpB1qpP
´1
q
ᵀ

is as in (38) and a generator matrix of
´

řr1´1
j“1

řm´1
i“0 ker

´

pSᵀ
qiB

pqiq
aux,jS

i
¯

`
řm´2
i“0 ker

´

pSᵀ
qiB

pqiq
2 Si

¯¯

pP´1
q
ᵀ
is

as in (37), with m ´ 1 cyclically consecutive diagonal blocks having r ´ 2
rows while the other having r´ 4 rows (and they all have r columns). Hence
we can distinguish the case RankpGl,lq “ r ´ 2 from RankpGl,lq “ r ´ 4.
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– Case r2 “ 2 and r1 ě 1. In this case, we take two consecutive blockwise
Dickson shifts of B1, i.e.B1 and SᵀB

pqq
1 S. Therefore a generator matrix of

´

kerpB1q ` kerpSᵀB
pqq
1 Sq

¯

pP´1
q
ᵀ
is given by either

»

—

—

—

–

V 0,0

V 1,1 0

0
. . .

V m´1,m´1

fi

ffi

ffi

ffi

fl

where 2 cyclically consecutive diagonal blocks have 4 rows while the others
have 2 rows (and they all have r columns). Let us say that the two blocks
with 4 rows are indexed by l and l`1 mod m, for some l P J0,m´1K. Then
we get

dimFqm
kerpB1q ` kerpSᵀB

pqq
1 Sq `

r1´1
ÿ

j“1

m´1
ÿ

i“0

ker
´

pSᵀ
qiB

pqiq
aux,jS

i
¯

`

m´2
ÿ

i“0

ker
´

pSᵀ
qiB

pqiq
2 Si

¯

$

’

’

’

&

’

’

’

%

ď pm´ 3qppr ´ 3q ` 2q ` p2rq ` ppr ´ 5q ` 2q

“ rm´m if RankpGl,lq “ r ´ 3^RankpGl`1 mod m,l`1 mod mq “ r ´ 3,

“ pm´ 2qppr ´ 3q ` 2q ` prq ` ppr ´ 5q ` 3` 1q

“ rm´m` 1 otherwise (with high probability)

where a generator matrix of
´

řr1´1
j“1

řm´1
i“0 ker

´

pSᵀ
qiB

pqiq
aux,jS

i
¯

`
řm´2
i“0 ker

´

pSᵀ
qiB

pqiq
2 Si

¯¯

pP´1
q
ᵀ
is

as in (37), withm´1 cyclically consecutive diagonal blocks having r´3 rows
while the other having r´5 rows (and they all have r columns). Hence we can
distinguish the case RankpGl,lq “ r ´ 3^RankpGl`1 mod m,l`1 mod mq “

r ´ 3 from RankpGl,lq “ r ´ 5 _ RankpGl`1 mod m,l`1 mod mq “ r ´ 5.
Repeating the process at most m times for different pairs of consecutive
diagonal block shifts of B1, solves our problem.

– Case r2 “ 3. If r1 “ 0, the kernel of a single matrix B already defines Vj
(note that we can choose s “

P

r
3

T

“ r´1
2 “ 1). Otherwise, letB1 andB2 such

that generator matrices of kerpB1qpP
´1
q
ᵀ
and kerpB2qpP

´1
q
ᵀ
respectively

are given by

»

—

—

—

—

—

—

—

—

—

—

–

v1 0 0
. . .

vl1,1
0 vl1,2 0

vl2,3
. . .

0 0 vm

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and

»

—

—

—

—

—

—

—

—

—

—

–

u1 0 0
. . .

ul2,1
0 ul2,2 0

ul2,3
. . .

0 0 um

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (39)
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A generator matrix of
´

řr1
j“1

řm´1
i“0 ker

´

pSᵀ
qiB

pqiq
aux,jS

i
¯¯

pP´1
q
ᵀ
is expected

to be as in (37), with all the block have r´3 rows (and r columns). Therefore

dimFqm
kerpB1q ` kerppSᵀ

qlB
pqlq
2 pSqlq `

r1
ÿ

j“1

m´1
ÿ

i“0

ker
´

pSᵀ
qiB

pqiq
aux,jS

i
¯

$

’

’

’

&

’

’

’

%

ď pm´ 1qppr ´ 3q ` 2q ` prq

“ rm´m` 1 if l1 “ l2 ` l mod m,

“ pm´ 2qppr ´ 3q ` 2q ` p2rq ` ppr ´ 5q ` 3` 1q

“ rm´m` 2 otherwise (with high probability)

Repeating the process at most m times for different values of l solves our
problem.
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