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Abstract

Succinct arguments that rely on the Merkle-tree paradigm introduced by Kilian (STOC 92) suffer
from larger proof sizes in practice due to the use of generic cryptographic primitives. In contrast, succinct
arguments with the smallest proof sizes in practice exploit homomorphic commitments. However these
latter are quantum insecure, unlike succinct arguments based on the Merkle-tree paradigm.

A recent line of works seeks to address this limitation, by constructing quantum-safe succinct
arguments that exploit lattice-based commitments. The eventual goal is smaller proof sizes than those
achieved via the Merkle-tree paradigm. Alas, known constructions lack succinct verification.

In this paper, we construct the first interactive argument system for NP with succinct verification
that, departing from the Merkle-tree paradigm, exploits the homomorphic properties of lattice-based
commitments. For an arithmetic circuit with N gates, our construction achieves verification time
polylog(N) based on the hardness of the Ring Short-Integer-Solution (RSIS) problem.

The core technique in our construction is a delegation protocol built from commitment schemes based
on leveled bilinear modules, a new notion that we deem of independent interest. We show that leveled
bilinear modules can be realized from pre-quantum and from post-quantum cryptographic assumptions.

Keywords: succinct arguments; lattices; short-integer-solution problem

*This is the full version of the CRYPTO’23 paper.
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1 Introduction

Succinct arguments enable an untrusted prover to convince a skeptical verifier that a given computation is
correctly executed, while incurring communication complexity, and sometimes also verification time, that is
much smaller than the computation size. Succinct arguments were first constructed by Kilian in [Kil92], and
since then much research has been devoted to improving their efficiency and security. Kilian shows how to
compile a PCP into a succinct argument by using a Merkle tree, given any collision-resistant hash function.
This “Merkle-tree paradigm” can also be used to construct succinct arguments from IOPs [BCS16; RRR21],
which are more efficient generalizations of PCPs (and, in particular, are used in practice).

In anticipation of the threat of quantum computers, cryptographers have started investigating quantum-
safe constructions of succinct arguments. Kilian’s construction is such a construction: recent work [CMSZ21]
establishes that Kilian’s interactive argument is quantum-safe if the used hash function is quantum-safe.
Split-and-fold techniques in the pre-quantum setting: a success story. Departing from the Merkle-tree
paradigm, an approach based on split-and-fold techniques [BCCGP16; BBBPWM18; LMR19; BFS20;
Lee21] has led to succinct arguments that are remarkably efficient and successful in practice. Even though
asymptotically these constructions have similar proof sizes to constructions based on Merkle trees, in practice,
they obtain smaller proofs by exploiting the algebraic structure of homomorphic commitment schemes.

This approach has several advantages over Merkle-tree constructions beyond smaller communication
complexity. For example, the sumcheck protocol [LFKN92] underlies split-and-fold techniques [BCS21],
which facilitates space-efficient constructions [BHRRS20; BHRRS21]. In contrast, no space-efficient
constructions are known for succinct arguments based on Merkle trees.

Unfortunately, the required homomorphic commitment schemes are known only from pre-quantum
cryptography that relies on groups and bilinear groups.
What happens in the post-quantum setting? The success story of split-and-fold techniques in the pre-
quantum setting has motivated a line of work studying similar approaches in the post-quantum setting using
lattices [BLNS20; BCS21; ACK21; AL21]. The eventual goal is to achieve succinct arguments from lattice-
based split-and-fold techniques that have better efficiency compared to their Merkle-tree-based counterparts
(and possibly have other benefits such as space efficiency). In the meantime, the cited works have laid initial
foundations for such succinct arguments, but more work is needed to achieve this goal.

The inspiration comes from quantum-safe constructions of signature schemes, where using the algebraic
structure of lattices eventually led to shorter signatures compared to using hash functions. For instance,
among the standardization candidates in the NIST Post-Quantum Competition [NIS16], lattice-based signature
schemes such as Falcon [Fal] and Dilithium [Dil] offer shorter signatures compared to hash-based signatures
such as SPHINCS+ [Sph] and Picnic [Pic].
Succinct verification. The above lattice-based succinct arguments lack succinct verification (the time
complexity of the verifier is at least the time of the proved computation). This is in contrast to constructions
based on Merkle trees (and some pre-quantum constructions based on split-and-fold techniques [BFS20;
Lee21]), which offer succinct verification. This leads to the main question motivating our work:

How to construct interactive arguments with succinct verification
from split-and-fold techniques based on lattices?

1.1 Our results

We answer this question in the affirmative, achieving succinct verification for R1CS, a popular circuit-like
NP problem, in the preprocessing setting.
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Definition 1 (informal). The R1CS problem over a ring R• asks: given coefficient matrices A,B,C ∈ RN×N
•

each containing at most M = Ω(N) non-zero entries, and an instance vector x over R•, is there a witness
vector w over R• such that z := (x,w) ∈ RN

• and Az ◦Bz = Cz? (Here “◦” is the entry-wise product.)

In the preprocessing setting, an indexer algorithm performs a public computation that depends on the
coefficient matrices A,B and C (the “circuit description”), leading to a long proving key and a short
verification key. Thereafter, anyone can use the proving/verification key to prove/verify statements for the
preprocessed coefficient matrices. The argument verifier may achieve succinct verification because it only
needs the verification key and the instance vector x, with no need to read the (much larger) coefficient
matrices. (Non-uniform computations require some form of preprocessing to enable succinct verification.)

We construct a succinct interactive argument with preprocessing for the R1CS problem over rings.

Theorem 1 (informal). Let R := Z[X]/⟨Φd(X)⟩ where Φd is the d-th cyclotomic polynomial and d is a
prime power. Let p, q be primes such that p ≪ q. If the SIS problem is hard over R/qR then there is
a preprocessing interactive argument of knowledge (with a transparent setup algorithm) for R1CS over
R• := R/pR with the following efficiency:

• round complexity O(log2(M +N));
• communication complexity O(log2(M +N)) elements of R/qR;
• indexer complexity O(M +N) operations in R/qR;
• prover complexity O(M +N) operations in R/qR;
• verifier complexity O(log2(M +N)) operations in R/qR.

In fact, we construct a preprocessing succinct interactive argument for R1CS based on leveled bilinear
modules, a new abstraction with multiple instantiations that we deem of independent interest. Theorem 1
follows by instantiating this abstraction using lattices, as we now outline.

An (unleveled) bilinear module [BCS21] consists of modules ML,MR,MT over a ring R with an
R-bilinear map e : ML ×MR →MT. Example instantiations include the following.

• Bilinear groups: (R,ML,MR,MT, e) = (Fp,G0,G1,GT, e), where |G0| = |G1| = |GT| = p and
e : G0 ×G1 → GT is a bilinear (pairing) map.

• Lattices: (R,ML,MR,MT, e) = (R,R,R/q,R/q, e), where R = Z[X]/⟨Φd(X)⟩, q is a large prime, and
e : R×R/q → R/q computes multiplication of ring elements modulo q.

Prior work [BCS21] constructs commitment schemes based on bilinear modules, with messages defined
over ML, keys defined over MR, and commitments defined over MT, and gives interactive arguments
of knowledge of commitment openings based on the sumcheck protocol. These arguments have linear
verification costs in the length of the commitment key, which is the best one can hope for because they are
not preprocessing arguments (and so the verifier must receive the long commitment key as input).

In a leveled bilinear module, which we introduce, the key space is associated with the message space of
another bilinear module.

Definition 2 (informal). A K-level bilinear-module system is a collection of K bilinear modules

{(R,ML,i,MR,i,MT,i, ei)}i∈[K]

with the same ring R such that MR,i can be “embedded” inside ML,i+1 while preserving arithmetic operations
(possibly up to some correction factors).
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Example instantiations of leveled bilinear modules include the following.

• Bilinear groups: (R,ML,i,MR,i,MT,i, ei) = (Fp,Gi mod 2,Gi+1 mod 2,GT, e), where where |G0| =
|G1| = |GT| = p and e : G0 ×G1 → GT is a bilinear (pairing) map.

• Lattices: (R,ML,i,MR,i,MT,i, ei) = (R,R,R/q,R/q, e), where R := Z[X]/⟨Φd(X)⟩ and e : R ×
R/q → R/q computes multiplication of ring elements modulo q. The “embedding map” computes the bit
decomposition of ring elements viewed as vectors modulo q: it maps an element of MR,i := R/q viewed as
a vector of polynomial coefficients modulo q to log q elements in ML,i+1 := R with coefficients in {0, 1}.

We use leveled bilinear modules to construct delegation protocols for evaluating polynomials over
ML,1, which enables achieving succinct verification for commitment openings. In turn, we obtain succinct
verification for R1CS from leveled bilinear modules, from which Theorem 1 follows as a special case.

Theorem 2 (informal). LetM be a leveled bilinear module with ℓ = O(log(M +N)) levels, for which the
leveled bilinear relation assumption holds. Suppose that ML,1 is a ring and I a suitable ideal of ML,1. There
is a preprocessing interactive argument of knowledge for R1CS over R• := ML,1/I ≃ Fk with the following
efficiency:

• communication complexity O(log2(M +N)) elements of MT,ℓ;
• round complexity O(log2(M +N));
• indexer complexity O(M +N) operations in MT,ℓ and applications of eℓ;
• prover complexity O(M +N) operations in MT,ℓ and applications of eℓ;
• verifier complexity O(log2(M +N)) operations in MT,ℓ and applications of eℓ.

The interactive argument in Theorem 2 relies on the leveled bilinear relation assumption. This is a
falsifiable assumption on leveled bilinear modules implied by the SXDH assumption in the bilinear group
instantiation, and by the SIS assumption in the lattice instantiation. For these instantiations, the interactive
argument has a transparent (public-coin) setup algorithm.

1.2 Related work

We summarize work on split-and-fold techniques, lattice-based arguments, and Merkle-tree-based arguments.

Split-and-fold techniques over groups. [BCCGP16; BBBPWM18] construct succinct arguments in the
discrete logarithm setting, but lack succinct verification. [Lee21] constructs succinct arguments in the bilinear
group setting, achieving succinct verification with preprocessing. [BFS20; BHRRS21] construct succinct
arguments in the unknown-order group setting, achieving succinct verification without preprocessing (they
target uniform computations). Drawing inspiration from [BFS20; BHRRS21] and [Lee21], we achieve
succinct verification with preprocessing from an abstract algebraic structure (leveled bilinear modules), which
in particular specializes to lattices.

Lattice-based interactive arguments. [BBCPGL18] construct a lattice-based zero-knowledge argument
for NP with sublinear (specifically, square-root) communication complexity. [BLNS20] use split-and-fold
techniques to construct an interactive argument of knowledge for commitment openings with polylogarithmic
communication complexity; subsequently [AL21] reduced the slackness of the openings. [ACK21; BCS21]
extend the approach to work for NP statements. [AL21; ACK21] also provide complete security proofs for
protocols in [BLNS20], while [BCS21] shows that split-and-fold techniques are related to the sumcheck
protocol [LFKN92]. Our starting point is the protocol of [BCS21]: we construct a delegation protocol (itself
also related to the sumcheck protocol) for the expensive computation of the verifier in [BCS21]. Finally,
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[BS22] uses a more complex recursive approach to achieve logarithmic proof sizes with concrete estimates of
communication complexity in the tens of kilobytes for R1CS instances of size 220. All the aforementioned
lattice-based argument systems lack succinct verification.

Many other works aim to provide concretely efficient arguments for NP statements [NS22] and special-
ized applications including group/ring signatures and proofs of knowledge for lattice-based commitments
[ESSLL19; PLS18; BLS19; PLS19; YAZXYW19; ALS20; ENS20; LNS20; LNS21; ESZ22; LNS22].

Lattice-based non-interactive arguments. Several works construct succinct non-interactive arguments
(SNARGs) based on non-falsifiable assumptions (believed to be necessary [GW11]) about lattices. [BISW17;
BISW18] construct designated-verifier SNARGs by following a paradigm based on linear PCPs [BCIOP13].
These works were subsequently optimized [GMNO18; Nit19; ISW21], and a similar approach was used to
obtain public-verifier SNARGs [ACLMT22]. All of these works rely on a private-coin setup algorithm that
samples a structured reference string with a trapdoor. This line of work is not directly comparable to our
results (we construct interactive arguments from falsifiable assumptions, and moreover the bilinear group and
lattice instantiations of our construction have a public-coin setup algorithm).

Merkle-tree-based interactive arguments. A long line of works [BBHR18; BCGGRS19; BCRSVW19;
COS20; LSTW21; GLSTW21; BCL22; RR22; XZS22] constructs preprocessing succinct arguments for
general NP statements using the Merkle-tree paradigm. These works offer transparent setup and succinct
verification with preprocessing. While some of these proof systems offer benefits such as reduced prover
complexity in theory [BCL22; RR22] and practice [LSTW21; GLSTW21; XZS22], the communication
complexity of these arguments is at present larger than split-and-fold-based proof systems built from classical
assumptions (e.g., [BBBPWM18]), which offers communication complexity on the order of a few kilobytes.
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2 Techniques

We summarize the main ideas behind our results.

2.1 Our approach

A common approach for constructing succinct arguments is to combine two ingredients: (a) a polynomial
interactive oracle proof (PIOP); and (b) a suitable polynomial commitment scheme. PIOPs are information-
theoretic proof systems, in which the prover sends polynomials in the form of oracle messages to the verifier,
who then performs polynomial evaluation queries to these oracles. The polynomial commitment scheme
enables the argument prover to commit to these polynomials and subsequently authenticate answers to queries
received from the argument verifier.

The succinct argument that we construct follows this common approach, and our contribution is to achieve
a suitable realization of each ingredient. To obtain Theorem 2 it suffices to construct, in the preprocessing
model, a PIOP for R1CS with succinct verification (an information-theoretic object) and a polynomial
commitment scheme with succinct verification from leveled bilinear modules (a cryptographic object). Below
we briefly discuss each ingredient, and we elaborate further on them in later sections; note that, for PIOPs,
preprocessing is known as holography.

(a) Holographic PIOP for R1CS over product rings. We construct a holographic PIOP for R1CS over
product rings R• ≃ Fk, by extending prior constructions over finite fields F. This is useful because cyclotomic
rings commonly employed in lattice cryptography can be expressed as product rings using facts from algebraic
number theory. See Section 2.6 for more details.

(b) Polynomial commitment scheme from bilinear modules. Prior constructions of polynomial com-
mitment schemes with succinct verifier based on split-and-fold techniques [BFS20; BHRRS21; Lee21] use
delegation protocols and/or preprocessing. We similarly construct a delegation protocol with preprocessing,
leveraging an algebraic module-theoretic abstraction called “leveled bilinear modules”; these can be obtained
from lattices, for example. Drawing inspiration from [Lee21], this abstraction captures the ability to commit
to commitment keys. We explain our construction across several subsections.

• In Section 2.2, we review a polynomial commitment scheme whose proofs of polynomial evaluation, which
are based on the sumcheck protocol, have linear-time verification.

• In Section 2.3, we describe a delegation protocol over bilinear groups that reduces verification time to
polylogarithmic.

• In Section 2.4, we introduce leveled bilinear modules, and instantiate them using bilinear groups or lattice
rings.

• In Section 2.5, we extend the delegation protocol to work over leveled bilinear modules.

Combining. In Section 2.7, we obtain our main result by combining the polynomial commitment scheme
with succinct verification and the PIOP over rings.

2.2 Polynomial commitments from sumcheck arguments

Sumcheck arguments [BCS21] are a generalization of the sumcheck protocol and of split-and-fold techniques
for proving the correct opening of “sumcheck-friendly” commitments. They are used to construct succinct
interactive arguments for NP over an abstract algebraic structure, which can be instantiated with lattices. This
gives a succinct interactive argument for NP that exploits the structure of lattice-based commitment schemes.
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Sumcheck arguments reduce the task of proving knowledge of a commitment opening to the task of
evaluating a polynomial whose coefficients are derived from the commitment key. The verifier has access to
the commitment key and can perform this evaluation on its own. The commitment key, however, has linear
size, leading to linear verification time.

We now describe how to obtain polynomial commitment schemes from sumcheck arguments. We restrict
our attention to deterministic commitment schemes (without a hiding property) because these suffice for (non-
zero-knowledge) interactive arguments. First, we present the necessary background related to the sumcheck
protocol. Then, we focus on sumcheck arguments defined over finite fields F and discrete logarithm groups
G of prime order. Finally, we discuss sumcheck arguments defined over bilinear modules, an abstract
mathematical structure that we will use to express pairing and lattice-based commitments.

Sumcheck protocol. The prover wants to convince the verifier that a given ℓ-variate polynomial P sums to τ
over the hypercubeHℓ. While the sumcheck protocol [LFKN92] was introduced for polynomials over fields,
it directly extends to work with polynomials over modules as we describe below. The following construction
is a reduction from the claim

∑
ω∈Hℓ P (ω) = τ to a claim of the form P (r) = v.

Protocol 1: sumcheck protocol

The prover PSC and the verifier VSC receive an instance xSC = (R,M,H, ℓ, τ, C), where

• R is a ring,
• M is a module over R,
• H is a subset of R,
• ℓ is a number of variables,
• τ ∈M is a claimed sum, and
• C ⊆ R is a sampling set (more about this below).

The prover PSC additionally receives a polynomial P ∈M [X1, . . . , Xℓ] such that
∑

ω∈Hℓ P (ω) = τ .
The protocol has ℓ rounds; in each round the prover sends a univariate polynomial Qi(Xi) and the
verifier responds with a challenge ri.

1. For i = 1, . . . , ℓ:
(a) PSC sends to VSC the polynomial

Qi(Xi) :=
∑

ωi+1,...,ωℓ∈H
P (r1, . . . , ri−1, Xi, ωi+1, . . . , ωℓ) ∈M [Xi];

(b) VSC sends to PSC a random challenge ri ← C.
2. VSC checks that

∑
ω1∈HQ1(ω1) = τ and, for i ∈ {2, . . . , ℓ}, that

∑
ωi∈HQi(ωi) = Qi−1(ri−1).

3. If the checks pass, then VSC sets v := Qℓ(rℓ) ∈M and outputs the tuple ((r1, . . . , rℓ), v).

If
∑

ω∈Hℓ P (ω) = τ , then at the end of Protocol 1, the verifier VSC will always output ((r1, . . . , rℓ), v)
satisfying P (r1, . . . , rℓ) = v. On the other hand, if

∑
ω∈Hℓ P (ω) ̸= τ , then for any malicious prover P̃SC,

the verifier’s output will only satisfy P (r1, . . . , rℓ) = v with probability at most ℓdeg(P )
|C| . This follows from a

strengthening of the analysis of the sumcheck protocol over finite fields, relying on the additional requirement
that C is a “sampling set”, which guarantees that non-zero polynomials of a given degree d have at most d
roots. The sumcheck protocol over modules is discussed further in [BCS21].
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Polynomial commitment scheme. A polynomial commitment scheme enables a prover to commit to a
polynomial and later prove that a claimed polynomial evaluation at a given point is correct. For concreteness,
we consider multilinear polynomials whose coefficients are defined by a vector of elements as follows.

Definition 2.1. We index the entries of a vector v of length n = 2ℓ via binary strings (i1, . . . , iℓ) ∈ {0, 1}ℓ,
and define the corresponding multilinear polynomial

pv(X1, . . . , Xℓ) :=
∑

i1,...,iℓ∈{0,1}

Xi1
1 · · ·X

iℓ
ℓ · vi1,...,iℓ .

We describe a polynomial commitment scheme based on Pedersen commitments for committing to the
polynomial pm(X1, . . . , Xlogn), where m ∈ Fn and F is a finite field of prime order p. The commitment is
an element of a group G of order p. In the proof of polynomial evaluation, the prover wishes to convince the
verifier of the following NP statement:

Task 1. Given a commitment C ∈ G, a commitment key G ∈ Gn, an evaluation point z ∈ Flogn, and a
claimed evaluation u ∈ F, prove knowledge of the polynomial pm (i.e., of the coefficients m ∈ Fn) such that
pm(z) = u and C = ⟨m,G⟩.

Using Definition 2.1 we define the polynomial pG(X1, . . . , Xlogn). Here, pG(X) defines a polyno-
mial function pG : Flogn → G over G, where addition corresponds to the group operation and multipli-
cation with an element in F corresponds to scalar multiplication with the same element. Observe that∑

ω∈{−1,1}ℓ pm(ω)pG(ω) = 2ℓ · C.
Protocol 2 is a succinct interactive argument for Task 1 based on a sumcheck argument. The only

non-succinct verifier operation is colored blue.

Protocol 2: sumcheck argument for polynomial evaluation

For n = 2ℓ, the prover and verifier receive as input a commitment key G ∈ Gn, a commitment C ∈ G,
an evaluation point z := (z1, z2, . . . , zℓ) ∈ Fℓ, and a claimed evaluation u ∈ F. The prover also
receives as input an opening m ∈ Fn such that C = ⟨m,G⟩.

The prover and verifier engage in a sumcheck protocol for the claim∑
ω∈{−1,1}ℓ

P ′(ω) = 2ℓ · (C, u) ,

where P ′(X) := (pm(X)·pG(X), pm(X)·pz̃(X)) and z̃ :=
⊗ℓ

i=1(1, zi) = (1, z1, z2, z1z2, . . . , z1 · · · zℓ).
As defined in Protocol 1, the sumcheck protocol uses the instance

xSC := (R = F, M = G× F, H = {−1, 1}, ℓ = log n, τ = 2ℓ · (C, u), C = F) ,

and the prover additionally knows the polynomial P ′(X) ∈ (G× F)[X].
After the end of the sumcheck protocol, if the verifier’s checks pass, the prover learns the randomness

r ∈ Fℓ used in the protocol, and the verifier learns (r, v) ∈ Fℓ × F. Then, the prover computes
and sends w := pm(r) ∈ F; the verifier computes pG(r) ∈ G and pz̃(r) ∈ F and checks that
(w · pG(r), w · pz̃(r)) = v.
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The task to delegate. The only expensive operation that the verifier has to compute is the final multilinear
polynomial evaluation pG(r); because z̃ :=

⊗ℓ
i=1(1, zi), it holds that pz̃(r) =

∏ℓ
i=1(1 + rizi) which can be

evaluated in O(ℓ) = O(log n) operations. Our goal is to reduce the verifier complexity by delegating the
polynomial evaluation pG(r) to the prover. This means that the prover sends V ∈ G and has to prove the
following P statement to the verifier.

Task 2. Given a commitment key G ∈ Gn, an evaluation point r ∈ Flogn, and a claimed evaluation V ∈ G,
prove that pG(r) = V.

It is not known how to delegate this task over finite fields F and discrete logarithm groups G of prime
order. However, we will show a delegation protocol for bilinear groups and lattices. First, we define bilinear
modules, an algebraic abstraction that allows us to instantiate Protocol 2 in these settings.

Generalization to bilinear modules. We need the commitment scheme and sumcheck argument above
to work over more general algebraic structures, specifically over bilinear modules. A bilinear module
BM = (R,ML,MR,MT, e) consists of a ring R, three R-modules ML,MR,MT, and an R-bilinear map
e : ML ×MR →MT.

In a generalized Pedersen commitment over a bilinear module BM, the commitment key is a random
vector G ∈ Mn

R and the commitment to the message m ∈ Mn
L is C := ⟨m,G⟩ :=

∑n
i=1 e(mi,Gi) ∈ MT.

The commitment scheme is binding for messages of bounded norm if given a random vector G ∈Mn
R , it is

hard to find m ∈ Mn
L with m ̸= 0 and ∥m∥ ≤ BC such that ⟨m,G⟩ = 0. We call this assumption bilinear

relation assumption.
The generalized Protocol 2 works exactly as before, except for a new check on the norm of w to guarantee

that the commitment opening is binding.
In the case of discrete logarithm groups, which is used in Protocol 2, we have (R,ML,MR,MT, e) :=

(F,F,G,G, e), using group exponentiation for e. Other instantiations of bilinear modules include bilinear
groups and ideal lattices. In the bilinear group setting, (R,ML,MR,MT, e) := (F,G0,G1,GT, e) using the
bilinear (pairing) operation for e. In the lattice setting, (R,ML,MR,MT, e) := (R,R,R/qR,R/qR,×),
where R := Z[X]/⟨Φd(X)⟩, Φd is the d-th cyclotomic polynomial and × is polynomial multiplication
modulo q. The bilinear relation assumption for the three instantiations corresponds to discrete logarithm,
double pairing, and SIS assumptions respectively. In the discrete logarithm and the bilinear group setting,
the underlying norm is such that all non-zero elements have norm 1, whereas in the ideal lattice setting we
consider the ℓ∞-norm.

2.3 Warmup: delegation over bilinear groups

Consider the setting of bilinear groups: there are three groups G0,G1,GT of prime size p and a bilinear map
e : G0 ×G1 → GT. When the polynomial commitment scheme and sumcheck argument from Section 2.2
are realized over this instantiation of bilinear modules, Task 2 becomes the following.

Task 3. Given a commitment key G ∈ Gn
1 , an evaluation point r ∈ Flogn, and a claimed evaluation V ∈ G1,

prove that pG(r) = V.

We describe an interactive proof with succinct verification for this task that is based on techniques from
[Lee21] (and variants [Tha22]). Below we review the main ideas behind these techniques, and then discuss
the challenges that arise in extending them to work for more general algebraic structures.

Review: delegation ideas from [Lee21]. Consider an additional polynomial commitment scheme whose
message space is Gn

1 and whose key space is Gn
0 :
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• a commitment key is a random H ∈ Gn
0 ;

• a message is G ∈ Gn
1 (which can be the commitment key from Task 3);

• C′ := ⟨H,G⟩ =
∑n

i=1 e(Hi,Gi) is a commitment to G using key H.
Since G and H are sampled during the setup phase, C′ can be computed during a preprocessing phase. Then,
Task 3 can be replaced by the following task.

Task 4. Given a commitment C′ = ⟨H,G⟩ ∈ GT computed in a preprocessing phase by the (honest) indexer,
an evaluation point r ∈ Flogn, and a claimed evaluation V ∈ G1, prove that pG(r) = V.

This opens up the possibility of succinct verification because the verifier receives as input C′ ∈ GT rather
than G ∈ Gn

1 . In fact, Task 4 is similar to the original task (Task 1) defined in the setting of bilinear groups.
A difference is that in Task 1 the verifier is also given the commitment key. However, to achieve succinct
verification the verifier here cannot receive H ∈ Gn

0 as input.
Reducing the key size. With further ideas from [Lee21], one can reduce to a smaller commitment key over
Gn/2

0 , and then apply the same technique with the roles of G0 and G1 reversed. One can repeat this until the
verifier need only perform a computation on a constant-size commitment key.

Instead of committing to G using a commitment key of length n, split G into two halves: G :=

(G[L],G[R]) ∈ Gn/2
1 × Gn/2

1 . During the preprocessing phase, the indexer computes the commitments
CL := ⟨H,G[L]⟩ ∈ GT and CR := ⟨H,G[R]⟩ ∈ GT using the commitment key H ∈ Gn/2

0 .
Instead of C′, which is a commitment to G, the verifier now has CL and CR, so we can no longer apply

the sumcheck argument for polynomial evaluation (Protocol 2) to Task 4. To remedy this, we use the fact that
the verifier can compute a commitment to any linear combination of G[L] and G[R]. Then, it suffices to find
a linear combination G′ ∈ Gn/2

1 and an evaluation point r′ ∈ Flogn−1 such that pG(r) = pG′(r′).
From Definition 2.1, pG(X) :=

∑
i1,...,ilogn∈{0,1}X

i1
1 · · ·X

ilogn

ℓ · Gi1,...,ilogn
where G := (G1, . . . ,Gn).

Hence, pG(X) = pG[L]+X1G[R](X2, . . . , Xlogn) and Task 4 reduces to the following task.

Task 5. Given a commitment C′ := CL + r1CR, where CL := ⟨H,G[L]⟩ ∈ GT and CR = ⟨H,G[R]⟩ ∈ GT

are computed in a preprocessing phase, an evaluation point r′ ∈ Flogn−1, and a claimed evaluation V ∈ G1,
prove that pG′(r′) = V, where G′ := G[L] + r1G[R] ∈ Gn/2

1 .

Challenge: what happens over bilinear modules? The ideas described above work over bilinear groups
due to two fortunate coincidences.

• There are two bilinear modules (F,G0,G1,GT, e) and (F,G1,G0,GT, e) that lead to two commitment
schemes with opposite message space and key space.

• The output claim produced by a sumcheck argument over the first bilinear module is a claim that can be
proved using a sumcheck argument over the second bilinear module, and vice versa.

Unfortunately, the situation with general bilinear modules is not so straightforward. Even if the first property is
satisfied (namely, both BM1 = (R,ML,MR,MT, e) and BM2 = (R,MR,ML,MT, e) are bilinear modules),
the second property is not. Since G ∈Mn

R is random (so to act as a commitment key over BM1), G may not
have bounded norm. The norm bound is required in order to make a binding commitment to G, when it acts
as a message for BM2! This precludes using the same repeated reduction idea over BM1 and BM2.

2.4 Leveled bilinear modules

In order to build a delegation protocol for general bilinear modules and prove Theorem 2 (and thus Theorem 1),
we want the ability to commit to commitment keys from successive reductions using new bilinear modules.
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To this end, we consider multiple levels of compatible bilinear modules, capable of mapping statements about
commitment keys for “lower-level” commitment schemes to statements about messages in “higher-level”
commitment schemes. We formalize this new abstract algebraic structure and call it a leveled bilinear module
system. We also give post-quantum instantiations based on ideal lattices.

Defining leveled bilinear modules. A K-level bilinear module system is a list of K bilinear module
systems over the same ring R, each satisfying the bilinear relation assumption:

{BMi}i∈[K] = {(R,ML,i,MR,i,MT,i, ei)}i∈[K] .

Further, to allow commitments to Pedersen commitment keys, successive levels are connected by two maps:

• an upward map upi : MR,i →M
δi+1
L,i+1 that lifts keys at level i to δi+1 small-norm messages at level i+ 1;

and
• a downward map dni : M

δi+1
L,i+1 →MR,i that projects messages at level i+ 1 to keys at level i.

The two maps upi and dni cancel each other out: dni ◦ upi is the identity map on MR,i. Messages produced
by upi are within the binding space of the commitment scheme at level i+ 1. For each level i ∈ [K − 1], the
upward map upi (and hence also dni) must satisfy some homomorphic properties:

• for every m1,m2 ∈MR,i, upi(m1 +m2) = upi(m1) + upi(m2) mod ker dni;
• for every r ∈ R and m ∈MR,i, upi(r ·m) = r · upi(m) mod ker dni.

In fact, these conditions imply that MR,i and M
δi+1
L,i+1/ ker dni are isomorphic as R-modules via upi and dni.

Note that if “mod ker dni” was removed from the two conditions above, then MR,i and M
δi+1
L,i+1 would be

isomorphic as R-modules. This would be too rigid for lattice instantiations, in which for every i ∈ [K − 1]
the upward map upi takes statements about commitment keys modulo a prime q to multiple statements about
integers of bounded norm, which can be messages for higher-level commitment schemes. Also, equations
modulo q may not hold exactly over the integers, and working mod ker dni allows for correction factors.

Using upi, claims about polynomial evaluations over commitment key elements can be lifted from MR,i to
ML,i+1 to act as inputs for proof systems over BMi+1. Conversely, using dni, statements proved about lifted
polynomial evaluations reduce to similar statements about polynomial evaluations over the commitment keys.
Leveled bilinear module systems neatly encapsulate the algebraic requirements for interactive arguments like
[Lee21], and facilitate extending those ideas to other cryptographic settings.

Instantiations. We describe three instantiations of leveled bilinear-module systems.

• A “2-cycle” based on bilinear groups. Given a bilinear group (F,G0,G1,GT, e), we set ML,i := Gi mod 2,
MR,i := Gi+1 mod 2, MT,i := GT, δi = 1, and ei := e. Hence MR,i and ML,i+1 are equal. For each level
i ∈ [K−1], the upward map upi : Gi mod 2 → Gi+1 mod 2 and downward map dni : Gi+1 mod 2 → Gi mod 2

are the identity map. At each level, the bilinear relation assumption is implied by the SXDH assumption.
This instantiation works for any number of levels.

• A first instantiation based on ideal lattices. Let d be a prime power, Φd(X) the d-th cyclotomic polynomial,
R = Z[X]/⟨Φd(X)⟩ the corresponding cyclotomic ring, and q1, . . . , qK ∈ N. Let ML,i := R, MR,i :=
R/qiR, MT,i := R/qiR, and ei be the multiplication of ring elements modulo qi.

We “lift” an element m of MR,i = R/qiR to an element of ML,i+1 = Z[X]/⟨Xd + 1⟩ with norm at most
qi by viewing it as a polynomial over the integers rather than modulo qi. For each level i ∈ [K − 1], the
upward map upi : R/qR→ R lifts polynomials modulo q to integer polynomials, and the downward map
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dni : R → R/qiR performs the reverse operation, i.e., reduction modulo qi. At each level, the bilinear
relation assumption follows from the ring SIS assumption modulo qi.

Unfortunately, this first instantiation is somewhat inefficient, and insecure when K is super-constant. This
is because in order for the ring SIS assumption modulo qi to be hard with respect to messages of norm up
to qi−1, we require qi ≫ qi−1, so that qK ≫ · · · ≫ q1. Moreover, based on the parameters required by
the proof system that we use, the gap between each modulus can force qK to be exponentially large when
K = ω(1), which poses problems for the hardness of ring SIS.

This motives the following improved instantiation.

• A “1-cycle” based on ideal lattices. Let d be a prime power, Φd(X) the d-th cyclotomic polynomial,
R = Z[X]/⟨Φd(X)⟩ the corresponding cyclotomic ring, and q ∈ N. Let ML,i := R, MR,i := R/qR,
MT,i := R/qR, and ei be the multiplication of ring elements modulo q.

An element in R can be viewed as a polynomial with d coefficients. We “lift” an element m of
MR,i = R/qR to log q elements of ML,i+1 = Z[X]/⟨Xd + 1⟩ with norm at most 1 by computing the bit
decomposition of the coefficients of m. For each level i ∈ [K − 1], the upward map upi : R/qR → R
lifts polynomials modulo q to integer polynomials using bit decomposition, and the downward map
dni : R→ R/qR performs the reverse operation, i.e., bit composition modulo q. At each level, the bilinear
relation assumption follows from the ring SIS assumption modulo q. This instantiation works for any
number of levels.

2.4.1 Comparison with prior algebraic structures

Tiered commitment schemes. Some prior works also use leveled algebraic structures to construct argument
systems. [Gro11] constructs two-tiered commitment schemes, in which commitments in G0 (to messages in
F) are themselves treated as messages and used to produce “commitments to commitments” in GT. [BLNS20]
uses a lattice construction to “commit to commitments” over multiple levels. In contrast to our work, the
focus in these works is committing to commitments, which would lead to an abstraction that is different from
ours (MT,i, rather than MR,i, is identified with ML,i+1).1

Graded encodings (a.k.a. multilinear maps). Leveled modules may be reminiscent of graded encoding
schemes, in which elements of groups can be multiplied together up to a certain number of multiplications.
We explain the main differences between graded encoding schemes and leveled bilinear-module systems.

Graded encodings of different levels usually consist of elements of the same ring, with homomorphic
properties when combining encodings at different levels. By contrast, leveled bilinear modules feature
different modules at each level, and the embedding maps between levels do not fully preserve homomorphism.
This means that only objects at the same level can be multiplied together, and since homomorphism is limited,
leveled bilinear modules cannot be used to construct a multilinear map.

Constructions of graded encoding schemes typically rely on lattice assumptions [GGH13; LSS14;
GGH15] or integer assumptions (e.g., the approximate GCD problem) [CLT13; CLT15; MZ18] that have
been subject to many attacks [Cor+15; CFLMR16; CLLT16; CLLT17]. By contrast, we give comparatively
simple instantiations of leveled bilinear modules based on bilinear groups and ideal lattices, providing the
relevant security properties under standard cryptographic assumptions (SXDH and SIS respectively).

1Of course, in our lattice instantiation, MR,i and MT,i happen to be the same.
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2.5 Delegation over leveled bilinear-module systems

The polynomial commitment scheme and the sumcheck argument from Section 2.2 can be defined over a
bilinear module, and in particular over the first level of a leveled bilinear-module system. In this case, the
prover’s goal is to convince the verifier of the following NP statement.

Task 6. Given a commitment C ∈MT,1, a commitment key G ∈Mn
R,1, an evaluation point z ∈ Rlogn, and a

claimed evaluation u ∈ML,1, prove knowledge of m ∈Mn
L,1 such that pm(z) = u and C = ⟨m,G⟩.

The succinct interactive protocol for the above task is a generalization of Protocol 2 over bilinear modules.
Even though for certain settings (e.g., lattices) norm manipulations and selecting appropriate challenge spaces
C ⊆ R are important, for simplicity in this overview we ignore these issues.

Protocol 3: sumcheck argument for polynomial evaluation overM

For n = 2ℓ, the prover and verifier receive as input a commitment key G ∈ Mn
R,1, a commitment

C ∈ MT,1, an evaluation point z := (z1, z2, . . . , zℓ) ∈ Rℓ, and a claimed evaluation u ∈ ML,1. The
prover also receives as input an opening m ∈Mn

L,1 such that C = ⟨m,G⟩.
The prover and verifier engage in a sumcheck protocol for the claim∑

ω∈{−1,1}ℓ
P ′(ω) = 2ℓ · (C, u),

where P ′(X) := (pm(X)·pG(X), pm(X)·pz̃(X)) and z̃ :=
⊗ℓ

i=1(1, zi) = (1, z1, z2, z1z2, . . . , z1 · · · zℓ).
As defined in Protocol 1, the sumcheck protocol uses the instance

xSC := (R, M = MT,1 ×ML,1, H = {−1, 1}, ℓ = log n, τ = 2ℓ · (C, u), C ⊆ R) ,

and the prover additionally knows the polynomial P ′(X) ∈ (MT,1 ×ML,1)[X].
After the end of the sumcheck protocol, if the verifier’s checks pass, the prover learns the randomness

r ∈ Cℓ used in the protocol, and the verifier learns (r, v) ∈ Cℓ × (MT,1 ×ML,1). Then, the prover
computes and sends w := pm(r) ∈ ML,1; the verifier computes pG(r) ∈ MR,1 and pz̃(r) ∈ R and
checks that (w · pG(r), w · pz̃(r)) = v.

Delegation using the leveled bilinear-module system. The above protocol reduces proving that pm(z) =
u ∈ ML,1 to checking the polynomial evaluation pG(r) = V ∈ MR,1. Using the maps of the leveled
bilinear-module system, we compute up1(G) ∈ (M δ2

L,2)
n, where up1 is applied to each coordinate of G, and

V′ ≡ up1(V) mod ker(dn1) ∈M δ2
L,2. Then, we transform the evaluation pG(r) = V ∈MR,1 to δ2 evaluations

over ML,2:
pup1(G)(r) = V′ .

The function up1 maps an element in MR,1 to multiple elements in ML,2. We reduce to a single element of
ML,2 by computing a random linear combination using challenges sent by the verifier. For the rest of this
section, we ignore this issue and focus on the case where upi maps an element of an MR,i to a single element
of ML,i+1 (i.e., δi+1 = 1).

We can apply the key reduction idea presented in Section 2.3 to reduce to a statement of smaller size.
During the preprocessing phase, the indexer computes the commitments CL = ⟨up1(G[L]),H⟩ ∈MT,2 and
CR = ⟨up1(G[R]),H⟩ ∈MT,2, where G := (G[L],G[R]) ∈M

n/2
R,1 ×M

n/2
R,1 . Task 6 reduces to the following.
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Task 7. Given a commitment C′ := CL + r1CR, where CL := ⟨up1(G[L]),H⟩ ∈ MT,2 and CR =
⟨up1(G[R]),H⟩ ∈ MT,2 are computed in a preprocessing phase, an evaluation point r′ ∈ Rlogn−1, and a
claimed evaluation V′ ∈ML,2, prove that pG′(r′) = V′, where G′ := up1(G[L]) + r1 · up1(G[R]) ∈M

n/2
L,2 .

Final protocol: delegation of polynomial evaluations with succinct verifier. Below we sketch the final
protocol. There are ℓ := log n iterations of Protocol 3. In the i-th iteration the instance has size n/2i and is
defined over the i-th level of the leveled bilinear module. After ℓ iterations of Protocol 3, the verifier checks
the evaluation of a constant polynomial, which can be done without help from the prover.

Protocol 4: delegation of polynomial evaluations overM

Setup. Given an upper bound n on the size of m (the number of polynomial coefficients), the
setup algorithm samples a leveled bilinear-module system with log n levels and commitment keys
Gi ∈M

n/2i−1

R,i for i ∈ {1, . . . , log n+ 1}.
Indexer. In a preprocessing phase (i.e., before receiving m), the indexer computes

CL,i := ⟨upi(Gi[L]),Gi+1⟩ ∈MT,i+1 , andCR,i = ⟨upi(Gi[R]),Gi+1⟩ ∈MT,i+1

for i ∈ {1, . . . , log n}. Finally, the indexer sets outputs the proving key ipk := (Gi)
logn+1
i=1 and

verification key ivk := ((CL,i,CR,i)
logn
i=1 ,Glogn).

Interactive phase. For n = 2ℓ, the prover and verifier receive as input a commitment C ∈ MT,1,
an evaluation point z := (z1, z2, . . . , zℓ) ∈ Rℓ, and a claimed evaluation u ∈ ML,1. The prover also
receives as input the proving key ipk and an opening m ∈Mn

L,1 such that C = ⟨m,G⟩. The verifier also
receives as input the verification key ivk.

The prover and verifier engage in log n iterations of Protocol 3. The first iteration reduces the claim
pm(z) = u to proving that pG1

(r1) = V1, which can be reduced to the claim pG′
1
(r′1) = V′1 ∈ML,2 as

in Task 7. Similarly, the i-th iteration reduces the claim pG′
i−1

(r′i−1) = V′i−1 ∈ ML,i to proving that
pG′

i
(r′i) = V′i ∈ML,i+1. Finally, the last claim is pGlogn

(rlogn) = Vlogn, which the verifier can check
directly using the key Glogn.

The indexer performs O(n) operations. Subsequently, the prover and verifier interact over O(log2 n)
rounds. The communication complexity is O(log2 n) elements of the ring and modules of the leveled bilinear-
module system: each iteration of the O(log n) iterations of Protocol 3 has communication complexity
O(log n) elements of a bilinear module. The prover performs O(n) operations over the ring and modules
of the leveled bilinear-module system; and the verifier performs O(log2 n) such operations. (Indeed, in the
i-th sumcheck argument the prover performs O(n/2i) operations and the verifier performs O(log n − i)
operations.)

Completeness of the protocol is straightforward, since the i-th iteration reduces a true statement about
a polynomial evaluation over the i-th level into a true statement about a polynomial evaluation over the
(i + 1)-th level, using the embedding map upi. The verifier accepts because each iteration is a sumcheck
argument for a valid polynomial evaluation. In contrast, establishing soundness requires more care, as we
now explain.

Soundness. The protocol consists of log n sumcheck arguments, so a starting point for arguing soundness is
to follow the approach in [BCS21]. There, a valid witness is extracted from an extraction tree (a collection of
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accepting transcripts with a special tree-like structure). For instance, in the case of polynomial commitments
as in Protocol 2, the extraction tree is a ternary tree of depth log n. An extraction tree can be obtained, from a
suitable malicious prover, in time exponential in its depth (e.g. see the forking lemma in [ACK21, Lemma 5]).
While this technique works in a single iteration of Protocol 3 to prove knowledge soundness, it fails when
applied in the final delegation protocol which consists of log n iterations. This is because now we would need
an extraction tree of depth log2 n, and producing such a tree takes quasi-polynomial time.

An alternative approach is to start from the knowledge soundness of each iteration of Protocol 3, which is
based on an extraction tree of depth only log n. Informally, the soundness of the final delegation protocol
then follows by a union bound on the log n iterations. This approach is used, e.g., to establish the soundness
of the O(log2 n)-round version of [Lee21] presented in [Tha22]. However, in our case, which also captures
the lattice setting, this has a negative impact in the parameters.

For example, in the lattice setting, it is only known how to prove knowledge soundness of Protocol 3
for a relaxed statement [BCS21]. More precisely, if the verifier accepts in Protocol 3, then we can extract
a relaxed opening m ∈ Mn

L,1 to C such that c · C = ⟨m,G⟩ and pm(z) = u, where c is called the slackness.
Then, establishing soundness by simply applying the knowledge soundness property of Task 6 recursively ℓ
times causes the slackness to accumulate at each extraction step. This approach can only prove that the final
delegation protocol has slackness exponential in log n.

We avoid the accumulation of slackness by leveraging the fact that the statement to be proved is a
deterministic computation: if the prover does not send a correct evaluation of the key polynomial at the end
of each iteration, then the verifier rejects (with some good probability). There is no witness to extract, since
the commitment keys are part of the public parameters. In the security proof we can check whether the prover
sends an incorrect evaluation in each iteration of Protocol 3. If any of the evaluations is incorrect, then we
extract a message that breaks the binding property of the commitment of this iteration. The i-th iteration of
Protocol 3 has soundness error O( logn−i|C| ); hence, the soundness error of the entire protocol is O( logn

2

|C| ). The
final slackness remains c.

From relaxed to exact openings. Relaxed openings prove approximate statements about polynomial
evaluations. This is a problem when we wish to reason about exact satisfiability of algebraic relations,
such as R1CS. We modify the polynomial commitment scheme to allow us to divide out the slackness, and
hence to extract exact openings. Specifically, we consider ML,1 to be a ring and I an ideal of ML,1 in which
multiplication by slackness c is invertible. Then, intuitively, an opening of a commitment c · C to message
m ∈ Mn

L,1 can be viewed as an opening of C to c−1m ∈ (ML,1/I)
n. The message space for the modified

commitment scheme is ML,1/I . To commit to a polynomial with coefficients in ML,1/I , we first lift them to
elements in ML,1 and then apply the original, unmodified commitment scheme. Specifically, our lattice-based
instantiation of the leveled modules and rings leads to a polynomial commitment scheme over a ring R/pR.

2.6 Polynomial IOP for product rings

As described in Section 2.1, our succinct argument is obtained by combining the polynomial commitment
scheme described in Section 2.5 and a polynomial IOP (PIOP). In a PIOP, the prover can send polynomials to
the verifier as oracle messages, and the verifier’s queries request evaluations of these polynomials.

While there are PIOPs that work over finite fields F, to prove Theorem 2 we need a PIOP that works
over rings satisfying R• ≃ Fk. This suffices to prove Theorem 1 as a special case of Theorem 2 because the
cyclotomic rings that arise from the lattice instantiation can be expressed as product rings using facts from
algebraic number theory.2

2In more detail, consider a cyclotomic ring of the form R := Z[X]/⟨Φd(X)⟩ where Φd(X) is the d-th cyclotomic polynomial.
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PIOPs over product rings. We obtain a holographic PIOP for R1CS over product rings R• ≃ Fk by
using k times “in parallel” an existing PIOP construction over F, as we now explain. First, we apply the
isomorphism between R• and Fk to an R1CS instance defined over R•, producing k R1CS instances defined
over F. Observe that the non-zero entries in each of the k R1CS instances over F are a subset of the non-zero
entries in the instance over R•. Second, we use the holographic PIOP with succinct verification for R1CS
instances over F from prior work [BCG20]. More precisely, we run this PIOP for the k R1CS instances over
F using the same random verifier challenges (which are sampled from F). This gives a PIOP with similar
complexity parameters defined over R• by mapping all of the prover and verifier messages back into R•.

This approach works because the PIOP in [BCG20] has the following special property: the indexer,
prover, and verifier can be modeled as arithmetic circuits which have hard-coded the positions of non-zero
entries in the R1CS instance3. Since the set of non-zero entries in the R1CS instance over R• is a superset of
the non-zero entries in the k R1CS instances over F, the arithmetic circuits for the indexer, prover, and verifier
are the same for the k instances over F. Thus, a PIOP for R1CS over F can be converted into a PIOP over R•
with the same proof size and computational complexity as the original PIOP, but measured as elements and
operations over R•.

In sum, we obtain a ring-based PIOP with linear prover time and logarithmic verifier time.

Lemma 1 (informal). For every ring R• such that R• ≃ Fk, there is a holographic polynomial IOP for R1CS
over the ring R• with instances of size N with M non-zero entries, with the following properties:
• the round complexity is O(log(M +N));
• the proof length is O(M +N) elements in R•;
• the query complexity is O(1);
• the communication complexity is O(log(M +N)) messages in R•;
• the indexer uses O(M) operations in R•;
• the prover uses O(N +M) operations in R•;
• the verifier uses O(logM) operations in R•.

Here, “proof length” refers to the total number of elements of R• in oracle messages, while “communica-
tion complexity” refers to the total number of (non-oracle) message elements received by the verifier.

2.7 Final protocol: combining polynomial commitments and PIOP

To obtain Theorem 2, we combine the polynomial commitment scheme described in Section 2.5 and the
PIOP over product rings of Section 2.6. Then, Theorem 1 follows as a special case by using the lattice-based
instantiation of a leveled bilinear module.

Protocol 5: succinct interactive argument for R1CS overM

Setup. On input N ∈ N, the setup algorithm runs the setup algorithm for the polynomial commitment
scheme to generate public parameters for committing to messages of length N . As part of this algorithm,
the setup algorithm samples a levelled bilinear module withM, containing the description of a ring
ML,1, an ideal I1, and a module MT,ℓ, where ℓ = log(N).

Indexer. On input an R1CS instance of size N with M non-zero entries defined over the ring

The polynomial Φd(X) modulo a prime p with gcd(p, d) = 1 factors into irreducible polynomials of the same degree t for some
t ∈ N (e.g., from [Con13, Theorem 5.3]). This means that R/pR is isomorphic to k := ϕ(d)/t copies of Fpt .

3This is despite the fact that the PIOP construction in full generality sometimes uses non-algebraic operations such as linear scans.
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R• = ML,1/I1 ≃ Fk, the indexer algorithm runs the indexer algorithm for the PIOP for R• of
Section 2.6, producing polynomial oracle messages defined over R•. Then the indexer runs the indexer
of the polynomial commitment scheme of Section 2.5, and computes commitments to each of the
polynomials. The indexer computes a proving key ipk consisting of the polynomials, their commitments,
and the proving key for the polynomial commitment scheme. The indexer computes a verification key
ivk consisting of the commitments and the verification key for the polynomial commitment scheme.
Finally, the indexer outputs ipk and ivk.

Prover and verifier. The prover receives ipk, while the verifier receives ivk. The prover and verifier
run the prover and verifier algorithms for the PIOP of Section 2.6, forwarding messages between the
PIOP prover and verifier. Whenever the PIOP prover produces a polynomial oracle message over R•,
the prover commits to it using the polynomial commitment scheme and sends the result to the verifier.
Whenever the PIOP verifier makes a polynomial evaluation query, the verifier forwards it to the prover,
who evaluates the polynomial, and sends the evaluation back to the verifier. The prover and verifier
then use the polynomial commitment scheme to prove that the evaluation is consistent with the correct
committed polynomial. The verifier accepts if all evaluations are consistent, and the PIOP verifier
acccepts.

The verifier must perform O(logM) operations over R• as part of the PIOP, and O(log2(M + N))
operations over MT,ℓ to use the polynomial commitment scheme to verify each of the O(1) PIOP query
responses. The communication complexity of the argument is dominated by the O(log2(M +N)) elements
of MT,ℓ sent when using the polynomial commitment scheme. This yields a succinct argument with efficient
verification for NP over a leveled bilinear-module system.
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3 Preliminaries

3.1 Rings and modules

A ring R is a mathematical structure that generalizes a field: R is equipped with addition and multiplication
operations, but, unlike in a field, multiplicative inverses need not exist. We use commutative rings, where the
multiplication operation commutes. The multiplicative subgroup of R is denoted R×. A module M over a
ring R extends the notion of vector space over a field, where the scalars are elements of a ring.

Norms. We use rings and modules equipped with norms. The definitions below are slightly different than
the ones in standard algebra textbooks due to the use of expansion factors.

Definition 3.1. Let R be a ring. A norm for R is a map ∥ · ∥R : R → R≥0 that satisfies the following
properties: (i) ∥0∥R = 0 and ∥1∥R = 1; (ii) for every a ∈ R, ∥a∥R = ∥ − a∥R; (iii) for every a, b ∈ R,
∥a+ b∥R ≤ ∥a∥R + ∥b∥R; (iv) there exists a constant “augmentation factor” γR ∈ R>0 such that, for every
a, b ∈ R, ∥ab∥R ≤ γR∥a∥R∥b∥R.

Definition 3.2. Let R be a ring with norm ∥ · ∥R, and let M be an R-module. A norm for M is a
map ∥ · ∥M : R → R≥0 that satisfies the following properties: (i) ∥0∥M = 0; (ii) for every a ∈ M ,
∥a∥M = ∥ − a∥M ; (iii) for every a, b ∈ M , ∥a + b∥M ≤ ∥a∥M + ∥b∥M ; (iv) there exists a constant

“augmentation factor” γM ∈ R>0 such that, for every a ∈ R and b ∈M , ∥ab∥M ≤ γM∥a∥R∥b∥M .

Remark 3.3. To simplify notation, while multiplication of elements of M and R may cause norm increases
by different factors γR and γM , we only use the notation γR to represent the maximum of these quantities.

Definition 3.4. For a ring R with norm ∥·∥R, R(B) := {r ∈ R : ∥r∥R ≤ B} is the set of ring elements with
norm at most B; and similarly for a module M and set M(B). For a set C ⊆ R, ∥C∥R := maxx∈C ∥x∥R.

For a normed module M , the norm of a vector v ∈ Mn is ∥v∥M := maxi∈[n] ∥vi∥M (the maximum of
the norms of all entries of v).

Polynomials over modules. We define the multilinear polynomial associated with a vector over a module.
We will use these polynomials to prove properties of vectors using the sumcheck protocol over modules.

Definition 3.5. Let R be a ring and M an R-module. For n ∈ N a power of 2, set ℓ := log n and let v ∈Mn

be a vector whose entries we index via binary strings (i1, . . . , iℓ) ∈ {0, 1}ℓ. The ℓ-variate polynomial
pv ∈M [X1, . . . , Xℓ] is defined as follows:

pv(X1, . . . , Xℓ) :=
∑

i1,...,iℓ∈{0,1}

vi1,...,iℓX
i1
1 · · ·X

iℓ
ℓ .

Lemma 3.6 ([BCS21, Lemma 3.6]). LetH be a cyclic subgroup (of finite order) of the multiplicative group
of a ring R, such that 1 − h is not a zero-divisor for every h ∈ H \ {1}. Let M be an R-module and
let P (X1, . . . , Xℓ) ∈ M [X1, . . . , Xℓ] be a polynomial. If we denote by Pi1,...,iℓ ∈ M the coefficient of
Xi1

1 · · ·X
iℓ
ℓ in the polynomial P (X1, . . . , Xℓ), then

∑
ω∈Hℓ

P (ω) =

 ∑
i≡0 mod |H|

Pi

 · |H|ℓ .
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3.2 Interactive arguments with preprocessing

Definition 3.7. An indexed relation R(pp) parametrized by pp is a set of tuples (i,x,w) where i is the
index, x the instance, and w the witness. The corresponding indexed language LR(pp) is the set of pairs
(i,x) for which there exists a witness w such that (i,x,w) ∈ R(pp).

ARG = (G, I,P,V) is an interactive argument with preprocessing for a parametrized indexed relation
R(pp) if it satisfies the following completeness and soundness properties.

• Completeness. For all λ,N ∈ N, and all adversaries A,

Pr

 (i,x,w) ̸∈ R(pp) or
b = 1

pp← G(1λ, N)
(i,x,w)← A(pp)

(ipk, ivk) := I(pp, i)
b← ⟨P(ipk,x,w),V(ivk,x)⟩

 = 1 ,

where b is the verifier’s output at the end of this interaction.

• Soundness. ARG has soundness error ϵ : N × N → [0, 1) if for all λ,N ∈ N, and all polynomial-size
adversaries A,

Pr

 (i,x,w) ̸∈ R(pp) and
b = 1

pp← G(1λ, N)
(i,x, aux)← A(pp)
(ipk, ivk) := I(pp, i)

b← ⟨A(aux),V(ivk,x)⟩

 ≤ ϵ(λ,N) ,

where b is the verifier’s output at the end of this interaction.

We also consider the stronger than soundness property of witness-extended emulation.

• Witness-extended emulation. ARG has witness-extended emulation with knowledge error κ : N× N→
[0, 1) if there exists an expected polynomial-time algorithm E such that for all λ,N ∈ N, and all polynomial-
size adversaries A,∣∣∣∣∣∣∣∣Pr

A(aux, tr) = 1

pp← G(1λ, N)
(i,x, aux)← A(pp)
(ipk, ivk) := I(pp, i)

b
tr← ⟨A(aux),V(ivk,x)⟩


− Pr

 A(aux, tr) = 1
and

if tr is accepting then (i,x,w) ∈ R(pp)

pp← G(1λ, N)
(i,x, aux)← A(pp)

(tr,w)← EA(aux)(pp, i,x)

∣∣∣∣∣∣ ≤ κ(λ,N) .

Above, tr is the transcript of the interaction between P and V, b is the verifier’s output at the end of this
interaction, and E has oracle access to (the next-message functions of) A(aux).

3.3 Holographic polynomial IOPs

A holographic public-coin polynomial IOP over a ring family R for an indexed relationR is specified by a
tuple

IOP = (k, s, d, I,P,V)
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where k, s, d : {0, 1}∗ → N are polynomial-time computable functions and I,P,V are three algorithms
known as the indexer, prover, and verifier. The parameter k specifies the number of interaction rounds, s
specifies the number of polynomials in each round, and d specifies degree bounds on these polynomials.

In the offline phase (“0-th round”), the indexer I receives as input a ring R ∈ R and an index i for
R, and outputs s(0) polynomials p

(0)
1 , . . . , p

(0)
s(0) ∈ R[X] of degrees at most d(|i|, 0, 1), . . . , d(|i|, 0, s(0))

respectively. Note that the offline phase does not depend on any particular instance or witness, and merely
considers the task of encoding the given index i.

In the online phase, given an instance x and witness w such that (i,x,w) ∈ R, the prover P receives
(R, i,x,w) and the verifier V receives (R,x) and oracle access to the polynomials output by I(R, i). The
prover P and the verifier V interact over k = k(|i|) rounds. For j ∈ [k], in the j-th round of interaction, the
verifier V sends a message ρj ∈ R to the prover P; then the prover P replies with s(j) oracle polynomials
p
(j)
1 , . . . , p

(j)
s(j) ∈ R[X]. The verifier may query any of the polynomials it has received any number of times.

A query consists of a location z ∈ R for an oracle p
(j)
i , and its corresponding answer is p(j)i (z) ∈M . After

the interaction, the verifier accepts or rejects.
The function d determines which provers to consider for the completeness and soundness properties of

the proof system. In more detail, we say that a (possibly malicious) prover P̃ is admissible for IOP if, on
every interaction with the verifier V , it holds that for every round j ∈ [k] and oracle index i ∈ [s(j)] we have
deg(p

(j)
i ) ≤ d(|i|, j, i). The honest prover P is required to be admissible under this definition.

Let ϵ : {0, 1}∗ → [0, 1). We say that IOP has perfect completeness and soundness error ϵ if the following
holds.

• Completeness. For every ring R ∈ R and index-instance-witness tuple (i,x,w) ∈ R, the probability that
P(R, i,x,w) convinces VI(R,i)(R,x) to accept in the interactive oracle protocol is 1.

• Soundness. For every ring R ∈ R, index-instance pair (i,x) /∈ L(R), and admissible prover P̃ , the
probability that P̃ convinces VI(R,i)(R,x) to accept in the interactive oracle protocol is at most ϵ(R,x).

The proof length l is the sum of all degree bounds in the offline and online phases, namely l(|i|) :=∑k(|i|)
j=0

∑s(j)
i=1 d(|i|, j, i).

The query complexity q is the total number of queries made by the verifier to the polynomials. This
includes queries to the polynomials output by the indexer and those sent by the prover.

3.4 Commitments

A (non-interactive) commitment scheme is a tuple of polynomial-time probabilistic algorithms CM =
(Setup,KeyGen,Commit,Open) with the following syntax.

• CM.Setup(1λ, n) → ppCM: Sample public parameters given a security parameter and a message length.
The public parameters ppCM determine a commitment space CppCM , key space KppCM , message space
MppCM , and opening space OppCM .

• CM.KeyGen(ppCM)→ ck: Sample a commitment key.

• CM.Commit (ck,m) → cm: Use the commitment key ck to compute a commitment cm ∈ CppCM to
m ∈MppCM . If ck ̸∈ KppCM or m ̸∈MppCM , it outputs ⊥.

• CM.Open (ck,m, cm, o, c) → b ∈ {0, 1}: Checks that cm ∈ CppCM is a commitment to the message
m ∈MppCM with opening value and slackness (o, c) ∈ OppCM , relative to the commitment key ck.
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We require CM to satisfy the following completeness and binding properties. Though commitment schemes
typically also satisfy a hiding property, we omit it for simplicity as it is not required for our constructions.

Definition 3.8. CM is complete if for all λ, n ∈ N, and all adversaries A,

Pr

CM.Open (ck,m, cm,⊥,⊥) = 1

∣∣∣∣∣∣∣∣
ppCM ← CM.Setup(1λ, n)
ck← CM.KeyGen(ppCM)

(m ∈Mck)← A(ppCM, ck)
cm← CM.Commit (ck,m)

 = 1 .

Definition 3.9. CM is (computationally) binding with error ϵ : N× N→ [0, 1) if for all λ, n ∈ N, and all
polynomial-size adversaries A,

Pr

 m0 ̸= m1

CM.Open (ck,m0, cm, o0, c) = 1
CM.Open (ck,m1, cm, o1, c) = 1

∣∣∣∣∣∣
ppCM ← CM.Setup(1λ, n)
ck← CM.KeyGen(ppCM)

(cm,m0,m1, o0, o1, c)← A(ppCM, ck)

 ≤ ϵ(λ,N) .

3.4.1 Polynomial commitment schemes

A commitment scheme is called a polynomial commitment scheme over a module family M if it satisfies
completeness and binding, and there is an interactive argument with preprocessing, PC-Eval = (G, I,P,V)
for the indexed relationRPC:

RPC(ppCM, ck, n) :=


(⊥, (cm, z, v), (P, o, c))

ppCM ∈ CM.Setup(1λ, n),
where MppCM = M≤n[X1, . . . , Xℓ],

ck ∈ CM.KeyGen(ppCM)
cm ∈ CppCM , z ∈ R, v ∈M

P ∈M≤n[X1, . . . , Xℓ], (o, c) ∈ OppCM ,
P (z) = v,

CM.Open (ck, P, cm, o, c) = 1


.

As with commitment schemes, polynomial commitment schemes typically satisfy a hiding property, which
we omit as it will not be used.

3.5 Sumcheck arguments

Sumcheck arguments [BCS21] are interactive arguments for commitment openings over bilinear modules. In
this paper, we use sumcheck arguments for proving evaluations of polynomial commitments. We summarize
some useful notions related to sumcheck arguments from [BCS21] and restate results on sumcheck arguments
for construction of polynomial commitments.

Definition 3.10. Let R be a ring with norm ∥ · ∥R and C ⊆ R a set. Let Vc1,...,cK be the Vandermonde matrix
with respect to distinct c1, . . . , cK ∈ C:

Vc1,...,cK :=


1 c1 · · · cK−11

1 c2 · · · cK−12
...

...
. . .

...
1 cK · · · cK−1K


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and let Ac1,...,cK be the adjugate of Vc1,...,cK (which satisfies Ac1,...,cK · Vc1,...,cK = det(Vc1,...,cK ) · IK).
For K ∈ N, we define the K-th inversion constant associated to C to be

ι(C,K) := max
c1,...,cK∈C

max
i,j∈[K]

∥Ac1,...,cK [i, j]∥R .

Definition 3.11. A bilinear module is a tupleM = (R,ML,MR,MT, e) where R is a ring, ML,MR,MT

are R-modules, and e : ML ×MR → MT is an R-bilinear map; moreover, R and ML are equipped with
norms ∥ · ∥R and ∥ · ∥ML

. We use arithmetic notation as a shorthand for e: for a ∈ML and G ∈MR, “a · G”
denotes e(a,G) ∈MT; similarly, for a ∈Mn

L and G ∈Mn
R , “⟨a,G⟩” denotes

∑
i∈[n] e(ai,Gi) ∈MT.

Definition 3.12. Let R be a ring and M an R-module. For ξ ∈ R and D ∈ N and C ⊆ R a set, we say that
(C, ξ,D) are pseudoinverse parameters for (R,M) if for every a ∈ R, m,m∗ ∈M , and distinct c1, c2 ∈ C
it holds that if (c1 − c2)m = a ·m∗ then there exists r ∈ R such that ξ ·m = r ·m∗ and ∥r∥R ≤ D∥a∥R.

We define bilinear-module generators similarly to [BCS21, Definition 5.4].

Definition 3.13. A bilinear-module generator is a tuple BM = (Setup,KeyGen) with the following syntax:
• BM.Setup, given 1λ and n ∈ N, outputs a bilinear moduleM and auxiliary string aux;
• BM.KeyGen, given (M, n, aux) where n ≤ N , outputs a vector in Mn

R .
We assume that the parameters λ and n are part of aux.

The bilinear-module generators that we consider output auxiliary strings that contain several pieces
of information: aux = (BBRA, C, ξ,D,BC) where BBRA ∈ R, C ⊆ R, ξ ∈ R, D ∈ R, and BC ∈ R with
BC ≤ BBRA.

We consider bilinear module generators with specific properties. In particular, we define secure and
quotient-friendly bilinear module generators. Our security definition differs from [BCS21, Definition 5.6]
as we remove the definition of the hiding property and associated parameters, such as the integer h which
lengthens the commitment key to allow space for commitment randomness.

Definition 3.14. A bilinear-module generator BM is secure if it satisfies the following properties.

• BM satisfies the bilinear relation assumption (BRA): there exists ϵ : N × N → [0, 1) such that for all
λ ∈ N, n ≥ 2, algorithm Check, and all polynomial-size adversaries A,

Pr


Check(M, aux) = 1

a ∈Mn
L (BBRA)

a ̸= {0n}
⟨a,G⟩ = 0

∣∣∣∣∣∣∣∣
(M, aux)← BM.Setup(1λ, n)

G← BM.KeyGen(M, aux)
a← A(M, aux,G)

 ≤ ϵ(λ,N) ;

• (C, ξ,D) in aux are pseudoinverse parameters for (R,MT) output by BM.Setup (Definition 3.12).

The “Check” algorithm in Definition 3.14 is used to determine whether the parameters ofM and aux are
suitable for use as part of larger algorithms which may introduce additional constraints.4

4For example, suppose that the output of BM is to be used as part of a succinct argument for R1CS instances of size N with M
non-zero entries over Zp. Then, the parameters in the auxiliary string aux may need to satisfy various inequalities in terms of N , M
and p. However, providing N , M and p to the BM.Setup and BM.KeyGen algorithms specializes the bilinear module generator to
this particular R1CS application, and makes it difficult to use the same generator in other proof systems which may enforce other
constraints. To avoid this, the Check algorithm verifies that the constraints are satisfied after parameter generation. It is relatively
simple to combine two Check algorithms into one.
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Definition 3.15. BM is quotient-friendly if ML output by BM.Setup contains an R-submodule I ⊆ ML

such that (C, ξ,D) in aux output by BM.Setup are pseudoinverse parameters for (R,MT), the multiplication
by ξ is invertible in ML/I and each element of ML/I has at least one representative in ML(BBRA).

We restate the construction of sumcheck arguments, and their properties, to account for small changes in
this paper. Sumcheck arguments are arguments for commitment openings when the commitment scheme has
a special structure which we call sumcheck-friendly.

Definition 3.16. A commitment scheme CM = (Setup,KeyGen,Commit,Open) is sumcheck-friendly if
for every security parameter λ ∈ N, message length n ∈ N, and public parameters ppCM ∈ CM.Setup(1λ, n),
Ock = Sck for a slackness space Sck, and there exist a ring R, domainH ⊆ R, challenge set C ⊆ R, number
of variables ℓ ∈ N, R-modules M,K,C with M having a norm, and efficient functions fCM, ϕsc, αsc such that
for every commitment key ck ∈ CM.KeyGen(ppCM), message m ∈Mck, and slackness c ∈ Sck:

• CM.Commit (ck,m) =
∑

ω∈Hℓ fCM(Pm(ω), Pck(ω), 1); and
• ϕsc

(
cm,

∑
ω∈Hℓ fCM(Pm(ω), Pck(ω), c), c

)
= 1 if and only if CM.Open (ck,m, cm, c) = 1;

• when c = 1, ϕsc is simply an equality check on its first two inputs;
• for every i ∈ {0, 1, . . . , ℓ}, p ∈M[Xi+1, . . . , Xℓ], and (r1, . . . , ri) ∈ Ci, αsc(ck, p, r1, . . . , ri) = 1 if and

only if there exists a message m ∈Mck such that p(Xi+1, . . . , Xℓ) = Pm(r1, . . . , ri, Xi+1, . . . , Xℓ).

Here:

• Pm(X1, . . . , Xℓ) is a polynomial over M that can be efficiently obtained from the message m (and,
conversely, m can be efficiently obtained from Pm);

• Pck(X1, . . . , Xℓ) is a polynomial over K that can be efficiently obtained from the commitment key ck;
• psc(X1, . . . , Xℓ) := fCM(Pm(X1, . . . , Xℓ), Pck(X1, . . . , Xℓ), c) is a polynomial over C.

Letting ideg denote the maximum individual degree of a polynomial, we also define the following degrees:

dck := max
m∈Mck

ideg
(
Pm(X)

)
,

d⋆ck := max
m∈Mck

max
c

ideg
(
fCM(Pm(X), Pck(X), c)

)
.

When running sumcheck arguments to prove knowledge of openings for certain sumcheck-friendly
commitment schemes, such as Pedersen commitments, the verifier complexity is dominated by the verifier’s
final checks. In subsequent sections, we show how to delegate this computation and make the verifier succinct.

Definition 3.17. The indexed relationRSCA(pp, c, BC) is the set of tuples

(i,x,w) =
(
⊥, cm,m

)
where CM is a sumcheck-friendly commitment scheme, pp = (ppCM, ck) with ppCM ∈ CM.Setup(1λ, n) (that
in particular specifies R, C,H, ℓ,M,K,C, fCM, ϕsc, αsc), ck ∈ CM.KeyGen(ppCM, Bck), cm ∈ C, m ∈Mck,
∥Pm(X)∥M ≤ BC, c ∈ Sck, CM.Open (ck,m, cm, c) = 1.

Construction 3.18 (sumcheck argument). We describe a public-coin interactive argument SCA = (P,V) for
the relation in Definition 3.17. The prover P and verifier V take as input public parameters pp = (ppCM, ck),
and an instance x = cm; the prover P additionally takes as input a witness w = m. Here, CM is sumcheck-
friendly with respect to the ring R, subsetH and challenge set C.
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The prover P and verifier V engage in a sumcheck protocol (described in Protocol 1) for the instance

xSC :=
(
R,M = C,H, ℓ = log n, τ = cm, C

)
where the prover P uses the polynomial psc(X) := fCM(Pm(X), Pck(X), 1) induced by x and w.

After the end of the sumcheck protocol, the prover P learns r ∈ Cℓ and the verifier V learns (r, v) ∈ Cℓ×
C. (If the sumcheck verifier rejects, then V rejects.) Then the prover P computes and sends w := Pm(r) ∈M
to the verifier V. Final verifier checks: The verifier V checks that ∥w∥M ≤ BC · (dck + 1)ℓ γℓdckR ∥C∥ℓdckR ,
computes Pck(r) ∈ K, checks that fCM(w,Pck(r), 1) = v, and checks that αsc(ck, w, r) = 1.

Theorem 3.19. The sumcheck argument SCA in Construction 3.18 satisfies the following properties:

• If CM is sumcheck-friendly (see Definition 3.16), then Construction 3.18 has perfect completeness.
• If CM is invertible with parameter K (see Definition A.1), then Construction 3.18 has Kℓ-tree extraction.
• Communication: the prover sends (d⋆ck +1)ℓ elements of C, an element of M with norm at most BC · (dck +
1)ℓ γℓdckR ∥C∥ℓdckR , and an element of R, and the verifier sends ℓ elements of C.

• The prover performs the following operations: computing psc(X), and partially evaluating it O(|H|ℓ−1)
times; and O(d⋆ck|H|ℓ−1) additions and scalar-multiplications in C.

• The verifier performs the following operations: O(d⋆ck|H|ℓ) additions and scalar multiplications in C; 1
evaluation of the polynomial Pck(X); 1 evaluation of fCM; one evaluation of αsc; and a norm-check on w.

3.5.1 Linear-function commitments and Polynomial commitments

We restate the constructions of linear-function commitments and polynomial commitments using sumcheck
arguments of [BCS21], to account for the removal of definitions and parameters related to hiding.

Definition 3.20. Let BM = (Setup,KeyGen) be a secure and hiding-friendly bilinear-module generator.
The linear-function commitment scheme LF is defined via the following algorithms.

• LF.Setup(1λ, n): sample (M, aux)← BM.Setup(1λ, n) and output ppCM := (M, aux).
• LF.KeyGen(ppCM): sample ck← BM.KeyGen(M, aux), and output ck ∈Mn

R .
• LF.Commit(ck,m): given ck ∈Mn

R , m = (mP,mS) ∈ Rn ×Mn
L (BC) output

cm :=
(
mP, ⟨mS, ck⟩, ⟨mP,mS⟩

)
∈ Rn ×MT ×ML .

• LF.Open(ck,m, cm, o, c): check that ck ∈ Mn
R , m = (mP,mS) ∈ Rn ×Mn

L (BBRA), o := ⊥, and c ∈ R,
such that c · cm = (c ·mP, ⟨mS, ck⟩, ⟨mP,mS⟩).

The properties of sumcheck arguments for linear-function commitments follow from [BCS21, Theorem
4.6, Lemma 5.13]. Finally, [BCS21, Theorem B.4] gives the running time of the prover and the verifier.

Theorem 3.21. Assuming that BM is secure, LF is a computationally binding commitment scheme such that

• the commitment key size is n elements of MR;

• computing LF.Commit requires n applications of e and O(n) operations in ML(BC + ∥mP∥R) and MT.

Let B⋆ := BC ·nγlognR ∥C∥lognR , DLF := 6γ2RD
3ι(C, 3)∥C∥R, and ξLF := ξ3 logn. The sumcheck argument

SCA for linear-function commitments satisfies the following properties:
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• Perfect completeness
• Knowledge soundness: If BBRA ≥ B⋆ ·Dlogn

LF , then the sumcheck argument has witness-extended emulation
forRSCA(ξLF, B

⋆ ·Dlogn
LF ) with soundness error ϵ = logn

|C| + negl(λ).
• Communication: the prover sends mP, O(log n) elements of MT ×ML(BC) and an element of ML(B

⋆),
and the verifier sends log n elements of C.

• Prover Efficiency: the prover can be implemented in O(n) operations in MR, MT, and ML(B
⋆); and

O(n) applications of e.
• Verifier Efficiency: the verifier performs O(log n) operations in MT and ML(B

⋆); 1 application of e; one
norm-check over ML; one evaluation of a multilinear polynomial over MR with log n variables.

Note that in [BCS21] the verifier running time is O(n) due to the final verifier checks that require the
evaluation of a multilinear polynomial. We will be interested in cases where mP has a short description, in
which case the prover only sends the short description≪ mP≫ instead of mP.

Now, we are ready to define a polynomial commitment scheme for multivariate polynomials represented
using the vector P of coefficients.

Construction 3.22. Let BM = (Setup,KeyGen) be a bilinear-module generator. The polynomial commit-
ment PC is defined via the following algorithms.

• PC.Setup(1λ, n): sample (M, aux)← BM.Setup(1λ, n) and output ppCM := (M, aux).
• PC.KeyGen(ppCM, n): sample ck← BM.KeyGen(M, aux), and output ck ∈Mn

R .
• PC.Commit(ck, P ): given P ∈Mn

L (BC), output cm := ⟨P , ck⟩
• PC.Open(ck, P , cm, o, c): check that ck ∈Mn

R , P ∈Mn
L (BBRA), and c ∈ R such that c · cm = ⟨P , ck⟩.

• The interactive argument forRPC, PC-Eval = (G, I,P,V) is as follows:

– G outputs ppCM ← PC.Setup(1λ);

– I outputs ⊥;

– P and V run a sumcheck argument for the linear-function commitment (
⊗logn

i=1 (1, zi), cm, v), where
the short description of ≪

⊗logn
i=1 (1, zi) ≫= (z1, . . . , zlogn), to show that cm = ⟨P , ck⟩ and v =

⟨
⊗logn

i=1 (1, zi), P ⟩ := P (z1, . . . , zlogn).

As with the linear function commitment scheme, the PC-Eval argument from Construction 3.22 suffers
O(n) verification time. However, it will later be used as part of the opening algorithm for the polynomial
commitment scheme with O(log2 n) verification costs.
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4 Leveled bilinear module systems

We define leveled bilinear modules, a generalization of bilinear modules (Definition 3.11).

Definition 4.1. A K-level bilinear-module systemM is a tuple(
(Mi, Bi)

K
i=1, (upi, dni, δi+1)

K−1
i=1 ,

)
where:

• eachMi := (R,ML,i,MR,i,MT,i, ei) is a bilinear module;
• each Bi ∈ N is a norm bound;
• each upi : MR,i →M

δi+1
L,i+1(Bi+1) is an “upward map”;

• each dni : M
δi+1
L,i+1 →MR,i is a “downward map”;

• each δi+1 ∈ N is an “expansion constant”.

The tuple satisfies the following for every i ∈ [K − 1]

• dni ◦ upi is the identity map on MR,i;
• upi : MR,i → M

δi+1
L,i+1 is an R-module isomorphism i.e. for every m1,m2 ∈ MR,i, upi(m1 + m2) =

upi(m1) + upi(m2) mod ker dni, and for every r ∈ R, m ∈MR,i, upi(r ·m) = r · upi(m) mod ker dni.

Remark 4.2. For a vector m = (m1, . . . ,mn) ∈ Mn
R,i, we denote by upi(m) := (x1, . . . , xδi+1

) ∈
(Mn

L,i+1(Bi+1))
δi+1 the vector such that upi(mj) = (x1,j , . . . , xδi+1,j) for each j ∈ [n], where xk :=

(xk,1, . . . , xk,n) for k ∈ [δi+1].

The following lemma shows how to compress δi elements of ML,i to a single “random” ML,i element.

Lemma 4.3. For every m ∈M
δi+1
L,i+1 \ {0δi+1}, Prρ←{0,1}δi+1 [⟨ρ,m⟩ = 0ML,i+1

] ≤ 1/2.

Proof. Since m := (m1, . . . ,mlog q) ∈ M
δi+1
L,i+1 \ {0δi+1}, there is a non-zero module element in m. Let

mj ̸= 0ML,i+1
, then

Pr
ρ←{0,1}δi+1

[
⟨ρ,m⟩ = 0ML,i+1

]
= Pr

ρ←{0,1}δi+1

ρj ·mj = −
∑
k ̸=j

ρkmk


= Pr

ρj←{0,1}

ρj ·mj = 0

∣∣∣∣∣∣
∑
k ̸=j

ρkmk = 0

 · Pr
ρ←{0,1}δi+1

∑
k ̸=j

ρkmk = 0


+ Pr

ρj←{0,1}

ρj ·mj = mj

∣∣∣∣∣∣
∑
k ̸=j

ρkmk = −mj

 · Pr
ρ←{0,1}δi+1

∑
k ̸=j

ρkmk = −mj


≤ 1/2

 Pr
ρ←{0,1}δi+1

∑
k ̸=j

ρkmk = 0

+ Pr
ρ←{0,1}δi+1

∑
k ̸=j

ρkmk = −mj


≤ 1/2.
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Definition 4.4. A leveled bilinear module generator is a tuple LM = (LM.Setup, LM.KeyGen) with the
following syntax:
• LM.Setup receives as input a security parameter λ ∈ N (represented in unary), a number of levels K ∈ N,

and a size bound N ∈ N, and outputs a K-level bilinear-module systemM and an auxiliary string aux;
• LM.KeyGen receives as input a K-level bilinear-module systemM, a vector n ∈ [N ]K , and aux, and

outputs vectors x1, . . . , xK with xi ∈Mni
R,i.

We assume without loss of generality that the parameters λ,K,N are part of aux.

The leveled bilinear module generators that we consider output auxiliary strings that contain several
pieces of information:

aux = ((BBRA,i, ξi, Di)
K
i=1, C)

where BBRA,i ∈ N with γR · δi+1 ·Bi ≤ BBRA,i, ξi ∈ R, Di ∈ Z, and C ⊆ R.
The leveled bilinear relation assumption is the main cryptographic assumption that we use. We also

define other useful properties for leveled bilinear module generators.

Definition 4.5. LM satisfies the K-level bilinear relation assumption (K-LBRA) if for all N ∈ N,
n ∈ [N ]K , predicate Check, and polynomial-size adversary A,

Pr


Check(M, n, aux) = 1
∧ y ∈Mnk

L,k(BBRA,k)
∧ y ̸= {0nk}
∧ ⟨y, xk⟩ = 0

∣∣∣∣∣∣∣∣
(M, aux)← LM.Setup(1λ,K,N)
(xi)

K
i=1 ← LM.KeyGen(M, n, aux)
(k, y)← A(M, n, aux, (xi)

K
i=1)

 ≤ ϵ(λ,N) .

The case K = 1 corresponds to the bilinear relation assumption of [BCS21] (see Definition 3.14).

Similarly to the case of bilinear modules, the “Check” algorithm in Definition 4.5 is used to determine
whether the parameters ofM and aux are suitable for use as part of larger algorithms which may introduce
additional constraints.

Definition 4.6. LM is K-secure if: (a) LM satisfies the K-LBRA; and (b) for every i ∈ [K], (C, ξi, Di) in
aux are pseudoinverse parameters for (R,MT,i) output by LM.Setup (Definition 3.12).

Definition 4.7. LM is elimination-friendly if, for every i ∈ [K], (C, ξi, Di) in aux are pseudoinverse
parameters for (R,MT,i) output by LM.Setup (Definition 3.12) and ξi is not a zero-divisor in ML,i.

Definition 4.8. LM is quotient-friendly if, for every i ∈ [K], ML,i output by LM.Setup contains an
R-submodule Ii ⊆ ML,i such that (C, ξi, Di) in aux output by LM.Setup are pseudoinverse parameters
for (R,MT,i), multiplication by ξi is invertible in ML,i/Ii and each element of ML,i/Ii has at least one
representative in ML,i(Bi).

4.1 Instantiations

We give five instantiations of leveled bilinear modules: one based on bilinear groups, and four based on ideal
lattices. The challenge space used in the 2-power-cyclotomic instantiations originates from [BCKLN14] and
is commonplace in lattice-based probabilistic proofs, whereas the challenge space used in the odd-prime-
power instantiations comes from [AL21]. Of the following instantiations, the instantiation based on bilinear
groups and the lattice-based instantiations incorporating bit decomposition can work for K = log n (what we
need in this paper).
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The two lattice-based instantiations without bit decomposition work for a constant K. These instantiations
do not extend to any number of levels, because upi must map elements of MR,i := R/qiR to elements of
ML,i+1 := R for which the ring SIS assumption holds modulo qi. This means that qi+1 must be sufficiently
large compared to qi, leading to successively larger moduli. However, the SIS problem is easy to solve when
the modulus is too large.

bilinear cyclotomic rings cyclotomic rings cyclotomic rings cyclotomic rings
groups (d = 2t) (d = pt, p > 2 prime) (d = 2t) (d = pt, p > 2 prime)

K = ω(1)? ✓ ✗ ✗ ✓ ✓

R Fq Z[X]/⟨Φd(X)⟩ Z[X]/⟨Φd(X)⟩ Z[X]/⟨Φd(X)⟩ Z[X]/⟨Φd(X)⟩
ML,i Gi mod 2 Z[X]/⟨Φd(X)⟩ Z[X]/⟨Φd(X)⟩ Z[X]/⟨Φd(X)⟩ Z[X]/⟨Φd(X)⟩
MR,i Gi+1 mod 2 Zqi [X]/⟨Φd(X)⟩ Zqi [X]/⟨Φd(X)⟩ Zq [X]/⟨Φd(X)⟩ Zq [X]/⟨Φd(X)⟩
MT,i GT Zqi [X]/⟨Φd(X)⟩ Zqi [X]/⟨Φd(X)⟩ Zq [X]/⟨Φd(X)⟩ Zq [X]/⟨Φd(X)⟩
ei bilinear poly multiplication poly multiplication poly multiplication poly multiplication

map mod qi and Φd(X) mod qi and Φd(X) mod q and Φd(X) mod q and Φd(X)
Bi qi−1 qi−1 1 1 1
upi identity inclusion inclusion bit decomposition bit decomposition
dni identity mod qi mod qi bit composition bit composition
δi+1 1 1 1 log q log q

R-norm trivial † ℓ∞ ℓ∞ ℓ∞ ℓ∞
ML,i-norm trivial † ℓ∞ ℓ∞ ℓ∞ ℓ∞
BBRA,i ∞ BSIS,i BSIS,i BSIS BSIS

C Fq {Xj : 0 ≤ j ≤ d− 1}
{

Xj−1
X−1

: 0 ≤ j ≤ p− 1
}

{Xj : 0 ≤ j ≤ d− 1}
{

Xj−1
X−1

: 0 ≤ j ≤ p− 1
}

ξi 1 2 1 2 1
Di 1 d/2 ϕ(d) d/2 ϕ(d)
Ii {0} nZ for odd n ̸= −1, 1 ‡ nZ for any n ̸= −1, 1 nZ for odd n ̸= −1, 1 ‡ nZ for any n ̸= −1, 1

Figure 1: Output (M, aux) of a leveled bilinear-module generator in the different cryptographic settings, where
Mi = (R,ML,i,MR,i,MT,i, ei) and aux = ((Ii, BBRA,i, ξi, Di)

K
i=1, C). (†: Equals 1 for any non-zero element of

R or ML,i and equals 0 otherwise. ‡: As in [BCS21])

Bilinear groups. The algorithm LM.Setup(1λ,K,N) samples groups G0,G1,GT of prime order q ≈ 2λ

equipped with a bilinear (pairing) map e : G0×G1 → GT and outputs (M, aux) as in Figure 1. The algorithm
LM.KeyGen(M, n, aux) samples uniformly random vectors G1, . . . ,GK ∈Mni

R,i = Gni
i+1 mod 2. We explain

why LM is a K-secure, quotient-friendly, leveled bilinear module generator.

• LM is a leveled bilinear module generator, because for each i,

– dni ◦ upi is the identity on Gi+1 mod 2;

– for every m1,m2 ∈ Gi+1 mod 2, upi(m1 +m2) = upi(m1) + upi(m2);

– for every r ∈ Fq, m ∈ Gi+1 mod 2, upi(r ·m) = r · upi(m).

This implies thatM is a K-level bilinear-module system.

• LM is K-secure if the K-level bilinear relation assumption holds for LM = (LM.Setup, LM.KeyGen). This
translates to the assumptions that given a uniformly random vector H ∈ Gn

1 (resp. G ∈ Gn
0 ), finding a ∈ Gn

0

such that ⟨a,H⟩ = 0 (resp. b ∈ Gn
1 such that ⟨G, b⟩ = 0) is a computationally intractable problem. These

assumptions reduce to the double pairing assumption and reverse double pairing assumption respectively,
and both are implied by the SXDH assumption [AFGHO16].

• To see that LM is quotient friendly, observe that (C, ξi, Di) := (Fq, 1, 1) are pseudoinverse parameters
for (R,MT,i) := (Fq,GT) since for every a ∈ Fq, m,m∗ ∈ GT, and distinct c1, c2 ∈ Fq it holds that if
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(c1 − c2)m = a ·m∗, then m = r ·m∗ for r = (c1 − c2)
−1a ∈ Fq. Further, multiplication by ξi = 1 is

invertible in ML,i/Ii = Gi mod 2.

Cyclotomic rings with d = 2t and constant K. The algorithm LM.Setup(1λ,K,N) samples an integer
d that is a power of 2, and odd positive integers (qi)

K
i=1 such that qj ≤ qj+1 for j = 1, . . . ,K − 1, and

outputs (M, aux) as in Figure 1; note that the challenge set C consists of d elements. The algorithm
LM.KeyGen(M, n, aux) outputs uniformly random vectors in Mni

R,i = (Zqi [X]/⟨Φd(X)⟩)ni . We explain
why LM is a K-secure, quotient-friendly, leveled bilinear module generator.

• LM is a leveled bilinear module generator, because for each i,

– dni ◦ upi is the identity on Zqi [X]/⟨Φd(X)⟩,
– ∀m1,m2 ∈ Zqi [X]/⟨Φd(X)⟩; upi(m1 +m2) = upi(m1) + upi(m2) mod qi;

– ∀r ∈ Z[X]/⟨Φd(X)⟩, m ∈ Zqi [X]/⟨Φd(X)⟩, upi(r ·m) = r · upi(m) mod qi.

This implies thatM is a K-level bilinear-module system.

• LM is K-secure if the K-level bilinear relation assumption holds for LM = (LM.Setup, LM.KeyGen).
This translates to the hardness of the SIS assumption forMi with norm bounds BSIS,i for i = 1, . . . ,K. In
turn, for the SIS assumption to hold, BSIS,i should be at most min{qi, 22

√
d log qi log δ} [GN08] (δ is related to

the optimal block size in the BKZ algorithm applied to the SIS problem and is typically set to δ ≈ 1.005).

• To see that LM is quotient friendly, note that Φd(X) = Xd/2 + 1. Now, (C, ξi, Di) := (C, 2, d/2)
are pseudoinverse parameters for (R,MT,i) := (Z[X]/⟨Xd + 1⟩,Zq[X]/⟨Xd/2 + 1⟩) since for every
a ∈ Z[X]/⟨Xd/2 + 1⟩, m,m∗ ∈ Zq[X]/⟨Xd/2 + 1⟩, and distinct Xc1 , Xc2 ∈ C it holds that if (Xc1 −
Xc2)m = a ·m∗, then 2 ·m = r ·m∗ for r = −Xd/2−c1(1 +X + · · ·+Xd/2) · a ∈ Z[X]/⟨Xd/2 + 1⟩
[BCKLN14]. Further, multiplication by ξi = 2 is invertible in ML,i/Ii.

Cyclotomic rings with d = pt and constant K. The algorithm LM.Setup(1λ,K,N) samples an
integer d that is an odd prime power, and numbers (qi)

K
i=1 such that qj ≤ qj+1 for j = 1, . . . ,K − 1,

and outputs (M, aux) as in Figure 1; note that the challenge set C consists of p elements. The algorithm
LM.KeyGen(M, n, aux) outputs uniformly random vectors in Mni

R,i = (Zqi [X]/⟨Φd(X)⟩)ni . The leveled-
module generator is K-secure, using similar reasoning to the previous example.

To see that LM is quotient friendly, note that (C, ξi, Di) := (C, 1, ϕ(d)) are pseudoinverse parameters for
(R,MT,i) := (Z[X]/⟨Φd(X)⟩,Zq[X]/⟨Φd(X)⟩) ([AL21, Theorem 2]), and that multiplication by ξi = 1 is
invertible in ML,i/Ii.
Cyclotomic rings with d = 2t and non-constant K. The algorithm LM.Setup(1λ,K,N) samples an
integer d that is a power of 2, and an odd positive integer q, and outputs (M, aux) as in Figure 1 with the same
challenge space and LM.KeyGen(M, n, aux) as the previous d = 2t example. We define bit decomposition
BitDec : Zq[X]/⟨Φd(X)⟩ → Rlog q to be the function that maps a ring element m ∈ Zq[X]/⟨Φd(X)⟩ to
(m′1, . . . ,m

′
log q) such that each coefficient of m′i is equal to the i-bit of the corresponding coefficient of m.

We define bit composition BitComp : Rlog q → Zq[X]/⟨Φd(X)⟩ to be the function that maps ring elements
(m′1, . . . ,m

′
log q) ∈ (Zq[X]/⟨Φd(X)⟩)log q to (

∑log q−1
i=0 2im′i) mod q. We explain why LM is a K-secure,

quotient-friendly, leveled bilinear module generator.

• LM is a leveled bilinear module generator, because for each i,

– dni ◦ upi is the identity on Zq[X]/⟨Φd(X)⟩;
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– since dni := BitComp is a linear map, ∀m1,m2 ∈ Zq[X]/⟨Φd(X)⟩, dni(upi(m1) + upi(m2)) =
dni(upi(m1)) + dni(upi(m2)) = m1 +m2. Hence,

upi(m1 +m2) = upi(m1) + upi(m2) mod ker dni,

where ker dni = {v ∈ (Zq[X]/⟨Φd(X)⟩)log q : BitComp(v) = 0R};
– similarly, we can show that ∀r ∈ Z[X]/⟨Φd(X)⟩, m ∈ Zq[X]/⟨Φd(X)⟩, upi(r ·m) = r · upi(m) mod

ker dni;

This implies thatM is a K-level bilinear-module system. The leveled-module generator is K-secure and
quotient-friendly, using similar reasoning to the previous example.

Cyclotomic rings with d = pt and non-constant K. The algorithm LM.Setup(1λ,K,N) samples an
integer d that is an odd prime power, and a number q, and outputs (M, aux) as in Figure 1 with the same
challenge space and LM.KeyGen(M, n, aux) as the previous d = pt example.

The leveled-module generator is K-secure and quotient-friendly, using similar reasoning to the previous
examples.
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5 Delegation of multilinear polynomial evaluation

We describe a (preprocessing) succinct interactive argument for the polynomial evaluation relation. Recall
from Definition 3.5 that pv is the multilinear polynomial with coefficients given by the vector v ∈Mn.

Definition 5.1. The indexed relation for the polynomial evaluation relationREVAL(pp) consists of tuples

(i,x,w) = (h, (Bs, s, u), ∅)

where pp = (M, aux) ∈ LM.Setup(1λ, log n, n), h ∈ML,1(B1)
n, Bs ∈ R>0 s ∈ Rlogn(Bs), and u ∈ML,1

satisfying ph(s) = u.

Later, in Section 6, we will always use instances x for which s lies in Cn, where C is the challenge space
associated with a levelled bilinear module. Therefore, we will set Bs = ∥C∥R from now on.

Construction 5.2. First we describe the generator and indexer, and then the interaction between the prover
and verifier.

Generator. GEVAL(1
λ, n) works as follows.

1. Sample (M, aux)← LM.Setup(1λ, ℓ, n) with ℓ = log n and

M =
(
(Mi, Bi)

ℓ
i=1, (upi, dni, δi+1)

ℓ−1
i=1 ,

)
.

2. Output pp = (M, aux), where aux contains a description of a challenge space C.

Indexer. IEVAL(pp, i) works as follows.

1. Check that i = h is compatible with pp (i.e. h ∈Mn
L,1(B1)).

2. Sample (Hi)
ℓ
i=1 ← LM.KeyGen(M, n, aux), where ni = n/2i.

3. Parse h = (h[L], h[R]) ∈M
n/2
L,1 ×M

n/2
L,1 .

4. Compute cmL1 := ⟨h[L],H1⟩ ∈MT,1 and cmR1 := ⟨h[R],H1⟩ ∈MT,1.
5. For i ∈ {1, . . . , ℓ}, parse Hi = (Hi[L],Hi[R]) ∈M

ni/2
R,i ×M

ni/2
R,i and compute5

(hi+1,1[L], . . . , hi+1,δi+1
[L]) := upi(Hi[L]) ∈ (Mni

L,i+1(Bi+1))
δi+1

(hi+1,1[R], . . . , hi+1,δi+1
[R]) := upi(Hi[R]) ∈ (Mni

L,i+1(Bi+1))
δi+1

cmLi+1,j := ⟨hi+1,j [L],Hi+1⟩ ∈MT,i+1 for j ∈ [δi+1]

cmRi+1,j := ⟨hi+1,j [R],Hi+1⟩ ∈MT,i+1 for j ∈ [δi+1]

6. Output (ipk, ivk) where ipk :=
(
pp, (Hi, (cmLi,j , cmRi,j)

δi+1

j=1 )
ℓ+1
i=1

)
and ivk :=

(
pp, (cmLi,j , cmRi,j)

δi+1

j=1 )
ℓ+1
i=1 ,Hℓ

)
.

The interactive phase. We define r0 := s ∈ Rℓ(Bs), u1 := u ∈ ML,1, and h1 := h ∈ Mn
L,i(B1). The

prover PEVAL takes as input (ipk,x,w) and the verifier VEVAL takes as input (ivk,x). They interact as follows.
For i = 1, . . . , ℓ:

5For notation of upi(Hi[L]) and upi(Hi[R]), see Remark 4.2
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1. The prover PEVAL and the verifier VEVAL engage in a proof of polynomial evaluation as in Construction 3.22
(without the final verifier checks) for the claim

Phi[L]+ri−1,1hi[R](r
′
i−1) = ui,

where if ri−1 := (ri−1,1, . . . , ri−1,ℓ−i+1), then r′i−1 := (ri−1,2, . . . , ri−1,ℓ−i+1), and the commitment of
hi[L] + ri−1,1hi[R] is computed as cmLi + ri−1,1 · cmRi.

Namely, the prover PEVAL and the verifier VEVAL engage in a sumcheck protocol for the polynomial

p(i)sc (X) :=
(
Phi[L]+ri−1,1hi[R](X)PHi

(X) , Pr̃i−1
(X)Phi[L]+ri−1,1hi[R](X)

)
, (1)

where r̃i−1 :=
⊗ℓ−i

j=1(1, ri−1,j+1). After the end of the sumcheck protocol, the prover PEVAL learns
ri ∈ Cℓ−i and the verifier VEVAL learns (ri, (vi,0, vi,1)) ∈ Cℓ−i × (MT,i ×ML,i). (If the sumcheck verifier
rejects, then VEVAL rejects.) Then, the prover PEVAL computes and sends wi := Phi[L]+ri−1,1hi[R](ri) ∈
ML,i and Ui := PHi

(ri) ∈MR,i
6.

2. The prover PEVAL also computes7

(hi+1,1, . . . , hi+1,δi+1
) := upi(Hi) ∈ (Mni

L,i+1(Bi+1))
δi+1

ui+1,j := Phi+1,j
(ri) ∈ML,i+1 for j ∈ [δi+1]

κi+1 := upi(Ui)− (ui+1,1, . . . , ui+1,δi+1
) ∈M

δi+1
L,i+1 .

The prover sends (ui+1,1, . . . , ui+1,δi+1
, κi+1). (For i = ℓ, the prover sends only Ui.)

3. The verifier VEVAL, after receiving (wi, Ui, ui+1,1, . . . , ui+1,δi+1
, κi+1), sends ρi+1 ← {0, 1}δi+1 .

4. The prover PEVAL computes

hi+1 :=

δi+1∑
j=1

ρi+1,jhi+1,j ∈Mni
L,i+1 , (2)

cmLi+1 := ⟨ρi+1, (cmLi+1,1, . . . , cmLi+1,δi+1
)⟩ ∈MT,i+1 , (3)

cmRi+1 := ⟨ρi+1, (cmRi+1,1, . . . , cmRi+1,δi+1
)⟩ ∈MT,i+1 , (4)

and ui+1 := ⟨ρi+1, (ui+1,1, . . . , ui+1,δi+1
)⟩(= Phi+1

(ri)) ∈ML,i+1 . (5)

(For i = ℓ, the prover does not perform this step.)

5. The verifier VEVAL computes τi := Pr̃i−1
(ri) ∈ R, and cmLi+1, cmRi+1 and ui+1 as in Equations 3 to 5.

The verifier checks whether

(vi,0, vi,1) = (wi · Ui, τi · wi) ,

∥wi∥ML,i
≤ 2ℓ−iγℓ−i+1

R ∥C∥ℓ−iR (1 + γR∥C∥R) · δi ·Bi ,

⟨ρi+1, (ui+1,1, . . . , ui+1,δi+1
)⟩ = ⟨ρi+1, upi(Ui)− κi+1⟩ ,

κi+1 ∈ ker dni .

6In sumcheck arguments, the prover computes and sends p(i)sc (ri). In this case, the verifier already knows r̃i−1 and can efficiently
compute Pr̃i−1

(ri) with O(logn) operations as shown in Section 5.1, so the prover only needs to send wi.
7Note that because M is a levelled bilinear-module system, κ ∈ ker dni.

31



6. The verifier VEVAL is left to check whether Ui = PHi
(ri). For i < ℓ, the verifier performs the equivalent

check ui+1 = Phi+1
(ri) in the next iteration of the loop. For i = ℓ, the verifier VEVAL checks whether

Uℓ = PHℓ
(rℓ) by computing PHℓ

(rℓ) directly.

Remark 5.3. The above construction has large soundness error because Lemma 4.3 only guarantees that for
malicious ui+1,j , Ui, κi+1

Pr
[
⟨ρi+1, (ui+1,1, . . . , ui+1,δi+1

)⟩ = ⟨ρi+1, upi(Ui)− κi+1⟩
]
≤ 1/2.

We can reduce this soundness error of this step to (1/2)µ as follows: In Item 3, the verifier sends µ
challenges ρi+1,1, . . . , ρi+1,µ ← {0, 1}δi+1 and the prover and verifier perform Item 4 and Item 5 for each of
these challenges. If all the checks pass, then the verifier samples a random j ∈ [µ], and they continue to the
next phase with respect to the challenge ρi+1,j . The following theorem states the complexity measures for
µ ∈ N.

Theorem 5.4. Construction 5.2 satisfies the following properties:

• Perfect completeness.
• Soundness: if LM is log n-secure (Definition 4.6) and elimination-friendly (Definition 4.7), and for each
i ∈ [log n], BBRA,i ≥ B⋆

i ·D
logn−i+1
LF,i , then it has soundness error 2−µ + logn·(logn−1)

|C| + negl(λ).
• Communication: for each i ∈ [log n], the prover sends O(log n) elements in MT,i, O(µ·(δi+log n)·log n)

elements in ML,i(B
⋆
i ), and O(1) elements in MR,i, and for each i ∈ [log n] the verifier sends O(log n)

elements of C and O(µ ·
∑logn

i=1 δi+1) bits.
• Prover efficiency: the prover can be implemented in O(µ · (n/2i+δi)) operations in MR,i, MT,i, ML,i(B

⋆
i )

for each i ∈ [log n]; O(µ · n) applications of ei for each i ∈ [log n]; O(µ) applications of upi for each
i ∈ [log n].

• Verifier efficiency: the verifier performs O(log2 n) operations in R, O(µ · (log n− i+ δi)) operations in
MT,i and ML,i(∥C∥R ·B⋆

i ) for each i ∈ [log n]; two norm-checks over ML,i and O(µ) applications of the
mappings ei, upi, and dni for each i ∈ [log n]; one operation in MR,logn.

Above, B⋆
i := 2logn−iγlogn−i+1

R ∥C∥logn−iR (1 + γR∥C∥R)δiBi, DLF,i = 6γ2RD
3
i ι(C, 3)∥C∥R and µ ∈ N.

5.1 Efficiency

Communication. In the i-th phase, the prover sends O(log n− i) elements of MT,i and ML,i(B
⋆
i ), O(1)

elements of MR,i, O(δi+1) elements of ML,i+1(B
⋆
i+1). In the i-th phase, the verifier sends log n− i elements

of C and δi+1 bits.
Prover efficiency. The prover performs ℓ := log n proofs of polynomial evaluation for polynomials with
n/2i coefficients for i ∈ [log n] in Item 1. In the i-th proof of polynomial evaluation, the prover efficiency is
O(2ℓ−i) operations in MR,i, MT,i, and ML,i(B

⋆
i ), and O(2ℓ−i) applications of ei. For the i-th step of Item 2,

the prover requires two applications of upi, O(2ℓ−i) operations in ML,i+1(B
⋆
i ). Finally, for the i-th step of

Item 4, the prover performs O(δi+1) operations in MT,i and ML,i(B
⋆
i ).

Verifier efficiency. Similarly to the prover, for implementing Item 1 the verifier complexity can be expressed
in terms of the verifier complexity of ℓ proofs of polynomial evaluation for polynomials with differing
number of coefficients. In the i-th proof of polynomial evaluation, the verifier efficiency is O(log n − i)
operations in MT,i and ML,i(B

⋆
i ), and one norm-check over ML,i. Additionally, for the i-th step of Item 5,

the verifier evaluates Pr̃i−1
(ri) as ⟨

⊗ℓ−i
j=1(1, ri−1,j+1),

⊗ℓ−i
j=1(1, ri,j)⟩ =

∏ℓ−i
j=1(1 + ri−1,j+1ri,j), which
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requires O(log n− i) operations in R(∥C∥R), performs O(δi+1) operations in MT,i and ML,i+1(B
⋆
i+1), an

application of the mappings ei, upi, and dni+1, a multiplication in ML,i(∥C∥R · B⋆
i ), and a norm check in

ML,i. Finally, in Item 6 the verifier performs a multiplication in MR,logn.

5.2 Completeness

Let ph(s) = u. Fix any choice of verifier challenges (r1, . . . , rℓ) ∈ C(ℓ−1)ℓ/2. We show that the (honest)
prover makes the verifier accept. By Lemma 3.6, for each sumcheck protocol of Item 1,∑

ω∈{−1,1}ℓ
p(i)sc (ω) = 2ℓ

(
⟨hi[L] + ri−1,1hi[R],Hi⟩, ⟨

⊗ℓ−i
j=1(1, ri−1,j+1), hi[L] + ri−1,1hi[R]⟩

)
= 2ℓ

(
⟨hi[L],Hi⟩+ ri−1,1⟨hi[R],Hi⟩, ⟨

⊗ℓ−i+1
j=1 (1, ri−1,j), (hi[L], hi[R])⟩

)
= 2ℓ(cmLi + ri−1,1cmRi, Phi(ri−1)) .

The honest prover sends

wi := Phi[L]+ri−1,1hi[R](ri) ∈ML,i, Ui := PHi
(ri) ∈MR,i,

κi+1 := upi(Ui)− (ui+1,1, . . . , ui+1,δi+1
) ∈M

δi+1
L,i+1, ui+1,j := Phi+1,j

(ri) ∈ML,i+1 for j ∈ [δi+1],

where (hi+1,1, . . . , hi+1,δi+1
) := upi(Hi) ∈Mni

L,i+1.
From the (i− 1)-th iteration, ui = Phi(ri−1) (by definition u1 = u), hence the completeness of the sum-

check protocol guarantees that the i-th sumcheck verifier in Item 1 does not reject and outputs (ri, (vi,0, vi,1)),
where vi,0 = Phi[L]+ri−1,1hi[R](ri)PHi

(ri) ∈ MT,i and vi,1 = Pr̃i−1
(ri)Phi[L]+ri−1,1hi[R](ri) ∈ ML,i. Also,

the prover sets hi+1 :=
∑δi+1

j=1 ρi+1,jhi+1,j ∈ Mni
L,i+1 and ui+1 := ⟨ρi+1, (ui+1,1, . . . , ui+1,δi+1

)⟩ ∈ ML,i+1,
so ui+1 = Phi+1

(ri).
The verifier’s check (vi,0, vi,1) = (wi ·Ui, Pr̃i−1

(ri)·wi) passes, because of the definition of (wi, Ui, ui+1)
in Item 2. Also, we have assumed that Bs = ∥C∥R. Hence, ∥hi∥ML,i

≤ γR · δi ·Bi, ∥ri∥R ≤ ∥C∥R for i ≥ 0,
and

∥wi∥ML,i
= ∥Phi[L]+ri−1,1hi[R](ri)∥ML,i

≤ 2ℓ−iγℓ−i+1
R ∥C∥ℓ−iR (1 + γR∥C∥R)δiBi,

by writing the polynomial Phi[L]+ri−1,1hi[R](ri) as a sum of coefficients multiplied by monomials, applying
the triangle inequality, and then applying the ring augmentation factors of Definition 3.2 and Definition 3.2
to each term. This shows that the verifier norm check of Item 5 passes. Additionally, from the properties
of M and the definition of κi+1, it holds that κi+1 ∈ ker dni+1 and ⟨ρi+1, (ui+1,1, . . . , ui+1,δi+1

)⟩ =
⟨ρi+1, upi(Ui)− κi+1⟩.

Finally, in Item 6 the verifier’s check Uℓ = PHℓ
(rℓ) passes, because of the definition of Uℓ in the honest

prover messages.

5.3 Soundness

We introduce some notation. For i ∈ {1, . . . , ℓ}, let P(i) and V(i) be the parts of the prover and verifier
algorithms that correspond to the i-th iteration of Item 1. In particular, P(i) and V(i) take as input x(i)

SC =
(ri−1, ui, cmLi, cmRi), the prover P(i) additionally knows hi := (hi[L], hi[R]) and Hi. At the end of the i-th
iteration, V(i) learns (ri, (vi,0, vi,1), wi, Ui), if the V(i) checks pass (otherwise ⟨P(i),V(i)⟩ =⊥).
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First, we prove the following claim for each of the ℓ := log n iterations. Informally, the claim states that
for each iteration, if we start with an invalid instance, then the instance of the next level will be invalid as
well.

Claim 5.5. Assuming that LM is log n-secure and elimination-friendly, BBRA,i ≥ B⋆
i · D

logn−i+1
LF,i , pp ←

GEVAL(1
λ, n), cmLi := ⟨hi[L],Hi⟩, and cmRi := ⟨hi[R],Hi⟩, it holds that for every polynomial-size adver-

sary A

Pr


tr := (ri, (vi,0, vi,1), (wi, Ui, ui+1))

∧ ui ̸= Phi(ri−1)
∧ Ui = PHi

(ri)
∧ (vi,0, vi,1) = (wi · Ui, Pr̃i−1

(ri) · wi)

∥wi∥ML,i
≤ B⋆

i

∣∣∣∣∣∣∣∣∣∣
(ri−1, ui, aux)← A(pp)

b
tr← ⟨A(aux,x(i)

SC),V
(i)(ivk,x

(i)
SC)⟩

 ≤ ϵ0(i) + ϵ1 ,

where ϵ0(i) is the error of witness-extended emulation of the proofs of polynomial evaluations of Construc-
tion 3.22 for polynomials with n/2i coefficients, and ϵ1 is the probability of breaking the log n-level bilinear
relation assumption.

Proof. In the i-th iteration the prover and the verifier perform a proof of polynomial evaluation (Construc-
tion 3.22), which has witness-extended emulation as stated in Theorem 3.21. However, this soundness
guarantee is for a relaxed relation, which is an issue in our case. We remove this relaxation factors by noticing
that in our construction there is no witness, so we can compute the messages of the honest prover. We show
that a cheating prover deviating from the messages of the honest prover must break the bilinear relation
assumption.

Since the proof of polynomial evaluations of Construction 3.22 for polynomials with n/2i coefficients has
witness-extended emulation with knowledge error ϵ0(i), there exists an expected polynomial-time algorithm
E such that for every polynomial-size adversary A, we have∣∣∣∣∣∣∣Pr

A(aux, tr) = 1

ppLF ← GLF(1
λ, 2ℓ−i)

(x
(i)
SC, aux)← A(pp)

b
tr← ⟨A(aux),V(x

(i)
SC)⟩


− Pr

 A(aux, tr) = 1
∧ tr is accepting

∧ (x
(i)
SC,w

(i)
SC) ∈ RSCA(ξLF,i, B

⋆
i ·D

logn−i+1
LF,i )

ppLF ← GLF(1
λ, 2ℓ−i)

(x
(i)
SC, aux)← A(pp)

(tr,w
(i)
SC)← EA(aux)(pp,x

(i)
SC)


∣∣∣∣∣∣∣ ≤ ϵ0(i) ,

where GLF(1
λ, 2ℓ−i) outputs the parameters of GEVAL(1

λ, n) corresponding to the i-th level ofM, VSA is
the verifier of the sumcheck argument, and ξLF,i := ξ

3(logn−i+1)
i .

If (x(i)
SC,w

(i)
SC) ∈ RSCA(ξLF,i, B

⋆
i ·D

logn−i+1
LF,i ), it must be that

(⟨w(i)
SC,Hi⟩, ⟨r̃i−1,w

(i)
SC⟩) = (ξLF,i · (cmLi + ri−1,1cmRi), ξLF,i · ui)

and ∥w(i)
SC∥ML,i

≤ B⋆
i ·D

logn
LF,i . On the other hand, by assumption

⟨hi[L] + ri−1,1hi[R],Hi⟩ = cmLi + ri−1,1cmRi .

If w(i)
SC ̸= ξLF,i · (hi[L] + ri−1,1hi[R]), then w(i)

SC − ξLF,i · (hi[L] + ri−1,1hi[R]) breaks the leveled bilinear
relation assumption (for Check that tests whether B⋆

i ·D
logn−i+1
LF,i +∥ξLF,i∥R(1+γR∥C∥R)γR ·δi ·Bi ≤ BBRA,i)
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since ⟨w(i)
SC− ξLF,i · (hi[L]+ri−1,1hi[R]),Hi⟩ = 0. Hence, it must be that w(i)

SC = ξLF,i · (hi[L]+ri−1,1hi[R])
with 1− ϵ1 probability.

Finally, the evaluation Phi(ri−1) can be computed as ⟨
⊗ℓ−i+1

j=1 (1, ri−1,j), hi⟩, and since r̃i−1 =
⊗ℓ−i

j=1(1, ri−1,j+1),

ξLF,i · ui = ⟨r̃i−1,w
(i)
SC⟩ = ⟨r̃i−1, ξLF,i(hi[L] + ri−1,1hi[R])⟩

= ⟨
⊗ℓ−i+1

j=1 (1, ri−1,j), ξLF,i · hi⟩ = ξLF,i · Phi(ri−1) .

This implies that Phi(ri−1) = ui because LM is elimination-friendly, and hence ξLF,i := ξ
3(ℓ−i+1)
i is not a

zero-divisor.

Using Claim 5.5, we show that Construction 5.2 has soundness error
∑ℓ

i=1 ϵ0(i) + ℓ · (ϵ1 + ϵLM(µ)),
where ϵ0(i) is the knowledge error of Construction 3.22, ϵ1 is the probability of breaking the log n-level
bilinear relation assumption, and ϵLM(µ) = 2(1/2)µ. From Theorem 3.21 and the fact that LM is ℓ-secure,
ϵ0(i) =

ℓ−i
|C| +negl(λ) and ϵ1 = negl(λ). We show that the total soundness error is ℓ·ϵLM(µ)+ ℓ(ℓ−1)

|C| +negl(λ).

Specifically, we prove by induction that the event u1 ̸= Ph1(r0) holds for P̃ with probability at most∑ℓ
i=1 ϵ0(i) + ℓ · (ϵ1 + ϵLM(µ)) over the verifier randomness r1, . . . , rℓ.
Let P̃ be a prover for Construction 5.2. For i = ℓ, from the final verifier check Uℓ = PHℓ

(rℓ), so
Claim 5.5 guarantees that uℓ ̸= Phℓ(rℓ−1) with probability at most ϵ0(ℓ) + ϵ1 over the verifier randomness
rℓ. Assume for the inductive hypothesis that ui+1 ̸= Phi+1

(ri), where hi+1 :=
∑δi+1

j=1 ρi+1,jhi+1,j , holds for
P̃ with probability at most

∑ℓ
j=ℓ−i ϵ0(j) + i · ϵ1 over the verifier randomness ri+1, . . . , rℓ. We show that

Ui ̸= PHi
(ri) as follows

ui+1 ̸= Phi+1
(ri) (from the inductive hypothesis)

=⇒ ⟨ρi+1, (ui+1,1, . . . , ui+1,δi+1
)⟩ ≠ Phi+1

(ri) (from verifier computation in Item 5)

=⇒ ⟨ρi+1, (ui+1,1, . . . , ui+1,δi+1
)⟩ ≠ ⟨ρi+1, (Phi+1,1

(ri), . . . , Phi+1,δi+1
(ri))⟩ (from definition of hi+1) .

If the above check is repeated µ times, then from Lemma 4.3, it must be that (ui+1,1, . . . , ui+1,δi+1
) ̸=

Phi+1,1
(ri), . . . , Phi+1,δi+1

(ri) with probability at most ϵLM(µ)/2. Additionally, the verifier checks in Item 5
that ⟨ρi+1, (ui+1,1, . . . , ui+1,δi+1

)⟩ = ⟨ρi+1, upi(Ui) − κi+1⟩. Again from the properties of M, it must
be that (ui+1,1, . . . , ui+1,δi+1

) ̸= upi(Ui) − κi+1 with probability at most ϵLM(µ)/2. Conditioning on the
complements of these events,

(Phi+1,1
(ri), . . . , Phi+1,δi+1

(ri)) = upi(Ui)− κi+1.

The verifier checks that κi+1 ∈ ker dni+1, so by applying dni+1 we get that

PHi
(ri) = Ui.

Then, from Claim 5.5 ui ̸= Phi(ri−1) with probability at most ϵ0(i) + ϵ1 over the verifier randomness ri.
Hence, it must be that for P̃, ui ̸= Phi(ri−1) with probability at most

∑ℓ
j=ℓ−i+1 ϵ0(j)+(i+1) ·(ϵ1+ϵLM(µ))

over the verifier randomness ri, . . . , rℓ.
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6 Sumcheck arguments with succinct verifier

Sumcheck arguments are succinct interactive arguments for openings of sumcheck-friendly commitment
schemes (see Section 3.5). We use the delegation protocol from Section 5 to achieve, in the preprocessing
setting, a succinct verifier for sumcheck arguments by delegating the key polynomial evaluation in Construc-
tion 3.18. For Theorem 6.2 below, we additionally need a compatibility property between the setup of the
commiment scheme and leveled-bilinear modules.

Definition 6.1. A sumcheck-friendly commitment scheme CM = (Setup,KeyGen,Commit,Open) is com-
patible with the preprocessing interactive argument EVAL = (GEVAL, IEVAL,PEVAL,VEVAL) for REVAL of
Construction 5.2 if ppCM ∈ CM.Setup(1λ, n) contains (M, aux)← GEVAL(1

λ, 2n), and K := Mn
R,1.

Our construction is a succinct argument forRSCA from Definition 3.17.

Theorem 6.2. There is a public-coin preprocessing interactive argument SCA = (GSCA, ISCA,PSCA,VSCA)
with the following properties:

• Perfect completeness forRSCA(1, BC).

• Witness-extended emulation for the relationRSCA(ξ
ℓ, BE), where ℓ := log n and BE := Dℓ · (BC · (dck +

1)ℓ γℓdckR ∥C∥ℓdckR ), with knowledge error ϵ0 + ϵ1, where ϵ0 is the soundness error of EVAL and ϵ1 is the
knowledge error of the sumcheck argument for CM if

– CM is (K,BINV, D, ξ)-invertible;
– CM is compatible with EVAL according to Definition 6.1;
– the conditions of Theorem 5.4 hold.

• Communication complexity is the sum of the communication cost of sumcheck argument for CM and the
delegation protocol EVAL.

• Prover (resp. verifier) complexity is equal to the sum of the prover (resp. verifier) complexity of the
sumcheck argument for CM (without the last verifier polynomial evaluation) and the prover (resp. verifier)
complexity of EVAL.

We state Construction 6.3 and then in Section 6.1 we show that it realizes Theorem 6.2.

Construction 6.3. We describe a public-coin interactive argument SCA = (GSCA, ISCA,PSCA,VSCA) for the
relationRSCA, which uses a delegation protocol (with preprocessing) for multilinear polynomial evaluation
EVAL = (GEVAL, IEVAL,PEVAL,VEVAL).
Generator. Let GSCA(1

λ, n) be an algorithm that runs ppCM ← CM.Setup(1λ, n), which as a first step
samples ppEVAL ← GEVAL(1

λ, 2n), ck← CM.KeyGen(ppCM, Bck), and outputs pp = (ppCM, ck).
Indexer. Let ISCA(pp, i) be an algorithm that samples ρ← {0, 1}δ1 and sets

M′ :=
(
(Mi)

logn+1
i=2 , (Bi)

logn+1
i=2 , (upi, dni, δi+1),

logn
i=2

)
,

aux′ := ((BBRA,i, ξi, Di)
logn+1
i=2 , C) and pp′EVAL := (M′, aux′), runs (ipkEVAL, ivkEVAL) = IEVAL(pp

′
EVAL, iEVAL),

where iEVAL = ⟨ρ, up1(ck)⟩, and outputs (ipk, ivk) = ((ppCM, ρ, ipkEVAL), (ppCM, ρ, ivkEVAL)).
The interactive phase. The prover PSCA takes (ipk,x,w) as input and the verifier VSCA takes as input
(ivk,x). The protocol proceeds as follows.

1. The prover PSCA and the verifier VSCA run a sumcheck argument SCA′ = (P′,V′) (without the verifier
key polynomial evaluation) as in Construction 3.18.
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Protocol: SCA′

The prover P′ and verifier V′ take as input an instance x = (CM, ppCM, C, ck, cm); the prover P′

additionally takes as input a witness w = (m, ρ). Here, CM is sumcheck-friendly with respect to the
ring R and subsetH.

The prover P′ and verifier V′ engage in a sumcheck protocol (described in Protocol 1) for the
instance

xSC :=
(
R,M = C,H, ℓ = log n, τ = cm, C

)
where the prover P′ uses the polynomial psc(X) := fCM(Pm(X), Pck(X), 1) induced by x and
w. After the end of the sumcheck protocol, the prover P′ learns r ∈ Cℓ and the verifier V′ learns
(r, v) ∈ Cℓ×C. (If the sumcheck verifier rejects, then V′ rejects.) The prover P′ computes and sends
w := Pm(r) ∈ M and U := Pck(r) ∈ K to the verifier V′. The verifier V′ computes Pck(r) ∈ K
The verifier V′ checks that ∥w∥M ≤ BC · (dck +1)ℓ γℓdckR ∥C∥ℓdckR , checks that fCM(w,U, 1) = v, and
checks that αsc(ck, w, r) = 1.

2. The prover PSCA computes

(h1, . . . , hδ2) := up1(ck) ∈ (Mn
L,2(B2))

δ2

h := ⟨ρ, up1(ck)⟩ ∈Mn
L,2(B2)

uj := Phj (r) ∈ML,2 for j ∈ [δ2]

u := Ph(r) ∈ML,2

κ := up1(U)− (u1, . . . , uδ2) ∈M δ2
L,2 ,

and sends ((h1, . . . , hδ2), (u1, . . . , uδ2), κ).

3. The verifier VSCA computes u := ⟨ρ, (u1, . . . , uδ2)⟩ ∈ML,2, and checks that

⟨ρ, (u1, . . . , uδ2)⟩ = ⟨ρ, up1(u)− κ⟩ ,

κ ∈ ker dn1 .

4. The prover PSCA and the verifier VSCA run PEVAL(ipkEVAL,xEVAL,wEVAL) and VEVAL(ivkEVAL,xEVAL) from
Construction 5.2 to prove that u = Ph(r) for

(pp′EVAL, iEVAL,xEVAL,wEVAL) :=
(
pp′EVAL, h, (∥C∥R, r, u), ∅

)
.

6.1 Proof of Theorem 6.2

Completeness, efficiency and communication follow directly from the corresponding properties of sumcheck
arguments and EVAL.

For the soundness, we combine the witness-extended emulation of SCA′ (Theorem 3.19) with the
soundness of EVAL (Theorem 5.4). Informally, the soundness of EVAL guarantees that if U ̸= Pck(r),
then the verifier accepts with probability at most ϵ0, and the guarantee of SCA′ states that the protocol has
witness-extended emulation with error ϵ1 given that U = Pck(r). Combining the two guarantees, we show
that SCA has witness-extended emulation with error ϵ0 + ϵ1.
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A subtle point in the proof is that the properties of the subprotocols hold with respect to the randomness
of CM.Setup(1λ, n) and V′, and the randomness of GEVAL(1

λ, 2n) and VEVAL, respectively. However, in
SCA, CM.Setup(1λ, n) and GEVAL(1

λ, 2n) are not run independently. To circumvent this issue, we notice
that the sequential composition has a special form that allows any adversary that breaks SCA with probability
more than ϵ0 + ϵ1 to be transformed directly into an adversary of EVAL with success probability more than
ϵ0 or of SCA′ with success probability more than ϵ1 by simulating the other subprotocol.
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7 Holographic polynomial IOPs over product rings

We construct holographic polynomial IOPs for the R1CS problem over a class of product rings, which
includes the cyclotomic rings used in many lattice-based cryptosystems. This is a necessary building block
for succinct, lattice-based arguments for R1CS as existing polynomial IOPs are defined over finite fields. Our
construction extends a holographic IOP for R1CS over finite fields to product rings.

Definition 7.1 (R1CS). The indexed relationRR1CS is the set of all triples

(pp, i,x,w) =
(
R•, (M,nrow, ncol, A,B,C), (nin, x), w

)
where R• is a ring, A,B,C are matrices in Rnrow×ncol• , each with at most M non-zero entries, x ∈ Rnin• ,
w ∈ Rncol−nin

• , and z := (x,w) ∈ Rncol• is a vector such that Az ◦ Bz = Cz. (Here “◦” denotes the
entry-wise product between two vectors.)

Theorem 7.2. For every ring R• such that R• ≃ Fk, and positive integer ℓ, there is a holographic polynomial
IOP over ring R•, with non-adaptive queries, for the indexed relation RR1CS that supports instances
over R• with M = m · 2ℓ, nrow = 2ℓ,ncol = 2ℓ and nin = 2tin , and has the following properties (with
N = max{nrow, ncol}):
• the soundness error is O((M +N)/|F|);
• the proof length is O(M +N) elements in R•, consisting of O(m) multilinear polynomials;
• the round complexity is O(log(M +N));
• the query complexity is O(1);
• the prover sends O(log(M +N)) non-oracle messages in R•;
• the indexer uses O(M) operations in R•;
• the prover uses O(N +M) operations in R•;
• the verifier uses O(nin +m+ logM) operations in R•.

Using Lemma 7.3, it is easy to see that Theorem 7.2 holds for cyclotomic rings of the form R• :=
Zp[X]/⟨Φd(X)⟩ for a prime p, which are used in cryptographic systems based on ideal lattices. Thus,
Theorem 7.2 can be used to construct proof systems about lattice-based cryptosystems.

Lemma 7.3. Let d ∈ N and let p be a prime which does not divide d and has order t in (Z/dZ)×. Let Φd(X)
be the d-th cyclotomic polynomial. Then the factors of Φd(X) modulo p are distinct and each has degree
equal to the order of p in (Z/dZ)×. Moreover, the ring Zp[X]/(Φd(X)) is isomorphic to Fϕ(d)/t

pt .

Lemma 7.3 follows from [Con13, Theorem 5.3] using the Chinese Remainder Theorem and standard facts
about finite fields.

7.1 Proof of Theorem 7.2

We prove Theorem 7.2 by mapping an R1CS instance over R• to k instances over F, and then using a result
on IOPs from [BCG20]. Since R• ≃ Fk, applying the isomorphism to each element of an R1CS instance
over R• maps the instance to k R1CS instances over F. The non-zero entries of the R1CS matrices from
these k R1CS instances over F are subsets of the non-zero entries of the R•-instance. Conversely, applying
the isomorphism in reverse, using e.g. the k (I, J)-th entries of matrices (Ai)i∈[k] over F to produce the
(I, J)-th entry of a matrix over R• gives an R1CS instance over R•.
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Theorem 7.4 ([BCG20, Theorem 6.1]). For every finite field F and positive integer ℓ, there is a holographic
polynomial IOP over ring F, with non-adaptive queries, for the indexed relation RR1CS that supports
instances over F with M = m · 2ℓ, nrow = 2ℓ,ncol = 2ℓ and nin = 2tin , and has the following properties
(with N = max{nrow, ncol}):
• the soundness error is O((M +N)/|F|);
• the proof length is O(M +N) elements in F, consisting of O(m) polynomials of degree at most O(2ℓ);
• the round complexity is O(log(M +N));
• the query complexity is O(1);
• the prover sends O(log(M +N)) non-oracle messages in F;
• the indexer uses O(M) field operations;
• the prover uses O(M +N) field operations;
• the verifier uses O(nin +m+ logN) field operations.

Theorem 7.4 was originally stated as a tensor query IOP, but immediately gives a polynomial IOP
for multilinear polynomials, since every tensor query in the [BCG20] construction can be rewritten as a
multilinear polynomial evaluation.

Theorem 7.2 follows by executing the polynomial IOP of Theorem 7.4 k times in a vectorized, SIMD
fashion over Fk with the same verifier randomness (over F) for each i ∈ [k]. This gives k polynomial IOP
executions over F which can then be mapped to a single polynomial IOP over R• via the isomorphism
between R• and Fk.

This is possible because the prover in Theorem 7.4 is the same in every copy of F, since most of the
polynomial IOP construction of [BCG20] can be modelled using arithmetic circuits over F. In a few places in
the construction proving Theorem 7.4, a linear scan, which is a non-algebraic operation, is applied to the
sparse representations of R1CS matrices over F. The structure of the result depends only on the positions of
the non-zero entries in the R1CS instance, and not the witness. We can always include some zero entries in
the sparse representations of the k R1CS instances over F so that all of them have the same support as the
original R1CS instance over R•. The prover algorithm will then perform the same operations in each of the k
copies of the proof.

The round complexity is directly inherited from Theorem 7.4. The alphabet changes to R•, so that the
proof length, query complexity, indexer, prover and verifier complexity are the same but measured over R•
instead of F. To determine the soundness error, note that given witnesses for the k instances over F, we could
apply the isomorphism to get a witness over R•. Conversely, if the R1CS instance over R• is unsatisfiable,
then there must be at least one derived R1CS instance over F which is unsatisfiable, in which case, the verifier
will reject with probability O((M +N)/|F|) by Theorem 7.4. Therefore, the soundness error over R• is also
equal to O((M +N)/|F|) and does not depend on k.
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8 Succinct verification for NP

We construct arguments for the R1CS problem with succinct verifier. Our main building blocks are a
polynomial IOP for R1CS instances over product rings (Section 7) and a polynomial commitment scheme
over rings with succinct verification (Section 8.1). In Section 8.2 we prove the following theorem.

Theorem 8.1 (formal restatement of Theorem 2). Let B⋆
i := 2ℓ−iγℓ−i+1

R ∥C∥ℓ−iR (1+γR∥C∥R)δi ·Bi, DLF,i :=
6γ2RD

3
i ι(C, 3)∥C∥R and µ ∈ N. Let LM = (LM.Setup, LM.KeyGen) be a leveled bilinear-module generator

for which it holds that ML,1 is a ring such that ML,1/I1 ∼= Fk
p for some k ∈ N and prime power p ∈ N.

There is a preprocessing argument of knowledge for R1CS over R• := ML,1/I1 with M = m · 2ℓ,
nrow = 2ℓ,ncol = 2ℓ and nin = 2tin , and has the following properties (with N = max{nrow, ncol}):

• Perfect completeness;

• Witness-extended emulation: if LM is ℓ-secure, elimination-friendly, and quotient-friendly, and for each
level i, it holds that BBRA,i ≥ B⋆

i · D
logn−i+1
LF,i , the argument has knowledge-soundness error O(2−µ +

log2(M+N)
|C| + M+N

p ) + negl(λ) for the relationRR1CS.

• Communication complexity: O(µ · log2(M+N)) elements in C, MR,i, MT,i, ML,i(B
⋆
i ), and ML,i+1(Bi+1)

for i ∈ [logN + 1];

• Round complexity: O(log2(M +N));

• Prover complexity: O(M + µ ·N) operations in MR,i, MT,i, ML,i(B
⋆
i ) and applications of ei and upi for

i ∈ [logN + 1];

• Verifier complexity: O(nin + µ · log2(M +N)) operations in MT,i, ML,i(∥C∥R · B⋆
i ), one norm-check

over ML,i and an application of the mappings upi and dni for each i ∈ [logM + 1], and one operation in
MR,logN+1.

Specializing to our lattice-based instantiation of leveled bilinear-modules gives the following corollary.

Corollary 8.2 (formal restatement of Theorem 1). Let µ ∈ N, R := Z[X]/⟨Φd(X)⟩ for d a prime power,
p a prime which does not divide t and has order t in (Z/dZ)×, and q > p. Assuming hardness of the
SIS problem over R/qR, there is a preprocessing argument of knowledge with transparent setup for R1CS
over R• := R/pR with instances of size N = 2ℓ with M = m · 2ℓ and nin = 2tin , which has knowledge-
soundness error O(2−µ + log2 N

d + N
pt ), round complexity O(log2N), communication complexity dominated

by O(µ · log2(M +N)) elements of R/qR, prover complexity dominated by O(M + µ ·N) operations in
R/qR, and verifier complexity dominated by O(nin + µ · log2(M +N)) operations in R/qR.

Proof. Following Section 4.1, there is a leveled bilinear-module for R = Z[X]/⟨Φd(X)⟩ for d a prime
power. Set Ii = pR. By Lemma 7.3, R• := R/pR is isomorphic to Fϕ(d)/t

pt and satisfies the conditions of
Theorem 8.1. The result follows.

Specializing to the instantiation of leveled bilinear-modules based on bilinear groups gives the following
corollary.
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Corollary 8.3. Let p be a prime, R := F the finite field with p elements, G0, G1 and GT be groups of order
p, and e : G0 × G1 → GT be a bilinear map. Assuming the hardness of SXDH, there is a preprocessing
argument of knowledge with transparent setup for R1CS over R• := F with instances of size N = 2ℓ

with M = m · 2ℓ and nin = 2tin , which has knowledge-soundness error O( log
2 N
p + N

p ), round complexity
O(log2N), communication complexity dominated by O(log2(M +N)) elements of F, prover complexity
dominated by O(M +N) operations in F, and verifier complexity dominated by O(nin + log2(M +N))
operations in F.

Proof. Following Section 4.1, e,G0,G1 and GT give a leveled bilinear-module for R = F. Set Ii = {0} so
that R• := R/{0} = F and satisfies the conditions of Theorem 8.1. The result follows.

8.1 Polynomial commitments

We modify the commitment scheme described in Construction 3.22 to produce a polynomial commitment
scheme whose evaluation algorithm has a succinct verifier.

Construction 8.4. Let LM = (LM.Setup, LM.KeyGen) be a leveled bilinear-module generator. The polyno-
mial commitment PC is defined via the following algorithms.

• PC.Setup(1λ, n): sample (M, aux)← LM.Setup(1λ, log n+ 1, 2n) and output ppCM := (M, aux).
• PC.KeyGen(ppCM, n): sample ck ← LM.KeyGen(M, n, aux) with n1 = n and ni = 0 for i > 1, and

output ck ∈Mn
R,1.

• PC.Commit(ck, P ): given P ∈ (ML,1/I1)
n, compute a representative P̃ ∈ Mn

L,1(B1) of P , such that
P = P̃ mod I1, and output cm := ⟨P̃ , ck⟩.

• PC.Open(ck, P , cm, P̃ , c): check that ck ∈ Mn
R , P ∈ (ML,1/I1)

n, P̃ ∈ Mn
L,1(BBRA,1), and c ∈ R such

that c · P = P̃ mod I1 and c · cm = ⟨P̃ , ck⟩.
• The interactive argument forRPC, PC-Eval = (G, I,P,V) is as follows:

– G outputs ppCM ← PC.Setup(1λ);

– I outputs ⊥;

– P and V run a sumcheck argument with succinct verifier (Construction 6.3) for the linear-function
commitment (

⊗logn
i=1 (1, zi), cm, v), where the short description of≪

⊗logn
i=1 (1, zi)≫= (z1, . . . , zlogn),

to show that cm = ⟨P̃ , ck⟩ and v = ⟨
⊗logn

i=1 (1, zi), P̃ ⟩ := P (z1, . . . , zlogn) mod I1.

Theorem 8.5. Assume that LM is (log n+ 1)-secure, PC is a computationally binding commitment scheme
such that

• the commitment key size is n elements of MR,1;

• computing PC.Commit requires n applications of e1 and O(n) operations in ML,1 and MT,1.

The preprocessing argument PC-Eval for PC satisfies the following properties:

• It has perfect completeness
• It has witness-extended emulation with knowledge error O(log2 n/|C|) if LM satisfies the conditions of

Theorem 5.4.
• Its communication complexity is the sum of the communication cost of sumcheck argument for LF (Theo-

rem 3.21) and the delegation protocol EVAL (Theorem 5.4);
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• Its prover (resp. verifier) complexity is equal to the sum of the prover (resp. verifier) complexity of the
sumcheck argument for LF (without the last verifier polynomial evaluation) and the prover (resp. verifier)
complexity of EVAL;

Proof. The binding property of the commitment scheme follows immediately from the security of LM. The
other properties follow from Theorem 6.2 instantiated with the parameters for sumcheck arguments for LF
(Theorem 3.21).

8.2 Sketch proof of Theorem 8.1

Theorem 7.2 gives a polynomial IOP for R1CS instances over R•. This polynomial IOP can be compiled into
a preprocessing argument using the polynomial commitment scheme as follows:

• the setup algorithm consists of the setup algorithm for the polynomial commitment scheme;

• the indexer algorithm runs the indexer algorithms for the polynomial commitment scheme and the polyno-
mial IOP, and computes commitments to each of the oracle messages produced by the indexer algorithm
for the polynomial IOP using the polynomial commitment scheme;

• the prover algorithm runs the polynomial IOP prover, committing to each oracle message using the
polynomial commitment scheme, answering polynomial evaluation queries directly and running the
PC-Eval prover algorithm for each evaluation query;

• the verifier algorithm runs the polynomial IOP verifier, and also checks each polynomial evaluation query
using the PC-Eval verifier algorithm.

Finally, by Theorem 8.5 there is a polynomial commitment scheme over R•. The result follows by
combining the efficiency parameters of the polynomial IOP from Theorem 7.2 with those of the polynomial
commitment scheme in Theorem 8.5.
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A Properties of sumcheck-friendly commitments

Definition A.1. A sumcheck-friendly commitment scheme CM is (K,BINV, D, ξ)-invertible if there exists
a polynomial-time inverter algorithm INV such that for every security parameter λ ∈ N, message length
n ∈ N, and polynomial-time algorithm A, the following experiment outputs 1 with probability 1− negl(λ).

1. Sample ppCM ← CM.Setup(1λ, n) and ck← CM.KeyGen(ppCM).
2. A(ppCM, ck) outputs

• an index i ∈ [ℓ];
• a challenge vector (r1, . . . , ri−1) ∈ Ci−1;
• distinct challenges r(1)i , . . . , r

(K)
i ∈ C;

• polynomials p1, . . . , pK ∈M[Xi+1, . . . , Xℓ];
• a polynomial Q(X) in C[X] of degree at most d⋆ck; and
• a slackness c ∈ Sck.

3. The experiment outputs 1 if and only if one of the following conditions hold:

• there exists j ∈ [K] such that D · ∥pj∥M > BINV;
• there exists j ∈ [K] such that pj is not ck-admissible for (r1, . . . , ri−1, r

(j)
i );

• there exists j ∈ [K] such that

ϕsc

Q(r
(j)
i ),

∑
ωi+1,...,ωℓ∈H

fCM

(
pj(ωi+1, . . . , ωℓ), Pck(r1, . . . , ri−1, r

(j)
i , ωi+1, . . . , ωℓ), c

)
, c

 = 1 ;

• INV(pp, ck,A(ppCM, ck)) outputs ck-admissible p ∈M[Xi, . . . , Xℓ] with ∥p∥M ≤ D·maxj∈[K] ∥pj∥M
such that

ϕsc

 ∑
ωi∈H

Q(ωi),
∑

ωi,...,ωℓ∈H
fCM

(
p(ωi, . . . , ωℓ), Pck(r1, . . . , ri−1, ωi, . . . , ωℓ), ξ · c

)
, ξ · c

 = 1 .
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[CLLT16] Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi. “Cryptanalysis of
GGH15 Multilinear Maps”. In: Proceedings of the 36th Annual International Cryptology Conference.
CRYPTO ’16. 2016, pp. 607–628.
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