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Abstract. In this work, we propose the notion of homomorphic indistinguishability obfuscation (HiO)
and present a construction based on subexponentially-secure iO and one-way functions. An HiO scheme
allows us to convert an obfuscation of circuit C to an obfuscation of C′ ◦C, and this can be performed
obliviously (that is, without knowing the circuit C). A naïve solution would be to obfuscate C′ ◦ iO(C).
However, if we do this for k hops, then the size of the final obfuscation is exponential in k. HiO ensures
that the size of the final obfuscation remains polynomial after repeated compositions. As an application,
we show how to build function-hiding hierarchical multi-input functional encryption and homomorphic
witness encryption using HiO.

1 Introduction

The goal of code obfuscation [5] is to compile programs such that the compiled version preserves functionality,
but is “maximally unintelligible.” Compared to traditional cryptographic notions like encryption which keep
data locked away in a non-functional way, obfuscation draws its power from allowing the obfuscated code
to be executable publicly. However, obfuscation does take away some functionality that unobfuscated code
provides, namely, the ability to modify the code. In this work, we investigate the notion of homomorphic
obfuscation that seeks to retain some of the functionality of modifying the code, while providing the protection
that obfuscation provides.

A version of this question was first studied by Ananth et al. [3] and Garg and Pandey [18], who intro-
duced the notions of patchable obfuscation and incremental obfuscation respectively (and these were further
explored in [1]). In these works, one uses a secret key associated with the obfuscated program to modify it.
While this is a remarkable feature, it is not comparable to the original feature of unobfuscated code whereby
anyone can publicly modify the code.

On the other hand, allowing anyone to modify the program in any manner they wish runs contrary to the
very notion of obfuscation. Indeed, by trying to change the (unobfuscated) code one bit at a time, one would
often be able to recover the entire code. As such, the only reasonable notion of homomorphic obfuscation
may appear to be to allow the use of a private key.

In this work, we take a different view of homomorphic obfuscation, that prioritizes the public nature
of code modification. But to not contradict the spirit of obfuscation, which allows only black-box access to
the obfuscated code, we require that the nature of modification should also be black-box. That is, the code
modifications we seek will invoke the original code as a black-box. An immediate solution then, is to first
construct a program that implements the modification by invoking the given obfuscated code rather than
the original code (which is not available), and then obfuscating this new program (since the modification
itself needs to be hidden). While this is perhaps reasonable for a single round of code modification, note
that it involves nesting obfuscations, and the size of the code grows exponentially as multiple rounds of code
modification are applied homomorphically to the original program.

This leaves us with the core technical challenge tackled in this work:

A homomorphic obfuscation scheme should allow one to iteratively apply black-box modifications to
an obfuscated program, retaining the security of the resulting programs as well as their polynomial
efficiency.

The security property we shall focus on is indistinguishability obfuscation (iO) [5, 19], which is by far the
most standard notion of obfuscation in the literature. Hence the security property we shall be interested in



for our primitive – called Homomorphic iO (HiO) – is as follows: Consider two obfuscated programs O′1,O′2
that are obtained after several (but equal number of) homomorphic transformations applied to two (possibly
different) obfuscated programs O1,O2; if O′1 and O′2 happen to be functionally equivalent, then they should
be indistinguishable from each other. Note that the pair of original programs, the intermediate programs, or
the transformations, need not be functionally equivalent.
A Motivating Application. Before proceeding further, we briefly discuss a motivating application of HiO.
Suppose Alice receives an obfuscation (iO) of a program that signs its inputs using a built-in signing key,
under a puncturable signature scheme.3 Now suppose she would like to hand out this signing key to Bob
after puncturing it at a few points. This new program can be implemented as a black-box transformation
of the original (unobfuscated) program. If the obfuscation scheme is an HiO scheme, Alice can create an
obfuscated version of the desired program by acting homomorphically on the obfuscated program that she
received, and hand it over to Bob. And further, Bob can repeat the same with Carol, and so forth. At any
point, someone receiving this obfuscated program cannot learn anything about the set of punctured points
other than its size and what they can learn from oracle access.

In the sequel, we shall formalize and realize this primitive as a new primitive called Puncture-Hiding
Incrementally Puncturable Signatures (PIPS).
Input-Based Output Transformations. For the ease of exposition, we shall first focus on a restricted form
of black-box transformations: We may transform a function f into a function that maps x to g(x, f(x)), where
g is an arbitrary function. Note that for the example above of PIPS, input-based output transformations are
already sufficient. Later, in Section 7 we generalize this to a circuit structure, where each node of the circuit
is a program.

1.1 Our Contributions

Our contributions are three-fold:

• We define the notion of Homomorphic indistinguishability Obfuscation (HiO) which extends iO with a
feature to incrementally modify the obfuscated program publicly (i.e., without a secret key). Indistin-
guishability of two obfuscated programs holds as long as functional equivalence holds at the end of the
two equally long chains of modifications, even if it does not at intermediate levels (Section 4).

• We present a construction for HiO assuming subexponentially-secure iO for all circuits and subexponentially-
secure one-way functions (Section 5).

• Finally, we present several applications of HiO:
– Function-hiding Hierarchical-MiFE. While both Hierarchical-MiFE [23] and function-hiding MiFE [2,

11] have been constructed in the literature, for the first time, by leveraging HiO, we give a single
construction that offers both these properties for MiFE (Section 6.1).

– Circuit-hiding Homomorphic Witness Encryption. Combining the features of Fully Homomorphic En-
cryption and Witness Encryption, we introduce the notion of Homomorphic Witness Encryption, and
provide a construction using HiO (Section 6.2).

– Puncture-hiding Incrementally Puncturable Signatures. We formalize the motivating example from the
Introduction in the form of this primitive and provide a construction using HiO (Section 6.3).

Extensions. We also generalize HiO so that the blackbox transformations supported is not limited to a
chain of circuits. In particular, we can support blackbox transformations in which a program can invoke
more than one obfuscated program (which may in turn be the result of a similar transformation), thereby
3 One scenario where iO of such a program is interesting is the following. One may want to delegate the ability
to sign all strings of a certain length, except a few secret strings (e.g., certain sensitive keys). While these bad
strings can be punctured out of the signing key, the punctured signing key will reveal them. On the other hand,
this program is functionally equivalent to another program that only carries point obfuscations of the bad strings
along with the the unpunctured signing key. By obfuscating this program then, one keeps the bad strings hidden,
while also making sure that they cannot be signed.
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yielding a tree or DAG composition structure. We show that our construction extends to this setting as well,
in Section 7.

While we restrict ourselves to circuits in this paper, we note here that our techniques can be implemented
in similar ways to the Turing Machine as well as RAM models of computation. For example, in order to
build HiO for TMs, one would simply need to start with iO for TMs [9, 13, 15, 25] and use the remanining
tools as is done in this paper.

1.2 Related Work

The notion of iO was introduced in [5] and has since been proven to be very powerful, with several applications
in cryptography and complexity theory [7, 19, 23, 27]. [8] show that any iO scheme can be converted to one
in which the size of the obfuscated circuit grows linearly with the size of the input circuit. This can be used
in our construction in Section 5 to get linearly growing size of the obfuscated chain in terms of sum of sizes
of each unobfuscated circuit in the chain. The notion of homomorphisms in cryptography has mainly been
considered with encryption [21, 26] but also for other primitives like zero-knowledge [4], signatures [24] and
secret-sharing schemes [10] among others. Non-compact function-private FHE schemes have been considered
in [17, 22].

A variant of obfuscation called patchable iO was introduced in [3]. The major difference between our
notion and their’s is that in their notion, the original obfuscator needs to provide “patches”, generated
using the randomness used to compute the initial obfuscation, which can then be applied by anybody to
the obfuscated circuit. As a result, the authors of that work call that notion as semi-private homomorphic
obfuscation whereas we are interested in obtaining public homomorphic obfuscation. Same goes for the notion
of incremental iO given in [18]. Both these works fall under the umbrella of cryptography with updates [1].

In this work, we give applications of HiO to add homomorphisms to the notions of function-hiding MiFE
and witness encryption. The notion of Multi-input Functional Encryption (MiFE) was introduced in [23].
This paper also mentioned the notion of Hierarchical-MiFE in a paragraph. In [2], the authors showed a
transformation from any secret-key MiFE scheme to a function-hiding MiFE scheme using ideas from [11].
The authors of [12] showed how to transform any public-key FE scheme to a hierarchical FE scheme, in the
single-input regime. The notion of witness encryption was introduced in the work of [20].

2 Technical Overview

Before describing our idea for the main construction, we first note that existing ideas in the literature might
not be enough to build HiO. For example, consider the FE to iO transformation of [2]. The way they achieve
this is by building a technique for arity amplification for a secret-key MiFE scheme and then using the
MiFE to iO transformation of [23] to achieve iO. The key ingredient for doing said arity amplification is the
ability to convert any MiFE scheme to a function-hiding version. If we were to use similar ideas for building
HiO starting from hierarchical FE, we would also need an analogous conversion from any hierarchical MiFE
scheme to a function-hiding hierarchical MiFE. It is not clear how to do this and in fact we show that this
could be seen as an application of HiO.

We also point out another approach, which directly relies on the following feature of MiFE. Consider a
multi-input function U(x1, . . . , xn) (each input being a single bit); given a function key for U , a ciphertext
for each position i ≤ s for zi ∈ {0, 1}, and two ciphertexts for each position i > s for both 0 and 1, one can
evaluate U(z1, . . . , zs, ys+1, . . . , yn) for any choice of ys+1, . . . , yn. Setting U to be a function which accepts
circuits C1, . . . , Ck and a string x and outputs Ck ◦ · · ·C1(x), one can turn this into a HiO scheme (see
Appendix A). But this construction, which could be seen as an extension of the iO construction from MiFE
in [23], has two serious limitations: Firstly, there is an a priori limit k on the number of homomorphic
transformations that can be applied that is set at the time of creating the first obfuscation. Secondly, the
size of even the first obfuscation, which encodes only C1, is as large as the final obfuscation (indeed, as the
transformations are applied the size slightly decreases each time).

The above construction could be termed “levelled HiO.” In the following we focus on the full-fledged
“unlevelled” version of HiO.
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2.1 Initial Idea

We start with a rather simplistic idea that avoids nested iO: to increment an obfuscation Ĉ1 of C1 to that of
C2 ◦ C1, simply output (Ĉ1, Ĉ2), where Ĉ2 is an independent obfuscation of C2. This simplistic idea would
retain indistinguishability between two chains of circuits (C0

1 , . . . , C
0
k) and (C1

1 , . . . , C
1
k) only if for each i,

C0
i and C1

i are functionally equivalent. One reason why this obfuscation does not meet the security goals of
HiO is that the intermediate results of a computation will be revealed. A natural approach to fix this issue
would be to use encryption to hide intermediate values, as shown in Figure 1. Furthermore, we will need each
obfuscated program (other than the first one) to identify and reject an input unless it has been generated
by the previous one. If we try to use a randomized (authenticated) encryption scheme, we would need to
use probabilistic iO [14] as the underlying circuit is now randomized; unfortunately, this approach fails due
to the seemingly unavoidable technical limitations of the known constructions of probabilistic iO [14]. An
alternative would be to use a deterministic encoding algorithm that offers hiding and authentication similar
to an encryption scheme, in a manner that facilitates the requisite hybrid arguments in the security proof.
As it turns out, the primitive Asymmetrically Constrainable Encryption (ACE) introduced by [15] fits our
requirements.

O1 Ok C

O1 EncEKOk DecDK C

Fig. 1. Basic idea for extending a chain of obfuscated circuits (O1, . . . , Ok) in our framework. Dashed boundary
represents an obfuscated circuit while solid boundary is for standard circuits. Curved arrows denote ciphertexts while
straight arrows denote plaintext values. Top figure represents the initial chain with C being the new circuit to be
added. Bottom figure represents the final chain (O1, . . . , Ok−1, Ôk, Ok+1), obtained after sampling an encryption
key-pair (EK,DK).

Asymmetrically Constrainable Encryption The notion of asymmetrically constrainable encryption
(ACE) was proposed by Canetti et al [15] for a similar problem - succinct garbling of Turing machines. In
this primitive, we have a setup algorithm outputting a master secret key, which can be used for generating
encryption and decryption keys. Given a master secret key and a set S, we can generate a constrained en-
cryption (resp. decryption) key EK{S} (resp. DK{S}). The set S specifies the ‘forbidden’ region, where
encryption/decryption does not work. The encryption algorithm is deterministic; it takes as input an encryp-
tion key and a message, and outputs a ciphertext. Similarly, the deterministic decryption algorithm takes as
input a decryption key and a ciphertext, and outputs a message. For correctness, we require that for any two
sets S, S′, if a message m /∈ S∪S′, then encryption of m using EK{S}, when decrypted using DK{S′}, pro-
duces m. In addition to the encryption being determinisitc, the ciphertexts are also ‘unique’ — if a message
m is encrypted using two different encryption keys EK{S} and EK{S′}, then the resuting ciphertexts are
identical (provided m /∈ S∪S′), and if two ciphertexts decrypt to the same value, then they must be equal. 4

For security, we require two properties. First, the punctured decryption keys should hide the constraint set.
More formally, an adversary should not be able to distinguish between DK{S0} and DK{S1}, even when
it is given various ciphertexts and encryption keys (provided the ciphertexts are for messages m /∈ S0∆S1

and the encryption key is for a set U such that S0∆S1 ⊆ U). Second, we require semantic security for the

4 This primitive has a few other correctness properties, which are described formally in Section 3.1.
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encryption — an adversary should not be able to distinguish between encryption of m0 and m1, even if it
is given various ciphertexts and encryption/decryption keys (provided the constraint sets for the encryption
and decryption keys contain both m0 and m1).

2.2 Warm-Up: A Weaker HiO

First we shall describe our construction and, as a warm-up, analyze it for a weaker security gurarantee,
where indistinguishability is guaranteed only when functional equivalence holds at each level of the chain of
compositions, instead of just at the end of the two chains. That is, in the security experiment the adversary
is allowed to only send two sequences of circuits

(
C0
i

)
i≤k,

(
C1
i

)
i≤k such that for all x ∈ {0, 1}n and all i ≤ k,

C0
i

(
C0
i−1
(
. . . C0

1 (x)
)
. . .
)

= C1
i

(
C1
i−1
(
. . . C1

1 (x)
)
. . .
)

It receives the homomorphic obfuscation of either
(
C0
i

)
i≤k or

(
C1
i

)
i≤k, and must guess which one was

obfuscated.
Our construction is simple to describe: obfuscation of Ck◦· · ·◦C1 consists of iO obfuscations of circuits Gi

which ACE-decrypt their input using one key, evaluate Ci on the result, and then ACE-encrypt the outcome
using another key. The exceptions are the first and last circuits in the sequence, which omit the decryption
and the encryption steps respectively, say, A1 and Bk respectively. The construction in fact involves one level
of nesting of iO: since Gi needs to be created without having direct access to the key used by Gi−1, it is in
fact created from the obfuscation of Bi (see Figure 1).

Now, to analyze this construction in the simplified setting, where we assume that functional equivalence
holds at each level in the chain, the “encryption” aspect of ACE is not critical (since the intermediate results
are identical in the two chains, and hence need not be hidden), but the authentication aspect is.

To argue security, we use a hybrid argument which goes over all input strings (thus leading to an expo-
nential loss in security). Let the jth hybrid be where each circuit Di in the chain has two circuits C0

i and C1
i

hardwired in it, and uses C0
i for all inputs x ≥ j and C1

i for all others. In order to move to the next hybrid,
we need to make the switch for input x = j from using C0

i to C1
i , in every circuit in the chain. In order to do

this, we will hardwire the output when x = j in the first circuit D0 as (j, y∗0 = C0
0 (j) = C1

0 (j)). In order to do
the same for the second circuit D1, we will need to puncture the decryption key DK0 on the set {(j, 6= y∗0)}
and then use the fact that such a key can never decrypt to a tuple belonging to this set. Furthermore, we
would first need to puncture the corresponding encryption key EK0 on some superset (say {(j, ∗)}) for the
argument to go through. Once we have punctured DK0, we could hardwire the corresponding ciphertext
output in D1 for x = j as (j, y∗1 = C0

1 ◦ C0
0 (j) = C1

1 ◦ C1
0 (j)).

Proceeding similarly, we would have hardwired the outputs for x = j in each circuit in the chain. Then
starting from the last circuit, we can start switching to using the circuit C1

i for x = j. Such a switch would
be possible due to functional equivalence at that level. This would have to be followed by unpuncturing the
decryption key first and then doing the same for the corresponding encryption key. In this way, we would
have made the desired switch in O(k) hybrids.

2.3 Full-fledged HiO

Now we consider the actual definition when functional equivalence is only assumed at the end. While the
construction remains the same as outlined above, we need a more careful proof of security. Thankfully, the
ACE scheme provides us with all the desired properties for us to complete our reasoning for this case too.
In particular, note that we never used ciphertext indistinguishability in the previous situation since there
wasn’t any need to hide the intermediate outputs, but we would need that property in this situation.

Proceeding similarly as before, we can start hardwiring the outputs α0
i = Enc(EKi, (j, y

0
i = C0

i ◦ · · · ◦
C0

0 (j))) for x = j inside each circuitDi, for i ∈ {0, . . . , k−1}. In order to do this, we would also have punctured
the encryption keys EKi on the set U = {(j, ·)} and the decryption keys DKi on the set S0

i = {(j, 6= y0i )}.
One could similarly hardwire the output (j, y0k) inside the circuit Dk for x = j. Note that y0k = y1k as
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functional equivalence holds at the very end. Our goal now is to switch to using C1
k for input x = j inside

the circuit Dk. Here we run into an issue. The decryption key DKk−1 is currently punctured on the set
S0
k−1 = {(j, 6= y0k−1)}. However, in order to make the switch to C1

k , we would need to change the puncturing
to the set S1

k−1 = {(j, 6= y1k−1 = C1
k−1 ◦ · · · ◦ C1

0 (j))}, and then use safety of constrained decryption for
functional equivalence. We cannot directly switch the puncturing from S0

k−1 to S1
k−1 since some message of

the set difference {(j, y0k−1), (j, y1k−1)} is available as a ciphertext in the system.
To solve this, we try to change the puncturing of DKk−1 from S0

k−1 to U so that we could switch
ciphertexts easily. These two decryption keys only differ on the tuple (j, y0k−1). We will have to handle this
case outside the decryption process inside circuit Dk. This is possible due to the uniqueness of ciphertext
property of the ACE scheme. In particular, only the ciphertext α0

k−1 could decrypt to such a tuple5. We
can hardwire this ciphertext inside Dk to give the same output as before and use decryption only for other
ciphertexts. This way we can make the puncturing change to U without affecting functional equivalence. Now
we can switch the hardwired ciphertexts inside Dk−1 and Dk from α0

k−1 to α1
k−1 = Enc(EKk−1, y

1
k−1) using

ciphertext indistinguishability. This is followed by changing puncturing of DKk−1 from U to S1
k−1, removing

the hardwired ciphertext α1
k−1 from Dk and then switching to C1

k for x = j. The rest of the argument goes
along the ideas presented earlier.

2.4 Application: Function-Hiding Hierarchical-MiFE

As an illustration of the power of HiO, we use it to give the first construction of a function-hiding Hierarchical-
MiFE scheme. The notion of MiFE, introduced in [23], is a stronger functional encryption primitive allowing
multiple parties to encrypt different messages which could be decrypted together using a function key to get
the output. The authors showed that secret-key MiFE suffices to construct iO, which in turn is sufficient to
construct even public-key MiFE, thus implying that these two notions are equivalent. Moreover, the authors
mentioned a seemingly stronger notion of Hierarchical-MiFE which allows anyone with access to a function
key skf to further delegate this with any function f ′ to obtain a new key skf ′◦f which could be used to
compute the function f ′ ◦ f. Furthermore, one could delegate any number of times.

While the authors did not give any construction of the primitive, similar notions for the weaker primitive
of functional encryption have been considered previously. In particular, [12] showed that any FE scheme
could be used to construct a hierarchical FE scheme. Similar ideas could be used to construct Hierarchical-
MiFE from any MiFE scheme. We consider the even stronger notion of function-hiding Hierarchical-MiFE
where the function key hides the function(s) that are being computed by that key. While function-hiding is
not natural for functional encryption in the public-key setting, it is well-motivated in the secret-key setting.
Indeed, in the non-hierarchical setting, [2] showed that any MiFE can be used to construct a function-hiding
MiFE scheme. But their techniques do not extend to the hierarchical setting, and no construction has been
provided for function-hiding Hierarchical-MiFE yet.

We show that any HiO scheme could be used to amplify a function-hiding MiFE scheme to a function-
hiding Hierarchical-MiFE scheme. The construction is quite simple: instead of outputting a standard function-
key, we output an HiO obfuscation of a circuit D which has skf hardwired inside it and decrypts the input
ciphertexts (ct1, . . . , ctn) using this key to produce its output. For delegation, we use HiO composition to
compose the current function key (which is an obfuscated circuit) with a new function f ′ (or its circuit
representation Cf ′) to get a new obfuscated circuit. Decryption would evaluate this obfuscated circuit on
the ciphertexts and get the output.

To argue security of this construction, one starts with the real H-MiFEexperiment where the challenger
chooses bit b as 0 and provides outputs to the adversary. In particular, for function query

(
(f00 , . . . , f

0
k ), (f10 , . . . , f

1
k )
)
,

5 While uniqueness of ciphertexts is defined w.r.t. an unpunctured decryption key, we can prove that the statement
still holds in our situation in presence of the punctured key DKk−1{S0

k−1}. This further uses the equivalence of
constrained decryption and safety of constrained decryption properties. In particular, for messages in the punctured
set, the punctured key always outputs ⊥ while for other messages, it behaves identically to the unpunctured key
and hence uniqueness of ciphertexts can be used.
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the challenger computes sk(k)f where

sk
(0)
f ← HiO.Obfuscate(1λ, Dsk

f0
0

),

sk
(j)
f ← HiO.Compose(sk

(j−1)
f , Cf0

j
) for j ∈ {1, . . . , k},

where the circuits D and C have been described previously. Using HiO security, we could directly switch to

sk
(0)
f ← HiO.Obfuscate(1λ, CId),

sk
(j)
f ← HiO.Compose(sk

(j−1)
f , CId) for j ∈ {1, . . . , k − 1},

sk
(k)
f ← HiO.Compose(sk

(k−1)
f , Dsk

f0
k
◦···◦f0

0

),

where Id denotes the identity function, as the two chains are functionally equivalent. Now the only parameters
of interest are the MiFE key skf0

k◦···◦f
0
0
and the MiFE ciphertexts which could be switched from b = 0 to

b = 1 directly while using the function-hiding property of MiFE. This concludes our overview.

3 Preliminaries

In this section we recall the definitions of cryptographic primitives employed in our constructions.

3.1 Asymmetrically Constrainable Encryption (ACE)

This primitive was defined and constructed by Canetti et al. [15].
LetM denote the message space. An asymmetrically constrainable encryption scheme overM consists

of five polynomial-time algorithms Setup, GenEK, GenDK, Enc and Dec, described as follows. Setup, GenEK
and GenDK are randomized algorithms, but Enc and Dec are deterministic.

– Setup: Setup(1λ) is a randomized algorithm that takes as input a security parameter λ, and outputs a
secret key SK.

– (Constrained) Key Generation: Let S ⊂ M be any set whose membership is decidable by a circuit
CS . That is, CS mapsM→ {0, 1} and CS(m) = 1 if and only if m ∈ S.
• GenEK(SK,CS) takes as input the secret key SK of the scheme and the description of circuit CS for

an admissible set S. It outputs an encryption key EK{S}. We write EK to denote EK{∅}.
• GenDK(SK,CS) also takes as input the secret key SK of the scheme and the description of circuit CS

for an admissible set S. It outputs a decryption key DK{S}. We write DK to denote DK{∅}.
Unless mentioned otherwise, we will only consider admissible sets S ⊂M.

– Encryption: Enc(EK ′,m) is a deterministic algorithm that takes as input an encryption key EK ′ (that
may be constrained) and a message m ∈M and outputs a ciphertext c or reject symbol ⊥.

– Decryption: Dec(DK ′, c) is a deterministic algorithm that takes as input a decryption key DK ′ (that
may be constrained) and a ciphertext c and outputs a message m ∈M or the reject symbol ⊥.

Correctness. An ACE scheme is correct if the following properties hold:

1. Correctness of Decryption: For all n, all m ∈M, all sets S, S′ such that m /∈ S ∪ S′,

Pr

m
′ = m

SK ← Setup(1λ),

EK ← GenEK(SK,CS′),

DK ← GenDK(SK,CS),

c := Enc(EK,m),

m′ := Dec(DK, c)

 = 1.

Informally, this says that Dec ◦Enc is the identity on messages which are in neither of the punctured sets.
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2. Equivalence of Constrained Encryption: For any message m ∈M and any sets S, S′ ⊂M with m not in
the symmetric difference S4S′,

Pr

 c = c′

SK ← Setup(1λ),

EK ← GenEK(SK,CS),

EK ′ ← GenEK(SK,CS′),

c := Enc(EK,m),

c′ := Enc(EK ′,m)

 = 1.

Informally, this says that punctured encryption keys are functionally the same except on the difference of
the sets at which they are punctured.

3. Unique Ciphertexts: For all strings c and c′,

Pr

 c = c′
SK ← Setup(1λ),

DK ← GenDK(SK, ∅),
Dec(DK, c) = Dec(DK, c′) 6= ⊥

 = 1.

Informally, this says that two different ciphertexts cannot decrypt to the same message.
4. Safety of Constrained Decryption: For all strings c, all sets S ⊂M,

Pr

[
Dec(DK{S}, c) ∈ S

SK ← Setup(1λ),

DK{S} ← GenDK(SK,CS),

]
= 0.

This says that a punctured DK{S} will never decrypt to a message in S. Furthermore, for all messages
m ∈ S,

Pr

Dec(DK{S}, c) = ⊥

SK ← Setup(1λ),

EK ← GenEK(SK, ∅),
DK{S} ← GenDK(SK,CS),

c := Enc(EK,m)

 = 1.

This says that for ciphertexts encoding messages belonging to the punctured set, the punctured decryption
key always outputs ⊥.

5. Equivalence of Constrained Decryption: For any subsets S and S′ of M, if Dec(DK{S}, c) = m 6= ⊥
and m /∈ S′, then Dec(DK{S′}, c) = m. Informally, this says that punctured decryption keys differ in
functionality only when necessary.

Security of Constrained Decryption. Intuitively, this property says that for any two sets S0 and S1,
no adversary can distinguish between the constrained keys DK{S0} and DK{S1}, even given additional
auxilliary information in the form of a constrained encryption key EK ′ and ciphertexts c1, . . . , ct. To rule
out trivial attacks, EK ′ is constrained at least on S04S1. Similarly, each ci is an encryption of a message
mi /∈ S04S1.

Formally, we describe security of constrained decryption as a multi-stage game between an adversary A
and a challenger.

– Setup: A choose sets S0, S1, U s.t. S04S1 ⊆ U ⊆ M and sends their circuit descriptions (CS0
, CS1

, CU )
to the challenger. A also sends arbitrary polynomially many messages m1, . . . ,mt such that mi /∈ S04S1.

The challenger chooses a bit b ∈ {0, 1} and computes the following:
1. SK ← Setup(1λ)

2. DK{Sb} ← GenDK(SK,CSb
)

3. EK ← GenEK(SK, ∅)
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4. ci := Enc(EK,mi), for every i ∈ [t]

5. EK{U} ← GenEK(SK,CU )
Finally, it sends the tuple (EK{U}, DK{Sb}, c1, . . . , ct) to A.

– Guess: A outputs a bit b′ ∈ {0, 1}.

The advantage of A in this game is defined as AdvA = Pr[b′ = b]− 1
2 . We require that AdvA ≤ negl(λ).

Selective Ciphertext Indistinguishability. Intuitively, this property says that no adversary can dis-
tinguish between encryptions of m0 from encryptions of m1, even given additional auxilliary information.
The auxilliary information corresponds to constrained encryption and decryption keys EK ′, DK ′, as well as
ciphertexts c1, . . . , ct. In order to rule out trivial attacks, EK ′ and DK ′ should both be punctured on at
least {m0,m1}, and none of c1, . . . , ct should be an encryption of m0 or m1.

Formally, we require that for all sets S,U ⊂ M, for all m∗0,m∗1 ∈ S ∩ U, and for all m1, . . . ,mt ∈
M \ {m∗0,m∗1},

(EK{S}, DK{U}, c∗0, c1, . . . , ct) ≈ (EK{S}, DK{U}, c∗1, c1, . . . , ct),
when we sample SK ← Setup(1λ), EK ← GenEK(SK, ∅), EK{S} ← GenEK(SK,CS), DK{U} ← GenDK(SK,CU ), c∗b ←
Enc(EK,m∗b), and ci ← Enc(EK,mi).

The authors of [15] gave a construction of this primitive assuming iO and one-way functions, as mentioned
in the following theorem.

Theorem 1 ([15]). Assuming subexponentially-secure indistinguishability obfuscation for all circuits and
subexponentially-secure one-way functions, there exists a secure ACE scheme.

3.2 Multi-Input Functional Encryption (MiFE)

The notion of MiFE was introduced in [23]. A private-key MiFE scheme for n-ary functions in the space F
consists of the following algorithms:

– Setup(1λ, n) is a PPT algorithm that takes as input the security parameter λ and the function arity n,
and outputs a master secret key msk.

– KeyGen(msk, f) is a PPT algorithm that takes as input the master secret key msk and a function f ∈ F ,
and outputs a functional key skf .

– Enc(msk,m, i) is a PPT algorithm that takes as input the master secret key msk, a message m and an
index i ∈ [n], and outputs a ciphertext ct.

– Dec(skf , {ct(i)}i∈[n]) is a deterministic algorithm that takes as input a functional key skf and n ciphertexts
{ct(i)}i∈[n], and outputs a value y.

We need the following properties from the scheme:

– Correctness: There exists a negligible function6 negl(·) such that for all sufficiently large λ ∈ N, every
n-ary function f ∈ F , and input tuple (x1, . . . , xn), it holds that

Pr
[
Dec(skf , {ct(i)}i∈[n]) 6= f(x1, . . . , xn)

]
≤ negl(λ)

where the probability is taken over the random choices of the following algorithms:msk← Setup(1λ), skf ←
KeyGen(msk, f) and ∀i ∈ [n] : ct(i) ← Enc(msk, xi, i).

– Security: A secret-key MiFE scheme, for n-ary functions in F , is (1, qmsg)-secure if for any PPT adversary
A, there exists a negligible function negl(·) such that for all sufficiently large λ ∈ N, the advantage of A is

AdvMiFE
A =

∣∣∣Pr[ExpMiFE
A (1λ, 0) = 1]− Pr[ExpMiFE

A (1λ, 1) = 1]
∣∣∣ ≤ negl(λ),

where for each b ∈ {0, 1} and λ ∈ N, the experiment ExpMiFE
A (1λ, b) is defined below:

6 Alternately, we could also talk about a notion which satisfies perfect correctness, in which case negl would be the
zero-function.
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1. Challenge message queries: A submits qmsg queries,
{(

(xj1,0, x
j
1,1), . . . , (xjn,0, x

j
n,1)
)}

j∈[qmsg]
, to the

challenger C.
2. C computes msk← Setup(1λ). It then computes ctji ← Enc(msk, xji,b) for all i ∈ [n] and j ∈ [qmsg]. The

challenger then sends
{(

ctj1, . . . , ct
j
n

)}
j∈[qmsg]

to the adversary A.

3. Function query: A submits a function query f to C. If f /∈ F , the challenger aborts. Otherwise, it
computes skf ← KeyGen(msk, f), and sends skf to A.

4. If there exists a sequence7 (j1, . . . , jn)ji∈[qmsg] such that

f(xj11,0, . . . , x
jn
n,0) 6= f(xj11,1, . . . , x

jn
n,1),

then the output of the experiment is set to ⊥. Otherwise, the output of the experiment is set to b′,
where b′ is the output of A.

The authors of [23] showed that this primitive is equivalent to any iO scheme.

Theorem 2 ([23]). Assuming indistinguishability obfuscation for all circuits and one-way functions, there
exists a secure MiFE scheme.

3.3 Indistinguishability Obfuscation

An iO scheme consists of the following algorithms:

– Obfuscate(1λ, C): The algorithm Obfuscate takes as input a security parameter λ and a circuit C, and
outputs an obfuscated circuit Ĉ.

– Eval(Ĉ, x): The algorithm Eval takes as input an obfuscated ciruit Ĉ and an input string x, and outputs
a string y.

The scheme must satisfy the following properties:

– Functionality: For any positive integer λ, circuit C, and input x,

Pr
[
Ĉ ← Obfuscate(1λ, C) | Eval(Ĉ, x) = C(x)

]
= 1.

– Indistinguishability: For any positive integer λ and circuits C0, C1 such that |C0| = |C1| and C0 ≡ C1,
then it holds that

Obfuscate(1λ, C0) ≈ Obfuscate(1λ, C1).

– Efficiency: There exists a polynomial function poly such that for any positive integer λ and circuit C, if
Ĉ ← Obfuscate(1λ, C) then it holds that |Ĉ| ≤ poly(|C|, λ).

4 Homomorphic iO

A scheme HiO is said to be a homomorphic indistinguishability obfuscation scheme if it consists of the
following algorithms:

– Obfuscate(1λ, C): The algorithm Obfuscate takes as input a security parameter λ and a circuit C, and
outputs an obfuscated circuit Ĉ.

7 We need this complicated check in MiFE type primitives because the adversary could mix up ciphertexts from
different queries, and decrypt them using the functional key, without any trouble.
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– Eval(Ĉ, x): The algorithm Eval takes as input an obfuscated ciruit Ĉ and an input string x, and outputs
a string y.

– Compose(Ĉ, C ′): The algorithm Compose takes as input an obfuscated circuit Ĉ and a circuit C ′, and
outputs an obfuscated circuit Ĉ ′.

The scheme must satisfy the following properties:

– Homomorphic Functionality: For any positive integers λ, k ≥ 0, circuits C0, . . . , Ck, and input x,

Pr[ Eval(Ĉ, x) = Ck ◦ · · · ◦ C0(x) ] = 1,

where the probability is taken over the randomness used in algorithms Compose and Obfuscate in the
computation of

Ĉ ← Compose(· · ·Compose(Obfuscate(1λ, C0), C1), · · · ), Ck).

– Homomorphic Indistinguishability: For any positive integers λ, k ≥ 0, any circuits C0
0 , . . . , C

0
k , C

1
0 , . . . , C

1
k ,

such that |C0
i | = |C1

i | for all i ∈ {0, . . . , k} and

C0
k ◦ · · · ◦ C0

0 ≡ C1
k ◦ · · · ◦ C1

0 ,

then it holds that
Compose(· · ·Compose(Obfuscate(1λ, C0

0 ), C0
1 ), · · · ), C0

k)

≈

Compose(· · ·Compose(Obfuscate(1λ, C1
0 ), C1

1 ), · · · , C1
k).

– Homomorphic Efficiency: There exists a polynomial function poly such that for any positive integers
λ, k ≥ 0, and circuits C0, . . . , Ck if

Ĉ ← Compose(· · ·Compose(Obfuscate(1λ, C0), C1), · · · ), Ck),

then it holds that |Ĉ| ≤ poly(|C0|, . . . , |Ck|, λ).

Remark. We note that a stronger definition could have been stated where we demand that a homomorphi-
cally obfuscated circuit is indistinguishable from a fresh obfuscation of the underlying final circuit. In other
words, for any k ≥ 0, and for any circuits C0, . . . , Ck, it should hold that

Compose(· · ·Compose(Obfuscate(1λ, C0), C1), · · · ), Ck) ≈ Obfuscate(1λ, Ck ◦ · · · ◦ C0).

This definition is stronger in the sense that it implies the original one stated above. We note that there
is a trivial way to convert any HiO scheme satisfying the original definition to one satisfying this stronger
definition. The way this could be achieved is to define the new Obfuscate algorithm to break its input circuit
into all its individual parts, in case the input circuit could be written as a chain of multiple circuits, and
then use the original obfuscation algorithm on the first circuit followed by composing obfuscations on the
remaining circuits in order.

5 HiO from iO and ACE

In this section, we show a construction of HiO from subexponentially-secure iO and subexponentially-secure
one-way functions. The way we solve this is by interleaving encryption-decryption algorithms of an ACE
scheme in between the two composed circuits and separately obfuscating both.
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5.1 Our Construction

Our construction uses a standard iO scheme iO = (iO.Obfuscate, iO.Eval) and an ACE scheme ACE =
(Setup,GenEK,GenDK,Enc,Dec).

Obfuscate(1λ, C):

1. Compute D̂ ← iO.Obfuscate(1λ, C) and output D̂.
Eval(D̂, x):

1. Parse D̂ as (D̂0, . . . , D̂k), for some k ≥ 0.

2. Set y0 := x. For j = 0 to k : compute yj+1 := iO.Eval(D̂j , yj).

3. If k = 0, output y1. Otherwise, parse yk+1 as (x, y) and output y.
Compose(D̂, C ′):

1. Parse D̂ as (D̂0, . . . , D̂k), for some k ≥ 0.

2. Sample SK ← Setup(1λ). Further, sample keys EK ← GenEK(SK, ∅) and DK ← GenDK(SK, ∅).
3. If k = 0, compute D̂′k ← iO.Obfuscate(1λ, A[D̂k, EK]) where A has been described in Figure 2. Other-

wise, compute D̂′k ← iO.Obfuscate(1λ, G[D̂k, EK]) where G has been described in Figure 3.
4. Compute D̂k+1 ← iO.Obfuscate(1λ, B[C ′, DK]), where B has been described in Figure 4.
5. Output (D̂0, . . . , D̂k−1, D̂

′
k, D̂k+1).

Hardcoded-values: Ĉ, EK.

Input: x.

1. Compute y := iO.Eval(Ĉ, x).

2. Compute α := Enc(EK, (x, y)).

3. Output α.

Fig. 2. Circuit A

Hardcoded-values: Ĉ, EK.

Input: α.

1. If α = ⊥, then output ⊥. Otherwise, proceed as follows.
2. Compute t := iO.Eval(Ĉ, α).

3. If t = ⊥, output ⊥. Otherwise, proceed as follows.
4. Compute α′ := Enc(EK, t).

5. Output α′.

Fig. 3. Circuit G
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Hardcoded-values: C,DK.

Input: α.

1. If α = ⊥, then output ⊥. Otherwise, proceed as follows.
2. Compute t := Dec(DK,α).

3. If t = ⊥, then output ⊥. Otherwise, parse t as (x, y) and proceed as follows.
4. Compute y′ := C(y).

5. Output (x, y′).

Fig. 4. Circuit B

Correctness. Correctness of the above scheme follows in a straightforward manner from correctness of iO
and that of ACE .
Efficiency. Our scheme is efficient because we are not using k layers of iO to compose a chain of k circuits.
In fact, we are using 2 layers of iO for the intermediate circuits and only a single layer for the end-points
of an obfuscated chain. Moreover, using the iO scheme of [8], we can get the size of the composed circuit as
O(|C0|+ . . .+ |Ck|) + poly(λ).

5.2 Proof of Security

Theorem 3 (HiO). Assuming a subexponentially-secure indistinguishability obfuscation scheme for all cir-
cuits and a subexponentially-secure ACE scheme, the scheme given in Section 5 is a secure HiO scheme
supporting arbitrary number of hops.

Proof: Let X denote the input space supported by the obfuscation scheme. The notation D̂ is used to
denote an obfuscated version of the circuit D. The proof follows by a hybrid argument. We will consider the
argument for k hops. Hence, given circuits C0

0 , . . . , C
0
k , C

1
0 , . . . , C

1
k , such that

C0
k ◦ · · · ◦ C0

0 ≡ C1
k ◦ · · · ◦ C1

0

then it should be the case that

Compose(· · ·Compose(Obfuscate(1λ, C0
0 ), C0

1 ), · · · ), C0
k)

≈

Compose(· · ·Compose(Obfuscate(1λ, C1
0 ), C1

1 ), · · · ), C1
k)

I Hybrid FIRST. This is the first distribution in the above indistinguishability equation. First we define
k + 1 circuits D0, . . . , Dk

8 as follows:
• Let SK ← Setup(1λ). Further, sample EKi ← GenEK(SK, ∅) and DKi ← GenDK(SK, ∅) for i ∈ [0, k].
D0 is A[Ĉ0

0 , EK0], where Ĉ denotes an obfuscation of the circuit C.
• For i ∈ {1, . . . , k − 1}, Di is the same as G[F̂i, EKi] where Fi is B[C0

i , DKi−1].

• Dk is B[C0
k , DKk−1].

The hybrid output consists of k + 1 obfuscated circuits D̂0, . . . , D̂k such that

D̂i ← iO.Obfuscate(1λ, Di),

for all i ∈ {0, . . . , k}.
8 All circuit descriptions are padded appropriately so that the corresponding circuit sizes are same across all hybrids.
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I Hybrid H ′0. Let this be the hybrid where we change every circuit to a functionally equivalent but simpler
form:
• D0 is now A2[C0

0 , EK0] where A2 has been described in Figure 5.
• For i ∈ {1, . . . , k − 1}, Di is now G2[C0

i , DKi−1, EKi], where G2 is described in Figure 6.
• Dk is same as B[C0

k , DKk−1].

Hardcoded-values: C,EK.

Input: x.

1. Compute y := C(x).

2. Compute α := Enc(EK, (x, y)).

3. Output α.

Fig. 5. Circuit A2

Hardcoded-values: C,DK , EK′.

Input: α.

1. If α = ⊥, then output ⊥. Otherwise, proceed as follows.

2. Compute t := Dec(DK,α).

3. If t = ⊥, then output ⊥. Otherwise, parse t as (x, y) proceed as follows.

4. Compute y′ := C(y).

5. Compute α′ := Enc(EK′, (x, y′)) .

6. Output α′.

Fig. 6. Circuit G2

Roughly, we have opened up the internal obfuscated circuits so that there are standard circuits inside
every obfuscated circuit in the chain. Indistinguishability between FIRST and H ′0 follows by using iO
correctness and iO indistinguishability.

Lemma 1. Assuming security and correctness of iO, hybrids FIRST and H ′0 are computationally indis-
tinguishable.

Proof: We can prove indistinguishability via a sequence of sub-hybrids where in the ith sub-hybrid, we
change the circuit D̂i in the chain from that in FIRST to that in H0. Let us focus on the first sub-hybrid
which only changes D0 from A[Ĉ0

0 , EK0] to A2[C0
0 , EK0]. Functional equivalence for these 2 circuits

follows from iO correctness. Indistinguishability of the 2 sub-hybrids follows from iO security. One can
similarly argue for the remaining sub-hybrids. �

Next, we present |X |+ 1 hybrids Hj for each j ∈ {0, . . . , |X |}.
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I Hybrid Hj. For every j ∈ {0, . . . , |X |}, we will define the hybrid Hj . It consists of a chain of k + 1

obfuscated circuits D̂0, . . . , D̂k defined as follows:
• D0 is now A3[j, C0

0 , C
1
0 , EK0] where A3 has been described in Figure 7.

• For i ∈ {1, . . . , k − 1}, Di is now G3[j, C0
i , C

1
i , DKi−1, EKi], where G3 is described in Figure 8.

• Dk is same as B2[j, C0
k , C

1
k , DKk−1], where B2 has been described in Figure 9.

Hardcoded-values: j, C0, C1 , EK.

Input: x.

1. If x ≥ j, compute y := C0(x). Else, compute y := C1(x).

2. Compute α := Enc(EK, (x, y)).

3. Output α.

Fig. 7. Circuit A3

Hardcoded-values: j, C0, C1 , DK,EK′.

Input: α.

1. If α = ⊥, output ⊥. Otherwise, proceed as follows.
2. Compute t := Dec(DK,α).

3. If t = ⊥, output ⊥. Otherwise, parse t as (x, y) and proceed as follows.

4. If x ≥ j, compute y′ := C0(y). Else, compute y′ := C1(y).

5. Compute α′ := Enc(EK′, (x, y′)).

6. Output α′.

Fig. 8. Circuit G3

Lemma 2. Assuming iO is a secure indistinguishability obfuscator, hybrids H ′0 and H0 are computation-
ally indistinguishable.

Proof: Note that the only change in these 2 hybrids is that each Di has an extra circuit C1
i hardwired

in it which is never being used. Hence, functional equivalence of the corresponding circuits would imply
indistinguishability by iO security. �

Lemma 3. For any j < |cX|, hybrids Hj and Hj+1 are computationally indistinguishable.

The proof of this lemma is included in Section 5.2.1.

I SECOND. This is the second distribution in the main indistinguishability equation. First we define k+1
circuits D0, . . . , Dk as follows:
• Let SK ← Setup(1λ). Further, sample EKi ← GenEK(SK, ∅) and DKi ← GenDK(SK, ∅) for i ∈ [0, k].
D0 is A[Ĉ1

0 , EK0].
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Hardcoded-values: j, C0, C1 , DK.

Input: α.

1. If α = ⊥, output ⊥. Otherwise, proceed as follows.
2. Compute t := Dec(DK,α).

3. If t = ⊥, output ⊥. Otherwise, parse t as (x, y) and proceed as follows.

4. If x ≥ j, compute y′ := C0(y). Else, compute y′ := C1(y).

5. Output (x, y′).

Fig. 9. Circuit B2

• For i ∈ {1, . . . , k − 1}, Di is the same as G[F̂i, EKi] where Fi is B[C1
i , DKi−1].

• Dk is B[C1
k , DKk−1].

The hybrid output consists of k + 1 obfuscated circuits D̂0, . . . , D̂k such that

D̂i ← iO.Obfuscate(1λ, Di),

for all i ∈ {0, . . . , k}.

Lemma 4. Assuming the correctness and security of iO, the hybrids H|X | and SECOND are computa-
tionally indistinguishable.

Proof: This proof is similar to the indistinguishability of hybrids FIRST and H ′0. �

This concludes the proof of our main theorem.

�

5.2.1 Proof of Lemma 3

Proof: We will prove this lemma via a sequence of hybrid experiments.

– H0,0
j . This is the same as Hj .

– H0,1
j . In this hybrid, we change the circuit D0 so that it has a hardwired ciphertext for x = j. In other

words, D0 is now A4[j, C0
0 , C

1
0 , EK0, α

0
0], where α0

0 is the hardwired ciphertext output Enc(EK0, (j, y
0
0 =

C0
0 (j))), and A4 has been described in Figure 10.

Claim 1. Assuming iO is a secure indistinguishability obfuscator, hybrids H0,1
j and H0,0

j are computa-
tionally indistinguishable.

– H0,2
j . In this hybrid, we change the underlying encryption key EK0 in D0 to now be punctured over the

set U = {(j, ·)}.

Claim 2. Assuming iO is a secure indistinguishability obfuscator, and ACE satisfies Equivalence of Con-
strained Encryption, hybrids H0,1

j and H0,2
j are computationally indistinguishable.

Proof: Indistinguishability follows by using iO security as the underlying circuits are functionally equiva-
lent. This is because for x = j, we are not using the encryption key and are instead using the hardwired
ciphertext. For all other x 6= j, the underlying message does not belong to the punctured set and hence
the punctured key behaves identically to the unpunctured one. �
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Hardcoded-values: j, C0, C1, EK, α∗

Input: x.

1. If x = j, output α∗. Else,

(a) If x > j, compute y := C0(x). For x < j, compute y := C1(x).

(b) Compute α := Enc(EK, (x, y)).

(c) Output α.

Fig. 10. Circuit A4

– H0,3
j . In this hybrid, we change the decryption key DK0 inside D1 so that now it is punctured over the

set S0
0 = {(j, 6= y00)}.

Claim 3. Assuming ACE satisfies Security of Constrained Decryption, hybrids H0,2
j and H0,3

j are com-
putationally indistinguishable.

Proof: We can make this change because
• The set U over which the corresponding encryption key EK0 is punctured is a superset of the set
S0
04∅ = S0

0 .
• The only available ciphertext generated using EK0 does not belong to the set S0

04∅ = S0
0 i.e., it is

actually of the form (j, y00).
Indistinguishability follows from the security of constrained decryption in ACE scheme. �

– H1,1
j . In this hybrid, we change the circuit D1 so that now it has a hardwired ciphertext for the case

when x = j. In other words, D1 is now G4[j, C0
1 , C

1
1 , DK0{S0

0}, EK1, α
0
1], where α0

1 = Enc(EK1, (j, y
0
1 =

C0
1 ◦ C0

0 (j))), and G4 has been described in Figure 11.

Hardcoded-values: j, C0, C1, DK,EK′, α∗

Input: α.

1. If α = ⊥, output ⊥. Otherwise, proceed as follows.
2. Compute t := Dec(DK,α).

3. If t = ⊥, output ⊥. Otherwise, parse t as (x, y) and proceed as follows.

4. If x = j, then output α∗. Else,

(a) If x > j, compute y′ := C0(y). Else, compute y′ := C1(y).

(b) Compute α′ := Enc(EK′, (x, y′)).

(c) Output α′.

Fig. 11. Circuit G4

Claim 4. Assuming iO is a secure indistinguishability obfuscator and ACE satisfies Safety of Constrained
Decryption property, hybrids H0,3

j and H1,1
j are computationally indistinguishable.

Proof: We will have to show functional equivalence between the two circuits to argue indistinguishability
via iO security.
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• Whenever the punctured decryption key decrypts to an input x 6= j, the two circuits behave identically.
• If the input ciphertext decrypted to a message of the form (j, ·), note that the second argument must

be y00 because the punctured decryption key DK0{S0
0} cannot decrypt to a message belonging to the

set S0
0 , by safety of constrained decryption property. In the case when the input ciphertext decrypts to

(j, y00), the previous circuit would also output α0
1.

�

– Hi,l
j . We define hybrids {Hi,l

j }i∈{1,...,k−1},l∈{1,2,3} in a similar fashion as before. l = 1 corresponds to
hardwiring a ciphertext α0

i = Enc(EKi, y
0
i ) for input x = j inside circuit Di, where y0i = C0

i ◦ · · · ◦C0
0 (j).

l = 2 corresponds to puncturing the encryption key EKi inside circuit Di on the set U = {(j, ·)}.
l = 3 corresponds to puncturing the corresponding decryption key DKi in the circuit Di+1 on the set
S0
i = {(j, 6= y0i )}.

– Hk,1
j . We define this hybrid similar to Hi,1

j as before i.e., we hardwire the output (j, y0k = C0
k ◦ · · · ◦C0

0 (j))

inside Dk for the input x = j. In other words, Dk is now B3[j, C0
k , C

1
k , DKk−1{S0

k−1}, y0k], where B3

has been described in Figure 12. Indistinguishability can be argued similarly as before using safety of
constrained decryption. Furthermore, note that y0k = y1k = C1

k ◦ · · · ◦C1
k(j), as functional equivalence holds

at the last level.

Hardcoded-values: j, C0, C1, DK, y∗

Input: α.

1. If α = ⊥, output ⊥. Otherwise, proceed as follows.
2. Compute t := Dec(DK,α).

3. If t = ⊥, output ⊥. Otherwise, parse t as (x, y) and proceed as follows.

4. If x = j, output (x, y∗). Else

(a) If x > j, compute y′ := C0(y). Else, compute y′ := C1(y).

(b) Output (x, y′).

Fig. 12. Circuit B3

– Hk+1,1
j In this hybrid, we make multiple changes:
• change the hardwired ciphertext α0

k−1 inside Dk−1 to α1
k−1 = Enc(EKk−1, (j, y

1
k−1)), where y1k−1 =

C1
k−1 ◦ · · · ◦ C1

0 (j),

• unpuncture the decryption key DKk−1{S0
k−1} inside Dk to DKk−1,

• unpuncture the encryption key EKk−1{U} inside Dk−1 to EKk−1,

• change Dk so that now it uses the circuit C1
k for input x = j i.e., Dk is now B2[j + 1, C0

k , C
1
k , DKk−1].

Claim 5. Assuming iO is a secure indistinguishability obfusctor and ACE is a secure asymmetrically
constrainable encryption scheme, hybrids Hk,1

j and Hk+1,1
j are computationally indistinguishable.

Proof: Proof of this claim is provided in Appendix B. �

– Hi,l
j . In hybrids {Hi,l

j }i∈{1,...,k−1},l∈{4,5,6,7,8,9,10,11}, we do the following. For i = k − 1 to 1, consider the
sub-hybrids as follows. If l = 4, we hardwire the output α1

i inside circuit Di when the input ciphertext
is α0

i−1. For l = 5, we change puncturing of the decryption key DKi−1 inside Di from the set S0
i−1 to

the full set U. For l = 6, we change the hardwired ciphertext inside both Di−1 and Di from α0
i−1 to
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α1
i−1 = Enc(EKi−1, (j, y

1
i−1)). For l = 7, we change puncturing of the decryption key DKi−1 inside Di

from the set U to the set S1
i−1 = {(j, 6= y1i−1)}.

For l = 8, we remove the hardwired ciphertext α1
i−1 inside Di. For l = 9, we change Di so that it uses the

circuit C1
i for input x = j. For l = 10, we unpuncture the decryption key DKi−1 inside Di. For l = 11, we

unpuncture the encryption key EKi−1 inside Di−1. Indistinguishability between all these hybrids follows
similarly to before.

– H0,4
j . In this hybrid, we change the first circuit D0 so that it uses the circuit C1

0 for the input x = j. Note
that this hybrid is the same as Hj+1.

�

6 Applications

In this section, we formally define function-hiding hierarchical MiFE, homomorphic witness encryption and
puncture-hiding incrementally puncturable signatures, and present constructions for all of them from HiO.

6.1 Function-Hiding Hierarchical-MiFE from MiFE and HiO

6.1.1 Definition

The notion of Hierarchical-MiFE was briefly mentioned in [23] without giving a proper definition. Here, we
define the notion along with the additional property of function-hiding. Let F0 be a function-space for n-ary
functions. Let F1,F2, . . . denote function-spaces respecting composition i.e., the function f = fk ◦ · · · ◦ f0
is well-defined for all positive integers k ≥ 0 and functions f0 ∈ F0, . . . , fk ∈ Fk. A secret-key Hierarchical-
MiFE scheme H-MiFE, for function-spaces F0,F1, . . . , consists of 5 algorithms: Setup, KeyGen, Enc and Dec
defined like in the case of standard MiFE, and Delegate defined as follows:

– Delegate(skf , f
′) is a PPT algorithm that takes as input a function key skf , which could either be the

output of KeyGen or a Delegate operation itself, and another function f ′ ∈ Fk9 and outputs a delegated
function key skf ′◦f .

We need the following properties from the scheme:

– Correctness: There exists a negligible function10 negl(·) such that for all sufficiently large λ ∈ N, all
k ≥ 0, functions f0 ∈ F0, f1 ∈ F1, . . . , fk ∈ Fk, and input tuples (x1, . . . , xn), it holds that

Pr
[
Dec(sk

(k)
f , {ct(i)}i∈[n]) 6= fk ◦ · · · ◦ f0(x1, . . . , xn)

]
≤ negl(λ)

where the probability is taken over the random choices of the following algorithms:msk← Setup(1λ), sk
(0)
f ←

KeyGen(msk, f0),∀j ∈ [k] : sk
(j)
f ← Delegate(sk

(j−1)
f , fj) and ∀i ∈ [n] : ct(i) ← Enc(msk, xi, i).

– Hierarchical Efficiency: There exists a polynomial function poly such that for any λ ∈ N, k ≥ 0, all
functions f0 ∈ F0, f1 ∈ F1, . . . , fk ∈ Fk, if msk← Setup(1λ, n), then it holds that

|Delegate(Delegate(· · ·KeyGen(msk, f0), f1) · · · , fk)| ≤ poly(λ, |f0|, . . . , |fk|, n).

– Security: H-MiFEis (1, qmsg)-secure if for any PPT adversary A, there exists a negligible function negl(·)
such that for all sufficiently large λ ∈ N, the advantage of A is

AdvH-MiFE
A =

∣∣∣Pr[ExpH-MiFE
A (1λ, 0) = 1]− Pr[ExpH-MiFE

A (1λ, 1) = 1]
∣∣∣ ≤ negl(λ),

where for each b ∈ {0, 1} and λ ∈ N, the experiment ExpH-MiFE
A (1λ, b) is defined below:

9 Here k denotes the number of delegations performed to obtain skf .
10 Alternately, we could also talk about a notion which satisfies perfect correctness, in which case negl would be the

zero-function.
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1. Challenge message queries: A submits qmsg queries,
{(

(xj1,0, x
j
1,1), . . . , (xjn,0, x

j
n,1)
)}

j∈[qmsg]
, to the

challenger C.
2. C computes msk← Setup(1λ). It then computes ctji ← Enc(msk, xji,b) for all i ∈ [n] and j ∈ [qmsg]. The

challenger then sends
{(

ctj1, . . . , ct
j
n

)}
j∈[qmsg]

to the adversary A.

3. Function query: A submits a function query
(
(f00 , . . . , f

0
k ), (f10 , . . . , f

1
k )
)
to C. If f bi /∈ Fi for some

i ∈ {0, . . . , k}, b ∈ {0, 1}, then the challenger aborts. Otherwise, it computes sk(0)f ← KeyGen(msk, f b0),

and repeats sk(j)f ← Delegate(sk
(j−1)
f , f bj ) for j ∈ [k]. Finally, it sends sk(k)f to A.

4. If there exists a sequence (j1, . . . , jn)ji∈[qmsg] such that

f0(xj11,0, . . . , x
jn
n,0) 6= f1(xj11,1, . . . , x

jn
n,1),

where f b = f bk ◦ · · · ◦ f b0 , then the output of the experiment is set to ⊥. Otherwise, the output of the
experiment is set to b′, where b′ is the output of A.

6.1.2 Construction

In this section, we show that a function-hiding MiFE scheme can be coupled with a HiO scheme to get
function-hiding Hierarchical-MiFE. Here we get two types of results:

– If our aim is to build the weaker primitive where the maximum number of delegations is known during the
initial key generation, then we could use levelled-HiO to achieve this. Therefore, this notion is equivalent
to that of MiFE.

– If the maximum number of delegations is not known in advance, then we could use full HiO for building
this primitive. This shows that after suffering an exponential loss in security, one could transform any
MiFE scheme to a function-hiding Hierarchical-MiFE scheme.

We give our construction when the number of delegations are not known in advance and prove its security.
In the following description, the notation [[C]]s will be used to denote a circuit C padded to size s.

Theorem 4. Let F0,F1, . . . denote function-spaces respecting composition i.e., the function f = fk ◦ · · · ◦ f0
is well-defined for all positive integers k ≥ 0 and functions f0 ∈ F0, . . . , fk ∈ Fk. Assuming a function-hiding
MiFE scheme for function-space F = {{fk ◦ · · · ◦ f0}f0∈F0,...,fk∈Fk

}k≥0 along with full HiO, there exists a
function-hiding Hierarchical-MiFE scheme for function spaces F0,F1, . . . .

Proof: Consider the construction given in Figure 13. Note that for delegating function keys, we are using the
property that given an obfuscated circuit Ĉ, one can figure out the number of compositions that have been
performed for obtaining this circuit in the HiO scheme. Our HiO scheme satisfies this property. Let K denote
the key-space from which master secret keys are sampled in MiFE. Also, let R denote the randomness-space
from which random strings are derived for key-generation in MiFE. Then the value sk is defined as follows:

sk = max
msk∈K,r∈R,f0∈F0,...,fk∈Fk

∣∣∣Dsk
f0
k
◦···◦f0

0

∣∣∣ ,
where skf0

k◦···◦f
0
0

:= MiFE.KeyGen(msk, f0k ◦ · · · ◦ f00 ; r) and the circuit D has been described in the construc-
tion.
Correctness. This follows in a straightforward manner.
Security. We will argue security now. For this, consider the hybrids as follows:

– H0 : This is the real experiment ExpH-MiFE
A (1λ, 0) (as described in Section 6.1.1) where the challenger

chooses the bit b to be 0.
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Let HiO = (Obfuscate,Eval,Compose) be an HiO scheme, and MiFE = (Setup,KeyGen,Enc,Dec,Delegate) be a
function-hiding MiFE scheme.

Setup(1λ, n):

1. Run msk← MiFE.Setup(1λ, n).
2. Output msk.

KeyGen(msk, f):

1. Compute skf ← MiFE.KeyGen(msk, f).

2. Consider the circuit Dskf which
(a) takes as input (ct1, . . . , ctn),
(b) outputs MiFE.Dec(skf , ct1, . . . , ctn).

3. Compute Ĉ ← HiO.Obfuscate(1λ, [[Dskf ]]s0), where sk has been defined in the description proceeding the con-
struction.

4. Output sk := Ĉ.

Delegate(sk, f ′):

1. Parse sk as Ĉ.
2. Compute k from Ĉ denoting the number of hops performed so far.
3. Compute Ĉ′ ← HiO.Compose(Ĉ, [[Cf ′ ]]sk ).

4. Output Ĉ′.

Enc(msk, x, i):

1. Compute cti ← MiFE.Enc(msk, x, i).

2. Output cti.

Dec(sk, ct1, . . . , ctn):

1. Parse sk as Ĉ.
2. Compute y := HiO.Eval(Ĉ, ct1, . . . , ctn).

3. Output y.

Fig. 13. Function-Hiding Hierarchical-MiFE from Function-Hiding MiFE and HiO
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– H1 : In this hybrid, we change the function query response from the challenger. On function query(
(f00 , . . . , f

0
k ), (f10 , . . . , f

1
k )
)
, the challenger was previously computing sk

(k)
f where

sk
(0)
f ← HiO.Obfuscate(1λ, [[Dsk

f0
0

]]s0),

sk
(j)
f ← HiO.Compose(sk

(j−1)
f , [[Cf0

j
]]sj ) for j ∈ {1, . . . , k},

where the circuits D and C have been described in Figure 13. In this hybrid, we change this response as
follows:

sk
(0)
f ← HiO.Obfuscate(1λ, [[CId]]s0),

sk
(j)
f ← HiO.Compose(sk

(j−1)
f , [[CId]]sj ) for j ∈ {1, . . . , k − 1},

sk
(k)
f ← HiO.Compose(sk

(k−1)
f , [[Dsk

f0
k
◦···◦f0

0

]]sk),

where Id denotes the identity function. In other words, we have put the entire computation of the chain of
functions inside the MiFE function key skf0

k◦···f
0
0
← MiFE.KeyGen(msk, f0k ◦· · ·◦f00 ) as part of the very last

circuit while the rest of the circuits inside the HiO chain are dummy identity functions. Indistinguishability
between the 2 hybrids follows by HiO security as the underlying chains of circuits are functionally equivalent
i.e.,

Cf0
k
◦ · · · ◦Dsk

f0
0

≡ Dsk
f0
k
◦···◦f0

0

◦ · · · ◦ CId0 .

– H2 : In this hybrid, we can directly switch from skf0
k◦···◦f

0
0
and ctji ← Enc(msk, xji,0) for all i ∈ [n] and

j ∈ [qmsg], to skf1
k◦···◦f

1
0
and ctji ← Enc(msk, xji,1) for all i ∈ [n] and j ∈ [qmsg]. This follows from function-

hiding security of MiFE as
f0(xj11,0, . . . , x

jn
n,0) = f1(xj11,1, . . . , x

jn
n,1),

for all sequences (j1, . . . , jn)ji∈[qmsg], where f
b = f bk ◦ · · · ◦ f b0 .

– H3 : In this hybrid, we change back from

sk
(0)
f ← HiO.Obfuscate(1λ, [[CId]]s0),

sk
(j)
f ← HiO.Compose(sk

(j−1)
f , [[CId]]sj ) for j ∈ {1, . . . , k − 1},

sk
(k)
f ← HiO.Compose(sk

(k−1)
f , [[Dsk

f0
k
◦···◦f0

0

]]sk),

to

sk
(0)
f ← HiO.Obfuscate(1λ, [[Dsk

f1
0

]]s0),

sk
(j)
f ← HiO.Compose(sk

(j−1)
f , [[Cf1

j
]]sj ) for j ∈ {1, . . . , k},

in the function query response sk(k)f . Indistinguishability again relies on HiO security. Note that this hybrid
is the same as the real experiment ExpH-MiFE

A (1λ, 1). This concludes our proof.

�

Combining Theorem 4 with our main result Theorem 3 and using the MiFE to iO transformation from
[23], we get the following corollary.

Corollary 1. Assuming a sub-exponentially secure MiFE scheme for all efficient functions, there exists a
function-hiding Hierarchical-MiFE scheme for all efficient function-spaces respecting composition.
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6.2 Homomorphic Witness Encryption from HiO

6.2.1 Definition

The notion of witness encryption was introduced in [20] as an advanced encryption primitive where a plaintext
m could be encrypted with respect to an NP statement x and decryption could be performed using a
corresponding witness w for x ∈ L. In this work, we consider the natural homomorphic extension of this
concept which allows anyone holding a witness encryption ciphertext encrypting a plaintext m to be able
to compute a ciphertext encrypting C(m) for any C of their choice. Note that we are not considering the
modification of the underlying NP statement x, which could also be an interesting notion in its own right.

We consider a function-hiding version for homomorphic security which guarantees that both the underly-
ing plaintext and the circuits used for evaluation are hidden as long as the final output is the same. Moreover,
this guarantee holds even when the underlying statement x belongs to the NP language L which is the first
time that security for a witness encryption like primitive holds in this setting. In existing constructions,
security has only been shown for the case when x /∈ L. Since this definition is enough for eliminating trivial
constructions (like appending the circuits to standard witness encryption ciphertexts during homomorphic
evaluation), we do not demand the property of efficiency which requires that the size of a homomporhically
evaluated ciphertext should be independent to that of the circuit.

We define the notion of homomorphic witness encryption (HWE) here. An HWE scheme for an NP
language L (with corresponding witness relation R) and message spaceM, consists of 3 algorithms Enc, Dec
and Eval defined as follows:

– Enc(1λ, x,m) is a PPT algorithm that takes as input a security parameter 1λ, an unbounded-length string
x and a message m ∈M, and outputs a ciphertext ct.

– Dec(ct, w) is a deterministic algorithm which takes as input a ciphertext ct and an unbounded length
string w, and outputs a message m′.

– Eval(ct, C) is a PPT algorithm that takes as input a ciphertext ct and a circuit C, and outputs another
ciphertext ct′.

We need the following properties from the scheme:

– Correctness: For any security parameter λ, for any message m ∈M, and for any x ∈ L such that R(x,w)
holds, we have that

Pr[Dec(Enc(1λ, x,m), w) = m] = 1.

– Soundness Security: For any PPT adversary A, and for any messages m0,m1 ∈ M, there exists a
negligible function negl such that for any x /∈ L, we have∣∣Pr[A(Enc(1λ, x,m0)) = 1]− Pr[A(Enc(1λ, x,m1)) = 1]

∣∣ ≤ negl(λ).

– Homomorphic Correctness: For any security parameter λ, for any message m ∈ M, for any x ∈ L
such that R(x,w) holds, for any k ≥ 1, and for any circuits C1, . . . , Ck whose input-output lengths are
compatible for composition, we have that

Pr[Dec(Eval(· · ·Eval(Enc(1λ, x,m), C1), · · · , Ck), w) = Ck ◦ · · · ◦ C1(m)] = 1.

– Homomorphic Security: For any PPT adversary A, for any messages m0,m1 ∈M, any k ≥ 1, and for
any circuits C0

1 , . . . , C
0
k , C

1
1 , . . . , C

1
k such that

C0
k ◦ · · · ◦ C0

1 (m0) = C1
k ◦ · · · ◦ C1

1 (m1),

there exists a negligible function negl such that for any x, we have

|Pr[A(ct0) = 1]− Pr[A(ct1) = 1]| ≤ negl(λ),

where
ctb ← Eval(· · ·Eval(Enc(1λ, x,mb), C

b
1), · · · , Cbk),

for b ∈ {0, 1}.
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Remark 1. This definition has a different flavor than the standard way in which traditional definitions of
homomorphic encryption schemes handle the issue of eliminating trivial constructions. The standard way is to
introduce the notion of efficiency which prevents appending the circuit to the ciphertext during homomorphic
evaluation. Here, we instead rely on homomorphic security for disallowing such a trivial construction on top
of any witness encryption, in line with how circuit-hiding FHE is defined.

Remark 2. Not only is this definition functionally stronger than the standard notion of witness encryption,
but it also offers security guarantees in the case when statement x is in the language L, a case which is not
handled at all by the standard definition.

6.2.2 Construction

In this section, we show how to construct homomorphic witness encryption (Section 6.2.1) from HiO. This
follows as a very straightforward extension of the construction of witness encryption from iO. Namely, a
ciphertext corresponds to the obfuscation of a circuit which has x and m hardwired in it, takes a witness
w as input, checks if it is valid for x via the NP relation R and outputs m if it succeeds, otherwise outputs
⊥. Homomorphic evaluation just corresponds to HiO composition of this obfuscated circuit with the new
circuit. Security follows directly from that of HiO, further showcasing its power.

Theorem 5. Assuming an HiO scheme, there exists a homomorphic witness encryption scheme for any NP
language L.

Proof: Consider the construction given in Figure 14. We will show below how this scheme satisfies all the
desired properties.

Let HiO = (Obfuscate,Eval,Compose) be an HiO scheme.

Enc(1λ, x,m):

1. Consider the circuit Dx,m which
(a) takes as input a string w,
(b) checks if R(x,w) = 1. If not, outputs ⊥. Otherwise, outputs m.

2. Compute D̂x,m ← HiO.Obfuscate(1λ, Dx,m).

3. Output ct := D̂x,m.

Dec(ct, w):

1. Parse ct as D̂.
2. Compute y := HiO.Eval(D̂, w).

3. Output y.

Eval(ct, C):

1. Parse ct as D̂.
2. Consider the circuit C′ which

(a) takes as input a string y,
(b) checks if y = ⊥. If yes, output ⊥. Otherwise, output C(y).

3. Compute D̂′ ← HiO.Compose(D̂, C′).

4. Output D̂′.

Fig. 14. Homomorphic Witness Encryption from HiO
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Correctness. Both the correctness and homomorphic correctness properties follow from the correctness of
HiO.
Soundness Security. When x /∈ L, both programs Dx,m0

and Dx,m1
always output ⊥ no matter what

the input. Therefore, these are functionally equivalent and indistinguishability of the ciphertexts, which are
obfuscated versions of these programs, follows from HiO security.
Homomorphic Security. Consider messages m0,m1 and circuits C0

1 , . . . , C
0
k , C

1
1 , . . . , C

1
k such that C0

k ◦
· · · ◦ C0

1 (m0) = C1
k ◦ · · · ◦ C1

1 (m1). Let Cb denote the circuit C̄bk ◦ · · · ◦ C̄b1 ◦Dx,mb
, where C̄bi implements the

circuit Cbi after checking if its input is not ⊥ as is defined in Figure 14, for b ∈ {0, 1}. When x /∈ L, both
circuits C0 and C1 always output ⊥. When x ∈ L, there are 2 cases:

– For inputs w such that R(x,w) = 1, the circuit Cb outputs Cbk ◦ · · · ◦ Cb1(mb) for b ∈ {0, 1}. Since
C0
k ◦ · · · ◦ C0

1 (m0) = C1
k ◦ · · · ◦ C1

1 (m1), the outputs are equivalent.
– For inputs w such that R(x,w) = 0, both circuits C0 and C1 output ⊥.

Therefore, the circuits C0 and C1 are always functionally equivalent when C0
k◦· · ·◦C0

1 (m0) = C1
k◦· · ·◦C1

1 (m1).
Ciphertext indistinguishability follows from HiO security.

�

6.3 Puncture-Hiding Incrementally Puncturable Signatures from HiO

In this section, we consider an advanced puncturable signature scheme as motivated in the introduction and
show it as an application of HiO. The notion of puncturable signature schemes has previously been considered
in [6, 16].

6.3.1 Definition

A Puncture-Hiding Incrementally Puncturable Signature scheme for a message spaceM consists of 5 poly-
nomial time algorithms KeyGen, Sign, Verify, Punc and PuncSign, as follows:

– KeyGen(1λ) is a probabilistic algorithm that takes as input the security parameter λ in unary, and outputs
a key-pair (vk, sk) with vk denoting the verification key and sk denoting the signing key.

– Sign(sk,m) is a deterministic algorithm that takes as input the signing key sk and a message m ∈M, and
outputs a signature σ.

– Verify(vk, σ,m) is a deterministic algorithm that takes as input the verification key vk, a signature σ and
a message m, and outputs a bit b.

– Punc(sk,m) is a probabilistic algorithm that takes as input a (possibly punctured) signing key sk and a
message m, and outputs a new punctured signing key sk′.

– PuncSign(sk′,m′) is a deterministic algorithm that takes as input a punctured signing key sk′ and a message
m′ ∈M, and outputs a signature σ.

We require the following properties from this scheme:

– Correctness of Verification: For every security parameter λ and every messagem, if (vk, sk)← KeyGen(1λ)
and σ := Sign(sk,m) then

Verify(vk, σ,m) = 1.

– Unforgeability: For every adversary A, there exists a negligible function negl such that

Pr[ExpSIG−FORGE
A (λ) = 1] ≤ negl(λ),

where the experiment ExpSIG−FORGE
A (λ) is defined as follows:

1. (vk, sk)← KeyGen(1λ),
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2. (m,σ)← ASign(sk,·)(st, vk),

3. Output 1 if A never queried Sign(sk, ·) for the message m and Verify(vk, σ,m) = 1.

– Punctured Correctness: For all security parameters λ, all messages m1, . . . ,mt ∈ M, all messages
m ∈M s.t. m 6= mi for all i ∈ [t], if (vk, sk)← KeyGen(1λ), and

sk(i) ← Punc(sk(i−1),mi)

for all i ∈ [t], where sk(0) := sk, then it holds that

Sign(sk,m) = PuncSign(sk(t),m).

– Punctured Unforgeability: For all adversaries A = (A1,A2), there exists a negligible function negl
such that

Pr[ExpSIG−PFORGE
A (λ) = 1] ≤ negl(λ),

where the experiment ExpSIG−PFORGE
A (λ) is defined as follows:

1. (vk, sk)← KeyGen(1λ),

2. (m1, . . . ,mt, st)← ASign(sk,·)
1 (vk),

3. sk(0) := sk, sk(i) ← Punc(sk(i−1),mi) for all i ∈ [t],

4. (m,σ)← ASign(sk,·)
2 (st, sk(t)),

5. Output 1 if both A1 and A2 never queried Sign(sk, ·) for the message m, if m = mi for some i ∈ [t],
and Verify(vk, σ,m) = 1.

– Puncture-Hiding: There exists a size parameter γ and a PPT simulator Sim such that for every se-
curity parameter λ, every integer t > 0, all messages m1, . . . ,mt and every sets of programs P1, . . . , Pt
recognizing11 the points m1, . . . ,mt respectively, with |Pi| ≤ γ, the following two distributions are indis-
tinguishable

sk(t) ≈ Sim(1λ, sk, {P1, . . . , Pt}),

where (vk, sk)← KeyGen(1λ), sk(0) := sk and sk(i) ← Punc(sk(i−1),mi) for all i ∈ [t].

Remark. While the definition for puncture-hiding does not directly imply that the punctured signing key
hides the punctured points, but it can be ensured by providing the simulator Sim appropriate point-function
obfuscations for the punctured messages. Since these hide the respective points, the same should hold even
for the real punctured signing key as implied by its indistinguishability from the simulated output. Note
that for this argument, the size parameter γ should be larger than the size of the point-function obfuscations
employed. Our construction allows γ to be set to any polynomial size.

6.3.2 Construction

In this section, we construct puncture-hiding incrementally puncturable signatures, as defined in Section 6.3.1,
assuming a puncturable signature scheme Sig and an HiO scheme.

Theorem 6. Assuming a puncturable signature scheme for message space M with a deterministic signing
algorithm and an HiO scheme, there exists an puncture-hiding puncturable signature scheme for message
spaceM and any polynomial size parameter γ.

Proof: Consider the construction given in Figure 15. We will show below how this scheme satisfies all the
desired properties.
Correctness of Verification and Unforgeability. Both these properties follow directly from the corre-
sponding properties of Sig.
11 This means that each program Pi outputs 1 only on the input mi and outputs 0 otherwise.
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Let γ be a parameter (it should be larger than the size of a circuit that takes an input inM and compares it with
a hardwired message)

Let Sig = (KeyGen, Sign,Verify,Punc,PuncSign) be a puncturable signature scheme for a message spaceM.

Let HiO = (Obfuscate,Eval,Compose) be an HiO scheme.

KeyGen(1λ):

1. Run (vk, sk)← Sig.KeyGen(1λ) and output (vk, sk).

Sign(sk,m):

1. Compute σ := Sig.Sign(sk,m) and output σ.

Verify(vk, σ,m):

1. Compute b := Sig.Verify(vk, σ,m) and output b.

Punc(sk,m):
Let Qγm denote a circuit of size γ such that Qγm(m′) = 1 iff m = m′.
1. If sk is a standard signing key of the scheme Sig, then

(a) Consider the circuit Csk,m which
i. takes as input a message m′ ∈M;
ii. if Qγm(m′) 6= 1 computes σ := Sig.Sign(sk,m′) and outputs (m′, σ),

and otherwise, outputs (m′,⊥).
(b) Compute Ĉsk,m ← HiO.Obfuscate(1λ, Csk,m) and output Ĉsk,m.

2. If sk is already an obfuscated circuit, then
(a) Parse sk as Ĉ.
(b) Consider the circuit C′m which

i. takes as input (m′, y), where m′ ∈M and y is as long as a signature;
ii. if Qγm(m′) = 1, outputs (m′,⊥), and otherwise, outputs (m′, y).

(c) Compute Ĉ′ ← HiO.Compose(Ĉ, C′m) and output Ĉ′.

PuncSign(sk′,m′):

1. Parse sk′ as Ĉ.
2. Compute (m′, y) := HiO.Eval(Ĉ,m′) and output y.

Fig. 15. Puncture-Hiding Incrementally Puncturable Signature Sig′ from puncturable signature Sig and HiO
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Punctured Correctness. For all messages m 6= mi, where m1, . . . ,mt for some t > 0 are the messages on
which sk has been punctured, it holds that the algorithm PuncSign(sk(t),m) also computes Sign(sk,m) and
hence Verify(vk, σ,m) = 1. This follows from the correctness of Sig and that of HiO.

Punctured Unforgeability. Let sk(t) be the punctured signing key as defined in the experiment ExpSIG−PFORGE
A (λ)

in the punctured unforgeability game, obtained after receiving the messages m1, . . . ,mt from A1. In our con-
struction, sk(t) is an obfuscated circuit of our HiO scheme which ultimately checks if the input message m is
equal to one of the messages m1, . . . ,mt. If yes, it outputs ⊥. Otherwise, it outputs Sig.Sign(sk,m). This final
composed circuit is equivalent to the circuit which has the punctured key s̄k

(t) hardwired inside it, where

s̄k
(0)

:= sk, s̄k
(i) ← Sig.Punc(s̄k

(i−1)
,mi)

for all i ∈ [t]. This alternative circuit does not directly check if the input message is one of the messages
m1, . . . ,mt or not; instead, it simply outputs the punctured signature Sig.PuncSign(s̄k

(t)
,m). We need the

property from the underlying scheme Sig that signatures using the punctured signing key on punctured
messages are equal to ⊥. This can be assumed without loss of generality. Then, we could use HiO security to
switch to this circuit which just has s̄k(t) hardwired inside it, and then the punctured unforgeability property
would follow from that of Sig.
Puncture-Hiding. Consider a security parameter λ, an integer t > 0, a sequence of messages m1, . . . ,mt

and a set of programs P1, . . . , Pt recognizing the pointsm1, . . . ,mt respectively. Let (vk, sk)← KeyGen(1λ), sk(0) :=

sk and sk(i) ← Punc(sk(i−1),mi) for all i ∈ [t]. Then the real punctured signing key can also be written as

sk(t) ← HiO.Compose(· · ·HiO.Compose(HiO.Obfuscate(Csk,m1
), C ′m2

) · · · , C ′mt
)

where the circuits Csk,m and C ′m have been described in Figure 15. We can describe the simulator Sim as
follows:

1. takes as input a security parameter 1λ, a signing key sk and point programs P1, . . . , Pt. W.l.o.g., |Pi| = γ
(by padding it, if necessary).

2. considers the circuit Dsk,P1 which
(a) takes as input a message m,
(b) checks if P1(m) = 1. If yes, then outputs (m,⊥). Otherwise outputs (m,Sig.Sign(sk,m)).

3. computes D̂1 ← HiO.Obfuscate(1λ, Dsk,P1
),

4. for i = 2 to t, does the following
(a) considers the circuit D′Pi

which
i. takes as input (m′, y),

ii. checks if Pi(m′) = 1. If yes, outputs (m′,⊥). Otherwise outputs (m′, y).

(b) computes D̂i ← HiO.Compose(D̂i−1, D
′
Pi

)

5. outputs D̂t.

Therefore, the simulated output can be written as

D̂t ← HiO.Compose(· · · (HiO.Obfuscate(Dsk,P1
), D′P2

), · · · , D′Pt
).

Observe that the corresponding two chains are functionally equivalent i.e.,

C ′mt
◦ · · · ◦ C ′m2

◦ Csk,m1
≡ D′Pt

◦ · · · ◦D′P2
◦Dsk,P1

.

Further, by construction, |C ′i| = |D′i| for every i. Therefore, the desired indistinguishability follows from HiO
security.

�
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7 Extensions of HiO

In this section, we present some extensions of the notion of HiO that are supported by our ideas.
Composition in any Order. Consider the stronger notion of HiO which allows not just composing with
new circuits at the end of the chain (on the output side), but also composing at the beginning of the chain (on
the input side). Our scheme can be modified in a straightforward manner to support this extra functionality
with a similar proof of security.
Merging Two Chains. Our construction can also be modified to support the property of merging two
obfuscated chains. This is possible because the final circuit in a chain gives plaintext outputs while the first
circuit in a chain also takes plaintext inputs, so this is well-defined. The proof of security will be almost
identical to our original construction.
Composition DAG. Consider the notion of HiO where the compositional structure is represented by a
DAG, unlike with a chain as in our original construction. To further elaborate, lets say we are given a DAG
where each node is a circuit. First, the circuits representing the leaves are to be obfuscated. A parent node at
a higher level needs to be combined with the obfuscations of all its children subgraphs and the whole thing
needs to be obfuscated. The security requirement states that indistinguishability of the obfuscated DAGs
holds as long as the two graphs in consideration are functionally equivalent and share the same topology. Note
that this completely captures the spirit of obfuscation as mentioned in the introduction i.e., only allowing
black-box modifications to obfuscated programs.

In our construction for such a primitive, each leaf obfuscated circuit would take the entire input string
and propagate it forward, even if it only needs some portion of the string. Similarly, each internal node would
also propagate the entire initial input. To compose a parent P with its children subgraphs C1, . . . , Cl, we will
use similar ideas like in our original construction. We will first sample l ACE key-pairs {(EKi, DKi)}i∈[l],
one for each child. We will put the root Ri of the child Ci in an obfuscated circuit which encrypts its output
using EKi. All the decryption keys will go into an obfuscated circuit which evaluates P after decrypting its
input ciphertext cti using key DKi. Refer to Figure 16 for a pictorial representation of this process. If all of
the input ciphertexts do not agree on the initial input, then the parent node outputs ⊥.

The security proof will go along similar lines as our original construction. We would go over as many
hybrids as the number of strings in the input space. In hybrid Hj , each circuit in the obfuscated DAG would
be using the corresponding circuit of the first DAG for all inputs x ≥ j and that of the second DAG for
inputs x < j. To make the switch for x = j in the entire graph, we would start by hardwiring the ciphertext
outputs for x = j from the leaves to the root. For each node, this would involve puncturing the corresponding
encryption key. This would also involve puncturing each decryption key according to the output from its
corresponding child.

The only non-trivial change from our original proof is in the part where we are switching to using the
circuit from the second DAG in each node, in a top-down manner. This was the point in our original hybrids
where we hardwired the output ciphertext for x = j of the previous circuit in the next circuit in the chain.
Analogously, we will hardwire the output ciphertexts of all the children in a parent node and handle these
without using decryption. If all the input ciphertexts equal the hardwired values, then we use the hardwired
output. If some non-zero number of input ciphertexts equal the hardwired values but not all of them, then
we output ⊥ as decryption would never agree on the initial input in such a case. Only if neither of the
input ciphertexts equal the hardwired values, we use decryption like before. The rest of the details follow
analogously like before.
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Appendix
A Levelled HiO from MiFE

By levelled HiO, we mean the weaker primitive where the maximum number of hops supported by the scheme
is fixed in advance. In other words, the Obfuscate algorithm itself takes this number k as input which denotes
the maximum number of hops supported by the scheme. In this section, we realise this primitive using MiFE
for arbitrary polynomial k.
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Theorem 7 (Levelled HiO). Assuming indistinguishability obfuscation for all circuits and one-way func-
tions, there exists a levelled HiO scheme supporting arbitrary number of hops k.

Proof: Consider the scheme given in Figure 17. This is a straightforward modification of the MiFE to iO
transformation presented in [23] to achieve levelled HiO. We avoid providing further details here for brevity.

Let n denote the input length of the first circuit and s denote the circuit size.

Let MiFE = (Setup,KeyGen,Enc,Dec) be an MiFE scheme.

Obfuscate(1λ, C, k):

1. Choose the function arity n′ := sk + n.

2. Sample msk← MiFE.Setup(1λ, n′).
3. Consider the n′-bit input function U which does the following
• It parses its first sk bits as k circuits C1, . . . , Ck and parses the last n bits as an input x.
• It then computes and outputs Ck ◦ · · · ◦ C1(x).

Compute skU ← MiFE.KeyGen(msk, U).

4. Let C[i] be the ith bit in the bit-representation of C. For i ∈ {1, . . . , s}, compute cti ← MiFE.Enc(msk, C[i], i).

5. For i ∈ {s+ 1, . . . , sk + n} and b ∈ {0, 1}, compute cti,b ← MiFE.Enc(msk, b, i).

6. Output Ĉ = ({cti}i∈{1,...,s}, {cti,b}i∈{s+1,...,sk+n},b∈{0,1}, skU ).

Eval(Ĉ, x):

1. Parse Ĉ as ({cti}i∈{1,...,sj}, {cti,b}i∈{sj+1,...,sk+n},b∈{0,1}, skU ), for some 1 ≤ j ≤ k.
2. Consider the appropriate identity function Cid represented as a circuit of size s. For l = j to k−1, i ∈ {1, . . . , s},

set ctsl+i := ctsl+i,Cid[i].

3. For i ∈ {1, . . . , n}, set ctsk+i := ctsk+i,x[i].

4. Compute y := MiFE.Dec(skU , {cti}i∈{1,...,n′}). Output y.

Compose(Ĉ, C′):

1. Parse Ĉ as ({cti}i∈{1,...,sj}, {cti,b}i∈{sj+1,...,sk+n},b∈{0,1}, skU ), for some 1 ≤ j ≤ k.
2. If j = k, output Ĉ.
3. Else, for i ∈ {1, . . . , s}, set ctsj+i := ctsj+i,C′[i].

4. Output ({cti}i∈{1,...,s(j+1)}, {cti,b}i∈{s(j+1)+1,...,sk+n},b∈{0,1}, skU ).

Fig. 17. Levelled HiO from MiFE

�

Via this transformation, we have shown that we can get levelled HiO from iO. Furthermore, an iO scheme
can be realized from any levelled HiO scheme since it already satisfies the basic iO properties. Therefore,
these two primitives are equivalent in some sense.

B Proof of Claim 5

Proof: We show this via a sequence of sub-hybrids starting from Hk,1
j :

– Hk,2
j . In this hybrid, we change the final circuit Dk to now hardwire the output (j, y0k) when the input

ciphertext is α0
k−1 = Enc(EKk−1, y

0
k−1). In other words, Dk is now B4[j, C0

k , C
1
k , DKk−1{S0

k−1}, α0
k−1, y

0
k],

where B4 has been described in Figure 18.
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Hardcoded-values: j, C0, C1, DK, α∗ , y∗.

Input: α.

1. If α = ⊥, output ⊥. Otherwise, proceed as follows.

2. If α = α∗ , output (j, y∗). Else
(a) Compute t := Dec(DK,α).

(b) If t = ⊥, output ⊥. Otherwise, parse t as (x, y) and proceed as follows.
(c) If x = j, output (x, y∗). Else

i. If x > j, compute y′ := C0(y). Else, compute y′ := C1(y).

ii. Output (x, y′).

Fig. 18. Circuit B4

Claim 6. Assuming iO is a secure indistinguishability obfuscator and ACE satisfies Equivalence of Con-
strained Decryption property, hybrids Hk,1

j and Hk,2
j are computationally indistinguishable.

Proof: To argue indistinguishability, we show functional equivalence between the two circuits as follows:
• For all ciphertexts not equal to α0

k−1, the two circuits behave identically.
• If the input ciphertext were α0

k−1, then the first circuit would decrypt using DKk−1{S0
k−1} correctly to

(j, y0k−1) and hence would eventually output (j, y0k). Correctness of decryption follows from equivalence
of constrained decryption.

�

– Hk,3
j . In this hybrid, we change the decryption key DKk−1 inside Dk to now be punctured on the full set

U = (j, ·).

Claim 7. Assuming iO is a secure indistinguishability obfuscator and ACE satisfies Uniqueness of Cipher-
texts, Safety of Constrained Decryption and Equivalence of Constrained Decryption properties, hybrids
Hk,2
j and Hk,3

j are computationally indistinguishable.

Proof: Note that the only difference between the two decryption keys is the input (j, y0k−1). The previous
decryption key DKk−1{S0

k−1} could have decrypted to the tuple (j, y0k−1) but the current decryption
key DKk−1{U} cannot. The only possible ciphertext that could decrypt, when using the unpunctured
decryption key DKk−1, to the tuple (j, y0k−1) is α0

k−1 because of uniqueness of ciphertexts. We show that
this is also the case for the punctured key DKk−1{S0

k−1} as
• for ciphertexts encrypting messages in the set S0

k−1, the key outputs ⊥ due to safety of constrained
decryption,

• for other ciphertexts it behaves identically to the unpunctured key DKk−1 due to equivalence of con-
strained decryption.

For input ciphertext α0
k−1, both circuits use the hardwired output and hence they never use the underlying

decryption keys. Therefore, indistinguishability follows by functional equivalence. �

– Hk,4
j . In this hybrid, we change the hardwired ciphertext α0

k−1 inside both Dk−1 and Dk to α1
k−1 =

Enc(EKk−1, (j, y
1
k−1)), where y1k−1 = C1

k−1 ◦ · · · ◦ C1
0 (j).

Claim 8. Assuming ACE satisfies Selective Ciphertext Indistinguishability property, hybrids Hk,3
j and

Hk,4
j are computationally indistinguishable.

Proof: Note that the two messages m∗0 = (j, y0k−1) and m∗1 = (j, y1k−1) belong to the set U on which
both EKk−1 and DKk−1 are punctured. Therefore, indistinguishability follows from selective ciphertext
indistinguishability of the ACE scheme. �
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– Hk,5
j . In this hybrid, we change puncturing of the decryption key DKk−1 inside Dk from the set U to the

set S1
k−1 = {(j, 6= y1k−1)}. Indistinguishability follows similarly to that of hybrids Hk,2

j and Hk,3
j .

– Hk,6
j . In this hybrid, we change the final circuit Dk back to B3[j, C0

k , C
1
k , DKk−1{S1

k−1}, y0k = y1k] i.e., we
remove the hardwired ciphertext from the circuit. Indistinguishability follows similarly to that of hybrids
Hk,1
j and Hk,2

j .

– Hk,7
j . In this hybrid, we change Dk so that now it uses the circuit C1

k for input x = j i.e., Dk is now
B2[j + 1, C0

k , C
1
k , DKk−1{S1

k−1}]. Indistinguishability follows similarly to that of hybrids H0,3
j and H1,1

j .

– Hk,8
j . In this hybrid, we unpuncture the decryption key DKk−1{S1

k−1} inside Dk to now just be DKk−1.

Indistinguishability follows similarly to that of hybrids H0,2
j and H0,3

j .

– Hk,9
j . In this hybrid, we unpuncture the encryption key EKk−1{U} inside Dk−1 to just be EKk−1.

Indistinguishability follows similarly to that of hybrids H0,1
j and H0,2

j .

Note that hybrid Hk,9
j is the same as Hk+1,1

j .
�
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