
Unlinkability and Interoperability in
Account-Based Universal Payment Channels

(Full Version)

Mohsen Minaei1, Panagiotis Chatzigiannis1, Shan Jin1, Srinivasan
Raghuraman1, Ranjit Kumaresan1, Mahdi Zamani1, and Pedro

Moreno-Sanchez2

1 Visa Research
{mominaei,pchatzig,shajin,srraghur,rakumare,mzamani}@visa.com

2 IMDEA Software Institute
pedro.moreno@imdea.org

Abstract. Payment channels allow a sender to do multiple transactions
with a receiver without recording each single transaction on-chain. While
most of the current constructions for payment channels focus on UTXO-
based cryptocurrencies with reduced scripting capabilities (e.g., Bitcoin
or Monero), little attention has been given to the possible benefits of
adapting such constructions to cryptocurrencies based on the account
model and offering a Turing complete language (e.g., Ethereum).
The focus of this work is to implement efficient payment channels tai-
lored to the capabilities of account-based cryptocurrencies with Turing-
complete language support in order to provide scalable payments that are
interoperable across different cryptocurrencies and unlinkable for third-
parties (e.g., payment intermediaries). More concretely, we continue the
line of research on cryptocurrency universal payment channels (UPC)
which facilitate interoperable payment channel transactions across dif-
ferent ledgers in a hub-and-spoke model, by offering greater scalability
than point-to-point architectures. Our design proposes two different ver-
sions, UPC and AUPC. For UPC we formally describe the protocol ideas
sketched in previous work and evaluate our proof-of-concept implemen-
tation. Then, AUPC further extends the concept of universal payment
channels by payment unlinkability against the intermediary server.

1 Introduction

Payment channels [2,11] aim at scaling blockchain payments throughput and
latency, by “off-loading” payment transactions to an off-chain communication
channel between the sender and the receiver of the payment. The channel is
“opened” through an on-chain funding transaction followed by any number off-
chain transactions. Eventually, when one or both parties agree, the channel is
“closed” through another on-chain transaction. This design mitigates both the
costs and the latency associated with on-chain operations, effectively amortizing



the overhead of on-chain transactions over many off-chain ones. However, basic
payment channels lack universality since they only enable transactions within
the same ledger; and connectivity since only payments between the two parties
that share the channel are possible.

Payment channel networks/hubs. To tackle the connectivity challenge, a
payment channel network (PCN) can be treated as a graph in which nodes are
senders and receivers, and edges are the payment channels between them. Sev-
eral proposals improve upon the initial design of payment channels to support
multi-hop payments [32] (e.g., for improving scalability [12], security [23,24], pro-
grammability [3], privacy [16] and collateral efficiency [28]). PCNs however come
with additional challenges: (a) minimizing the overhead of finding paths between
the users and maintaining the network topology and (b) privacy concerns when
payments are performed through sequential channel updates between senders
and receivers, especially though a single intermediary. Tumblers or payment
channel hubs (PCHs) were introduced to address the above challenges, which
act as gateways to receive the payments from the senders and route them to the
corresponding receivers. Recent proposals such as Tumblebit [18], A2L [35] and
A2L+ [15] are examples of such PCHs. While these proposals reduce the storage
overhead on the underlying blockchain, they are designed for the UTXO model.
It would be interesting to borrow these designs to the account-based model.

More recently, Universal Payment Channels (UPC) were proposed [10] as a
protocol relying on hashed time-lock contracts (HTLCs) (which are common
throughout the cryptocurrency ecosystem) and on generic accumulator data
structures, tied to a hub-and-spoke model, where end users need to register
with a UPC hub in order to send and receive payments. This protocol enabled
universality, i.e. enabling transactions across different ledgers, and concurrency,
i.e. parallelizing the internal flow of transactions to maximize throughput.

Confidentiality and anonymity. Many blockchain-based payment systems
such as Bitcoin [31] provide a (false) sense of privacy by using “pseudo-anonymous”
addresses. However, academic efforts [27,34] and the surveillance industry [20]
have demonstrated that it is possible to associate those addresses with real iden-
tities, for instance using clustering techniques [27]). To protect user privacy,
systems were specifically designed with privacy in mind such as Zcash [7] or
Monero [36]. Note that “privacy” in financial transactions typically implies both
the aspect of confidentiality and anonymity (or unlinkability), which imply pre-
venting the leakage of information about the transaction value and the transact-
ing parties from external observers respectively [9]. Therefore, it is expected that
the payment channel hub used in UPC will also provide such privacy guarantees,
without being able to learn information about transactions routed through it.
A2L [35] and A2L+ [15] focus on this issue and provide a solution for a secure
PCH which preserves anonymity. In addition, they only rely on digital signatures
and timelock functionalities, making it interoperable across different ledgers.

In summary, we are currently missing an approach for universal, efficient,
privacy-preserving scalable payments with small blockchain storage overhead
for cryptocurrencies based on the account model. Such a proposal would be of

2



interest to the blockchain community since it would be possible to be deployed in
many blockchains, e.g., those based on the Ethereum Virtual Machine (EVM).

Our contributions. In our work, we start from the basic idea of Universal Pay-
ment Channels [10,29] (UPC). We first formalize the UPC ecosystem by providing
a complete set of protocols that describe the system as a whole. Then, being in-
spired from A2L [35] and A2L+ [15], we augment it with anonymity properties
(resulting in AUPC), while preserving the core UPC properties, namely univer-
sality and concurrency. Finally, we evaluate UPC through a proof-of-concept
implementation, which showcases its feasibility in a practical deployment, while
providing insights towards a fully private and auditable payment hub.

2 Preliminaries and building blocks

In this section, we provide an overview of the cryptographic primitives, the
background and the related works necessary for building our protocols.

Standard cryptographic building blocks. We consider a digital signature
scheme consisting of algorithms KeyGen(), Sign() and SigVerify() and a com-
mitment scheme PCOM. We also consider non-interactive zero-knowledge proof
scheme NIZK := (PNIZK,VNIZK) where π ← PNIZK(x,w) and VNIZK(x, π) := {0, 1}
are the prover’s algorithm and verifier’s algorithm respectively for statement x
and witness w and NP relation R(x,w). We refer to Appendix A for formal
definitions of the above primitives.

Blinded randomizable signature (BRS) scheme. A BRS scheme consists
of algorithms: (i) σ̃ ← BlindSign(com, sk), that generates a blinded signature
given a commitment com to a message m; (ii) σ := UnBlindSign(σ̃, decom),
that unblinds σ̃ to produce a valid signature σ based on the decommitment
information decom; (iii) and σ′ ← RandSign(σ), that generates a randomized
signature σ′ based on a valid signature σ.

Adaptor signatures. Let statement/witness pair (x,w) ∈ R where R is a hard
relation, and secret/public key pair (sk, vk). At a high level, an adaptor signature
scheme [5] allows a party to pre-sign a message m w.r.t. some statement x of
a hard relation R, while that pre-signature σ̂ can be adapted into a full valid
signature σ by any party knowing the witness w. Also, the adaptor signature
scheme makes possible to extract the witness w by any party which knows both
the pre-signature and the adapted full signature. We refer to Appendix A for a
formal definition of adaptor signatures.

Randomizable puzzles A randomizable puzzle scheme RnP with a solution
space S and a function ϕ which acts on S, consists of the following algorithms:
(a) (pp, td) ← PSetup(1λ) where pp are the public parameters and td is the
trapdoor. (b) Z ← PGen(pp, ζ) where ζ is a puzzle solution, and Z is the gen-
erated puzzle (c) ζ := PSolve(td, Z) (d) (Z ′, r) ← PRand(pp, Z) where r is a
randomization factor and Z ′ is a randomized puzzle with the solution as ϕ(ζ, r).

Note that it is assumed that there exists a deterministic function ϕ such that
for a puzzle Z with the corresponding solution ζ, given its randomized version
Z ′ with the randomization factor r, it has ϕ(ζ, r) ∈ S is a solution to Z ′.

3



Hash-time lock contract (HTLC) A HTLC is a smart contract built upon
timelocks and hashlocks. A timelock implements the “locking” of funds on a
transaction until a predetermined time is reached, when the funds will return to
the sender. A hashlock implements the “locking” of funds on a transaction until
the hash preimage is revealed, where the funds are released to the receiver.

Accumulators. An accumulator acc enables a succinct and binding representa-
tion of a set of elements S and supports constant-size proofs of (non) membership
on S. We consider trapdoorless accumulators to prevent the need for a trusted
party that holds a trapdoor and could potentially create fake (non)membership
proofs. An accumulator acc typically consists of the following algorithms [6]:
(pp, D0)← AccSetup(nacc) generates the public parameters pp and instantiates
the accumulator initial state D0; Add(Dt, x) := (Dt+1, upmsg) adds element
x to accumulator Dt, outputting Dt+1 and upmsg such that witness holders
can update their witnesses; MemWitCreate(Dt, x, St) := wt

x Creates a member-
ship proof wt

x for element x where St is the set of elements accumulated in
Dt; MemWitUp(Dt, w

t
x, x, upmsg) := wt+1

x Updates membership proof wt
x for

element x after it is added to the accumulator; VerMem(Dt, x, w
t
x) := {0, 1}

Verifies membership proof wt
x of x in Dt.

Notation. We present the notations that are used through the rest of the
paper using Table 1. In Section 3 we begin introducing the UPC protocol and
later modify the protocol to achieve AUPC, we denote with blue color the added
variables and functions and with red color the removals to modify UPC to AUPC.

3 Universal Payment Channels (UPC)

The goal of Universal Payment Channels (UPC) is to facilitate digital token
transfers of funds across different ledgers between two parties A and B, thus
achieving interoperability between those ledgers. UPC follows a hub-and-spoke
design for scalability purposes, where a trustless UPC hub H plays a central role
in the system. In this section, we provide an overview of the basic UPC system
as well as its core protocols which serve as foundations towards constructing its
privacy-preserving version AUPC. Next, we provide a high level description of
the UPC system, and provide a detailed description for all of its functionalities
and formal descriptions of the respective protocols in Appendix B.

Registration and UPC contract. After both parties have registered their
public keys with H (Appendix B.1), an instance of the UPC contract (described
in Appendix B.2 and Figure 3) is deployed between each party and the hub on
the party’s respective ledger (using protocols described in Appendix B.3 and
Figure 6)3.

Payment channel funding and monitoring. After the contract deployment
by each party and the hub, the next step is to open a payment channel be-

3 For ease of notation we have considered that the each instance of the UPC contract
is between the Hub and a single party, however, it can easily be extended to consider
all the parties within a single blockchain to use the same contract.

4



Table 1: Details of the variables used in the UPC smart contract, Receipt (R),
Promise (P ), and Channel(C) objects.

Contract Variables
chanId channel identifier
vkH&vkC public key of the server and client respectively
claimDuration duration to submit claims before channel termination
status channel’s status (“Active”, “Closing”, “Closed”)
depositH&depositC server’s and client’s deposit amounts on-chain
lockC client’s locked amounts on-chain
creditH&creditC server’s and client’s aggregated amounts received off-chain
chanExpiry channel’s expiry time, to be set at the time of channel closing
accH&accC accumulators storing pending transactions for server and client
Secrets mapping of claimed promises and corresponding secrets
Solutions mapping of solved puzzle and corresponding solution
closeRequester first party finalizing the closure of the channel

Channel (C)
cid channel identifier
contract contract object from the contract deployment
params parameters initialized at contract deployment
creditin&creditout (in)outgoing credits respectively
Promisesin&Promisesout (in)outgoing promises respectively
accin&accout accumulator for (in)outgoing pending promises
accAuxin&accAuxout auxiliary info used by (in)outgoing accumulators
netPromin& netPromout aggregate of (in)outgoing pending promise amounts
receipt latest receipt received from the counter party
ledger ledger that the channel resides on.

Receipt (R)
credit total promises’ amounts for which a secret has been received
acc accumulator for tracking pending promises
σ valid signature on the values cid, credit and acc

Promise (P )
credit total promises’ amounts for which a secret has been received
amount amount of coins to be transferred in this transaction
hash&secret hash value of a preimage secret for this transaction
Z := (Aα, cα) puzzle with statement Aα and encrypted solution cα for this transaction
α puzzle solution for this transaction
expiry timestamp that this promise expires
proof membership proof of this promise in an accumulator
σ̂ pre-signature on the values cid, credit, amount, Aα, expiry
σ signature on the values cid, credit, amount, hash (or Aα), expiry

tween them. This is achieved through the deposit on-chain protocol described
in Appendix B.3 and Figure 6 which in turn invokes the UPC contract’s deposit
function. UPC contract also includes on-chain protocols for closing a payment
channel, as well as a continuous process being run by the UPC parties to monitor
the state of the contract and take any on-chain action as needed.

UPC payments. After each party A and B has established a payment channel
through the payment hub H and have agreed on the transaction parameters,
(i.e., transaction amounts and expiry), the receiving party B samples a secret
value and creates its hash = h(x). Then it requests payment from A by sending
the payment details, which includes amountB, a time expiry and the hash value.
Then, A creates a promise, which is a signed message containing amountA, hash
and expiry, and sends it to H (using CreatePromise in Figure 4). After H veri-
fies the promise (using VerifyPromise in Figure 4), it sends a similar promise

5



to B that consists of amountB, hash and expiry (using CreatePromise in Fig-
ure 4). Finally, B sends secret to H, which is also forwarded to A. The transfer
of amountA from A to H and amountB from H to B is completed by updating
the channel parameters and finalizing through a signed Receipt message (using
UpdateChannel and CreateReceipt in Figure 4). The payment flow described
above is depicated in Figure 1 and described in details in Appendix B.4.

6   Receipt 
Sender Receiver

1  Promise Hub

0  Payment Info 

2 Promise

5   Receipt 

3   Secret     4   Secret     

Fig. 1: Overview of off-chain steps taken by the parties to send payments from
a sender to a receiver via the intermediary server

Concurrent payments. To provide maximum parallelization for a receiver
that can process multiple promises simultaneously, UPC allows the sender to
submit multiple promises without waiting for each promise to be processed (we
refer to this property as non-blocking/concurrent payments). The UPC provides
this feature by asking the parties to commit to the set of pending promises
along with every receipt to prevent double-spending (promises are added to the
pending list in CreatePromise and committed to when CreateReceipt is called
in Figure 4).

As the list of pending promises grows linearly, it is inefficient to send the en-
tire list in every receipt exchange. To address this issue, UPC uses cryptographic
accumulators (e.g., Merkle tree and RSA accumulator). This allows to reduce
the asymptotic bandwidth/fee overhead of inclusion proofs to a logarithm (e.g.,
for a Merkle tree) or a constant (e.g., for an RSA accumulator) in the number
of pending promises.

Channel closing. When a party decides to close the channel, they can initi-
ate the closure by invoking the UPC contract (Figure 3). We can consider two
main scenarios. In the optimistic case, after a promise is sent from the sender,
the receiver releases the secret and consequently, the sender sends a correspond-
ing receipt to the receiver (the receipt has the aggregated amount of all previ-
ously completed promises). In such a scenario, the receiving party invokes the
ReceiptClaim function of the UPC contract using the latest receipt object (Fig-
ure 3). However, in the pessimistic case, where the receiving party releases the
secret but does not receive a receipt, it first invokes the ReceiptClaim function
to present its latest receipt and then submits the corresponding promise object
using the PromiseClaim function.

6



4 Privacy-preserving AUPC

In UPC, the payment hub learns all payment details routed through it: sender,
receiver and transaction amounts. As discussed in the introduction, such a sig-
nificant exposure of the transacting parties’ privacy towards the hub can be
problematic in many cases. Therefore, being inspired from A2L and A2L+, we
describe how to modify UPC discussed in the previous section which enables
transacting parties to maintain their anonymity against the hub, by making
them unlinkable by the hub when a large number of parties transact through it.
We first provide below a short high-level description of A2L, then we discuss the
modifications in the smart contract and both the on-chain and off-chain proto-
cols at a high level, and we provide the detailed protocols in Appendix C. We
use color coding for the changes in the respective figures imported from UPC.

PGen(        )

Sender ReceiverHub

PAY

PRand(      )

PAY

PSolve(      )
Release(                  )

Derand(       )
Release(                  )

Pu
zz

le
 P

ro
m

ise
Pu

zz
le

 S
ol

ve
r

Fig. 2: Off-chain steps in A2L to send payments via an intermediary server.

A2L overview. The goal of A2L [35] is to improve on existing solution (Tum-
blebit [19]) which implemented a protocol to facilitate privacy-preserving pay-
ments between parties through an untrusted payment channel hub (PCH). A2L
improves over Tumblebit by enabling the protocol to be interoperable across dif-
ferent cryptocurrencies. In addition, it improves on communication costs and
addresses potential denial of service (DoS) attacks, where an attacker could
potentially ask the PCH to initiate a large number of transactions without in-
tending to complete them.

A2L follows the paradigm of Tumblebit: it consists of two phases, a “Puzzle
Promise” and a “Puzzle Solver” phase, as shown in Figure 2.The Puzzle Promise

7



phase takes place between PCH H and B, where H computes an adaptor signa-
ture σ̂G and a re-randomizeable puzzle holding a secret value k that can be
solved using some ephemeral secret. Then B re-randomizes the puzzle (denoted
by PRand()) using randomness rB and forwards the new puzzle to A.

Next in the“Puzzle Solver” phase, A re-randomizes the puzzle again using
randomness rA, and computes an adaptor signature σ̂A which is sent to H. Now
H can solve A’s puzzle using its emphemeral secret (denoted by PSolve()) and
extract the product of rA · rB · k and use it to complete the adaptor signature
σ̂A and get paid by A. Now A due to the properties of adaptor signatures, can
extract the randomized solution and send after removing rA from the solution,
can obtain rB · k and send it to B. Lastly, B removes rB from the solution and
recovers k which can be used to complete σ̂G and get paid by H. Note that the
re-randomizations described throughout this process are crucial to prevent H
from being able to link payments between parties.

A2L+. Follow-up work [15] addresses potential attack vectors to A2L which
would result into recovering the hub’s private key or into stealing coins from the
hub. These are addressed by two additional steps, the first being a NIZK proof
during the first interaction of the parties with the hub, proving that its public
key is in the support of the public-key encryption scheme, and the second being
a check by the hub during the puzzle solver phase, that A’s verification key is in
the support of the adaptor signature scheme.

Registration and AUPC contract. The first major change in order to follow
the A2L paradigm is to replace hash values by “puzzle promises”. In addition,
because the flow of the protocol first requires the establishment of a “promise” to
the intended received on behalf of the payment hub, the sender is first required
to lock some funds before initiating the protocol to prevent “griefing” attacks by
malicious actors, which would make the payment hub establish such promises
without the initiating sender having the intent to complete the protocol. The
registration process is described in detail in Figure 9 in the Appendix.

Payment channel funding and monitoring. After the sender has locked
the needed funds in the contract, the payment channel is opened between each
party and the hub in a similar fashion as in UPC. Also, a second modification is
required in the contract state monitoring process, which now tracks the existence
of puzzle solutions and puzzle expiries instead of hash preimages (or “secrets”).
The changes are discussed in Appendix B.2 and shown in Figure 3 using our
color-coding (i.e, by removing the steps in blue color and adding those in red).

AUPC payments. The off-chain payment protocols for AUPC are similar to
UPC payments described in Section 3 with the following differences: (a) There is
no need to agree on the transaction amount, as this is fixed and pre-determined
for any transaction facilitated through that particular hub. (b) HTLCs are re-
placed by rerandomizeable puzzles. (c) In CreatePromise(), the signed message
is replace by an adaptor signature as in A2L. (d) A PreVerifyPromise() func-
tion used by B to pre-verify the validity of the pre-signature and the proof of
knowledge of puzzle solution received from H. (e) VerifySecret() is replaced by

8



VerifySolution() function to verify the rerandomizeable puzzle solution. Those
differences are highlighted with color code in Figure 4.

Summary. We observe that no extensive changes are required to modify the
UPC protocol to construct the privacy-preserving AUPC, and those changes are
mostly related to the corresponding primitives utilized by A2L, i.e., rerandomize-
able puzzles and adaptor signatures instead of hashes and standard signatures.
Therefore, we can consider the two versions of UPC to be modular, where only
a few functions (e.g., PreVerifyPromise, VerifySolution) and variables need
to be modified. We thereby present the details of two systems that provide a
tradeoff in terms of efficiency and privacy guarantees. We expand on this and
other discussion points in Section 6.

5 Implementation and evaluation

We have created a simple proof of concept implementation of our UPC protocol
detailed in Section 3. The platform we used for our evaluation is 2.6 GHz 6-Core
Intel Core i7 laptop. In addition, we have developed a mobile client for the users
to interact with the UPC protocol and show the feasibility of our solution.

5.1 Accumulators

In this work, we considered two types of accumulators namely the Merkle Tree
and RSA accumulators. We compared the efficiency of the two by different op-
erations in the Ethereum network using Solidity contracts, shown in Figure 5.
We observe that the Merkle tree is the better choice as it has less run-time for a
practical number of in-flight transactions per channel (less than 60K at a time),
and less gas cost for membership proof verification (450K gas compared to 20K
when 100, 000 promises are stored in the accumulator).

5.2 UPC smart contract implementation

The ledger contract presented in Figure 3 has been implemented using the
programming language Solidity for the Ethereum blockchain. Users within the
Ethereum network communicate with the network through the means of trans-
actions. The finality of a transaction is dependent on the block creation rate
(i.e., about 13 seconds in Ethereum) and the fee associated to the transaction.
In this section, we will be focusing on the the fees associated to the transaction
calls made to the smart contract, which is captured with the gas value. The gas
refers to the unit that measures the amount of computational effort required to
execute specific set of operations in the Ethereum network. Moreover, the final
price of a transaction fee depends on the exchange rate between gas and Ether
known as the gas price. The gas price is chosen by the sender of the transaction,
however acceptable gas prices by the miners of the blocks would be dependent
on the demand and network congestion. At the time of writing (Jan 25th 2023)

9



UPC Contract

Init(cid, vk1, vk2, T ):

1. Set (chanId, vkH, vkC, claimDuration)← (cid, vk1, vk2, T );
2. Set status← “Active”;
3. Set (depositH, depositC, lockC, creditH, creditC, chanExpiry)← (0, 0, 0, 0, 0, 0);
4. Set (accH, accC, Secrets, Solutions, closeRequester)← (⊥,⊥,⊥,⊥,⊥);

GetParams():

Output [chanId, vkH, vkC, claimDuration].

Deposit(amount):

1. Abort if status ̸= “Active” or caller.vk ̸∈ {vkH, vkC};
2. If caller.vk = vkH, then set depositH ← depositH + amount;
3. If caller.vk = vkC, then set depositC ← depositC + amount.

Lock(amount):

1. Abort if status ̸= “Active” or caller.vk ̸∈ {vkC};
2. If caller.vk = vkC, then set lockC ← lockC + amount.

PromiseClaim(P ):

1. Abort if status ̸= {“Active”, “Closing”} or caller.vk ̸∈ {vkH, vkC};
2. Abort if now ≥ P.expiry or Hash(P.secret) ̸= P.hash or Secrets[P.hash] ̸= ⊥ or Solutions[P.Z] ̸= ⊥

or P.σ ̸= Adapt(P.σ̂, P.α);
3. If caller.vk = vkH, then set vk← vkC, credit← creditH, and acc← accH;

Otherwise, set vk← vkH, credit← creditC, and acc← accC;
4. Abort if SigVerify(P.σ, [chanId, P.credit, P.amount, P.expiry], vk);
5. Abort if P.credit < credit and ACC.VerifyProof(acc, P.hash, P.Z, P.proof)=0;
6. If caller.vk = vkH, then set creditH ← creditH + P.amount;

Otherwise, creditC ← creditC + P.amount;
7. Set Secrets[P.hash]← P.secret Solutions[P.Z]← P.α.
8. If status = “Active”, then set chanExpiry← now + claimDuration, and status← “Closing”.

ReceiptClaim(R):

1. Abort if status ̸= {“Active”, “Closing”} or caller.vk ̸∈ {vkH, vkC};
2. If caller.vk = vkH, then:

(a) Abort if SigVerify(R.σ, [chanId, R.credit, R.acc], vkC) = 0;
(b) Set creditH ← R.credit, and accH ← R.acc;
Otherwise:
(a) Abort if SigVerify(R.σ, [chanId, R.credit, R.acc], vkH) = 0;
(b) Set creditC ← R.credit, and accC ← R.acc;

3. If status = “Active”, then set chanExpiry← now + claimDuration, and status← “Closing”.

Close():

1. Abort if status ̸= {“Active”, “Closing”} or caller.vk ̸∈ {vkH, vkC};
2. If closeRequester = ⊥, then set closeRequester← caller.vk;
3. If closeRequester ̸= caller.vk, then set status← “Closed”;
4. If status = “Active”, then set chanExpiry← now + claimDuration, and status← “Closing”.

Withdraw():

1. Abort if status ̸= {“Closing”, “Closed”};
2. Abort if status = “Closing” and now < chanExpiry;
3. Invoke ledger.transfer(vkH, depositH + creditH − creditC) and

ledger.transfer(vkC, depositC + creditC − creditH);

Unlock():

1. Abort if status ̸= {“Closing”, “Closed”};
2. Abort if status = “Closing” and now < chanExpiry;
3. Invoke ledger.transfer(vkC, lockC);

Fig. 3: UPC smart contract.

10



Off-Chain Functions

CreatePromise(C, amount, hash, Z, expiry, sk):

cid← C.cid; credit← C.creditout;

1. P ← [credit, amount, hash, expiry, σ], where
σ ← Sign([cid, credit, amount, hash, expiry], sk)
P ← [m,Z := (Aα, cα), σ̂, σ],
where σ̂ ← PreSign(m,Aα, sk), σ = ⊥ and m = [cid, credit, amount, expiry];

2. Add P to C.Promisesout;
3. ACC.Insert(C.accout, hash, Z, C.accAuxout);
4. Output P .

PreVerifyPromise(P, promiseSender, C, amount, Z, expiry, vk):

cid← C.cid; credit← C.creditin;

1. If promiseSender = “Server” then deposit← C.contract.depositH;
else deposit← C.contract.depositC

2. If [PreVerify(P.σ̂, [cid, credit, amount, expiry], Aα, vk) = 0]∨[C.creditin+C.netPromin+amount >
deposit + C.creditout] then output 0; else output 1.

VerifyPromise(P, promiseSender, C, amount, hash, Z, expiry, vk):

cid← C.cid; credit← C.creditin;
If promiseSender = “Server” then deposit← C.contract.depositH;
Otherwise, deposit← C.contract.depositC
1. Output 0 if any of the following conditions is true:

– SigVerify(P.σ, [cid, credit, amount, hash, expiry], vk) = 0
– C.creditin + C.netPromin + amount > deposit + C.creditout;
– P.expiry − now ≤ C.params.claimDuration

2. Add P to C.Promisesin and set C.netPromin ← C.netPromin + amount;
3. ACC.Insert(C.accin, hash, Z, C.accAuxin);
4. Output 1.

VerifySecret(C,P, secret):

Output 0 if any of the following conditions is true; otherwise output 1:
– P ̸= C.Promisesout;
– Abort if Hash(secret) ̸= P.hash;

VerifySolution(C,P, σ,Aα):

Output 0 if any of the following conditions is true; otherwise output 1:
– P ̸= C.Promisesout;
– Abort if α = ⊥ where α := Ext(σ, P.σ̂, Aα);

UpdateChannel(C,P, updateDirection):

If updateDirection = “outgoing”, then
1. Set C.creditout ← C.creditout + P.amount;
2. Remove P from C.Promisesout;
3. ACC.Delete(C.accout, P.hash, P.Z, C.accAuxout);
Otherwise,
1. Set C.creditin ← C.creditin + P.amount;
2. Remove P from C.Promisesin;
3. ACC.Delete(C.accin, P.hash, P.Z, C.accAuxin)
CreateReceipt(C, sk):

cid← C.cid; credit← C.creditout; acc← C.accout;
Output σ ← Sign([cid, credit, acc], sk);
VerifyReceipt(R,P,C, vk): cid ← C.cid; credit ← C.creditin; acc ← C.accin; accAux ←
C.accAuxin;

1. ACC.Delete(acc, P.hash, P.Z, accAux);
2. Return SigVerify(R.σ, [cid, credit + P.amount, acc], vk).

Fig. 4: Off-Chain Functions

11



0 20000 40000 60000 80000 100000
Number of promises in accumulator

10−4

10−3

10−2
T

im
e

in
se

co
nd

s
fo

r
a

si
ng

le
op

er
at

io
n

RSA insertion

Merkle insertion

(a) Accumulator Insertion

0 20000 40000 60000 80000 100000
Number of promises in accumulator

10−4

10−2

100

102

T
im

e
in

se
co

nd
s

fo
r

a
si

ng
le

op
er

at
io

n

RSA proof

Merkle proof

(b) Membership Proof

Fig. 5: Performance comparisons between Merkle Tree and RSA accumulators

the average gas price for Ethereum is 24 Gwei and 51 Gwei for the Polygon
network. Furthermore, ETH is priced at 1544 USD and MATIC4 at 0.95 USD.

We begin by evaluating the gas needed for the deployment of the contract.
The UPC contract requires 1, 532, 271 gas (56.55 USD for Ethereum and 0.1 USD
for Polygon) to be deployed on the respective blockchain. We emphasize that in
our implementation we did not aim to optimize gas costs and further optimiza-
tions can reduce the gas. respectively. The gas usages for different functions of
UPC contract are reported in Table 2.

In the case of HTLC payments, we can consider two main scenarios. In the
optimistic case, after a promise is sent from the sender, the receiver releases the
secret for the HTLC and consequently, the sender sends a corresponding receipt
to the receiver. In such a scenario, the receiving party will submit the receipt to
the contract and close accordingly. However, in the pessimistic case, where the
receiving party releases the secret but does not receive a receipt, it goes on-chain
and first submits its latest receipt. Next, it submits the promise for the HTLC
where the party can reveal the secret of HTLC. Comparing the two scenarios
and referencing the Table 2, we see that in the pessimistic case, about 70K more
gas (2.50 USD) will be needed to resolve the promise.

Off-chain Evaluation. To evaluate the protocol’s runtime, we conducted a
test with ten clients simultaneously sending transactions to a single server. Each
client transmitted 1,000 transactions, resulting in a total of 10,000 promises, se-
cret reveals, and receipts. We achieved an end-to-end throughput of 110 TPS, en-
compassing random secret generation, secret hashing, promise creation, promise
verification, secret revealing, secret verification, receipt creation, and receipt ver-
ification. We note that optimizing the off-chain code and using a more capable
server machine could further enhance the performance.

4 MATIC is the native token used in the Polygon blockchain

12



Table 2: UPC contract’s functions Gas Prices. USD amounts reflect the date Jan
25th, 2023.

Functions Gas Units USD-ETH USD-Polygon

Deposit 45,079 1.67 0.002

ReceiptClaim 75,336 2.80 0.004

Promise
Claim

65,954 (w/o. proof) 2.45 0.003
66,196 (Merkle-1 tx) 2.46 0.003
74,755 (Merkle-1K txs) 2.78 0.004
80,750 (Merkle-100K txs) 3.00 0.004
524,378 (RSA) 19.48 0.026

Close
48,089 (initial) 1.79 0.002
32,250 (final) 1.20 0.002

Withdraw 29,089 1.08 0.001

AUPC Overhead. As described in Section 4, inspired from the A2L work we can
modify UPC to achieve transactional unlinkability. We refer readers to section 6
of [15] for the overhead of A2L and A2L + for providing privacy.

6 Discussion

6.1 Security

The two intuitive security properties we require for both UPC and AUPC to
satisfy are:

1. Theft prevention, meaning the funds of all honest participants in the system
are protected despite adversarial actions.

2. Balance, meaning the total funds in the system do not increase with time
(or in other words, an adversary cannot double-spend).

In addition, AUPC needs to satisfy anonymity, meaning a malicious payment
hub which does not collude with other parties cannot infer any information
between the sender and receiver of a transaction.

Informally, the properties of theft prevention and balance are satisfied through
the sequence of hashed secrets and signed promises in UPC and the rerandom-
izeable puzzles and adaptor signatures in AUPC, which guarantee atomicity, i.e.,
either the payment is successful with the funds transfered simultaneously, or
the funds are returned back to the sender, as discussed in the optimistic and
pessimistic scenarios in Section 5.2. Also anonymity is achieved through the se-
ries of rerandomizeable puzzles, as for the case of A2L and A2L+ discussed in
Section 4.

6.2 Tradeoffs between UPC and AUPC

We now discuss the advantages and disadvantages of AUPC over UPC (other
than privacy, which was the intended goal for AUPC):

13



HTLCs vs timelocks. Since UPC relies on HTLCs (hashed time-lock con-
tracts), it is only interoperable across chains that use the same hash function.
In contrast, the conditions in AUPC only rely on time-locks, which allows it to
be interoperable between ledgers that do not support the same hash function.

Fixed vs. variable amounts: While UPC supports arbitrary amounts, AUPC
inherits a limitation from A2L, where the amount for each transaction should be
fixed (since arbitrary amounts could be used to link the sender and receiver, thus
defeating privacy). Therefore, to send an arbitrary amount, multiple transactions
may be required. For example, consider the case that the fixed amount for each
payment is set to 0.1 ETH. To send a transaction of amount 0.7 ETH, seven
transactions are required. As we can see, there is a tradeoff between transaction
efficiency (e.g., tx fees, tx finality) and privacy. As a result, given this tradeoff,
in some cases users may opt to use the UPC protocol instead of AUPC.

6.3 Related work

In addition to A2L and A2L+ which inspired AUPC, a work closely related to
ours is Raiden [3], which like UPC, focuses on Ethereum and ERC-20 tokens,
and additionally relies on HTLCs to route payments through the Raiden net-
work.5 Furthermore, Raiden supports concurrent transactions and makes use of
a Merkle tree to commit to the set of pending payments. However, it faces a ma-
jor limitation in the low number of in-flight payments (limited to 160 at a time 67

8) Also, as pointed out earlier, Raiden off-chain payments are simple payments
as opposed to conditional payments a la HTLCs. For this reason, Merkle paths
corresponding to all pending payments are opened (and in particular, checked
for expiry) before allowing the parties to withdraw from their Raiden channel
at settlement time. In contrast, in UPC, pending payments that have expired
do not need to be opened on-chain. While this may seem a minor improvement
in the context of off-chain payments, this turns out to have a significant im-
pact in larger applications (such as atomic swaps or secure computation with
penalties [8,33]) that rely on HTLCs. If UPC is used to implement HTLCs in
these applications, then a counterparty that aborts without claiming the HTLC
payment (i.e., the HTLC payment refunds the money back to the sender), does
not incur any additional (gas) cost to the honest sender. Finally, we note that
to the best of our knowledge, Raiden has not been formally described.

5 Notably they employ a separate SecretRegistry contract [28] to ensure that worst
case delays are independent of the length of the payment route.

6 As noted in [4], this is to avoid the risk of not being able to unlock the transfers, as
the gas cost for this operation grows linearly with the number of the pending locks
and thus the number of pending transfers.

7 The limit, currently set to 160, is a rounded value that ensures the gas cost of
unlocking will be less than 40% of Ethereum’s traditional pi-million (3141592) block
gas limit.

8 Lightning has a similar limitation in that it supports 483 (unidirectional) concurrent
payments owing to block size limits in Bitcoin [30,1].

14



Next, we discuss a work on virtual payment channels [12], which constructs
the so called ledger channels between participants, such that parties that have
a ledger channel with an intermediary party, can send payments to each other
via a virtual channel that does not require interaction with the intermediary
for every payment. Note that interaction with the intermediary is required for
sending the first payment (and for closing the virtual channel), and thus the
benefits are obtained only if parties send at least two or more payments over the
virtual channel. Additionally, participants have to pre-allocate (i.e., lock) funds
on the ledger channel for every virtual channel. This may cause a large payment
on a given virtual channel to fail unless funds are re-allocated by closing multiple
existing virtual channels (each of which would require interaction with server).
On the one hand, UPC requires interaction with the UPC Hub for authorization
of every off-chain payment. On the other hand, UPC clients do not have to
perform any additional pooling of funds as long as they have sufficient balance
on the UPC channel.

Other works focus on efficient cross-chain atomic swaps [37] or off-chain trad-
ing platforms [14], and require clients to hold accounts on both chains (required
per definition of the atomic swap problem [13]). UPC, on the other hand, can al-
low payments between two clients who do not share a common blockchain. Also,
several works in addition to A2L focus on providing privacy and/or anonymity
in payment channels [26,18,16,25,16,26,22] for blockchains based on the UTXO
model. However, we are currently missing an approach for universal, efficient,
privacy-preserving scalable payments account based blockchains.

Finally, there have been other scalability approaches like rollups or sharding
[17,21] which are orthogonal to our work.

7 Conclusion and future work

We presented two implementations of UPC, or Universal Payment Channels:
A first implementation is UPC which uses HTLC contracts to enable payment
channels between a sender and a receiver through a payment hub, and AUPC
which only uses time-locks and digital signatures compatible with adaptor sig-
natures, in the respective contracts (making it interoperable across a broader
family of ledgers) and offers unlinkability against the payment hub. However,
the tradeoff in AUPC is that it does not support arbitrary amounts, which im-
plies that in practice, payments utilizing AUPC would require more transactions
to complete. Moreover, we could foresee that in practice, different denominations
might be supported by different hubs and this would require users to interact
with multiple hubs, each serving a different fixed amount.

One exciting research direction for future work is to consider auditability
guarantees and how to add support to UPC and AUPC in order to be able to
enforce policies such as anti money-laundering (AML).

15



Acknowledgements

This work has been partially supported by Madrid regional government as part of
the program S2018/TCS-4339 (BLOQUES-CM) co-funded by EIE Funds of the
European Union; by grant IJC2020-043391-I/MCIN/AEI/10.13039/501100011033;
by PRODIGY Project (TED2021-132464B-I00) funded by MCIN/AEI/10.13039/
501100011033/ and the European Union NextGenerationEU/PRTR.

Disclaimers

Case studies, comparisons, statistics, research and recommendations are provided “AS

IS” and intended for informational purposes only and should not be relied upon for

operational, marketing, legal, technical, tax, financial or other advice. Visa Inc. nei-

ther makes any warranty or representation as to the completeness or accuracy of the

information within this document, nor assumes any liability or responsibility that may

result from reliance on such information. The Information contained herein is not in-

tended as investment or legal advice, and readers are encouraged to seek the advice of a

competent professional where such advice is required. These materials and best practice

recommendations are provided for informational purposes only and should not be relied

upon for marketing, legal, regulatory or other advice. Recommended marketing materi-

als should be independently evaluated in light of your specific business needs and any

applicable laws and regulations. Visa is not responsible for your use of the marketing

materials, best practice recommendations, or other information, including errors of any

kind, contained in this document. All trademarks are the property of their respective

owners, are used for identification purposes only, and do not necessarily imply product

endorsement or affiliation with Visa.

References

1. Bolt #2: Peer protocol for channel management. https://github.com/

lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md#

rationale-7, (Accessed on 09/22/2020)

2. Payment channels - bitcoin wiki. https://en.bitcoin.it/wiki/Payment_

channels, (Accessed on 05/05/2021)

3. Raiden. https://raiden.network/, (Accessed on 05/04/2021)

4. Raiden. https://raiden-network-specification.

readthedocs.io/en/latest/mediated_transfer.html#

limit-to-number-of-simultaneously-pending-transfers, (Accessed on
05/04/2021)

5. Aumayr, L., Ersoy, O., Erwig, A., Faust, S., Hostakova, K., Maffei, M., Moreno-
Sanchez, P., Riahi, S.: Generalized bitcoin-compatible channels. Cryptology ePrint
Archive, Report 2020/476 (2020)

6. Baldimtsi, F., Camenisch, J., Dubovitskaya, M., Lysyanskaya, A., Reyzin, L.,
Samelin, K., Yakoubov, S.: Accumulators with applications to anonymity-
preserving revocation. In: IEEE EuroS&P (2017)

16

https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md#rationale-7
https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md#rationale-7
https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md#rationale-7
https://en.bitcoin.it/wiki/Payment_channels
https://en.bitcoin.it/wiki/Payment_channels
https://raiden.network/
https://raiden-network-specification.readthedocs.io/en/latest/mediated_transfer.html#limit-to-number-of-simultaneously-pending-transfers
https://raiden-network-specification.readthedocs.io/en/latest/mediated_transfer.html#limit-to-number-of-simultaneously-pending-transfers
https://raiden-network-specification.readthedocs.io/en/latest/mediated_transfer.html#limit-to-number-of-simultaneously-pending-transfers


7. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy. pp. 459–474. IEEE Computer Society Press
(May 2014). https://doi.org/10.1109/SP.2014.36

8. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Crypto.
pp. 421–439. Springer (2014)

9. Chatzigiannis, P., Baldimtsi, F., Chalkias, K.: SoK: Auditability and account-
ability in distributed payment systems. In: Sako, K., Tippenhauer, N.O. (eds.)
ACNS 21, Part II. LNCS, vol. 12727, pp. 311–337. Springer, Heidelberg (Jun 2021).
https://doi.org/10.1007/978-3-030-78375-4 13

10. Christodorescu, M., English, E., Gu, W.C., Kreissman, D., Kumaresan, R., Mi-
naei, M., Raghuraman, S., Sheffield, C., Wijeyekoon, A., Zamani, M.: Univer-
sal payment channels: An interoperability platform for digital currencies. CoRR
abs/2109.12194 (2021), https://arxiv.org/abs/2109.12194

11. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin
duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) Stabiliza-
tion, Safety, and Security of Distributed Systems. pp. 3–18. Springer International
Publishing, Cham (2015)

12. Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: Perun: Virtual payment
hubs over cryptocurrencies. In: 2019 IEEE Symposium on Security and Privacy
(SP). pp. 106–123. IEEE (2019)

13. Ethan Heilman, Sebastien Lipmann, S.G.: Atomic swaps. https://en.bitcoin.
it/wiki/Atomic_swap, (Accessed on 05/04/2021)

14. Ethan Heilman, Sebastien Lipmann, S.G.: The arwen trading protocols. In: Finan-
cial Cryptography. pp. 156–173 (2020)

15. Glaeser, N., Maffei, M., Malavolta, G., Moreno-Sanchez, P., Tairi, E., Thyagara-
jan, S.A.: Foundations of coin mixing services. Cryptology ePrint Archive, Report
2022/942 (2022), https://eprint.iacr.org/2022/942

16. Green, M., Miers, I.: Bolt: Anonymous payment channels for decentralized cur-
rencies. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. pp. 473–489. ACM (2017)

17. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: SoK: Layer-
two blockchain protocols. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol.
12059, pp. 201–226. Springer, Heidelberg (Feb 2020). https://doi.org/10.1007/978-
3-030-51280-4 12

18. Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: TumbleBit:
An untrusted bitcoin-compatible anonymous payment hub. In: NDSS (2017)

19. Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: TumbleBit:
An untrusted bitcoin-compatible anonymous payment hub. In: NDSS 2017. The
Internet Society (Feb / Mar 2017)

20. Inc, C.: Chainanalysis: Blockchain analysis, https://www.chainalysis.com/
21. Khalil, R., Zamyatin, A., Felley, G., Moreno-Sanchez, P., Gervais, A.: Commit-

Chains: Secure, scalable off-chain payments. Cryptology ePrint Archive, Report
2018/642 (2018), https://eprint.iacr.org/2018/642

22. Le, D.V., Hurtado, L.T., Ahmad, A., Minaei, M., Lee, B., Kate, A.: A tale of
two trees: One writes, and other reads: Optimized oblivious accesses to bitcoin
and other utxo-based blockchains. Proceedings on Privacy Enhancing Technolo-
gies 2020(2). https://doi.org/10.2478/popets-2020-0039, https://par.nsf.gov/
biblio/10200542

23. Lind, J., Eyal, I., Pietzuch, P.R., Sirer, E.G.: Teechan: Payment channels using
trusted execution environments (2016), http://arxiv.org/abs/1612.07766

17

https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/978-3-030-78375-4_13
https://arxiv.org/abs/2109.12194
https://en.bitcoin.it/wiki/Atomic_swap
https://en.bitcoin.it/wiki/Atomic_swap
https://eprint.iacr.org/2022/942
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1007/978-3-030-51280-4_12
https://www.chainalysis.com/
https://eprint.iacr.org/2018/642
https://doi.org/10.2478/popets-2020-0039
https://par.nsf.gov/biblio/10200542
https://par.nsf.gov/biblio/10200542
http://arxiv.org/abs/1612.07766


24. Lind, J., Naor, O., Eyal, I., Kelbert, F., Sirer, E.G., Pietzuch, P.: Teechain:
A secure payment network with asynchronous blockchain access. In: Pro-
ceedings of the 27th ACM Symposium on Operating Systems Principles. p.
63–79. SOSP ’19, Association for Computing Machinery, New York, NY,
USA (2019). https://doi.org/10.1145/3341301.3359627, https://doi.org/10.

1145/3341301.3359627

25. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S.: Concurrency
and privacy with payment-channel networks. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 455–471. ACM Press (Oct / Nov
2017). https://doi.org/10.1145/3133956.3134096

26. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anony-
mous multi-hop locks for blockchain scalability and interoperability. In: NDSS 2019.
The Internet Society (Feb 2019)

27. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,
G.M., Savage, S.: A fistful of bitcoins: Characterizing payments among men with
no names. Commun. ACM (2016)

28. Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and state
channels: Payment networks that go faster than lightning. In: Goldberg, I., Moore,
T. (eds.) Financial Cryptography and Data Security. pp. 508–526. Springer Inter-
national Publishing, Cham (2019)

29. Minaei Bidgoli, M., Kumaresan, R., Zamani, M., Gaddam, S.: System and method
for managing data in a database (Feb 2023), https://patents.google.com/

patent/US11556909B2/

30. Mizrahi, A., Zohar, A.: Congestion attacks in payment channel networks. https:
//arxiv.org/pdf/2002.06564.pdf, (Accessed on 05/04/2021)

31. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2009), http://

bitcoin.org/bitcoin.pdf

32. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant pay-
ments. http://lightning.network/lightning-network-paper.pdf, (Accessed
on 09/22/2020)

33. Ranjit Kumaresan, Vinod Vaikuntanathan, P.N.V.: Improvements to secure com-
putation with penalties. In: CCS. pp. 406–417 (2016)

34. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph.
In: Financial Cryptography and Data Privacy (2013)

35. Tairi, E., Moreno-Sanchez, P., Maffei, M.: A2l: Anonymous atomic locks for scal-
ability in payment channel hubs. In: 42nd IEEE Symposium on Security and Pri-
vacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021. pp. 1834–1851. IEEE
(2021). https://doi.org/10.1109/SP40001.2021.00111, https://doi.org/10.1109/
SP40001.2021.00111

36. Van Saberhagen, N.: Cryptonote v 2.0 (2013), https://cryptonote.org/

whitepaper.pdf

37. Zamyatin, A., Harz, D., Lind, J., Panayiotou, P., Gervais, A., Knottenbelt, W.:
Xclaim: Trustless, interoperable, cryptocurrency-backed assets. IEEE Security and
Privacy. IEEE (2019)

18

https://doi.org/10.1145/3341301.3359627
https://doi.org/10.1145/3341301.3359627
https://doi.org/10.1145/3341301.3359627
https://doi.org/10.1145/3133956.3134096
https://patents.google.com/patent/US11556909B2/
https://patents.google.com/patent/US11556909B2/
https://arxiv.org/pdf/2002.06564.pdf 
https://arxiv.org/pdf/2002.06564.pdf 
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://lightning.network/lightning-network-paper.pdf
https://doi.org/10.1109/SP40001.2021.00111
https://doi.org/10.1109/SP40001.2021.00111
https://doi.org/10.1109/SP40001.2021.00111
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf


A Cryptographic background

Digital Signature Scheme. Typically, a digital signature scheme Σ with a
message spaceM consists of three algorithms:

– (sk, vk)← KeyGen(1λ)
– σ ← Sign(m, sk) for any m ∈M
– SigVerify(σ,m, vk) := {0, 1}

Note, the digital signature scheme also holds that for every m ∈ M, there
always exists:

Pr[SigVerify(Sign(m, sk),m, vk) = 1|(sk, vk)← KeyGen(1λ)] = 1 ,

for a secret/public key pair (sk, vk).

Commitment Scheme. Typically, a commitment scheme COM consists of the
commitment algorithm PCOM and the verification algorithm VCOM:

– (com, decom)← PCOM(m)
– VCOM(com, decom,m) := {0, 1}

A COM scheme can allow a prover to commit on a messagem without revealing
it. Later, the prover can convince a verifier that the message m was committed
through the using of the commitment com and decommitment information decom.

Non-interactive Zero-knowledge. Suppose R is an NP relation with state-
ment/witness pairs (x,w) and L is a set of positive instances that corresponding
to the relation R, such as

L = {x|∃w s.t R(x,w) = 1}

Generally, we say R is a hard relation if the following holds:

– There exists a PPT (probabilistic polynomial time) sampling algorithm GenR(1λ),
for the given input the security parameter λ, it outputs a statement/witness
pair (x,w) ∈ R.

– The relation is poly-time decidable.
– For all PPT adversaries A, there exists a negligible function negl(·), such

that:

Pr

[
(x,w∗) ∈ R

∣∣∣∣ (x,w)← GenR(1λ),
w∗ ← A(x)

]
≤ negl(λ),

where the probability is taken over the randomness of GenR and A.

Furthermore, A non-interactive zero-knowledge proof scheme NIZK consists
of two algorithms NIZK := (PNIZK,VNIZK) where

– π ← PNIZK(x,w) with PNIZK is prover algorithm
– VNIZK(x, π) := {0, 1} with VNIZK is the verification algorithm

19



Adaptor signatures. An adaptor signature scheme consists of the following
algorithms:

– σ̂ ← PreSign(m,x, sk) where σ is a pre-signature
– PreVerify(σ̂,m, x, vk) := {0, 1}
– Adapt(σ̂, w) := σ
– Ext(σ, σ̂, x) := w

The security properties of an adaptor signature schemes are i) existential
unforgeability under chosen message attack for adaptor signature (aEUF–CMA)
(which is similar to EUF-CMA for standard signatures) ii) pre-signature adapt-
ability, which guarantees that any valid pre-signature w.r.t. x (possibly produced
by a malicious signer) can be completed into a valid signature using a witness w,
iii) witness extractability, which guarantees that a valid signature/pre-signatue
pair (σ, σ̃) for message/statement (m,x) can always be used to extract the wit-
ness w.

Cryptographic Accumulators. An accumulator acc enables a succinct and
binding representation of a set of elements S and supports constant-size proofs
of (non) membership on S. For UPC we consider dynamic accumulators where
elements can be both added and deleted over time into/from S and positive accu-
mulators which allow for efficient proofs of membership. We consider trapdoorless
accumulators in order to prevent the need for a trusted party that holds a trap-
door and could potentially create fake (non)membership proofs. An accumulator
acc typically consists of the following algorithms [6]:

– (pp, D0)← AccSetup(nacc) generates the public parameters pp and instanti-
ates the accumulator initial state D0.

– Add(Dt, x) := (Dt+1, upmsg) adds element x to accumulator Dt, outputting
Dt+1 and upmsg such that witness holders can update their witnesses.

– MemWitCreate(Dt, x, St) := wt
x Creates a membership proof wt

x for element x
where St is the set of elements accumulated in Dt. NonMemWitCreate creates
the equivalent non-membership proof ut

x.
– MemWitUp(Dt, w

t
x, x, upmsg) := wt+1

x Updates membership proof wt
x for el-

ement x after it is added to the accumulator.
– VerMem(Dt, x, w

t
x) := {0, 1} Verifies membership proof wt

x of x in Dt.

20



B UPC functionalities and protocols

B.1 Client Registration

In the first step, every client needs to participate in a one-time registration
procedure with the server H to register its verification key. The client starts by
locally generating a pair of verification/secret keys, denoted by (vk, sk). Next,
it transmits the verification key, vk, to H. Upon receiving the client’s request,
H adds vk to a registry list if the key has not been registered before. In the
remaining of this section, we consider that the clients have registered with the
server and omit the registration check in the remaining protocols for succinctness.

B.2 UPC basic smart contract

We now provide a detailed description of the basic UPC Protocol. We start from
the basic UPC smart contract (shown in Figure 3), which is used to establish
the payment channel between clients and the hub.

The contract consists of seven functions: three functions for initializing and
funding the payment channel and four for closing the channel. In the following,
we describe each function in detail.

Init Function. This function acts as the contract’s constructor, and defines
and initializes the variables used throughout the contract. The list of contract’s
variables and their description is provided in Table 1. The first set of variables
(chanId, vkH, vkC, and claimDuration), referred to as channel parameters, are
passed to the contract during the contract’s deployment phase. The next vari-
able, status, maintains the channel’s status and is initialized to “Active”. This
variable can take one of the following three values:
– “Active” indicating that the channel is open and transactions can be made

off-chain;
– “Closing” specifying that the channel is about to close allowing the other

end of the channel to submit its claims (if any) before the claimDuration
expiry;

– “Closed” indicating that the channel is closed (i.e., parties’ final balances
have been determined and transferred to them).

The remaining variables are all initialized to default values (i.e., zero for
numerical values and null for all other object types).

GetParams. This function is used to retrieve the channel parameters given at
the initialization step of the contract. As we will see in Appendix B.3, a party
can use it to verify the correct deployment of the contract by the other party.

Deposit. This function is used by the parties to increase their on-chain deposit
balance (i.e., depositH or DepositC), and can be invoked any number of times as
long as the contract’s status is “Active”.

ReceiptClaim. When a party decides to close the channel, they can invoke this
function to submit the last receipt they received from the other party. The input

21



to this function is a receipt object (R), detailed in Table 1. This function performs
a series of verification checks before updating the on-chain credit values. The first
check of the function is to ensure that the contract is not in a “Closed” status.
Next, it ensures that the party invoking the function is the channel participant
(i.e., their public key is vkH or vkC). In the next step, depending on the caller of
the function, the signature of the receipt object is verified and the appropriate
on-chain credit (i.e., creditH or creditC) and accumulator (accH or accC) variables
are set. For example, if the server H calls the function then the client’s public key
(vkC) will be used to verify the signature and creditH and accH will be updated
according to the receipt’s values.

In the final step, if the contract’s status is “Active” (i.e., this is the initial
call for closing the channel), it is changed to “Closing” and the channel expiry
(chanExpiry) time is set by adding the claimDuration to the current timestamp.

PromiseClaim. This function is used to claim a promise(s) for which the party
holds its secret value9. The promise object (P ) detailed in Table 1 is given to
this function as input.

Similar to the ReceiptClaim function, a series of verification checks are per-
formed before updating the on-chain credit values. Like the previous function,
the first two checks are for ensuring that the status of contract is not “Closed”
and the invoking party is a channel participant. Next, it ensures that the promise
is not expired and that the provided secret value, hashes to promise’s hash. Fur-
ther, to prevent double spending attacks, the function ensures that each promise
is submitted only once by tracking the claimed promises in the Secrets mapping
(step 7).

In the next step, the signature of the promise (P ) is verified (step 4) and the
on-chain credit value (i.e., creditH or creditC depending on the invoking party)
is updated in step 6 (i.e., adding the promise amount to the credit value). Note
that, before updating the credit values the function checks that the promise is
not a double spend via a previously ReceiptClaim. Therefore, all promises that
have a credit value less than the contract’s recorded credit, a valid membership
proof of that promise inside the accumulator (pending promises) is required (step
5). Finally, similar to ReceiptClaim, contract’s status and chanExpiry variables
are set.

Close. The Close function can be used in two ways. One is for the case that the
party does not have a receipt or promise and wants to close the channel without
claiming any off-chain credits. The second case is for situations that the parties
would like to close the channel cooperatively without waiting for the chanExpiry
time to arrive. In this scenario, parties first claim their receipts and promises,
then they invoke the Close function.

Similar to the previous two claim functions, the Close function first checks
the status of the contract to not be “Closed”, and that the caller of the function

9 This function can be invoked at any time by the promise-holding party, however, in
an optimistic scenario, parties will call this function only when the promise is about
to expire and the counter party has not sent a receipt for it.

22



is a channel participant. Next, it checks to see if this is the first time that this
function is being called using the closeRequester variable. If it is the first time,
then closeRequester variable will be set by assigning the caller’s public key. This
is to keep track whether both parties do call the Close function to cooperatively
close the channel or not. As a result, in step 3, if the caller of the function is
different than the closeRequester (i.e., the initial closing party), the channel’s
status will be set to “Closed” which allows the parties to skip the claimDuration
period and withdraw their funds sooner. Finally, similar to the previous two
functions, contract’s status and chanExpiry variables are set accordingly.

Withdraw. Once the channel has successfully been closed, the parties will call
this function to withdraw their funds. First, the function ensures that the chan-
nel has been closed by checking the status. If the status is at a “Closing” state,
then an extra validation of the timestamp against the channel’s expiry time
(chanExpiry) is performed. This is the case that one party did not call the Close
function to cooperatively close the channel before the channel expiry time). Next,
the function transfers funds according to the deposit values (via the Deposit

function) and claimed credits (via the ReceiptClaim and PromiseClaim func-
tions) of each channel participant10. Note that unlike the previous functions this
function can be called by any party (not necessarily the channel participants);
Therefore, the task of waiting for the channel to expire and calling Withdraw

can be delegated to a third-party service (e.g., watchtowers).

B.3 On-Chain Protocols

We now provide details for the on-chain protocols.

Deploy Protocol The deploy protocol, presented in Figure 6 is responsible for
creating a channel between client A and server H. The server begins by deploying
the upcContCode (pseudocode of the contract is presented in Figure 3) onto the
ledgerA used by both parties. Next, it initializes the contract with the parties’
verification keys and the agreed upon channel id (cid), and claimDuration values.
The cid is a unique channel identifier between the two parties, which has the
role of preventing replay attacks across different channels (in the case of having
multiple channels between the client and server). Further, the claimDuration
identifies the period that the parties have to submit any off-chain payments
claims when a party invokes the closing of the channel.

After contract deployment, the server creates a local channel object C de-
tailed in Table 111 and initializes it using the InitializeChannel function

10 As we can see the aggregated amount transferred to both parties equal the sum of
the deposit values.

11 The server H, exclusively maintains an extra key-value channel variable denoted
by PromiseMapping that links the sender’s promise with its own promise to the
receiver for each transaction. The keys of this variable are transaction hashs and the
corresponding values are of the form (A, cidA, PA,B, cidB, PH).

23



in Figure 6. In the final step, server sends the contract object (e.g., the address
of the deployed contract) to client A. Upon receiving a ContractDeployed
message from the server, client A performs a verification check of the upcCont
by confirming that the deployed contract contains the upcContCode as well as
the agreed channel parameters. Next, similar to the server, client creates a lo-
cal channel object (C) and initializes it using the InitializeChannel function
in Figure 6.

Deposit Protocol After the deployment of the contract and its verification
by the server and client respectively, each party can use the contract’s Deposit
function to increase its on-chain deposit balance. This balance will be used as the
prefund for the off-chain transactions. Each party can invoke the deposit proto-
col many times with the arbitrary amount of coins as long as the status of the
contract is “Active”, allowing the parties to maintain a dynamic (monotonically
increasing) prefund balances. In other words, the on-chain balances can be up-
dated without creating new payment channels and halting off-chain transactions.
The formal description of the deposit protocol is presented in Figure 6.

Close Protocol The close protocol, presented in Figure 6, dictates the steps
for closing a channel between client A and server H. Either party can invoke
the protocol at any time.The invoking party starts the closure by calling the
contract’s ReceiptClaim function (i.e., if it is holding a receipt object signed by
the other party). Next it iterates through all the incoming promises and calls the
LocalPromiseClaim function (shown in Figure 6) which invokes the contract’s
PromiseClaim function only if the party holds the secret to that promise. Finally,
after claiming all the promises, the party invokes the contract’s Close function
to indicate that it has no other claims and the channel can be closed from its
side.

As discussed previously, when a party is claiming a promise (i.e., via the
contract’s PromiseClaim function) that has been issued prior to the receipt that
it has, then it would need to provide a membership proof of that promise inside
its incoming accumulator (accin)

12. To determine when a membership proof is
needed, the party can compare the credit values of the promise (P ) and receipt
(R) objects. That is, if the credit value of the P is smaller than the one in R
then it means that a membership proof is needed.

Event Handler The event handler is a process (thread) that continuously
observes the state of the contract (i.e., as a new block is created on-chain) and
the status of the incoming promises to see if any on-chain action is needed (i.e.,
claiming and closing the channel). The formal description of this protocol is
presented in Figure 6.

12 This is equivalent to showing the membership proof inside the other party’s outgoing
accumulator, as both are in sync with each other

24



The handler begins by updating the channel’s contract object by retrieving
the contract object from the ledger13. Next, based on the current status of the
contract, different actions are triggered.

Active. While the contract is in an “Active” state, the handler only needs
to track the expiry time of the incoming promises (Promisesin). First, it iterates
through all the Promisesin and removes all the expired promises. Next, it checks to
see if there exists a promise that the party has its secret (i.e., a promise that the
party awaits a receipt for) and is about to expire, for which it initiates the Close
protocol in Appendix B.3. The threshold for waiting before claiming a promise is
defined as, now+δ+2×C.ledger.∆, where δ is the time for executing the handler
loop and ledger.∆ is the time that it takes to process a claim (receipt or promise)
on-chain. As explained in Appendix B.3, the party may need to submit its latest
received receipt prior to submitting its promise claim. Therefore, a minimum of
two ledger.∆ is require to submit both claims14.

Closing. When the channel is in a “Closing” state, the handler invokes the
Close protocol (detailed in Appendix B.3). After submitting all the claims and
calling the contract’s Close function to finalize the closure, the handler checks
to see if the current time is passed the contract’s expiry (chanExpiry) time (i.e.,
either both parties cooperatively called the Close function or the claimDuration
time has passed) to invoke the contract’s Withdraw function.

Server Secret Forwarding. While the contract is in a “Closing” status, par-
ties will be submitting their receipt and promises to the contract. In the case of
a promise claim, the claiming party needs to provide the secret to the promise,
which may have not been transferred off-chain (i.e., it is being revealed for the
first time in the contract). Therefore, the server H needs to extract this secret
from the contract and forward it to the original sender of the transaction. This
secret extraction is a necessity for the server to not lose any coins. The receiving
party can claim funds from the server’s promise and if the server does not extract
the secret the sender’s promise will expire and would not be valid anymore. More-
over, it allows the channel between the server and the sending client to remain
open regardless of the channel closure with the receiving client. Consequently,
the handler, iterates through all its outgoing promises and checks the contract
to see if any secret has been submitted for them. If so, then the corresponding
information of the sender client is extracted from the PromiseMapping (a set
that maps the promises of the sender with the promises of the server for each
transaction) and the secret is forwarded to it. More details about the forwarding
of the secret is provide in Appendix B.4.

13 This update particularly helps with retrieving the status and client/server deposits.
14 We note that both of these calls can be combined where the contract’s PromiseClaim

takes a receipt as input; However, to keep the contract and off-chain protocols simple
and concise we forego this optimization and leave it as future work.

25



B.4 Off-Chain Protocols

In the previous section, we explained the on-chain protocols that facilitated the
opening and closing of a channel between two parties. In this section, we detail
the off-chain protocols that flow a transaction from client A to B through the
server H. Note that parties would engage in the off-chain protocols only if the
status of the contract is “Active”.

Authorize Protocol The authorize protocol, presented in Figure 8, is a three
party protocol, where client A wishes to make an offline payment to client B
using the intermediary server 15. Before engaging in this protocol, client A and
B agree on the transaction parameters—(1) transaction amount txAmount, (2)
transaction timeout txExpiry, and (3) txHash which is the hash value of a secret
that is known by client B. Client B would only reveal the secret if it is sure that
it will receive txAmount from the intermediary server. In what follows, we detail
the steps of the authorize protocol.

Step 1. Client A begins by creating and sending a promise of the transaction
(i.e., with the agreed parameters with client B) to the server and asking the server
to make a similar promise (using the promise values) to client B. These promises
are created by invoking the CreatePromise function in Figure 8. This function
creates a promise object P (Table 1) and adds P to the channel’s outgoing
promise set (Promisesout) in addition to inserting the promise’s hash value into
channel’s outgoing accumulator (accout) to keep track of pending transactions.

Step 2. Upon receiving a promise from client A, the server first verifies the
promise and then creates a promise of its own to client B. The promise verifi-
cation process is presented in Figure 4. The VerifyPromise function takes as
input values for amount, hash, and expiry16 and retrieves other promise values
cid, and clientCredit from its local channel object (C). Next, using these promise
variables, the verifier performs a series of validity checks:
– verifying the signature of the counter-party on these values (i.e., H checks the

signature of A and B checks the signature of H);
– verifying that the counter-party has sufficient funds to cover for the amount

stated in the promise;
– verifying that the promise timeout (expiry) is large enough (greater that the

claimDuration identified in the contract) that in case of a dispute the party
has sufficient time to go on-chain.

After validating the conditions, the promise is added to channel C’s Promisesin
set and the hash value is inserted into the incoming accumulator (accin). Further,
the aggregated incoming pending promise amount (netPromin) is updated such
that the next promise amounts do not exceed the collateral and credits that the

15 This process is for scenarios where client A and B do not have a established payment
channel with each other but each have a channel with the server.

16 If the verifier is H, then these values are extracted from the received promise itself
(since the server is not aware of the values agreed between client A and B beforehand).
Otherwise, the values would be the agreed transaction values between A and B.

26



counter-party holds. Server H, also maintains a mapping between the promises
that it receives (from A) and the ones that it creates (for B) to track the linkage
between the promises. This mapping is denoted by PromiseMapping. We will
observe the usage of this mapping in the Pay protocol (see Appendix B.4) and
Event Handler (see Appendix B.3) where the secret token received from B is
forwarded to A.

Step 3. Lastly, similar to step 2, client B verifies the promise it receives from
the server. The only difference is that client B uses the values txAmount, txHash,
and txExpiry which were agreed with client A to verify the server’s promise.

One important thing to note is the expiry times of the two promises. The
first promise sent by client A needs to have an expiry duration greater than the
one sent by the server. The reason is that, in the case where client B claims
the server’s promise on-chain in the last seconds of its validity, the server would
need to have sufficient time to take action to claim A’s promise; Otherwise, it
will be losing money by paying to B but not being able to claim the promise
from A. Therefore, to resolve this potential issue, the promise sent by A has an
additional ledger.∆ time on top of the txExpiry. This ∆ time is the duration
needed to include a transaction on the ledger used between client A and the
server and is not needed to be known by B.

Pay Protocol The pay protocol, presented in Figure 8, follows the authorize
protocol. Prior to this protocol, server and client B have obtained a promise from
client A and the server, respectively. In what follows, we detail the steps of the
pay protocol.

Step 1. Client B begins the protocol by sending (i.e., revealing) the secret of
the promise (i.e., preimage of the promise hash) to H.

Step 2. After receiving a promise and its corresponding secret, server performs
two checks by calling the VerifySecret function (presented in Figure 4)—(1)
verifies that the promise exists in the Promisesout set (i.e., it is not a double
spending attack), (2) verifies that the secret is the preimage of the promise’s
hash. Knowing the preimage of the hash allows the server to claim the promise
from client A.

Next, server updates its channel object (C) with client B using the
UpdateChannel function shown in Figure 4.

In this function, based on the direction of the update (i.e., incoming or
outgoing) the channel variables creditin or creditout, promise set Promisesin or
Promisesout, and the accumulator accin or accout are updated. In this step of the
protocol, the server H would be updating it channel with B in the outgoing di-
rection by increasing the outgoing credit (client B’s credit) and removing the
corresponding promise from the Promisesout set and accout.

After updating B’s channel, server creates and sends a receipt to client B using
the CreateReceipt function shown in Figure 4. The receipt is the signature
of the party (here the server) on the updated channel variables, namely the
channel identifier cid (to prevent replay attacks on other channels), outgoing

27



credit (creditout), and the outgoing accumulator (accout) which attests to the list
of pending promises till this point of time. Note that, unlike promises, receipts
do not have an expiry time and are valid indefinitely.

Server continues by switching to client’s A channel and retrieving the promise
sent by A from the PromiseMapping map. The secret obtained from B will be the
secret for A’s promise as well, since the hash of both promises are the same.
Finally, the server forwards the secret to client A.

Step 3. Upon receiving a promise and its corresponding secret from the server,
client A performs the similar verification checks done by the server when it
received the secret from B. First, the secret is checked via the VerifySecret

function. Next, the channel is updated by increasing the outgoing credit (i.e., the
server’s credit) and removing the promise from the Promisesout set and outgoing
accumulator (accout). Finally, client A creates a receipt by signing on the updated
channel variables and sending it to H.

Step 4 and 5. Both client B and server H receive a receipt from their counter-
parties (i.e., the server and client A respectively). Upon receiving the receipt,
each party validates it by verifying the receipt signature (VerifyReceipt func-
tion presented in Figure 4). More specifically, each party retrieves their local
channel identifier (cid), incoming credit (creditin), and incoming accumulator
(accin) and stores them in temporary variables. Next, it updates these tempo-
rary variables according to the promise values and checks to see if the receipt’s
signature verifies on these updated variables. Upon verification, the party will
also update its channel variables in the incoming direction. This means that
their creditin will be increased by the promise amount and the promise will be
removed from their Promisesin set and incoming accumulator (accin). Finally, a
receipt object (details in Table 1) is created and stored in the channel’s receipt
variable.

28



On-Chain Protocols

Deploy Protocol
Registered client A and server H agree on contract parameters cid and claimDuration. Both
parties A and H use ledgerA to post transaction on-chain.

1. Server H does the following:
(a) upcCont← ledgerA.deployContract(upcContCode);
(b) Invoke upcCont.Init(cid, vkH, vkA, claimDuration);
(c) Invoke InitializeChannel(cid, upcCont);
(d) Send upcCont to A.

2. Upon receiving upcCont, client A does the following:
(a) Abort if ledgerA.verifyDeployment(upcContCode, upcCont) = 0;
(b) Abort if upcCont.GetParams() ̸= [cid, vkH, vkC, claimDuration];
(c) Invoke InitializeChannel(cid, upcCont);

Deposit Protocol

Party W ∈ {A,H} wishes to deposit amount to the channel C established between the two
parties.

1. Abort if C.contract.status ̸= “Active”;
2. Invoke C.contract.Deposit(amount).

Lock Protocol
Party A wishes to lock amount to the channel C established between the two parties.

1. Abort if C.contract.status ̸= “Active”;
2. Invoke C.contract.Lock(amount).

Close Protocol
Party W ∈ {A,H} wishes to close the channel C established between the two parties.

1. If C.receipt ̸= ⊥ then invoke C.contract.ReceiptClaim(C.receipt);
2. For all Pin ∈ C.Promisesin, invoke LocalPromiseClaim(C,Pin);
3. Invoke C.contract.Close();

Contract and Time Event Handler
For all parties W ∈ {A,H} , we assume that a processing thread is assigned to the loop defined
below that is executed every δ seconds.

While True:
For each channel C in the party’s list of channels:

1. C.contract← C.ledger.getContractInfo(contract);
2. If C.contract.status = “Active”:

For all Pin ∈ C.Promisesin:
(a) If Pin.expiry < now, then remove Pin from C.Promisesin;
(b) Otherwise, if Pin.α ̸= ⊥ and Pin.expiry < (now + δ + 2 × C.ledger.∆), then initiate

the Close protocol;
3. If C.contract.status = “Closing”:

(a) Invoke the Close protocol;
(b) If now > C.contract.chanExpiry, call C.contract.Withdraw() and C.contract.Unlock();

4. If C.contract.status = “Closed”, invoke C.contract.Withdraw() and C.contract.Unlock();
5. If W = H A and C.contract.status = “Closing”:

For all Pout ∈ C.Promisesout, if C.contract.Secrets[Pout.hash] C.contract.Solutions[Pout.Z] ̸= ⊥:
(a) secret← C.contract.Secrets[Pout.hash] α

A ← C.contract.Solutions[Pout.Z];

(b) (sender, cid, Psender, ·, ·, ·)← PromiseMapping[Pout.hash] αB = αA · β−1
A

(c) Sends [Psender, secret] to sender [ZB, α
B] to receiver.

Fig. 6: On-Chain Protocols

29



On-Chain Protocols’ Helper Functions

InitializeChannel(cid, upcCont):

1. Set C[cid]← NewChannel();
2. Set C[cid].contract← upcCont;
3. Set C[cid].params← upcCont.GetParams();

LocalPromiseClaim(C,P ):

1. If P.secret = ⊥ return;
2. If P.credit ≥ C.receipt.credit, then call C.contract.PromiseClaim(P,⊥);

Otherwise, invoke C.contract.PromiseClaim(P, proof) where,
proof ← ACC.GenProof(C.accin, P.hash, P.Z, C.accAuxin);

3. Remove P from C.Promisesin.

Fig. 7: On-Chain Protocols’ Helper Functions (We denote with blue color the
add-on functions to achieve privacy and with red color the parts of the contract
not applicable for privacy).

30



UPC Off-Chain Protocols

Preliminaries.

– Let A wish to make a transaction to party B using the already established channels with
server H. Both A and B agree on the values: txAmount, txExpiry, and txHash for which B to
reveal secret where Hash(secret) = txHash.

– Let cidA denote the channel id that A will use for this payment. Likewise, let cidB denote
the channel id for B. We assume that H knows cidA, cidB.

Authorize Protocol

1. A begins by performing the following steps:
(a) Abort if CA[cidA].contract.status ̸= “Active”;
(b) PA ← CreatePromise(CA[cidA], txAmount, txHash, txExpiry + CA.ledger.∆, skA);
(c) Send [PA,B] to H.

2. Upon receiving [PA,B] from A, H does the following:

(a) Abort if CH[cidA].contract.status ̸= “Active” or CH[cidB].contract.status ̸= “Active”;
(b) Abort if VerifyPromise(PA, “Client”, CH[cidA], PA.amount, PA.hash, PA.expiry, vkA) =

0;
(c) PH ← CreatePromise(CH[cidB], PA.amount, PA.hash, PA.expiry−CH[cidA].ledger.∆, skH);
(d) PromiseMapping[PH.hash]← (A, cidA, PA,B, cidB, PH);
(e) Send PH to B.

3. Upon receiving PH from H, client B does the following:
(a) Abort if CB[cidB].contract.status ̸= “Active”;
(b) Abort if VerifyPromise(PH, “Server”, CB[cidB], txAmount, txHash, txExpiry, vkH) = 0.

Pay Protocol

1. Client B begins by performing the following steps:
(a) Abort if CB[cidB].contract.status ̸= “Active”;
(b) PH.secret← secret;
(c) Send [PH, secret,A] to H.

2. Upon receiving [PH, secret,A] from B, server H does the following:

(a) Abort if CH[cidB].contract.status ̸= “Active”;
(b) Abort if VerifySecret(CH[cidB], PH, secret) = 0;
(c) Invoke UpdateChannel(CH[cidB], PH, secret, “outgoing”);
(d) RH ← CreateReceipt(CH[cidB], skH);
(e) Send [RH, PH] to B;
(f) Set PA ← PromiseMapping[P.hash].PA;
(g) PA.secret← secret;
(h) Send [PA, secret] to A.

3. Upon receiving [PA, secret] from H, client A does the following:
(a) Abort if CA[cidA].contract.status ̸= “Active”;
(b) Abort if VerifySecret(CA[cidA], PA, secret) = 0;
(c) Invoke UpdateChannel(CA[cidA], PA, secret, “outgoing”);
(d) RA ← CreateReceipt(CA[cidA], skA);
(e) Send [RA, PA] to H.

4. Upon receiving [RA, PA] from A, server H does the following:
(a) Abort if VerifyReceipt(RA, CH[cidA], vkA) = 0;
(b) Invoke UpdateChannel(CH[cidA], PA, PA.secret, “incoming”);
(c) C.receipt← [C.creditin, C.accin, RA.σ].

5. Upon receiving [RH, PH] from H, client B does the following:
(a) Abort if VerifyReceipt(RH, CB[cidB], vkH) = 0;
(b) Invoke UpdateChannel(CB[cidB], PH, PH.secret, “incoming”);
(c) C.receipt← [C.creditin, C.accin, RH.σ].

Fig. 8: Off-Chain Protocols for UPC

31



C Privacy-preserving AUPC

C.1 UPC Contract

The modifications to the UPC contract are shown in Figure 3. First, in order to
incorporate the paradigm followed by A2L, we first need to use promise puzzles
instead of promise hash values (this is also naturally the case for the rest of
the protocols in this section). Also, where the hub needs to make an “advance”
promise to the receiver under the condition that the sender successfully pays
the hub, we also need to add a new channel variable named lockC and new
functions named Lock and Unlock. These are used to prevent the “griefing” DoS-
type attack, where a receiver could initiate many promise operations without
intending to complete a transaction. Therefore, in the Lock function the sender
locks additional funds in the variable lockC before the payments begin, to prove
that sender is willing to participate in the protocols (which effectively moves
the “risk” back to the sender.) Once the channel has successfully been closed,
the sender can call the Unlock function to retrieve the locked funds back to his
own account. We also introduce some additional minor needed modifications:
In the Init function we track the additional lockC variable as well as Solutions
instead of Secrets (which works as the mapping between the solved puzzle and
its solution).

In addition, the PromiseClaim function is now called by the party which
is able to obtain the solution of the puzzle that it holds. Also it now checks if
each promise is submitted only once by tracking the claimed promises in the
Solutions mapping (step 2 & step 7), instead of the Secrets mapping in original
UPC. Besides, the PromiseClaim function needs to ensure that the obtained
valid signature is the result of applying Adapt function on the promise’s invalid
signature with the corresponding puzzle solution (step 2)

Once the channel has successfully been closed, the clients will call the
Unlock() function to withdraw their funds that were locked into the contract,
and works in a similar way to the Withdraw function.

C.2 On-Chain Protocols

Generally, the on-chain protocols in AUPC are almost same as the ones in UPC.
The major changes include the addition of Lock protocol and the modification
on event handler, as shown in Figure 6.

Lock Protocol After the deployment of the contract and its verification by
the server and client respectively, the client can use the contract’s Lock function
to increase its on-chain lock balance. This balance will be used as the proof
for client to show his willing to participate in the privacy-preserving protocol
as the sender. Same to the Deposit function, the client can invoke the lock
protocol many times with the arbitrary amount of coins as long as the status of
the contract is “Active”.

32



Event Handler As in UPC, the event handler triggers different actions based
on the current status of the contract. The differences are as follows:

“Active”: The event handler now checks if there exists a promise that the
party has its puzzle solution, and is about to expire.

“Closing”: When the current time is past the contract’s expiry, the handler
will also invoke the contract’s Unlock function. Also in the case of a promise
claim, the claiming party needs to provide the solution to the promise, which
may have not been transferred off-chain. Therefore, in AUPC the sender A needs
to extract the puzzle solution from the contract, derandomize it, and forward
this derandomized solution to the original receiver of the payment. This puzzle
solution forwarding is necessary for the receiver to make sure he can eventually
get the funds from the server. Consequently, the handler iterates through all its
outgoing promises and checks the contract to see if any puzzle solution has been
submitted for them. If so, the puzzle solution is forwarded from sender to the
corresponding receiver.

Finally for the helper functions, the membership proof is generated based on
the promise’s puzzle instead of hash, as shown in Figure 7.

C.3 Off-Chain Protocols

Registration Protocol In order to maintain the unlinkability but also mitigate
the griefing attack, AUPC needs to run a registration protocol before launching
the payment, as in A2L. This protocol shown in Figure 9, is a 3-party protocol,
where client A proves the willingness to the server H for participating in the
payment. The protocol also assumes that A has already locked funds with H in a
escrow output oid, which is in fact the funds that locked in the contract ( lockC, in
our protocol). The protocol also makes use of a (blinded) randomizable signature

scheme Σ̃ as described in Section 2. We now describe the steps in detail.

Step 1. Client A begins by generating a random token identifier tid. Then A
creates a commitment com and decommitment decom to tid as well as a NIZK

proof π of its opening, and sends [π, com] along with the oid to server H.

Step 2. Upon receiving the commitment, proof, and escrow output from client
A, the server H verifies the π and aborts if the verification fails. Then H generates
a blind signature σ̃ on tid by using the commitment com and sends the signature
to client A.

Step 3. Upon receiving the σ̃ from H, client A first unblinds this signature by
using the decommitment information decom to obtain a valid signature σtid for
the token tid, then verifies the valid signature and aborts if the verification fails.
Then client A randomizes σtid to obtain a randomized signature σ′tid. Finally A
sends the pair [σ′tid, tid] to client B, which finalizes the registration protocol.

Authorize Protocol The authorize protocol, presented in Figure 10, is a three
party protocol, where client A wishes to make an offline payment to client B
using the intermediary server H. At the beginning, client A and server H agree

33



on the transaction timeout txExpiryAH and server H and client A agree on the
transaction timeout txExpiryHB, for each of the channels, respectively. Note that
in AUPC, the transaction amount txAmount is fixed for all transactions associated
with a given hub. We now describe the steps in detail.

Step 1 and 2. Client B begins by sending the pair of [σ′tid, tid] which he obtained
during the registration phase, to server H. Upon receiving this pair, H will check
if the received token tid has been already presented by checking the list T which
keeps all the previously seen token identifiers and will also verify the signature
σ′tid. Then H will insert tid into the list T if it was not in the list.

Next, H samples a statement/witness pair (AH
α, α

H) through the GenR al-
gorithm, and generates the randomizable puzzle ZH := (AH

α, c
S
α) by using the

PGen algorithm. Then it produces a NIZK proof πH
α to prove that αH is a valid

solution of puzzle ZH. Finally, H creates a promise of the transaction and send it
to client B. The promise is created by invoking the CreatePromise function in
Figure 4, where an adaptor signature is generated σ̂ over the previously agreed
transaction message m.

Note the CreatePromise for AUPC includes the following changes:

– Puzzle: A puzzle with an invalid signature is included into the promise,
which replaces the hash value of the secret in UPC.

– Pre-signature: When each promise is created, only a pre-signature is gen-
erated on the payment message with the statement of the puzzle, within the
promise.

– Valid Signature: After each party obtains the solution for his own puzzle,
it can adapt its pre-signature to a full valid signature.

Step 3. Upon receiving a promise and proof from server H, client B first checks
if the NIZK proof is valid. Then B will pre-verify the validation of the pre-
signature in the received promise through the PreVerifyPromise helper function
in Figure 4, then randomize the puzzle within the received promise through the
using of the PRand function. Finally, client B shares this randomized puzzle with
client A.

Step 4 and 5. Upon receiving the randomized puzzle ZB from B, client A
randomizes the received puzzle again to obtain his re-randomized puzzle ZA.
Then A creates a promise of the transaction with the agreed parameters with
client B and send it to server H. Upon receiving the promise from A, H pre-
verifies the validation of the pre-signature within the received promise, which
finalizes the authorize protocol.

Pay Protocol The pay protocol, shown in Figure 11, follows the authorize
protocol. Prior to this protocol, server H and client B have obtained a promise
from client A and the server H, respectively. We now describe the steps in detail.

Step 1. Upon receiving the promise from A, H extracts the puzzle within the
promise. Since H has the trapdoor td for the randomized puzzle scheme, it can
easily obtain αA, which is the doubly randomized version of the value αH from

34



the received puzzle. Then, H can convert the invalid signature σ̂ within the
promise to a valid signature σ through the algorithm. Upon obtaining the valid
signature, H verifies the promise PA using the VerifyPromise helper function
in Figure 4. Finally, H inserts the valid signature into the client A’s promise and
send the promise’s valid signature back to A.

Step 2. After receiving the promise’s valid signature back from H, A extracts
the solution αA based on the adaptor signature (invalid signature) and the
valid signature, and then verifies the solution’s validation through the function
VerifySolution in Figure 4. Then A updates its channel object (C) with server
H using the UpdateChannel function. After updating A’s channel, A creates and
sends a receipt to server H using the CreateReceipt function. Then A will re-
move one layer of randomization and obtain the solution αB which corresponds
to puzzle ZB. Then A forwards the pair of [αB, ZB] to client B.

Step 3. After receiving the puzzle and solution from A, client B removes its
own randomness from αB and therefore obtain the original value of αH. As a
result, the valid signature can be generated by adapting the solution αH to the
invalid signature σ̂ in PH and is inserted into PH. Finally, B sends the promise’s
valid signature PH.σ back to H.

Step 4. H first verifies the received valid signature in PH by verifying the
validity of its corresponding solution. Then H updates the channel with client B
through UpdateChannel function, then creates and sends a receipt to client B
using the CreateReceipt function.

Step 5 and 6. H and B upon receiving the receipts, each verify the signature,
then update its channel variables in the incoming direction. Finally, a receipt
object is created and stored in the channel’s receipt variable.

35



Off-Chain Protocol - Registration

Preliminaries.

– Let A wish to make a proof to server H that he is willing to participate in the
protocol with B’s forwarding.

– Both A and H agree on the locked funds in a escrow output oid
– H holds the key pair (ṽkH, s̃kH) used in a blinded randomizable signature scheme

Σ̃

Registration Protocol

1. A begins by performing the following steps:
(a) Abort if CA[cidA].contract.status ̸= “Active”;
(b) Generate a random token identifier tid
(c) (com, decom)← PCOM(tid)
(d) π ← PNIZK({∃decom |VCOM(com, decom, tid) = 1}, decom)
(e) oid:= CA[cidA].params.lockC
(f) Send [π, com, oid] to H

2. Upon receiving [π, com] and oid from A, H does the following:
(a) Abort if CA[cidA].contract.status ̸= “Active”;
(b) Abort if VNIZK(com, π) = 0

(c) σ̃ ← BlindSign(com, s̃kH)
(d) Send [σ̃] to A

3. Upon receiving σ̃ from H, A does the following:
(a) σtid := UnBlindSign(decom, σ̃)

(b) Abort if SigVerify(σtid, tid, ṽkH) = 0
(c) σ′

tid ← RandSign(σtid)
(d) Send [σ′

tid, tid] to B

Fig. 9: AUPC Off-Chain Registration Protocol

36



Off-Chain Protocol - Authorize

Preliminaries.

– Let A wish to make a transaction to party B. Both A and H agree on the value
txExpiryAH and both H and B agree on the value txExpiryHB (note txAmount
now is fixed for the server H).

– Let cidA denote the channel id that A will use for this payment. Likewise, let
cidB denote the channel id for B. We assume that H knows cidA, cidB.

Protocol

1. B begins by performing the following steps:
(a) Abort if CB[cidB].contract.status ̸= “Active”;
(b) Sends [σ′

tid, tid] to H

2. Upon receiving [σ′
tid, tid] from B, H does the following:

(a) Abort if CH[cidB].contract.status ̸= “Active”;

(b) Abort if tid ∈ T or SigVerify(σ′
tid, tid, ṽkH) = 0;

(c) T .insert(tid)
(d) (AH

α, α
H)← GenR(1λ)

(e) ZH := (AH
α, c

S
α)← PGen(pp, αH)

(f) πH
α ← PNIZK({ ∃α |PSolve(td, Z) = αH}, αH)

(g) PH ← CreatePromise(CH[cidB], txAmount, ZH,
txExpiryHB, skH);

(h) Send [PH, π
H
α] to B.

3. Upon receiving [PH, πα] from H, B does the following:
(a) Abort if CB[cidB].contract.status ̸= “Active”;
(b) Abort if VNIZK(PH.Z, π

H
α) = 0

(c) Abort if PreVerifyPromise(PH, “Server”, CB[cidB], PH.amount, PH.Z,
PH.expiry, vkH) = 0.

(d) (ZB := (AB
α, c

B
α), βB)← PRand(pp, PH.Z)

(e) Send ZB to A.

4. Upon receiving ZB from B, A begins by performing the following steps:
(a) Abort if CA[cidA].contract.status ̸= “Active”;
(b) (ZA := (AA

α, c
A
α), βA)← PRand(pp, ZB)

(c) PA ← CreatePromise(CA[cidA], txAmount, ZA,
txExpiryAH, skA);

(d) Send PA to H.

5. Upon receiving PA from A, H does the following:
(a) Abort if CH[cidA].contract.status ̸= “Active”;
(b) Abort if PreVerifyPromise(PA, “Client”, CH[cidA], PA.amount, PA.Z,

PA.expiry, vkA) = 0

Fig. 10: AUPC Off-Chain Authorize Protocol

37



Off-Chain Protocol - Pay

Preliminaries. Let cidA denote the channel id that A has with server H. Like-
wise, let cidB denote the channel id between B and H. We assume that H knows
cidA, cidB.

Protocol

1. Server H begins by performing the following steps:
(a) Abort if CH[cidA].contract.status ̸= “Active”;
(b) αA := PSolve(td, PA.Z)
(c) PA.α = αA

(d) PA.σ = Adapt(PA.σ̂, α
A)

(e) Abort if VerifyPromise(PA, “Client”, CH[cidA], PA.amount, PA.Z,
PA.expiry, vkA) = 0

(f) Send PA.σ to A.

2. Upon receiving PA.σ from H, A does the following:
(a) Abort if CA[cidA].contract.status ̸= “Active”;
(b) Abort if VerifySolution(CA[cidA], PA, PA.σ, PA.Z.Aα) = 0;
(c) Invoke UpdateChannel(CA[cidA], PA, “outgoing”);
(d) RA ← CreateReceipt(CA[cidA], skA);
(e) Send [RA, PA] to H;
(f) αB = αA · β−1

A

(g) Send [ZB , α
B] to B.

3. Upon receiving [ZB , α
B] from A, B does the following:

(a) Abort if CB[cidB].contract.status ̸= “Active”;
(b) Abort if αB = ⊥
(c) αH = αB · β−1

B

(d) PH.α = αH

(e) PH.σ = Adapt(PH.σ̂, α
H)

(f) Abort if VerifyPromise(PH, “Server”, CB[cidB], PH.amount, PH.Z,
PH.expiry, vkH) = 0

(g) Send PH.σ to H.

4. Upon receiving PH.σ from B, H does the following:
(a) Abort if CH[cidB].contract.status ̸= “Active”;
(b) Abort if VerifySolution(CH[cidB], PH, PH.σ, PH.Z.Aα) = 0;
(c) Invoke UpdateChannel(CH[cidB], PH, “outgoing”);
(d) RH ← CreateReceipt(CH[cidB], skH);
(e) Send [RH, PH] to B;

5. Upon receiving [RA, PA] from A, H does the following:
(a) Abort if VerifyReceipt(RA, CH[cidA], vkA) = 0;
(b) Invoke UpdateChannel(CH[cidA], PA, “incoming”);
(c) C.receipt← [C.creditin, C.accin, RA.σ].

6. Upon receiving [RH, PH] from H, B does the following:
(a) Abort if VerifyReceipt(RH, CB[cidB], vkH) = 0;
(b) Invoke UpdateChannel(CB[cidB], PH, “incoming”);
(c) C.receipt← [C.creditin, C.accin, RH.σ].

Fig. 11: AUPC Off-Chain Pay Protocol

38


	Unlinkability and Interoperability in Account-Based Universal Payment Channels  (Full Version)

