
Secure Multiparty Computation with

Free Branching

Aarushi Goel1, Mathias Hall-Andersen2, Aditya Hegde1, and Abhishek Jain1

1Johns Hopkins University, {aarushig,ahegde,abhishek}@cs.jhu.edu
2Aarhus University, ma@cs.au.dk

Abstract

We study secure multi-party computation (MPC) protocols for branching circuits that con-
tain multiple sub-circuits (i.e., branches) and the output of the circuit is that of a single “active”
branch. Crucially, the identity of the active branch must remain hidden from the protocol par-
ticipants.

While such circuits can be securely computed by evaluating each branch and then multiplex-
ing the output, such an approach incurs a communication cost linear in the size of the entire
circuit. To alleviate this, a series of recent works have investigated the problem of reducing the
communication cost of branching executions inside MPC (without relying on fully homomorphic
encryption). Most notably, the stacked garbling paradigm [Heath and Kolesnikov, CRYPTO’20]
yields garbled circuits for branching circuits whose size only depends on the size of the largest
branch. Presently, however, it is not known how to obtain similar communication improvements
for secure computation involving more than two parties.

In this work, we provide a generic framework for branching multi-party computation that
supports any number of parties. The communication complexity of our scheme is proportional
to the size of the largest branch and the computation is linear in the size of the entire circuit.
We provide an implementation and benchmarks to demonstrate practicality of our approach.

1 Introduction

Secure multiparty computation (MPC) [44, 21, 9, 5] is an interactive protocol that allows a group
of mutually distrusting parties to jointly compute a function over their private inputs without
revealing anything beyond the output of the function. Over the years, significant progress has been
made towards improving the efficiency of MPC protocols [11, 43, 25, 22, 3, 24, 34, 26, 12, 23, 16]
to make them practically viable.

While a wide variety of techniques for efficiency improvements have been developed in different
settings based on the corruption threshold, communication model or security guarantee, a com-
mon aspect of most modern efficient protocols in all of these settings is that they rely on a circuit
representation of the function. A limitation of such protocols, however, is that their total communi-
cation complexity is at least linear in the size of the circuit. Known techniques for getting sub-linear
communication in the circuit size rely on computationally heavy tools such as fully-homomorphic
encryption (FHE) [19] or homomorphic secret sharing (HSS) [7]. While there have been recent
advancements in improving the efficiency of these methods, they are still far from being practical
in many use cases.

As a result, the efficiency of existing efficient protocols is highly dependent on how succinctly a
function can be represented using circuits. This is clearly not ideal, since circuits are often not the

1

most efficient way of representing many functions. A common example of such functions are ones
that include some kind of conditional control flow instructions. When evaluating such functions, a
circuit-based MPC will incur communication dependent on the size of the entire circuit, while in
reality we only need to evaluate the “active” path (i.e., the path that is actually executed based on
the conditional) in the circuit.

It is therefore useful to design efficient MPC protocols for useful classes of functions, where the
total communication between the parties only depends on the “active” parts, rather than the entire
circuit.

MPC for Conditional Branches. In this work, we focus on one such class of functions, namely,
ones that contain conditional branches. As discussed in [30], a real world example of an application
that consists of conditional branches is where a set of servers collectively provide k services and
the clients can pay and avail any one of their services (depending on their requirements), without
revealing to the servers which service they are availing. Similarly, control flow instructions are also
integral to any kind of programming and as observed in [28], many kinds of control flow instruc-
tions (including repeated and/or nested loops) can be refactored into conditional branches. Such
refactorings often result in a large number of conditional branches. For such functions, designing
MPC protocols where the total communication only depends on the size of the active branch is
very useful.

Recently, in a sequence of works [27, 28], Heath and Kolesnikov made progress in this direction
in the two-party setting. They design garbled circuit based two-party semi-honest protocols for
evaluating functions with conditional branches, where the total communication only depends on
the size of the largest branch. In the multiparty setting, however, no such protocols are currently
known. The recent works of [29, 31] design MPC for conditional branches where they reduce
the number of public-key operations required to evaluate conditional branches; however, the total
communication in their protocols still depends on the size of all branches. Furthermore, all these
protocols only work for Boolean circuits.

Given this state of the art, we consider the following question in this work:

Does there exist an efficient multiparty protocol for securely computing conditional branches,
where the total communication only depends on the size of the largest branch?

We remark that all of the above mentioned prior works only focus on the semi-honest setting.
The task of designing analogous maliciously-secure protocols remains unexplored (both in the two-
party and multi-party settings). In this work, we also consider this question.

1.1 Our Contributions

We design the first multiparty computation protocols for conditional branches, where the commu-
nication complexity only depends on the size of the largest branch. Our protocols can support
arbitrary number of parties and corruptions. We present both constant and non-constant round
variants.

I. Non-Constant Round Branching MPC. Our first contribution is a semi-honest MPC for
conditional branches, where the communication complexity only depends on the size of the largest
branch. This protocol is capable of computing arithmetic circuits over any field or ring. The round
complexity of this protocol depends on the depth of the circuit.

2

We present this protocol as a generic compiler that can transform a large class of admissible1

MPC protocols into ones for conditional branches that achieve the aforementioned communication
complexity. Several existing concretely efficient protocols including MASCOT [34], SPDZ2k [12],
Overdrive [35], TinyOT [18] and [26], [13] can be used with this compiler.

In particular, by instantiating our compiler with a semi-honest admissible (dishonest-majority)
MPC protocol with communication complexity CC(|C|) (where C is the circuit being evaluated),
we obtain the following result:

Informal Theorem 1. Let λ be the security parameter. There exists a semi-honest secure MPC
for evaluating conditional branches, that can tolerate arbitrary corruptions and that achieves com-
munication complexity of O(CC(|Cmax|) + n2kλ + n2|Cmax|), where k is the number of branches in
the conditional.

We also implement this protocol to test its concrete efficiency and compare it to state-of-the-art
MPC protocols. More details are provided later in this section.

Extension to Malicious Security. We also present an extension of this protocol to the case of ma-
licious adversaries. Asymptotically, its communication complexity is similar to the semi-honest
protocol, except that it incurs a multiplicative overhead dependent on a statistical security param-
eter.

We view this construction as initial evidence that efficient branching MPC with malicious
security is possible. However, we believe that there is significant scope for future improvements
towards achieving good concrete efficiency.

II. Constant Round Branching MPC. Our next contribution is a constant round MPC for
conditional branches, where the communication complexity only depends on the size of the largest
branch. This protocol is based on a multiparty garbling approach [2] and only supports boolean
circuits.

We also present this protocol in the form of a general compiler. Namely, given a MPC protocol
with communication complexity CC(|C|) for evaluating a circuit C, we get the following result:

Informal Theorem 2. Let λ be the security parameter. There exists a constant-round, semi-
honest secure MPC for evaluating conditional branches (represented as Boolean circuits), that can
tolerate arbitrary corruptions and that achieves communication complexity of O(|CC(λ|Cmax|) +
n2kλ+ n2λ|Cmax|), where k is the number of branches in the conditional.

To obtain both of the above results, we adopt a fundamentally different approach as compared
to prior works [27, 29, 28, 31] in this area. Specifically, prior works require the parties to locally
evaluate all the branches. In contrast, in our approach, the parties select the “active” branch and
only execute that branch. A detailed overview of our approach can be found in the next section.

III. Comparison and Performance Evaluation. To gauge practicality, we implement our
non-constant round semi-honest compiler and instantiate it using two kinds of protocols:

• Quadratic Dependence on the Number of Parties: MP-SPDZ is a common MPC library that
contains implementations of the SPDZ protocol [16] and its descendants. All of the protocols
in this library have total communication with quadratic dependence on the number of parties.
We instatiate our compiler with an implementation of MASCOT [34] from this library without

1We require the underlying MPC to be such that it evaluates the circuit in a gate-by-gate manner and maintains
an invariant that for every intermediate wire in the circuit, the parties collectively hold a sharing of the value induced
on that wire during evaluation.

3

modification. Our code is agnostic to which protocol the MPC library is configured; this
helps demonstrates that our techniques are generic and block-box. We run benchmarks over
simulated LAN and WAN settings. We show that our compiled protocol outperforms näıvely
evaluating all the branches in parallel using MASCOT for as few as 8 branches.

• Linear Dependence on the Number of Parties: We implement an optimized variant of our
compiler that incurs a linear additive overhead in the number of parties, instead of a quadratic
overhead. We then test the efficiency of our compiler when instantiated with the CDN protocol
[13], which only has a linear dependence on the number of parties. For this, we first implement
the CDN protocol. To the best of our knowledge, this is the first known implementation of
CDN. Similar to the previous case, we show that our compiled protocol (instantiated using
CDN) outperforms näıvely evaluating all the branches in parallel using CDN for 8 branches.

2 Technical Overview

Background. All recent works [27, 29, 28, 31] in this area are based on the same principal approach
– the parties evaluate all branches, albeit, only the “active” branch is evaluated on real inputs, while
the remaining branches are all evaluated on fake/garbage values.

For instance, in the two-party setting, [27, 28], which adopt a garbled circuit based approach,
one of the parties garbles all the k branches. It then “stacks” these garblings into a compressed
form that is proportional to the length of the largest branch in the circuit. Using some additional
information sent by the garbler, the evaluator is able to reconstruct k different garbled circuits,
only one of which is a valid garbling of the “active” branch, and the remaining are random strings
(or some garbage material). Unaware of the active branch, the evaluator evaluates the k garbled
circuits w.r.t. different branches to obtain k different output labels. These output labels are then
filtered with the help of a “multiplexer” to obtain the correct output. Overall, this approach reduces
the communication to only depend on the size of the largest branch (the computation complexity,
however, is still large).

In the multiparty setting, both [29, 31], follow the same principal approach. These protocols
have separate preprocessing and online phases. They require parties to evaluate all branches (in-
cluding the inactive ones) in the online phase over 0 or some random values and leverage this fact
to get savings in the preprocessing phase. As a result, communication in the preprocessing phase
only depends on the size of one branch, but the communication in the online phase still depends
on the size of all the branches.

Indeed, it is unclear how to extend the stacked garbling approach used in [27, 28] to get similar
savings in communication in the multiparty setting. Recall that the garbler in stacked garbling
is required to garble all branches and hence its computation depends on the size of all branches.
This means that naive approaches that involve distributing the role of the garbler amongst multiple
parties are a non-starter as they will incur communication proportional to the size of all branches.
In order to design a multiparty protocol with similar communication savings as in stacked garbling,
we therefore adopt a fundamentally different approach.

Our Approach. In our approach, the parties select which branch to execute in a “privacy-
preserving” manner and only execute that branch. To facilitate this private selection, both of
our constructions (in the non-constant round and constant-round settings) employ a common tool
– a variant of oblivious linear evaluation that we refer to as oblivious inner product (OIP). In par-
ticular, our protocols make use of OIPs with (small) constant rate. We show that such OIPs can

4

be easily constructed using low-rate linearly homomorphic encryption schemes, which are known
from a variety of assumptions [17, 8, 15, 42].

In the sequel, we first describe the main ideas underlying our non-constant round constructions.
We then proceed to describe our constant-round construction.

2.1 Non-Constant Round Branching MPC

We start with the observation that the problem of computing conditional branches bears some
similarities to the problem of private function evaluation (PFE) [32, 39, 40]. Recall that in PFE,
one party has the function and the remaining parties provide inputs. This, in some sense is
reminiscent of the problem that we have at hand, albeit with some differences. In particular, in our
case, while none of the parties actually knows which function/branch is “active”, they all know the
set that this branch belongs to. Moreover, the parties collectively hold information about which
of these functions to evaluate. This can be viewed as a distributed variant of PFE. In light of this
observation, we build upon some ideas previously used in the PFE literature.

Private Function Evaluation. In PFE, the function is only known to one of the parties (say
party P1). The security requirements in standard PFE are very similar to that in MPC, with the
only additional requirement that the function must remain hidden from all other parties. To achieve
this, Mohassel and Sadeghian [39] observe that in order to hide a function that is represented in the
form of a circuit, there are two components that need to remain hidden – (1) The wire-configuration
of the circuit, i.e., how the gates connect with each other, and (2) the function (i.e., addition or
multiplication) implemented by each gate in the circuit. They propose a strategy to conceal the
above components of a circuit in order to achieve function privacy (without relying on universal
circuits). In particular, they start with MPC protocols that work over some kind of secret shares
(additive/threshold/authenticated) and evaluate any given circuit in a gate-by-gate manner. These
protocols maintain the invariant that for every intermediate wire in the circuit, all parties hold a
sharing of the value induced on that wire during evaluation. Many concretely efficient protocols
such as [34, 26, 12, 23, 16], satisfy these requirements. [39] propose the following modifications to
such MPC protocols to obtain a PFE protocol:

1. Hiding Wire Configuration: Each intermediate wire in the circuit has two end points – (1) one
is the source gate, for which it acts as the outgoing wire and (2) the other is the destination
gate, for which it acts as the incoming wire. As discussed earlier, for hiding the wire configu-
ration, we need to hide the gate connections, i.e., we want to hide the mapping between the
source and destination of each wire in the circuit. For this, [39] assign two unique labels to
each wire w. One is an outgoing label based on its source gate and second is an incoming
label based on whether it acts as left or right input wire to its destination gate. Let π denote
the mapping between these incoming and outgoing labels, i.e., let π(i) = j denote that a wire
that has incoming label i has an outgoing label j. In PFE, this mapping π is only known to
the function holding party.

In order to hide this mapping, [39] devise a mechanism to mask the outputs value of each gate
and unmask them based on π when this value is used for evaluating the destination gate of this
wire. This is executed by sampling an input mask and an output mask for every wire in the
circuit. Let in1, . . . , inW and out1, . . . , outW be the set of these input and output masks, where
W is the total number of wires in the circuit. In the preprocessing phase, with the help of
the function holding party and the underlying MPC, the parties compute ∆w = inw−outπ(w)

for every w ∈ [W]. These ∆w values are revealed to function holding party in the clear. This
processing information helps the parties in using appropriately permuted input and output

5

masks to mask and unmask wire values during evaluation in the online phase. In more detail,
the online phase proceeds as follows:

• Upon evaluating each gate g, the parties use output masks to mask all the outgoing
wires of the gate. Let the outgoing wires have labels c and d respectively, and let uc and
ud denote these masked outputs. These masked outputs are revealed to all parties in
the clear.

• For evaluating a particular gate g, where the two input wires have incoming wire labels
a and b, the function holding party computes A = uπ(a) + ∆a and B = uπ(b) + ∆b and
sends it to all the parties. The parties subtract their shares of ina and ∈b from these
values to get a sharing of the actual values on which to evaluate gate g.

2. Hiding Gate Functions: This is relatively easier. Assume that our arithmetic circuit repre-
sentation of the function only consists of addition and multiplication gates, let typeg = 0
(and typeg = 1 resp.) denote that gate g is an addition gate (and multiplication gate resp.).
For each gate g with incoming wires a and b, we can use the underlying MPC to compute
both shares of a + b and a · b. The function holding party P1 can secret share typeg using
the underlying MPC and the parties can then choose between shares of a + b and a · b by
computing the following using the underlying MPC:

(1− [typeg])([a+ b]) + [typeg]([a · b]),

where we denote [x] as a sharing of a value x using the secret sharing scheme used by the
underlying MPC. This allows the parties to evaluate the correct function, without revealing
it.

Our Semi-Honest Protocol. In our setting, the parties know the description of all the branches
in the conditional and have a secret sharing of the index of the active branch. In order to hide
the identity of the active branch, similar to the above approach, we need to hide both the wire
configuration and the gate functions of the active branch. We start by listing the barriers in directly
adapting the above approach to our setting and then proceed to discuss how we resolve them.

• In the preprocessing phase, computing ∆ requires the function holding party to input π to
the underlying MPC. In our setting, no party knows the exact value of π.

• In the online phase, A and B values are computed locally by the function holding party in
PFE since it already knows the mapping π. This is again a problem in our setting.

• Finally, in order to hide the gate functions in the online phase, the value of each typeg secret
shared by the function holding party. But as above, neither party in our setting knows this
value.

In order to overcome the above barriers, we crucially rely on the fact that in our setting, while
no single party knows the function (or the mapping π), they all know the set that the function
belongs to. In other words, given a set of k branches C1, . . . , Ck, all the parties can locally compute
the mappings π1, . . . , πk corresponding to each branch. Moreover, the parties also have a secret
sharing of the index of the active branch. Let α be the index of the active branch. Our first idea
towards resolving the above barriers to is to somehow allow the parties combine their shares of α
with π1, . . . , πk to get a sharing of πα. However, since the size of π1, . . . , πk depends on the size of
all branches, a naive implementation of this computation will incur communication that depends
on the size of π1, . . . , πk.

6

We get around this by using a new variant of oblivious linear evaluation, which we refer to as
oblivious inner product. We now outline our main ideas:

• Sharing of α: We work with a unary representation of the index α. In other words, we
assume each party have k secret shares, where the αth share is a sharing of 1, while all others
are sharings of 0s. Let these shares be denoted by [b1], . . . , [bk]

• Input/Output Masks: In the preprocessing phase, we use the underlying MPC to sample
random input and output masks in1, . . . , inW and out1, . . . , outW , where W is the number
of wires in the largest branch. Each party, now locally permutes its shares of input masks
based on the k mappings π1, . . . , πk. In more detail, given sharings [out1], . . . , [outW], for
each m ∈ [k], the parties locally compute sharings [outπm(1)], . . . , [outπm(W)]. Lets denote

each [outπm(1)], . . . , [outπm(W)] by [
−−−→
outπm]. If instead of computing shares of πα, we directly

compute re-randomized shares of [
−−−→
outπα], then the parties can simply compute their shares

of ∆w values as follows
∀w ∈ [W], [∆w] = [inw]− [outπα(w)]

• Oblivious Inner Product: For computing re-randomized shares [
−−−→
outπα], we use a primitive

called oblivious inner product (OIP). This is a protocol between two-parties, called the sender
and receiver and bears resemblance to oblivious linear evaluation. The sender has inputs
m0, . . . ,mk and the receiver has inputs b1, . . . , bk. At the end of the protocol, the receiver
learns m0 +

∑
i∈[k] bimi and the sender learns nothing.

We use this primitive and a GMW [21] style approach to obtain shares of
−−−→
outπα as follows: for

each pair of parties in the protocol, we run an instance of OIP, where one party acts as the
sender and the other acts as the receiver. The inputs of the sender party to this OIP are its
shares of [

−−−→
outπ1], . . . , [

−−−→
outπW] and a random value X, while the inputs of the receiver are its

shares of the unary representation of α. At the end, each party Pi computes its share of
−−−→
outπα

by adding the outputs of each OIP instance where it acted as the receiver and subtracting
each X sampled in the OIP instance where it acted as the sender. It is easy to see that these
resulting shares are indeed shares of

−−−→
outπα .

However, note that while the length of the output of each OIP in our case only depends on
the size of the largest branch, the length of sender inputs depends on the size of all branches.
Therefore, in order to design an MPC protocol where the overall communication is only
proportional to the size of the largest branch, we must use an OIP where the communication
only depends on the length of receiver inputs and the output, but is independent of the length
of sender inputs. We show that such OIPs can be constructed using linearly homomorphic
encryption with constant rate.

• Online Phase: Now that we have sharing of ∆w values that was computed using the mapping
π corresponding to the active branch, we can compute shares of the A and B values as follows:

[A] =
∑
m∈[k]

[b1]uπ1(a) + [∆a] and [B] =
∑
m∈[k]

[b1]uπ1(b) + [∆b]

We note that most linearly homomorphic secret sharing schemes allow such computations to
be done non-interactively and hence it does not incur any overhead in the communication
complexity. Shares of typeg for every gate g can also be computed in a similar manner.

7

Extension to Malicious Security. While the basic outline of our protocol remains the same
even in the malicious setting, we need to do a little more work to make the above protocol secure
against a malicious adversary. In particular, we need to ensure that the inputs used by the parties
in the OIP instances are consistent with values/shares computed by them using the underlying
MPC. For this we propose to add the following consistency checks:

Receiver’s Input Consistency. We start by using an OIP that is secure against a malicious reciever.
In order to ensure that receiver uses valid sharings of the active branch, we implement a kind of
MAC check using the underlying MPC. In particular, in the OIP execution, the sender samples
k+ 1 random values and appends them to its inputs. Now when the receiver computes the output
of the OIP, it also learns an inner product of these random values with its shares of the active
branch (we refer to this as the MAC value for this OIP). We now use the underlying MPC to
compute the exact same value. In particular, the sender sends the k + 1 random values that it
sampled in the OIP as input to the underlying MPC, while the receiver sends the MAC value learnt
from the output of the OIP. We allow the underlying MPC to now check if the MAC value indeed
corresponds to an inner product of the receivers shares of the active branch and the random values
input by the sender. We note that since the length of the receiver’s input is independent of the size
of all branches, computing this MAC value inside the MPC does not incur too much overhead.

Sender’s Input Consistency. Recall that the inputs of the sender to the OIP depend on the size of
all branches, and hence we cannot hope to use the kind of check that we used for ensuring receiver
consistency. Moreover, since the length of the sender message is much shorter than the length of its
inputs, we also cannot hope to use an OIP with malicious sender security that can somehow extract
the sender’s inputs. Therefore, instead we continue to work with an OIP that is secure against a
semi-honest sender but augment it with a cut-and-choose style approach. In particular, we sample
multiple copies of the masks and compute delta values using OIPs for each of those copies. We also
ask the sender to commit (using compressive commitments) to the inputs and randomness used for
computing each of its sender messages. At the end of all OIP instantiations, we use the underlying
MPC to sample a random subset and reveal the shares of masks of all parties for that subset.
The senders also send the randomness used by them in the sender messages of this opened subset.
Given this information, the parties can verify if the senders behaved honestly and used consistent
shares in the opened instances. We use the remaining unopened instances to run multiple copies of
the online phase and take a majority to decide the final output. Due to the use of cut-and-choose,
the communication complexity of our maliciously secure protocol is proportional to δ × the cost of
computing the largest branch. Nevertheless, as discussed in the introduction, this is still useful for
conditionals with large number of branches.

2.2 Constant Round (Semi-Honest) Protocol

Beaver, Micali, and Rogaway (BMR) [2] proposed a general template for constructing constant
round MPC from existing generic non-constant round MPC. The main observations underlying
their technique were – (1) round complexity of more generic non-constant round protocols depends
on the depth of the function being computed and (2) garbling [44] a functionality/circuit is a
constant depth procedure.

The parties can leverage these observations to first execute a garbling phase, where they compute
a garbled circuit of the function (that they wished to evaluate) using the non-constant round
protocol. This phase will require a constant number of rounds. Given this garbled circuit, they
then proceed to the evaluation phase, where each party locally evaluates the garbled circuit to learn
the output. This phase requires no interaction and hence the overall protocol runs in a constant

8

number of rounds.
More concretely, in the garbling phase, the parties collectively sample two keys kw,0, kw,1 for

every wire w in the circuit. The garbled table for each gate g in the circuit with incoming wires
a, b and outgoing wire c, consists of the following four rows, corresponding to α, β ∈ {0, 1}:

ctα,β = PRFka,α(g) + PRFkb,β (g) + kc,g(α,β)

Branching MPC using BMR Template. The generality of the BMR approach immediately
makes it compatible with our non-constant round semi-honest protocol (from Section 2.1). Indeed,
in the garbling phase, parties can use that protocol to compute a garbled circuit for the active
branch. During the evaluation phase, however, since the parties do not know which branch the
garbled circuit corresponds to, they can evaluate it for every branch and obtain the corresponding
output wire labels. Note that only the labels obtained by evaluating w.r.t. to the active branch
actually correspond to a valid set of abels. Finally, via interaction, parties can determine the output
corresponding to the “valid” set of output labels. The complexity of this last step is independent
of the circuit size and only depends on the number of branches times the output length.

While this yields a simple baseline constant round MPC for conditional branches, it is highly
inefficient. Since no party knows the keys ka,α, kb,β in their entirety, they must evaluate the PRF
(on these keys) inside an MPC protocol. Since, the circuit representations of PRF’s are typically
massive, this protocol is unlikely to be concretely efficient. As such, for concrete efficiency, we
require a protocol that only makes a black-box use of cryptography.

Towards Black-Box use of Cryptography. Damg̊ard and Ishai [14] proposed a variant of the
above BMR template that enables parties to evaluate the PRF outside the MPC, thereby only
making a black-box use of cryptography.

Specifically, in their approach, each party Pi samples two keys kiw,0, k
i
w,1 for every wire w in the

circuit. In other words, the cumulative keys associated with every wire is a concatenation of all the
parties’ keys. The garbled table for each gate g in the circuit with incoming wires a, b and outgoing
wire c, consists of the following 4 · n rows, corresponding to α, β ∈ {0, 1} and i ∈ [n]:

ctiα,β =
n⊕

m=1

PRFkma,α(g‖i) +
n⊕

m=1

PRFkmb,β (g‖i) + kic,g(α,β)

It is easy to see that unlike the BMR approach, here the parties are only required to evaluate
the PRF on their own keys, which can be done locally and the resulting PRF evaluation can be fed
as input to the underlying MPC implementing the garbling functionality.

In our setting, however, this approach posits a fundamental barrier. Recall that for evaluating
conditional branches, we want to garble the active branch without revealing the index of the active
branch. For this, while garbling any gate (say the jth gate), it is imperative that the parties remain
oblivious to both the functionality associated with it and its incoming and outgoing wires. As
a result, the parties are unaware of which keys kia,α, k

i
b,β to use for computing the corresponding

ciphertexts, and hence cannot evaluate the PRF on those keys locally. A natural approach to
overcome this problem is to perform this evaluation within an MPC; however, we are then back to
the realm of non-black-box use of cryptography. As such it is unclear how to directly adapt this
approach to our setting, while making a black-box use of cryptography.

Garbling using Key-Homomorphic PRFs. To overcome the above barrier, we explore the
work of Ben-Efraim et al. [4] who presented an alternative template for multiparty garbling, using

9

key-homomorphic PRFs. These are PRFs with the following property: PRFk1(m)+̃PRFk2(m) =
PRFk1 ·̃k2(m), where +̃ and ·̃ are some operations. As before, each party samples two keys for every
wire in the circuit and given such a PRF, the parties the compute each ciphertext as follows:

ctα,β =
∑̃

m∈[n]

(
PRFkma,α(g)+̃PRFkmb,β (g)

)
+̃

(∏̃
m∈[n]

kmc,g(α,β)

)
It is easy to see that similar to the previous approach, each party here is only required to evaluate

the PRF on its own key, which can be done locally. At first, it might seem that in our setting, the
same problem (as before) still persists. Indeed, for local PRF evaluation, the parties are required
to know which key to use, which as discussed earlier is not possible when the parties are required
to obliviously garble one of the conditional branches. However, we observe that homomorphism of
the PRF can be leveraged here to resolve this problem.

Lets assume that the parties start by ordering the gates and wires in every branch in some
canonical order. Now, when garbling the jth gate of the active branch, they must choose the
appropriate keys from all the keys associated with the jth gate in every branch. We also assume
that the parties have a sharing of the unary representation of the index associated with the active
branch. The parties can now use multiple instances of OIP (as in our non-constant round protocols)
to obtain shares of the keys associated with the two incoming wires of the jth gate in the active
branch.

Consider a key homomorphic PRF where both +̃ and ·̃ are the same operation associated with the
reconstruction algorithm of the secret sharing scheme used in the undelying MPC, i.e., [PRFk(m)] =
PRF[k](m). This PRF can now be used along with the above observation to compute a garbling
of the active branch as follows: for simplicity let’s assume that each branch is of the same size
and has W wires. The parties start by collectively sampling 2W keys. For garbling the jth gate,
for each α, β ∈ {0, 1}, they use OIPs to compute shares [ka,α], [kb,β] and [kc,g(α,β)], where a, b are

the incoming and c is the outgoing wire of the jth gate in the active branch and g is the function
computed by this gate. Parties can now locally evaluate the PRF on these shares and use the
underlying MPC to compute shares of the ciphertexts as follows:

[ctα,β] = PRF[ka,α](j) + PRF[kb,β](j) + [kc,g(α,β)]

Upon computing this garbled circuit for the active branch, similar to the baseline solution,
parties evaluate it w.r.t. all the branches and then run a “mini-MPC” to filter out the valid labels
and determine the final output.

Instantiating Key Homomorphic PRF. Most existing dishonest majority MPC protocols
[34, 26, 12, 23, 16] use additive secret sharing. To use the above ideas with such protocols, we
need an additively key-homomorphic PRF, i.e., where PRFk1(m) +PRFk2(m) = PRFk1+k2(m). Un-
fortunately, key homomorphic PRFs are currently only known from the DDH assumption [41, 6]
and those PRFs do not achieve a similar additive homomorphism.

Ben-Efraim et al. [4] observed that instead of a PRF, it suffices to use a (decisional) ring LWE
based random function here. This function is of the form: F = fk : Rp → Rp|fk(a) = a · k + e,
where p = 2N + 1 is a prime, N is a power of two, Rp = Zp[X]/(XN + 1) and a, k, and e are
polynomials in the ring and the coefficients of e come from a gaussian distribuition. Since a is
public, it is easy to see that given additive shares of the key k and error e, it is possible for the
parties to locally compute shares of the above function. As is standard when using LWE/RLWE,
encrypting using such a random function typically requires multiplying the message (before adding
it to the output of this function) with the size of the range from which the message comes from. In
the case of garbling, since both the message and keys come from the same distribution, as shown

10

in [4], this requires choosing the parameters carefully and additionally requires sampling the keys
from a gaussian distribution. However, since the parties only need to compute additive shares of
these keys and errors, this can be done easily by requiring the parties to sample their shares from
appropriate distributions. We defer more details to the technical sections.

3 Preliminaries

3.1 Secure Multiparty Computation

A secure multi-party computation protocol (MPC) is a protocol executed by n parties P =
{P1, · · · , Pn} for a functionality F . We allow for parties to exchange messages simultaneously.
In every round, every party is allowed to exchange messages with other parties using different com-
munication channels, depending on the model. A protocol is said to have k rounds if it proceeds
in k distinct and interactive rounds.

3.1.1 Adversarial Behavior

One of the primary goals in MPC is to protect the honest parties against dishonest behavior of
the corrupted parties. This is usually modeled using a central adversarial entity, that controls the
set of corrupted parties and instructs them on how to operate. That is, the adversary obtains the
views of the corrupted parties, consisting of their inputs, random tapes and incoming messages,
and provides them with the messages that they are to send in the execution of the protocol.

In this work we consider two types of adversaries. A semi-honest adversary is ”honest but
curious” where it always follows the instructions of the protocol but might try to learn extra
information by analyzing the transcript of the protocol later. On the other hand, a malicious
adversary can deviate from the protocol and instruct the corrupted parties to follow any arbitrary
strategy.

We provide the basic definitions for secure multiparty computation according to the real/ideal
paradigm [20]. Informally, a protocol is considered secure if whatever an adversary can do in the
real execution of protocol, can be done also in an ideal computation, in which an uncorrupted
trusted party assists the computation.

3.1.2 Security Definitions

Real World. The real world execution of a protocol Π = (P1, . . . , Pn) begins by an adversary A
selecting any arbitrary subset of parties I to corrupt. The parties then engage in an execution of
a real n-party protocol π. Throughout the execution of π, the adversary A sends all messages on
behalf of the corrupted parties, and may follow an arbitrary polynomial-time strategy. In contrast,
the honest parties follow the instructions of π. At the conclusion of the protocol, each honest
party outputs all the outputs it obtained in the computations. Malicious parties may output an
arbitrary PPT function of the view of A. This joint execution of Π under (A, I) in the real
model, on input vector −→x = (x1, . . . , xn), auxiliary input z and security parameter λ, denoted by

REALΠ,I,A(z)

(
1λ,−→x

)
, is defined as the output vector of P1, . . . , Pn and A(z) resulting from this

protocol interaction.

Ideal World. We now present standard definitions of ideal-model computations.
An ideal computation of an n-party functionality F on input −→x = (x1, . . . , xn) for parties

(P1, . . . , Pn) in the presence of an ideal-model adversary A controlling the parties indexed by
I ⊂ [n], proceeds via the following steps.

11

Sending inputs to trusted party: For each i /∈ I, Pi sends its input xi to the trusted party. If i ∈ I,
the adversary may send to the trusted party any arbitrary input for the corrupted party Pi.
Let x′i be the value actually sent as the ith party’s input.

Early abort: The adversary A can abort the computation by sending an abort message to the
trusted party. In case of such an abort, the trusted party sends ⊥ to all parties and halts.

Trusted party answers adversary: The trusted party computes (y1, . . . , yn) = F(x′1, . . . , x
′
n) and

sends yi to party Pi for every i ∈ I.

Late abort: The adversary A can abort the computation (after seeing the outputs of corrupted
parties) by sending an abort message to the trusted party. In case of such abort, the trusted
party sends ⊥ to all honest parties and halts. Otherwise, the adversary sends a continue
message to the trusted party.

Trusted party answers remaining parties: The trusted party sends yi to Pi for every i /∈ I.

Outputs: Honest parties always output the message received from the trusted party and the cor-
rupted parties output nothing. The adversary A outputs an arbitrary function of the initial
inputs xi s.t. i ∈ I, the messages received by the corrupted parties from the trusted party
and its auxiliary input.

Security Having defined the real and ideal models, we can now define security of protocols accord-
ing to the real/ideal paradigm.

Definition 3.1. Let F : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality and let Π be a
probabilistic polynomial-time protocol computing F . The protocol Π t-securely computes F , if for
every probabilistic polynomial-time real-model adversary A, there exists a probabilistic polynomial-
time simulator S for the ideal model, such that for every I ⊂ [n] of size at most t, it holds that{

REALΠ,I,A(z)

(
1λ,−→x

)}
(−→x ,z)∈({0,1}∗)n+1,λ∈N

≈c
{
IDEALF ,I,S(z)(1

λ,−→x)
}

(−→x ,z)∈({0,1}∗)n+1,λ∈N

4 Oblivious Inner Product

In this section, we define a variant of oblivious linear evaluation (OLE), which we refer to as
oblivious inner product (OIP). OIP is a protocol between two parties, called the sender and receiver
respectively. The sender has inputs (−→m0, . . . ,

−→mk) in some domain (say Dm), and receiver has
inputs (b1, . . . , bk) in the same domain D. At the end of the protocol, the receiver should learn
−→m0 +

∑
i∈[k] bi

−→mi and nothing more, while the sender should learn nothing about the reciever inputs
b1, . . . , bk.

For our constructions, we consider two variants of OIP, a semi-honest version and one that is
secure against a malicious receiver. We now define the syntax and the security guarantees of a
two-message OIP protocol in the plain model. The definitions can be naturally extended to the
CRS model.

Definition 4.1 (Two-Message Oblivious Inner Product). A two-message oblivious inner product
between a receiver R and a sender S is defined by a tuple of 3 PPT algorithms (OIPR,OIPS,OIPout).
Let λ be the security parameter. The receiver computes msgR, ρ as the evaluation of
OIPR(1λ, (b1, . . . , bk)), where (b1, . . . , bk) ∈ Dk is the receiver’s input. The receiver sends msgR

12

to the sender. The sender then computes msgS as the evaluation of OIPS(1λ,msgR, (
−→m0, . . . ,

−→mk)),
where (−→m0, . . . ,

−→mk) ∈ Dm×(k+1) are sender’s inputs. The sender sends msgS to the receiver. Finally,
the receiver computes the output by evaluating OIPout(ρ,msgR,msgS).

A semi-honest OIP satisfies correctness, security against semi-honest receiver and semi-honest
sender, while the malicious variant satisfies correctness, security against semi-honest sender and
malicious receiver, which are defined as follows:

• Correctness: For each (−→m0, . . . ,
−→mk) ∈ Dm×(k+1) and (b1, . . . , bk) ∈ Dk, the following holds

Pr

 (ρ,msgR)← OIPR

(
1λ, (b1, . . . , bk)

)
msgS ← OIPS

(
1λ,msgR, (

−→m0, . . . ,
−→mk)

) : OIPout (ρ,msgR,msgS) = −→m0 +
∑

i∈[k] bi
−→mi

 = 1

• Security Against Semi-Honest Sender: The following holds for any (b1, . . . , bk) ∈ Dk and
(b′1, . . . , b

′
k) ∈ Dk, where ∃i ∈ [k] s.t. bi 6= b′i{

(msgR, ρ)← OIPR

(
1λ, (b1, . . . , bk)

)
: msgR

}
≈c
{

(msg′R, ρ
′)← OIPR

(
1λ, (b′1, . . . , b

′
k)
)

: msg′R
}
.

• Security Against Semi-Honest Receiver: For every PPT adversary A corrupting the re-
ceiver, there exists a PPT simulator SR such that for any choice of (b1, . . . , bk) ∈ Dk and
(−→m0, . . . ,

−→mk) ∈ Dm×(k+1), the following holds:

OIPS

(
1λ,msgR, (

−→m0, . . . ,
−→mk)

)
≈c SR(1λ, ρ,msgR,

−→m0 +
∑
i∈[k]

bi
−→mi),

where (msgR, ρ)← OIPR(1λ, (b1, . . . , bk)).

• Security against a Malicious Receiver: For every PPT adversary A corrupting the receiver,
there exists a PPT simulator SR = (S1

R,S2
R), such that for any choice of (−→m0, . . . ,

−→mk) ∈ Dm×(k+1),
the following holds:∣∣∣∣Pr

[
IDEALSR,FOIP

(1λ,−→m0, . . . ,
−→mk) = 1

]
− Pr

[
REALA,OIP(1λ,−→m0, . . . ,

−→mk) = 1
] ∣∣∣∣ ≤ 1

2 + negl(λ).

Where experiments IDEALSR,FOIP
and REALA,OIP are defined as follows:

Exp IDEALSR,FOIP

(
1λ,−→m0, . . . ,

−→mk

)
:

• msgR ← A(1λ)

• (b1, . . . , bk)← S1R(1λ,msgR)

• out← FOIP(−→m0, . . . ,
−→mk, b1, . . . , bk)

• msgS ← S2R(1λ, out,msgR)

• Output A(msgS)

Exp REALSR,FOIP

(
1λ,−→m0, . . . ,

−→mk

)
:

• msgR ← A(1λ)

• msgS ← OIPS

(
1λ,msgR, (

−→m0, . . . ,
−→mk)

)
• Output A(msgS)

We present a construction of such OIPs from constant rate linearly homomorphic encryption in
Section 9.

13

5 MPC Interface

As discussed in the introduction, all of our compilers make use of an underlying secure computation
protocol with certain properties. In this section, we describe the properties that we want from these
underlying protocols.

We model these requirements as a reactive functionality (denoted as Fmpc). At a high level, we
require secret sharing based MPC that evaluate a given circuit in a gate-by-gate manner and main-
tain an invariant that the parties hold a secret sharing of the values induced on each intermediate
wire in the circuit. A formal description of this reactive functionality appears in Figure 1.

For ease of notation, in our protocol descriptions, we shall let [varid] denote the value stores by
the functionality under (varid, a); and we will write [z] = [x] + [y] as a shorthand for calling Add
and [z] = [x] · [y] as a shorthand for calling Multiply. And by abuse of notation, we will let varid
denote the value, x, of the data item held in location (varid, x). We use [x]i to denote the share of
x given to party Pi in the underlying MPC.

To the best of our knowledge, most secret sharing based protocols [34, 26, 12, 16, 13] securely
implement this reactive functionality in the presence of a malicious adversary who can corrupt
arbitrary number of parties. Moreover, most of these protocols are capable of evaluating circuits
over any field/ring.

It is easy to see that any such secret sharing based MPC that evaluates the circuit in a gate-
by-gate manner and maintains the invariant that parties hold shares of all intermediate wires
in the circuit will trivially have support for the Initialize Input, Initialize constant, Add,
Add by const, Multiply, Multiply by const, Function and Output Private Shares calls.
Moreover, since the multiplication in these protocols typically requires parties to actually generate
and compute shares of random values, the Random call is also implemented by these protocols.
We now discuss how the remaining calls can be implemented in both the semi-honest and malicious
settings.

Semi-Honest Setting. The only other calls used in our semi-honest protocols are Random Bit
and Output. As observed in some of these protocols, Random Bit is also very easy to implement
(especially in the semi-honest setting). This is done by requiring each party Pi to randomly sample
bi ∈ {1,−1} and secret share it amongst all the parties. The parties then add all the shares obtained

from all parties (let the resulting shares be [s]) and then compute [s]+1
2 . The resulting shares will

be of a random bit. Share Zero can be realized with semi-honest security by having every party
secret share 0 and then requiring each party to locally sum up its shares. Finally, it is easy to see
that the Output call can also be easily implemented, since the parties actually hold shares of all
intermediate values. To reconstruct the output, they can simply broadcast their respective shares
to all parties and then run the reconstruction algorithm.

Malicious Setting. While protocols such as SPDZ [16] and its descendants [34, 26, 12] (that use
MACs w.r.t. a global key) delegate the check that ensures that these shares are indeed consistent
with the “correct” values to the end of the protocol, we show that these protocols still securely
implement all remaining calls in the Fmpc functionality.

Intuitively, since these protocols delegate the malicious security/consistency checks to the end
the protocol, the only place where we need to ensure that the shares held by the parties for any
particular wire are indeed consistent and correct is when those values are reconstructed or are used
outside of this MPC protocol, i.e., in the OIP and when the outcome of OIP is returned to the
MPC. The subcalls inside Fmpc that are really affected by this are Initialize Input, Random,
Share Zero, Check Zero and Output Shares and Output. As discussed above, Initialize
Input and Random are already implemented by these protocols.

14

• Check Zero: For this sub-call, we observe that given authenticated additive shares
([x1], [m1]), ([x2], [m2]), with m1 = k ∗ x1, m2 = k ∗ x2 where k is the global MAC key,
parties can compute [m] = [m1]− [m2] locally, followed by having each player Pi first commit
and then broadcast its share [m]i to reconstruct [m] and check if m =

∑
imi = 0.

• Share Zero: For this we can augment the semi-honest Share Zero protocol described above
with an asymptotically efficient batch-wise check to ensure malicious security. Specifically, to
verify the outputs of the ` semi-honest Share Zero calls [x1], . . . , [x`], parties can publicly
sample ` random values {ri}`i=1 and compute a random linear combination [r] =

∑`
i=1 ri[xi]

followed by running the Check Zero call on [r] and a trivial sharing of 0 (each party Pi’s
share is 0).

• Output and Output Share: As discussed above authenticated shares in the above protocols
are of the form ([x], [m]), where m = k ∗ x and k is the global MAC key. For both of these
sub-calls, the parties first broadcast their shares [x] and reconstruct. Then the parties can
compute x · [k] and run Check Zero to check if the resulting shares reconstruct to the same
value as the shares [m]. This is very similar to “MAC check” subprotocol already implemented
in [34].

We note that the above proposed protocols only reveal shares [x] and not [m]. Indeed,
revealing all shares of both x an m will trivially give away the global MAC key and make the
protocol insecure. To make this compatible with our maliciously secure protocol, we assume
that when the parties use the shares generated via Fmpc outside of Fmpc (i.e., to compute
the OIP messages), they can do so on the “unauthenticated shares”, i.e., on only the [x] part
and not on the [m] part. Now, before, using the shares obtained as output of this OIP in
Fmpc, we can make them “authenticated” by computing the corresponding [m] shares for this
output. This can be done trivially, since the parties hold a secret sharing of the global MAC
key. This is a standard approach used in many of the above protocols including MASCOT
[34].

Moreover, we remark that the above proposed modification does not cause our compiler
or the compiled protocols to be insecure in any way. This is because, the authentication
mechanism used on the shares is only specific to Fmpc and not to the primitives used outside
of it. As a result, outside of Fmpc, an adversary can easily modify the authenticated shares
in whatever way they want. Hence, in principle the following strategies are equivalent – (1)
where the computations done outside of Fmpc are performed on authenticated shares. (2)
where the computations done outside of Fmpc are performed on unauthenticated shares, but
we authenticate the output of those computations before they are used in Fmpc again.

6 Non-Constant Round Semi-Honest Branching MPC

In this section, we present our semi-honest compiler for distributed computation of a circuit with
conditional branches.

Let the circuit/function be such that it consists of an initial sub-function f1, followed by the k
branches and then a sub-function f2. We assume that the parties have access to Fmpc (see Figure
1). When evaluated using Fmpc, the output of f1 is a secret sharing of the inputs to the branching
part and a secret sharing of the unary representation of the index associated with the branch that
needs to be executed (henceforth referred to as the active branch). The output of the branching
part is a secret sharing of the inputs to the function f2.

15

Functionality Fmpc

Initialize Input: On input (initinp, varid, Pi) from Pi (for each i ∈ [n]) with a fresh identifier varid
the functionality stores (varid, [x]).
Initialize constant: On input (initconst, constid, c) from each Pi (i ∈ [n]) with a fresh identifier
varid the functionality stores (const, c).
Random: On command (rand, varid) from all parties, with a fresh identifier varid, the functionality
selects a random value r, stores (varid, [r]) and sends the respective share [r]i to party Pi (for each
i ∈ [n])
Random Bit: On command (bitrand, varid) from all parties, with a fresh identifier varid, the func-
tionality selects a random bit b ∈ {0, 1}, stores (varid, [b]) and sends the respective share [b]i to party
Pi (for each i ∈ [n])
ShareZero: On command (sharezero, varid) from all parties, with a fresh identifier varid, the func-
tionality computes, stores (varid, [0]) and sends the respective share [0]i to party Pi (for each i ∈ [n]).
Add: On command (add, varid1, varid2, varid3) from all parties (if varid1, varid2 are present in
memory and varid3 is not), the functionality retrieves (varid1, [x]), (varid2, [y]) and stores (varid3, [x+
y]).
Add by const: On command (add, constid1, varid2, varid3) from all parties (if constid1, varid2 are
present in memory and varid3 is not), the functionality retrieves (constid1, c), (varid2, [x]) and stores
(varid3, [c+ x]).
Multiply: On input (mult, varid1, varid2, varid3) from all parties (if varid1, varid2 are present in
memory and varid3 is not), the functionality retrieves (varid1, [x]), (varid2, [y]) and stores (varid3, [x ·
y]).
Multiply by const: On command (mult, constid1, varid2, varid3) from all parties (if constid1, varid2
are present in memory and varid3 is not), the functionality retrieves (constid1, c), (varid2, [x]) and
stores (varid3, [c · x]).
Function: On input (func, f, varid1, . . . , varidn, varidout) from all parties, the functionality retrieves
(varid1, [x1]), . . . , (varidn, [xn]) and stores (varidout, [f(x1, . . . , xn)]).
Output Shares: On input (outshare, varid) from all parties, the functionality retrieves (varid, [x])
and outputs all shares [x] to all parties.
Output Private Shares: On input (outprivshare, varid) from all parties, the functionality retrieves
(varid, [x]) and outputs the respective share [x]i to party Pi (for each i ∈ [n]).
Check Zero: On input (fcheckzero, varid1, varid2) from all parties, the functionality retrieves
(varid1, [x1]), (varid2, [x2]) and outputs 1 w.h.p if x1 = x2 and otherwise it outputs 0 and aborts.
Output: On input (out, varid) from all honest parties (if varid is present in memory), the functionality
retrieves (varid, [x]) and outputs x to all players.

Figure 1: A Required Ideal Functionality for MPC

Given a circuit C, we assume that the parties decide on some canonical ordering of the gates
in the circuit, such that gate i only takes as inputs the values output by the gates j < i . We
assume w.l.o.g. that the ith gate in C has fan-in 2 and the outgoing wire of any gate can act as the
incoming wire for any number of gates.2

For simplicity, we assume that all branches are of the same size and have G gates. Our protocol
can be easily extended to the scenario where the branches are of varying sizes by suitably padding
the smaller branches with fake gates. Let ` be the length of inputs to the branching part of the

2Our compiler can work with circuits that have gates with arbitrary fan-out. In our construction, it suffices to
view such gates as having a single outgoing wire that acts as the incoming wire for multiple gates. Hence, we only
assign a single label to the outgoing wire of each gate.

16

function. For evaluating this part, we assume that there are ` input gates that are common to all
branches. We set both the incoming and outgoing labels for the wires coming out of these gates as
1, . . . , ` respectively. For each branch m ∈ [k], and each gate i in this branch, we assign outgoing
label i+` to the wire coming out of this gate and incoming labels `+2i−1 and `+2i respectively to
its two incoming wires. Therefore, we assume that the number of unique outgoing labels assigned
in a branch are G + `, while the total number of unique incoming labels assigned in a branch are
W = 2G+ `. We present a slightly optimized version of the protocol described in the introduction,
namely that only requires parties to sample 1 mask per wire, instead of 2 masks.

Let π be the mapping corresponding to a circuit C that maps incoming labels to the outgoing
labels of each wire in C. For instance, π(i) corresponds to the outgoing label of the wire with
incoming label i. Let C1, . . . ,Ck be the circuit representations of the k branches and let {π1, . . . , πk}
be the corresponding mappings associated with these branches. Finally, we assume that the circuits
and inputs are defined over some field F.

Protocol. The parties start by invoking (func, f1, x1, . . . , xn, inp1, . . . , inp`, b1, . . . , bk) in Fmpc on
their original inputs x1, . . . , xn, to obtain shares of inputs to the branching part [inp1], . . . , [inp`],
where |`| is the total input length and shares [b1], . . . , [bk], where b1 . . . bk is the unary representa-
tion of the index associated with the active branch. Given these shares, parties run the protocol
presented in Figure 2. The output of this protocol is a secret sharing of the inputs to f2 (i.e.,
the last part of the circuit). Let m be the length of these inputs. The parties finally invoke
(func, f2, y1, . . . , ym, out) and (out, out) in Fmpc to learn the final output out.

Optimization. A naive implementation of the online phase in the above protocol will result in a
round complexity that depends on the maximum number of gates in any particular branch. This
can be improved to be proportional to the maximum multiplicative depth of any branch by using
a simple optimization. For simplicity, lets assume that all branches have the same depth and each
layer of each branch contains the same number of gates. We know that the gates on level ` only
depend on the outgoing wires of gates on layers < `. We can therefore evaluate all the gates in a
particular level in parallel. This simple idea can also be extended to the case where the branches
have different depths and widths. In that case, let x` (and y` resp.) be the minimum (and maximum
resp.) number of gates on level ` in any branch. We can evaluate the first x` gates in parallel.
Then in the next round we can evaluate the y` − x` + x`+1 gates in parallel. This ensures that the
overall round complexity of the online phase will only depend on the depth of the branches.

Complexity Analysis. We now analyze the communication complexity of the above semi-honest
protocol. If we use a rate-1 OIP, the communication complexity in the pre-processing phase is
O(n2|Cmax| + n2kλ), where |Cmax| is the size of the largest branch. In the online phase for each
gate we perform both addition and multiplication and then choose between the two. As a result
we perform 2 multiplications per gate. The communication complexity of the online phase is
O(2 × CC(|Cmax|)), where CC(|Cmax|) is the communication complexity incurred upon evaluating
Cmax using the underlying MPC.

Overall, given the above protocol and optimizations, we obtain the following result.

Theorem 1. Let λ be the security parameter and F be a function class consisting of functions of
the form f(−→x) = f2(fbr(f1(−→x))), where fbr := {g1, . . . , gk} is a function consisting of k conditional
branches, defined as fbr(i,

−→x) = gi(
−→x). Assuming the existence of a rate-1 two-message semi-

honest secure OIP (see Definition 4.1), there exists an MPC protocol in the Fmpc-hybrid model
(see Section 5) for computing any f ∈ F that achieves semi-honest security against an arbitrary
number of corruptions and incurs a communication overhead of O(n2(kλ+ |Cmax|)).

17

Semi-Honest Protocol

The protocol is described in the Fmpc-hybrid model. Parties have shares of inputs to the branches, i.e.,
[inp1], . . . , [inp`] and shares of a unary representation of the active branch, i.e., [b1], . . . , [bk].

• Pre-processing Phase:

1. Sample masks: For each input and gate g ∈ [` + G], parties invoke (rand,maskg) in Fmpc to

obtain shares [maskg]. For each branch m ∈ [k], let [
−−−−−→
maskπm

] = [maskπm(1)]‖ . . . ‖[maskπm(W)].

2. Shares of zeros: For each w ∈ [W] and i ∈ [n], parties invoke (sharezero,Xw,i) in Fmpc to get

shares [Xw,i], where Xw,i = 0. For each i ∈ [n], let [
−→
Xi] = [X1,i]‖ . . . ‖[XW,i].

3. Pairwise OIP: Each pair of parties PR and PS (∀R,S ∈ [n]) engage in a two-message semi-honest
OIP as follows, where PR acts as the receiver and PS acts as the sender:

– Receiver: PR computes (ρ,msgR)← OIPR(1λ, [b1]R, . . . , [bk]R) and sends msgR to PS.

– Sender: PS computes msgS ← OIPS(1λ,msgR, [
−→
XR]S, [

−−−−→
maskπ1

]S, . . . , [
−−−−→
maskπk

]S) and sends
msgS to PR.

– Output: PR computes
−−−−−→
shareR,S ← OIPout(ρ,msgR,msgS).

4. ∆ values: Each party Pi (for i ∈ [n]) computes [
−→
∆]i =

∑
j∈[n]

−−−−→
sharej,i, where [

−→
∆] =

[∆1]‖ . . . ‖[∆W].

• Online Phase :

1. Inputs: For each input wire i ∈ [`], parties compute [ui] = [inpi] + [maski]. and invoke (out, ui)
in Fmpc to obtain ui in the clear.

2. Circuit Evaluation: For each gate g ∈ [G], let left = `+2g−1 and right = `+2g be the incoming
wire labels of its input wires. Let typem,g be the gate type for gate g in Cm (∀m ∈ [k]), where
typem,g = 0 denotes an addition gate and typem,g = 1 denotes a multiplication gate. Parties
compute the following using Fmpc:

(a) For w ∈ {left, right}, compute [yw] =
∑k
m=1

(
uπm(w) · [bm]

)
− [∆w].

(b) Compute [typeg] =
∑k
m=1

(
typem,g · [bm]

)
(c) Compute [zg] = [yleft] + [yright] + [typeg] · ([yleft] · [yright]− [yleft]− [yright]).

(d) Compute [u`+g] = [zg] + [mask`+g] and invoke (out, us) in Fmpc to obtain us in the clear.

3. Output: For each output gate g, compute [zg] =
∑k
m=1

(
uπm(w) · [bm]

)
− [∆w].

Figure 2: Semi-Honest Compiler

In Section 9, we show that a rate-1 two-message semi-honest secure OIP can be constructed
from rate-1 linearly homomorphic encryption. Such encryptions are known [17, 8, 15, 42] from a
variety of assumptions including LWE, Ring LWE and DDH assumption.

6.1 Security

We now prove security of our semi-honest protocol. We start by describing the simulator and then
proceed to argue indistinguishability between the real and ideal world executions.

Simulator. Let A be the adversary who corrupts a subset I ⊂ [n] of the parties and H = [n] \ I

18

be the set of honest parties. Let SR be the simulator associated with security of OIP against semi-
honest receiver (see Definition 4.1). Given the output z and inputs {xi}i∈C of the corrupt parties
the simulator proceeds as follows:

• Computing f1. For each i ∈ I, j ∈ [`], sample random shares [inpj]i and for each m ∈ [k],
sample random shares [bm]i and send all of these shares to the adversary.

• Pre-processing Phase.

– For each w ∈ [W] and i ∈ I, sample random [maskw]i and send these values to the adversary.

– For each w ∈ [W] and i ∈ [n] and j ∈ I, sample random shares [Xw,i]j and sends to the
adversary.

– For each pair of parties PR and PS (∀R ∈ I, S ∈ H), upon receiving a message msgR from the

adversary, sample a random vector of shares
−→
V R,S, compute msgS ← SR(1λ,msgR,

−→
V R,S) and

send msgS to the adversary on behalf of honest PS.

– For each pair of parties PR and PS (∀R ∈ H,S ∈ I), set [b1]R = . . . = [bk]R = 0, compute
ρ,msgR ← OIPR(1λ, [b1]R, . . . , [bk]R) and send msgR to the adversary on behalf of honest PR.

Also, set
−−−−−→
shareR,S = [

−→
XR]S +

∑
i∈[k][bi]R[

−−−−→
maskπi]S.

• Online Phase. In the online phase, the simulator mimcs the computation done by Fmpc.
Recall from the description of Fmpc (in Figure 1) that this only requires sending messages to
the adversary whenever (out, ·) is invoked. Since in the online phase, this is invoked on random
values, the simulator can easily emulate this by sending a random value to the adversary for each
such call.

• Computing f2. Sends output z to the adversary.

Indistinguishability Argument. We argue indistinguishability via the following sequence of
hybrids:

H0 : This hybrid is identical to the real world execution.

H1 : This hybrid is very similar to the previous hybrid except that in the preprocessing phase for

each pair of parties PR and PS (∀R ∈ H,S ∈ I), we change the way msgR and
−−−−−→
shareR,S are

computed:

– ρ,msgR ← OIPR(1λ, 0 . . . , 0).

–
−−−−−→
shareR,S = [

−→
XR]S +

∑
i∈[k][bi]R[

−−−−→
maskπi]S.

For indistinguishability between hybrids H0 and H1, we consider a sequence of sub-hybrids,

where we change the way msgR and
−−−−−→
shareR,S are computed for each pair PR and PS (where

R ∈ H,S ∈ I), one hybrid at a time. In terms of the view of the adversary, the only change
in each of these sub-hybrids is in the way msgR is computed for one pair R ∈ I,S ∈ H.
As a result, indistinguishability between each consecutive pair of sub-hybrids follows the
security of OIP against a semi-honest sender and by transitivity, it holds that H0 and H1 are
indistinguishable.

19

H2 : This hybrid is very similar to the previous hybrid except that in the preprocessing phase, for

each pair of parties PR and PS (∀R ∈ I, S ∈ H), we compute msgS ← SR(1λ,msgR,
−→
V R,S),

using some random share
−→
V R,S.

For indistinguishability between hybrids H1 and H2, we consider a sequence of sub-hybirds,
where we change the way msgS is computed for each pair R ∈ I,S ∈ H, one hybrid at a time.

The only difference between any two consecutive pairs of these sub-hybrids is that in one we

compute msgS using a random vector of shares
−→
V R,S and the simulator for some receiver R

and sender S, while in the other msgS is computed honestly and the output that the receiver

gets is [
−→
XR]S +

∑
m∈[k][bm]R[

−−−−−→
maskπm]S. Since [

−→
XR]S is a random vector of shares, this output

is identically distributed to
−→
V R,S. Given this output indistinguishability between a simulated

message msgS, and an honestly computed message msgS follows from security of OIP against
a semi-honest receiver. As a result, this sub-hybrid is indistinguishable from its previous
hybrid and by transitivity, it holds that H1 and H2 are indistinguishable.

H3 : This hybrid is identical to the simulator description.

Indistinguishability between hybrids H2 and H3 follows from semi-honest security of the
underlying MPC protocol.

7 Non-Constant Round Maliciously Secure Branching MPC

In this section, we present our maliciously secure compiler for distributed computation of a branch-
ing circuit. We borrow notations from the previous section. As discussed in the introduction, the
basic outline of our maliciously secure protocol remains the same except that we now use a two-
message OIP that is secure against malicious receivers. Also, in order to ensure that the sender
behaves honestly, we make use of non-interactive commitments.

Protocol. Similar to the semi-honest protocol, the parties start by invoking
(func, f1, x1, . . . , xn, inp1, . . . , inp`, b1, . . . , bk) in Fmpc on their original inputs x1, . . . , xn, to
obtain shares of inputs to the branching part [inp1], . . . , [inp`], where |`| is the total input length
and shares [b1], . . . , [bk], where b1 . . . bk is the unary representation of the index associated with the
active branch. Given these shares, the parties run the protocol presented in Figures 3 and 4. The
output of this protocol is a secret sharing of the inputs to f2 (i.e., the last part of the circuit). Let
m be the length of these inputs. The parties finally invoke (func, f2, y1, . . . , ym, out) and (out, out)
in Fmpc to learn the final output out.

Complexity Analysis. If we use a rate-1 OIP, the communication complexity in the preprocessing
phase is O(δ × n2|Cmax| + n2kλ), where |Cmax| is the size of the largest branch and δ = κ/0.311.
The online phase is repeated for each q ∈ [δ] \Z, as a result, the communication complexity of the
online phase is O(δ×CC(|Cmax|)), where CC(|Cmax|) is the communication complexity incured upon
evalutaing Cmax using the underlying MPC.

Overall, the above protocol gives us the following result.

Theorem 2. Let λ be the computational security parameter and κ be the statistical security
parameter. Let F be a function class consisting of functions of the form f(−→x) = f2(fbr(f1(−→x))),
where fbr := {g1, . . . , gk} is a function consisting of k conditional branches, defined as fbr(i,

−→x) =
gi(
−→x). Assuming the existence of a rate-1 two-message OIP secure against a malicious receiver

(see Definition 4.1), there exists an MPC protocol in the Fmpc-hybrid model (see Section 5) for

20

Preprocessing Phase of the Maliciously Secure Protocol

The protocol is described in the Fmpc-hybrid model. Parties have shares of the inputs to the branches,
i.e., [inp1], . . . , [inp`] and shares of a unary representation of the active branch, i.e., [b1], . . . , [bk]. Let
δ = κ/0.311, where κ is the statistical security parameter.
Pre-processing Phase:

1. Sample masks: For each wire w ∈ [W], parties invoke (rand,mask1w), . . . , (rand,maskδw) in Fmpc

to obtain shares [mask1w], . . . , [maskδw] respectively. For each q ∈ [δ], m ∈ [k], let [
−−−−−→
maskqπm

] =
[maskqπm(1)]‖ . . . ‖[maskqπm(W)].

2. Shares of zeros: For each q ∈ [δ], w ∈ [W] and i ∈ [n], the parties invoke (sharezero,Xw,i) in

Fmpc to get shares [Xq
w,i], where Xq

w,i = 0. For each i ∈ [n], let [
−→
Xq
i] = [Xq

1,i]‖ . . . ‖[X
q
k,i].

3. Pairwise OIP: Each pair of parties PR and PS (∀R,S ∈ [n]) engage in two-message (malicious
receiver) OIPs as follows, where PR and PS act as the receiver and sender resp.:

• Receiver: PR computes (ρ,msgR→S)← OIPR(1λ, [b1]R, . . . , [bk]R) and sends msgR to PS.

• Sender: For each q ∈ [δ], PS samples random values rq0, . . . , r
q
k ∈ Fk+1 and does the following:

– Computes msgqS→R ← OIPS(1λ,msgR→S, [
−→
Xq

R]S‖rq0, [
−−−−→
maskqπ1

]S‖rq1, . . . , [
−−−−→
maskqπk

]S‖rqk; ρS,qR,S).

– Computes comq
R,S ← Commit([

−→
Xq

R]S‖rq0, [
−−−−→
maskqπ1

]S‖rq1, . . . , [
−−−−→
maskqπk

]S‖rqk, ρ
S,q
R,S; ρcom,qR,S).

– It sends msgqS→R, com
q
R,S to PR.

• Output: For each q ∈ [δ], PR computes
−−−−−→
shareR,S‖macqR,S ← OIPout(ρ,msgR→S,msgS→R).

• Receiver Consistency check: For each q ∈ [δ], PS invokes (initinp, rq0, PS). . . . , (initinp, rqk, PS)
and PR invokes (initinp,macqR,S, PR) in Fmpc. The parties then collectively invoke

(func,Fqmac, r
q
0, r

q
1, . . . , r

q
k, [b1]R, . . . , [bk]R, out

q
mac), where Fqmac(r

q
0, r

q
1, . . . , r

q
k, [b1]R, . . . , [bk]R) =

rq0 +
∑
m∈[k][bm]Rr

q
m. Finally, the parties invoke (checkzero, outqmac,macqR,S) to check if outqmac =?=

macqR,S.

4. Sender Consistency Check: The parties use Fmpc to sample a random subset Z ⊂ [δ] of size δ/2
and then proceed as follows:

• For each q ∈ Z, they invoke (outshare,maskqπ1
), . . . , (outshare,maskqπk

) and for each i ∈ [n], w ∈
[W], they invoke (outshare,Xq

w,i) in Fmpc to obtain all the shares of maskqπ1
. . . ,maskqπk

and Xq
w,i.

• For each q ∈ Z, each pair of parties PR and PS (∀R,S ∈ [n]) do the following:

(a) PS sends rq0, r
q
1, . . . , r

q
k, ρ

S,q
R,S, ρ

com,q
R,S to PR.

(b) PR checks if msgqS→R =?= OIPS(1λ,msgR→S, [
−→
Xq

R]S‖rq0, [
−−−−→
maskqπ1

]S‖rq1, . . . , [
−−−−→
maskqπk

]S‖rqk; ρS,qR,S)

and comq
R,S =?= Commit([

−→
Xq

R]S‖rq0, [
−−−−→
maskqπ1

]S‖rq1, . . . , [
−−−−→
maskqπk

]S‖rqk, ρ
S,q
R,S; ρcom,qR,S).

5. ∆ values: If all the above checks succeed, then for each q ∈ [δ] \ Z, each party Pi (for i ∈ [n])

computes [
−→
∆j]i =

∑
j∈[n]

−−−−→
shareqj,i, where [

−→
∆q] = [∆q

1]‖ . . . ‖[∆q
W].

Figure 3: Pre-processing Phase of the Maliciously Secure Compiler

computing any f ∈ F that achieves security with abort against an arbitrary number of malicious
corruptions and incurs a communication overhead of O(n2(kλ+ κ|Cmax|)).

Rate-1 two-message OIP secure against a malicious receiver can be built from rate-1 linearly

21

Online Phase of the Maliciously Secure Protocol

Online Phase : For each q ∈ [δ] \ Z, parties compute the following:

1. Inputs: For each input wire i ∈ [`], parties compute [uqi] = [inpi] + [maski] and invoke (out, uqi) in
Fmpc to obtain uqi in the clear.

2. Circuit Evaluation: For each gate g ∈ [G], let left = ` + 2g − 1 and right = ` + 2g be the
incomining wire labels of its input wires. Let typem,g be the gate type for gate g in Cm (∀m ∈ [k]),
where typem,g = 0 denotes an addition gate and typem,g = 1 denotes a multiplication gate.

(a) For w ∈ {left, right}, compute [yqw] =
∑k
m=1

(
uqπm(w) · [bm]

)
+ [∆q

w].

(b) Compute [typeg] =
∑k
m=1

(
typem,g · [bm]

)
(c) Compute [zqg] = (1− [typeg])([y

q
left] + [yqright]) + [typeg]([y

q
left] · [y

q
right]).

(d) Compute [uq`+g] = [zqg] + [mask`+g] and invoke (out, uq`+g) in Fmpc to obtain uq`+g in the clear.

3. For each output gate g, compute [zqg] =
∑k
m=1

(
uqπm(w) · [bm]

)
+ [∆q

w].

Output For each output gate g, the parties invoke (func,maj, z1g , . . . , z
δ
g , zg) to get shares [zg], where

the maj is the majority function.

Figure 4: Online Phase of the Maliciously Secure Compiler

homomorphic encryption and non-interactive zero-knowledge.

7.1 Security

We now prove security of our malicious protocol. We start by describing the simulator and then pro-
ceed to argue indistinguishability between the view of the adversary in the real protocol execution
and the view generated by the simulator.

Simulator. Let I ⊂ [n] be the set of corrupt parties and H = [n] \ I be the set of honest parties.
Let SR = (S1

R,S2
R) be the simulators corresponding to the malcious receiver security of OIP. Given

the output z and inputs {xi}i∈C of the corrupt parties the simulator proceeds as follows:

• Computing f1. When the adversary sends its inputs to Fmpc while invoking func, the simulator
receives them and queries the ideal functionality on these inputs to get the final output. For
each i ∈ I, j ∈ [`], the simulator samples random share [inpj]i and for each m ∈ [k], it samples
random share [bm]i and sends these shares to the adversary.

• Pre-processing Phase.

– For each q ∈ [δ], w ∈ [W] and i ∈ I, the simulator samples random shares [maskqw]i and sends
these values to the adversary.

– For each q ∈ [δ], w ∈ [W] and i ∈ [n] and j ∈ I, the simulator samples random shares [Xq
w,i]j

and sends to the adversary.

– It samples a random subset Z ⊂ [δ] of size δ/2.

22

– For each pair of parties PR and PS (∀R ∈ H, S ∈ I), the simulator sets [b1]R = . . . = [bk]R = 0,
computes ρ,msgR→S ← OIPR(1λ, [b1]R, . . . , [bk]R) and sends msgR to the adversary on behalf of
honest PR.

– For each pair of parties PR and PS (∀R ∈ I,S ∈ H), the simulator proceeds as follows:

∗ For each q ∈ [δ], it samples random values rq0, . . . , r
q
k ∈ Fk+1.

∗ For each q ∈ Z, sample random shares [
−→
Xq

R]S, [
−−−−→
maskqπ1], . . . , [

−−−−→
maskqπk] and compute

msgqS→R ← OIPS(1λ,msgR→S, [
−→
Xq

R]S‖rq0, [
−−−−→
maskqπ1]S‖rq1, . . . , [

−−−−→
maskqπk]S‖rqk; ρ

S,q
R,S)

comq
R,S ← Commit([

−→
Xq

R]S‖rq0, [
−−−−→
maskqπ1]S‖rq1, . . . , [

−−−−→
maskqπk]S‖rqk, ρ

S,q
R,S; ρcom,qR,S)

.

∗ For each q ∈ [δ] \ Z, the simulator samples a random vector of shares
−→
V q

R,S and computes

msgqS→R ← S
2
R(1λ,msgR→S,

−→
V q

R,S) and comq
R,S ← Commit(0; ρcom,qR,S).

∗ For each q ∈ [δ], it sends msgqS→R and comq
R,S to the adversary on behalf of an honest PS.

∗ Receiver Consistency Check: For each q ∈ Z, upon receiving macδR,S, the simulator

runs S1
R on msgR→S to extract [b1]′R, . . . , [bk]

′
R. Check if for each m ∈ [k], [bm]′R = [bm]R and

if macδR,S = rq0 +
∑

m∈[k][bm]Rr
q
m. If both these checks succeed, output 1 when the parties

invoke the checkzero function, else output 0 and the simulator signals the ideal functionality
to send abort to the honest parties and aborts the protocol.

– Sender Consistency Check: The simulator sends Z to the adversary. For each q ∈ Z send
all shares of maskqπ1 . . . ,maskqπk and Xq

w,i used in the OIP instances to the adversary.

∗ Send all shares of maskqπ1 . . . ,maskqπk and Xq
w,i used in the OIP instances to the adversary.

∗ For each pair of parties PR and PS (where R ∈ H, S ∈ I), the simulator checks if all the
messages and commitments were honestly computed. If not, it signals the ideal function-
ality to send abort to the honest parties and aborts the protocol.

∗ For each pair of parties PR and PS (where R ∈ I,S ∈ H), the simulator proceeds exactly
as in the real protocol.

• Online Phase. In the online phase, the simulator mimics the computation done by Fmpc, except
that it does not compute the majority function. Instead it sends random shares for each output
gate to the adversary.

For all other steps in the online phase, based on the description of Fmpc (in Figure 1), the
simulator only needs to send messages to the adversary whenever (out, ·) is invoked. Since in
the online phase, this is only invoked on random values, the simulator can easily emulate this by
sending a random value to the adversary for each such call.

• Computing f2. Outputs the output received from the ideal functionality in the first step to the
adversary and send continue to the ideal functionality to signal that the honest parties can learn
the output.

Indistinguishability Argument. We argue indistinguishability between the real and ideal exe-
cutions, via the following sequence of hybrids:

H0 : This hybrid is identical to the real world execution.

23

H1 : This hybrid is very similar to the previous one, except that the subset Z is sampled before
the parties engage in the pairwise OIP protocols, but is revealed to the parties only during
the sender consistency checks.

Hybrids H0 and H1 are trivially indistinguishable.

H2 : This hybrid is very similar to the previous one, except that for each q ∈ [δ] \Z and each pair
of parties PR and PS (where R ∈ I,S ∈ H), we compute comq

R,S ← Commit(0; ρcom,qR,S).

Indistinguishability between hybrids H1 and H2 follows from a sequence of sub-hybrids, where
we change the way comq

R,S is computed for q ∈ [δ] \ Z and each pair PR and PS (where
R ∈ I, S ∈ H), one hybrid at a time. Indistinguishability between each consecutive pair of
sub-hybrids follows from the hiding property of the commitment scheme and by transitivity
it follows that H1 and H2 are indistinguishable.

H3 : This hybrid is very similar to the previous hybrid except that in the preprocessing phase,
for each q ∈ [δ] \ Z and for each pair of parties PR and PS (∀R ∈ I, S ∈ H), we compute

msgqS→R ← S
2
R(1λ,msgR,

−→
V q

R,S), for some random vector of shares
−→
V q

R,S.

For indistinguishability between hybrids H2 and H3, we consider a sequence of sub-hybirds,
where we change the way msgS→R is computed for each q ∈ [δ]\Z and each pair R ∈ I, S ∈ H,
one hybrid at a time.

The only difference between any two consecutive pairs of these sub-hybrids is that in one

we compute msgS→R using a random vector of shares
−→
V R,S and the simulator for some q ∈

[δ] \ Z and some receiver R and sender S, while in the other, msgS→R is computed honestly

and the output that the receiver gets is [
−→
XR]S +

∑
m∈[k][bm]R[

−−−−−→
maskπm]S. Since [

−→
XR]S is a

random vector of shares, this output is identically distributed to
−→
V R,S. Given this output,

indistinguishability between a simulated message msgS→R, and an honestly computed message
msgS→R follows from security of OIP against a malicious receivers. As a result, this sub-hybrid
is indistinguishable from its previous hybrid and by transitivity, it holds that H2 and H3

H4 : This hybrid is very similar to the previous hybrid except that in the preprocessing phase for

each pair of parties PR and PS (∀R ∈ H,S ∈ I), we change the way msgR and
−−−−−→
shareR,S:

– ρ,msgR→S ← OIPR(1λ, 0 . . . , 0).

– For each q ∈ [δ] \ Z,
−−−−−→
shareqR,S = [

−→
Xq

R]S +
∑

i∈[k][bi]R[
−−−−→
maskqπi]S.

For indistinguishability between hybrids H3 and H4, we consider a sequence of sub-hybrids,

where we change the way msgR→S and
−−−−−→
shareR,S are computed for each q ∈ [δ] \ Z and each

pair PR and PS (where R ∈ H, S ∈ I), one hybrid at a time. In terms of the view of the
adversary, the only change in each of these sub-hybrids is in the way msgR→S is computed for
one pair R ∈ I, S ∈ H and some q ∈ [δ] \ Z. As a result, indistinguishability between each
consecutive pair of sub-hybrids follows the security of OIP against a semi-honest sender and
by transitivity, it holds that H3 and H4 are indistinguishable.

H5 : This hybrid is identical to the simulator description.

The main difference between H4 and H5 is that in H5, simulator emulates the Fmpc func-
tionality and hence, the way the output of the honest parties is computed differs in the two
protocols. In particular, in H4, we take a majority of all the runs of the online phase and
only if there exists an output that appears > δ/4 times, do we open the ouput. In H5, the

24

simulator simply checks if all the opened commitments are consistent to consider the output.
Let noAbort denote an event where in our cut-and-choose step, all instances in Z are valid.
Also let badMaj denote the event where > δ/4 instances in the remaining set [δ]\Z are invalid.
To argue indistinguishability between the output of honest parties in the hybrids H4 and H5,
we start by recalling Claim 4.3 from [36]. At a high level, this claim essentially states that
the probability that > δ/4 instances are invalid and neither gets caught in the opening phase
of the cut-and-choose protocol, is 1/20.311δ. More formally

Claim 1. For every δ ∈ N, it holds that

Pr[noAbort ∧ badMaj] =

(3δ
4

+1
δ
2

+1

)
(
δ
δ/2

) <
1

2
δ
4
−1

and for large enough s (depending on Stirling’s approximation), it holds that Pr[noAbort ∧
badMaj] = 1

20.311δ

From the binding property of the commitment scheme, it follows that if any instance in Z
is invalid, it will get caught in both H4 and H5. And if all the checks performed on these
instances in Z succeed, then indeed, they are all valid/consistent and it is a noAbort event.
In this case, in hybrid H5, the simulator signals the ideal functionality to send the correct
output to the honest parties. Therefore, the output of the honest parties in this case will
differ from their output in hybrid H4 only when noAbort∧ badMaj happens. For δ = κ/0.311,
this only happens with exponentially small probability and hence the output of the honest
parties is indistinguishable in the two hybrids H4 and H5. Indistinguishability between the
view of the adversary in the two hybrids follows from malicious security of the underlying
MPC protcol.

8 Constant Round Semi-Honest Branching MPC

In this section we present our constant round semi-honest protocol for distributed computation of
a branching circuit.

As discussed in the technical overview, we encrypt keys for the output wires of each gate during
garbling using the help of a random function instantiated using the decisional Ring LWE (RLWE)
assumption. Let p = 2N + 1 be a prime, where N , called the dimension or security parameter, is a
power of 2. Let Rp = Zp[X]/(XN + 1) be the polynomial ring over Zp modulo XN + 1. We start
by recalling the decisional RLWE assumption stated by Ben-Efraim et al. [4].

Definition 8.1 (Decisional Ring LWE Problem). Any non-uniform PPT adversary cannot distin-
guish between {(ai, bi)}i∈I and {(ai, ai · k + δi)}i∈I with non-negligible probability where {ai}i∈I ,
{bi}i∈I and k are chosen uniformly at random from Rp and the coeffecients of {ei}i∈I are sampled
from χ, a spherical Gaussian distribution.

By transforming to the Hermite normal form, the decisional RLWE assumption also holds if the
key k is chosen from a spherical Gaussian distribution. Similar to the construction of Ben-Efraim
et al. [4], sampling both the key and error from χ is key to eliminating the error during decryption
in the evaluation phase of our protocol. Specifically, if the mean of the Gaussian distribution χ

is
√
p

2 and the standard deviation is sufficiently small, a sample is not in the range [0,
√
p] with

negligible probability. Thus, dividing by
√
p during decryption removes the error and recovers the

message if the message was multiplied by
√
p during encryption.

25

While we use new public random elements Au,vg from the ring for every RLWE expansion in our
protocol, [4] shows that 8 · fout uniformly random and public elements from the ring suffice, where
fout is the maximal fan-out of the circuit, as long as ciphertexts for gates that share inputs wires
are computed using distinct sets of elements. Similar to [4], 8 · fout must be less than the bound
on the number of RLWE samples |I|, for security to hold. We refer the reader to [37, 38] for more
details about the decisional RLWE assumption.

Our protocol follows the BMR approach which involves sampling a pair of keys k0
w, k

1
w for

each wire w in the circuit. A garbled table is then constructed for each gate such that the key
corresponding to the value on the output wire is encrypted using the keys corresponding to the
input values. Since the position of each ciphertext in the garbled table leaks information about its
plaintext, a private random mask bit γw ∈ {0, 1} is sampled for each wire w and the masks for the
input wires are used to permute the rows of the garbled table for each gate. Let the external value
βw on a wire be the plaintext value ρw on the wire masked with the mask γw i.e., βw = ρw ⊕ γw.
Then, the masks on the input wires are used to permute the rows of the garbled table such that
the external values on the input wires can be used to index into the required row of the garbled
table. Thus, to ensure that parties decrypt the correct row when evaluating the circuit, the mask
for the output wire has to also be included in the ciphertext for each row. We use the approach of
Ben-Efraim et al. [4], where the last coordinate of the keys k0

w, k
1
w for each wire are set to 0, which

slightly reduces security, and the external value is embedded into this coordinate during encryption.
We use k‖e to denote that the bit e was embedded in the last coordinate of the key k.

The garbling phase is presented in Figure 5 and the evaluation phase is presented in Figure 6.
We adopt the same notation as the semi-honest protocol presented in Figure 2. If ` be the number
of input wires to the branching part of the function, we set the incoming and outgoing labels for
these wires to be 1, . . . , `. For each gate g we set the outgoing wire label to be ` + g, the left
incoming wire label to be `+ 2g− 1 and the right incoming wire label to be `+ 2g. We also let πm
for each m ∈ [k] to be the mapping that maps incoming labels to the outgoing labels of each wire
for the m-th branch.

Finally, we remark that we require Fmpc to run in constant number of rounds for constant depth
circuits to ensure that our protocol has constant number of rounds. This is true for most secret
sharing based protocols that evaluate the circuit in a gate-by-gate manner.

Complexity Analysis. We now analyze the communication complexity of the above constant
round semi-honest protocol. We assume that the size of the ring Rp is in O(λ). If we use a
constant rate semi-honest secure OIP, the communication complexity in the garbling phase is
O(n2|Cmax| + n2kλCC(λ|Cmax|)), where |Cmax| is the size of the largest branch and CC(λ|Cmax|)
is the communication complexity incurred upon evaluating Cmax using the underlying MPC. In
the evaluation phase, the communication cost incurred is for reconstructing O(λ|Cmax|) shares
corresponding to the garbling material.

Overall, given the above protocol and optimizations, we obtain the following result.

Theorem 3. Let λ be the security parameter and F be a function class consisting of functions of
the form f(−→x) = f2(fbr(f1(−→x))), where fbr := {g1, . . . , gk} is a function consisting of k conditional
branches, defined as fbr(i,

−→x) = gi(
−→x). Assuming that a rate-1 two-message semi-honest secure

OIP exists (see Definition 4.1) and that the decisional RLWE problem holds (see Definition 8.1),
there exists a constant-round MPC protocol in the Fmpc-hybrid model (see Section 5) for computing
any f ∈ F that achieves semi-honest security against an arbitrary number of corruptions and incurs
a communication overhead of O(n2λ(k + |Cmax|)).

Note that if we instatiate the rate-1 two-message semi-honest secure OIP using RLWE-based

26

Garbling Phase of the Constant Round Semi-Honest Protocol

The protocol is described in the Fmpc-hybrid model which computes over Rp. The parties have shares of
a unary representation of the active branch, i.e., [b1], . . . , [bk]. For each gate g ∈ [G], let leftg = `+2g−1
and rightg = `+ 2g be the incoming wire labels of its input wires and let outg = `+ g be the outgoing
wire.

1. Sample masks: For each input and gate g ∈ [` + G], the parties invoke (randbit, γg) in Fmpc to
obtain shares [γg]. For each branch m ∈ [k], let [−−→γπm

] = [γπm(1)]‖ . . . ‖[γπm(W)].

2. Sample keys: For each g ∈ [` + G], and j ∈ {0, 1} each party Pi (for i ∈ [n]) locally samples its
share [kjg]i ← χN and sets the last coordinate of its share to 0.

3. Compute LWE expansions: For each u, v ∈ {0, 1}, g ∈ [G] each party Pi (for i ∈ [n]) locally

samples δu,v,im,g ← χN and computes [ψu,vm,g]i = Au,vg · ([kπm(leftg)]i + [kπm(rightg)
]
i
) + δu,v,im,g . Let [

−→
ψm] =

[ψ0,0
m,1]‖[ψ0,1

m,1]‖[ψ1,0
m,1]‖[ψ1,1

m,1]‖ . . . ‖[ψ0,0
m,G]‖[ψ0,1

m,G]‖[ψ1,0
m,G]‖[ψ1,1

m,G].

4. Shares of zero: For each i ∈ [n] and j ∈ [W + 4G], the parties invoke (sharezero,Xj,i) in Fmpc to

get shares [Xj,i], where Xj,i = 0. For each i ∈ [n], let [
−→
Xi] = [X1,i]‖ . . . ‖[XW+4G,i].

5. Pairwise OIP: Each pair of parties PR and PS (∀R,S ∈ [n]) engage in a two-message semi-honest
OIP as follows, where PR acts as the receiver and PS acts as the sender:

• Receiver: PR computes (ρ,msgR)← OIPR(1λ, [b1]R, . . . , [bk]R) and sends msgR to PS.

• Sender: For each m ∈ [1, k] let [−→xm] = [−−→γπm
]‖[
−→
ψm]. PS computes msgS ←

OIPS(1λ,msgR, [
−→
XR]S, [

−→x1]S, . . . , [
−→xk]S) and sends msgS to PR.

• Output: PR computes
−−−−−→
shareR,S ← OIPout(ρ,msgR,msgS).

For each i ∈ [n], Pi computes [
−→
Γ]‖[
−→
Ψ] =

∑
j∈[n]

−−−−→
sharej,i where

−→
Γ = Γ1‖ . . . ‖ΓW and

−→
Ψ = Ψ0,0

1 ‖Ψ
0,1
1 ‖Ψ

1,0
1 ‖Ψ

1,1
1 ‖ . . . ‖Ψ

0,0
G ‖Ψ

0,1
G ‖Ψ

1,0
G ‖Ψ

1,1
G .

6. Garble active branch: Let typem,g be the gate type for gate g in Cm (∀m ∈ [k]), where typem,g = 0
denotes an XOR gate and typem,g = 1 denotes an AND gate. Parties do the following for each g ∈ [G]

(a) Compute [typeg] =
∑k
m=1

(
typem,g · [bm]

)
.

(b) For each u, v ∈ {0, 1} let exoru,v,g = u ⊕ Γleftg ⊕ v ⊕ Γrightg ⊕ γoutg , eandu,v,g = ((u ⊕ Γleftg) ∧ (v ⊕
Γrightg))⊕ γoutg , eu,vg = typeg(e

and
u,v,g − exoru,v,g) + exoru,v,g and Ku,v

g = eu,vg (k1outg − k
0
outg) + k0outg . For

each u, v ∈ {0, 1}, compute [Ku,v
g ‖eu,vg] using Fmpc.

(c) For each u, v ∈ {0, 1} compute [Cu,vg] = [Ψu,v
g] + d√pe[Ku,v

g ‖eu,vg].

Figure 5: Garbling phase of the constant round (semi-honest) protocol

linearly homomorphic encryption, then the above theorem yields a protocol that only relies on the
hardness of the decisional RLWE.

8.1 Security

We now prove security of our constant round semi-honest protocol. We start by describing the sim-
ulator and then proceed to argue indistinguishability between the real and ideal world executions.

27

Evaluation Phase of the Constant Round Semi-Honest Protocol

The protocol is described in the Fmpc-hybrid model. The parties have shares of the inputs to
the branches, i.e., [inp1], . . . , [inp`] and shares of a unary representation of the active branch, i.e.,
[b1], . . . , [bk].

1. For each input wire w ∈ [`] parties compute [βw] = [inpw] ⊕ [γw] and invoke (out, [βw]) in Fmpc

to obtain βw. For each w ∈ [`], let β1,w = . . . = βk,w = βw.

2. For each input wire w ∈ [`] parties invoke (out, [kβw
w]) in Fmpc to obtain kβw

w . For each w ∈ [`],

let Kβw

1,w = . . . = Kβw

k,w = kβw
w .

3. For each u, v ∈ {0, 1} and g ∈ [G] parties invoke (out, [Cu,vg]) in Fmpc to obtain Cu,vg .

4. For each m ∈ [k] and g ∈ [G], parties compute Cu,vg −Au,vg ·
(
Ku
m,πm(leftg)

+Kv
m,πm(rightg)

)
, where

u = βm,πm(leftg) and v = βm,πm(rightg)
, and divide it by d√pe to remove the error and recover

K
βm,outg

m,outg ‖βm,outg .

5. For each output gate g, parties compute [zg] =
∑k
m=1 βm,outg [bm]⊕ [γg] using Fmpc.

Figure 6: Evaluation phase of the constant round (semi-honest) protocol

Simulator. Let A be the adversary who corrupts a subset I ⊂ [n] of the parties and H = [n]\I be
the set of honest parties. Let SR be the simulator associated with the semi-honest security against
receiver of the OIP. Given the output z and inputs {xi}i∈C of the corrupt parties the simulator
proceeds as follows:

• Computing f1. For each i ∈ I, j ∈ [`], the simulator samples random share [inpj]i and for each
m ∈ [k], it samples random share [bm]i and sends all these shares to the adversary.

• Garbling phase.

– For each input and gate g ∈ [` + G], the simulator samples random [γg]i ← Rp for each
i ∈ I and sends it to the adversary.

– For each j ∈ [n], w ∈ [W + 4G], and i ∈ I, the simulator samples random [Xj,w]i ← Rp and
sends it to the adversary.

– For each pair of parties PR and PS (∀R ∈ H,S ∈ I), the simulator sets [b1]R = . . . = [bk]R = 0,
computes ρ,msgR ← OIPR(1λ, [b1]R, . . . , [bk]R) and sends msgR to the adversary on behalf of
honest PR.

– For each pair of parties PR and PS (∀R ∈ I, S ∈ H), upon receiving a message msgR
from the adversary, the simulator samples a random vector of shares

−→
V R,S and computes

msgS ← SR(1λ,msgR,
−→
V R,S). It sends msgS to the adversary on behalf of honest PS.

– When garbling the active branch, the simulator mimics the computation done by Fmpc.

• Evaluation phase.

– For each input wire w ∈ [`], the simulator samples random βw ← {0, 1}, and sends it to the
adversary.

28

– For each input wire w ∈ [`], the simulator samples random kβww ← Rp, and also sends it to
the adversary.

– For each g ∈ [G] and u, v ∈ {0, 1}, the simulator samples random Cu,vg ← Rp, randomly
sets the last coordinate to either 0 or 1 and sends it to the adversary.

Indistinguishability Argument. We argue indistinguishability via the following sequence of
hybrids:

H0 : This hybrid is identical to the real world execution.

H1 : This hybrid is very similar to the previous hybrid except that in the garbling phase for each

pair of parties PR and PS (∀R ∈ H,S ∈ I), we change the way msgR and
−−−−−−−→
shareR,share are

computed:

– ρ,msgR ← OIPR(1λ, 0 . . . , 0).

–
−−−−−→
shareR,S = [

−→
XR]S +

∑
i∈[k][bi]R[−→xi]S.

For indistinguishability between hybrids H0 and H1, we consider a sequence of sub-hybrids,

where we change the way msgR and
−−−−−→
shareR,S are computed for each pair PR and PS (where

R ∈ H,S ∈ I), one hybrid at a time. In terms of the view of the adversary, the only change
in each of these sub-hybrids is in the way msgR is computed for one pair R ∈ I,S ∈ H.
As a result, indistinguishability between each consecutive pair of sub-hybrids follows the
security of OIP against a semi-honest sender and by transitivity, it holds that H0 and H1 are
indistinguishable.

H2 : This hybrid is very similar to the previous hybrid except that in the garbling phase, for each

pair of parties PR and PS (∀R ∈ I,S ∈ H), we compute msgS ← SR(1λ,msgR,
−→
V R,S) for some

random vector of shares
−→
V R,S.

The only difference between any two consecutive pairs of these sub-hybrids is that in one we

compute msgS using a random vector of shares
−→
V R,S and the simulator for some receiver R

and sender S, while in the other msgS is computed honestly and the output that the receiver

gets is [
−→
XR]S +

∑
i∈[k][bi]R[−→xi]S. Since [

−→
XR]S is a random vector of shares, this output is

identically distributed to
−→
V R,S. Given this output indistinguishability between a simulated

message msgS, and an honestly computed message msgS follows from security of OIP against
a semi-honest receiver. As a result, this sub-hybrid is indistinguishable from its previous
hybrid and by transitivity, it holds that H1 and H2 are indistinguishable.

H3 : This hybrid is similar to the previous hybrid except that Cu,vg is sampled uniformly at random
from Rp for all g ∈ [G] and u, v ∈ {0, 1}.
Indistinguishability between hybrids H2 and H3 follows from a sequence of sub-hybrids, each
relying on the decisional RLWE hardness assumption, where we change Cu,vg one at a time.

H4 : This hybrid is identical to the simulator description.

Indistinguishability between hybrids H3 and H4 follows from the semi-honest security of the
underlying MPC protocol.

29

9 OIP from Linearly Homomorphic Encryption

In this section, we show how to construct OIPs from linearly homomorphic encryption.

9.1 Linearly Homomorphic Encryption

We start by recalling the definition of linearly homomorphic encryption.

Definition 9.1 (Linearly Homomorphic Encryption). A linearly homomorphic encryption scheme
over a message spaceM is defined by a tuple of 4 PPT algorithms (KGen,Enc,Dec,Eval) as follows:

• (pk, sk)← KGen(1λ): On input the security parameter λ, the key generation algorithm outputs
a public key pk and a secret key sk.

• c← Enc(pk, x): On input the public key pk and a message x ∈M, the encryption algorithm
outputs a ciphertext c.

• x ← Dec(sk, c): On input the secret key sk and the ciphertext c, the decryption algorithm
outputs a message m ∈M.

• cL ← Eval(pk, L, c1, . . . , ck) On input the public key pk, a set of ciphertexts c1. . . . , ck and a
linear function L :Mk →M, the evaluation algorithm outputs another ciphertext cL.

We proceed to define three main properties of a linearly homomorphic encryption scheme:
correctness, homomorphism and privacy.

• Correctness: Let (pk, sk)← KGen(1λ). Then for any x ∈M, it holds that:

Pr [Dec (sk,Enc(pk, x)) = x] = 1

• Homomorphism: Let (pk, sk) ← KGen(1λ). Then for any x1, . . . , xk ∈ Mk and any linear
function L :Mk →M, it holds that:

Pr
[
Dec

(
sk,Eval

(
pk, L, {Enc(pk, xi)}i∈[k]

))
= L(x1, . . . , xk)

]
= 1

• Circuit Privacy: There exists a PPT simulator S, such that for every PPT adversary A
with inputs x1, . . . , xk ∈Mk and any linear function L :Mk →M the following distributions
are computationally indistinguishable:

Eval
(
pk, L, {ci}i∈[k]

)
≈c S(1λ, pk, L({xi}i∈[k])),

where (pk, sk) ← KGen(1λ) and ci ← Enc(pk, xi) for each i ∈ [k] were generated honestly by
A.

• Privacy: For all n.u. PPT adversaries A, there exists a negligible function µ(·) such that:

Pr

 (pk, sk)← KGen(1λ),
(x0, x1)← A(1λ, pk), : A(Enc(sk, xb)) = b

b
$←− {0, 1}

 ≤ 1

2
+ µ(λ)

where |x0| = |x1|.

Such linearly homomorphic encryption can be obtained from a variety of assumptions [17, 8,
15, 42]. In our implementation we use a variant of the BFV scheme [17].

30

Two-message Semi-honest OIP from Linearly Homomorphic encryption.

Let (KGen,Enc,Dec,Eval) be a linearly homomorphic encryption. The parties proceed as follows:

Receiver: The receiver with inputs b1, . . . , bk ∈M, proceeds as follows:

• It computes (pk, sk)← KGen(1λ).

• For each i ∈ [k], it computes ci ← Enc(pk, bi).

• It sends msgR = (pk, c1, . . . , ck) to the sender.

Sender: The sender with inputs −→m0, . . . ,
−→mk ∈Mm×(k+1), parses msgR = (pk, c1, . . . , ck) and computes

the following for each j ∈ [m],:

• It computes c0 ← Enc(pk,m0[j]).

• It sets Lj to be the linear function Lj(x1, . . . , xk) =
∑
i∈[k] xi ·

−→mi[j], where −→mi[j] is the jth

element in the vector −→mi.

• It computes cLj ← Eval(pk, Lj , c1, . . . , ck) + c0.

It sends msgS = (cL1 , . . . , cLm) to the receiver.

Output: The receiver parses msgS = (cL1
, . . . , cLm

) and for each j ∈ [m], it computes −→x [j] ←
Dec(sk, cLj) and outputs −→x .

Figure 7

9.2 Constructing OIP

We now describe a simple construction of a semi-honest OIP using linearly homomorphic encryption.

Lemma 1. Let (KGen,Enc,Dec,Eval) be a linearly homomorphic encryption, then the construction
in Figure 7 is a two-message semi-honest oblivious inner product protocol.

Proof. Correctness of this construction follows trivially from the correctness and homomorphic
property of the underlying linearly homomorphic encryption scheme. Security against semi-honest
sender follows from privacy of the encryption scheme and security against semi-honest receiver
follows from circuit privacy.

Remark. Note that if the linearly homomorphic encryption scheme has a constant rate, then
the length of the sender message in the above construction of OIP only depends on the length of
the output and not on the inputs of the sender. Also, the above construction is only semi-honest
secure. For our maliciously secure MPC, we also require an OIP that is secure against a malicious
receiver. Such an OIP can be easily constructed by attaching non-interactive zero-knowledge proofs
of knowledge to the receiver messages.

10 Implementation

We implement and benchmark our semi-honest non-constant round protocol from Section 6. The
code is publicly available at https://github.com/rot256/research-branching-mpc. In addition
to the code and instructions used for benchmarking, the repository also contains the raw data used
in this paper and scripts used to create the plots.

31

https://github.com/rot256/research-branching-mpc

10.1 How We Benchmark

Underlaying MPC. We implement our semi-honest compiler on top of two different multi-party
computation protocols.

1. Quadratic Dependence on the Number of Parties. A semi-honest variant of MASCOT [34]
(MASCOT without sacrificing and message authentication codes) over the prime field
F216+1 = Z/(0x10001 Z) provided by MP-SPDZ [33] (called “semi-party.x”). We sim-
ply invoke the MP-SPDZ implementation as a black-box: wrapping each instance of
“semi-party.x” in a program which provides provides inputs/outputs to the party. Since
MP-SPDZ povides a universal interface our implementation is agnostic with regards to the
underlying MPC implementation: any reactive MPC in MP-SPDZ which allows computation
over F216+1 could be swapped in with ease.

2. Linear Dependence on the Number of Parties. A batched semi-honest version of CDN [13]
where we instantiate the linearly homomorphic encryption using the same ring LWE parame-
ters described above. We implement this ourselves again using the Lattigo (more information
below) library for the RLWE components.

CDN Implementation. We implement a semi-honest batched version of CDN, instantiating
the linearly homomorphic encryption using the same parameters described above (the same as
the OIP). To reduce the overhead (computational/communication) induced by the homomorphic
encryption we execute multiplications in batches of 212 (the dimension of the ring used for RLWE),
by packing 212 independent shares (over 0x10001) into a single ciphertext and execute the CDN
multiplication protocol on these in parallel. The decryption threshold is the full set of parties. The
CDN implement is included in the same repository. To the best of our knowledge, this is the first
known implementation of CDN.

Instantiating OIP and Ring LWE Parameters. In our implementation, we use an optimized
version of OIP. We observe that the O(n2) overhead incurred from the use of pairwise-OIPs can be
driven down to O(n), if instead of a regular linearly homomorphic encryption, we use a threshold
linearly homomorphic encryption (TLHE). TLHE are linearly homomorphic encryptions that com-
prise of a single public-key and where each party holds a “share” of the secret key. This share of
the secret key can be used by the parties to decrypt to a share of the plaintext. As shown in [10],
the keys for RLWE based threshold linearly homomorphic encryption can be setup very efficiently
by the parties in a couple of rounds. At a high level, this observation allows us to reuse the sender
and receiver messages of each party across multiple OIP instantiations and as a result, overall, each
party only needs to send one receiver message and one sender message.

Recall that in our semi-honest protocol, the receiver and sender messages in all OIP instances
are computed using the same shares of the index associated with the active branch and the masks.
Each party can compute its receiver message by encrypting its shares of b1, . . . , bk. Similarly,
for the sender message, each party can compute an inner-product of these encryptions received
from all parties and its shares of the permuted masks. Finally, all parties can add all the sender
messages (which are also ciphertexts) received from all parties. This gives them an encryption of
the permuted masks for the active branch. Now each party can run threshold decryption using its
share of the secret-key to obtain a sharing of the resulting inner-product.

We use BFV [17] over a cyclotomic ring of index 213 and dimension 212, i.e. R[X]/(X212 +
1) where: Q1 := 0x7ffffec001, Q2 := 0x8000016001, P := 0x40002001, N := Q1Q2P,R :=
Z/(NZ). This gives us a linearly homomorphic encryption scheme for vectors −→v ∈ (F216+1)212 ,

32

which additionally allows (full) threshold decryption. We use the Lattigo [1] library to implement
all the RLWE components.

Benchmarking Platform. All benchmarks were run on a laptop with an Intel i7-11800H CPU
(@ 2.3 GHz) and 64 GB of RAM. All networking is over the loopback interface and network
latency was simulated using traffic control (tc) on Linux. We also do not restrict the bandwidth
when comparing running times – note that this constitutes a relative “worst-case scenario” for our
results: as our technique reduces communication, the relative performance gain for many branches
would only increase by restricting bandwidth.

How The Branches Were Generated. During our benchmark each branch contained 216

uniformly random gates: each gate is a multiplication/addition gate with probability 1/2. We
benchmark using “layered circuits”, meaning each level contains 212 gates which can be evaluated
in parallel (to reduce the number of rounds). Subject to the layering constraint, the wiring is
otherwise random: the inputs to each gate are sampled uniformly at random from all previous
outputs (not just those in the last layer). We believe this distribution over circuits form a realistic
benchmark for the expected performance across many real-world applications.

Averaging. We run all benchmarks 10 times and take the average.

10.2 Comparison of Communication Complexity

In Fig. 8 and Fig. 9, we compare the communication complexity of our technique to the näıve
baseline solution of evaluating each branch in parallel using the underlying MPC. For the baseline
solution we do not consider the additional overhead of multiplexing the output, i.e., selecting the
output of the active branch.

We observe that our technique improves communication over the baseline for both CDN and
MASCOT with 3 parties when the number of branches is ≥ 8. For less than 8 branches the commu-
nication overhead of the RLWE-based OIP and the need to evaluate universal gates (requiring the
base-MPC to compute 3 multiplications) outweighs the communication saving of only executing the
active branch. Upon reflection 8 branches is about the lowest number of branches we could hope
to see savings for: recall that each branch contains ≈ 215 multiplications3, therefore the parallel
execution of 6 branches requires the same number of multiplications as that of the 216 universal
gates used in our technique. As expected we also observe that the communication of our technique
remains (nearly4) constant for any number of branches.

Lastly we fix the number of branches to 16 and plot (in Fig. 10) the communication complexity
of our technique for a varying number of parties, as expected the communication of our compiler
applied to MASCOT increases quadratically, while our technique preserves the linearly increasing
communication of CDN; constant per-party communication (and computation).

10.3 Comparison of Running Time

From Fig. 8 and Fig. 9, we observe that for sufficiently many branches our technique also re-
duces running time over the baseline for both CDN and semi-honest MASCOT. This is also ex-
pected: after the relatively high constant overhead of our technique, the marginal cost of adding
another branch (of length `) is that of: (1) O(`) linear operations in the underlying MPC. (2) O(`)

3Since the type of each gate in each branch is sampled uniformly at random.
4It grows slightly, since the unary representation of the selection wire must be shared/computed. However the

computation of the branch completely dominates the communication.

33

(a) Local (0ms) (b) LAN (10ms) (c) WAN (100ms)

Figure 8: Running time of Branching MPC with CDN.

(a) Local (0ms) (b) LAN (10ms) (c) WAN (100ms)

Figure 9: Running time of Branching MPC with Semi-Honest MASCOT.

(a) Local (0ms) (b) LAN (10ms) (c) WAN (100ms)

Figure 10: Running time of Branching MPC for Different Number of Parties.

〈ciphertext〉×〈plaintext〉 operations in the RLWE based homomorphic encryption scheme. (3) O(`)
〈ciphertext〉+ 〈ciphertext〉 operations in the RLWE based homomorphic encryption scheme.

The first one introduces a very small cost (essentially that of reading the branch), the second is
dominated by the cost of doing a number theoretic transform (NTT) on the plaintext (the players
local share), which again is essentially that of computing a small constant number of fixed-size
FFTs. We note that the NTTs are computed on random shares and could be relegated to a pre-
computation phase. The final ciphertext/ciphertext addition is just a constant number of entry-wise
additions of vectors in a small prime field – the cost of which is miniscule. Looking at Fig. 8 and
Fig. 9 we observe that this marginal computational cost (of doing NTTs) has a higher influence
when the network latency is low and quickly becomes insignificant as the latency increases.

11 Acknowledgements

We thank the anonymous reviewers of EUROCRYPT 2022 for their helpful comments. The first,
third and forth authors are supported in part by an NSF CNS grant 1814919, NSF CAREER
award 1942789 and Johns Hopkins University Catalyst award. The second author is funded by

34

Concordium Blockhain Research Center, Aarhus University, Denmark. The third author is addi-
tionally supported by NSF CNS-1653110, NSF CNS-1801479, a Google Security & Privacy Award
and DARPA under Agreements No. HR00112020021 and Agreements No. HR001120C0084. Any
opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Government or DARPA.

References

[1] Lattigo v2.2.0. Online: http://github.com/ldsec/lattigo, July 2021. EPFL-LDS.

[2] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols
(extended abstract). In 22nd ACM STOC, pages 503–513. ACM Press, May 1990.

[3] Gabrielle Beck, Aarushi Goel, Abhishek Jain, and Gabriel Kaptchuk. Order-C secure multi-
party computation for highly repetitive circuits. In Anne Canteaut and François-Xavier Stan-
daert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages 663–693. Springer,
Heidelberg, October 2021.

[4] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Efficient scalable constant-round MPC via
garbled circuits. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part II,
volume 10625 of LNCS, pages 471–498. Springer, Heidelberg, December 2017.

[5] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In 20th ACM
STOC, pages 1–10. ACM Press, May 1988.

[6] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key homomor-
phic PRFs and their applications. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 410–428. Springer, Heidelberg, August 2013.

[7] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for secure compu-
tation under DDH. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I,
volume 9814 of LNCS, pages 509–539. Springer, Heidelberg, August 2016.

[8] Guilhem Castagnos and Fabien Laguillaumie. Linearly homomorphic encryption from DDH.
In Kaisa Nyberg, editor, CT-RSA 2015, volume 9048 of LNCS, pages 487–505. Springer,
Heidelberg, April 2015.

[9] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure proto-
cols (abstract) (informal contribution). In Carl Pomerance, editor, CRYPTO’87, volume 293
of LNCS, page 462. Springer, Heidelberg, August 1988.

[10] Megan Chen, Carmit Hazay, Yuval Ishai, Yuriy Kashnikov, Daniele Micciancio, Tarik Riviere,
abhi shelat, Muthu Venkitasubramaniam, and Ruihan Wang. Diogenes: Lightweight scal-
able RSA modulus generation with a dishonest majority. Cryptology ePrint Archive, Report
2020/374, 2020. https://eprint.iacr.org/2020/374.

[11] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda Lindell, and
Ariel Nof. Fast large-scale honest-majority MPC for malicious adversaries. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages
34–64. Springer, Heidelberg, August 2018.

35

http://github.com/ldsec/lattigo
https://eprint.iacr.org/2020/374

[12] Ronald Cramer, Ivan Damg̊ard, Daniel Escudero, Peter Scholl, and Chaoping Xing. SPDZ2k:
Efficient MPC mod 2k for dishonest majority. Cryptology ePrint Archive, Report 2018/482,
2018. https://eprint.iacr.org/2018/482.

[13] Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Multiparty computation from thresh-
old homomorphic encryption. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045
of LNCS, pages 280–299. Springer, Heidelberg, May 2001.

[14] Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using a black-box
pseudorandom generator. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS,
pages 378–394. Springer, Heidelberg, August 2005.

[15] Ivan Damg̊ard and Mats Jurik. A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. In Kwangjo Kim, editor, PKC 2001, volume 1992 of
LNCS, pages 119–136. Springer, Heidelberg, February 2001.

[16] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 643–662. Springer, Heidelberg, August 2012.

[17] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption.
Cryptology ePrint Archive, Report 2012/144, 2012. https://eprint.iacr.org/2012/144.

[18] Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter Scholl. A unified ap-
proach to mpc with preprocessing using ot. In Tetsu Iwata and Jung Hee Cheon, editors, Ad-
vances in Cryptology – ASIACRYPT 2015, pages 711–735, Berlin, Heidelberg, 2015. Springer
Berlin Heidelberg.

[19] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, 41st ACM STOC, pages 169–178. ACM Press, May / June 2009.

[20] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge
University Press, Cambridge, UK, 2004.

[21] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM
STOC, pages 218–229. ACM Press, May 1987.

[22] S. Dov Gordon, Daniel Starin, and Arkady Yerukhimovich. The more the merrier: Reduc-
ing the cost of large scale MPC. In Anne Canteaut and François-Xavier Standaert, editors,
EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages 694–723. Springer, Heidelberg,
October 2021.

[23] Vipul Goyal, Hanjun Li, Rafail Ostrovsky, Antigoni Polychroniadou, and Yifan Song. ATLAS:
Efficient and scalable MPC in the honest majority setting. In Tal Malkin and Chris Peikert,
editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages 244–274, Virtual Event, August
2021. Springer, Heidelberg.

[24] Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. Unconditional communication-efficient
MPC via hall’s marriage theorem. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part II, volume 12826 of LNCS, pages 275–304, Virtual Event, August 2021. Springer, Heidel-
berg.

36

https://eprint.iacr.org/2018/482
https://eprint.iacr.org/2012/144

[25] Vipul Goyal and Yifan Song. Malicious security comes free in honest-majority MPC. Cryp-
tology ePrint Archive, Report 2020/134, 2020. https://eprint.iacr.org/2020/134.

[26] Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. Concretely effi-
cient large-scale MPC with active security (or, TinyKeys for TinyOT). In Thomas Peyrin and
Steven Galbraith, editors, ASIACRYPT 2018, Part III, volume 11274 of LNCS, pages 86–117.
Springer, Heidelberg, December 2018.

[27] David Heath and Vladimir Kolesnikov. Stacked garbling - garbled circuit proportional to
longest execution path. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part II, volume 12171 of LNCS, pages 763–792. Springer, Heidelberg, August 2020.

[28] David Heath and Vladimir Kolesnikov. LogStack: Stacked garbling with O(b log b) computa-
tion. In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021, Part III,
volume 12698 of LNCS, pages 3–32. Springer, Heidelberg, October 2021.

[29] David Heath, Vladimir Kolesnikov, and Stanislav Peceny. MOTIF: (almost) free branching in
GMW - via vector-scalar multiplication. In Shiho Moriai and Huaxiong Wang, editors, ASI-
ACRYPT 2020, Part III, volume 12493 of LNCS, pages 3–30. Springer, Heidelberg, December
2020.

[30] David Heath, Vladimir Kolesnikov, and Stanislav Peceny. Garbling, stacked and staggered -
faster k-out-of-n garbled function evaluation. In Mehdi Tibouchi and Huaxiong Wang, editors,
Advances in Cryptology - ASIACRYPT 2021 - 27th International Conference on the Theory
and Application of Cryptology and Information Security, Singapore, December 6-10, 2021,
Proceedings, Part II, volume 13091 of Lecture Notes in Computer Science, pages 245–274.
Springer, 2021.

[31] David Heath, Vladimir Kolesnikov, and Stanislav Peceny. Masked triples - amortizing multi-
plication triples across conditionals. In Juan Garay, editor, PKC 2021, Part II, volume 12711
of LNCS, pages 319–348. Springer, Heidelberg, May 2021.

[32] Jonathan Katz and Lior Malka. Constant-round private function evaluation with linear com-
plexity. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of
LNCS, pages 556–571. Springer, Heidelberg, December 2011.

[33] Marcel Keller. MP-SPDZ: A versatile framework for multi-party computation. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security, 2020.

[34] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious arithmetic
secure computation with oblivious transfer. In Edgar R. Weippl, Stefan Katzenbeisser, Christo-
pher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 830–842.
ACM Press, October 2016.

[35] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making SPDZ great again. In
Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822
of LNCS, pages 158–189. Springer, Heidelberg, April / May 2018.

[36] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose oblivious
transfer. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 329–346. Springer,
Heidelberg, March 2011.

37

https://eprint.iacr.org/2020/134

[37] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with
errors over rings. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages
1–23. Springer, Heidelberg, May / June 2010.

[38] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-LWE cryptography.
In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of
LNCS, pages 35–54. Springer, Heidelberg, May 2013.

[39] Payman Mohassel and Seyed Saeed Sadeghian. How to hide circuits in MPC an efficient
framework for private function evaluation. In Thomas Johansson and Phong Q. Nguyen,
editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 557–574. Springer, Heidelberg,
May 2013.

[40] Payman Mohassel, Seyed Saeed Sadeghian, and Nigel P. Smart. Actively secure private func-
tion evaluation. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume
8874 of LNCS, pages 486–505. Springer, Heidelberg, December 2014.

[41] Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-random functions and
KDCs. In Jacques Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 327–346.
Springer, Heidelberg, May 1999.

[42] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and com-
posable oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 554–571. Springer, Heidelberg, August 2008.

[43] Ryan Wails, Aaron Johnson, Daniel Starin, Arkady Yerukhimovich, and S. Dov Gordon.
Stormy: Statistics in tor by measuring securely. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 615–632. ACM Press,
November 2019.

[44] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

38

	Introduction
	Our Contributions

	Technical Overview
	Non-Constant Round Branching MPC
	Constant Round (Semi-Honest) Protocol

	Preliminaries
	Secure Multiparty Computation
	Adversarial Behavior
	Security Definitions

	Oblivious Inner Product
	MPC Interface
	Non-Constant Round Semi-Honest Branching MPC
	Security

	Non-Constant Round Maliciously Secure Branching MPC
	Security

	Constant Round Semi-Honest Branching MPC
	Security

	OIP from Linearly Homomorphic Encryption
	Linearly Homomorphic Encryption
	Constructing OIP

	Implementation
	How We Benchmark
	Comparison of Communication Complexity
	Comparison of Running Time

	Acknowledgements

