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Abstract. Key mismatch attacks resilience is a great concern for KEMs
in the NIST PQC standardization process. In key mismatch attacks, the
adversary aims to recover the reused key by sending special form of
ciphertexts to the target party and observing whether the shared key
matches his guesses or not.
In this paper, we propose pairwise-parallel key mismatch attacks on Ky-
ber and other lattice-based KEMs. The strategy is to recover partial
information about multiple secret key coefficient-pairs in a parallel way
per query. We realize the required multi-value key mismatch oracle in a
simple key exchange scenario and experimentally validate our proposed
attacks. Our attacks greatly reduce the number of queries required to re-
cover the full secret key. Specifically, compared with state-of-the-art key
mismatch attacks on CPA-secure Kyber, our attacks reduce the number
of queries by 95% with computational complexity 232. Then we employ
the post-processing with lattice reduction to further minimize the num-
ber of queries. The results show we only need 78 queries to recover the
full secret key with a lattice reduction cost of 232. Moreover, our proposed
pairwise-parallel attack method can be directly applied to enhance the
PC oracle-based SCA against CCA-secure Kyber, reducing the number
of queries/traces by 16.67%.

Keywords: Lattice-based cryptography · Key encapsulation mechanism
· Key exchange · Key reuse · Key mismatch attacks · Kyber.

1 Introduction

In 1994, Shor [25] proposed a quantum algorithm capable of solving the integer
factoring problem and discrete logarithm problem in polynomial time on a quan-
tum computer. Consequently, widely used public key cryptographic algorithms
based on these hard problems such as Diffie-Hellman key exchange (KE) become
insecure once large-scale quantum computers are built.

In order to address these potential threats, the National Institute of Stan-
dards and Technology (NIST) launched a process in 2016 aimed at developing
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and standardizing post-quantum cryptography (PQC). Among these PQC can-
didate algorithms, lattice-based cryptography is regarded as a very promising
one, as it provides both strong provable security and remarkable efficiency. No-
tably, the MLWE-based Kyber [24] was selected as the sole candidate for the
standardization of Key Encapsulation Mechanisms (KEMs).

Most CCA-secure lattice-based KEMs follow a popular structure: combining
a CPA-secure public key encryption (PKE) scheme with the Fujisaki-Okamoto
(FO) transformation [9]. To enhance the efficiency, some KEMs opted for CPA-
secure schemes without the FO transformation for key exchange. Before the
practical deployment of these schemes, it is crucial to evaluate their security
under realistic conditions, particularly when neglecting the FO transformation.

Currently, in the widely adopted Internet standards, the key reuse mode is
commonly used. For example, in TLS 1.2 [5], the Diffie-Hellman KE provides
static key mode that avoids recalculating the key for each session. And in TLS
1.3 [21], the pre-shared key (PSK) mode and zero round trip time (0-RTT) mode
require the client and the server to maintain a long-term public key. However,
CPA-secure lattice-based KEMs do not provide security guarantees when the
public key is reused. If Alice (Decapsulator) reuses her public key, the adversary
(Encapsulator) can recover her secret key by sending special ciphertexts and
observing whether the shared key derived by Alice matches his guesses or not.
This type of attacks is known as key mismatch attacks [1–3, 10, 14, 15, 18–20].

In 2015, Kirkwood et al. [11] revealed an issue in reconciliation-based RLWE
KE. They proposed that if public key is reused, these schemes may be susceptible
to an attack that can reveal the secret key through multiple key exchange exe-
cutions. In 2016, Fluhrer [8] initiated key reuse attacks against some RLWE KE
by sending a series of messages, and observing how the target party responds.
Later, Ding et al. [3] extended the attacks to more schemes and proposed key
mismatch attacks. It is known that, KE can be replaced by any secure KEM with
an efficient key generation algorithm, and these attacks can be applied to many
lattice-based KEMs. Bauer et al. [2] first proposed key mismatch attacks on
NewHope [16]. Then Qin et al. [19] extended the attacks to Kyber [24]. In 2021,
Qin et al. [20] proposed a unified method to evaluate the resilience of lattice-
based KEMs against key mismatch attacks. They transformed the problem of
finding the lower bound of the number of queries into finding an optimal binary
recovery tree (BRT), and obtained the query bounds of recovering one secret
key coefficient using Huffman coding. Later, Guo and Mårtensson [10] proposed
multi-positional attacks which can recover partial information about multiple
secret coefficients per query, breaking the Huffman bounds in [20]. Furthermore,
Mi et al. [14] combined the key mismatch attack with a standard lattice attack,
further significantly reducing the number of required queries.

Similar attacks can be launched on CCA-secure KEMs with the help of side-
channel information [2, 7, 22, 23, 26, 27]. The adversary can construct a plaintext-
checking (PC) oracle using side-channel information leakage from re-encryption.
The PC oracle offers a binary response (correct or wrong) about the attacker’s
guess of the decrypted message for a given ciphertext. Recently, Rajendran et
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al. [23] and Tanaka et al. [26] proposed parallel PC oracle-based side-channel
attacks (SCA), which can recover multiple bits of information about the secret
key in a single query/trace.

The number of required queries plays a crucial role in key mismatch attacks,
as it directly impacts both the efficiency and success rate of the attacks. How
to recover the full secret key with fewer queries is still a very attractive topic.

Contributions. In this paper, we propose a new key mismatch attack to
recover the full secret key with fewer queries. Our contributions are as follows:

1. We propose pairwise-parallel key mismatch attacks on Kyber , which can re-
cover partial information about multiple coefficient-pairs of the secret key in
a parallel way per query. Compared with state-of-the-art key mismatch at-
tacks, we reduces the number of required queries by 95% with computational
complexity 232, when parallel level P = 26.

2. We further employ the post-processing with lattice reduction to reduce the
number of required queries and use the leaky LWE estimator in [6] to measure
the lattice reduction cost. Specifically, when P = 26, we only need 78 queries
to recover the full secret key with a lattice reduction cost of 232.

3. We realize a practical multi-value key mismatch oracle which can recover
multiple bits of the decrypted message in a simple key exchange scenario
and experimentally validate our proposed attacks.

4. Our pairwise-parallel attack method can be directly applied to enhance the
efficiency of PC oracle-based SCA against CCA-secure Kyber, and reduce
the number of required queries/traces by 16.67% for Kyber768/1024.

Organization. In Section 2, we introduce some basic preliminaries. In Sec-
tion 3, we recap previous works and our motivations. In Section 4, we present
our pairwise-parallel key mismatch attacks and show how to realize a practical
multiple-value key mismatch oracle in key exchange scenario. Then we show the
experimental evaluation in Section 5. In Section 6, we employ lattice reduction to
further reduce the number of queries, and discuss the applications of our attacks
on CCA-secure KEMs. Finally, Section 7 concludes this work.

2 Preliminaries

2.1 Notation

We denote the ring of integers modulo q ∈ Z+ as Zq. Rq represents the polyno-
mial ring Zq[x]/(x

n + 1), and polynomials in Rq are denoted using bold lower
case letters (i.e.) a ∈ Rq. The ith coefficient of a is denoted as a[i]. By default,
all vectors will be column vectors. A matrix of polynomials in Rk×l

q are denoted
using bold upper case letters (i.e.) A. The transpose of a matrix A is denoted as
AT . For any positive integer p, we define r′ = rmod+ p to be the unique element
r′ in the range 0 ≤ r′ < p such that r′ = rmod p. For an element x ∈ Q, we
denote by ⌈x⌋ rounding of x to the closest integer with ties being rounded up.
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2.2 CPA-Secure Version of Kyber

Kyber [24] is the KEM proposal of cryptographic suite for algebraic lattices
(CRYSTALS), based on the MLWE problem. The CCA-secure variant of Kyber
KEM is constructed by a simple CPA-secure PKE, denoted as Kyber.CPAPKE,
along with the FO transformation. To assess its key reuse resilience, we present
a possible CPA-secure version of Kyber in Fig. 1. This variant can be viewed as
a modification of Kyber.CPAPKE described in [24].

Alice Bob
1. Kyber.CPAPKE.KeyGen()
1.1 Generate matrix A ∈ Rk×k

q

1.2 Sample sA, eA ∈ Bk
η1

2. m $← {0, 1}256
1.3 PA ← AsA + eA 3. Kyber.CPAPKE.Enc(PA,m)

1.4 Output: (sA,PA)
pA−−−−−−→ 3.1 Generate matrix A ∈ Rk×k

q

3.2 Sample sB ∈ Bk
η1

, eB ∈ Bk
η2

, e′B ∈ Bη2

3.3 PB ← AT sB + eB
5. Kyber.CPAPKE.Dec(sA,PB , c̄) 3.4 vB ← PT

AsB + e′B +Decompressq(m, 1)

5.1 uA ← Decompressq(c1, du) 3.5 c1 ← Compressq(PB , du)

5.2 vA ← Decompressq(c2, dv)
(pB ,c̄)←−−−−− 3.6 c2 ← Compressq(vB , dv)

5.3 m′ ← Compressq(vA − sTAuA, 1) 3.7 Output: c̄ := (c1, c2)

5.4 Output: m′ 4. KB ← H(m||(pB , c̄))

6. KA ← H(m′||(pB , c̄))

Fig. 1: The CPA-secure version of Kyber.

In Kyber, Rq represents the ring Zq[x]/(x
n+1), where n = 256 and q = 3329.

Another parameter k is set to be 2, 3 or 4, which is in accordance with the three
different security levels Kyber512, Kyber768, and Kyber1024. All the secret keys
and error vectors are sampled from a centered binomial distribution Bη. Here
Bη is generated using

∑η
i=1(ai−bi), where ai and bi are independently randomly

sampled from {0, 1}. In Kyber512, η = 3, and in Kyber768/1024, η = 2. The
Compress/Decompressq(x, d) functions are shown below:

Compressq(x, d) = ⌈(2d/q) · x⌋ mod+2d,

Decompressq(x, d) = ⌈(q/2d) · x⌋.
(1)

2.3 Model of Key Mismatch Attacks

In the key mismatch attacks, we suppose honest Alice reuses her public key PA.
The adversary acts as Bob to negotiate shared key with Alice. Bob sends a series
of special ciphertexts and observes whether the shared key derived by Alice is
consistent with his guesses or not. Based on the information, Bob can potentially
recover Alice’s secret key sA.

To facilitate these attacks, the adversary typically utilizes a key mismatch
oracle denoted as K, as described in Algorithm 1. The input to K, denoted as
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P, comprises the adversary’s chosen-ciphertexts PB , c̄, as well as the shared key
KB . The output of K is either 1 or 0. To be specific, with the received PB and
c̄, K calls the function KEM.Dec(PB , c̄) and gets the shared key KA. If the
shared keys KA and KB match, K outputs 1, otherwise, it outputs 0.

Algorithm 1 The key mismatch oracle K and key mismatch attacks
Key mismatch oracle K(P) Key mismatch attacks
Input: P := (PB , c̄,KB) Input: Alice’s PA and oracle K
Output: 0 or 1 Output: 0 or 1
1: KA ← KEM.Dec(PB , c̄) 1: s′A ← BobK(PA)
2: if KA = KB then 2: if s′A = sA then
3: Return 1 3: Return 1
4: else 4: else
5: Return 0 5: Return 0
6: end if 6: end if

3 Previous Works and Our Motivations

Key mismatch attacks against lattice-based KEMs have been extensively studied.
In the following discussion, we take Kyber1024 as an example to introduce the
previous major works and our motivations.

3.1 One-Position Key Mismatch Attacks

To begin with, let us explain the mechanism of one-position key mismatch attacks
which retrieving partial information about one secret key coefficient per query.
Let’s consider the case of recovering sA[0]. Firstly, Bob sets the message m =
[1, 0, ..., 0]. Then he selects special ciphertexts (PB , c̄) such that Alice’s decrypted
message is 0 by design on all position except for the position 0, whose value
depends on the secret value sA[0]. By observing the output of key mismatch
oracle, Bob obtains the value of m[0], then deduce partial information about the
value of sA[0]. Repeating this process, Bob gradually narrows down the potential
values of sA[0] until he identifies a unique value.

We present the specific ciphertexts selection scheme as follows. Firstly, Bob
selects PB = [⌈ q

32⌋, 0, ..., 0], c2 = [h, 0, ..., 0], h ∈ Zq, then he compresses c1 =
Compressq(PB , du), and sends (PB , c1, c2) to Alice. Secondly, Alice decom-
presses uA = Decompressq(c1, du) = PB , and vA = Decompressq(c2, dv) =
[⌈ q

32h⌋, 0, ..., 0]. Then Alice decrypts to get

m′[i] = Compressq((vA − sTAuA)[i], 1)

=


⌈
2
q

(⌈
q
32h

⌋
− sTA[0]

⌈
q
32

⌋)⌋
mod 2, i = 0,⌈

2
q

(
0− sTA[i]

⌈
q
32

⌋)⌋
mod 2 = 0, i ≥ 1.

(2)
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The value of m′[0] depends on both h and sA[0] according to Table 1. For
index i ≥ 1, the expression of m′[i] within the outer rounding function is bounded
in absolute value by 2/q · η · ⌈ q

32⌋ ≈ 0.125 < 1/2. Hence these values are always
equal to 0 when rounded to the nearest integer. Thirdly, Bob and Alice derive
the shared keys KB ← H(m||(pB , (c1, c2))) and KA ← H(m′||(pB , (c1, c2)))
respectively.

With the help of the key mismatch oracle, Bob knows whether KA = KB or
not. When KA = KB , it means m′ = m and m′[0] = 1, otherwise m′[0] = 0.
Then Bob can infer the range of sA[0] according to Table 1. Finally, Bob can
narrow the range of sA[0] in half each time by querying repeatedly with different
parameter h. Based on the distribution of the secret key, we list a possible
querying order of h and corresponding BRT in Fig. 2. It shows that Bob needs
3 queries at most to recover one coefficient using binary search approach.

Besides, if Bob aims to recover sA[i], i ̸= 0, he can set PB [256− i] = −⌈ q
32⌋.

Then m′[0] = ⌈ 2q (⌈
q
32h⌋ − sTA[i]⌈

q
32⌋)⌋ mod 2.

Table 1: The relationships of m′[0]
with sA[0] and h for Kyber1024.

h

m′[0] sA[0] -2 -1 0 1 2

7 1 0 0 0 0
8 1 1 0 0 0
9 1 1 1 0 0
10 1 1 1 1 0

Fig. 2: The BRT for Kyber1024.

Complexity. For Kyber1024, recovering one coefficient at most requires 3 num-
ber of queries, as 22 < 5 < 23. Therefore, the number of queries required for full
secret key recovery, denoted as Qquery is given as:

Qquery = 3 · 256 · k = 3000. (3)

3.2 Two-Position Key Mismatch Attacks

The limitation of one-position key mismatch attacks is that the adversary only
can recover partial information about one secret key coefficient per query. Then
Guo and Mårtensson [10] proposed two-positional key mismatch attacks which
can recover partial information about secret key coefficient-pair in each query.

The only difference from one-position key mismatch attacks is that, Bob sets
PB the value 0 on all positions, except that PB [0] = b1⌈ q

32⌋ and PB [128] =
b2⌈ q

32⌋, where b1, b2 ∈ {−1, 0, 1}. Then Alice decompresses and decrypts to get
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m′[i] =


⌈
2
q

(⌈
q
32h

⌋
− (b1s

T
A[0]− b2s

T
A[128])

⌈
q
32

⌋)⌋
mod 2, i = 0,⌈

2
q

(
0− (b1s

T
A[i]− b2s

T
A[128 + i])

⌈
q
32

⌋)⌋
mod 2 = 0, i ≥ 1.

(4)

The value of m′[0] is determined by h, b1, b2 and sA[0], sA[128]. For m′[i], i ≥
1, the expression within the outer rounding function is bounded in absolute
value by 2/q · 2 · η · ⌈ q

32⌋ ≈ 0.25 < 1/2, thus m′[i] = 0 when i ≥ 1. We arrange
the possible values of (sA[0], sA[128]) in a two-dimensional grid. Based on the
different parameters b1, b2, we can obtain three distinct types of cuts on the grid:
a vertical cut, a horizontal cut, and a triangular cut, as illustrated in Fig. 3.

Fig. 3: The cuts with respect to m′[0] under different parameters (b1, b2, h).

Complexity. For Kyber1024, there are 5×5 = 25 possible values of (sA[i], sA[i+
128]). According to the binary search approach, we need to perform at most 5
cuts to uniquely determine the value of one coefficient-pair, as 24 < 25 < 25.
Therefore, the number of queries required for full secret key recovery is given as:

Qquery = 5 · 256/2 · k = 2500. (5)

Compared with one-position key mismatch attacks, this attacks reduce the num-
ber of queries by 16.67%.
Shannon Bound. Obviously, there is a lower bound for the number of queries
in key mismatch attacks according to the Shannon entropy:

H(X) = −
∑
x

P (x)log2[P (X)]. (6)

Under key mismatch oracle, one query can only provide 1 bit information. There-
fore the number of queries cannot be lower than the Shannon entropy of the se-
cret key. According to the probability distribution of the secret key in Kyber1024,
the entropy of one coefficient is −(2 1

16 log2
1
16 +2 1

4 log2
1
4 +

3
8 log2

3
8 ) ≈ 2.03. There-

fore the Shannon bound of the number of queries required for recovering the full
secret key in Kyber1024 is 1024× 2.03 ≈ 2079.
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3.3 Parallel PC Oracle-based SCA

For CCA-secure KEMs, Rajendran et al. [23] and Tanaka et al. [26] proposed
parallel PC oracle-based SCA, which can recover a generic P number of bits of
information about the secret key in a single query/trace. And they realized the
required parallel PC oracle utilizing the EM side-channel information leakage
from the re-encryption procedure in FO transformation, which is capable of
recovering first P number of bits of the plaintext.

We find that this parallel PC oracle-based attacks can be applied to
key mismatch attacks with a slight modification. Specifically, Bob selects
PB = [⌈ q

32⌋, 0, ..., 0], c2 = [h0, h1, ..., hP−1, 0, ..., 0], then he compresses c1 =
Compressq(PB , du), and sends(PB , c1, c2) to Alice. Then Alice decom-
presses uA = Decompressq(c1, du) = PB , vA = Decompressq(c2, dv) =
[⌈ q

32h0⌋, ⌈ q
32h1⌋, ..., ⌈ q

32hP−1⌋, 0, ..., 0], and decrypts to get

m′[i] =


⌈
2
q

(⌈
q
32hi

⌋
− sTA[i]

⌈
q
32

⌋)⌋
mod 2, i < P,⌈

2
q

(
0− sTA[i]

⌈
q
32

⌋)⌋
mod 2 = 0, i ≥ P.

(7)

The values of m′[i], i < P depend on hi and sA[i] correspondingly. For index
i ≥ P , m′[i] = 0 as that in one-position key mismatch attacks.
Complexity. For Kyber1024, with the help of parallel PC oracle, Bob can re-
cover P number of coefficients of sA in parallel within 3 queries. Therefore, the
number of queries required for full secret key recovery is given as:

Qquery = 3 · ⌈256
P
⌉ · k. (8)

This result significantly breaks the Shannon bound of the number of queries
under key mismatch oracle.

4 Pairwise-Parallel Key Mismatch Attacks

In order to further reduce the number of required queries, we propose pairwise-
parallel key mismatch attacks with the help of multi-value key mismatch oracle.
And we realize the multi-value key mismatch oracle in a simple CPA-secure
KEM-based key exchange scenario.

4.1 P -Level Pairwise-Parallel Key Mismatch Attacks

The core idea of our attacks lies in constructing special ciphertexts such that the
first P number of bits of m′ depend upon the P corresponding coefficient-pairs
of the secret key (i.e.) (sA[i], sA[i+ 128]), 0 ≤ i < P respectively as Fig. 6.

Let us focus on Kyber1024. Firstly, Bob lets PB the value 0 on all po-
sitions, except that PB [0] = b1⌈ q

32⌋ and PB [128] = b2⌈ q
32⌋, where |b1| +

|b2| ≤ 3. Then he sets c2 = [h1, h2, ..., hP−1, 0, ..., 0], compresses c1 =
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Compressq(PB , du), and sends (PB , c1, c2) to Alice. Secondly, Alice decom-
presses uA = Decompressq(c1, du) = PB , vA = Decompressq(c2, dv) =[
⌈ q
32h0⌋, ⌈ q

32h1⌋, ..., ⌈ q
32hP−1⌋, 0, ..., 0

]
. Then Alice decrypts to get

m′[i] =


⌈
2
q

(⌈
q
32hi

⌋
− (b1s

T
A[i]− b2s

T
A[128 + i])

⌈
q
32

⌋)⌋
mod 2, i < P,⌈

2
q

(
0− (b1s

T
A[i]− b2s

T
A[128 + i])

⌈
q
32

⌋)⌋
mod 2 = 0, i ≥ P.

(9)

For m′[i], i ≥ P , the expression within the outer rounding function is
bounded in absolute value by 2/q · 3 · η · ⌈ q

32⌋ ≈ 0.375 < 1/2 when η = 2.
Hence these values are always equal to 0 when rounded to the nearest integer.
The value of m′[i], i < P depends on hi and (b1sA[i]− b2sA[128+ i]), which can
be obtained with the help of multi-value key mismatch oracle. For a separate
coefficient-pair (sA[i], sA[i + 128]), it is easy to find the suitable parameters to
determine the unique value within 5 cuts according to Section 3.2. However,
when we want the recover P number of coefficient-pairs of the secret key in a
parallel way, can we still do it? We give a positive answer, next we will show
how to select the parameters.

Fig. 4: Parallel dependencies between secret key coefficient-pairs (sA[i], sA[i +
128]) and parameters hi,m

′[i], b1, b2, 0 ≤ i < P for Kyber1024.

Parameters Selection Strategies. There are three principles needed to be
followed in parameters selection procedure:

1. Full Coverage: For the two-dimensional gird, there are 5 × 5 = 25 possible
values of (sA[i], sA[i + 128]). In each cut, We must adaptively choose the
parameters according to the value of m′[i] (1 or 0) and parameters of previous
rounds, so that every value can be uniquely determined.

2. Minimum Query: According to binary search method, in each cut, we should
divide the region into two parts with the same size as possible, so as to use
minimum number of queries to determine the value of each coefficient-pair.

3. Parallelism: According to the structure of the above chosen-ciphertexts,
unique parameters (b1, b2) must be fixed and suitable for P number of
coefficient-pairs in each cut.
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Following these strategies, we present a feasible parameters selection scheme
for Kyber1024, so that the P number of coefficient-pairs can be determined
within 5 cuts. We put the specific diagram in appendix A.1. At Step 1, a tri-
angular cut is chosen by setting b1 = 2, b2 = −1. At Step 2, a horizontal cut is
chosen by setting b1 = 0, b2 = −1. At Step 3, a triangular cut is chosen by setting
b1 = 1, b2 = 1. At Step 4, a triangular cut is chosen by setting b1 = 1, b2 = 1.
At Step 5, a vertical cut is chosen by setting b1 = 1, b2 = 0. Then we show how
to choose hi for every state and how state changes based on m′[i] in Table 2.
After each cut, we can narrow the range of (sA[i], sA[i + 128]) based on m′[i]
and parameters. Finally, we can derive the value based on the path of m′[i] as
Table. 3. Additionally, we put the cuts diagram for Kyber512 in appendix A.2.

Table 2: The choice of hi for every state and how the states change.
State S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
hi 8 8 9 9 6 11 8 8 10 5 7 10

m′[i] = 1 S2 S4 S6 S8 S10 S12 S14 (-2,-1) S17 (-2,2) S18 S19
m′[i] = 0 S3 S5 S7 S9 S11 S13 S15 S16 (0,-2) (-2,1) (-1,0) S20

State S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24
hi 12 7 9 7 8 7 9 10 10 8 9 10

m′[i] = 1 S21 S22 S24 (-2,-2) (-1,-2) (-2,0) (0,0) (1,-1) (1,-2) (-1,2) (0,1) (1,1)
m′[i] = 0 (2,-2) S23 (2,1) (-1,-1) (0,-1) (-1,1) (1,0) (2,0) (2,-1) (0,2) (1,2) (2,2)

Now we take parallel level P = 2 as an example, and try to recover
(sA[0], sA[128]) = (−1, 0) and (sA[1], sA[129]) = (2,−1) following the above pa-
rameters selection scheme. We start from state1, set (b1, b2, h1, h2) = (2,−1, 8, 8),
thus m′[i] =

⌈
2
q

(⌈
q
4

⌋
− (2sTA[i] + sTA[128 + i])

⌈
q
32

⌋)⌋
mod 2 = 1 only if (2sTA[i] +

sTA[128 + i]) ≤ −1. Thus we get m′[0] = 1,m′[1] = 0 as Fig.5. At the follow-
ing steps, we change states and choose parameters based on Table 2. We show
the cuts process in Fig. 6. After 5 steps, we can get two paths of the value of
m′, which are m′[0]: 1000 and m′[1]: 01010. Then we can derive the value of
(sA[0], sA[128]) = (−1, 0) and (sA[1], sA[129]) = (2,−1) based on Table 3.

Table 3: The path of m′[i] within 5
cuts for Kyber1024.

Path -2 -1 0 1 2

-2 11101 11011 1100 01011 0100

-1 1111 11100 11010 01101 01010

0 10011 1000 01111 01110 01100

1 1010 10010 00101 00011 0000

2 1011 00111 00110 00100 00010
Fig. 5: Step1. (b1 = 2, b2 = −1).
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Fig. 6: The cuts process and parameters at Step2 to Step5

4.2 Multi-Value Key Mismatch Oracle in Key Exchange

In this section, we construct the multi-value key mismatch oracle in a simple
CPA-secure KEM-based key exchange scenario. In key exchange protocol, Alice
and Bob first negotiate the same shared key. Then they use the shared key (or
the value derived from the shared key) as the session key for the next symmetric
encrypted communication.

The construction consists of two stages. At the first stage, we assume that
Bob interacts honestly with Alice, and negotiates the same shared key. Then Bob
requests and decrypts to get a target data, denoted as Target. If Bob already
knows Target in advance, this stage can be omitted.

At the second stage, Bob follows the above P -level pairwise-parallel key
mismatch attacks, sending chosen-ciphertext to Alice. Then Bob requests the
same target data, and receives a message encrypted by the shared key of Al-
ice cA = Enc(KA,Target), where KA = H(m′||(PB , (c1, c2))). According to
the analysis described above, m′ has only 2P number of possible values, cor-
responding to 2P number of possible KA. Next, Bob exhaustively tries the
2P number of possible values of m′, and computes the shared key KB =
H(m′||(PB , (c1, c2))). Then Bob decrypts cA using KB , until the decryption
result Target′ = Dec(KB , cA) = Target. Finally, Bob obtains the values of
m′[0] ∼m′[P − 1]. Now, we have realized the multi-value key mismatch oracle,
and we describe the key processes in Algorithm 2.

It is noted that the P-value key mismatch oracle requires 2P−1 number of
offline decryption operations to achieve.

4.3 Complexity Analysis

Supposing we have an access to a multi-value key mismatch oracle, for Ky-
ber768/1024, sA ← Bη, η = 2, we can recover P number of coefficient-pairs (i.e.)
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Algorithm 2 Multi-value key mismatch oracle and pairwise-parallel key mismatch attacks
Multi-value key mismatch oracle O Pairwise-parallel key mismatch attacks
Input: P := (P, cA,Target,PB , c̄) Input: Alice’s PA and oracle O
Output: m′[0] ∼m′[P − 1] Output: 0 or 1
1: for i := 0 to 2P − 1 do 1: s′A ← BobO(PA)

2: m′ = bin(i)||0 2: if s′A = sA then
3: KB = H(m′||(PB , c̄)) 3: Return 1

4: Target′ = Dec(KB , cA) 4: else
5: if Target′ = Target then 5: Return 0

6: Return m′[0] ∼m′[P − 1] 6: end if
7: end for

(sA[i], sA[i + 128]), 0 ≤ i < P in a parallel way within 5 queries. Therefore, the
number of queries required for full secret key recovery is given as:

Qquery = 5 · ⌈256
2P
⌉ · k. (10)

For Kyber512, η = 3, there are 7×7 = 49 < 26 kinds of value for coefficient-pair
(sA[i], sA[i+128]). Thus we need 6 cuts to recover P number of coefficient-pairs.
The number of queries required for full secret key recovery is given as:

Qquery = 6 · ⌈256
2P
⌉ · k. (11)

Besides, to realize a P-value key mismatch oracle, an average of 2P−1 com-
putational complexity is required. Therefore, the computational complexity re-
quired for recovering the full secret key, denoted as Qcompute is given as:

Qcompute = 2P−1Qquery. (12)

Although the compute process can be performed offline and not the key indicator
of key mismatch attacks, it cannot exceed the actual computing power limit. For
different parallel level P , the number of queries and corresponding computational
complexity needed in our attacks are list in Table 4.

Table 4: The number of queries and corresponding computational complexity
required in pairwise-parallel key mismatch attacks.

P 2 4 8 16 32
Kyber512 768 210.6 384 211.6 192 214.6 96 221.6 48 236.6

Kyber768 960 211.2 480 212.2 240 215.2 120 222.2 60 236.9

Kyber1024 1280 211.6 640 212.6 320 216.6 160 222.6 80 237.3

5 Experimental Evaluation

In this section, we conduct experiments to confirm our attack’s correctness and
efficiency. Our experiments are implemented on a desktop equipped with four
0.90 GHz Intel Core m3-6Y30 CPUs and a 7.6 GB RAM.
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5.1 Setup

As shown in Algorithm 3, we use Kyber1024 to illustrate the details of pairwise-
parallel key mismatch attacks. We record the number of queries for different
parallel level P under a perfect multi-value key mismatch oracle.

Algorithm 3: Pseudocode of pairwise-parallel key mismatch attacks on Kyber1024
Input: Parallel level P and multi-value key mismatch oracle O
Output: s′A
1. (sA,PA)← Kyber.CPAPKE.KeyGen();
2. Set queries = 0;
3. for (i=0; i<4; i++) do
4. for (k=0; k<256/2; k+=P ) do
5. for (r=0; r<5; r++) do
6. PB = 0
7. if k = 0 then PB [0] = b1⌈ q

32
⌋, PB [128] = b2⌈ q

32
⌋;

8. else PB [256− k] = −b1⌈ q
32
⌋, PB [128− k] = −b2⌈ q

32
⌋;

9. c1 = Compressq(PB , dPB );
10. c2 = 0 except c2[k + i] = hi, 0 ≤ i < P ;
11. m′ = Kyber.CPAPKE.Dec(c1, c2);
12. KA = H(m′||(PB , c1, c2));
13. cA = Enc(KA,Target);
14. m′ = O(P, cA,Target,PB , c1, c2);
15. queries ++;
16. Update hi, b1, b2 based on Table 2;
17. end;
18. for (j=0; j<P ; j++) do
19. Output s′A[i ∗ 256 + k + j] based on Table 3;
20. end;
21. end;
22. end ;

5.2 Results and Comparisons

In this section, we show the experiment results , and compare with the state-
of-the-art key mismatch attacks in [20, 10]. We consider three different parallel
levels P = 8/16/26, corresponding to the computational complexity options
216/223/232, and denote the number of required queries as Our Result 1/2/3
respectively. We present the results in Table 5.

For CPA-secure Kyber, we recover the full secret key with 100% success
probability. The results show our attacks can reduce the number of queries by
85% with computational complexity 216, 92% with computational complexity
223, and 95% with computational complexity 232.

And then we simulate the symmetric encryption/decryption process using
AES256-ECB to realize the multi-value key mismatch oracle. When parallel
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Table 5: Our results compared with state-of-the-art key mismatch attacks.
Result in [20] Result in [10] Our Result 1 Our Result 2 Our Result 3

Kyber512 1312 1205 192 96 60
Kyber768 1776 1589 240 120 75
Kyber1024 2368 2118 320 160 100

level P = 8, an average of 131 decryption operations are needed to realize an
8-value key mismatch oracle. For Kyber1024, recovering the full secret key needs
320 queries, costing 1.5 seconds in total. Besides, when parallel level P = 16,
an average of 34310 decryption operations are needed to realize a 16-value key
mismatch oracle. For Kyber1024, recovering the full secret key needs 160 queries,
costing 152.8 seconds in total.

6 Discussions

6.1 Post-Processing with Lattice Reduction

The above complexity analysis is the number of queries required to recover the
full secret key. Actually, the adversary can only recover partial coefficients, then
recover the remaining coefficients using lattice reduction in an offline manner.

Based on the research of Dachman-Soled et al. [6], when the adversary obtains
a single coefficient of sA (i.e.) sA[0], he can get a perfect hint in the form of
⟨s,v⟩ = sA[0]. Here s = (sA, e), and v represents a vector with all elements
being 0, except the first coefficient, which is set to 1. By incorporating this
perfect hint into a lattice reduction algorithm, the lattice’s dimension is reduced
by one, and its volume increases by a factor of

√
1 + s2A[0]. Consequently, the cost

of a standard lattice attack is lowered. Additionally, the design of the schemes
allows the extraction of a short vector hint. Specifically, the so-called q-vector
(q, 0, 0, ..., 0) and its permutations. Integrating this hint into a lattice reduction
algorithm also reduces the computational cost of the lattice attack.

For Kyber1024, we use leaky LWE estimator in [6] to estimate the lattice
reduction cost, and plot the relationship with the number of queries for different
parallel level P in Fig. 7. We see that the number of queries can be greatly
reduced by using lattice reduction. For instance, when P = 26, we only need 78
queries to recover the full secret with a lattice reduction cost of 232.

6.2 Improved PC Oracle-based SCA on CCA-secure Kyber

As described above, the CPA-secure Kyber is susceptible to pairwise-parallel
key mismatch attacks. However, the NIST candidate KEMs always achieve CCA-
security through the use of FO transformation. The decryption and re-encryption
process in the FO transformation guarantees the validity of the ciphertext, re-
turning failure when an invalid ciphertext is detected. Consequently, Alice consis-
tently rejects these malicious chosen-ciphertexts, preventing Bob from extracting
any meaningful information from Alice’s responses.
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Fig. 7: The lattice reduction cost in log2() vs. the number of queries. The hor-
izontal line represent the lattice reduction cost same with the computational
complexity under the parallel level P .

However, at CHES 2020, Ravi et al. [22] showed that chosen ciphertext at-
tacks on CCA-secure NIST candidate KEMs can be executed by leveraging side-
channel information. The adversary can construct the required PC oracle using
side-channel information leakage from re-encryption. Recently, Rajendran et al.
[23] and Tanaka et al. [26] proposed a parallel PC oracle-based SCA, which
can recover P number of bits of information about the secret key in a single
query/trace. Based on simple analysis, our pairwise-parallel attack method can
be directly employed to further enhance the efficiency of these attacks.

We compare the number of queries between PC oracle-based SCA in [23, 26]
and our proposed method. The results are presented in Table 6. Specifically, for
Kyber768/1024, the parallel PC oracle-based SCA requires 6 queries to recover
2P number of coefficients. In contrast, our method achieves the same result with
only 5 queries, resulting in a reduction of approximately 16.67%.

Table 6: The number of queries required for full secret key recovery in [26], [23]
and ours.

P 2 4 6 8 10 12 14 16

Kyber768
Tanaka et al. [26] 1152 576 384 288 234 198 165 144
Ravi et al. [23] 970 533 373 283 232 197 171 144

Our results 960 480 320 240 195 165 137 120

Kyber1024
Tanaka et al. [26] 1536 768 512 384 312 264 219 192
Ravi et al. [23] 1294 711 498 378 310 263 228 192

Our results 1280 640 427 320 260 220 183 160

6.3 Applicability to other Lattice-based KEMs

While we only present our pairwise-parallel key mismatch attacks on Kyber, we
believe that our attacks can be adapted to other lattice-based KEMs such as
Saber [4] and other LPR encryption schemes [12]. We briefly sketch the idea to
perform pairwise-parallel key mismatch attacks on Saber and present the cuts
diagram in appendix A.2.
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Saber is based on the hardness of the MLWR, where n = 256 and the rank of
the module k = 3. For the secret key in Saber, the coefficients are in a range of
[−4, 4]. According to the binary search, recovering one coefficient at most requires
4 queries as 23 < 9 < 24. Thus the number of queries required for full key recovery
is 4 · 256 · 3 = 3000. For secret key coefficient-pair (sA[i], sA[i+ 128]), there are
9× 9 = 81 possible values. In pairwise-parallel key mismatch attacks, recovering
P number of coefficient-pairs at most requires 7 queries as 26 < 81 < 27. Thus
the number of queries required for full key recovery is 7 · ⌈256/2P ⌋ · 3. When
P = 26, the number of required queries is 105, reducing by 96.5%. Similarly, we
believe our attack can also be adapted to other LWE/LWR-based KEMs.

7 Conclusion

In this paper, we propose pairwise-parallel key mismatch attacks on CPA-secure
Kyber, significantly enhancing the key mismatch attacks. Our attacks can re-
cover partial information about P number of coefficient-pairs of the secret key in
a parallel way per query. And we realize the required multi-value key mismatch
oracle in a simple CPA-secure KEM-based key exchange scenario. Then we ex-
perimentally validated our attacks on the C reference implementations of Kyber.
The results show we can recover the full secret key within 100 queries for Ky-
ber1024, reducing the number of queries by 95% with computational complexity
232, when parallel level P = 26.

Then we further reduce the number of queries required for full secret key
recovery using the post-processing of lattice reduction. When P = 26, we only
need 78 queries to recover the full secret key with a lattice reduction cost of 232.
Besides, our pairwise-parallel attacks method can also be applied to enhance the
efficiency of PC oracle-based SCA on CCA-secure KEMs. Specifically, compared
with parallel PC oracle-based attacks on Kyber768/1024 in [23, 26], our attacks
can reduce the number of queries/traces by 16.67%. Finally we discuss the ap-
plicability of our attacks on other lattice-based KEMs. We believe our attacks
can be adapted to similar LWE/LWR-based KEMs such as Saber etc.

Key mismatch attacks provide valuable insights into the resilience of these
KEMs against key reuse. These findings emphasize the critical importance of
preventing key reuse for CPA-secure KEMs and the necessity of safeguarding
against SCA in the case of CCA-secure KEMs.
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A Pairwise-Parallel Key Mismatch Attacks

A.1 Pairwise-Parallel Key Mismatch Attacks on Kyber768/1024

In this section, we give a feasible parameters selection scheme, so that the P
number of coefficient-pairs can be determined within 5 cuts for Kyber768/1024.

At the first step, we choose a triangular cut by setting b1 = 2, b2 = −1.
Thus m′[i] =

⌈
2
q

(⌈
q
32hi

⌋
− (2sTA[i] + sTA[128 + i])

⌈
q
32

⌋)⌋
mod 2. When hi = 8,

m′[i] = 1 only if (2sTA[i] + sTA[128 + i]) ≤ −1, then we cut the two-dimensional
grid into two regions, containing 11 and 14 values respectively as Fig. 8.

At the second step, we choose a horizontal cut by setting b1 = 0, b2 = −1.
Thus m′[i] =

⌈
2
q

(⌈
q
32hi

⌋
− sTA[128 + i]

⌈
q
32

⌋)⌋
mod 2. For the region m′[i] = 1 in

the first cut, we set hi = 8, and for another region, hi = 9 as Fig. 9.
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Fig. 8: Step1. b1 = 2, b2 = −1. Fig. 9: Step2. b1 = 0, b2 = −1.

At the following three steps, we set different parameters b1, b2, hi according
to the previous parameters selection and the results of m′[i].

Fig. 10: Step3. b1 = 1, b2 = 1.

Fig. 11: Step4. b1 = 1, b2 = 1.

After five rounds of cuts, the value of (sA[i], sA[128 + i]) can be uniquely
determined.
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Fig. 12: Step5. b1 = 1, b2 = 0.

A.2 Pairwise-Parallel Key Mismatch Attacks on Kyber512/Saber

In this section, we give feasible parameters selection schemes for Kyber512 (η =
3) and Saber (η = 4), so that we can recover P number of coefficient-pairs within
6 cuts and 7 cuts respectively.

Fig. 13: Pairwise-parallel key mismatch attack on Kyber512 and Saber.


