
Improved Multi-User Security Using the
Squared-Ratio Method

Yu Long Chen1, Wonseok Choi2, and Changmin Lee3

1 imec-COSIC, KU Leuven, Belgium
yulong.chen@kuleuven.be

2 Purdue University, West Lafayette, IN, US
wonseok@purdue.edu
3 KIAS, Seoul, Korea

changminlee@kias.re.kr

Abstract. Proving security bounds in contexts with a large number of
users is one of the central problems in symmetric-key cryptography today.
This paper introduces a new method for information-theoretic multi-
user security proofs, called “the Squared-Ratio method”. At its core, the
method requires the expectation of the square of the ratio of observing
the so-called good transcripts (from Patarin’s H-coefficient technique) in
the real and the ideal world. Central to the method is the observation that
for information-theoretic adversaries, the KL-divergence for the multi-
user security bound can be written as a summation of the KL-divergence
of every single user.
We showcase the Squared-Ratio method on three examples: the Xor
of two Permutations by Bellare et al. (EUROCRYPT ’98) and Hall et
al. (CRYPTO ’98), the Encrypted Davies-Mayer by Cogliati and Seurin
(CRYPTO ’16), and the two permutation variant of the nEHtM MAC
algorithm by Dutta et al. (EUROCRYPT ’19). With this new tool, we
provide improved bounds for the multi-user security of these construc-
tions. Our approach is modular in the sense that the multi-user security
can be obtained directly from single-user results.

Keywords: symmetric-key cryptography, provable security, multi-user security,
pseudorandom function

1 Introduction

Commonly used cryptographic constructions in practice are usually deployed in
contexts with a large number of users. An obvious question is to what extent
the number of users will affect the security bound of these cryptographic con-
structions, this question leads to consider adversaries that may try to analyze
the mode of operation with multiple independent keys at the same time. This
setting is known as multi-user security and has been attracting more and more
attention from researchers in recent years.



From a cryptographic perspective, a potential weakness of the multi-user se-
curity can be interpreted as the following. Let Adv(A) and Advu(A) be an
advantage of single-user security and u-user security with an adversary A, re-
spectively. Under an assumption that each user exploits independent keys, it
gives an obvious relation Advu(A) ≤ u ·Adv(A) by the hybrid argument (for
short, the factor u is called security loss). If the worst-case bound holds, the
multi-user settings would not be as secure as the cryptographic scheme requires
for a sufficiently large security loss, even if the single-user security is provably
guaranteed. On the one hand, this worst-case loss is unfortunately unavoidable
in the case of key-recovery attacks against block ciphers [9]. On the other hand,
in some cases, it is shown that the gap between single-user and u-user security
is relatively small [8, 14]. These results indicate that there is no general rela-
tionship between currently known single-user security and multi-user security. It
simultaneously gives a natural question of how known single-user security results
can be rearranged into multi-user security.

Multi-User Security. The multi-user security was first considered in the prov-
able security setting by Mouha and Luykx [34], by proving the multi-user se-
curity of the Even-Mansour cipher. Since then, various constructions have been
analyzed in the multi-user setting [10, 25, 26, 39, 38]. These works show that
evaluating how security degrades as the number of users grows is a challenging
technical problem. Firstly, a dedicated proof is required for each construction
that we want to consider, even when the security is known in the single-user set-
ting. Secondly, the security analysis of all the aforementioned work is performed
in the ideal cipher model. Assuming that a construction is based on perfectly
random primitives can be too strong, which can lead to an overly optimistic secu-
rity bound that does not cover practical attacks. Recently at ASIACRYPT 2022,
Chen [12] proposed a modular approach to proving the multi-user security of
permutation-based constructions that satisfy certain properties. Unfortunately,
as the author himself mentioned in the paper, his technique is not extendable
to the block cipher-based setting. This is because his technique is based on the
mirror theory in the ideal permutation model and therefore cannot be easily
extended to the ideal cipher model.

A different avenue. We revisit the multi-user provable security suggested by
Bhattacharya and Nandi [8]. To be precise, they have shown that a mu-prf ad-
vantage of multi-user security for bitwise-xor of three n-bit pseudorandom per-
mutations (for short, XORP[3]) is bounded by <

√
u · qmax/2

n, where u is the
number of users and qmax is the allowed number of queries the adversary can
make to each user. It implies that XORP[3] for O(2n) users with O(2n) queries
to each user still guarantees the mu-prf security. For this purpose, the authors
leverage the chi-squared method described by Dai et al. [21].

Subsequently, Choi et al. [14] have proposed two variants of truncated xor
of two n-bit pseudorandom permutations, named SaT1 and SaT2 respectively.
Here SaT1 uses a single n-bit pseudorandom permutation with domain separa-
tion, while SaT2 employs two independent permutations. At the same time, the
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authors state that both SaT constructions also satisfy a multi-user security with
the advanced techniques.

While this proof regime has the advantage that it proves a tighter security
bound rather than the naive one for the multi-user security, it seems that this
proof technique is not easily extendable to the other constructions. This obsta-
cle arises from the characteristic that for the chi-square method, it is not easy
to compute an expectation of chi-square divergence when responses adaptively
depend on the adversary’s queries.

Our contribution. This paper aims at investigating generic techniques that
are applicable to more constructions in the case of multi-user security.

Technically, we describe two novel inequalities to achieve the goal. We assume
that adversary A can access to one of two systems S0 or S1, where S0 is an
“ideal” system and S1 is a real one. A common way to see if two systems are
indistinguishable is to bound the statistical distance of ∥pS1

(·)− pS0
(·)∥, where

pSi
(·) is the probability distributions of the responses of the q queries when

A interacts with system Si. In the prior work by Dai et al. [21], the authors
suggested using well-known relations to bound the statistical distance:

∥pS1
(·)− pS0

(·)∥ ≤
(
1

2
∆KL (pS1(·), pS0(·))

) 1
2

∆KL (pS1
(·), pS0

(·)) def
=
∑
z∈Ω

pS1
(z) ln

(
pS1(z)

pS0(z)

)
,

∆KL (pS1
(·), pS0

(·)) ≤
∑
z∈Ω

(pS1
(z)− pS0

(z))
2

pS0
(z)

.

where Ω is the support of pS0(·).

In this work, we follow similar inequalities as above. Because we consider
the multi-user security, we have the u-system (Si,1, . . . ,Si,u) for i ∈ {0, 1}. For
simplicity, we let Si denote the u-system and z be a set of u-strings {z1, . . . , zu}.
We assume that the adversary gets u responses simultaneously from each query.
Let pSi(z) (resp. pSi,j (zj)) be a probability that the j-th system answers zj for
all 1 ≤ j ≤ u (resp. for index j). Following the footsteps of [8, 14], we assume
that in the standard model, an information-theoretic adversary D makes distinct
queries to individual user interfaces. Since those interfaces have identical distri-
bution (for the same transcript), previous interactions with other interfaces do
not impact subsequent user interactions„ which means the systems are mutually
independent. It gives one more relation:

pSi
(z) =

u∏
j=1

pSi,j
(zj).
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Combining it together, this auxiliary relation enables to hold that

∆KL (pS1
(·), pS0

(·)) =
∑
z∈Ω

pS1
(z) ln

(
pS1(z)

pS0(z)

)

=
∑
z∈Ω

u∑
j=1

pS1(z) ln

(
pS1,j(zj)

pS0,j(zj)

)
=

u∑
j=1

∑
z∈Ω

pS1(z) ln

(
pS1,j(zj)

pS0,j(zj)

)

=

u∑
j=1

∑
zj∈Ωj

pS1,j(zj) ln

(
pS1,j(zj)

pS0,j(zj)

)
= u ·∆KL

(
pS1,j

(·), pS0,j
(·)
)
,

where the first equality comes from the properties of logarithm and the other
equalities are trivially derived.

It can be interpreted as for information-theoretic adversaries, the KL-divergence
for the multi-user security bound can be written as a summation of each secu-
rity bound. It means that to guarantee the multi-user security it is sufficient to
bound the KL-divergence for a single user. For this purpose, we mimic a stan-
dard proof based on Patarin’s H-coefficient technique [36]. Patarin’s H-coefficient
shows that

PS1,1(z)

PS0,1(z)
≥ 1− ϵ. (1)

In addition to this, we aim at proving that

PS1,1(z)

PS0,1(z)
≤ 1 + ϵ,

except for bad cases. Combining it together, it holds that∣∣∣∣PS1,1(z)

PS0,1(z)
− 1

∣∣∣∣ ≤ ϵ. (2)

It allows bounding the KL-divergence in a function of ϵ, which eventually gives
a bound for the statistical distance between two systems.

Our approach, called the Squared-Ratio method, combines the chi-squared
method with the H-coefficient technique. Here, we employed the notion of tran-
scripts and good/bad partitioning. For u = 1, it appears more similar to the
expectation-method [25, 26]. The requirement of our method is the same to that
of expectation-method, but an upper bound of good ratio instead of a lower
bound. This allows our method to be applicable to most constructions. Note
that we utilize “each user’s transcript” rather than “each query (chi-squared
method)” or “entire transcript (H-coefficient technique)”. We refer to Section 3
for more details.

From the explanation above, we see that the Squared-Ratio method allows
us to get the multi-user security directly from the single-user bound, where
Patarin’s Mirror theory [37] is used for the counting arguments in the single-user
case. Mirror theory allows one to sharply lower bound the number of solutions to

4



a certain type of system of equations and non-equations. In our security proof,
we will consider the following system of equations; for two sets of unknowns
VP = {P1, . . . , PqP } and VQ = {Q1, . . . , QqQ}, and for constants λi, i = 1, . . . , q,

Γ :


PI1 ⊕QI1 = λ1,

PI2 ⊕QI2 = λ2,
...

PIq ⊕QIq = λq.

This system of equations can be represented by a simple graph G = (V, E), where
V = VP ⊔VQ. The unknowns PIi and QIi are connected by a λi-weighted edge for
i = 1, . . . , q and are mapped to VP and VQ using two surjective index mappings.
This graph consists of q edges, and the size of the largest component in this
graph is denoted by ξmax. This system of equations has been studied in [37], and
later revisited with more complete and detailed arguments [19, 22].

To apply our Squared-Ratio method here, we want an upper bound on the
ratio of observing the good transcripts in the form as given in equation (2),
instead of a lower bound in the form of 1− ϵ (as in (1)) given in the traditional
mirror theory. We prove the result both when there are large components (qc > 0)
and when there are only isolated edges (qc = 0), where qc refers to the number
of edges in the large components. We refer to Section 4 for more details.

We then illustrate the Squared-Ratio method by applying it to prove the
multi-user prf security of Xor of Permutation (XoP), Encrypted Davies-Mayer
(EDM), and nonce-based Enhance Hash-then-Mask (nEHtM). These three con-
structions have been chosen because of their practical relevance and a large
amount of attention they have received in recent years. In the rest of this paper,
we will use qmax to indicate the maximum number of queries the adversary can
make against each of its u users in the multi-user setting, while q indicates the
total number of queries that the adversary can execute in the single-user setting.
Depending on the context, we have qmax ≤ q ≤ uqmax.
Applications: Xor of Permutations. Block ciphers are usually considered
to be pseudorandom permutations (PRPs) under a uniform random key. That
means someone cannot distinguish a secure block cipher from a random permu-
tation before performing a specific number of encryption and decryption queries
in a black-box manner. On the other hand, various cryptographic constructions
such as encryption modes [2], MAC algorithms [3, 7] and authenticated en-
cryption schemes [15] need pseudorandom functions (PRFs) to achieve beyond-
birthday-bound security. When such PRFs are replaced with block ciphers, it
may degrade security up to the birthday bound [4, 6, 11, 24, 27]. To solve the
problem of security degradation, Bellare et al. [5] and Hall et al. [24] initiated
the study of constructing a good PRF from block ciphers with security beyond
the birthday-bound barrier, i.e., above 2n/2. Given two n-bit (keyed) PRPs P
and Q, their sum, denoted as the Xor of Permutations (XoP), maps x ∈ {0, 1}n
to

XoP[P,Q](x)
def
= P(x)⊕Q(x).
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Subsequently, after the introduction of this XoP construction, a series of works
improved this seminal result [1, 18, 31, 35], culminating with the proof by Dai
et al. [21] and Dutta et al. [22] that the sum of two n-bit random permuta-
tions is (fully) secure up to O(2n) queries, using the chi-squared method and
a verifiable version of the mirror theory respectively. Recently, Choi et al. [14]
showed for the first time that the XoP construction achieves a multi-user se-
curity of O(

√
uqmax

1.5/21.5n). As the first application of our Squared-Ratio
method, we give a fairly simple proof giving us a multi-user security bound
of O(

√
uqmax

2/22n). One can argue that the improvement is small. However, we
believe the analysis of the XoP construction is fundamental, and a tight security
bound has been sought for nearly two decades. On the other hand, the result of
Choi et al. requires a dedicated proof, while our approach is modular in that we
can obtain the multi-user bound directly from the single-user result using our
Squared-Ratio method. We refer to Section 5 for more details.
Application: The EDM Construction. As another application of the Squared-
Ratio method, we consider the Encrypted Davis-Meyer (EDM) construction,
proposed by Cogliati and Seurin [20], defined as

EDM[P,Q](x)
def
= Q(P(x)⊕x).

They proved PRF-security of EDM up to O(2
2n
3 ) queries. The best known multi-

user security bound for EDM is O
(
uq2/21.5n

)
, obtained from the combination of

hybrid argument with the result of Dai et al. via the Chi-squared method [21]. Us-
ing our Squared-Ratio method, we show a significant improvement that achieves
a multi-user security of O

(
n
√
uqmax

4/23n
)
. We refer to Section 6 for more de-

tails. We note that in the work of Mennink and Neves [32], they proved that
EDM achieves a single-user security of O(q/2n) for q ≤ 2n/ξmax. However, their
result uses an unverified version of Patarin’s mirror theory, while we aim for a
simpler-to-use framework for multi-user security with verifiable proofs. Whether
the multi-user security of EDM can be improved by improving the mirror theory
result for the single-user security is an interesting future research direction.
Application: The nEHtM MAC Algorithm. As our final application, we
consider the two-permutation variant of the nonce-based Enhanced Hash-then-
Mask (nEHtM) construction, proposed by Dutta et al. [23], defined as

nEHtM[P,Q](x)
def
= P (N)⊕Q(HKh

(M)⊕N).

Note that nEHtM is structurally similar to the Enhanced Hash-then-Mask (EHtM)
construction first proposed by Minematsu [33], except that the random salt is
used instead of a nonce and a PRF instead of a block cipher. We also note this
two permutation variant was the F SoP

B2
construction considered in the work of

Chen et al. [13]. For the original single permutation variant, Dutta et al. [23]
proved that the single-user security of nEHtM is up to 22n/3 MAC queries and 2n

verification queries in a nonce-respecting setting. Later, Choi et al. [16] improved
this result, and showed that nEHtM is secure up to 23n/4 MAC queries and 2n

verification queries. Chen et al. [13] considered the single-user PRF security of
this two-permutation variant and showed that it is secure up to O(23n/4) queries.
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Indeed the original construction was defined as the form:

nEHtM[P](x)
def
= P (0 ∥N)⊕ P (1 ∥HKh

(M)⊕N).

It is obvious that this construction cannot yield a n-bit zero value. That is
why this construction has a naive and tight advantage bound uq/2n for the
mu-prf security. On the other hand, we show nEHtM[P,Q] can achieve better
security than nEHtM[P] in the nonce-respecting setting. Our application serves
the evidence that there is a security gap between them in the case of multi-user
security. As a result of our new Squared-Ratio method, we end up with a multi-
user security bound that improves significantly over the previously best-known
result when the number of users is large. When the number of users is O(2n/2),
previous results [16, 13] on nEHtM are totally insecure for the case q = uqmax,
and only reached O(2n/2) birthday bound security for the case q = qmax. While
our new result shows that nEHtM achieves beyond birthday bound security for
u = O(2n/2), and is still birthday bound secure even when the number of users
is close to O(2n). We refer to Section 7 and Figure 1 for more details.

We believe that a similar approach also works on the nonce-misuse setting,
however, the combinatorics will be very complex. We emphasize that our contri-
bution is providing a new hybrid method to prove better mu-security which can
be applied to most constructions including hash-based ones. Note that the ex-
pectation of chi-squared divergence should be taken over the real world. We can
handle hash-based constructions like nEHtM thanks to expectation over ideal
world. To the best of our knowledge, there is no proof via the chi-squared-method
for MAC or AEAD security (hash-based). In this regard, our method is more
versatile and can be applied to all constructions if they can be proven via the
coefficient-H technique/expectation-method.

2 Preliminaries

Notation. Throughout this paper, we fix positive integers n and u to denote

the block size and the number of users, respectively. For a non-empty finite set
X , we let X ∗ℓ denote a set {(x1, . . . , xℓ) ∈ X ℓ | xi ̸= xj for i ̸= j}. For an
integer A and b, we denote (A)b = A(A− 1) . . . (A− b+ 1). A notation x←$ X
means that x is chosen uniformly at random from X . |X | means the number of
elements in X . The set of all permutations of {0, 1}n is simply denoted Perm(n).
The set of all functions with domain {0, 1}n and codomain {0, 1}m is simply
denoted by Func(n,m). For a keyed function F : K × X → Y with key space K
and non-empty sets X and Y, we will denote F (K, ·) by FK(·) for K ∈ K. When
two sets X and Y are disjoint, their (disjoint) union is denoted X ⊔Y. We write
Tre and Tid as random variables following the distribution of the transcripts in
the real world and the ideal world, respectively. For any positive integer i, and
a1, . . . , ai, b ∈ {0, 1}n, We denote {a1, . . . , ai}⊕ b

def
= {a1⊕ b, . . . , ai⊕ b}.
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2.1 Security Notions

Pseudorandom Permutations. Let E : K × {0, 1}n → {0, 1}n be a keyed
permutation with key space K, where E(K, ·) is a permutation for each K ∈
K. We will denote EK(X) for E(K,X). A (q, t)-distinguisher against E is an
algorithm D with oracle access to an n-bit permutation and its inverse, making
at most q oracle queries, running in time at most t, and outputting a single bit.
The advantage of D in breaking the PRP-security of E, i.e., in distinguishing E
from a uniform random permutation π ←$ Perm(n), is defined as

AdvprpE (D) =
∣∣∣Pr [K ←$ K : DEK ,E−1

K = 1
]
− Pr

[
π ←$ Perm(n) : Dπ,π−1

= 1
]∣∣∣ .

We define AdvprpE (q, t) as the maximum of AdvprpE (D) over all (q, t)-distinguishers
against E. When we consider information-theoretic security, we will drop the
parameter t. In the following analyses, we will consider PRP-based constructions,
such as XoP, EDM, or nEHtM. Those constructions can be built upon a block
cipher, and in this case, one can obtain a security bound by simply adding PRP-
security of the given block cipher.

Multi-User Pseudorandom Function. Let C : K × {0, 1}n → {0, 1}m be
a keyed function with key space K. We will consider an information-theoretic
distinguisher A that makes oracle queries to C and returns a single bit. The
advantage of A in breaking the mu-prf security of C, i.e., in distinguishing
C(K1, ·), . . . ,C(Ku, ·) where K1, . . . ,Ku ←$ K from uniformly chosen functions
F1, . . . ,Fu ←$ Func(n,m), is defined as

Advmu-prf
C (A) =

∣∣∣Pr [K1, . . . ,Ku ←$ K : ACK1
(·),...,CKu (·) = 1

]
− Pr

[
F1, . . . ,Fu ←$ Func(n,m) : AF1(·),...,Fu(·) = 1

]∣∣∣.
We define Advmu-prf

C (u, qmax, t) as the maximum of Advmu-prf
C (A) over all the

distinguishers against C for u users making at most qmax queries to each user
and running in time at most t. When we consider information-theoretic security,
we will drop the parameter t.

Almost XOR Universal Hash Functions. Let δ > 0, and let H : Kh×M→
X be a keyed function for three non-empty sets Kh,M, and X . H is said to be
δ-XOR almost universal (δ-XAU) if for any distinct M,M ′ ∈M and X ∈ X ,

Pr [Kh ←$ Kh : HKh
(M)⊕HKh

(M ′) = X] ≤ δ.

2.2 Total Variation Distance, KL Divergence and Chi-Squared
Divergence In a Subspace

Let P and Q be two probability distributions over discrete set Γ . The total
variation distance of P and Q is denoted by

∥P (x)−Q(x)∥ def
=
∑
x∈Γ

max{P (x)−Q(x), 0} = 1

2

∑
x∈Γ

|P (x)−Q(x)| .
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This total variation distance is related to the Kullback–Leibler (KL) divergence
by Pinsker’s inequality, where the KL divergence is

∆KL (P,Q)
def
=
∑
x∈Γ

P (x) ln

(
P (x)

Q(x)

)
and Pinsker’s inequality says that

∥P −Q∥ ≤
(
1

2
∆KL (P,Q)

) 1
2

.

Note that Q should have full support to define KL-divergence well. On the other
hand, there is well-known inequality between KL divergence and χ2 divergence.

∆KL (P,Q) ≤ χ2 (P,Q)
def
=
∑
x∈Γ

(P (x)−Q(x))2

Q(x)
.

We modify these inequalities over a subset Γ ′ ⊂ Γ . In other words, we define
the quantity

∆KL,Γ ′ (P,Q)
def
=
∑
x∈Γ ′

P (x) ln

(
P (x)

Q(x)

)
and prove the following lemmas:

Lemma 1. For any subset Γ ′ ⊂ Γ , one has

∑
x∈Γ ′

|P (x)−Q(x)| ≤

2∆KL,Γ ′ (P,Q) + 2
∑

x∈Γ\Γ ′

P (x)−Q(x)

 1
2

.

The proof of this Lemma is given in Supplementary Material A.

Lemma 2. For any subset Γ ′ ⊂ Γ , one has

∆KL,Γ ′ (P,Q) ≤
∑
x∈Γ ′

(P (x)−Q(x))2

Q(x)
−

∑
x∈Γ\Γ ′

P (x)−Q(x) .

The proof of this Lemma is given in Supplementary Material B.

2.3 Useful Lemma

Lemma 3. If (λ1, . . . , λq) ∈ ({0, 1}n)q are uniformly randomly distributed and
C =

∣∣{(i, j) ∈ [q]∗2 | (i < j) ∧ (λi = λj)}
∣∣, for any A > 0, one has

Ex [C] ≤ q2

2n+1
,

Ex
[
C2
]
≤ q2

2n+1
+

q4

22n+2
,

Pr

[
C ≥ q2

2n+1
+A

]
≤ q2

2n+1A2
+

q4

22n+2A2
.
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The proof of this Lemma is given in Supplementary Material C.
This lemma will be used for the computation of Ex

[
ϵ1(z)

2
]

and ϵ2 in The-
orem 1. The expectation can be identified to an expectation taken over the
distribution of all transcripts in the ideal world (and so, regardless of what is a
real construction).

3 The Squared-Ratio Method

We fix a set of random systems and a deterministic distinguisher A that makes
exactly q(= uqmax) oracle queries to one of the random systems. Each random
system has u interfaces with independent random but identical distribution, and
A makes qmax queries to each interface in order. We also fix a set Ω that contains
all possible transcripts for oracle queries to an interface of random systems. For
a random system S = (S1, . . . ,Su) and i ∈ {1, . . . , u}, let ZSi be the random
variable over Ω that follows the distribution of the transcripts obtained by A
interacting with Si. Let

ZS
def
= (ZS1 , . . . , ZSu),

pSi(z)
def
= Pr [ZSi = z]

and
pS(z)

def
= Pr [ZS = z]

for z ∈ Ω and z ∈ Ωu. A’s distinguishing advantage is upper bounded by the
total variation distance of pS0(·) and pS1(·). In the following, we aim to show
that

∥pS1
(·)− pS0

(·)∥ ≤ O
(√

u ·Ex [ϵ(z)2]
)
,

where ϵ(z) is a function such that
∣∣∣∣ pS1

1
(z)

pS1
0
(z) − 1

∣∣∣∣ ≤ ϵ(z). However, such a function

ϵ(z) may not exist over Ω. Therefore, we try to show a similar upper bound
under some constraints. To do this, we split the set Ω into two distinct sets
Γgood⊔Γbad = Ω in a way inspired by Patarin’s H-Coefficient technique [36]. The
sets satisfy following conditions:

1. For all z ∈ Γgood, there exists a function ϵ1(z) such that∣∣∣∣∣pS1
1
(z)

pS1
0
(z)
− 1

∣∣∣∣∣ ≤ ϵ1(z)

2. and there exists a constant ϵ2 such that

Pr
[
ZS1

0
∈ Γbad

]
≤ ϵ2.
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Since we consider a multi-user case, the target set is multi-set Ωu, not Ω.
Whereas Ω \ Γgood = Γbad by the definition, Ωu \ Γu

good ̸= Γu
bad for any u ≥ 2.

We thus rearrange the set Ωu \Γu
good. Let Γbadi denote an event {zi ∈ Γbad}. On

the one hand, the event {z ∈ Ωu \ Γu
good} can be interpreted as ∪ui=1Γbadi. On

the other hand, thanks to the inclusion-exclusion principle, the set includes a set
Ω′ def

= ∪ui=1Γbadi \ ∪(i,j)
(
Γbadi ∩ Γbadj

)
.

An adversary can adaptively choose queries on Si after the end of the in-
teraction with Sj for i > j; however, we assume that an information-theoretic
adversary D makes distinct queries to individual user interfaces, and previous
interactions with other interfaces do not impact interactions with next users. We
are allowed to make this assumption since our work focuses on standard model
proofs for information-theoretic adversaries. In the standard model, we assume
an independent random distribution for each user (but the opponent already
knows what the distribution is). In the information-theory setting, block-ciphers
based on independent uniform keys will be replaced by independent random per-
mutations. Each user in our construction uses independent keys based on random
primitives, hence the other users’ queries cannot increase the power of the ad-
versary. This implies that the query-response pairs of one user cannot affect the
selection of queries for other users. Therefore, querying all users simultaneously
is equivalent to querying each user separately without loss of generality. The
same assumption was previously used in [8, 14].

Since ZSi are mutually independent, for z = (z1, . . . , zu), it holds that

pS(z) =
n∏

i=u

pSi(zi).

Combining this equality and the set identity, it holds that

u∑
i=1

∑
zi∈Γbad

pSi
1
(zi)−

u∑
i,j=1

∑
zi,zj∈Γbad

pSi
1
(zi) · pSj (zj)

≤
∑

z∈Ωu\Γu
good

pS1
(z) ≤

u∑
i=1

∑
zi∈Γbad

pSi
1
(zi)

11



Putting it together, we are now ready to bound the total variation of pS0
(·)

and pS1
(·) using Lemma 1:

∥pS1
(·)− pS0

(·)∥ =
∑
z∈Ωu

max{pS0
(z)− pS1

(z), 0}

=
∑

z∈Γu
good

max{pS0
(z)− pS1

(z), 0}+
∑

z∈Ωu\Γu
good

max{pS0
(z)− pS1

(z), 0}

≤
∑

z∈Γu
good

|pS1
(z)− pS0

(z)|+ uϵ2

≤
√

2∆KL,Γu
good

(pS1(·), pS0(·)) + 2
∑

z∈Ωu\Γu
good

pS1(z)− pS0(z) + uϵ2

≤

√√√√2∆KL,Γu
good

(pS1(·), pS0(·)) + 2u

( ∑
z∈Γbad

pS1
1
(z)− pS1

0
(z)

)
+ 2

(
u

2

) ∑
z∈Γbad

pS1
0
(z)2 + uϵ2

≤

√√√√2∆KL,Γu
good

(pS1
(·), pS0

(·)) + 2u

( ∑
z∈Γbad

pS1
1
(z)− pS1

0
(z)

)
+ u2ϵ22 + uϵ2

≤

√√√√2∆KL,Γu
good

(pS1
(·), pS0

(·)) + 2u

( ∑
z∈Γbad

pS1
1
(z)− pS1

0
(z)

)
+ 2uϵ2

We next rearrange the (partial) KL-divergence term with respect to one
random system S1. It follows that

∆KL,Γu
good

(pS1(·), pS0(·)) =
∑

z∈Γu
good

pS1(z) ln

(
pS1

(z)

pS0(z)

)

=
∑

z=(z1,...,zu)∈Γu
good

pS1(z) ln

(
u∏

i=1

pSi
1
(zi)

pSi
0
(zi)

)

=
∑

z=(z1,...,zu)∈Γu
good

u∑
i=1

pS1(z) ln

(
pSi

1
(zi)

pSi
0
(zi)

)

≤
u∑

i=1

∑
z=(z1,...,zu)∈Γu

good

pS1(z) ln

(
pSi

1
(zi)

pSi
0
(zi)

)

=

u∑
i=1

∑
zi∈Γgood

pSi
1
(zi) ln

(
pSi

1
(zi)

pSi
0
(zi)

)

=

u∑
i=1

∆KL,Γgood

(
pSi

1
(·), pSi

0
(·)
)

= u ·∆KL,Γgood

(
pS1

1
(·), pS1

0
(·)
)
.

12



where the last equality comes from the fact that the distributions of Si are the
same. A remarkable property is that this conversion replaces the u-product term
with the u-summation term. This rearrangement is quite helpful in understand-
ing the security of multiple systems. From Lemma 2, we have

∆KL,Γgood

(
pS1

1
(·), pS1

0
(·)
)
≤

∑
z∈Γgood

(
pS1

1
(z)− pS1

0
(z)
)2

pS1
0
(z)

−
∑

z∈Γbad

(
pS1

1
(z)− pS1

0
(z)
)

≤
∑

z∈Γgood

pS1
0
(z)ϵ1(z)

2 −
∑

z∈Γbad

(
pS1

1
(z)− pS1

0
(z)
)

≤ Ex
[
ϵ1(z)

2
]
−
∑

z∈Γbad

(
pS1

1
(z)− pS1

0
(z)
)
.

Putting it together, we have

∥pS1(·)− pS0(·)∥ ≤
√
2uEx [ϵ1(z)2] + 2uϵ2 .

where the expectation is taken over the distribution of ZS1
0
. In summary, we can

prove the following theorem.

Theorem 1. Suppose whenever pS1
1
(·) > 0 then pS1

0
(·) > 0. Let Ω = Γgood⊔Γbad.

If a function ϵ1(z) and a constant ϵ2 holds the following constraints∣∣∣∣∣pS1
1
(z)

pS1
0
(z)
− 1

∣∣∣∣∣ ≤ ϵ1(z)

for all attainable z ∈ Γgood and

Pr
[
ZS1

0
∈ Γbad

]
≤ ϵ2,

one has
∥pS1(·)− pS0(·)∥ ≤

√
2uEx [ϵ1(z)2] + 2uϵ2

where the expectation is taken over the distribution of ZS1
0
.

Remark. Many typical proofs based on Patarin’s H-Coefficient technique shows

pS1
1
(z)

pS1
0
(z)
≥ 1− ϵ(z)

for almost all z as good transcripts. Compared to the prior one, we need one
step more to apply our method:

pS1
1
(z)

pS1
0
(z)
≤ 1 + ϵ(z).

Indeed, there is a lack of such analysis due to no requirement for the previous
proofs. In the following section, we show that the ϵ(z) is well bounded for highly
secure constructions.
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4 Upper Bounds from Mirror Theory

For any two systems S0 and S1 except for pS1
0
(z) = 0, it is obvious that there

exists ϵ(z) such that ∣∣∣∣∣pS1
1
(z)

pS1
0
(z)
− 1

∣∣∣∣∣ ≤ ϵ(z).

From the result of the Section 3, it is desirable to show that the ϵ(z) function is
as small as possible so that the two systems are indistinguishable. In this section,
we aim to serve a useful theorem to sharply bound the ratio of the probabilities
when S0 is an ideal world and S1 is a real world via revisiting the Mirror theory.

Definitions and Notations. For fixed positive integers q, qP , qQ, let P =
{P1, . . . , PqP } and Q = {Q1, . . . , QqQ} be sets of unknowns such that Pi, Qj ∈
{0, 1}n for i ∈ [qP ] and j ∈ [qQ]. For a sequence of constants (λ1, . . . , λq) ∈
({0, 1}n)q, consider a system of equations

Γ :


PφP (1)⊕QφQ(1) = λ1,

PφP (2)⊕QφQ(2) = λ2,
...

PφP (q)⊕QφQ(q) = λq,

where φP and φQ are two surjective index mappings such that

φP : {1, . . . , q} → {1, . . . , qP } ,
φQ : {1, . . . , q} → {1, . . . , qQ} ,

for qP , qQ ≤ q. This equation system Γ is then uniquely determined by (φP , φQ,
(λ1, . . . , λq)).

We will represent this system of equations Γ by a simple graph containing no
loops or multiple edges. Let G(Γ ) = (V, E) be a graph where V = P ⊔Q, and let
PQ ∈ E be an edge for P , Q ∈ V. If this edge is labeled with λi for i = 1, . . . , q,
then it represents the equation P ⊕Q = λi. We will sometimes write P

⋆
−Q when

an edge PQ is labeled with ⋆ ∈ {λ1, . . . , λq}. Here, G(Γ ) contains no isolated
vertex; every vertex is incident with at least one edge.

As a natural extension of the label over an edge, we consider a trail of ℓ-length

L : V0

λ1

− V1

λ2

− · · ·
λℓ

− Vℓ

in G(Γ ), its label is defined as

λ(L) def
= λ1⊕λ2⊕ · · · ⊕λℓ.

Since we only consider acyclic graphs, the label between two vertices is uniquely
determined, and thus the following definition is well-defined: λ(V0, Vℓ)

def
= λ(L).
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When there is no trail between V and V ′, we denote λ(V, V ′)
def
= ⊥. Additionally,

a connected path is called a component. For a component C, we let ξ(C) denote
the number of vertices in C. We then define the maximum component size ξmax

def
=

max{ξ(C) | C ∈ G(Γ )}. We also define two notions related to the graph:

Definition 1 (acyclic). In case G contains no cycle, we call the graph acyclic.

Definition 2 (non-degenerate). λ(L) ̸= 0 for any trails L of even length in
G.

Any graph G(Γ ) which is acyclic and non-degenerate will be called a nice graph [30,
16]. For a nice graph G(Γ ), G is a bipartite graph with no cycle, where every
edge connects a vertex in P to one in Q. So G is decomposed into its connected
components, all of which are trees; let

G = C1 ⊔ C2 ⊔ · · · ⊔ Cα ⊔ Cα+1 ⊔ Cα+2 ⊔ · · · ⊔ Cα+β

for some α, β ≥ 0, where C1, . . . , Cα denote the components of size greater than 2,
and Cα+1, . . . , Cα+β denote the components of size 2. We also define the following
sets for i ∈ [α+ β] to state our theorem.

Ri
def
=
{
({V1, V

′
1}, {V2, V

′
2}) ∈ Ci

∗2 × Cj∗2
∣∣ j < i and λ(V1, V

′
1) = λ(V2, V

′
2)
}
.

Any solution to G(Γ ) (identifying G(Γ ) with its corresponding system of equa-
tions) should satisfy all the equations in Γ , while all the variables in P (resp. Q)
should take on different values. The number of solutions to G(Γ ) will be denoted
h(G(Γ )). We remark that if we assign any value to a vertex P , then the labeled
edges determine the values of all the other vertices in the component containing
P , where the assignment is unique since G(Γ ) contains no cycle. The values in
the same part are all distinct since λ(L) ̸= 0 for any trail L of even length. For
any nice graph, we can then bound the term h(G)Nq

(N)qP (N)qQ
, which will be appeared

in computing the ratio
pS1

1
(z)

pS1
0
(z) . To be precise, we have the following:

Theorem 2. Let G be a nice graph, let q denote the number of edges of G, and
let qc denote the number of edges of C1 ⊔ · · · ⊔ Cα of size > 2. We then have

(a) When q ≤ 2n

4ξmax
and 0 < qc ≤ q, it holds that

∣∣∣∣ h(G)Nq

(N)qP (N)qQ
− 1

∣∣∣∣ ≤ exp

(
2
∑α+β

i=1 |Ri|+ 2ξmaxqc
N

+
4ξmaxqcq

2

N2
+

20ξmaxq
4

N3

)
− 1 ,

(b) When q ≤ 2n

13 and qc = 0, it holds that∣∣∣∣ h(G)Nq

(N)qP (N)qQ
− 1

∣∣∣∣ ≤ exp

(
3
∑α+β

i=1 |Ri|
N

+
2q2

N2
+

6(n+ 1)2

N

)
− 1 .
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The full proof is given in Supplementary Material D. From Theorem 2, the below
corollary immediately follows from the fact eX − 1 ≤ 2X for X ≤ 1.

Corollary 1. With the same notation of Theorem 2, we have

(a) When q ≤ 2n

4ξmax
, 0 < qc ≤ q, and

2
∑α+β

i=1 |Ri|+ 2ξmaxqc
N

+
4ξmaxqcq

2

N2
+

20ξmaxq
4

N3
≤ 1 ,

it holds that∣∣∣∣ h(G)Nq

(N)qP (N)qQ
− 1

∣∣∣∣ ≤ 4
∑α+β

i=1 |Ri|+ 4ξmaxqc
N

+
8ξmaxqcq

2

N2
+

40ξmaxq
4

N3
;

(b) When q ≤ 2n

13 , qc = 0, and

3
∑α+β

i=1 |Ri|
N

+
2q2

N2
+

6(n+ 1)2

N
≤ 1 ,

it holds that∣∣∣∣ h(G)Nq

(N)qP (N)qQ
− 1

∣∣∣∣ ≤ 6
∑α+β

i=1 |Ri|
N

+
4q2

N2
+

12(n+ 1)2

N
.

Proof Overview. We give here a brief overview of the proof. The proof is almost
similar to that of the existing Mirror theory. To be precise, the former proof
shows that h(G)Nq

(N)qP (N)qQ
−1 has a lower bound. We complete the proof by showing

that h(G)Nq

(N)qP (N)qQ
− 1 has an upper bound in the same vein. To prove it, we count

the number of solutions in each component involved in G = ⊔α+β
i=1 Ci as shown

by the lower bound. We do that first for the part consisting of components
of size greater than two and then for the part of components of size two. We
abuse the aforementioned notation h(·) for ease of description. Let h(i) be the
number of solutions to ⊔ij=1Cj and h(0) = 1. Under this notation, it holds that
h(α + β) = h(G). The key strategy is to show that h(i + 1) is bounded by
a function of h(i). Then the term h(G) = h(α + β) can be computed by the
recursive relation between h(i) and h(i+ 1).

In order to perform a sharp estimation, we also need to bound a term, namely
h′(P,Q), that appeared in the recursive relation tightly. Depending on whether
there are large components (whether qc > 0), we can distinguish the analysis of
h′(P,Q) into two cases, namely for qc > 0 and qc = 0. For the case qc = 0, we
reuse some results of [17] to obtain optimal bound. ⊓⊔

5 Multi-User Security of XoP

In this section, we consider the XoP construction that was first proposed by
Bellare et al. [5]. This construction is used to obtain a secure pseudorandom
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function from a block cipher. Here, in particular, we consider a version that
involves two independent permutations.

Let n ∈ N and P,Q←$ Perm(n). One can define XoP : Perm(n)×Perm(n)×
{0, 1}n → {0, 1}n as the generic construction that takes permutations P,Q ∈
Perm(n) as keys, and on input X it returns

XoP(X)
def
= P(X)⊕Q(X) .

Theorem 3 below gives the new mu-prf security of XoP.

Theorem 3. Let n, u and qmax be positive integers such that n > 10 and qmax ≤
2n

4n . Then one has

Advmu-prf
XoP (u, qmax) ≤

10u
1
2 qmax

2

22n
+

17u
1
2 (n+ 1)2

2n
.

The upper bound of adversarial advantage to distinguish between (multi-user)
XoP and the uniformly random function in terms of the threshold number of
queries is given by O

(√
uqmax

2
/22n

)
. This is strictly better bound to compare

with the previous result of Choi et al. [14] by setting m = n for SaT2 at ASI-
ACRYPT 2022, where the result is O

(√
uqmax

1.5
/21.5n

)
. The difference between

the above bounds comes from the difference between single-user bounds obtained
by the Mirror theory and the χ2 method. This way, the Squared-Ratio method
can prove multi-user security tighter than previous analyses.

Proof. Suppose that a distinguisher D makes qmax queries Xi ∈ {0, 1}n, obtain-
ing the corresponding responses Zi ∈ {0, 1}n for i = 1, . . . , qmax. In this way, D
obtains a transcript

τ = ((X1, Z1), . . . , (Xqmax
, Zqmax

)).

In the real world, Pi
def
= P(Xi) and Qi

def
= Q(Xi) should be a solution to the

following system of equations.
P1⊕Q1 = Z1,

P2⊕Q2 = Z2,
...

Pqmax ⊕Qqmax = Zqmax .

“Bad” Transcript Analysis. To upper-bound |Ri| corresponding to this sys-

tem of equations for any i ∈ [qmax], we define a bad event as follows:

– bad⇔ ∃(i1, i2 . . . , in) ∈ [qmax]
∗n such that Zi1 = Zi2 = · · · = Zin .
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For this bad event, we have

Pr [bad] =

(
qmax

n

)
2n(n−1)

≤ qmax
n

2n2 =
(qmax

2n

)n
. (3)

“Good” Transcript Analysis. Let Tre and Tid be random variables follow-

ing the distribution of the transcripts in the real world and the ideal world,
respectively. Then we have

Pr [Tre = τ ]

Pr [Tid = τ ]
=

h(G(τ))2nqmax

(2n)qmax
(2n)qmax

.

Furthermore, since we ignore the “Bad” transcript, it holds that |Ri| ≤ n for all
indices i. It then implies that

3
∑qmax

i=1 |Ri|
2n

+
2qmax

2

22n
+

6(n+ 1)2

2n
≤ 3nqmax

2n
+

2qmax
2

22n
+

6(n+ 1)2

2n
≤ 1

for n > 10 and qmax ≤ 2n

4n . Therefore, by Corollary 1,∣∣∣∣ h(G)2nqmax

(2n)|P|(2n)|Q|
− 1

∣∣∣∣ ≤ 6
∑qmax

i=1 |Ri|
2n

+
4qmax

2

22n
+

12(n+ 1)2

2n
.

Concluding the proof. Therefore, we can define

ϵ1(τ) =
6
∑qmax

i=1 |Ri|
2n

+
4qmax

2

22n
+

12(n+ 1)2

2n
,

and ϵ2 =
(
qmax

2n

)n. To apply the Theorem 1, we need to bound the expectation
of ϵ1(τ)2 where the expectation is taken over the distribution of the ideal world.
To be precise, we have

Ex
[
ϵ1(τ)

2
]
=

36

22n
Ex

(qmax∑
i=1

|Ri|

)2
+

(
4qmax

2

22n
+

12(n+ 1)2

2n

)2

+
12

2n
·
(
4qmax

2

22n
+

12(n+ 1)2

2n

)
·Ex

[
qmax∑
i=1

|Ri|

]
. (4)

On the other hand, by Lemma 3, we have

Ex

[
qmax∑
i=1

|Ri|

]
≤ qmax

2

2n+1
,

Ex

(qmax∑
i=1

|Ri|

)2
 ≤ qmax

2

2n+1
+

qmax
4

22n+2
.
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Using the derived bounds in (4), we obtain

Ex
[
ϵ1(τ)

2
]
≤ 49qmax

4

24n
+

18qmax
2

23n
+

168qmax
2(n+ 1)2

23n
+

144(n+ 1)4

22n

≤ 49qmax
4

24n
+

169qmax
2(n+ 1)2

23n
+

144(n+ 1)4

22n
. (5)

By utilizing (5) and (3) in the Theorem 1, we have

Advmu-prf
XoP (u, qmax) ≤

√
2uEx [ϵ1(τ)2] + 2uϵ2(τ)

≤

√
2u

(
49qmax

4

24n
+

169qmax
2(n+ 1)2

23n
+

144(n+ 1)4

22n

)
+ 2u

(qmax

2n

)n
≤
√

98uqmax
4

24n
+

√
288u(n+ 1)4

22n
+ 2u

(qmax

2n

)n
≤ 10u

1
2 qmax

2

22n
+

17u
1
2 (n+ 1)2

2n
.

This completes the proof. ⊓⊔

6 Multi-User Security of EDM

In this section, we consider the EDM construction proposed by Cogliati and
Seurin [20]. Let n ∈ N and P,Q ←$ Perm(n). One can define EDM : Perm(n) ×
Perm(n)×{0, 1}n → {0, 1}n as the generic construction that takes permutations
P,Q ∈ Perm(n) as keys, and on input X it returns

EDM(X)
def
= Q(P(X)⊕X) .

Theorem 4 below gives the new mu-prf security of EDM.

Theorem 4. Let n, u and qmax be positive integers such that n > 5 and qmax ≤
23n/4

4n . Then one has

Advmu-prf
EDM (u, qmax) ≤

9u1/2nqmax
3

22.5n
+

122u1/2nqmax
4

23n
.

Therefore, the upper bound of adversarial advantage to distinguish between
(multi-user) EDM and the uniformly random function in terms of the threshold
number of queries is given by O

(
n
√
uqmax

4
/23n

)
, significantly better than the

result of Dai et al. [21] at CRYPTO 2017 with the hybrid argument: O
(
uq2/21.5n

)
.

Note that for the case where q = uqmax, the result of Dai et al. only gives us
O
(
u3qmax

2/21.5n
)
, which makes EDM insecure even for qmax = O(1) when the

number of users is u = O
(
2

n
2

)
. On the other hand, our bound ensures that EDM

is still beyond birthday-bound secure with the same u.
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Proof. Suppose that a distinguisher D makes qmax queries Xi ∈ {0, 1}n, obtain-
ing the corresponding responses Zi ∈ {0, 1}n for i = 1, . . . , qmax. In this way, D
obtains a transcript

τ = ((X1, Z1), . . . , (Xqmax
, Zqmax

)).

In the real world, Pi
def
= P(Xi) and Qi

def
= Q−1(Zi) should be a solution to the

following system of equations while regarding Q−1 as a permutation.
P1⊕Q1 = X1,

P2⊕Q2 = X2,
...

Pqmax ⊕Qqmax = Xqmax .

“Bad” Transcript Analysis. To upper-bound ξmax (bad1),
∑α+β

i=1 |Ri| (bad2),
and qc (bad3), for a fixed A > 0, we define bad events as follows:

– bad1 ⇔ ∃(i1, i2 . . . , in) ∈ [qmax]
∗n such that Zi1 = Zi2 = · · · = Zin ,

– bad2 ⇔ ∃(i1, i′1, i2, i′2 . . . , in−1, i
′
n−1) ∈ [qmax]

∗(2n−2) such that Xi1 ⊕Xi′1
=

Xij ⊕Xi′j
and Zij = Zi′j

for all j ∈ [n− 1] ,

– bad3 ⇔ qc ≥ qmax
2

2n+1 + 22n

8nqmax
2 .

1. We have

Pr [bad1] =

(
qmax

n

)
2n(n−1)

≤ qmax
n

2n2 =
(qmax

2n

)n
.

2. Let B = {(i1, i′1, i2, i′2 . . . , in−1, i
′
n−1) ∈ [qmax]

∗(2n−2) | Xi1 ⊕Xi′1
= Xij ⊕Xi′j

for all j ∈ [n− 1]}, we have

Pr [bad2] =
|B|

2n(n−2)
≤

2n
(
qmax/2
n−1

)
2n(n−2)

≤
(qmax

2n

)n−1

.

3. By Lemma 3 with A = 22n

8nqmax
2 , we have

Pr [bad3] ≤
32n2qmax

6

25n
+

16n2qmax
8

26n
.

In conclusion, we have

Pr[bad1 ∨ bad2 ∨ bad3] ≤ 2
(qmax

2n

)n−1

+
32n2qmax

6

25n
+

16n2qmax
8

26n
.

“Good” Transcript Analysis. Note that

Pr [Tre = τ ]

Pr [Tid = τ ]
=

h(G(τ))2nqmax

(2n)|P|(2n)|Q|
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and
∑α

i=1 (ξ(Ci)− 1) = qc. In order to upper-bound |Ri|, we distinguish into
following two cases, namely when i ∈ [α] and i ∈ [α+1, α+β]. We first consider
i ∈ [α], note that we have ξmax ≤ n by ¬bad1, hence there are at most(

ξ(Ci) + 1

2

)
≤ (n+ 1)ξ(Ci)

2

ways to choose trails of i-th component. For each of those trails, there can be at
most n− 1 trails with the same label by ¬bad2. So we have

|Ri| ≤
(n+ 1)ξ(Ci)

2
· (n− 1) ≤ n2ξ(Ci)

2
.

Now we consider i ∈ [α+1, α+β], note that since we are considering the nonce-
respecting adversary, two nonces can never collide, therefore the label values of
two single-edge trails cannot be the same. Hence there are at most

α∑
k=1

(
ξ(Ck)
2

)
≤ nqc

2

trails of two joint edges (in the first α components) of which the label can be
the same as the unique label of the i-th component (consists of one edge). Also,
a label of any trail of two joint edges cannot simultaneously collide with the
labels of two different components i and j, for any j ̸= i ∈ [α+ 1, α+ β]. Since
that means the unique label values of components i and j are the same, which
contradicts the nonce-respecting assumption. This observation makes us have

α+β∑
i=α+1

|Ri| ≤
nqc
2

.

It follows that

α+β∑
i=1

|Ri| ≤

(
α∑

i=1

n2ξ(Ci)
2

)
+

nqc
2
≤ 3n2qc

4
+

nqc
2

.

Furthermore, by ¬bad3 and n > 5, we also have

2
∑α+β

i=1 |Ri|+ 2nqc
2n

+
4nqcqmax

2

22n
+

20nqmax
4

23n

≤ 2n2qc
2n

+
4nqcqmax

2

22n
+

20nqmax
4

23n
≤ 1 .

By Corollary 1 and the above, we have∣∣∣∣ h(G)2nq

(2n)|P|(2n)|Q|
− 1

∣∣∣∣ ≤ 4n2qc
2n

+
8nqcqmax

2

22n
+

40nqmax
4

23n
.

Concluding the proof. Hence we can set
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ϵ1(τ) =
4n2qc
2n

+
8nqcqmax

2

22n
+

40nqmax
4

23n
,

and

ϵ2 = 2
(qmax

2n

)n−1

+
32n2qmax

6

25n
+

16n2qmax
8

26n

for Theorem 1. We need to compute the expectation of ϵ1(τ)2 where the expec-
tation is taken over the distribution of the ideal world. It gives an identity:

Ex
[
ϵ1(τ)

2
]
=

(
4n2

2n
+

8nqmax
2

22n

)2

Ex
[
q2c
]
+

1600n2qmax
8

26n

+ 2

(
4n2

2n
+

8nqmax
2

22n

)
40nqmax

4

23n
Ex [qc] .

By Lemma 3, we have

Ex [qc] ≤
qmax

2

2n+1
,

Ex
[
q2c
]
≤ qmax

2

2n+1
+

qmax
4

22n+2

Combining it together, it implies that:

Ex
[
ϵ1(τ)

2
]
=

(
qmax

2

2n+1
+

qmax
4

22n+2

)(
4n2

2n
+

8nqmax
2

22n

)2

+
1600n2qmax

8

26n

+
qmax

2

2n+1

(
4n2

2n
+

8nqmax
2

22n

)
80nqmax

4

23n
. (6)

Under the constraint qmax ≤ 23n/4

4n , it holds that 4n2

2n + 8nqmax
2

22n ≤ 9nqmax
2

22n ≤ 1.
Using the inequality, the equality (6) can be bounded by:

Ex
[
ϵ1(τ)

2
]
≤
(
qmax

2

2n+1
+

qmax
4

22n+2

)
81n2qmax

4

24n
+

360n2qmax
8

26n
+

1600n2qmax
8

26n
.

The Theorem 1 then gives

Advmu-prf
EDM (u, qmax) ≤

(
qmax

2n/2
+

qmax
2

2n+1

)
9
√
2unqmax

2

22n
+

√
720unqmax

4

23n

+

√
3200unqmax

4

23n
+ 4u

(qmax

2n

)n−1

+
64un2qmax

6

25n
+

32un2qmax
8

26n
.

When qmax ≤ 23n/4

4n , it can be bounded by

9u1/2nqmax
3

22.5n
+

122u1/2nqmax
4

23n
.

This completes the proof. ⊓⊔
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7 Multi-User Security of a Variant of nEHtM in the
Nonce-Respecting Setting

In this section, we consider mu-prf security of a variant of nEHtM proposed by
Dutta et al. [23], based on an n-bit δ-AXU hash function H with a hash key
Kh and two random permutations P and Q. A tag T is an output of nEHtM
generated by a message M with an n-bit nonce N :

T = P (N)⊕Q(HKh
(M)⊕N).

We will consider a nonce-respecting setting that assumes nonces never repeat.
we have the following theorem.

Theorem 5. Let δ > 0, and let H : K × M → {0, 1}n be a δ-almost AXU
hash function. For positive integers u, qmax, and L such that 4 ≤ n ≤ L ≤
min

{
2n

4qmax
, 23n

20qmax
4

}
, we have

Advmu-prf
nEHtM(u, qmax) ≤

4(2u)1/2

2n

(
qmax

2n/2
+

qmax
2

2n+1

)
+

47u1/2(n+ 1)Lqmax
2δ

2n

+
36u1/2Lqmax

4δ

22n
+

2uqmax
2δ

2n
+

4uq2maxδ

L2
+ 2u

(
qmaxL

2n

)n−1

+
65u1/2Lqmax

4

23n
.

Suppose that δ = O
(

ℓ
2n

)
for a constant ℓ. We can now optimize the advantage

over L in the Theorem 5 via arithmetic-geometric mean inequality. In other

words, we can set the L to
(

2n
√
u

n

)1/3
and

(
22n

√
u

q2max

)1/3
for sufficiently small u,

respectively. We thus have the following corollary:

Corollary 2. Assume δ = O
(

ℓ
2n

)
for a constant ℓ. Then one has

Advmu-prf
nEHtM(u, qmax) ≤


O

(
ℓuqmax

2

22n + ℓ(un)
2
3 qmax

2

2
5n
3

)
if qmax ≤ O(2

n
2 )

O

(
ℓuqmax

2

22n + ℓu
2
3 qmax

10
3

2
7n
3

)
if qmax ≥ O(2

n
2 )

.

Since the previous bound of two permutations case [13] is slightly worst than
that of a single permutation [16] in the multi-user setting, we will recall the
result by Choi et al. [16] for comparison (by ignoring the nonce-misuse terms):

uq

2n
+

uℓ
1
2 q2

2
3n
2

,

where qmax ≤ q ≤ u ·qmax in our notation. Figure 1 shows the results of graphing
our bounds and the previous bounds as functions of log2(u): the level of security
given by Choi et al. is in the shaded area of Figure 1 and depends on the value
of q. For example, fixing log2(u) = n/2, the security bound of Choi et al. lies
between O(1) (for q = u · qmax) and O(2

n
2 ) (for q = qmax). We see that our

new bound improves over the result of Choi et al. [16] when the number of users
becomes large, and is superior for u ≥ O

(
2

n
26

)
and 2

n
26 ≈ 30.3 if n = 128 and

q = u · qmax.
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log2 un
26

n
6

n
2 n 2n

0

n
2

7n
10

3n
4

n

log2 qmax Ours
q = qmax

q = uqmax

Fig. 1: Comparison of the security bounds (in terms of the threshold number of
queries per user) as functions of log2 u. The solid line represents our bounds,
and the dashed line (resp. the dash-dotted line) represents the previous bound
by the hybrid argument where q = qmax (resp. q = u · qmax). We neglect the
logarithmic term n.

Proof (of Theorem 5). Suppose that a distinguisherDmakes qmax queries (Ni,Mi),
obtaining the corresponding responses Ti ∈ {0, 1}n for i = 1, . . . , qmax. Recall
that Ni ̸= Nj if i ̸= j for all i, j ∈ [qmax] by the nonce-respecting assumption. D
obtains a transcript

τ = ((N1,M1, T1), . . . , (Nqmax
,Mqmax

, Tqmax
),Kh),

where Kh is given for free at the end of the attack. From τ , one can fix Xi
def
=

HKh
(Mi)⊕Ni for i = 1, . . . , qmax. In the real world, Pi

def
= P(Ni) and Qi

def
=

Q(Xi) should be a solution to the following system of equations.
P1⊕Q1 = T1,

P2⊕Q2 = T2,
...

Pqmax
⊕Qqmax

= Tqmax
.

“Bad” Transcript Analysis. Let L be an arbitrary number such that 4 ≤

n ≤ L ≤ min
{

2n

4qmax
, 23n

20qmax
4

}
. To satisfy the non-degeneracy property (bad1)

and to upper-bound ξmax (bad2),
∑α+β

i=1 |Ri| (bad3 and bad4) and qc (bad5), we
define bad events as follows:

– bad1 ⇔ there exists (i, j) ∈ [qmax]
∗2 such that Xi = Xj and Ti = Tj ;

– bad2 ⇔ ∃(i1, i2 . . . , iL) ∈ [qmax]
∗L such that Xi1 = Xi2 = · · · = XiL ,

– bad3 ⇔ ∃(i1, i2, . . . , in) ∈ [qmax]
∗n such that Ti1 = Ti2 = · · · = Tin ,

– bad4 ⇔ ∃(i1, i′1, i2, i′2 . . . , in−1, i
′
n−1) ∈ [qmax]

∗2n−2 such that Ti1 ⊕Ti′1
=

Tij ⊕Ti′j
and Xij = Xi′j

for all j ∈ [n− 1].
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– bad5 ⇔ qc ≥ qmax
2

2n+1 + 22n

4Lqmax
2 .

1. For (i, j) ∈ [qmax]
∗2 such that Xi = Xj , since Ni ̸= Nj , Pr [Ti = Tj ] =

1
2n in

the ideal world. There are at most q2maxδ pairs (i, j), and thus

Pr [bad1] ≤
qmax

2δ

2n
.

2. Let Col be the number of pairs (i, j) ∈ [qmax]
∗2 such that Xi = Xj and i < j.

Since Ex [Col] ≤ q2maxδ
2 and (Ni,Mi) ̸= (Nj ,Mj) for all i ̸= j, we can bound

the probability that bad2 happens as

Pr [bad2] = Pr [ξmax − 1 ≥ L] = Pr
[
(ξmax − 1)

2 ≥ L2
]

≤ Pr

[
α∑

i=1

(ξ(Ci)− 1)
2 ≥ L2

]

≤ Pr

[
2Col+

α∑
i=1

(ξ(Ci)− 1) ≥ L2

]

≤ Pr
[
4Col ≥ L2

]
≤ 2q2maxδ

L2
.

Note that this is the same technique as Corollary 4.1. in Jha and Nandi [28],
where our result relies on the δ-AXU property instead of the almost universal
property.

3. We have

Pr [bad3] =

(
qmax

n

)
2n(n−1)

≤ qmax
n

2n2 =
(qmax

2n

)n
.

4. We will bound the probability of bad4 under the condition of ¬bad2. Let B =
{(i1, i′1, i2, i′2 . . . , in−1, i

′
n−1) ∈ [qmax]

∗(2n−2) | Xij = Xi′j
for all j ∈ [n − 1]}.

By ¬bad2, we have

|B| ≤
(
qmax

n− 1

)
(L− 1)n−1 ≤ (qmax(L− 1))

n−1

2n
.

Thus we have

Pr
[
Ti1 ⊕Ti′1

= Tij ⊕Ti′j

]
=

1

2n

and

Pr [bad4 | ¬bad2] =
|B|

2n(n−2)
≤
(
qmax(L− 1)

2n

)n−1

.

5. By Lemma 3 with A = 22n

4Lqmax
2 , we have

Pr [bad5] ≤
2L2qmax

6

25n
+

64L2qmax
8

26n
.
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In conclusion, we have

Pr[bad1 ∨ bad2 ∨ bad3 ∨ bad4 ∨ bad5]

≤ Pr[bad1] + Pr[bad2] + Pr[bad3] + Pr[bad4 | ¬bad2] + Pr[bad5]

≤ qmax
2δ

2n
+

2q2maxδ

L2
+
(qmax

2n

)n
+

(
qmax(L− 1)

2n

)n−1

+
2Lqmax

6

25n
+

4L2qmax
8

26n

≤ qmax
2δ

2n
+

2q2maxδ

L2
+

(
qmaxL

2n

)n−1

+
2L2qmax

6

25n
+

4L2qmax
8

26n
.

“Good” Transcript Analysis. Note that

Pr [Tre = τ ]

Pr [Tid = τ ]
=

h(G(τ))Nqmax

(N)|P|(N)|Q|

and we denote the transcript graph G(τ) = (V, E). We define the following sets

Si =
{
({V1, V

′
1}, {V2, V

′
2}) ∈ Ri

∣∣∣V1V ′
1 , V2V ′

2 ∈ E
}

,

Di = Ri \ Si .

Since |Ri| = |Si| + |Di|, we will first focus on upper-bounding |Di|. Recall that∑α
i=1 (ξ(Ci)− 1) = qc. In order to upper-bound |Di|, we distinguish into follow-

ing two cases, namely when i ∈ [α] and i ∈ [α + 1, α + β]. We first consider
i ∈ [α], note that we have ξmax ≤ L by ¬bad2, hence there are at most(

ξ(Ci) + 1

2

)
≤ (L+ 1)ξ(Ci)

2

ways to choose trails of i-th component. By ¬bad3 and ¬bad4, if the chosen trail
consists of two edges, there are at most n trails of a single edge and (n−2) trails
of two joint edges with the same label to the chosen trail. Similarly, if the chosen
trail consists of a single edge, there are at most (n− 1) trails of two joint edges.
For each case, there can be at most (2n − 2) trails with the same label. So we
have

|Di| ≤
(L+ 1)ξ(Ci)

2
· (2n− 2) ≤ nLξ(Ci)

since L ≥ n. Now we consider i ∈ [α+ 1, α+ β], note that there are at most
α∑

k=1

(
ξ(Ck)
2

)
≤ Lqc

2

trails of two joint edges (in the first α components) of which the label can be
the same as the unique label of the i-th component (consists of one edge). Also,
by ¬bad3, there are at most n different components in [α+ 1, α+ β] that share
the same label value (single edge components) with the label of i-th component.
This observation makes us have

α+β∑
i=α+1

|Di| ≤
nLqc
2

.
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It follows that

α+β∑
i=1

|Di| ≤

(
α∑

i=1

nLξ(Ci)

)
+

nLqc
2
≤ 3nLqc

2
+

nLqc
2
≤ 2nLqc .

Furthermore, by ¬bad3 and ¬bad5, we also have 4 ≤ n ≤ L ≤ min
{

2n

4qmax
, 23n

20qmax
4

}
2
∑α+β

i=1 |Si|
2n

+
2(n+ 1)Lqc

2n
+

4Lqcqmax
2

22n
+

20Lqmax
4

23n

≤ 2nqmax

2n
+

2(n+ 1)Lqc
2n

+
4Lqcqmax

2

22n
+

20Lqmax
4

23n
≤ 1 .

By Corollary 1 and the above, we have

∣∣∣∣ h(G)2nqmax

(2n)|P|(2n)|Q|
− 1

∣∣∣∣ ≤ 4
∑α+β

i=1 |Si|
2n

+
4(n+ 1)Lqc

2n
+

8Lqcqmax
2

22n
+

40Lqmax
4

23n
.

Concluding the proof. Now we can set

ϵ1(τ) =
4
∑α+β

i=1 |Si|
2n

+
4(n+ 1)Lqc

2n
+

8Lqcqmax
2

22n
+

40Lqmax
4

23n
,

and

ϵ2 =
qmax

2δ

2n
+

2q2δ

L2
+

(
qmaxL

2n

)n−1

+
2L2qmax

6

25n
+

4L2qmax
8

26n

for Theorem 1. We need to compute the expectation of ϵ1(τ)
2 where the ex-

pectation is taken over the distribution of the ideal world. To be precise, we
have

Ex
[
ϵ1(τ)

2
]
=

16

22n
Ex

(α+β∑
i=1

|Si|

)2
+

(
4(n+ 1)L

2n
+

8Lqmax
2

22n

)2

Ex
[
q2c
]

+
8

2n

(
4(n+ 1)L

2n
+

8Lqmax
2

22n

)
Ex

[
qc

α+β∑
i=1

|Si|

]
+

1600L2qmax
8

26n

+
8

2n
· 40Lqmax

4

23n
Ex

[
α+β∑
i=1

|Si|

]
+

(
4(n+ 1)L

2n
+

8Lqmax
2

22n

)
80Lqmax

4

23n
Ex [qc] ,
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By Lemma 3, we have

Ex

[
α+β∑
i=1

|Si|

]
≤ qmax

2

2n+1
,

Ex

(α+β∑
i=1

|Si|

)2
 ≤ qmax

2

2n+1
+

qmax
4

22n+2
,

Ex [qc] ≤
qmax

2δ

2
,

Ex
[
q2c
]
≤ qmax

2δ

2
+

qmax
4δ2

4
.

Note that

Ex

[
qc

α+β∑
i=1

|Si|

]
= Ex [qc]Ex

[
α+β∑
i=1

|Si|

]
≤ qmax

4δ

2n+2
,

since qc and Si are independent in the ideal world. Combining it together, it
implies that:

Ex
[
ϵ1(τ)

2
]
≤ 16

22n

(
qmax

2

2n+1
+

qmax
4

22n+2

)
+

(
4(n+ 1)L

2n
+

8Lqmax
2

22n

)
2qmax

4δ

22n

+

(
4(n+ 1)L

2n
+

8Lqmax
2

22n

)2(
qmax

2δ

2
+

qmax
4δ2

4

)
+

160Lqmax
6

25n

+

(
4(n+ 1)L

2n
+

8Lqmax
2

22n

)
40Lqmax

6δ

23n
+

1600L2qmax
8

26n
,

and Theorem 1 then gives

Advmu-prf
nEHtM(u, qmax) ≤

4
√
2u

2n

(
qmax

2n/2
+

qmax
2

2n+1

)
+

4
√

u(n+ 1)Lδqmax
2

21.5n
+

√
32uLδqmax

3

22n

+

(
4
√
2u(n+ 1)L

2n
+

8
√
2uLqmax

2

22n

)(
qmaxδ

1/2 +
qmax

2δ

2

)

+

√
320uLqmax

3

22.5n
+

√
320u(n+ 1)δLqmax

3

22n
+

√
640uδLqmax

4

22.5n
+

√
3200uLqmax

4

23n

+
2uqmax

2δ

2n
+

4uq2maxδ

L2
+ 2u

(
qmaxL

2n

)n−1

+
4uL2qmax

6

25n
+

8uL2qmax
8

26n
.

When L ≤ min
{

2n

4qmax
, 23n

20qmax
4

}
, it can be bounded by

4(2u)1/2

2n

(
qmax

2n/2
+

qmax
2

2n+1

)
+

3u1/2(n+ 1)Lqmax
2δ

2n
+

6u1/2Lqmax
4δ

22n

+
2uqmax

2δ

2n
+

4uq2maxδ

L2
+ 2u

(
qmaxL

2n

)n−1

+
65u1/2Lqmax

4

23n
.

This completes the proof. ⊓⊔
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Supplementary Material

A Proof of Lemma 1

We will need the following relationship in our proofs. Since
∑

x∈Γ P (x) =
∑

x∈Γ Q(x) =
1, we have∑

x∈Γ

(P (x)−Q(x)) = 0⇔
∑
x∈Γ ′

(P (x)−Q(x)) +
∑

x∈Γ\Γ ′

(P (x)−Q(x)) = 0 (7)

Showing Lemma 1 is equivalent to showing that

∆KL,Γ ′ (P,Q) ≥ 1

2

(∑
x∈Γ ′

|P (x)−Q(x)|

)2

−
∑

x∈Γ\Γ ′

(P (x)−Q(x)).

Remark that ∆KL,Γ ′(P,Q) is defined as

∆KL,Γ ′(P,Q) =
∑
x∈Γ ′

P (x) ln

(
P (x)

Q(x)

)

Plugging r(x) = P (x)
Q(x) − 1 ≥ −1 into this equation, we have

∆KL,Γ ′(P,Q) =
∑
x∈Γ ′

Q(x) · (1 + r(x)) · ln(1 + r(x))

=
∑
x∈Γ ′

Q(x) · (1 + r(x)) · ln(1 + r(x))−
∑
x∈Γ

(P (x)−Q(x))

=
∑
x∈Γ ′

Q(x) · ((1 + r(x)) · ln(1 + r(x))− r(x))−
∑

x∈Γ\Γ ′

(P (x)−Q(x)) (8)

using the relationship defined in (7) (since the extra term added is equal to 0).
Furthermore, we can prove the following claim

Claim.

F (r)
def
= (1 + r) · ln(1 + r)− r − r2

2(1 + r/3)
≥ 0

for all r ≥ −14.

The proof of the claim is deferred to the end of the proof.

4 We will define F (−1)
def
= limr→−1+ F (r) = 1

4
since limt→0+ t ln t = 0. This slight

abuse of notation is also used for the definition of KL-divergence.



Using the above claim, we derive the following lower bound for (8)

(8) ≥
∑
x∈Γ ′

Q(x) ·
(

r(x)2

2 (1 + r(x)/3)

)
−

∑
x∈Γ\Γ ′

(P (x)−Q(x))

=
∑
x∈Γ ′

Q(x) ·
(
1

2

Q(x) · |r(x)|2

(Q(x) · (1 + r(x)/3))

)
−

∑
x∈Γ\Γ ′

(P (x)−Q(x))

≥ 1

2

(∑
x∈Γ ′ Q(x) · |r(x)|

)2∑
x∈Γ ′ Q(x) · (1 + r(x)/3)

−
∑

x∈Γ\Γ ′

(P (x)−Q(x)). (9)

where the last inequality is obtained by applying Sedrakyan’s inequality.
On the other hand, from the definition, we have Q(x)·(1+r(x)/3) = 2

3Q(x)+
1
3P (x). It directly implies that

∑
x∈Γ ′ Q(x) · (1 + r(x)/3) =

∑
x∈Γ ′

2
3Q(x) +

1
3P (x) ≤ 1. Hence (9) can be lower bounded by

(9) ≥ 1

2

(∑
x∈Γ ′

Q(x) · |r(x)|

)2

−
∑

x∈Γ\Γ ′

(P (x)−Q(x))

=
1

2

(∑
x∈Γ ′

|P (x)−Q(x)|

)2

−
∑

x∈Γ\Γ ′

(P (x)−Q(x)) .

where the last equality is obtained by substituting r(x) = P (x)
Q(x) −1 into (9). This

completes the proof of Lemma 1.

Proof (of the claim). Remark that

F (r) = (1 + r) · ln(1 + r)− r − r2

2(1 + r/3)
.

We have the following first and second derivatives:

F ′(r) = ln(1 + r)− 3r(6 + r)

2(3 + r)2

and
F ′′(r) =

1

1 + r
− 27

(3 + r)3
.

Note that F ′(0) = F ′′(0) = 0.
Assume that r > 0. One can see that F ′′(r) > 0. By Mean Value Theorem,

there exist r1, r2 ∈ (0, r) such that F (r) = F ′(r1)r and F ′(r1) = F ′′(r2)r1. It
follows that F (r) = F ′′(r2)r1r. Since F ′′(r2), r1, and r are all positive, F (r) is
positive.

Now assume that −1 ≤ r < 0. One can see that F ′′(r) > 0. By Mean Value
Theorem, there exist r1, r2 ∈ (r, 0) such that F (r) = F ′(r1)r and F ′(r1) =
F ′′(r2)r1. It follows that F (r) = F ′′(r2)r1r. Since F ′′(r2) is positive and r1 and
r are negative, F (r) is positive. ⊓⊔
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B Proof of Lemma 2

Since ln t ≤ t− 1 for all t > 0, by replacing t with P (x)
Q(x) , we see that

ln

(
P (x)

Q(x)

)
≤ P (x)

Q(x)
− 1

for all x ∈ Γ . We then have

∆KL,Γ ′ (P,Q) =
∑
x∈Γ ′

P (x) ln

(
P (x)

Q(x)

)
≤
∑
x∈Γ ′

(
P (x)2

Q(x)
− P (x)

)
.

Note that this property also holds when P (x) = 0 ⇔ t = 0 with a slight abuse
of notation in KL-divergence, i.e., P (x) ln

(
P (x)
Q(x)

)
= 0. On the other hand, by

subtracting the identity
∑

x∈Γ (P (x)−Q(x)) = 0 defined in (7), we also have

∆KL,Γ ′ (P,Q) ≤
∑
x∈Γ ′

(
P (x)2

Q(x)
− P (x)

)
−
∑
x∈Γ

(P (x)−Q(x))

=
∑
x∈Γ ′

(
P (x)2

Q(x)
− 2P (x) +Q(x)

)
−

∑
x∈Γ\Γ ′

(P (x)−Q(x)).

It is obvious that the last term equals to
∑

x∈Γ ′
(P (x)−Q(x))2

Q(x) −
∑

x∈Γ\Γ ′(P (x)−
Q(x)). This concludes the proof.

C Proof of Lemma 3.

For u < v ∈ [q], let Iu,v be an indicator variable such that

Iu,v = 1⇔ λu = λv.

Observe that

C =
∑

u<v∈[q]

Iu,v

and, for u < v ∈ [q],

Ex [Iu,v] =
1

2n
.

Therefore we have

Ex [C] = Ex

 ∑
u<v∈[q]

Iu,v

 =
q(q − 1)

2n+1
≤ q2

2n+1
. (10)
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On the other hand,

C2 =

 ∑
u<v∈[q]

Iu,v

2

=
∑

u<v∈[q]

Iu,v +
∑

u<v∈[q]

∑
u′<v′∈[q]

(u′,v′) ̸=(u,v)

Iu,vIu′,v′ .

Note that, unless (u, v) = (u′, v′), Iu,v and Iu′,v′ are independent since at least
three of {λu, λv, λu′ , λv′} are mutually independent. Hence the following com-
putation holds:

Ex
[
C2
]
= Ex

 ∑
u<v∈[q]

Iu,v +
∑

u<v∈[q]

∑
u′<v′∈[q]

(u′,v′ )̸=(u,v)

Iu,vIu′,v′



= Ex

 ∑
u<v∈[q]

Iu,v

+Ex

 ∑
u<v∈[q]

Iu,v
∑

u′<v′∈[q]
(u′,v′) ̸=(u,v)

Iu′,v′


=

q(q − 1)

2n+1
+

q(q − 1)

2n+1
· q(q − 1)− 2

2n+1

≤ q2

2n+1
+

q4

22n+2
. (11)

By (10), (11) and Chebyshev’s inequality, the proof is complete.

D Proof of Theorem 2

For readability, we use N = 2n and G instead of G(Γ ). For i = 1, . . . , α + β, Ci
is a bipartite graph, where one part consists of the vertices in VP and the other
vertices in VQ; the two parts are denoted Pi and Qi, respectively. For i ∈ [α+β],
we will also write Xi = P1 ⊔ · · · ⊔ Pi, and Yi = Q1 ⊔ · · · ⊔ Qi. Let hc(i) be the
number of solutions to C1 ⊔ · · · ⊔ Ci and hc(0) = 1. In order to find a relation
between hc(i) and hc(i+ 1), we fix a solution to C1 ⊔ · · · ⊔ Ci.

Fix a vertex V ∗ ∈ Ci+1. If we assign any value to V ∗, the other unknowns are
uniquely determined since there is a unique trail from V ∗ to any other vertex in
Ci+1. We can choose the solution to V ∗ from

{0, 1}n \
⋃

V ∈Ci+1

WV ⊕λV ,

where

WV
def
=

⊔
1≤j≤i

Pj if V ∈ Pi+1,

WV
def
=

⊔
1≤j≤i

Qj if V ∈ Qi+1,
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and λV
def
= λ(V, V ∗) (if V = V ∗, then λV = 0). Let ui = |Pi|, vi = |Qi|,

Ui =
∑i

j=1 uj , Vi =
∑i

j=1 vj , and ΛV =WV ⊕λV . For i = 0, . . . , α− 1, we have

hc(i+ 1) =
∑

solutions to
C1⊔···⊔Ci

N −
⋃

V ∈Ci+1

ΛV



≤
∑

solutions to
C1⊔···⊔Ci

N − ui+1Ui − vi+1Vi +
∑

V ̸=V ′∈Ci+1

|ΛV ∩ ΛV ′ |


=(N − ui+1Ui − vi+1Vi)hc(i) +

∑
solutions to
C1⊔···⊔Ci

∑
V ̸=V ′∈Ci+1

|ΛV ∩ ΛV ′ | .

For V1, V
′
1 ∈ Ci+1, V2 ∈ WV1

and V ′
2 ∈ WV ′

1
, let h′(V1, V

′
1 , V2, V

′
2) denote the

number of solutions to C1 ⊔ · · · ⊔ Ci such that V2⊕V ′
2 = λV1

⊕λV ′
1
. Let

Li+1
def
=
{
({V1, V

′
1}, {V2, V

′
2})
∣∣V1 ̸= V ′

1 ∈ Ci+1, V2 ∈ WV1
, V ′

2 ∈ WV ′
1
, and λ(V2, V

′
2) = ⊥

}
.

Then we have∑
solutions to
C1⊔···⊔Ci

∑
V ̸=V ′∈Ci+1

|ΛV ∩ ΛV ′ | = |Ri+1|hc(i) +
∑

({V1,V ′
1},{V2,V ′

2})∈Li+1

h′(V1, V
′
1 , V2, V

′
2) .

(12)

Let h′′(V, V ′) denote the number of solutions to (C1⊔ · · ·⊔Ci)\ (CV ⊔CV ′) where
V ∈ CV and V ′ ∈ CV ′ . For ({V1, V

′
1}, {V2, V

′
2}) ∈ Li+1, we have

h′(V1, V
′
1 , V2, V

′
2) ≤ N · h′′(V2, V

′
2)

≤ N · hc(i)

(N − ξmax(Ui + Vi))2

≤ hc(i)

N

(
1 +

2ξmax(Ui + Vi)N − ξ2max(Ui + Vi)
2

(N − ξmax(Ui + Vi))2

)
≤ hc(i)

N

(
1 +

2ξmax(Ui + Vi)N

(N − ξmax(Ui + Vi))2

)
≤ hc(i)

N

(
1 +

192ξmaxqc
25N

)
≤ 73hc(i)

25N
(13)

since Ui + Vi ≤ 3qc
2 and qc ≤ q ≤ N/4ξmax. By (12) and (13), and since

|Li+1| ≤
(
ui+1 + vi+1

2

)(
Ui + Vi

2

)
≤

(ξ(Ci+1))2 (Ui + Vi)
2

4
≤

9 (ξ(Ci+1))2 q
2
c

16
,
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we have

hc(i+ 1) ≤
(
N − ui+1Ui − vi+1Vi + |Ri+1|+

2 (ξ(Ci+1))2 q
2
c

N

)
hc(i),

and,

hc(i+ 1)Nξ(Ci+1)−1

hc(i)(N − Ui)ui+1
(N − Vi)vi+1

≤Nξ(Ci+1) − (ui+1Ui + vi+1Vi − |Ri+1|)Nξ(Ci+1)−1

Nξ(Ci+1) − (ui+1Ui+1 − vi+1Vi+1)Nξ(Ci+1)−1

+
2 (ξ(Ci+1))2 q

2
cN

ξ(Ci+1)−2

Nξ(Ci+1) − (ui+1Ui+1 − vi+1Vi+1)Nξ(Ci+1)−1

≤1 +
(u2

i+1 + s2i+1 + |Ri+1|)Nξ(Ci+1)−1

Nξ(Ci+1) − (ui+1Ui+1 − vi+1Vi+1)Nξ(Ci+1)−1

+
2 (ξ(Ci+1))2 q

2
cN

ξ(Ci+1)−2

Nξ(Ci+1) − (ui+1Ui+1 − vi+1Vi+1)Nξ(Ci+1)−1

≤1 +
2 (ξ(Ci+1))2 + 2 |Ri+1|

N
+

4 (ξ(Ci+1))2 q
2
c

N2

≤1 + 2 |Ri+1|
N

+ (ξ(Ci+1))2

(
2

N
+

4q2c
N2

)
. (14)

By denoting

C =
ξmax

N

(
2 +

4q2c
N

)
and using the relation

α∑
i=1

(ξ(Ci)− 1) = qc,

it follows that

hc(α)N
qc

(N)R0
(N)S0

≤
α−1∏
i=0

(
hc(i+ 1)Nξ(Ci+1)−1

hc(i)(N − Ui)ui+1
(N − Vi)vi+1

)

≤
α−1∏
i=0

(
1 +

2 |Ri+1|
N

+ C (ξ(Ci+1)− 1)

)

≤
α−1∏
i=0

(
1 +

2 |Ri+1|
N

)
×

α−1∏
i=0

(1 + C (ξ(Ci+1)− 1))

≤
(
1 +

2
∑α

i=1 |Ri|
Nα

)α

×
(
1 +

Cqc
α

)α

≤ eδ1 (15)

where

δ1 =
2
∑α

i=1 |Ri|
N

+ Cqc =
2
∑α

i=1 |Ri|+ 2ξmaxqc
N

+
4ξmaxq

3
c

N2
.
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For i = 1, . . . , β, we will write

Cα+i : P
′
i

λ′
i

−Q′
i.

Let hd(i) be the number of solutions to C1 ⊔ · · · ⊔ Cα+i for i = 1, . . . , β. Note
that hd(0) = hc(α) and hd(β) = h(G). In order to find a relation between hd(i)
and hd(i+1), we fix a solution to C1 ⊔ · · · ⊔Cα+i. Then we can choose P ′

i+1 from
{0, 1}n \

(
X ′

i ∪ (Y ′
i ⊕λ′

i+1)
)
, where

X ′
i

def
=

⊔
1≤j≤α

Pj ⊔ {P ′
1, . . . , P

′
i}(= Xα+i),

Y ′
i
def
=

⊔
1≤j≤α

Qj ⊔ {Q′
1, . . . , Q

′
i}(= Yα+i).

For i = 0, . . . , β − 1, since

|X ′
i | = u1 + · · ·+ uα + i,

|Y ′
i| = v1 + · · ·+ vα + i,

we have

hd(i+ 1) =
∑

solutions to
C1⊔···⊔Cα+i

(
N − |X ′

i ∪ (Y ′
i ⊕λ′

i+1)|
)

=
∑

solutions to
C1⊔···⊔Cα+i

(
N − |X ′

i | − |Y ′
i|+ |X ′

i ∩ (Y ′
i ⊕λ′

i+1)|
)

= (N − |X ′
i | − |Y ′

i|)hd(i) +
∑

solutions to
C1⊔···⊔Cα+i

|X ′
i ∩ (Y ′

i ⊕λ′
i+1)|. (16)

For P ∈ X ′
i and Q ∈ Y ′

i, let h′(P,Q) denote the number of solutions to C1⊔· · ·⊔
Cα+i such that P ⊕Q = λ′

i+1. Let

Ai
def
= {(P,Q) ∈ X ′

i × Y ′
i |λ(P,Q) ̸= ⊥} ,

Bi
def
= (X ′

i × Y ′
i) \ Ai,

Then we have∑
solutions to
C1⊔···⊔Cα+i

|X ′
i ∩ (Y ′

i ⊕λi+1)| =
∑

P∈X ′
i ,Q∈Y′

i

h′(P,Q)

=
∑

(P,Q)∈Ai

h′(P,Q) +
∑

(P,Q)∈Bi

h′(P,Q)

= |Rα+i+1|hd(i) +
∑

(P,Q)∈Bi

h′(P,Q) , (17)

Depending on whether there are large components (whether qc > 0), we can
distinguish the analysis of

∑
(P,Q)∈Bi

h′(P,Q) into the following two cases.
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Case 1 (qc > 0). Let h′′(P,Q) denote the number of solutions to (C1 ⊔ · · · ⊔
Cα+i) \ (CP ⊔ CQ) where P ∈ CP , Q ∈ CQ and C ̸= Q ∈ {C1, . . . , Cα+i}. We have

h′(P,Q) ≤ N · h′′(P,Q)

≤ N · hd(i)

(N − ξmax(|X ′
i |+ |Y ′

i|))2

≤ hd(i)

N

(
1 +

2ξmax(|X ′
i |+ |Y ′

i|)N − ξ2max(|X ′
i |+ |Y ′

i|)2

(N − ξmax(|X ′
i |+ |Y ′

i|))2

)
≤ hd(i)

N

(
1 +

2ξmax(|X ′
i |+ |Y ′

i|)N
(N − ξmax(|X ′

i |+ |Y ′
i|))2

)
≤ hd(i)

N

(
1 +

16ξmaxq

N

)
(18)

since |X ′
i |+ |Y ′

i| ≤ 2q ≤ N
2ξmax

. By (17), (18), and since |Bi| ≤ |X ′
i ||Y ′

i|, we have

∑
solutions to
C1⊔···⊔Cα+i

|X ′
i ∩ (Y ′

i ⊕λi+1)| ≤
(
|Rα+i+1|+

|X ′
i ||Y ′

i|
N

(
1 +

16ξmaxq

N

))
hd(i)

and by (16),

hd(i+ 1) ≤
(
N − |X ′

i | − |Y ′
i|+ |Rα+i+1|+

|X ′
i ||Y ′

i|
N

+
16ξmaxq

3

N2

)
hd(i).

Since |X ′
i |+ |Y ′

i| ≤ 2q ≤ N
6 , we have

hd(i+ 1)N

hd(i)(N − |X ′
i |)(N − |Y ′

i|)
≤

N2 − (|X ′
i |+ |Y ′

i| − |Rα+i+1|)N + |X ′
i ||Y ′

i|+
16ξmaxq

3

N

N2 − (|X ′
i |+ |Y ′

i|)N + |X ′
i ||Y ′

i|

≤ 1 +
|Rα+i+1|N + 16ξmaxq

3

N

N2 − (|X ′
i |+ |Y ′

i|)N + |X ′
i ||Y ′

i|

≤ 1 +
6 |Rα+i+1|

5N
+

96ξmaxq
3

5N3
. (19)
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Since q = qc + β, |P| = |X ′
0|+ β, |Q| = |Y ′

0|+ β and α+ qc = |X ′
0|+ |Y ′

0|, and by
(15) and (19), we have

h(G)Nq

(N)|P|(N)|Q|
=

h(G)Nqc+β

(N)|X0|(N − |X0|)β(N)|Y0|(N − |Y0|)β

=
hc(α)N

qc

(N)|X0|(N)|Y0|

β−1∏
i=0

(
hd(i+ 1)N

hd(i)(N − |Xi|)(N − |Yi|)

)

≤ eδ1
β−1∏
i=0

(
1 +

6 |Rα+i+1|
5N

+
96ξmaxq

3

5N3

)

≤ eδ1

(
1 +

2
∑β

i=1 |Rα+i|
Nβ

+
20ξmaxq

3

N3

)β

≤ eδ1+δ2

where

δ2 =
2
∑β

i=1 |Rα+i|
N

+
20ξmaxq

4

N3
,

and therefore

δ1 + δ2 =
2
∑α+β

i=1 |Ri|+ 2ξmaxqc
N

+
4ξmaxq

3
c

N2
+

20ξmaxq
4

N3
,

On the other hand, from the Mirror theory of Jha and Nandi [29], we have

h(G)Nq

(N)|P|(N)|Q|
≥ 1− 4q2

N2

α∑
i=1

(ξ(Ci)− 1)
2 − 2q2

N2
− 13q4

N3

≥ 1− 4(ξmax − 1)qcq
2

N2
− 2q2

N2
− 13q4

N3

≥ 1− 4ξmaxqcq
2

N2
− 13q4

N3
.

In other words,

1− h(G)Nq

(N)|P|(N)|Q|
≤ 4ξmaxqcq

2

N2
+

13q4

N3
≤ eδ3 − 1

where

δ3 =
4ξmaxqcq

2

N2
+

13q4

N3
.

To sum up, since 4ξmaxq
3
c

N2 ≤ 4ξmaxqcq
2

N2 and 13q4

N3 ≤ 20ξmaxq
4

N3 , we have∣∣∣∣ h(G)Nq

(N)|P|(N)|Q|
− 1

∣∣∣∣ ≤ eϵ − 1
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where

ϵ =
2
∑α+β

i=1 |Ri|+ 2ξmaxqc
N

+
4ξmaxqcq

2

N2
+

20ξmaxq
4

N3

which completes the proof for the case of qc > 0.

Case 2 (qc = 0). Since there are no large components in this case (α = 0), we
have hd(0) = 1. Recall that h′(P,Q) denote the number of solutions to C1⊔· · ·⊔Ci
such that P ⊕Q = λ′

i+1 and here we consider the case (P,Q) ∈ Bi. If i ≥ 2n+2,
then we have ∣∣∣∣hd(i)

N
− h′(P,Q)

∣∣∣∣ ≤ (15 |Ri+1|+ 17)hd(i)

N2

by Lemma 8 of [17]. So we have

h′(P,Q) ≤ hd(i)

N

(
1 +

15 |Ri+1|+ 17

N

)
. (20)

By (17), (20), and since |Bi| ≤ |Xi||Yi|, we have∑
solutions to
C1⊔···⊔Ci

|Xi ∩ (Yi⊕λi+1)| ≤
(
|Ri+1|+

|Xi||Yi|
N

(
1 +

15 |Ri+1|+ 17

N

))
hd(i)

and by (16),

hd(i+ 1) ≤
(
N − |Xi| − |Yi|+ |Ri+1|

(
1 +

15q2

N2

)
+
|Xi||Yi|

N
+

17q2

N2

)
hd(i).

Since |Xi|, |Yi| ≤ N/13, we have

hd(i+ 1)N

hd(i)(N − |Xi|)(N − |Yi|)
≤

N2 − (|Xi|+ |Yi|)N + |Ri+1|
(
N + 15q2

N

)
+ |Xi||Yi|+ 17q2

N

N2 − (|Xi|+ |Yi|)N + |Xi||Yi|

≤ 1 +
|Ri+1| (N + 15q2

N ) + 17q2

N

N2 − (|Xi|+ |Yi|)N + |Xi||Yi|

≤ 1 +
2 |Ri+1|

N
+

18 |Ri+1| q2

N3
+

20q2

N3

≤ 1 +
3 |Ri+1|

N
+

20q2

N3
.

Let m = 2n+ 2. Then we have

h(G)Nq−m

hd(m)(N − |Xm|)q−m(N − |Ym|)q−m
≤

q−1∏
i=m

(
1 +

3 |Ri+1|
N

+
20q2

N3

)
≤
(
1 +

3
∑q

i=1 |Ri|
Nq

+
20q2

N3

)q

≤eδ1 , (21)
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where

δ1 =
3
∑q

i=1 |Ri|
N

+
20q3

N3
.

If i ≤ 2n+ 1, then we have

hd(i+ 1) ≤ N · hd(i).

Then it follows that

hd(i+ 1)N

hd(i)(N − |Xi|)(N − |Yi|)
≤ N ·N

(N − |Xi|)(N − |Yi|)

≤ 1 +
N (|Xi|+ |Yi|)

(N − |Xi|)(N − |Yi|)
.

Since |Xi| , |Yi| ≤ min{i,N/13}, we have

hd(2n+ 2)N2n+2

hd(1)(N)2n+2(N)2n+2
≤

(
1 +

2n+1∑
i=1

3i

N

)

≤ 1 +
3(2n+ 1)(n+ 1)

N
≤ 1 +

6(n+ 1)2

N
. (22)

By combining (21) and (22), we have

h(G)Nq

(N)|P|(N)|Q|
≤ eδ1

(
1 +

6(n+ 1)2

N

)
≤ eδ1+δ2 .

where

δ2 =
6(n+ 1)2

N
,

and therefore

δ1 + δ2 =
3
∑α+β

i=1 |Ri|
N

+
20q3

N3
+

6(n+ 1)2

N
.

On the other hand, from the Mirror theory of Choi et al. [17], we have

h(G)Nq

(N)|P|(N)|Q|
≥ 1− 6(n+ 1)3

N2
−

q−1∑
i=0

(
2i

N2
+

20i2

N3

)
≥ 1− 6(n+ 1)3

N2
− q2

N2
− 7q3

N3

≥ 1− 6(n+ 1)3

N2
− 2q2

N2
.

In other words,

1− h(G)Nq

(N)|P|(N)|Q|
≤ 6(n+ 1)3

N2
+

2q2

N2
≤ eδ3 − 1 ,
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where

δ3 =
6(n+ 1)3

N2
+

2q2

N2
.

To sum up, since 6(n+1)3

N2 ≤ 6(n+1)2

N and 20q3

N3 ≤ 2q2

N2 , we have∣∣∣∣ h(G)Nq

(N)|P|(N)|Q|
− 1

∣∣∣∣ ≤ eϵ − 1

where

ϵ =
3
∑α+β

i=1 |Ri|
N

+
2q2

N2
+

6(n+ 1)2

N
,

which completes the proof for the case of qc = 0.
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