
Data Independent Order Policy Enforcement: Limitations and
Solutions

Sarisht Wadhwa

sarisht.wadhwa@duke.edu

Duke University

NC, USA

Luca Zanolini

luca.zanolini@ethereum.org

Ethereum Foundation

USA

Aditya Asgaonkar

aditya.asgaonkar@ethereum.org

Ethereum Foundation

USA

Francesco D’Amato

francesco.damato@ethereum.org

Ethereum Foundation

USA

Chengrui Fang

Chengrui_Fang@zju.edu.cn

Zhejiang University

China

Fan Zhang

f.zhang@yale.edu

Yale University

USA

Kartik Nayak

kartik@cs.duke.edu

Duke University

USA

ABSTRACT

Order manipulation attacks such as frontrunning and sandwich-

ing have become an increasing concern in blockchain applications

such as DeFi. To protect from such attacks, several recent works

have designed order policy enforcement (OPE) protocols to order

transactions fairly in a data-independent fashion. However, while

the manipulation attacks are motivated by monetary profits, the

defenses assume honesty among a significantly large set of partici-

pants. In existing protocols, if all participants are rational, they may

be incentivized to collude and circumvent the order policy without

incurring any penalty.

Thisworkmakes two key contributions. First, we explorewhether

the need for the honesty assumption is fundamental. Indeed, we

show that it is impossible to design OPE protocols under some

requirements when all parties are rational. Second, we explore

the tradeoffs needed to circumvent the impossibility result. In the

process, we propose a novel concept of rationally binding transac-

tions that allows us to construct AnimaguSwap1, the first content-
oblivious Automated Market Makers (AMM) interface that is secure

under rationality. We report on a prototype implementation of Ani-
maguSwap and performance evaluation results demonstrating its

practicality.

CCS CONCEPTS

• Security and privacy→ Distributed systems security.

1
A key design in AnimaguSwap is that user orders may transform to a different

direction—like the fictional creatures Animagi in Harry Potter—in order to achieve

the desired game theoretic properties.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

CCS ’24, October 14-18, 2024, Salt Lake City, U.S.A.

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0636-3/24/10

https://doi.org/10.1145/3658644.3670367

KEYWORDS

Blockchain, MEV, Crytoeconomics

ACM Reference Format:

Sarisht Wadhwa, Luca Zanolini, Aditya Asgaonkar, Francesco D’Amato,

Chengrui Fang, Fan Zhang, and Kartik Nayak. 2024. Data Independent Order

Policy Enforcement: Limitations and Solutions. In Proceedings of the 2024

ACM SIGSAC Conference on Computer and Communications Security (CCS

’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA,

26 pages. https://doi.org/10.1145/3658644.3670367

1 INTRODUCTION

Blockchains can provide a trustworthy platform for transacting and

smart contract execution. Blockchain-powered finance applications,

also known as DeFi, have grown to a market of more than $46 bil-

lion
2
in value. However, despite the strong integrity and availability

properties offered by blockchains, they do not protect the ordering

of user transactions. As a result, order manipulation attacks — e.g.,

frontrunning attacks, sandwich attacks — are rampant, where an

attacker listens for user transactions sent in public and strategi-

cally places her exploiting transactions around the victim to gain a

profit. The profits earned through inserting and reordering trans-

actions are referred to as Maximal Extractable Values (MEV) [17].

An estimated $1.2B of MEV have been extracted as of the time of

writing.
3

To protect users from order manipulation attacks, an extensively

explored direction [27, 26, 12, 8, 13, 28, 35, 4] is to design protocols

that enforce certain “fair” transaction ordering policy. A popular

approach is data-independent ordering, which guarantees that given

a set of user transactions as input, the final ordering of them on

the blockchain should be independent of the transaction content.

For example, some fair ordering protocols [27, 26, 12] order user

transactions based on the time they are received by a committee of

parties. Content-oblivious ordering (e.g., [8, 28, 35, 4]) guarantees

that user transactions are hidden from the committee who orders

them, e.g., through encryption, until after an ordering has been

2
https://defillama.com

3
https://explore.flashbots.net/

https://orcid.org/0000-0003-4343-9868
https://orcid.org/0000-0003-4655-3172
https://orcid.org/0009-0001-7516-3360
https://orcid.org/0000-0002-8190-8664
https://orcid.org/0009-0005-3328-5406
https://orcid.org/0000-0002-8525-4514
https://orcid.org/0000-0001-5675-263X
https://doi.org/10.1145/3658644.3670367
https://doi.org/10.1145/3658644.3670367

CCS ’24, October 14-18, 2024, Salt Lake City, U.S.A. Sarisht Wadhwa, Luca Zanolini, Aditya Asgaonkar, Francesco D’Amato, Chengrui Fang, Fan Zhang, and Kartik Nayak

decided. In this case, transaction ordering may be based on any

metadata, such as the ciphertext, the sender address, etc.

Both approaches can prevent an attacker from placing exploiting

transactions before user transactions after having observed user

transactions. However, all known data-independent ordering pro-

tocols share the same limitation: they only work under the strong

assumption that enough parties running the protocol are honest.

E.g., [26] assumes more than three-fourths of the participants are

honest (for 𝛾 = 1, a parameter in their work).

Indeed, in a permissionless blockchain system where players are

pseudonymous and can join and leave freely, the assumption that

players are always honest is hard to justify. A much more palatable

assumption is to assume rationality instead of honesty, i.e., instead

of assuming parties are intrinsically honest, a rational party may

take any action to maximize utility. In fact, the existence of MEV is

tied to the rationality of the participants. Thus, the goal is to design

a protocol so that following the protocol is incentive-compatible,

which is significantly more challenging because all of the parties

running the protocol may deviate from the protocols arbitrarily if

doing so leads to a higher utility.

In this paper, we systematically investigate the design of data-

independent ordering protocols in the presence of rational parties,

asking two fundamental questions:

(1) All known data-independent ordering protocols require some

honesty assumption. Is that a limitation of existing solutions or

something fundamental? We answer this question negatively

by showing an impossibility result that not only are existing

protocols insecure in the presence of rational parties, but a

wide range of protocols compliant to the same specification

also cannot be secure.

(2) Given the impossibility, what tradeoffs must one make in or-

der to realize a data-independent ordering protocol under the

rationality assumption? We propose a novel concept called ra-

tionally binding commitments and present the first decentralized

exchange construction, called AnimaguSwap, with a built-in

data-independent ordering protocol under rationality.

1.1 Overview of results

1.1.1 Existing protocols are not secure. Intuitively, it is not hard
to see how rational parties might lead to an insecure execution: in

existing data-independent ordering protocols [27, 26, 12, 8, 13, 28,

35, 4], there is no way to retroactively verify whether the ordering

output was indeed data-independent. Thus, if violating data inde-

pendence increases parties’ utility, all parties running the protocol

to collude is a dominant strategy.

For fair ordering protocols, if enough parties collude, they can

order transactions arbitrarily by lying about when transactions

are received — an action that cannot be held accountable unless

assuming a global trustworthy timestamping service (which is a

strong assumption for applications we care about).

The situation is a bit trickier for content-oblivious ordering, as

collusionmight be accountable. For example, in schemes where user

transactions are encrypted using threshold encryption (e.g., [13]),

enough parties can reconstruct the decryption key if they collude.

However, this way of colluding may be accountable since the de-

cryption key itself could serve as irrefutable proof of the fact that

collusion has taken place.

This leads to a natural question for a protocol designer: can we

leverage proof of collusion to design data-independent ordering

protocols under rationality? Answering this question negatively

and identifying the conditions under which this is true is the crux

of our first contribution. We observe that colluding parties do not

necessarily need to decrypt the transaction or leave any proof of

collusion whatsoever, by running the collusion algorithm in a way

that the only outcome of collusion is a set of transactions that

resemble benign user transactions while giving colluding parties a

higher utility (e.g., with their frontrunning transactions inserted

before the victim). We emphasize that the cost to collude between

parties is very low since today’s blockchain landscape is not so

decentralized, and a few of the pools interacting with each other

are all required to attack and collude. Further, once parties collude,

they can profit for a longer duration, which decreases the amortized

cost.

An order policy enforcement (OPE) framework and impossi-

bilities. To prove this claim, we first present a generic framework

in Section 4.1 that captures all known data-independent ordering

protocols. Then, we show that in any concrete protocol Π following

this framework, if violating the ordering policy increases parties’

utility, there always exists a collusion protocol 𝜋 with which parties

can collude and violate the ordering policy with deniability: even

after executing 𝜋 , no participants of it can generate a cryptographic

proof to incriminate any participants (including herself). Section 4.2

presents the full proof.

1.1.2 New directions informed by the impossibility. Our impossibil-

ity proof not only shows the fundamental limitations of existing

approaches in achieving security under rationality, but it also carves

out avenues to improve. The impossibility critically relies on some

assumptions about Π. First, users may go offline after sending one

message (typically a transaction or a cryptographic commitment

thereof). This is a desirable usability feature because users do not

need to stay online. Consequently, once the user submits her trans-

action, the parties have the capability to retrieve it. Second, if the

user sends a cryptographic commitment of her transaction, it is

binding in that the commitment can only be opened to one transac-

tion plaintext, which is a natural requirement so that transaction

execution is unambiguous.

Designing protocols that violate these assumptions can circum-

vent the impossibility, but dispensing with them naïvely will lead

to undesirable outcomes. For instance, if we require users to stay

online, there exists a (somewhat trivial) solution where a user first

sends a commitment to the parties running the ordering protocol,

and then opens the commitment after the ordering is determined.

This construction, while secure against collusion of parties, not

only introduces a usability challenge for users but also potential

problems when users refuse to open the commitment.

Introducing rationally binding commitments. Our next re-

sult is a novel way to relax the second assumption, by introducing

rationally binding commitments. A key observation from the im-

possibility proof is that if a user only sends one message and that

Data Independent Order Policy Enforcement: Limitations and Solutions CCS ’24, October 14-18, 2024, Salt Lake City, U.S.A.

message binds to her transaction, then if enough parties collude

they can uniquely recover her transaction (and thus can frontrun

it, for example), no matter what cryptographic protections are em-

ployed. (Since the user only sends onemessage, that message should

enable recovery of some transactions; due to the binding property,

the committee can recover the exact transaction the user commit-

ted to). Can we dispense with the binding property as a way to

circumvent the impossibility? This seems paradoxical. After all, a

user’s transaction needs to be encoded somehow in the commit-

ment, otherwise, the commitment may be opened against her will.

Our answer is to replace binding with rationally binding, as follows.

We first require parties running the protocol to put down collat-

eral (i.e., to stake) that can be confiscated (or slashed) for detected

misbehavior. We call these parties stakers hereafter. Suppose one of

the stakers is designated as the “flipper” (the meaning of the name

will become clear momentarily). In order to create a rationally bind-

ing commitment to a transaction tx, the user samples a random

bit b ∈ {0, 1} and depending on this bit, creates a transaction that

is either the one that the user intended (tx) or a related but differ-

ent transaction (tx), e.g., the other transaction must satisfy certain

requirements that we will specify later for specific applications.

The user sends b to the flipper in a deniable message [37, 24], and

gets back an acknowledgment of the bit signed by the flipper. (If

the flipper does not respond, the user can designate another flip-

per.) The user then shares the created transaction (which can be

different from the one it intended) with the rest of the stakers. To

open the commitment, the stakers reveal the shared transaction

and the flipper reveals b, and the transaction tx will be executed.
Crucially, if the flipper reveals the wrong bit

¯
b, the user can use the

acknowledgment it received as evidence to slash the flipper.

From the user’s point of view, assuming the penalty is properly

setup, a rational flipper will always reveal b, so tx will always be
executed, similarly to the binding property. On the other hand,

from the stakers’ point of view, even if all parties collude, they

cannot identify which transaction will be executed, since the flipper

might lie about b and there is no way for the flipper to prove the

correctness of b due to the use of deniable messaging. In fact, the

protocol can be made such that lying about b is a dominant strategy

for the flipper by carefully crafting tx, which ensures that no stable

collusion can be formed amongst the stakers.

In Section 5.1, we present AnimaguSwap, an Automated Market

Makers (AMM) decentralized exchange that uses rationally binding

commitments to defeat sandwich attacks assuming buying and

selling a token is equally likely. In our protocol, if user transaction

tx sells a certain asset, then tx is the reverse order, i.e., buying the
same asset. If the stakers collude, they must still guess which will

be executed (with no more than 1/2 probability to be right). Thus,

in expectation, it is not worthwhile to attempt sandwiching.

In Section 5.2, we provide a game theoretic analysis of Ani-
maguSwap and show that following the protocol specification is

dominant for all the involved parties. To evaluate practicality, in

Section 5.3, we implement a base AnimaguSwap as a smart contract,

and show that the key overhead in terms of the amount of gas is

1.3x compared to a typical insecure trade today. Moreover, since

this cost does not depend on the number of stakers or the value of

the transaction, this is already quite practical for high-value transac-

tions. We then extend the result in Section 5.4 to consider scenarios

where the buying and selling of a token may not be equally likely.

We further enhance the security of the game to cover repeated

games for a more practical solution, by ensuring the unlinkability

between different games.

Contributions. In summary, this paper makes the following contri-

bution:

• We present a framework that captures existing protocols for

data-independent order policy enforcement (OPE) such as fair

ordering and content-oblivious ordering protocols.

• We present an impossibility proof showing that a wide range of

OPE protocols cannot be secure when all parties are rational

• We propose the notion of rationally binding commitments as a

practical way to circumvent the impossibility. We present the

first AMM interface construction AnimaguSwap that can achieve

data-independent ordering of user transactions in the presence

of rational parties. We analyze the efficacy of AnimaguSwap by

a game-theoretic proof in the presence of rational parties.

• We implement AnimaguSwap using a smart contract and show

that the overhead of security is about 1.3x in gas cost compared to

vanilla UniSwap; this will be practical for high-value transactions.

2 RELATEDWORK

Data-independent ordering protocols. As reviewed in Section 1,

several works purpose to order transactions independent of their

content as a way to reduce MEV [17]. Below is a non-exhaustive

list of protocols that are covered by the framework (Section 4.1)

and the impossibility theorem (Theorem 1).

The first category of protocols is fair ordering. Kelkar et al. [27]

investigate a notion of fair transaction ordering for (permissioned)

consensus protocols, which prevents adversarial manipulation of

the ordering of transactions. The authors then formulate a new class

of consensus protocols, called Aequitas, that achieve fair trans-

action ordering while also providing the usual consistency and

liveness. Their findings have been later extended in permissionless

settings [25]. Subsequently, Kelkar et al. [26] devised Themis, a (per-

missioned) consensus protocol that, along the same lines as [27],

achieves fair transaction ordering while preventing a liveness issue

in Aequitas. Cachin et al. [12] introduce a differential order fairness

property and present a quick order-fair atomic broadcast protocol

that guarantees payload message delivery in a differentially fair

order. The protocol of Cachin et al. results in a more efficient proto-

col than the previous solutions, but it relies on a weaker form of

validity property.

The second category of solutions is content-oblivious ordering.

A popular idea (used by, e.g., [13, 4, 35, 8]) is to encrypt user trans-

actions using a threshold public key encryption scheme so that the

ordering of transactions is done based on the ciphertext. Fino [28]

efficiently integrates threshold encryption and secret sharing to a

DAG-based BFT protocol. Shutter, Osmosis, and Sikka [13, 4, 35]

are examples of operational systems in this category.

The protocols in these works make the assumption of honest

majority participation, e.g., a majority (or two-thirds) of the par-

ticipants do not deviate from the specified protocol, even if such

deviations are undetectable. Our work investigates ways to relax

such assumptions.

CCS ’24, October 14-18, 2024, Salt Lake City, U.S.A. Sarisht Wadhwa, Luca Zanolini, Aditya Asgaonkar, Francesco D’Amato, Chengrui Fang, Fan Zhang, and Kartik Nayak

MEVmitigation leveraging rationality. Platforms have emerged

to auction off the opportunities to extract MEV so that MEV extrac-

tion is democratized [19, 29]. MEV auctions rely on the rationality

of bidders (or builders) to maximize MEV extraction. Our solution

(in Section 5) aims to achieve a different goal of reducing MEV.

Heimbach et al. [23] analyzed the sandwich game between an

AMM trader and predatory bots and identified the optimal slippage

tolerance a trader could set to disincentive bots from attacking

while limiting the probability of execution failures. Their algorithm

crucially relies on estimating the execution failure probability using

historical data, and thus cannot guarantee accuracy. Our solution

is fundamentally different and does not have this limitation.

PROF [5] is a protocol that leverages the profit-maximizing na-

ture of proposers to promote the inclusion of fairly ordered trans-

actions (PROF defines fairness broadly as any order that follows a

given policy). PROF is agnostic to specific transaction ordering pro-

tocols and, thus, is complementary to our solution. Note that PROF

does not address ordering under rationality, though it suggested a

TEE-based content-oblivious ordering protocol.

Lower bounds on MEV mitigation. Ferreira et al. [40] presents

an impossibility result showing that for a class of liquidity pool

exchanges (e.g., Uniswap), for any data-dependent ordering policy

(called sequencing rule in [40]), there are always valid sequences

in which the miners get risk-free profits. Their result leaves it open

whether data-independent ordering policies can be enforced, which

is our focus. (We show it is impossible in Theorem 1.)

Data dependent ordering policies. All of the discussion in this

work is only pertinent to ordering policies that are data independent,

i.e., policies that only rely on the metadata related to the transac-

tions and not the transaction content themselves. [40] proposes a

data-dependent sequencing rule that alternates between BUY and

SELL orders, to guarantee that user transactions are executed at

a price as good as being executed at the beginning of the block

(unless the miner does not gain anything from manipulating the

ordering). Moreover, [40] relies on the assumption that each block

is created by a different miner, a questionable assumption in today’s

Ethereum ecosystem with Proposer-Builder Separation (PBS) [11],

which our solution (Section 5.1) avoids.

3 MODEL AND PROBLEM STATEMENT

Throughout this paper, we consider data-independent transaction

ordering protocols run by a set of 𝑁 parties called stakers S =

{𝑠1, . . . , 𝑠𝑁 }. Such protocols process transactions submitted by users

and output an ordered list of received transactions while ensuring

that the ordering is independent of the transaction content. Exam-

ples include fair ordering based on receive order [27, 26, 12] and

content-oblivious ordering (e.g., [8, 28, 35, 4]). The purpose of data-

independent ordering is to prevent order manipulation attacks such

as frontrunning attacks, sandwich attacks, etc. We refer readers

to [41] for a survey of such attacks.

We assume all users including stakers to be rational, i.e., they

act to maximize their utility function. To keep things simple, we

assume that this utility function is the amount of monetary profit

(in the number of tokens) that the party can make. If a staker 𝑠𝑖 fails

to serve the role assigned to it or tries to deliberately deviate from

the protocol, i.e., 𝑠𝑖 is Byzantine, and a proof of this misbehavior is

given, it loses a part of its stake (𝑠𝑖 gets slashed), and it might be

removed from the system. A protocol specifies rules that provide

rewards to stakers who complete certain tasks. We sometimes refer

to users (and stakers) as players or parties.

Adversary model. Stakers are adversarial and they may deviate

from the protocol arbitrarily if doing so increases their utility (after

counting the penalty if any). Their goal is to tamper with the or-

dering process so that transactions are ordered to their advantage.

For example, in receive order-based fair ordering protocols, stakers

may collude and order a later transaction before an earlier one

to facilitate a frontrunning attack; in content-oblivious ordering

protocols, stakers may collude to decrypt user transactions and

profit from the information thereof.

Problem statement. We ask two questions: First, existing data-

independent ordering protocols are insecure under the above ra-

tionality assumption. Is this limitation fundamental or can it be

mitigated? We answer this question negatively with an impossi-

bility result. Second, given the impossibility, what relaxation of

the problem can we make to obtain a practical data-independent

ordering protocol under the above rationality assumption?

Notation. We denote the evaluation of a protocol using (𝑝𝑢𝑏𝑜 ;

(𝑦1, . . . , 𝑦𝑘)← prot(𝑝𝑢𝑏𝑖 ; (𝑥1, . . . , 𝑥𝑘)). Here, there is a public input

𝑝𝑢𝑏𝑖 and private inputs (𝑥1, . . . , 𝑥𝑘), resulting in a public output

𝑝𝑢𝑏𝑜 and private outputs (𝑦1, . . . , 𝑦𝑘). Public inputs/outputs might

be omitted if not applicable.

4 IMPOSSIBILITY OF OPE UNDER

RATIONALITY

To study the common features of data-independent order policy

enforcement (OPE) protocols [12, 26, 27, 28, 8, 13, 35, 4], we first

present an abstract framework to capture the essence of aforemen-

tioned protocols with four sub-protocols (submit, process, order,
reveal) and two predicates ShouldRelease and ShouldReveal. To
aid understanding, we show how existing schemes can be mapped

to our framework.

4.1 Framework for Order Policy Enforcement

Parties, transactions, and ordering policies. Our framework is

run by users, who submit transactions, and a set of stakers who exe-

cute the ordering protocol to order submitted transactions. Stakers’

protocol can either be a component of a larger consensus protocol

or a standalone protocol in parallel with the consensus (e.g., on

layer 2).

Definition 1 (Data and Metadata). A transaction tx𝑖 can be consid-

ered to consist of two parts – metadata md𝑖 and data data𝑖 . Metadata

is defined as the part of a transaction not given to the application

(i.e., a smart contract) for execution. Data is defined as the part of a

transaction that is required for application execution.

Our framework defines a generic protocol to enforce a data-

independent policy P.
Definition 2 (Data-independent Policy). A policy is defined as

data-independent if it takes as input a set of metadata (one for each

Data Independent Order Policy Enforcement: Limitations and Solutions CCS ’24, October 14-18, 2024, Salt Lake City, U.S.A.

Framework for Order Policy Enforcement

Initialization:

1: Each staker 𝑠𝑖 runs init (possibly interactively with other stakers) to

get param𝑖 := (spri𝑖 , spp𝑖)
2: Each staker 𝑠𝑖 publishes spp𝑖
3: Each staker 𝑠𝑖 sets state𝑖 := ∅
Transaction submission:

4: Whenever initiated by a user 𝑢, stakers in S and 𝑢 run (possibly

interactively)

(txid; (⊥, out1, . . . , out𝑁))← submit(tx, inp
1
, . . . , inp𝑁)

where tx is user’s input (her transaction) and inp𝑖 is staker 𝑠𝑖 ’s input

derived from param𝑖 and state𝑖 .
5: Each staker 𝑠𝑖 processes the metadata information and the transac-

tion information and updates its state.

(md𝑖 , data𝑖)← process(txid, out𝑖 , state𝑖)

state𝑖 ← state𝑖 .add((txid,md𝑖 , data𝑖))

Transaction inclusion:

6: Whenever ShouldRelease(𝑠𝑖) , stakers in S evaluate

(tSeq = (t̄x1, . . . , t̄xℓ); (state1, . . . ,state𝑁))←
order(state1, . . . , state𝑁)

where the order of (t̄x1, . . . , t̄xℓ) is dependent only on md1, . . . ,mdℓ .

7: Staker 𝑠𝑖 adds tSeq to the blockchain.

Transaction revealing:

8: For each 𝑘 ∈ [ℓ], when ShouldReveal(t̄x𝑘), stakers evaluate

(tx𝑘 ; (state1, . . . , state𝑁))← reveal(t̄x𝑘 ;

(state1, spri1), . . . , (state𝑁 , spri𝑁))

Figure 1: A general framework that captures proposed or-

dering policy enforcement protocols [12, 26, 27, 28, 8, 13]

using four protocols (submit,manipulate, order, reveal) and
two predicates ShouldRelease, ShouldReveal.

transaction) and outputs one or more permutations of transactions

associated with them, i.e., P(md1, . . . ,mdℓ) ⊆ 𝜎(ℓ), where 𝜎(ℓ) is the

set of all permutations of (¯tx1, . . . , ¯𝑡𝑥ℓ).

Generally, each staker may have some different metadata for

a given transaction, thus md𝑖 = (md
1

𝑖 , . . . ,md
𝑁
𝑖) represents the

metadata for transaction tx𝑖 across all 𝑁 stakers.

The framework.As shown in Fig. 1, the framework for order policy

enforcement consists of four sub-protocols. These subprotocols are

reactive, in that they are activated when specific conditions are

met, and may execute in parallel to each other. We now describe

the four subprotocols following the life cycle of a given transaction,

although note that these subprotocols are reactive and may execute

in parallel for different transactions.

• Stakers engage in an initialization protocol to generate a param-

eter param = (spri, spp) that consists of secret parameters spri
and public ones spp. Initialization will also set a local variable,

state𝑖 — the set of pending transactions with metadata, to ∅.
• First, to send a transaction tx to a blockchain, the user runs the

submit protocol with stakers. Specifically,

(txid; (⊥, out1, . . . , out𝑁))← submit(tx, (inp𝑖 , . . . , inp𝑁))

, where inp𝑖 and out𝑖 are the input (output) from (to) staker 𝑠𝑖 , and

txid is an id identifying the transaction. We do not restrict how

submitmay be realized, e.g., it can be realized as a non-interactive

protocol where the user simply encrypts the transaction under

stakers’ public keys (in which case inp𝑖 = pk𝑖); submit may also

be implemented with an interactive Multi-Party Computation

(MPC) protocol where the user engages in MPC protocol with

stakers (in this case inp𝑖 might be secret). At the end of submit,
each staker 𝑠𝑖 receives some information about tx in out𝑖 , which
will be used in later protocols. Note that not all stakers may be

required to participate in submit, however, a minimum of 𝑡𝑠 is

required (1 ≤ 𝑡𝑠 ≤ 𝑁). For the stakers that do not participate, the

input and output is ⊥.
Users are ephemeral, i.e., they may go offline after running

submit, a usability feature enjoyed bymost real-world systems[12,

26, 27, 28, 8, 13]. Consequently, (txid; (⊥, out1, . . . , out𝑁)) together

must contain enough information to recover tx, an observation

that will play a critical role in our subsequent analysis. We dis-

cuss alternative protocols if this assumption does not hold in

Section 5.

We also assumew.l.o.g. that non-staker users submit their transac-

tions before a staker adds its own, considering all the information

revealed to it by the non-staking users.

• Having finished the submit protocol for a given tx, a staker runs
a local process function to capture any local state to be used

in later sub-protocols, e.g., the time at which tx was received.

Specifically, (md𝑖 , data𝑖)← process(txid, out𝑖 , state𝑖).
• The goal of an OPE protocol is to produce blocks with transac-

tions ordered in a desirable way. In our framework, whenever

predicate ShouldRelease(𝑠𝑖) is true, stakers will run the order
protocol, with 𝑠𝑖 being the leader if applicable, to order transac-

tions and to output a sequence of transactions. Specifically, let

tSeq = (t̄x1, . . . , t̄xℓ)

(tSeq; (state1, . . . , state𝑁))← order(state1, . . . , state𝑁)

where each staker inputs its local set of pending transactions

(with anymetadata captured in process). The output is a sequence
of transactions to be added to the blockchain and an updated local

variable (e.g., with transactions added to the block removed).

Note that like in submit, not all stakers may be required to partici-

pate in order, however, a minimum of 𝑡𝑜 is required (1 ≤ 𝑡𝑜 ≤ 𝑁).

For the stakers that do not participate, the input and output

is ⊥. These stakers would appropriately need to change state

according to the on-chain published ordering of transactions.

This sub-protocol captures any multiparty computation man-

dated by an ordering protocol, e.g., fair ordering schemes gen-

erate the contents of the next block based on timestamps (or

relative receiving orders) across all stakers.

• In some protocols, order only includes some cryptographic rep-

resentation of transactions in the blockchain, and another step

reveal is required to reveal the transaction plaintext so it can

be executed. Whenever ShouldReveal(𝐵) is true, stakers will run

reveal to reveal transactions in 𝐵.

Again, not all stakers may be required to participate in reveal,
however, a minimum of 𝑡𝑟 is required (1 ≤ 𝑡𝑟 ≤ 𝑁).

CCS ’24, October 14-18, 2024, Salt Lake City, U.S.A. Sarisht Wadhwa, Luca Zanolini, Aditya Asgaonkar, Francesco D’Amato, Chengrui Fang, Fan Zhang, and Kartik Nayak

We use tSeq |= (tx1, . . . , txℓ) to represent that if tSeq is posted

on-chain after order then the reveal execution would correspond

to (tx1, . . . , txℓ).

Requirements. To rule out trivial or impractical constructions,

our framework makes the following assumptions.

First, we require submit(tx, ·) to be binding to the given transac-

tion tx in that if (_; (_, out1, . . . , out𝑁)) = submit(tx, ·), then (tx; .)←
reveal(t̄x; .). All practical blockchain systems do achieve this.

Second, we require that a submitted transaction is eventually

included in the blockchain, and revealed, if applicable. This is the

standard liveness property.

Third, we note that as expressed in the framework, the function

reveal() takes as input the output of the function order() and the

static private parameter in spri. Thus, we assume the protocols and

the predicates in the interim do not affect the inputs to the function

reveal, and thus the function reveal can be run any time after order
(even before staker 𝑠𝑖 adds the output block to the blockchain). This

implies our framework does not apply to protocols that use cryp-

tographic primitives that changes state of a transaction between

order and reveal such as by using time-locked encryption [32] or

witness encryption [20]. These primitives are not widely used due

to their practical limitations (e.g., it is hard to calibrate the time-

out in timelock encryption, and decrypting a timelock encrypted

ciphertext requires constant computation; there is yet no practical

witness encryption schemes[20]).

Examples. In Appendix A, we show that our framework can cap-

ture OPE protocols based on DKG [13, 8], secret-sharing [28], as

well as fair ordering protocols [26, 12, 27].

4.2 Delineating Impossibility Conditions for

Data Independent Ordering

Existing data independent order policy enforcement (OPE) proto-

cols order transactions under the assumption that a fraction (less

than one-third or one-half) of stakers are Byzantine and the re-

maining stakers are honest. However, in practice, the motivation

to introduce additional transactions, delete existing transactions,

or to order transactions differently is to obtain higher monetary

gains for the stakers. Thus, a model where all stakers are rational

and maximizing their utility (in terms of monetary gains) captures

the adversarial setting better. In this section, we analyze OPE pro-

tocols under such an adversary. In particular, we show that under

some circumstances, there exists an attacking strategy where we

can ensure that rational stakers do not follow the OPE protocol.

The key challenge is in identifying the conditions under which

this statement holds, and showing the resulting attacking strategy.

Recalling the notations defined in Section 3, our result can be stated

as follows:

Theorem 1. Let Π be a protocol that follows the ordering policy en-

forcement framework (Fig. 1) to enforce a data-independent policy P,
and letS be the set of rational stakers executingΠ. Suppose there exists

a sequence of transactions tSeq = { ¯𝑡𝑥1, . . . , ¯𝑡𝑥ℓ } ∈ P(md1, . . . ,mdℓ)

withmax utility for some input stream ((md1, data1), . . . , (mdℓ , dataℓ)).

Moreover, let us assume that there exists a function extract() known to
all stakers in S s.t. tSeq

′ |= extract(tx1, . . . , txℓ) ∈ P(md
′
1
, . . . ,md

′
ℓ ′)

where tx𝑖 corresponds to the reveal of ¯tx𝑖 , for another set of valid

md
′
1
, . . . ,md

′
ℓ ′ ; such that the utility from publishing tSeq

′
is more

than the utility from publishing tSeq. Then, Π cannot enforce P.

In other words, assuming MEV extraction is possible (i.e., extract
exists), data-independent ordering policies cannot be enforced by

protocols following the ordering policy enforcement framework

defined in Fig. 1. The necessary extract function, in practice, can

be an algorithm that uses a combination of techniques publicly

known to stakers today and outputs the sequence that produces

the highest utility.

To prove the above impossibility result we present an attacking

protocol (Algorithm 1), and show that the stakers can present a

different reality tSeq
′
where no proof of malice can be obtained.

Suppose an adversarial set of stakers A (|A|≥ max(𝑡𝑠 , 𝑡𝑜 , 𝑡𝑟),

such that A is able to run submit, order, reveal) want to attack,

they will run Algorithm 1 using a protocol in a Trusted Execution

Environment (such as Intel SGX) when ShouldRelease(𝑠𝑖) is true

(and skip the honest protocol). Such an algorithm in TEE is de-

scribed in Appendix B. Note that we use an algorithm that provides

deniability to the stakers. Stakers inA (𝑠𝑖 ∈ A) will provide inputs

to the TEE running Algorithm 1, which will release any output

bit-by-bit to ensure all parties receive the output [9, Sec 5.4].

Note that all computations except the final outputs are hidden

during the execution and not available to any party in the clear.

Given ℓ received outputs (each one submitted by an user 𝑢𝑖 for

a transaction tx𝑖), and given a list spri𝑎 of inputs spri𝑖 of stakers
𝑠𝑖 ∈ A, an orderered list of transactions tSeq = (t̄x1, . . . , t̄xℓ) is gen-
erated (Line 5). Then, the reveal function is computed by the stakers

in A by passing as inputs the previously generated list of ordered

transactions, the list state𝑎 of states state𝑖 of stakers 𝑠𝑖 ∈ A, and

spri𝑎 . Once the transactions tx𝑖 are available, transaction signatures
are verified in order to confirm that each member provided the cor-

rect input to the protocol. Next, the extract function is run (Line 10)

in order to introduce new transactions att_txn (Line 12), which

are then submitted (Line 13) and added in the local state (Line 15).

The resulting block containing MEV-extracting transactions is then

published (Line 17).

At a high level, the above construction of an attacking protocol

works because i) tSeq
′
is more profitable for the stakers than tSeq,

and thus they are incentivized to join the coalition and ii) no party

can prove that the coalition of stakers was formed to violate the

ordering policy, and thus cannot be penalized. We prove this for-

mally in Appendix C. We show an example attack that follows the

attack protocol described in Algorithm 1 in Appendix D.

5 OPE USING RATIONAL BINDING

COMMITMENTS

In the impossibility result in the previous section, we assumed that

given a sequence of transactions tSeq, the parties have access to

an extract() function that provides a higher utility. For existing

systems such as Ethereum, such MEV extraction strategies are

known for sequences of transactions such as sandwich attacks [42],

frontrunning [18, 31], arbitrage [18] etc. To make them work in the

attack in Algorithm 1 (where tSeq is available but not in the clear),

we can create an extract() circuit that attempts all known attack

strategies and applies them to tSeq, and picks the best among them

to produce a new sequence tSeq
′
.

Data Independent Order Policy Enforcement: Limitations and Solutions CCS ’24, October 14-18, 2024, Salt Lake City, U.S.A.

Algorithm 1 Protocol for a set A of stakers extracting an ordering with a higher utility (protocol for 𝑠𝑖 ∈ A)

1: state𝑎
𝑗
← if 𝑠 𝑗 ∈ A then state𝑗 else ⊥ ⊲ state𝑎 is a list of states state𝑗 for every state𝑗 ∈ A

2: inp
𝑎
𝑗
← if 𝑠 𝑗 ∈ A then inp𝑗 else ⊥ ⊲ inp𝑎 is a list of inputs inp𝑗 for every state𝑗 ∈ A

3: spri𝑎
𝑗
← if 𝑠 𝑗 ∈ A then spri𝑗 else ⊥ ⊲ spri𝑎 is a list of private inputs spri𝑗 for every 𝑠 𝑗 in A

4: procedure Attack
k
(state𝑎, spri𝑎, inp𝑎) ⊲ Executed when ShouldRelease(𝑠𝑖) is true

5: (tSeq = (t̄x1, . . . , t̄xℓ), state𝑎)← order(state𝑎) ⊲ Validators in A order ℓ transactions

6: for 𝑗 ∈ {1, . . . , ℓ} do ⊲ Reveal the block earlier than protocol intended

7: (tx𝑗 ; state𝑎)← reveal(t̄x𝑗 , state𝑎, spri𝑎)

8: B = (tx1, . . . , txℓ)
9: VerifySigs(B)

10: att_B← extract(B) ⊲ Get MEV-extracting transactions

11: state′ ← ⊥
12: for att_txn ∈ att_B do

13: (txid; (⊥, out1, . . . , out𝑁))← submit(att_txn, inp𝑎) ⊲ Replay extracted in the desired order

14: md𝑖 , data𝑖 ← process(txid, out𝑖 , state′𝑖) ⊲ Add to state the MEV-extracting transactions

15: state′
𝑖
← state′

𝑖
.add((txid,md𝑖 , data𝑖))

16: (tSeq
′

= (
¯tx′1, . . . , ¯tx′ℓ ′); state′)← order(state′)

17: return tSeq
′, state′

𝑖
⊲ Publish the block containing the MEV-extracting transaction

Importantly, for such an attack to work, indeed, the extract()
function needs to have access to all the information about the

transaction (e.g., having access to signed transactions that cannot

change). What happens if some information could be withheld from

the stakers? To understand this question, let us consider the follow-

ing example. An ideal strategy to sandwich an AMM transaction

tx:= “Buy 𝑥 tokens of X for 𝑦 tokens of Y with a slippage of 𝑠” is to

produce a sequence (txattack
Buy

, tx, txattack
Sell

) so that the first attacking

transaction txattack
Buy

reduces the supply of token X for tx making

it pay a higher price, and txattack
Sell

extracts the sandwiching profit.

However, if the attackers are unaware whether tx was a buy or

sell transaction, or if it may be reversed with some probability (i.e.,

tx became selling token X for Y), then using the same attack can

backfire and can result in losses for the attackers.

This idea leads to two natural questions. First, can we deviate

from the framework to design a scheme that withholds some in-

formation from attacking stakers? Second, can we disincentivize

attacks when the information is withheld? In Section 5.1, we devise

a strategy with rationally binding commitments by creating an in-

formation asymmetry (e.g., only one party knows whether it is a

Buy or a Sell transaction) between a specific staker F (a flipper)

and other stakers. In particular, the transaction can be modified

after reveal has been invoked and F is responsible to complete the

transaction. The asymmetry of information allows a rational F
to improve its own utility at the expense of other stakers if the

stakers choose to sandwich it. Consequently, this disincentivizes

the other stakers to attack in the first place. We call this rationally

binding since the correctness of the transaction relies on F being

rational, which is a reasonable assumption. In this world, the client

needs only to monitor the chain and hold F accountable in case it

observes F does not complete the transaction correctly.

We can also rely on users or TEEs held by stakers to withhold

some information; this information is only revealed during the re-

veal phase. We discuss how to disincentivize attacks when this is

possible in Appendix E. However, such a solution either requires

the user to be online (which breaks the general ephemerality re-

quirement) or needs additional assumptions, such as TEEs in the

protocol. Since users do not have a stake, they typically tend to be

ephemeral and this may cause liveness issues by not revealing their

transactions.

5.1 AnimaguSwap
In this subsection, we describe a protocol design where some in-

formation is withheld from the attackers by a designated rational

staker called flipper F . This approach, as is, only works towards

mitigating, and sometimes eliminating, sandwich attacks in con-

stant product automated market makers (AMMs) like in Uniswap

V2 [1]; though it can be easily extended to any constant function

AMM. The key intuition is that if a set of stakers choose to sand-

wich a transaction, the protocol design allows the flipper to use its

knowledge to gain a profit at the expense of those stakers. Thus,

the binding property of the transaction relies on the flipper be-

ing rational. We first provide some background on an AMM and

how sandwich attacks can be performed on transactions. Then, we

present our protocol design and analyze it.

5.1.1 Background. An Automated Market Maker (AMM) such as

Uniswap [1], Balancer [6], and Curve[36], uses automated algo-

rithms to facilitate decentralized exchange of assets. AMMs set

prices based on a mathematical formula based on the available liq-

uidity of a given asset. In particular, in a Constant Product Market

Maker, the product of the asset amounts in the liquidity pool is kept

constant. Thus, if we have an AMM with two assets 𝑋 and 𝑌 with

quantities r𝑋 and r𝑌 respectively, then r𝑋 ∗ r𝑌 = 𝑘 holds for some

fixed value of 𝑘 at all times.

When a user wants to trade one asset (𝑋) for another (𝑌), they

must deposit an amount of the first asset ∆r𝑋 and receive an ap-

propriate amount of the second asset ∆r𝑌 in return. Each trans-

action to the AMM is charged an additional fee, which we rep-

resent by f (e.g., f = 0.3% is a common value in practice). The

constraint becomes (r𝑋 +(1− f)∆r𝑋)∗ (r𝑌 −∆r𝑌) = 𝑘 . Such a trade is

CCS ’24, October 14-18, 2024, Salt Lake City, U.S.A. Sarisht Wadhwa, Luca Zanolini, Aditya Asgaonkar, Francesco D’Amato, Chengrui Fang, Fan Zhang, and Kartik Nayak

SwapTokensForExactTokens in the Uniswap implementation and

we represent it by Buy. Post the trade, the liquidity available would

be (r𝑋 + ∆r𝑋) and (r𝑌 − ∆r𝑌) respectively (independent of the f).
A trade can be made with the fixed ∆r𝑋 amount in which to

receive a fixed amount of first asset ∆r𝑋 , the user deposits an ap-

propriate amount of second asset ∆r𝑌 . Such a trade can be achieved

by SwapExactTokensForTokens in Uniswap implementation and

is referred to as Sell for the paper. The constraint for Sell is

(r𝑋 − (1 − f)∆r𝑋) ∗ (r𝑌 + ∆r𝑌) = 𝑘 . Post the trade, the liquidity

available would be (r𝑋 − ∆r𝑋) and (r𝑌 + ∆r𝑌) respectively.

Thus, given the current state of an AMM with r𝑋 and r𝑌 tokens,

a user can estimate ∆r𝑌 received in exchange for depositing ∆r𝑋 or

estimate ∆r𝑋 to deposit in exchange for receiving ∆r𝑌 . However,

if the state of the system changes due to some other transactions

getting executed and affecting the liquidity pool, receiving ∆r𝑌 for

depositing ∆r𝑋 is not guaranteed. Thus, the system allows the user

to specify a parameter expressed as a fraction called slippage s so

that the number of tokens received by the user is not exact, e.g.,

≥ (1 − 𝑠)∆r𝑌 . In other words, the user’s transaction is specified as

“Deposit (1 − f)∆r𝑋 of 𝑋 in exchange for ≥ (1 − 𝑠)∆r𝑌 of 𝑌 ”.

5.1.2 Sandwich Attack on Constant Product AMM. While slippage

upper bounds users’ loss, an attacker can still profit from user

loss up to what is permitted by slippage by mounting sandwich

attacks. This can be done by executing a transaction, depositing 𝑋 ,

and receiving 𝑌 before the user’s transaction (frontrunning). Once

the user’s transaction is executed, observe that the liquidity of 𝑌

has reduced further while it is the other way around for 𝑋 . Thus,

the attack can then run a reversed transaction, where the attacker

sells the 𝑌 earned from the frontrunning transaction, in exchange

for 𝑋 . Such a transaction is called backrunning, and in an AMM,

the attacker obtains a higher amount of 𝑋 compared to what it

had deposited in the frontrunning transaction. We refer interested

readers to Appendix F for a mathematical analysis of the optimal

frontrunning and backrunning parameters.

5.1.3 AnimaguSwap specification. We now present a protocol that

can either reduce attacker gains or under some parameterizations,

result in attacker losses, when sandwiching is attempted. As we

have seen, in the frontrunning part of a sandwich attack, the at-

tacker reduces the liquidity of the token that the user is interested

in (token 𝑌 in our example). However, if the direction of the trade

can be withheld from the attacker, then the attacker essentially has

to guess one of the two directions. In situations where the attacker

guesses incorrectly, it instead increases the liquidity of 𝑌 due to

which the user can enjoy a much better trade and obtain ∆r
′
𝑌
> ∆r𝑌

tokens of ∆r𝑌 .

Our protocol is shown in Fig. 11 (Appendix I). It generally follows

the structure of the framework in Figure 1 except for a couple of

aspects that we will describe later. Recall that F refers to the flipper,

a designated staker whowould withhold the information from other

stakers.

Transaction generation. Suppose the user intends to perform a

trade from 𝑋 to 𝑌 . This intent can be fulfilled in two ways: a “buy”

transaction txBuy that buys 𝑌 or, equivalently, a “sell” transaction

txSell that sells 𝑋 . With properly adjusted parameters, these two

transactions have the same execution outcome. Specifically, we

write txSell = Sell(𝑋,𝑌,∆r𝑋 ,∆r𝑌 , s,md), where ∆r𝑋 represents

the number of tokens of 𝑋 to be sold, in order to get maximum

possible𝑌 units, which is expected to be∆r𝑌 . The transactionwould

only go through if the number of tokens received > (1 − s)∆r𝑌 .

md represents any other metadata to be used by the transaction.

Similarly, txBuy = Buy(𝑌,𝑋,∆r𝑌 ,∆r𝑋 , s,md). In our notation, the

first parameter is (∆r𝑋 in case of Sell, and ∆r𝑌 in case of Buy) is

“exact” whereas the second parameter is determined by the first

parameter and s.

The user first generates a random bit b to determine which

transaction to use to fulfill its intended trade (note that the user

is indifferent). Without loss of generality, we require that the user

chooses the “buy” transaction txBuy if and only if b = 0. In the

transaction metadata for tx
b
, a hash of 𝑣 | |𝑤 is included, where 𝑣

and𝑤 are randomly generated numbers. This would be later used

to allow slashing.

The key trick in AnimaguSwap is that the same coin decides if

the user will “flip” the chosen transaction again. By flipping, we

mean changing the polarity of the trade from selling asset 𝑋 to

buying asset𝑋 and vice versa, thereby creating a flipped transaction

that is the opposite of the user’s intent. Specifically, we require that

the user flips the chosen transaction if and only if b = 1. We denote

the transaction after the optional flipping as tx
b
.

Following the same example where the user intends to trade

from 𝑋 to 𝑌 . If b = 0, the user will choose txBuy and does not flip,

i.e., tx
b

= txBuy. If b = 1, the user will choose txSell and flips, i.e.,

tx
b

= Buy(𝑋,𝑌,∆r𝑋 ,∆r𝑌 , s,md). Note that in this case tx
b
̸= txBuy.

Also, the committee always receives a “buy” transaction from the

user, but the true intent is hidden in the flip bit. As we will detail

in the next step, the user will submit tx
b
to the committee and the

flip bit b to a different staker called the flipper F .
The second key trick is to disincentivize the flipper from reveal-

ing the flip bit (b), by having the user create another transaction txF
which pays the flipper F some amount of tokens if stakers attempt

to sandwich tx
b
but the direction of the sandwiched transaction is

opposite. In particular, following the same example, if b = 1 and the

committee creates a sandwich assuming b = 0, the user will earn

∆r
′
𝑌
> ∆r𝑌 . It can then pay the flipper ∆r

′
𝑌
− ∆r𝑌 without decreas-

ing its utility from a no-attack scenario. Similarly, if b = 0 and the

committee assumes b = 1, then the user would swap ∆r
′
𝑌

< ∆r𝑌

and pay the flipper ∆r𝑌 − ∆r
′
𝑌
. To represent it mathematically, the

user pays the flipper b(∆r
′
𝑌
− ∆r𝑌) + (1 − b)(∆r𝑌 − ∆r

′
𝑌

). Observe

that obtaining ∆r𝑌 is what the user expected; paying the remaining

amount incentivizes F . In scenarios where the polarity is guessed

correctly, the flipper does not gain or lose money.

Transaction submission. During the transaction submission pro-

cess, the user sends the bit b to the flipper. Importantly, the user

does not sign this message, ensuring that the flipper cannot prove

the polarity of the transaction to the other stakers. The bit b would

later be revealed by the flipper to the blockchain by sending a signed

message. What if the flipper cheats and presents an incorrect value?

To ensure this does not happen, the flipper sends a signed message

only to the user stating that it would reveal bit b corresponding to

this transaction; if the flipper does otherwise, or does not reveal

any value, then it can be slashed by the user based on this message.

Data Independent Order Policy Enforcement: Limitations and Solutions CCS ’24, October 14-18, 2024, Salt Lake City, U.S.A.

However, one might argue that the flipper can forward a sim-

ilar message to the stakers, and if this bit is incorrect the stakers

would be able to slash the flipper. In order to safeguard against

that, the user sends a random value 𝑣 as an unsigned message to

the flipper. It is crucial to ensure the deniability of the message

sent by the user while maintaining the integrity of the message

i.e., the message sent to the flipper could have been generated by

the flipper itself. To ensure this, the user sends𝑚 = (pk
u
| |b| |𝑣 | |txid)

to the flipper encrypted under pk
flipper

using a hybrid public key

encryption scheme (e.g., [7]). The message sent above could only

be generated by a party who knows the correct random number 𝑣

and the transaction ID txid. This ensures that no party except for

the user and flipper (the two parties that know the content of the

message) could have generated the message.

When returning the signed message to the user committing to

b, it also includes 𝑣 in the commitment. The user then generates

another random number𝑤 , and uses hash(v||w) in the transaction

metadata. This ensures that only the user or a party with 𝑤 can

slash the flipper using the signed message the flipper sent, and

thus, the flipper is free to sign any message it wants without risk

of getting slashed.

Once both these steps succeed, the user secret-shares the (poten-

tially flipped) transaction with the remaining stakers.

Transaction inclusion and reveal. The transaction inclusion

process is straightforward. An accumulator value corresponding

to the transaction is added to the chain whenever ShouldRelease
predicate is true. Finally, the transaction content is revealed from

the secret-shares when ShouldReveal is true.4 In this step, F reveals

the bit b too so that the correct transaction is revealed.

Pessimistic slashing. In case the flipper reveals bit
˜
b instead of b,

then the user uses the signed message (b, txid, 𝑣)𝜎(pkF)
in addition to

𝑣 and𝑤 to slash the flipper. The slashing rule gives us the following

guarantees:

• Correctness: The user can only slash the flipper in case an incor-

rect bit is revealed, as slashing requires the user to show a signed

flip bit different from what the flipper revealed. Correctness fol-

lows from the unforgeability of digital signatures.

• Soundness: If the flipper releases an incorrect bit, then the user

can slash the flipper. Since the user has the signed message which

contains the correct bit b, it acts as a commitment by the flipper

and since both 𝑣 and 𝑤 are known to the user, the signature

can be used to slash the flipper by showing the authenticity of 𝑣

(revealing 𝑣 and𝑤 , and verifying it against ℎ𝑎𝑠ℎ(𝑣 | |𝑤)).

• Non-transferability: The flipper cannot convince any party (other

than the user) that (b, txid, 𝑣)𝜎(pkF)
can be used to slash the flipper.

Note that this message can slash the flipper only if 𝑣 is committed

to by the metadata 𝑚𝑑 = ℎ𝑎𝑠ℎ(𝑣 ∥𝑤). Since 𝑤 is private to the

user,𝑚𝑑 is a perfectly hiding commitment to 𝑣 , so no party can

verify that flipper’s claimed 𝑣 is committed to by𝑚𝑑 , following

the definition of hiding.

Observations. Here are a few observations related to this protocol.

First, all known blockchains typically rely on accepting transactions

4
These predicates are abstract since their choice does not affect the design. In practice,

one can replace these with predicates used by Shutter DKG [13], Ferveo [8], or Fino [28].

S

Oℎ

H

O𝑐 O𝑖

O𝑟

¬𝑃

G
𝑃

𝐼

C

¬𝐼
𝑢𝑟 (Lemma 1)

𝑢ℎ = (0, 0)

𝑢𝑔 (Lemma 4)

(a) Sequential Game

F
C

Accept information Anticipate Betray

Co-operate 𝑢𝑠 (Lemma 2) 𝑢𝑟𝑠 (Lemma 3)

Betray 𝑢𝑟𝑠 (Lemma 3) 𝑢𝑠 (Lemma 2)

(b) G- Simultaneous Game

Figure 2: Game Tree for actions taken in AnimaguSwap. Con-

sists of a sequential game in which each of F and C decide

to participate or not and if both decide to participate, there

exists a simultaneous game to decrypt the transaction cor-

rectly or incorrectly.

that are signed only by the end users. This is the first protocol, to

our knowledge, that includes a transaction where a portion of it

(the bit b) is signed by a party (the flipper) other than the user.

Second, a consequence of our approach is that, in the presence of a

Byzantine flipper, the polarity of the executed transaction can be

reversed. In practice, however, parties are sensitive to their utility,

and thus, due to the existence of the slashing mechanism, a rational

flipper would always reveal the correct bit. Thus, our protocol is

only rationally binding – this is the key aspect where we deviate

from the requirement in the framework in Fig. 1. Third, since we

expect the user to slash the flipper in case it deviates, the user

cannot be ephemeral in the pessimistic case. The user needs to

penalize the flipper within a reasonable timeframe (e.g., a few days).

Finally, while the flipper can be any designated staker, a reasonable

choice would be to have the staker that is expected to reveal the

content of the transaction as the flipper. This ensures that the staker

can reveal without waiting for inputs from other stakers.

5.2 AnimaguSwap Analysis

In this subsection, we will analyze AnimaguSwap detailed in Sec-

tion 5.1.3. Our goal is to show that following protocol specifications

is the dominant strategy for all the parties involved. For ease of

analysis, we assume that the committee is colluding (e.g., through

a collusion protocol such as Algorithm 1), and hence, treat the com-

mittee as a single party. We start the game after the user sends

the flip bit to the flipper F , and the transaction is secret shared

with the committee C. For the analysis, C reconstructs the secret

transaction sent to it. Also, the analysis would follow a single-shot

game (i.e., the flipper and the committee are not repeated). In more

practical scenarios, the game would be a multi-shot game. The re-

duction from a multi-shot game to a single-shot game is shown in

Appendix G.

CCS ’24, October 14-18, 2024, Salt Lake City, U.S.A. Sarisht Wadhwa, Luca Zanolini, Aditya Asgaonkar, Francesco D’Amato, Chengrui Fang, Fan Zhang, and Kartik Nayak

5.2.1 Game Setup. We analyze the game for a singleAnimaguSwap
transaction. The game underlying AnimaguSwap consists of two

players - the flipper (F), who receives one bit of information from

the user on whether or not to flip the direction of the trade, and the

committee (C), which receives the transaction.

Definition 3 (AnimaguSwap Game). We define the game as a tuple

(𝑁,𝐴,𝑂, `,𝑢), where 𝑁 = {F , C}, 𝐴 = {𝐴F, 𝐴C} is the set of actions
available to F and C respectively,𝑂 = {Oℎ,O𝑟 ,O𝑠 ,O𝑟𝑠 }5 is the set of
outcomes from the game, ` is the function that maps the set of actions

to the outcome, and 𝑢 = {𝑢ℎ, 𝑢𝑟 , 𝑢𝑠 , 𝑢𝑟𝑠 } is utility corresponding to

outcomes.

The game states achievable through the game are S = {O𝑐 ,O𝑖 ,Oℎ,
O𝑟 ,O𝑠 ,O𝑟𝑠 } The action space for the game is defined as 𝐴C = {H

(Honest), C (Collude), I (Invite F), AI (Accept Information), AB

(Anticipate Betray)} and 𝐴F ={P (Participate), Co (Cooperate), B

(Betray)}. The game tree Fig. 2 helps to understand action space

better and also designs the function `.

We assume that both players are rational, and have perfect in-

formation on strategy used by the other player, a concept used to

find a Nash equilibrium of the game. We will first show such an

equilibrium of strategy in a simultaneous game (Fig. 2(b)), and then

plug in the utility for the equilibrium strategy in the sequential

game (Fig. 2(a)), to use iterative elimination of dominated strategies

to find the best strategy across both games to earn the highest

utility.

In this model, a player’s utility is defined by the net number of

tokens gained or lost in the game. Further, the action set for the

game is limited, and any actions such as being involved in binding

side contracts are out of the scope of this analysis. We will discuss

the case with binding side contracts in Appendix J. There are two

ways to reach outcomes O𝑟𝑠 and O𝑠 , but the players’ utility is only

a function of the state, not the actions leading to the state (by

definition of utility function). Specifically, in case the game reaches

O𝑠 , i.e., a successful sandwich attack due to either {Co, AI} actions or
{B, AB}, F and C get a utility independent of actions taken to reach

the state; In case the game reaches O𝑟𝑠 , i.e., unsuccessful sandwich
attack due to either {Co, AB} actions or {B, AI}, F does not lose any

utility due to the actions taken. As an example of utility sharing,

after the action 𝐼 a conditional bribe can be set to F , which would

only go through if the sandwich is successful.

From Section 5.1.1, without any attacker transaction, if the user’s

transaction was Sell then it would have followed

(r𝑋 + (1 − f)∆r𝑋)(r𝑌 − ∆r
𝑆
𝑌) = r𝑋 r𝑌 (1)

Without any attacker transaction, if the user’s transaction was Buy

then it would have followed

(r𝑋 − (1 − f)∆r𝑋)(r𝑌 + ∆r
𝐵
𝑌) = r𝑋 r𝑌 (2)

5.2.2 Analysis. Let us represent direction as a random variable

chosen uniformly by the user from {Buy, Sell}. Without loss in

generality, we can always represent the frontrunning transaction

as a Sell transaction. In the case of Buy, the fee would be charged

from the other token, but the essence of the proof would remain the

5ℎ stands for honest, 𝑟 random, 𝑠 sandwich, and 𝑟𝑠 reverse sandwich.

same. First, the frontrunning transaction would follow the constant

product invariant.

(r𝑋 + (1 − f)∆a𝑋)(r𝑌 − ∆a𝑌) = r𝑋 r𝑌 (3)

Now, after the frontrunning transaction, the victim transaction

would follow. The transaction here could be a Sell transaction

or Buy transaction, following the same set of parameters as C’s
frontrunning transaction. If the user’s transaction is Sell, then it

would follow the constant product invariant.

(r𝑋 + ∆a𝑋 + (1 − f)∆r𝑋)(r𝑌 − ∆a𝑌 − ∆r
+

𝑌)

= (r𝑋 + ∆a𝑋)(r𝑌 − ∆a𝑌)

(4)

Also, the user’s transaction would only be executed if

∆r
+

𝑌 > (1 − s)∆r𝑆𝑌 (5)

The backrunning transaction would follow the constant product

invariant with updated liquidity pools.

(r𝑋 + ∆a𝑋 + ∆r𝑋 − ∆a
+

𝑋)(r𝑌 − ∆a𝑌 − ∆r
+

𝑌 + (1 − f)∆a𝑌)

= (r𝑋 + ∆a𝑋 + ∆r𝑋)(r𝑌 − ∆a𝑌 − ∆r
+

𝑌)

(6)

The profit would be given by

𝑝+
= ∆a

+

𝑋 − ∆a𝑋 (7)

Since the sandwich is successful, ∆r
+

𝑌
< ∆r

𝑆
𝑌
. If the transaction is

Buy, then it would follow Eqs. (8) to (11),

(r𝑋 + ∆a𝑋 − (1 − f)∆r𝑋)(r𝑌 − ∆a𝑌 + ∆r
−
𝑌)

= (r𝑋 + ∆a𝑋)(r𝑌 − ∆a𝑌)

(8)

∆r
−
𝑌 > (1 − s)∆r𝐵𝑌 (9)

(r𝑋 + ∆a𝑋 − ∆r𝑋 − ∆a
−
𝑋)(r𝑌 − ∆a𝑌 + ∆r

−
𝑌 + (1 − f)∆a𝑌)

= (r𝑋 + ∆a𝑋 − ∆r𝑋)(r𝑌 − ∆a𝑌 + ∆r
−
𝑌)

(10)

𝑝− = ∆a
−
𝑋 − ∆a𝑋 (11)

Since the sandwich is unsuccessful, ∆r
−
𝑌
< ∆r

𝐵
𝑌

Lemma 1. If the transaction’s direction is uniformly distributed

between {Buy, Sell}, and if C takes the action to cooperate (𝐶), and

either takes action to not invite F (¬𝐼), or after taking action to invite
F (𝐼), F does not participate (¬𝑃), to reach output state O𝑟 , then
independent of the direction of trade C chooses, the utility of F and

C (𝑢𝑟 = 𝑢𝑟 (F), 𝑢𝑟 (C)) is given by (
1

2
(∆r

𝐵
𝑌
− ∆r

−
𝑌

), 1

2
(𝑝+

+ 𝑝−)).

Proof. If C does not have information about the direction of

the trade, then it can assume a direction among {Buy, Sell}. With-

out loss of generality, we represent the committee’s frontrunning

transaction in the form of a Sell(r𝑋 , r𝑌 ,∆a𝑋 ,∆a𝑌 , s,md).

Since the direction of transaction is chosen at random from

{Buy, Sell}, Eq. (7) and Eq. (11) govern the profit with probability

0.5 each, and the expected utility would be given by

𝑢𝑟 (C) =

𝑝+
+ 𝑝−

2

(12)

Next, the utility for F would be given from the AnimaguSwap
protocol only in the case when C guesses the transaction direction

incorrectly (and 0 in the other case).

Data Independent Order Policy Enforcement: Limitations and Solutions CCS ’24, October 14-18, 2024, Salt Lake City, U.S.A.

𝑢𝑟 (F) =

1

2

(∆r
𝐵
𝑌 − ∆r

−
𝑌) (13)

□

Lemma 2. For game G, if F takes the action to co-operate (𝐶𝑜),

and C accepts the information (𝐴𝐼), or F takes the action to betray

(𝐵), and C anticipates betrayal (𝐴𝐵), then the utility is given by

𝑢𝑠 = (𝑢𝑠 (C) = Y,𝑢𝑠 (F) = 𝑝+ − Y), where 0 < Y < 𝑝+
.

Proof. The proof for the lemma follows Eq. (7). The profit gained

from choosing the correct direction to sandwich would be shared

between F and C, regardless of the actions taken to reach the state.

Thus, if C receives a utility of Y, then F receives a utility of 𝑝+ − Y,
0 < Y < 𝑝+

. F receives no utility directly from the AnimaguSwap
protocol. □

Lemma 3. For game G, if F takes the action to co-operate (𝐶𝑜),

but C anticipates betrayal (𝐴𝐵), or F takes the action to betray

(𝐵), but C accepts the information (𝐴𝐼), then the utility is given by

𝑢𝑟𝑠 = (𝑢𝑟𝑠 (C) = 𝑝−, 𝑢𝑟𝑠 (F) = ∆r
𝐵
𝑌
− ∆r

−
𝑌

).

Proof. Both sets of actions lead to a state where the committee

inserts a frontrunning transaction with the incorrect direction. As

stated in the setup, this would mean that F has no utility from the

game itself, and C loses utility governed by 𝑝− (Eq. (11)). However,
in accordance with the AnimaguSwap protocol, F receives incen-

tives from the protocol. This would be given by ∆r
𝐵
𝑌
− ∆r

−
𝑌
. Thus

𝑢𝑟𝑠 = (𝑝−,∆r𝐵
𝑌
− ∆r

−
𝑌

). □

Lemma 4. For game G, if ∆r
𝐵
𝑌
−∆r

−
𝑌
> 𝑝+−Y the Nash Equilibrium

is governed by a mixed strategy for both F and C, with F betraying

the committee with a probability of 0.5, and C anticipating betrayal

with a probability of 0.5. The overall utility from game G is given by(
Y+𝑝−

2
,
𝑝+−Y+∆r

𝐵
𝑌
−∆r

−
𝑌

2

)
Proof. To prove that the above strategy is a Nash Equilibrium,

we reveal the strategy of each player to the other player and see

if the strategy changes. From F ’s perspective, if it knows that C
anticipates betrayal with a probability of 0.5, then the expected

utility from betraying is
(𝑢𝑠 (F)+𝑢𝑟𝑠 (F))

2
, whereas the utility from

cooperating is
(𝑢𝑠 (F)+𝑢𝑟𝑠 (F))

2
. From lemmas 2 and 3, both of these

are equal, and thus F does not have any additional utility from

deviating from the strategy.

From C’s perspective, if it knows that F betrays with a probabil-

ity of 0.5, then the expected utility from anticipating betraying is

(𝑢𝑠 (C)+𝑢𝑟𝑠 (C))

2
, whereas the utility from accepting the information

is
(𝑢𝑠 (C)+𝑢𝑟𝑠 (C))

2
. From lemmas 2 and 3, both of these are equal, and

thus C does not have any additional utility from deviating from the

strategy.

Thus, the given strategy is a Nash Equilibrium and by substi-

tuting the utilities from lemmas 2 and 3, the utility is given by(
Y+𝑝−

2
,
𝑝+−Y+∆r

𝐵
𝑌
−∆r

−
𝑌

2

)
. □

0 2 4 6 8 10
change in liquidity of token X (100∆rX/rX)

0.00

0.02

0.04

0.06

p
ro
fi
t
in

to
ke
n
X

(∗
10
0/
r X

)

0.00

0.02

0.04

0.06

p
ro
fi
t
in

to
ke
n
Y

(∗
10
0/
r Y

)s: 0.005

s: 0.01

s: 0.03

analytical

simulation

committee

flipper

Figure 3: Gains of the committee and the flipper in a sand-

wich attack when using AnimaguSwap.

Lemma 5. In the game state O𝑐 , if the transaction’s direction is

uniformly distributed between {Buy, Sell}, and if ∆r
𝐵
𝑌
−∆r

−
𝑌
> 𝑝+−Y,

it is strictly dominant for C to not invite F (¬𝐼) over inviting F (I).

Proof. From Lemma 1, the utility of C from random choice is

𝑢𝑟 (C) =
𝑝+

+𝑝−

2
. From Lemma 4, the utility of C from game G is

Y+𝑝−

2
. Since Y < 𝑝+

,
𝑝+

+𝑝−

2
>

Y+𝑝−

2
. Thus, choosing the direction at

random strictly dominates colluding with F . □

Theorem 2. If the transaction’s direction is uniformly distributed

between {Buy, Sell}, ∆r𝐵
𝑌
−∆r

−
𝑌
> 𝑝+

and ∆a
+

𝑋
+∆a

−
𝑋
−2∆a𝑋 < 0, it

is dominant for all parties in AnimaguSwap to follow the specification

in Section 5.1.3.

Proof. If ∆r
𝐵
𝑌
−∆r

−
𝑌
> 𝑝+

, then ∆r
𝐵
𝑌
−∆r

−
𝑌
> 𝑝+ − Y since Y > 0.

Thus, from Lemma 5, it is strictly dominant for C to choose the

direction of trade arbitrarily over colluding with F . If ∆a
+

𝑋
+ ∆a

−
𝑋
−

2∆a𝑋 < 0, then the expected profit from attacking AnimaguSwap
by arbitrarily choosing a direction of trade is < 0 by plugging

in 𝑝+
and 𝑝− in Lemma 1. Since taking honest actions leads to

0 utility, the committee would choose to take honest actions in

AnimaguSwap. □

The chart (Fig. 3) represents the variation of the maximum utility

with the user’s transaction input (∆r𝑋) relative to the liquidity of

X available (r𝑋), where slippage is set to be 0.005, 0.01, and 0.03

respectively. If both F and C act honestly, they both receive no

utility from the game. From the chart, we observe that 𝑢𝑟 (𝐶) < 0

until ∼ 7.9% of the liquidity is traded. From this, we can conclude

that C and consequently F would act honestly unless the traded

amount > 7.9% of the liquidity. 7.9% value is roughly when ∆a
+

𝑋
+

∆a
−
𝑋
− 2∆a𝑋 = 0.

To validate the analysis when C chooses the direction of trade ar-

bitrarily, we simulate the attack in an AMMmodeled after Uniswap

v2, and calculate the expected gains for the attacker and the flipper

when the attacker decides to sandwich the transaction across mul-

tiple values of s set by the user. Figure 3 shows that the analytical

and simulation results are consistent.

Numerical example. As a concrete example, Table 2 in Appen-

dix H shows the loss/gain of an attack against a simulated user

trade sent through AnimaguSwap to Uniswap V2.

CCS ’24, October 14-18, 2024, Salt Lake City, U.S.A. Sarisht Wadhwa, Luca Zanolini, Aditya Asgaonkar, Francesco D’Amato, Chengrui Fang, Fan Zhang, and Kartik Nayak

Function Gas cost Function Gas cost

commit 66275 revealFlipper 46069

revealStaker 239342 complain 34862

Table 1: Cost for a AnimaguSwap call. It takes 1564706 gas to

deploy (one-time cost). Complain is not on critical path.

5.3 Base AnimaguSwap Evaluation

To evaluate the practicality of AnimaguSwap, we implemented the

protocol (without the sub-routines for non-uniform distribution

for {Buy, Sell} and repeated games) as a smart contract AS in 350

lines of Solidity. At a high level, AS is a middleware between users

and an AMM, where users send commitments of transactions to AS
following the AnimaguSwap protocol, stakers and flipper reveal

user transactions, and finally, AS forwards the revealed transactions
to the destination. In our prototype implementation, the destination

is a fork of Uniswap V2 AMM. Specifically, the smart contract

handles the following tasks:

• Staking and slashing. Stakers and the flipper deposit an ap-

propriate amount of collateral to AS to join the system. When

misbehavior is detected, users can submit evidence to AS to slash
their stakes (c.f. Pessimistic Slashing Fig. 12).

• Commit.To commit to transaction tx, a user runsGenerate Trans-
action and Transaction Submission specified in Section 5.1.3. After

interacting with stakers and flippers, the user calls AS.commit
with the hash of 𝑡𝑥

b
.

• Reveal and execution. The reveal process follows Transac-

tion Revealing in Section 5.1.3. Specifically, the stakers recon-

struct the secret shared transaction off-chain and one of the

stakers calls AS.revealStaker with the reconstructed transaction

𝑡𝑥
b
. revealStaker verifies the correctness of 𝑡𝑥

b
against the com-

mitment. Then, Flipper callsAS.revealFlipperwith flip bit b. With

both b and tx
b
,AS recovers the user’s original intent and executes

it. In our implementation, this triggers a call to Uniswap V2.

Off-chain parties (stakers and the flipper) are implemented in 400

lines of TypeScript. The code can be found at

https://anonymous.4open.science/r/AnimaguSwap-D31F/.

Evaluation. The stakers’ main task is to reconstruct user trans-

actions from secret shares to open commitments and execution

transactions. The flipper’s task does not involve any costly compu-

tation. Compared to smart contract execution, off-chain computa-

tion is much more efficient (see, e.g., [8], for evaluation). The main

performance metric therefore is the gas consumption of AS.
Table 1 shows the gas cost breakdown of executing a Uniswap

trade from 1 wBTC to DAI, which costs 351k gas ($4.6 at the time

of writing). To compare, a typical Uniswap V2 trade costs about

150k gas ($2).
6
The strong protection of AnimaguSwap thus incurs

a 1.3x overhead. Note that since transactions are reconstructed

off-chain, the gas cost does not increase with the number of stakers.

Also, note that the cost does not increase with the value of the

transaction. Therefore, while gas usage can be potentially reduced

further, our preliminary implementation is already quite practical

for high-value transactions.

6
https://etherscan.io/gastracker

5.4 Non-uniform Distribution in {Buy, Sell}
In Theorem 2, we assumed for the result that there is an even

spread between two trade directions, {Buy, Sell}. However, this
assumption might not hold in real-world scenarios. For instance,

during the LUNA crash of May 2022, a trade involving ETH and

LUNA is more likely to be selling LUNA, than buying it. In such

scenarios, AnimaguSwap as presented above does not work, as the

attacker can guess the flipper’s bit based on public information such

as market sentiment. Another problematic scenario is when the

user only owns one of the assets in her transaction, so the attacker

can deduce that the transaction must be selling that asset.

Formally, for a given pair of assets 𝑃𝑎𝑖𝑟 = (𝑋,𝑌), if the probability

of trading 𝑋 to 𝑌 in a random transaction is different from that of

the reverse direction, we say this asset pair is biased, and we denote

the probability of the more probable direction with P_dir𝑃𝑎𝑖𝑟 ≥ 0.5.

(The probability of the less probable direction is 1− P_dir𝑃𝑎𝑖𝑟 .) We

call P_dir𝑃𝑎𝑖𝑟 the bias of the pair for short. We omit the subscrip-

tion when the asset pair is clear from context. Now we present an

enhancement to AnimaguSwap that can protect biased asset pairs.

Our idea is to obfuscate the user transaction (using techniques

to be presented shortly) so that an attacker mounting sandwich

attacks based on guessed transaction information will equally likely

fail or succeed. ‘Success’ here means the attacker manages to profit

from the sandwich attack, while ‘failure’ means the attacker loses.

As long as the amounts gained or lost in a ‘success’ and ‘failure’

remain the same as in the gains and loss in Section 5.2, all the lemma

statements and the theorem statement would follow. We present

the subroutines integrated into AnimaguSwap in Appendix I.

In order to get an equal probability of ‘Success’ and ‘Failure’,

we take the following three steps: 1) remove any user dependency

by creating a pool of users; 2) hide the asset being traded among

multiple transactions in a way that no party can distinguish which

asset is being traded, and 3) set the parameters so that the attacker

can only lose utility from sandwiching incorrectly, but never gain

any profit, if it chooses the wrong asset. With these three proper-

ties, we make it such that the attacker gains a profit when it gets

everything correct, however, in multiple cases where it gets the

trade direction incorrectly, the attacker loses. There also exist cases

where the attacker neither wins nor loses (pays some transaction

fee), but we assume the utility for such cases is 0.

To start with, we obfuscate the user identity by mixing it among

a pool of decoy users, so that the attacker cannot gain information

about the user’s transaction from the user’s on-chain presence

(e.g., if this user doesn’t possess the asset 𝑋 , then the attacker

can infer that the user cannot only be buying 𝑋 .) To select decoy

users, the user randomly chooses users who collectively own all

the assets being traded (the real asset pair, and all the auxiliary

asset pairs which we would introduce next). The selection is made

such that given all the assets (including auxiliary assets, which

will be introduced soon) involved in the trade, selecting any user

out of the pool gives no extra information about the trade to the

attacker over any other user in the pool. For example, let’s say

the user submits a trade between USDC and ETH. It has USDC, but

not ETH. The user would create a pool of users (from the set of all

blockchain users), such that one user has ETH but no other assets.

This pool of users (in this case, 2 users are sufficient, but adding

https://anonymous.4open.science/r/AnimaguSwap-D31F/

Data Independent Order Policy Enforcement: Limitations and Solutions CCS ’24, October 14-18, 2024, Salt Lake City, U.S.A.

more users to have redundancy does not hurt) would be used to

generate a ring signature [33], such that no party can distinguish

which user amongst the pool of users created the transaction. The

flipper escrows the true identity of the transaction creator and will

be released in the same way as the flip bit.

However, in doing so, the flipper can release incorrect infor-

mation about the user sending the transaction. i.e. it can create a

transaction itself and generate a transaction, but since the identity

is obscured, it releases the wrong identity. To prevent this, we need

a way for a user to prove that the transaction is not its own. We do

this by controlling the 𝑣 variable used in metadata creation. It was

introduced to hide the commitment of the commitment received

from Flipper to the information it has. Instead of randomly gen-

erating it, the user uses 𝑣 = ℎ(𝑠𝑘, 𝑡𝑥𝑖𝑑), where 𝑠𝑘 is the secret key,

and 𝑡𝑥𝑖𝑑 is the block number. To any party without 𝑠𝑘 , it remains

a completely random number, but any user can generate a zero-

knowledge proof that it is not the user generating the transaction.

We also introduce the concept of auxiliary transactions. The idea

behind the concept is to hide how much is being traded and which

pair of assets is involved. Consider, for instance, the bias of the

user’s “real” transaction is P_dir𝑟𝑒𝑎𝑙 > 0.5. To achieve an equal

probability of ‘Success’ and ‘Failure’, the user chooses N_asset

different asset pairs with a skew of the direction of trade similar to

P_dir𝑖 > 0.5 for each asset pair 𝑖 , the value of which we will define

shortly. Next, it creates N_asset auxiliary transactions with the

newly chosen pairs, the same value as the original transaction, and

chooses the direction of the trade with the same probability P_dir𝑖 .

We refer to P_asset𝑟𝑒𝑎𝑙 as the probability that amongst a set of

assets, real is the actual asset pair, and P_asset𝑖 for introduced

auxiliary asset pair 𝑖 , such that P_asset𝑟𝑒𝑎𝑙 +

∑
𝑖 P_asset𝑖 = 1. For

example, let’s say for the ETH-USDC pair, there exists a probability

of 0.6 for traders to buy ETH from USDC. The user would find

another pair (e.g., WBTC-Tether) such that the attacker cannot

differentiate whether this transaction was an ETH-USDC pair or

the WBTC-Tether pair. We will show how this other pair (WBTC-

Tether) is found after the claim statement. The slippage for this

transaction is such that at the current price, the trade would fail,

however, at any price better than the current price, the transaction

would succeed. This way, the attacker can only ‘Fail’ if it chooses

to attack the auxiliary assets, and not ‘Succeed’ even when the

direction guessed is correct.

Introducing new auxiliary transactions would require the token

being traded to be available to the user. However, the user may

not own auxiliary assets to make transactions in the first place.

One workaround is to borrow auxiliary assets from a decentralized

lending platform in an indistinguishable way (indistinguishable

which asset is being borrowed) from the attacker. A naïve solution

to this is to loan all possible assets involved in the trade, with the

smallest union of assets not involved in the trade over the user pool.

e.g. If assets A and B are the real traded assets, and C, D, E, and F are

used as auxiliary assets, and in the user pool, all users have either

asset G, H, or I, then a loan for A, B, C, D, E, F would be required

keeping an asset G, H and I as collateral (i.e., a total of 18 loans). Most

of these loans would fail since the user would not have the required

collateral to obtain the loan. However, with AnimaguSwap, we
have an advantage that at the time of execution, we have complete

knowledge, and hiding the access is not important. Thus, if we can

program AnimaguSwap contract to involve generating transactions
for loans, we can optimize the process to not involve unnecessary

loan transactions. In addition, the collateralized asset needs to be

outside the set of assets involved in the trade (the main transaction

and the auxiliary transaction). For example, in the ETH-USDC trade,

if the user chooses the auxiliary pair as WBTC-Tether (Let’s say

WBTC is being bought more than Tether), then it would need to

ensure that the auxiliary transaction is valid. If it does not have the

asset being traded away (Tether), then the AnimaguSwap would

issue a loan for Tether keeping SUSHI (A third asset not involved

in the trade) as collateral. This is important for the user ambiguity

constraint since if the user does not have an asset for collateral, it

gives the attacker information that the user may be more likely to

use the asset it has as the traded asset. If the user is using a loan

from an external asset, all the assets involved are equally likely,

however, in case an asset is used that is in the set of traded assets,

then that asset is more likely to be a traded asset (real asset, or

auxiliary traded asset).

With the above-described changes to the AnimaguSwap specifi-

cation (Fig. 12), we can claim the following:

Claim 1. Given a probability of the trade being P_dir𝑟𝑒𝑎𝑙 > 0.5

in one direction, if there exists a set of asset pairs with probabil-

ity P_dir𝑖 > 0.5 of it being traded in a given direction, such that∑
𝑖 (P_asset𝑖 ∗P_dir𝑖) = 1−2P_asset𝑟𝑒𝑎𝑙 ∗P_dir𝑟𝑒𝑎𝑙 , where P_asset𝑖

represents the probability of asset pair 𝑖 to be the real asset pair

amongst the set of asset pairs chosen for a pool of users, given that

the user owns an asset not involved in the trade as collateral, then

the subroutine described ensures that the probability of an attacker

successfully gaining utility from sandwich is equal to probability of

an attacker losing utility.

Proof. The protocol creates the following scenarios when sand-

wiched attacked - 1) the attacker chooses both the asset and di-

rection of trade correctly (probability = P_asset𝑟𝑒𝑎𝑙 ∗ P_dir𝑟𝑒𝑎𝑙);
2) chooses the asset correctly, but the direction is inverted (proba-

bility = P_asset𝑟𝑒𝑎𝑙 ∗ (1 − P_dir𝑟𝑒𝑎𝑙)); 3) chooses the asset incor-
rectly but the direction is the same as the direction chosen for the

dummy transaction (probability =

∑
𝑖 (P_asset𝑖 ∗ P_dir𝑖)); and 4)

chooses the asset as well as the direction of the dummy transac-

tion incorrectly (probability =

∑
𝑖 (P_asset𝑖 ∗ (1 − P_dir𝑖)). Now,

the attacker loses capital in the second and fourth scenarios, i.e.

with probability P_asset𝑟𝑒𝑎𝑙 ∗ (1− P_dir𝑟𝑒𝑎𝑙) +

∑
𝑖 (P_asset𝑖 ∗ (1−

P_dir𝑖)) and gains capital in only the first scenario with probabil-

ity P_asset𝑟𝑒𝑎𝑙 ∗ P_dir𝑟𝑒𝑎𝑙 . The auxiliary assets are chosen such

that

∑
𝑖 (P_asset𝑖 ∗ P_dir𝑖) = 1 − 2P_asset𝑟𝑒𝑎𝑙 ∗ P_dir𝑟𝑒𝑎𝑙 . Earlier

P_dir𝑖 > 0.5 was chosen, and thus the restriction needs to be set

when choosing the asset pairs (because the attacker would always

sandwich the more probable direction after choosing the asset). □

To complete the running example, if user wants to trade USDC

to buy ETH, where there is a 0.6 probability (P_dir𝑟𝑒𝑎𝑙) to buy ETH,

and amongst all asset pairs traded in AMMs, USDC-ETH pair occurs

20% of the times, then it would choose another asset pair such that

0.2 ∗ 0.6 = 0.2 ∗ 0.4 + P_asset𝑖 ∗ P_dir𝑖 . Thus, an asset that could

be used by the user is the WBTC-Tether if it occurs 8.8% of time,

and with probability 0.55 the direction is biased towards WBTC. (It

could have been 10%, 0.6 probability, and so on as long as it satisfies

CCS ’24, October 14-18, 2024, Salt Lake City, U.S.A. Sarisht Wadhwa, Luca Zanolini, Aditya Asgaonkar, Francesco D’Amato, Chengrui Fang, Fan Zhang, and Kartik Nayak

the formula in the claim). After choosing the asset, the user creates

the auxiliary transaction as described. According to our claim, if

an attacker sandwiches the new transaction, then it would have

the same probability for ‘success’ case (guessing USDC-ETH, and

that the transaction is in the direction of ETH) and ‘failure’ case

(guessing the wrong direction of trade for the guessed pair).

Using the claim with Theorem 2, we get the following theorem:

Theorem 3. Given there exists a set of asset pairs with probabil-

ity P_dir𝑖 > 0.5 of it being traded in a given direction, such that∑
𝑖 (P_asset𝑖 ∗P_dir𝑖) = 1−2P_asset𝑟𝑒𝑎𝑙 ∗P_dir𝑟𝑒𝑎𝑙 , where P_asset𝑖

represents the probability of asset 𝑖 to be the real asset amongst the

set of assets chosen for a pool of users, given that the user owns an

asset not involved in the trade as collateral, ∆r
𝐵
𝑌
− ∆r

−
𝑌

> 𝑝+
and

∆a
+

𝑋
+∆a

−
𝑋
−2∆a𝑋 < 0, it is dominant for all parties in AnimaguSwap

to follow the specification in Section 5.1.3.

6 DISCUSSION AND FUTUREWORK

On using primitives such as witness encryption, time lock

encryption, or traceable secret sharing to circumvent Theo-

rem 1. Our setup of Framework 1 assumes that the output of the

order function is directly used as an input to the reveal function.
This implies that a transaction can be revealed at any time after it

is ordered so far as sufficiently many stakers participate. On the

other hand, the use of cryptographic primitives such as Witness

Encryption [20] and Time Lock Encryption [32] tie the reveal of

transactions to satisfying some condition (e.g., the passage of time);

thus, these primitives can be used to circumvent the impossibility

result. The use of TEEs in Appendix E can be considered as an

implementation of witness encryption assuming trusted hardware.

The notion of traceable secret sharing introduced by Goyal

et al.[21] allows users to produce secret shares such that once

the data is reconstructed, parties releasing their secret shares can

be identified. However, our attack strategy in Algorithm 1 circum-

vents this by producing only the generated transactions as output.

On sending deniable messages. Recent studies [39] demonstrate

that deniability may be compromised when keys are encumbered

in a Trusted Execution Environment (TEE) such as Intel SGX or if

a committee manages the flipper’s keys through a distributed key

system. Consequently, users must verify that they are interacting

with a single, unrestricted user as the flipper. This verification can

be achieved by employing a Complete Knowledge Proof [24], which

substantiates that a single user possesses unrestricted access to the

information provided, thereby reinstating deniability. To use CK in

practice, all flippers would require a CK certificate either obtained

through a TEE (since the input to a TEE is public to the party that

inputs it) or an ASIC-based proof (which can be generated in a

reasonable time only if the key is known to a party generating the

proof) verified on-chain.

On lack of knowledge of real-world entities. Our impossibility

results crucially rely on the inability of the protocol participants to

distinguish whether two public keys belong to the same real-world

entity or not. This is reasonable, especially in a permissionless

setting. However, in practice, if we can perform an analysis of the

flow of transactions across different keys and their uses, and derive

intelligence based on these transactions (e.g., [14]), we can identify

the existence of such attacks with the analysis acting as a “proof”.

On collusion between the user and the flipper. Even if the

user and flipper collude, in AnimaguSwap, it is not possible for

a user’s transaction to violate the soundness condition. During

a collusion there are two cases that may arise: the user does not

receive a commitment itself, or the flipper violates the commitment

it shared. The protocol specification requires the user to collect a

commitment before posting a transaction. If the commitment is

not given to the user, and the user does not post a commitment

to what it receives from the flipper, the flipper can refuse to share

profits with the user and instead collude with the committee for a

potentially larger share of the profit. Thus, if the user and flipper

collude, and the user has the flipper’s commitment, the user can

not only get better execution and share profits with the flipper but

also slash the flipper.

On user acting as flipper. The user cannot be asked to withhold

the information in AnimaguSwap. This is because the user cannot
be trusted to release the information. As with user withholding

information, if the user does not release a flip bit, it cannot be

slashed and thus threatens the protocol’s liveness. Flipper can,

however, be a user (which has a designated stake from being a

Flipper), since the transactions being sent by the Flipper would only

further discourage sandwich attack since even when the committee

is randomly predicting, the flipper can ensure that the prediction

they choose is incorrect.

Data Independent Order Policy Enforcement: Limitations and Solutions CCS ’24, October 14-18, 2024, Salt Lake City, U.S.A.

REFERENCES

[1] Hayden Adams, Noah Zinsmeister, and Dan Robinson. 2020. Uniswap v2 core.

[2] [n. d.] AMD secure encrypted virtualization (SEV). https://www.amd.com/en

/developer/sev.html.

[3] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative

technology for CPU based attestation and sealing. In Proceedings of the 2nd

international workshop on hardware and architectural support for security and

privacy. Vol. 13. Issue: 7. ACM New York, NY, USA.

[4] atom_crypto. 2022. The MEV Game of the Crypto Economy: Osmosis’ Thresh-

old Encryption vs. SGX of Flashbot? https://mirror.xyz/infinet.eth/SFjR1H1-

RMnKoIoPjqkxpauVPrLYGqLHQP1dY9FHvx4. (2022). Retrieved Oct 6, 2022

from.

[5] Kushal Babel, Yan Ji, Ari Juels, andMahimnaKelkar. [n. d.] PROF: fair transaction-

ordering in a profit-seeking world. https://initc3org.medium.com/prof-fair-tra

nsaction-ordering-in-a-profit-seeking-world-b6dadd71f086.

[6] [n. d.] Balancer. https://docs.balancer.fi/reference/math/stable-math.html. ().

[7] Richard Barnes, Karthikeyan Bhargavan, Benjamin Lipp, and Christopher A.

Wood. 2022. Rfc 9180: hybrid public key encryption. (2022). https://datatracker

.ietf .org/doc/rfc9180/.

[8] Joseph Bebel and Dev Ojha. 2022. Ferveo: threshold decryption for mempool

privacy in BFT networks. Cryptology ePrint Archive.

[9] Iddo Bentov, Yan Ji, Fan Zhang, Lorenz Breidenbach, Philip Daian, and Ari

Juels. 2019. Tesseract: real-time cryptocurrency exchange using trusted hard-

ware. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and

Communications Security, 1521–1538.

[10] Bitcoin Wiki. 2021. Payment channels. [Online; accessed 11-November-2021].

(2021).

[11] Vitalik Buterin. [n. d.] State of research: increasing censorship resistance of

transactions under proposer/builder separation (PBS). https://notes.ethereum

.org/@vbuterin/pbs_censorship_resistance. ().

[12] Christian Cachin, Jovana Mićić, Nathalie Steinhauer, and Luca Zanolini. 2022.

Quick order fairness. In Financial Cryptography and Data Security: 26th Inter-

national Conference, FC 2022, Grenada, May 2–6, 2022, Revised Selected Papers.

Springer, 316–333.

[13] Cducrest. 2022. Shutterized beacon chain. https://ethresear.ch/t/shutterized-be

acon-chain/12249. (Mar. 2022).

[14] Chainalysis. [n. d.] Chainalysis. https://www.chainalysis.com/. ().

[15] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah

Johnson, Ari Juels, Andrew Miller, and Dawn Song. 2019. Ekiden: A Platform

for Confidentiality-Preserving, Trustworthy, and Performant Smart Contracts.

In 2019 IEEE European Symposium on Security and Privacy (EuroS&P). (June

2019), 185–200. doi: 10.1109/EuroSP.2019.00023.

[16] Joel E. Cohen. 1998. Cooperation and self-interest: pareto-inefficiency of nash

equilibria in finite random games. Proceedings of the National Academy of

Sciences, 95, 17, 9724–9731. https://www.pnas.org/doi/abs/10.1073/pnas.95.1

7.9724. eprint: https://www.pnas.org/doi/pdf/10.1073/pnas.95.17.9724. doi:

10.1073/pnas.95.17.9724.

[17] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo

Bentov, Lorenz Breidenbach, and Ari Juels. 2020. Flash boys 2.0: frontrunning

in decentralized exchanges, miner extractable value, and consensus instability.

In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 910–927.

[18] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo

Bentov, Lorenz Breidenbach, and Ari Juels. 2020. Flash boys 2.0: frontrunning

in decentralized exchanges, miner extractable value, and consensus instability.

In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 910–927.

[19] FlashBots. 2020. Flashbots resource document. https://docs.flashbots.net/.

(2020).

[20] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. 2013. Witness

encryption and its applications. In Proceedings of the forty-fifth annual ACM

symposium on Theory of computing, 467–476.

[21] Vipul Goyal, Yifan Song, and Akshayaram Srinivasan. 2021. Traceable secret

sharing and applications. In Advances in Cryptology–CRYPTO 2021: 41st Annual

International Cryptology Conference, CRYPTO 2021, Virtual Event, August 16–20,

2021, Proceedings, Part III 41. Springer, 718–747.

[22] [n. d.] H100 tensor core GPU | NVIDIA. https://www.nvidia.com/en-us/data-c

enter/h100/.

[23] Lioba Heimbach and Roger Wattenhofer. 2022. Eliminating sandwich attacks

with the help of game theory. In Proceedings of the 2022 ACM on Asia Conference

on Computer and Communications Security, 153–167.

[24] Mahimna Kelkar, Kushal Babel, Philip Daian, James Austgen, Vitalik Buterin,

and Ari Juels. 2023. Complete knowledge: preventing encumbrance of crypto-

graphic secrets. Cryptology ePrint Archive.

[25] Mahimna Kelkar, Soubhik Deb, and Sreeram Kannan. 2021. Order-fair consen-

sus in the permissionless setting. IACR Cryptol. ePrint Arch., 2021, 139.

[26] Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan.

2021. Themis: fast, strong order-fairness in byzantine consensus. Cryptology

ePrint Archive.

[27] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. 2020. Order-

fairness for byzantine consensus. InAnnual International Cryptology Conference.

Springer, 451–480.

[28] Dahlia Malkhi and Pawel Szalachowski. 2022. Maximal extractable value (mev)

protection on a dag. arXiv preprint arXiv:2208.00940.

[29] 2022. Mev-Boost GitHub. https://github.com/flashbots/mev-boost. (2022).

Retrieved Oct 31, 2022 from.

[30] [n. d.] Proof-of-stake (POS). https://ethereum.org/en/developers/docs/consens

us-mechanisms/pos/. ().

[31] Kaihua Qin, Liyi Zhou, and Arthur Gervais. 2021. Quantifying blockchain

extractable value: how dark is the forest? arXiv preprint arXiv:2101.05511.

[32] Ronald L Rivest, Adi Shamir, and David A Wagner. 1996. Time-lock puzzles

and timed-release crypto.

[33] Ronald L. Rivest, Adi Shamir, and Yael Tauman. 2001. How to Leak a Secret.

In Advances in Cryptology — ASIACRYPT 2001. Colin Boyd, editor. Springer

Berlin Heidelberg, Berlin, Heidelberg, 552–565. isbn: 978-3-540-45682-7.

[34] Adi Shamir. 1979. How to share a secret. Communications of the ACM, 22, 11,

612–613.

[35] Sikka inc. 2022. Sikka Projects. https://sikka.tech/projects/. (2022). Retrieved

Oct 6, 2022 from.

[36] [n. d.] Understanding curve v1 curve finance. https://resources.curve.fi/base-

features/understanding-curve. ().

[37] Nik Unger and Ian Goldberg. 2015. Deniable key exchanges for secure messag-

ing. In Proceedings of the 22nd acm sigsac conference on computer and communi-

cations security, 1211–1223.

[38] Vbuterin. 2022. Secret non-single leader election. (Jan. 2022). https://ethresear

.ch/t/secret-non-single-leader-election/11789.

[39] Ricardo Vieitez Parra et al. 2018. The impact of attestation on deniable commu-

nications.

[40] Matheus Venturyne Xavier Ferreira and David C. Parkes. 2023. Credible De-

centralized Exchange Design via Verifiable Sequencing Rules. In Proceedings of

the 55th Annual ACM Symposium on Theory of Computing (STOC 2023). Asso-

ciation for Computing Machinery, New York, NY, USA, (June 2023), 723–736.

isbn: 978-1-4503-9913-5. doi: 10.1145/3564246.3585233.

[41] Sen Yang, Fan Zhang, Ken Huang, Xi Chen, Youwei Yang, and Feng Zhu. 2022.

SoK:MEV countermeasures: theory and practice. arXiv preprint arXiv:2212.05111.

[42] Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V Le, and Arthur Gervais.

2021. High-frequency trading on decentralized on-chain exchanges. In 2021

IEEE Symposium on Security and Privacy (SP). IEEE, 428–445.

A CAPTURING EXISTING SYSTEMS IN THE

FRAMEWORK

In this subsection, we show that our framework can capture or-

dering policy enforcement protocols based on DKG [13, 8], secret-

sharing [28], as well as fair ordering protocols [26, 12, 27]. We use

(SS.share, SS.rec) to denote the threshold secret sharing and recon-

struction algorithms [34], and (Enc,Dec) to denote encryption and

decryption.

We use (SS.share, SS.rec) to denote the threshold secret shar-

ing and reconstruction algorithms [34], and (Enc,Dec) to denote

encryption and decryption.

Protocols without an ordering policy. As a degenerate case,

our framework can capture protocols that do not enforce a particu-

lar ordering policy, such as PoS Ethereum [30] (without Proposer

Builder Separation [11]). Figure 4 shows the specification. submit
degenerates to an identity function. process simply adds tx to state.
Ethereum leaves order unspecified, as long as the output of order
is a subset of state. Finally, ShouldReveal(_) is always false since

transactions have been revealed in the inclusion phase.

Threshold encryption based content-oblivious ordering.

Content-oblivious ordering can be enforced by threshold en-

crypting user transactions, as in, e.g., Ferveo [8] and Shutterized

Beacon Chain [13]. Figure 5 presents their specification in our

framework.

https://www.amd.com/en/developer/sev.html
https://www.amd.com/en/developer/sev.html
https://mirror.xyz/infinet.eth/SFjR1H1-RMnKoIoPjqkxpauVPrLYGqLHQP1dY9FHvx4
https://mirror.xyz/infinet.eth/SFjR1H1-RMnKoIoPjqkxpauVPrLYGqLHQP1dY9FHvx4
https://initc3org.medium.com/prof-fair-transaction-ordering-in-a-profit-seeking-world-b6dadd71f086
https://initc3org.medium.com/prof-fair-transaction-ordering-in-a-profit-seeking-world-b6dadd71f086
https://docs.balancer.fi/reference/math/stable-math.html
https://datatracker.ietf.org/doc/rfc9180/
https://datatracker.ietf.org/doc/rfc9180/
https://notes.ethereum.org/@vbuterin/pbs_censorship_resistance
https://notes.ethereum.org/@vbuterin/pbs_censorship_resistance
https://ethresear.ch/t/shutterized-beacon-chain/12249
https://ethresear.ch/t/shutterized-beacon-chain/12249
https://www.chainalysis.com/
https://doi.org/10.1109/EuroSP.2019.00023
https://www.pnas.org/doi/abs/10.1073/pnas.95.17.9724
https://www.pnas.org/doi/abs/10.1073/pnas.95.17.9724
https://www.pnas.org/doi/pdf/10.1073/pnas.95.17.9724
https://doi.org/10.1073/pnas.95.17.9724
https://docs.flashbots.net/
https://www.nvidia.com/en-us/data-center/h100/
https://www.nvidia.com/en-us/data-center/h100/
https://github.com/flashbots/mev-boost
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://sikka.tech/projects/
https://resources.curve.fi/base-features/understanding-curve
https://resources.curve.fi/base-features/understanding-curve
https://ethresear.ch/t/secret-non-single-leader-election/11789
https://ethresear.ch/t/secret-non-single-leader-election/11789
https://doi.org/10.1145/3564246.3585233

CCS ’24, October 14-18, 2024, Salt Lake City, U.S.A. Sarisht Wadhwa, Luca Zanolini, Aditya Asgaonkar, Francesco D’Amato, Chengrui Fang, Fan Zhang, and Kartik Nayak

Initialization:

• Sample key pair param𝑖 = (sk𝑖 , pk𝑖) and publish pk𝑖 .
Transaction submission:

• submit(tx, _)→ (H(tx); (⊥, tx, · · · , tx)) where _ denotes ignored

parameters, i.e., stakers do not provide input and receive tx.
• process(txid, tx, state𝑖)→ state𝑖 ∪ {(txid, tx)}.

Transaction inclusion:

• Whenever ShouldRelease(𝑠𝑖), staker 𝑠𝑖 chooses

B = (tx1, . . . , txℓ) from state𝑖 , and removes 𝐵 from

state𝑖 . 𝑠𝑖 adds 𝐵 to the blockchain.

Transaction revealing:

• ShouldReveal→ ⊥.

Figure 4: The specification of the transaction ordering pro-

cess in PoS Ethereum using our framework.

At a high level, in such systems, stakers run a Distributed Key

Generation (DKG) protocol to generate a key pair (sk, pk) with

the secret key shared, i.e., each staker gets sk𝑖 such that sk can be

recovered from sufficiently many sk𝑖 . After initialization, submit
threshold-encrypts user transaction under pk and each staker re-

ceives the encrypted transaction. process adds the ciphertext to

state. Encrypted transactions are first included in the blockchain

(ordered arbitrarily in order), then the plaintext will be revealed

after the block containing ciphertext is confirmed. ShouldReveal(𝐵)

is true after 𝑥 confirmations where 𝑥 is a protocol parameter. Here

we make a simplification assuming that all transactions in a block

are revealed simultaneously, whereas some systems (e.g., Shutter-

ized Beacon Chain) allow each transaction to have a different reveal

time. Then, reveal is just threshold decryption by stakers.

Initialization:

• Stakers run DKG to generate param𝑖 = (sk𝑖 , pk) where

{
sk𝑖

}
are secret shares of the secret key corresponding to pk. pk is

published.

Transaction submission:

• submit(tx, _) → (H(t̄x); (⊥, t̄x, · · · , t̄x) where t̄x = Enc(pk, tx),

i.e., stakers do not provide input and receive encrypted tx.
• process(txid, t̄x, state𝑖)→ state𝑖 ∪ {(txid, t̄x)}.

Transaction inclusion: Whenever ShouldRelease(𝑠𝑖) is true, order
does the following

• staker 𝑠𝑖 chooses B = {(txid𝑖 , t̄x𝑖)}ℓ𝑖=1
from state𝑖 ,

• 𝑠𝑖 adds (t̄x1, . . . , t̄xℓ) to the blockchain,

• each staker 𝑠𝑖 updates state𝑖 = state𝑖 \ B.
Transaction revealing:

• reveal(t̄x; (_, sk
1
), · · · , (_, sk𝑁)) is threshold decryption on t̄x

using

{
sk𝑖

}
𝑖
.

Figure 5: The specification of threshold-encryption-based

content-oblivious ordering protocols using our framework.

Secret-sharing based content-oblivious ordering, e.g., Fino [28].

In these schemes, transactions are encrypted with a user-chosen

key, and the key is then secret-shared with a subset of stakers (form-

ing a so-called committee). Thus, submit secret-shares the key and

sends the encrypted transaction to stakers. The rest of the steps are

similar to the above threshold-encryption-based protocols. Figure 6

specifies these protocols in our framework.

Another approach is to secret-share the transaction with the

stakers and obtain an accumulator value corresponding to the trans-

action during the submit protocol. The transaction is only revealed

in the reveal phase once the accumulator value has been included

on the chain and committed.

Initialization:

• Sample key pair param𝑖 = (sk𝑖 , pk𝑖) and publish pk𝑖 .
Transaction submission:

• submit((tx, k), (pk
1
, . . . , pk𝑁) evaluates to

(H(ct); ((ct, ck1), . . . , (ct, ck𝑁)) where ct = Enc(k, tx) and

ck𝑖 = Enc(pk𝑖 , SS.share(𝑖, k)).

• For each staker 𝑠𝑖 , process(txid, (ct, ck𝑖), state𝑖) → state𝑖 ∪
{(ct, ck𝑖 , false)}. Here false denotes ct has not been committed

yet.

Transaction inclusion:

• Whenever ShouldRelease(𝑠𝑖), staker 𝑠𝑖 chooses a set of

ℓ (a system parameter) uncommitted transactions 𝑇 =

((ct1, _, false), . . . , (ctℓ , _, false)) ⊂ state𝑖 , and adds B =

(ct1, . . . , ctℓ) to the blockchain.

• For each ct ∈ 𝑇 , replace (ct, ck, false) ∈ state𝑖 with

(ct, ck, true).

Transaction revealing: The protocol for evaluating

reveal(ct; (state1, sk1
), . . . , (state𝑁 , sk𝑁)) is:

• Each staker 𝑠𝑖 looks up (ct, ck𝑖 , true) from state𝑖 . 𝑠𝑖 computes

k𝑖 = Dec(sk𝑖 , ck𝑖) and sends k𝑖 to other stakers.

• All stakers compute k = SS.rec(
{
k𝑖
}
𝑖
), remove all entries with

ct from state𝑖 , and return Dec(k, ct).

Figure 6: The specification of secret-sharing-based content-

oblivious ordering protocols using our framework.

Receive order fairness schemes, e.g., Themis, Aequitas, Quick

Order Fairness [27, 26, 12]. Unlike the aforementioned schemes,

fair ordering protocols do not attempt to hide transaction content.

Instead, the guarantees are based on the time order in which a

transaction is received by different stakers in the system. Thus,

in our framework, during the submit() protocol, the user simply

sends the transaction to all stakers in secure channels. The stak-

ers then apply the process() function to annotate the transactions

with the reception timestamp. The order protocol runs the fair or-
dering protocols, making use of the timestamps. (Note that some

fair ordering protocols (e.g., Themis [26] and Aequitas [27]) only

need relative ordering, which is simplified by timestamps.) Finally,

ShouldReveal(_) is always false since transactions have been re-

vealed in the inclusion step. Figure 7 summarizes these protocols

in our framework.

B DETAILS RELATED TO ALGORITHM 1

In this section, we describe a way that SGX could be used to make

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 1 deniable. The interaction with the SGX is as follows:

• Each staker initializes its SGX with the input to the MPC fed in.

SGX saves this input and generates a random private key inside

the SGX, and gets it remote attested, along with the code to run

in 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 1.

• All the keys are exchanged with each other, without any staker

being able to link any staker key with an SGX key except its own.

Data Independent Order Policy Enforcement: Limitations and Solutions CCS ’24, October 14-18, 2024, Salt Lake City, U.S.A.

Initialization:

• Sample key pair param𝑖 = (sk𝑖 , pk𝑖) and publish pk𝑖 .
Transaction submission:

• submit(tx, (pk
1
, . . . , pk𝑁)) → (H(tx); (t̄x𝑖 , . . . , t̄x𝑁)) where

t̄x𝑖 = Enc(pk𝑖 , tx).

• process(t̄x, state, sk𝑖) → state ∪
{
(Dec(sk𝑖 , t̄x), 𝜏

}
where 𝜏 is

the current time.

Transaction inclusion:

• Whenever ShouldRelease(𝑠𝑖), staker 𝑠𝑖 starts the order fairness

protocol order with other stakers. Each staker 𝑠𝑖 inputs state𝑖 .
Let B = (tx1, . . . , txℓ).

• 𝑠𝑖 adds B to the blockchain and sets state𝑖 = state𝑖 \ B.
Transaction revealing: ShouldReveal→ ⊥.

Figure 7: Themapping of fair ordering protocols to our frame-

work.

In addition to exchanging the key, everyone knows that each

staker’s respective secret shares and private inputs are commit-

ted.

• Next each SGX sends the other SGX the secret share encrypted

and signed.

• Each SGX opens the received secret share from other stakers.

• Algorithm 1 is run with all inputs from each staker.

• The final return statement is revealed bit by bit, with each bit

revealed is sent to other SGX, which confirm that the particular

bit has been released, and the process is repeated until complete

message is revealed.

The above protocol ensures deniability: We cannot link an SGX

key with the staker key unless the staker itself links its own SGX

key. The output from the SGX is released bit by bit, but unsigned.

This ensures that no staker can claim an output was released from

an SGX, thus giving no proof for the execution of the MPC Algo-

rithm 1, since each of the SGX could be controlled by a single party

simulating the MPC. The security for the MPC is ensured since

no party can change inputs after the VerifySigs is executed, and
can only abort at any time. At the time of aborting the process, the

staker who chooses to abort has at most 1 extra bit of information

than other stakers, which means the expected time to guess the

value is negligibly different. Figure 8 shows the specification more

formally.

C PROOF FOR LEMMAS IN SECTION 4.2

Lemma 6. Let A denote the set of stakers participating in Algo-

rithm 1. There exists no Π with |S|≥ 2, if any of the following events

leads to penalizing a staker:

(i) Any user can claim, without proof, that A deviated from an

honest execution of the protocol.

(ii) Each member 𝑎 ∈ A′′ ⊆ A is incentivized to self-incriminate

with proof, implicating themselves as part of the attack set, and

thus it self-incriminates.

Proof. For i) we can see that any user can grief the set of at-

tackers by reporting attacks without any proof. A staker will not

be incentivized to participate in such a scheme.

For ii) For this, we consider the following two scenarios:

World 1. In World 1, a sequence of user identities {u1, . . . , uℓ } that
submit transactions such that tSeq = { ¯tx1, . . . , ¯txℓ } is a valid output
as per the policy P. A subset A′′ of the stakers run Algorithm 1

which outputs tSeq
′ |= extract({tx1, . . . , txℓ }) = { ¯tx′

1
, . . . , ¯tx′

ℓ ′ }.
Each transaction tx′

𝑖
∈ tSeq

′
is submitted by user u

′
𝑖
where tx′

𝑖
is either a transaction from tSeq or a transaction involving new

public keys belonging to a subset of the parties in A′′. At the end
of the algorithm, each party 𝑠𝑖 /∈ A′′ has state state𝑖 , each party

𝑠𝑖 ∈ A′′ has state′𝑖 as output by Algorithm 1. The protocol outputs

tSeq
′
. In this world, the protocol Π failed to enforce the policy P.

World 2. In World 2, a set of stakersA′′ \ 𝑠𝑖 generate transactions
tx1, . . . , txℓ . Now, the function extract is run on these transactions,

and tx′
1
, . . . , tx′

ℓ ′ are generated. Now, while submitting these trans-

actions, A′′ \ 𝑠𝑖 include only 𝑠𝑖 , thus forming a set of A′′, which
receive the transaction, order and reveal them in accordance to the

protocol. In this world, Π successfully enforced the policy P.
We see that the state of all parties in both worlds are identical,

and the outputs are identical. Thus, ignoring the communication

between the adversarial parties in World 1 to run Algorithm 1, the

worlds are indistinguishable. Thus, the incentive awarded in both

worlds must also be the same. By the Lemma statement, in World 1,

incriminating the attack set is a rational action; consequently, this

holds inWorld 2 too. Since the self incrimination inWorld 1 leads to

a loss of stake for some staker (in this case 𝑠𝑖), it would also lead to

loss of stake inWorld 2. This is not a valid protocol design since any

loss of stake (or slashing) can only occur with a proof of deviation

from Π, whereas World 2 represents a successful enforcement of

the policy P. □

With this lemma, the attacking stakers would not be incentivized

to claim that they were involved in an attack and whistle-blow

others involved in the process.

Lemma 7. Assume that no user can distinguish whether any two

public keys belong to the same entity except itself. Suppose there exists

a sequence of transactions tSeq = { ¯𝑡𝑥1, . . . , ¯𝑡𝑥ℓ } ∈ P(md1, . . . ,mdℓ)

for some input stream ((md1, data1), . . . , (mdℓ , dataℓ)). Moreover, let

us assume that there exists a function extract() known to all stakers

such that tSeq
′ |= extract(tx1, . . . , txℓ) and tSeq′ ∈ P(md

′
1
, . . . ,md

′
ℓ ′)

for some input stream ((md
′
1
, data′

1
), . . . , (md

′
ℓ ′ , data

′
ℓ ′)). Then, no user

𝑢 can prove whether input streamwas ((md
′
1
, data′

1
), . . . , (md

′
ℓ ′ , data

′
ℓ ′))

or some set of stakers A′′ ⊆ A′ (with 𝑢 /∈ A′′) deviated from the

protocol when the input stream was ((md1, data1), . . . , (mdℓ , dataℓ)).

Proof. We cast the two scenarios in the following two worlds.

World 1. Let us consider the same World 1 as in Lemma 6.

World 2. In World 2, user identities {u′
1
, . . . , u′

ℓ ′ } submit transac-
tions such that tSeq

′ |= {tx′
1
, . . . , tx′

ℓ ′ } is a valid output as per P.
For each transaction tx′

𝑖
∈ tSeq′ the following holds: if tx′

𝑖
∈ tSeq,

then the corresponding user u
′
𝑖
submits it to the set of all stakers.

Otherwise, some random user u
′
𝑖
has a key indistinguishable from

any stakers inA′′ and it submits the transactions only toA′′ (The
set A′′ is enough to run submit as defined in specifications of the

choice of attacker set). The protocol Π outputs tSeq
′
as per the

policy. Moreover, each party 𝑠𝑖 /∈ A′′ has some state state′′
𝑖
and

𝑠𝑖 ∈ A′′ has state state′𝑖 .

CCS ’24, October 14-18, 2024, Salt Lake City, U.S.A. Sarisht Wadhwa, Luca Zanolini, Aditya Asgaonkar, Francesco D’Amato, Chengrui Fang, Fan Zhang, and Kartik Nayak

Initialization: Each staker 𝑠𝑖 load the program specified below to an TEE. Then, 𝑠𝑖 invokes Init, gets pk𝑖 and publishes pk𝑖 along with the attestation.

Users verify pk𝑖 against the attestation before using the protocol.

Transaction submission:

submit((tx, k), (pk
1
, . . . , pk𝑁)

∀𝑖 ∈ [1, 𝑁], compute txss𝑖 = SS.share(𝑖, tx). Let𝑇𝑆 = (txss1, . . . , txss𝑁).

Build a Merkle tree over𝑇𝑆 and denote the root as 𝑟𝑇𝑆 (which will also be the txid). Let 𝜋𝑖 be the membership proof of txss𝑖 .

Send𝑂𝑃 = (𝑟𝑇𝑆 , 𝜋𝑖 , Enc(pk𝑖 , txss𝑖)) to each staker 𝑠𝑖 .

process(txid,𝑂𝑃, state𝑖)
Parse𝑂𝑃 as (𝑟, 𝜋, 𝑐). Add (𝑟, 𝜋, 𝑐, false) to state𝑖 . Here false denotes the transaction has not been committed yet.

Transaction inclusion: Whenever ShouldRelease(𝑠𝑖), staker 𝑠𝑖 chooses𝑇 = ((𝑟1, _, _, false), . . . , (𝑟ℓ , _, _, false)) ⊂ state𝑖 , and adds B = (𝑟1, . . . , 𝑟ℓ) to the

blockchain. Once 𝐵 is included in the blockchain, for each 𝑟 ∈ 𝐵, all stakers replace (𝑟, 𝜋, 𝑐, false) in state𝑖 with (𝑟, 𝜋, 𝑐, true). Here true denotes the
transaction with txid = 𝑟 has been committed.

Transaction revealing: Once the Merkle root 𝑟 has been committed to the blockchain, each staker 𝑠𝑖 creates a proof of publication of 𝑟 , denoted as

𝜋
publication

. Then, 𝑠𝑖 retrieves the corresponding membership proof 𝜋
membership

and the ciphertext 𝑐 of the share, and invokes 𝑅𝑒𝑣𝑒𝑎𝑙 . Upon receiving

txss𝑖 from the TEE, 𝑠𝑖 sends txss𝑖 to other stakers. Once 𝑡𝑟 shares are received, each staker computes tx = SS.rec(txss1, . . . , txss𝑡) and outputs tx.

TEE Program run by staker 𝑖

func 𝐼𝑛𝑖𝑡

(sk, pk)←$ KGen(1
_

)

Seal sk to disk

return pk𝑖 with hardware attestation.

func 𝑅𝑒𝑣𝑒𝑎𝑙 (𝜋
publication

, 𝑟𝑇𝑆 , 𝜋membership
, 𝑐):

txss𝑖 = Dec(sk𝑖 , 𝑐)

Verify 𝜋
publication

for 𝑟𝑇𝑆 , and 𝜋membership
of tx𝑖 w.r.t. 𝑟𝑇𝑆

return txss𝑖

Figure 8: The specification of a secret-sharing-based content-oblivious ordering protocol using TEEs.

Now let us compare the two worlds:

• Each staker 𝑠𝑖 ∈ A′′ has the same state state′
𝑖
in both worlds.

Stakers 𝑠𝑖 /∈ A′′ may hold different states state𝑖 and state′′
𝑖

respectively. In particular, transactions that are in tSeq but not

in tSeq
′
, are not a part of state′′

𝑖
.

• Each transaction tx′
𝑖
/∈ tSeq are submitted to parties in A′′ in

World 2 but not in World 1.

• Messages are sent to and received from a TEE as a part of exe-

cuting Algorithm 1.

Other than the above differences, the two worlds are identical.

To justify the first case, we observe that the same information mis-

match would occur if when the user is submitting the transaction

only a few of them receive the transaction (since the set of attackers

|A′′ |≥ max(𝑡𝑠 , 𝑡𝑜 , 𝑡𝑟), and thus a transaction could be submitted

to only them). Moreover, observe that the other two differences

involve communication between adversarial parties which cannot

be tracked by any user 𝑢 /∈ A′′. Thus, a user does not hold any

additional information that can act as an irrefutable proof that

some A′′ ⊆ A′ indeed uses Algorithm 1 when the input stream

is ((md1, data1), . . . , (mdℓ , dataℓ)), where A′ were responsible for
receiving, inclusion and revealing the transaction (only a subset of

them may be required to attack).

□

The proofs for both the above lemma rely on the fact that no

party can generate a proof differentiating two worlds, one where

A deviated from the OPE scheme and one where they followed the

OPE scheme.

Lemma 8. If there exists an extract function known to stakers such
that tSeq

′ |= extract(tx1, . . . txℓ), and the utility of tSeq
′
is greater

than the utility of tSeq, then publishing tSeq is strictly dominated by

publishing tSeq
′
obtained from Algorithm 1.

Proof. A staker 𝑠𝑖 , in order to release a transaction sequence,

would choose the one thatmaximizes its utility. Since from lemmas 6

and 7 we have that no proof would be generated by any party, no

negative incentive design can be incorporated that punishes the

set of stakers A for following Algorithm 1. Since no staker would

want to “double propose” a block, this tSeq
′
which has a higher

utility than tSeq would be published. Thus, releasing the sequence

of transactions tSeq is strictly dominated by releasing tSeq
′
. □

With the above lemma, we know that any non-attacking staker

entity does not have enough incentive to generate any proof of

deviation from the protocol. With both Lemmas 6 and 7, we know

that in a valid protocol design, no party is incentivized to prove

that a set of stakers deviated from the protocol (or does not have

enough data to generate any proof).

Proof of Theorem 1. From Lemma 8, we know that the staker

would not publish tSeq over tSeq
′
, and thus the staker would not

enforce policy P while following protocol Π. □

D EXAMPLE ATTACK ON DKG-BASED

THRESHOLD ENCRYPTION

Algorithm 2

E OPE WHEN USERS WITHHOLD

INFORMATION

In the scenario where users are allowed to withhold some informa-

tion, the protocol design can be pretty simple. The user can simply

Data Independent Order Policy Enforcement: Limitations and Solutions CCS ’24, October 14-18, 2024, Salt Lake City, U.S.A.

Algorithm 2 Example attack on DKG-based threshold encryption schemes - (protocol for 𝑠𝑖 ∈ A)

1: (dkg, enc, dec) is a Distributed Key Encryption Scheme

2: sk
𝑖 , pk← dkg() ⊲ sk𝑖 = spri𝑖 secret share of 𝑠𝑖 ∈ A

3: state𝑎
𝑗
← if 𝑠 𝑗 ∈ A then state𝑗 else ⊥ ⊲ state𝑎 is a list of states state𝑗 for every state𝑗 ∈ A

4: inp
𝑎
𝑗
← if 𝑠 𝑗 ∈ A then inp𝑗 else ⊥ ⊲ inp𝑎 is a list of inputs inp𝑗 for every state𝑗 ∈ A

5: spri𝑎
𝑗
← if 𝑠 𝑗 ∈ A then spri𝑗 else ⊥ ⊲ spri𝑎 is a list of secret shares sk

𝑗
for every 𝑠 𝑗 in A

6: procedure Attack
k
(state𝑎 , spri𝑎) ⊲ Executed when ShouldRelease(𝑠𝑖) is true

7: ((t̄x1, . . . , t̄xℓ), state𝑎)← order(state𝑎) ⊲ order creates a block in descending order of fee in state
8: for 𝑗 ∈ {1, . . . , ℓ} do ⊲ Reveal the block earlier than protocol intended

9: (tx𝑗 ; state𝑎)← dec(t̄x𝑗 ; {state𝑎, spri𝑎}) ⊲ reveal := dec - Decrypt given all the secret shares sk
𝑗
of 𝑠 𝑗 ∈ A

10: Generate a block consisting of ℓ revealed transactions

11: B = (tx1, . . . , txℓ)
12: VerifySigs(B)

13: att_B← extract(B) ⊲ Get MEV-extracting transactions

14: state′ ← ⊥
15: for att_txn ∈ att_B do

16: (txid; (⊥, out1, . . . , out𝑁))← enc(att_txn, inp𝑎) ⊲ submit := enc - Encrypt extracted in the desired order

17: md𝑖 , data𝑖 ← process(txid, out𝑖 , state′𝑖) ⊲ Add to state the MEV-extracting transactions

18: state′
𝑖
← state′

𝑖
.add((txid,md𝑖 , data𝑖))

19: (tSeq
′

= (
¯tx′1, . . . , ¯tx′ℓ ′); state′)← order(state′)

20: return(tSeq
′, state′) ⊲ Publish the block containing the MEV-extracting transaction

send a commitment corresponding to the transaction, and once the

commitment has been committed on the chain, the user can open

the commitment. If the execution order depends on the order in

which the commitments are committed, then no other party has

access to the transaction content until after it is ordered. In fact,

this solution is similar to existing solutions [28, 8], except that we

rely on the user to reveal the content instead of some “committee of

stakers”. Consequently, the impossibility for OPE from the previous

section does not apply.

However, this construction has a major drawback. This requires

users to participate in the protocol execution all the time so that they

can release information at appropriate times to ensure blockchain

execution can happen at all times. The resulting system is not

fault-tolerant since users may not be reliable.

Escrowing information with TEEs. To address the above draw-

back, we propose a simple OPE protocl where users can escrow

transaction content to a trusted party realized with Trusted Execu-

tion Environments (TEEs). TEEs can protect the control flow and

confidentiality of user programs with hardware mechanisms. Intel

SGX [3], AMD SEV [2], and Nvidia H100 [22] are some examples

of TEEs that can be used to realize our protocol.

Our protocol requires stakers to be equipped with TEEs. The

TEE program guarantees that the opening is revealed only if the

commitment has been included and ordered, ensuring content-

oblivious ordering. Specifically, the TEE program has two functions:

first, when initialized for the first time, it generates a pair of keys,

and returns the public key with an attestation [3], while keeping the

secret key hidden. We use (sk𝑖 , pk𝑖) to denote the keys generated
by staker 𝑖’s TEE; second, the TEE program decrypts secret shares

of user transactions upon seeing a proof that the commitment of

the transaction has been included in the blockchain.

Figure 8 specifies the protocol following the framework defined

in Figure 1. Now we describe the protocol. To submit a transac-

tion tx, a user first computes a (𝑡, 𝑁) secret-sharing of tx, denoted
𝑇𝑆 = (txss1, . . . , txss𝑛), where 𝑡𝑟 is the recover threshold and 𝑁 is

the number of stakers. To protect the integrity of 𝑇𝑆 , she builds a

Merkle tree over 𝑇𝑆 (i.e., with elements in 𝑇𝑆 as leaves), and com-

putes the Merkle root 𝑟𝑇𝑆 . Then, for each staker 𝑠𝑖 , she sends the en-

crypted opening 𝑂𝑃 = (𝑟𝑇𝑆 , 𝜋membership
(𝑟𝑇𝑆 , txss𝑖), Enc(pk𝑖 , txss𝑖))

to staker 𝑠𝑖 . 𝜋membership
(𝑟𝑇𝑆 , txss𝑖) is a standard membership proof

that tx𝑖 is 𝑖-th leaf in the Merkle tree over 𝑇𝑆 . Note that the se-

cret share is encrypted under TEE’s public key, thus kept secret

from stakers. Finally, she sends 𝑟𝑇𝑆 to the stakers for inclusion and

ordering. Once 𝑟𝑇𝑆 is included in the blockchain, staker 𝑠𝑖 sends

𝑂𝑃 and proof of publication [15] of 𝑟𝑇𝑆 to her TEE — e.g., for PoS

protocols, a proof of publication can be a set of signatures on a

block containing 𝑟𝑇𝑆 ; as described above, the TEE program verifies

the proof of publication, and then decrypts 𝑂𝑃 and returns txss𝑖 .
Once at least 𝑡𝑟 stakers get results from their TEEs, they reconstruct

and reveal tx.
We omit aspects that are not different from other content oblivi-

ous ordering protocols, such as charging transaction fees and deal-

ing with malformed transactions. The security of the above protocol

follows from the integrity and confidentiality properties of TEEs,

and the binding and hiding properties of Merkle trees as a crypto-

graphic commitment scheme.

F SANDWICH ANALYSIS

In a normal sandwich attack, during the frontrunning transaction,

the attacker swaps ∆a𝑋 of token 𝑋 for ∆a𝑌 of token 𝑌 changing

the liquidity in the pool as r
′
𝑋

= r𝑋 + (1− f)∆a𝑋 and r
′
𝑌

= r𝑌 −∆a𝑌

respectively. The value of ∆a𝑋 is adjusted such that the following

equality holds:

CCS ’24, October 14-18, 2024, Salt Lake City, U.S.A. Sarisht Wadhwa, Luca Zanolini, Aditya Asgaonkar, Francesco D’Amato, Chengrui Fang, Fan Zhang, and Kartik Nayak

2 4 6 8 10
change in liquidity of token X (100∆rX/rX)

−0.2

0.0

0.2

p
ro
fi
t
in

to
ke
n
X

(∗
10
0/
r X

)

s: 0.005

s: 0.01

s: 0.03

attacker

user

Figure 9: Gains of the attackers and users in a sandwich attack

on a vanilla AMM.

∆r
′
𝑌 = (1 − s) (1 − f)r𝑌 ∆r𝑋

r𝑋 + (1 − f)∆r𝑋
=

(1 − f)r′
𝑌

∆r𝑋

r
′
𝑋

+ (1 − f)∆r𝑋
Then after the victim’s transaction executes, all the ∆a𝑌 is con-

verted to 𝑋 with the backrunning transaction.

We borrow the following result for optimal sandwich attack from

[23, Theorem 2], which states that

Given that slippage is small (i.e., slippage determines optimal

sandwich), lets first define [, a placeholder variable:

[= (1 − f)2(1 − s)(∆r2𝑋 (1 − f)4(1 − s)
+ 2∆r𝑋 (1 − f)2(2 − f(1 − s))r𝑋
+ (4 − f(4 − f(1 − s)))r2𝑋)

Then, the optimal attack input to the frontrunning transaction is

given by

∆a𝑋 =

√
[

1−s − ∆r𝑋 (1 − f)3 − (2 − f)(1 − f)r𝑋
2(1 − f)2

(14)

For ease of analysis, we define another placeholder variable,

Γ =

√
[

(1 − s)(1 − f) − ∆r𝑋 (1 − f)2 + fr𝑋

such that (1 − f)∆a𝑋 =

Γ

2

− r𝑋

Based on the optimal sandwich attack input from [23], we show

the results graphically in Fig. 9.

G REPEATED GAME ANALYSIS

AnimaguSwap provides a game where interactions between players

occur repeatedly and randomly (with the likelihood of these inter-

actions being independent of past interactions), converting it into

a single instance game (where players interact just once) requires

making the identities of the players anonymous. This means that

in each interaction, players do not know who they are interacting

with, making each interaction effectively independent and similar

to a one-time game. The major issue is that both parties have a

rational interest in de-anonymization, i.e. revealing their identities

to collude.

We first design an anonymous flipper selection. The task is sim-

ilar to a secret non-single leader election (SnSLE) [38]. Stakers

generate a hash of a Verifiable Random Function (VRF) (like RAN-

DAO reveal in Ethereum PoS) of their block. Each staker with a

value less than
2

256∗5
𝑁

as mentioned in the blog [38], would create

an alternate key derived from their staker key. Using this identity,

in some previous blocks, with some deadline to claim flipper, the

staker with minimum value posted for the block would be chosen

as the staker. During its interactions to collect transactions, the

flipper would use the newly generated identity, however during

the reveal phase, the flipper would reveal its staked identity. In this

protocol, any honest staker chosen as Flipper is anonymous due to

the construction of the protocol.

However, as mentioned earlier, the flipper is incentivized to

reveal this information to the committee and collude to extract

profits. To de-anonymize the game, the flipper would need to release

some information that links it to a previous game (e.g., its real-world

identity). We first argue that the previous game linked needs to

be the block flipper was last appointed in. This is because if it

is linked to a flipper’s block before the previous, then the flipper

would cooperate in one game and then cheat in the subsequent

games, and always show a link to the first game it cooperated in.

This allows the flipper to prove that it cooperated in the first game,

and then use the rational action of betraying to incentivize itself.

Due to the anonymity of the leader election mechanism, no other

party than the flipper can prove that the flipper was assigned a

particular block or not. Thus, in any link that the flipper is giving, it

can choose to skip over the previous block (where it likely betrayed

the committee).

Even if some flipper can prove its link to a designated previous

block and do so in a way that the proof is non-transferable, we use

the following slashing mechanism: the slasher needs to state (and

not prove) a link between a previously played game to the current

game. If both games have the same flipper, the flipper gets slashed,

otherwise, the slasher would lose utility for false accusation which

would be required to challenge the flipper.

Using an anonymous flipper with the presented slashing mech-

anism would be enough to ensure that the flipper would not be

incentivized to de-anonymize and collude with the committee to

form a multi-shot game.

H EXAMPLE SWAP SCENARIO - DETAILS OF

EXECUTION

Table 2

I INTEGRATED ANIMAGUSWAP FOR

NON-UNIFORM {Buy, Sell} AND REPEATED

GAMES

Figure 12

J IMPOSSIBILITY WITH BINDING SIDE

CONTRACTS

Our protocol with rationally binding commitments works because

of the distrust between different sets of stakers — in our case, the

flipper and other stakers. In effect, the flipper can lie to the other

stakers about the bit b and reveal a different (correct) value later.

In return, the flipper would receive a utility at the expense of other

Data Independent Order Policy Enforcement: Limitations and Solutions CCS ’24, October 14-18, 2024, Salt Lake City, U.S.A.

Victim’s Attacker’s Victim’s Victim’s Attacker’s Attacker’s Result

intent guess expected o/p actual o/p input output

BUY BUY Get 3.65 W Got 3.61 W 842.41 S 926.31 S PROFIT

SELL BUY Give 4.08 W Gave 4.03 W 842.41 S 752.68 S LOSS

SELL SELL Give 4.08 W Gave 4.11 W 000.25 W 000.27 W PROFIT

BUY SELL Get 3.65 W Got 3.68 W 000.25 W 000.22 W LOSS

Table 2: An example swap where the Attacker sees: Sell 8592 SUSHI (S) for WETH (W), when initial reserve of SUSHI is

164467.64, WETH is 73.83, with a 1% slippage. Detailed working of the example is shown in Table 3. (Values of liquidity available

pulled on June 3, 2023)

Case Transaction Type Transaction Input Transaction Output SUSHI Reserve WETH Reserve

Victim Expected ETFT 8592 SUSHI (+) 3.6551 173059.6482 70.1767

Normal Victim Frontrun ETFT 842.4095 SUSHI (+) 0.3751 165310.0578 73.4567

Normal Attacker Victim ETFT 8592 SUSHI(+) 3.6189 173902.0578 69.8378

Backrun ETFT 0.3751 WETH(+) 926.3164 172975.7413 70.2129

Victim Expected TFET 8592 SUSHI (-) 4.0819 155875.6482 77.9138

Flip Victim Frontrun ETFT 842.4095 SUSHI (+) 0.3751 165310.0578 73.4567

Normal Attacker Victim TFET 8592 SUSHI (-) 4.0393 156718.0578 77.4961

Backrun ETFT 0.3751 WETH (+) 752.6848 155965.373 77.8712

Victim Expected TFET 8592 SUSHI (-) 4.0819 155875.6482 77.9138

Flip Victim Frontrun ETFT 0.2503 WETH(+) 554.0884 163913.5598 74.0822

Flip Attacker Victim TFET 8592 SUSHI(-) 4.1103 155321.5598 78.1926

Backrun ETFT 554.0884 SUSHI(+) 0.2771 155875.6482 77.9155

Victim Expected ETFT 8592 SUSHI(+) 3.6551 173059.6482 70.1767

Normal Victim Frontrun ETFT 0.2503 WETH(+) 554.0884 163913.5598 74.0822

Flip Attacker Victim ETFT 8592 SUSHI(+) 3.6793 172505.5598 70.4029

Backrun ETFT 554.0884 SUSHI(+) 0.2247 173059.6482 70.1782

Table 3: An example swap where the Attacker sees: SwapExactTokenForToken 8592 SUSHI for WETH, when initial reserve of

SUSHI is 164467.6483, WETH is 73.8319, with acceptable slippage of 1% (ETFT stands for SwapExactTokenForToken, TFET stands

for SwapTokenForExactToken).

stakers. What if we have a mechanism to hold parties accountable

for their inputs to the attacking Algorithm 1? That is, if they present

different inputs to the attacking algorithm and the blockchain pro-

tocol, they could be slashed by a large amount. Indeed, in such a

scenario, all parties are incentivized to present an input consistent

in both the attack and the eventual blockchain protocol. In this sec-

tion, we show that such an accountability mechanism can be easily

implemented by creating a binding side contract relying on a TEE.

In a nutshell, each party deposits an amount of money (the slashing

amount) when submitting its transaction input in an augmented

version of Algorithm 1 where a TEE containing a contract records

a mapping of the party with its input. When the transaction is

committed and revealed on the chain, the contract checks whether

the parties’ submitted input is consistent with the blockchain. If

yes, the party obtains a refund; otherwise, it forfeits its deposit.

Thus, the contract incentivizes the parties to attack successfully

by ensuring that the amount of deposited money is larger than

the gain obtained from deviating from the attacking protocol. We

explain this intuition in detail, present the contract, and prove the

impossibility of obtaining OPE.

The intuitive reason that a protocol similar to the one presented

in Section 5.1 works is the lack of trust between different stakers.

A protocol can be designed in such a way that a staker can try to

cheat another staker by lying about the information it has. Since

we remove the binding property of the transaction commit, the

information for reveal is no longer cryptographically verifiable, no

function in the attacker’s protocol can ascertain (earlier achieved by

checking the signature of transaction) whether or not the provided

information is accurate. If lying can be made the rational action

through a carefully constructed incentive design, then a protocol

could be constructed where ordering is enforced rationally.

This creates a game with Pareto efficient outcomes in an ineffi-

cient Nash equilibrium [16]. However, as is well known in game

theory, such games only work in absence of binding side contracts.

By committing to the strategy of being honest, the staker claims that

he would lose a huge amount in case a deviation from the strategy

is observed. We show an existence of such a contract which relies

on an Trusted Execution Environment (TEE). Thus, due to the ratio-

nality of the staker 𝑠𝑖 , every other staker would get a guarantee that

releasing wrong information in Algorithm 1 would not be rational

CCS ’24, October 14-18, 2024, Salt Lake City, U.S.A. Sarisht Wadhwa, Luca Zanolini, Aditya Asgaonkar, Francesco D’Amato, Chengrui Fang, Fan Zhang, and Kartik Nayak

On-Chain Contract :

Interface IAnimaguSwap:

function deposit(_amount) payable:

Registers the caller of the function as a staker (and locks stakes)

function commit(_hashMerkleRoot):

User sends commitment to the chain

function revealFlipper(b):
Flipper reveals the flip bit b

function revealStaker(token1,token2,amountIn, _hashWV):

Reveal details about the sell transaction that was secret-shared to it

token1, token2, b (from revealFlipper) and amountIn determine the

direction of the transaction.

_hashWV is used in case the flipper decides to release a wrong flip

bit.

Hash of all inputs to this function are verified against _hashMerkle-

Root.

function complain(signed message, v, w):

If the function is called, the user suspects Flipper for cheating.

_hashWV is verified against hash(v||w).

signature of Flipper is checked on a message committing to reveal

the bit 𝐵 ̸= 𝑏

The message must contain 𝑣.

Figure 10: AnimaguSwap On-Chain Contract.

for 𝑠𝑖 . Note that each staker is confident of their own information

since non-transferable proofs were provided to them by the user.

Therefore, in this section we argue that even if we allow the user

to create such distrust between parties by allowing multiple out-

put blocks corresponding to the same transaction sequence output

from order, it is still impossible to construct an OPE protocol in

the presence of binding side contracts. Note that the user still only

wants one of the multiple allowed output blocks and can penalize

the staker that deviates from the release of the block.

To approach this impossibility, we augment the previously dis-

cussed attacker’s protocol by adding rational binding property to

each stakers information. In order to achieve this, we propose a

binding side contract built with the help of a smart contract.

In the contract, staker 𝑠𝑖 commits that private information

mpc_inp𝑖 = (state𝑖 , spri𝑖) (which will be used in Algorithm 1) is

correct. This lets other stakers trust mpc_inp𝑖 , otherwise the con-

fiscation function could be called by some other staker and make 𝑠𝑖
lose stake (or utility). If 𝑠𝑖 discloses the correct information, then it

receives a refund of any deposited amount.

However, if we naïvely compose the online contract described

above with Algorithm 1, then Lemma 7 would no longer be true,

since now the presence of mpc_inp𝑖 in a contract could in some

cases be a proof that the staker released privileged information, and

can be slashed. For example, in a distributed key generation based

protocol, the committee member (staker) cannot reveal its share of

the secret key online, or else it would be slashed. Therefore to hide

the same, we make use of an oracle-based hashed time lock contract,

where an TEE acts as an oracle to release a secret preimage of an

on-chain hash in order to facilitate the refund or the confiscation

of the amount in the contract.

Another important component to this collusion is that if the

secret share is made unverifiable, i.e., it cannot be determined which

among the stakers provided the incorrect input, then all involved

stakers would have to lose utility. If the set of attackers is the

complete set of stakers, then since everyone is losing utility, no

staker would call the confiscate function for anyone. To design

around this, we create a negative reward strategy in which the

staker will lose staked utility unless he can prove to the TEE about

the correctness of its own input, and receive a secret to publish

on-chain as a proof that he was able to convince the TEE that the

said input is correct.

Thus, we arrive at the contract presented in Algorithm 3. It con-

sists of two parts, a TEE attested code and an on-chain contract.

The staker creates a remote attestation to the code described in

Algorithm 3 and that the output to the function keygen (Line 10,

Algorithm 3) that generates and stores an asymmetric key inside

the TEE. A secret is randomly generated inside the TEE through

the function generate_hash (Line 13, Algorithm 3), which returns

the hash of the secret and a signature on the hash, input and a

block hash (the successor of which is being attacked) to ensure

that the function was run inside the TEE. Using this signed hash

value, the staker 𝑠𝑖 now calls commit function in the contract (Line

5, Algorithm 3) and commits that she would know the value of the

preimage to the hash in the future. Next, the Algorithm 1 is called,

where inside the MPC, the signature of the TEE is checked (parties

input previous block hash and the committed hash value on the

online contract). After the MPC generates a list of transactions tSeq,

𝑠𝑖 passes it on to the TEE by calling the update_MPC_block func-
tion (Line 18, Algorithm 3). Now any new transactions that were

generated by the MPC would not have any corresponding inputs

to the MPC, and thus would need to be marked as transactions that

the staker did not commit information to. All the other transactions

have the input committed by the staker. Whenever another transac-

tion sequence is added to the chain, it is checked to be the successor

of the current hash stored (Line 24, Algorithm 3), which is eventu-

ally used to check whether or not the MPC transaction sequence

has been confirmed on-chain or not (checkConfirmed). Whenever

ShouldReveal(tx) is true, the transaction would be revealed in a

block B by following the procedure in the protocol. This B acts as

proof that tx was released and the committed input inp has a corre-

sponding commitment to this transaction. If the check passes then

the transaction is also marked, this time because its correspond-

ing output has been checked (Line 27, Algorithm 3). Finally, when

all transactions have been marked, 𝑠𝑖 calls get_preimage (Line 32,
Algorithm 3) in which the TEE checks whether all transactions

have been marked and if the check passes, the preimage to the

hash is revealed. Using this secret, 𝑠𝑖 can call the refund (Line 9,

Algorithm 3) function in the contract to get back her committed

amount. If on the other hand the timeout expires, then any user

can call confiscate function (Line 12, Algorithm 3) to burn all the

amount stored in the contract, and take a small transaction fee (𝜖)

from the burnt amount.

Lemma 9. Given the staker 𝑠𝑖 provides consistent input to Aug-

mented Algorithm 1 and at the time of reveal, and the same Aug-

mented Algorithm 1 publishes a transaction sequence tSeq, 𝑠𝑖 will

receive back the amount set as collateral.

Proof. We are given that the Algorithm 1 succeeds and pub-

lishes the transaction sequence tSeq. Any transaction in this trans-

action sequence could be present in state𝑖 or not in state𝑖 . If the

Data Independent Order Policy Enforcement: Limitations and Solutions CCS ’24, October 14-18, 2024, Salt Lake City, U.S.A.

User intends tx0 = Buy(token1,token2,amountOut, amountInExpected, slippage)= swapTokensForExactTokens(amountOut,AmountInMax,path...)

amountInMax is computed by amountInExpected and slippage. path = [token1,token2]

∼
= tx1 = Sell (token2,token1,amountIn,amountOutExpected,s)=swapExactTokensForTokens

Initialization

• deploy the smart contract of AnimaguSwap. All stakers and flipper deposit assets

Generate Transaction:

• 𝑇𝑥 = Buy 𝑜𝑟 Sell

• b = RandomBit()
• ∼ tx = (𝑡𝑥 == Buy)? Sell : Buy

• 𝑡𝑥𝑏 = (𝑏 == 0)? 𝑡𝑥 :∼ tx
Transaction submission:

• 𝑣 = RandomBit()
• User to F: outF,⊥ ← EncpkF (b, v) : user encrypts (𝑏, 𝑣) via the public key of flipper and sends it to flipper

• F to user: On receive outF ; outu ← (b, v)𝜎 (pkF)
: flipper decrypts 𝑜𝑢𝑡𝐹 , signs it and sends it to user as a commitment =𝑂𝑢𝑡𝑈

• User: Upon receive outu, execute verify(message, 𝜎,wallet_address)

• User to (𝑠1 . . . , 𝑠𝑁) : (txid; (⊥, 𝑠𝑠1, . . . , 𝑠𝑠𝑁)

. ← SS.share(𝑡𝑥𝑏 , (pk1
, . . . , pk𝑁)) The User uses secret sharing to txb

⊲ Where 𝑠𝑠𝑖 represents the secret share for 𝑠𝑖

• calculate corresponding𝑀𝑒𝑟𝑘𝑙𝑒𝑃𝑟𝑜𝑜 𝑓𝑖 for every 𝑠𝑠𝑖 , sign it and send it to every staker

• Stakers use the signed 𝑠𝑠𝑖 and 𝑝𝑟𝑜𝑜 𝑓𝑖 to verify offchain to prevent if user cheats

Transaction inclusion :

• 𝑤 = RandomBit()
• user commit (ℎ𝑎𝑠ℎ(𝑚𝑒𝑟𝑘𝑙𝑒𝑟𝑜𝑜𝑡), ℎ𝑎𝑠ℎ(𝑤, 𝑣): The user calculates the merkle root and hashes the merkle root and the hash of (w, v), submiting

them on the chain.

Transaction revealing :

• Every Staker call revealStaker(𝑠𝑠𝑖 , 𝑝𝑟𝑜𝑜 𝑓𝑖): every staker call revealStaker to use the verify function of merkleProof.sol to verify if staker cheats

• Flipper call revealFlipper(b): reveal b to the blockchain

• User complain (𝑂𝑢𝑡𝑈 = 𝑠𝑖𝑔𝑛𝑒𝑑(𝑏 |𝑣),v,w): first verify the hash of v and w, and then compare the𝑂𝑢𝑡𝑈 .

• forward both tx and tx𝑓 to AMM for transaction

Figure 11: AnimaguSwap specification.

transaction is not in state𝑖 , then 𝑠𝑖 did not commit to any informa-

tion about this transaction, and is thus marked off. If the transaction

(tx) was in the state𝑖 , and it made into the transaction sequence,

then this transaction would be revealed when ShouldReveal(tx) is

true. After its release, the staker 𝑠𝑖 can prove to SGX that its in-

put is correct using the feed_revealed function. If the information

provided is correct, then this information can be used to add to

other stakers reveal and not invalidate the revealed transaction.

Thus, such transactions will get marked as verified, and when all

transactions are either verified or not committed to by the staker

for the transaction sequence generated by Algorithm 1, then the

collateral is returned to staker via refund (Line 9, Algorithm 3). □

Lemma 10. Given the staker 𝑠𝑖 provides consistent input to Aug-

mented Algorithm 1 and at the time of reveal, but the Algorithm 1 is

aborted without returning tSeq, 𝑠𝑖 will receive back the amount set as

collateral.

Proof. Even though no Algorithm 1 is complete, if the inputs to

Algorithm 1 are the same as what the staker would release in order
and reveal, the transaction sequence that follows would contain

some transactions that the staker commit information towards, and

some transactions that it did not commit information towards. The

proof for Lemma 9 still holds. □

Lemma 11. Given the staker 𝑠𝑖 provides inconsistent input to Aug-

mented Algorithm 1 and at the time of reveal for some transaction tx,

and a transaction sequence tSeq is published such that tx ∈ tSeq, 𝑠𝑖
will not receive back the amount set as collateral.

Proof. In order to receive back the collateral, the staker needs

to mark all transactions in the transaction sequence tSeq and prove

that tSeq was the confirmed transaction sequence on-chain. If the

staker inputs tSeq in the update_MPC_block, then she would be

required to mark the transaction. There exists two ways of marking

a transaction - to not have committed to the information, and

to show that the transaction’s reveal corresponds to the input.

If tx is not committed to, then the input to Algorithm 1 cannot

contain tx (since otherwise the signature check would fail), and thus
information provided cannot be incorrect. Next if tx is committed to,

then the only way to get it marked is to show that the reveal of the

transaction corresponded to the committed information. Since the

checkInfo(Line 28, Algorithm 3) would fail for tx due to inconsistent
input into Augmented Algorithm 1 and at the time of reveal. Thus,
the staker would not be able to call refund. □

Lemma 12. Assume that no user can distinguish whether any

two public keys belong to the same entity except itself; and the con-

tract in Algorithm 3 is indistinguishable from a HTLC contract. Sup-

pose there exists a sequence of transactions tSeq = { ¯𝑡𝑥1, . . . , ¯𝑡𝑥ℓ } ∈
P(md1, . . . ,mdℓ) for input stream ((md1, data1), . . . , (mdℓ , dataℓ)).

Moreover, let us assume that there exists a function extract() known
to all stakers such that tSeq

′ |= extract(tx1, . . . , txℓ) and tSeq
′ ∈

P(md
′
1
, . . . ,md

′
ℓ ′) for input stream ((md

′
1
, data′

1
), . . . , (md

′
ℓ ′ , data

′
ℓ ′)).

CCS ’24, October 14-18, 2024, Salt Lake City, U.S.A. Sarisht Wadhwa, Luca Zanolini, Aditya Asgaonkar, Francesco D’Amato, Chengrui Fang, Fan Zhang, and Kartik Nayak

User intends tx0 = Buy(token1,token2,amountOut, amountInExpected, slippage)= swapTokensForExactTokens(amountOut,AmountInMax,path...)

amountInMax is computed by amountInExpected and slippage. path = [token1,token2]

∼
= tx1 = Sell (token2,token1,amountIn,amountOutExpected,s)=swapExactTokensForTokens

Given real = {token1,token2}, P_dir𝑖 , P_asset𝑖∀𝑖 ∈ assets in the world

Initialization

• deploy the smart contract of AnimaguSwap. All stakers deposit assets

• For the election of the flipper in block block_num, all stakers generate a Verifiable Random Function according to information in block_num- 2t,

where t is a parameter chosen for censorship resistance to ensure fair election of flipper.

• Any staker which gets a value of less than
2

256∗5
𝑁

is a potential flipper. It generates a new identity (F’) derived from the staker’s secret key.

• Using the new identity(F’), the potential flipper posts the value of VRF online in the contract.

• Any staker can challenge the proof sent by F’
• On block_num- t, the deadline for posting the VRF expires, and the staker with the lowest value is chosen as the flipper.

Generate Transaction:

• 𝑇𝑥 (params) = Buy(params1) 𝑜𝑟 Sell(params2)

• b = RandomBit()
• ∼ tx = (𝑡𝑥 == Buy)? Sell : Buy

• tx𝑏 = (𝑏 == 0)? 𝑡𝑥 (params) :∼ tx(params)

• pool = {𝑢,𝑢1,𝑢2, ...}, s.t. no user is more likely than the other.

• assets = {1, 2, 3, ..., 𝑖, ...,N_asset} are the assets chosen such that

∑
𝑖 (P_asset𝑖 ∗ P_dir𝑖) = 1 − 2P_asset𝑟𝑒𝑎𝑙 ∗ P_dir𝑟𝑒𝑎𝑙 .

• b𝑖 = RandomBit(P_diri)
• tx𝑎𝑢𝑥−𝑖 (𝑝𝑎𝑟𝑎𝑚𝑠𝑖) = (𝑟𝑎𝑛𝑑𝑜𝑚𝑐𝑜𝑖𝑛𝑖 == 1)? Sell(𝑝𝑎𝑟𝑎𝑚𝑠0𝑖) : Buy(𝑝𝑎𝑟𝑎𝑚𝑠1𝑖)

• ∼ tx𝑎𝑢𝑥−𝑖 = (𝑡𝑥𝑎𝑢𝑥−𝑖 == Buy)? Sell : Buy

• tx𝑎𝑢𝑥−𝑖−𝑏 = (𝑏 == 0)? 𝑡𝑥𝑎𝑢𝑥−𝑖 (params) :∼ tx𝑎𝑢𝑥−𝑖 (params)

• tx𝑏 = tx𝑏 , tx𝑎𝑢𝑥−𝑖−𝑏
Transaction submission:

• 𝑣 = RandomBit()256

• User to F′: outF′ ,⊥ ← EncpkF′ (𝑈𝑠𝑒𝑟, b, 𝑟𝑒𝑎𝑙, v) : user encrypts (𝑈𝑠𝑒𝑟, b, 𝑟𝑒𝑎𝑙, v) via the created identity key of flipper and sends it to flipper

• F to user: On receive outF′ ; outu ← (𝑈𝑠𝑒𝑟, b, 𝑟𝑒𝑎𝑙, v)𝜎 (pkF′) : flipper decrypts 𝑜𝑢𝑡𝐹 , signs it and sends it to user as a commitment =𝑂𝑢𝑡𝑈

• User: Upon receive outu, execute verify(message, 𝜎,wallet_address)

• User to (𝑠1 . . . , 𝑠𝑁) : (txid; (⊥, 𝑠𝑠1, . . . , 𝑠𝑠𝑁)

. ← SS.share(tx𝑏 , (pk1
, . . . , pk𝑁)) The User uses secret sharing to tx𝑏

⊲ Where 𝑠𝑠𝑖 represents the secret share for 𝑠𝑖

• Calculate corresponding𝑀𝑒𝑟𝑘𝑙𝑒𝑃𝑟𝑜𝑜 𝑓𝑖 for every 𝑠𝑠𝑖 , sign it and send it to every staker

• Stakers use the signed 𝑠𝑠𝑖 and 𝑝𝑟𝑜𝑜 𝑓𝑖 to verify off-chain to prevent if user cheats

Transaction inclusion:

• 𝑤 = RandomBit()256

• user commit (ℎ𝑎𝑠ℎ(𝑚𝑒𝑟𝑘𝑙𝑒𝑟𝑜𝑜𝑡), ℎ𝑎𝑠ℎ(𝑤, 𝑣): The user calculates the merkle root and hashes the merkle root and the hash of (w, v), submiting

them on the chain.

Transaction revealing: • Every Staker call revealStaker(𝑠𝑠𝑖 , 𝑝𝑟𝑜𝑜 𝑓𝑖): every staker call revealStaker to use the verify function of merkleProof.sol to verify

if staker cheats

• Flipper call revealFlipper(b): reveal b to the blockchain

• User complain (𝑂𝑢𝑡𝑈 = 𝑠𝑖𝑔𝑛𝑒𝑑(𝑏 |𝑣),v,w): first verify the hash of v and w, and then compare the𝑂𝑢𝑡𝑈 .

• forward both tx and tx𝑓 to AMM for transaction

Figure 12: Integrated AnimaguSwap specification.

Then, no user𝑢 can prove whether the input stream was ((md
′
1
, data′

1
),

. . . , (md
′
ℓ ′ , data

′
ℓ ′)) or some set of stakers A′′ ⊆ A′ (with 𝑢 /∈ A′′)

deviated from the protocol by running the above SGX code and the

contract (Algorithm 3) in addition to Algorithm 1, when the input

stream was ((md1, data1), . . . , (mdℓ , dataℓ)).

Proof. The only difference between the above stated lemma

and Lemma 7, is that there exists an online contract, publicly visible

to everyone. Since the contract has been designed as a Hashed

Time Lock Contract (HTLC) [10], it cannot be used in any proof of

malice. Note that incentive compatibility issues known for HTLC

do not play any part in this, since there does not exist a second

player and the address after timeout is just a burn address (which

can be made indistinguishable from regular address as well). Note

an HTLC design can be created even on non-smart contract based

chains like Bitcoin. □

Lemma 13. If there exists an extract function known to stakers

such that tSeq
′ |= extract(tx1, . . . txℓ), and utility of tSeq

′
is greater

than utility of tSeq, then even relaxing cryptographic binding property

to a rational binding property of the reveal to any transaction in tSeq,

publishing tSeq is strictly dominated by publishing the transaction

sequence tSeq
′
run from the MPC Algorithm 1.

Proof. The staker 𝑠𝑖 that releases the transaction sequence

would choose a transaction sequence such that it maximizes its

utility. Any choice the staker 𝑠𝑖 chooses for the transaction se-

quence tSeq
′′
would have to yield a higher utility than tSeq, since

Data Independent Order Policy Enforcement: Limitations and Solutions CCS ’24, October 14-18, 2024, Salt Lake City, U.S.A.

there exists at least tSeq
′
which can be achieved by running extract

which from the lemma statement has a utility greater than tSeq.

Further, we also know that from Lemma 7, that no negative reward

strategy can be applied for following MPC Algorithm 1. Thus, re-

leasing transaction sequence tSeq is strictly dominated by releasing

transaction sequence tSeq
′
. □

CCS ’24, October 14-18, 2024, Salt Lake City, U.S.A. Sarisht Wadhwa, Luca Zanolini, Aditya Asgaonkar, Francesco D’Amato, Chengrui Fang, Fan Zhang, and Kartik Nayak

Algorithm 3 A contract to add rational binding in the attacking protocol -TEE

1: (K, enc, dec): defines an asymmetric encryption scheme

2: H : represent a cryptographic hash function

3: State

4: secret: A secret revealed when correct mpc_inp𝑖 is verified

5: sk: stores a Secret Key generated inside TEE

6: inp: stores the committed mpc_inp𝑖 value for 𝑠𝑖
7: curr_tSeq: stores the last on-chain transaction sequence (block)

8: mpc_tSeq: stores the transaction sequence published on-chain (for which MPC was supposed to happen)

9: block_hash: block hash for the predecessor of MPC block.

10: function keyGen

11: sk, pk← K()

12: return pk

13: function generate_hash(mpc_inp𝑖 , _block_hash)

14: secret = Random()

15: inp = mpc_inp𝑖

16: block_hash = _block_hash

17: return 𝜎 = sign
sk

(H (secret), inp, block_num)

18: function update_MPC_block(tSeq)

19: Assert tSeq.predecessor = block_hash

20: mpc_tSeq = tSeq

21: for tx ∈ mpc_tSeq do

22: if tx.txid /∈ mpc_inp𝑖 .state.txid then

23: mark(tx, mpc_tSeq) ⊲ Mark adds a mark on tx in the variable mpc_tSeq

24: function update_block(tSeq)

25: Verify tSeq is successor of curr_tSeq

26: curr_tSeq = blk

27: function feed_revealed(tx, B)
28: Assert CheckInfo(inp, tx)

29: Assert CheckMembership(tx, B)
30: if tx.txid ∈ mpc_tSeq then

31: mark(tx, mpc_tSeq)

32: function get_preimage

33: Assert checkConfirmed(mpc_tSeq)

34: for tx ∈ mpc_tSeq do

35: if existsMark(tx, mpc_tSeq) then

36: return null

37: return secret

Algorithm 4 A contract to add rational binding in the attacking protocol -Contract Side

1: State

2: amount_stored← 0: amount stored in the contract

3: hash← null: hash of a secret the staker who is committing receives after running generate_hash
4: committer← null: identity of the staker that commits to the information

5: function commit(amount, hash)

6: amount_stored← amount_stored + amount

7: hash = hash

8: committer = sender

9: function Refund(secret)

10: if H (secret) = hash then

11: send(amount_stored, committer)

12: function Confiscate(timeout)

13: if current.time > timeout then

14: burn(amount_stored)

	Abstract
	1 Introduction
	1.1 Overview of results

	2 Related Work
	3 Model and Problem Statement
	4 Impossibility of OPE under rationality
	4.1 Framework for Order Policy Enforcement
	4.2 Delineating Impossibility Conditions for Data Independent Ordering

	5 OPE using Rational Binding Commitments
	5.1 AnimaguSwap
	5.2 AnimaguSwap Analysis
	5.3 Base AnimaguSwap Evaluation
	5.4 Non-uniform Distribution in {Buy, Sell }

	6 Discussion and Future Work
	A Capturing Existing Systems in the Framework
	B Details Related to Algorithm 1
	C Proof for Lemmas in Section 4.2
	D Example Attack on DKG-based Threshold Encryption
	E OPE when Users Withhold Information
	F Sandwich Analysis
	G Repeated Game Analysis
	H Example Swap Scenario - Details of Execution
	I Integrated AnimaguSwap for non-uniform {Buy,Sell } and repeated games
	J Impossibility with Binding Side Contracts

