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Abstract. Distributed samplers, introduced by Abram, Scholl and Yakoubov (Eurocrypt ’22), are
a one-round, multi-party protocol for securely sampling from any distribution. We give new lower
and upper bounds for constructing distributed samplers in challenging scenarios. First, we consider
the feasibility of distributed samplers with a malicious adversary in the standard model; the only
previous construction in this setting relies on a random oracle. We show that for any UC-secure
construction in the standard model, even with a CRS, the output of the sampling protocol must
have low entropy. This essentially implies that this type of construction is useless in applications.
Secondly, we study the question of building distributed samplers in the party-dynamic setting,
where parties can join in an ad-hoc manner, and the total number of parties is unbounded. Here,
we obtain positive results. First, we build a special type of unbounded universal sampler, which
after a trusted setup, allows sampling from any distributed with unbounded size. Our construction
is in the shared randomness model, where the parties have access to a shared random string, and
uses indistinguishability obfuscation and somewhere statistically binding hashing. Next, using our
unbounded universal sampler, we construct distributed universal samplers in the party-dynamic
setting. Our first construction satisfies one-time selective security in the shared randomness model.
Our second construction is reusable and secure against a malicious adversary in the random oracle
model. Finally, we show how to use party-dynamic, distributed universal samplers to produce ideal,
correlated randomness in the party-dynamic setting, in a single round of interaction.

1 Introduction

Many cryptographic protocols require public parameters to be generated in a secure manner. This is the
case, for instance, with trusted parameters used in many succinct zero-knowledge proofs [9], or trusted
RSA moduli used in cryptographic accumulators [7]. Using incorrectly or insecurely generated parameters
in these settings can have devastating results, often completely breaking the desired security properties.
As a result, when such parameters are needed, the parties involved may wish to run a secure multi-
party computation protocol to generate them, guaranteeing security as long at least one of the parties is
honest. However, this type of setup protocol is typically expensive to carry out and coordinate.

Universal samplers, introduced by Hofheinz et al. [33], offer a partial solution to this problem. A
universal sampler produces a single set of public parameters, which can later be used to securely sample
from any distribution. In their strongest form, note that universal samplers are inherently tied to the
random oracle model: in fact, they can be seen as a type of random oracle for sampling from arbitrary,
structured distributions, without leaking the underlying random coins in the process.

A downside of universal samplers is that they still require a trusted setup, even if it only needs to
be done once. Distributed samplers, recently introduced by Abram, Scholl and Yakoubov [2, 3], work
around this issue by allowing parameters to be sampled using a secure multi-party protocol with minimal
interaction. Each party publishes a single message, after which all parties can obtain a sample from the
desired distribution. More formally, a distributed sampler for n parties and a distribution D is defined
by a pair of algorithms (Gen,Sample), such that given a set of messages Ui = Gen(1lλ, i), for i ∈ [n], one
can compute a sample R ← Sample(U1, . . . , Un). The security requirement essentially states that this
one-round protocol must securely realize the ideal functionality for sampling from D, even when up to
n− 1 parties are corrupted.

The basic definition considers a ‘one-time’ or static setting, where there is a single distribution D that
is fixed ahead of time, and the parties can only obtain a single sample from D. This can be considered



Primitive Security model Setup Feasibility

Universal sampler Static None poly FE [42]
Universal sampler Adaptive RO poly iO [33]
Unbounded US Static Shared rand. poly iO + SSB (§4.1)

Distributed sampler Semi-malicious None poly iO + mkFHE [2]
Reusable DS Malicious, UC RO poly iO + mkFHE + NIZK [2]
Distributed sampler Malicious, ind. CRS subexp iO + subexp mkFHE + ELFs +. . . [3]
Distributed sampler Malicious, UC None impossible [32]
Distributed sampler Malicious, UC CRS impossible (§3)

Party-dynamic DS Semi-malicious Shared rand. poly iO + mkFHE (§5)
Reusable, P-D DS Malicious, UC RO poly iO + mkFHE + NIZK (§5)

Table 1: Overview of the feasibility of universal and distributed samplers in different settings. RO =
random oracle; poly/subexp = polynomial/subexponential hardness; mkFHE = multi-key FHE; ELF =
extremely lossy function

either with security against a passive adversary, or an active adversary. Active security is particularly
challenging, due to the need to handle a rushing adversary, who may choose their messages Ui after
seeing the messages Uj of the other parties. This allows an attacker to “grind” different choices of their
randomness, obtaining different Ui, until finding an output R that she likes. So, the best form of security
one can hope for in this setting is a relaxation of the ideal functionality for sampling, where the adversary
first obtains several samples from D, before settling on a final output. A stronger variety of distributed
samplers is one that is reusable, for an unbounded number of queries. This is known as a distributed
universal sampler. Similarly to the case of a (non-distributed) universal sampler, this is only possible to
construct in the random oracle model.

Abram et al [2] constructed distributed samplers in the plain model (no CRS) for any distribution
based on indistinguishability obfuscation and multi-key fully homomorphic encryption. Their first con-
struction is secure only against a semi-malicious3 and non-rushing adversary. This was then upgraded to
malicious security in the programmable random oracle model, with a construction that is also reusable,
and secure for adaptive choices of the desired distributions. On top of this, they showed how distributed
samplers can be used for sampling arbitrary forms of correlated randomness, often used in MPC proto-
cols, with a one-round protocol.

We note that the constructions in [2] are proven secure assuming that the underlying primitives
are secure against polynomially bounded adversaries. This is in contrast to similar primitives like non-
interactive MPC [29] or probabilistic iO [17], for which the only general constructions are based on subex-
ponentially secure primitives. This highlights that the setting of computing randomized functionalities,
where no party has a private input, seems easier than that of general computations.

1.1 Our Results

In this work, we further explore the feasibility of distributed samplers, pushing their lower and upper
limits with both impossibility results and more powerful constructions. We focus on security in the UC
model [15], which gives strong composability guarantees. See Table 1 for an overview of our results and
prior relevant work.

Impossibility of Distributed Samplers Without Random Oracles. We first pose the question: is
it possible to build actively secure distributed samplers in the standard model, that is, without random
oracles? As a starting point, we observe that actively secure distributed samplers cannot be built with-
out a common reference string (CRS) in the UC model. This is an immediate consequence of the UC im-
possibility for same-output probabilistic functions of [16], since the function D(1lλ) we want to compute
has an unpredictable output and no inputs.

3 A semi-malicious adversary is one who follows the protocol, but may choose their random tape arbitrarily.
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We observe also that generic actively secure distributed samplers without a CRS cannot exist even
in the standalone model with black-box simulation. If that was not the case, by sequentially composing
a distributed sampler with 2-round active OT protocols in the CRS model such as [46] or [21], we would
obtain a 3-round OT protocol with active security and black-box simulation in the plain model. The
latter is known to be impossible [32].

For this reason, we investigate the CRS model. At first glance, it seems that distributed samplers are
then trivial: the CRS can directly encode a sample from the desired distribution. This solution does not
even need interaction. However, interactive distributed samplers with a CRS may have some advantages
over the trivial construction, if the CRS can be reused multiple times and/or is easier to generate, either
by being short or unstructured (i.e. a uniformly random string). We prove that if the construction is
secure against rushing adversaries in the UC model, none of the above properties can be satisfied in the
standard model.

All of these impossibilities come from our main result, below. Although the impossibility is in the UC
model, we show that it even holds for a restricted class of adversaries who always follow the protocol,
but behave in a rushing manner, sending their messages after receiving those of the honest parties. This
only strengthens our impossibility result.

Theorem 1.1 (Informal, c.f. Thm. 3.1). For any distributed sampler secure against rushing adver-
saries in the UC model, for a distribution D where H∞(D) = ω(log λ), we have that H(R |σ) = O(log λ),
where σ denotes the CRS and R the output of the distributed sampler.4

This essentially rules out this flavour of distributed sampler for all practical applications, as we discuss
in the following corollaries.

Corollary 1: the collision probability is large. An immediate consequence of small Shannon entropy is
that the output of the distributed sampler has a high probability of a collision if the CRS is not changed.
This implies that in applications where more than one sample from D is needed, the same CRS cannot
be reused.

Corollary 2: the CRS must be long. Less trivially, we show that this means that the CRS must be at
most O(λ) bits smaller than the Yao incompressibility entropy of D. Recall that this roughly measures
the compressed size of a sample from D, after applying any efficient compression algorithm. As a result,
the CRS must be almost as long as an output of D, after applying compression.

Corollary 3: the CRS must be ugly. Finally, we show that in meaningful scenarios, the CRS must inher-
ently be structured, or “ugly”, meaning that it requires private coins to sample. In practice, this type
of CRS must be generated by a trusted party or multi-party computation protocol, whereas obtaining a
CRS that can be sampled from uniform randomness is much easier, relying only on a public source of
randomness (or a hash function modelled as a random oracle).

Conclusion. Put together, the above corollaries show that UC-secure distributed samplers in the stan-
dard model, with rushing adversaries, are essentially useless. Since the CRS can only be used once, is
structured, and as long as an output of D, in practice it will most likely be no easier to generate the
CRS than to just generate a sample from D.

Open questions. Our main impossibility result is in the UC model, with polynomial-time simulation
and dishonest majority. Recall that in this setting, rewinding is not allowed and simulation is inherently
black-box5. We leave to future work the question of proving impossibilities — or finding constructions
— for different settings, such as an honest majority, rewinding and non-black-box simulation.

4 We use H∞ to denote the min-entropy. We use H to denote the Shannon entropy. We refer to Appendix A.7
for formal definitions.

5 Although the UC model allows the simulator to depend on the real-world adversary, the notion of security is still
black-box. Indeed, it can be proven that a protocol is UC-secure if and only if it is secure against the “dummy
adversary”, who simply follows the instructions given by the environment [15]. By reframing the model in this
way, we obtain a form of black-box simulation: security requires the existence of a single simulator that works
for every environment.
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Positive Results: Party-Dynamic Distributed Samplers. On the positive side, we give new results
in settings where the parties have access to a random oracle, or in some cases, a public source of uniform
randomness, called the shared randomness model. The main difference between these settings is that
random oracles are an idealised model that assumes the existence of an exponential amount of randomness
to which all the parties have access. The shared randomness model, instead, is a more realistic setting
in which all parties have access to randomness that grows polynomially in the size of their inputs.

We construct party-dynamic distributed universal samplers, where the messages are independent of
the distribution we want to sample from, the set of participants and their number, which is a priori
unbounded. We analyse two notions of security. In one-time, semi-malicious security, the messages are
used to generate a single sample, and the underlying distribution and set of parties are chosen ahead
of time. With reusable, active security, the same messages are used to generate samples for multiple
distributions and multiple subsets of participants, both adaptively chosen by the adversary. Distributed
universal samplers, i.e. distributed samplers where the messages are independent of the distribution,
were already built in [2]. Prior to this work, however, all constructions were tailored to a specific set of
players, which forced a restart of the protocol if participants joined or left.

Applications. Constructions supporting dynamic participants are ideally suited to non-interactive setup
ceremonies for SNARKs in a permisionless setting, such as blockchains. More generally, they can be
used for trusted setup in MPC protocols: imagine a world where every institution (e.g. governments,
NGOs, intergovernmental organisations, private companies,. . . ) publishes a distributed universal sampler
message on a public bulletin board. Any set of parties that wants to run an MPC protocol can now
non-interactively generate any CRS or correlated randomness6 they want by just combining the sampler
messages of the institutions they trust. The desired randomness is secure as long as just one of the
participant’s randomness is kept private. Furthermore, since our construction is party-dynamic, new
organisations can join the protocol at any time without requiring further action from the others. Of
course, the use of iO makes our solution currently impractical. However, we highlight that the task of
obfuscating circuits is only required by the institutions (which likely have more resources); the parties just
need to evaluate the resulting programs. In other words, for our solution to become practical, obfuscating
does not need to be extremely efficient, what matters is the efficiency of the evaluation.

Our results. A key tool we introduce for our party-dynamic constructions is an unbounded universal
sampler. Universal samplers are a way of securely sampling from any distribution, after a trusted setup
phase which outputs some public parameters, called the sampler parameters. Previous constructions [33,
42] require the sampler parameters to be at least as large as the maximum size of the distribution. In the
unbounded setting, we impose no such constraint: the circuit-size of the distribution can be arbitrarily
large. Since the sample may be bigger than the sampler parameters, this inherently means that we need
some additional source of randomness (such as the shared randomness model, or random oracle). An
immediate application of unbounded universal samplers is to compile any protocol with a large CRS into
one with a small, reusable CRS in the random oracle model. This technique was recently applied in [1]
to build a private simultaneous messages protocol with succinct public parameters and messages that
have logarithmic size in the function input.

Theorem 1.2 (Informal). Assuming polynomially secure iO and somewhere statistically binding hash-
ing, there exist unbounded universal samplers in the shared randomness model.

Using the unbounded universal sampler, we obtain the following.

Theorem 1.3 (Informal). Assuming polynomially secure iO and multi-key FHE, there exist party-
dynamic distributed universal samplers for any distribution, which are:

– One-time secure against a non-rushing, semi-malicious adversary, in the shared randomness model

– Reusable and secure against a malicious and static adversary, in the UC model with local random
oracle (and assuming NIZK)

6 Using a party-dynamic distributed correlation sampler, discussed below.
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Party-Dynamic, Distributed Correlation Samplers. As an application of our party-dynamic dis-
tributed samplers, we show how they can be used to obtain party-dynamic, distributed, universal corre-
lation samplers, where after each party publishing a single, short, message, any subset of parties can ob-
tain large amounts of correlated samples R1, . . . , Rn, defined by some arbitrary, correlated distributions
(adaptively chosen after the messages are sent). Formally, we phrase this construction in the language
of (public-key) pseudorandom correlation functions [13, 2].

Theorem 1.4 (Informal). Assuming polynomially secure iO and multi-key FHE, there exist party-
dynamic, public-key, pseudorandom universal correlation functions, for adaptively-chosen correlations in
the UC model with local random oracle.

Such primitive can be used, for instance, to build party-dynamic MPC with an information-theoretical
online phase [19, 36, 37] and non-interactive offline phase: when a party joins the protocol, it just needs
to sent its public-key for the pseudorandom correlation function. After that, it can immediately join the
online phase, without the other players’ need to regenerate their pseudorandom correlation function keys.

1.2 Related Work

Follow-up work on distributed samplers. In [3], Abram, Waters and Zhandry presented solutions to
circumvent the impossibility proven in this paper. Instead of aiming for a simulation-based security
definition, they show that, using strong primitives (including subexponential iO) but no random oracle,
it is possible to implement game-based definitions for distributed samplers that allow removing trusted
setups in one round while preserving the hardness of search problems and the security of most protocols
against active adversaries.

The lower bounds in this paper provide an argument supporting that the complex game-based def-
initions of [3] are necessary, as the more natural simulation-based definition is unachievable without a
random oracle. We point out that a simulation-based definition would be, in principle, desirable as there
exist situations for which the definitions of [3] are not sufficient. For instance, their notion of a hardness-
preserving distributed sampler does not allow removing the CRS from a NIZK while preserving sound-
ness. This is because hardness-preserving distributed samplers preserve the hardness of games only when
the challenger is efficient. Their second notion of indistinguishability-preserving distributed samplers also
does not work in all contexts. For example, consider the functionality F that provides the adversary with
several RSA moduli, lets the adversary choose one of them (denote the chosen modulus by N), and then
allows MPC over ZN (this is an interesting setting, e.g. for using MPC tools from [44] that require a
trusted setup). There exists a protocol Π that, given an RSA modulus as CRS, implements F. However,
if we apply an indistinguishability-preserving distributed sampler [3], the result Π ′ no longer implements
the functionality F (this can be proven using an entropy based argument, as we did in this paper).

We highlight that the ideas of [3] cannot be used to construct unbounded universal samplers without
random oracles. Indeed, the main obstacle that [3] managed to overcome is the unpredictability of the
output of one-round protocols when the adversary adopts rushing behaviour. The main challenge of
unbounded universal samplers is instead the incompressibility of ideal samples: how can we argue that
the unbounded universal sampler produces outputs that look ideal if the entropy in the construction
is even smaller than the entropy of one ideal sample? This issue is immediately inherited by all party-
dynamic primitives we introduced in this work.

iO for Turing machines. Our construction for unbounded universal samplers uses garbled circuits to
achieve succinctness, in a similar way to a construction of iO for Turing machines by Garg and Srini-
vasan [25]. The settings where these techniques are used are significantly different. One key difference
is also that in our setting we are able to prove security relying only on polynomially secure primitives,
while all existing constructions of iO for Turing machines rely on subexponentially secure primitives in
their security proofs. We note that another construction of iO for Turing machines [4] uses the shared
randomness model to avoid the size of the obfuscated program growing with a bound on the input. This
is related to our use of shared randomness for removing the size dependency in our succinct universal
sampler, however, the techniques are different.
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Laconic function evaluation for Turing machines. Recently, Döttling, Gajland and Malavolta [20] showed
how to construct laconic function evaluation for Turing machines (TM-LFE), also using the techniques of
[25]. Is it tempting to think that one can build unbounded universal samplers from the above primitive,
as follows: the sampler consists of a TM-LFE hash key and an obfuscated program that, on input the
digest of a distribution D, outputs the TM-LFE encoding of a pseudorandom string r. In order to obtain
a sample from the distribution D, we retrieve the encoding produced by the obfuscated program on input
a digest of D. By decrypting this encoding using D, we obtain D(1lλ; r) without learning any additional
information.

This is not, however, an unbounded universal sampler: if we rely on a TM-LFE scheme satisfying
simulation-based security, the size of the encoding produced by the obfuscated program is at least as big
as the sample D(1lλ; r). Therefore, also the size of the sampler is bigger than the samples it produces. This
is exactly what we want to avoid in unbounded universal samplers. In [20], the authors also introduced
a weaker indistinguishability-based security definition for TM-LFE, which can have encodings that are
sublinear in the size of D(1lλ; r). However, this security definition is too weak for unbounded universal
samplers: it would only guarantee that if D(1lλ; r) = D(1lλ; r′), the adversary cannot tell whether the
sampler used r or r′.

Non-interactive key exchange. The setting of party-dynamic distributed samplers is similar to unbounded
non-interactive key exchange (NIKE), which can be built using iO [39]. NIKE is in some way similar to a
distributed sampler for the uniform distribution, but it satisfies a weaker security definition: the output
of the NIKE is guaranteed to look random only if no party is corrupted. This implies, for instance,
that the derived output may depend only on the randomness of one party. Distributed samplers instead
achieve security even when the adversary takes part in the computation. This difference allows NIKE to
avoid many issues related to entropy.

One-round MPC. Distributed samplers can also be viewed as an inputless version of non-interactive
MPC [29]. We recall that non-interactive MPC unavoidably achieves a weak definition of security in which
the adversary is allowed to learn the residual function (i.e. the function obtained by fixing the inputs of the
honest parties while leaving the other inputs free). To achieve this, the primitive needs to rely on a PKI.

The fact that distributed samplers have no inputs gives a huge advantage: it allows us to satisfy a
standard definition of security, without even needing PKIs. Notice that the naive idea of running an
NIMPC protocol that, on input r1, . . . , rn, outputs D(1lλ; r1 ⊕ · · · ⊕ rn) does not give a distributed
sampler for D, due to the residual function attack.

Two-round reusable MPC. Another related primitive is multi-party, reusable non-interactive secure com-
putation (MrNISC) [8], which performs MPC in the party-dynamic setting with minimal interaction. In
their construction, based on LWE, parties use the first round to publish encryptions of their input, and
later, can publish second round messages for computing any desired function with a subset of parties.
While related to distributed samplers, MrNISC does not allow secret randomness to be used in the func-
tion, unless it is encoded as part of the inputs in the first round; therefore, it does not seem to help with
building a distributed sampler.

Roadmap. In Section 2, we present a technical overview of our results. We describe notation and prelim-
inaries in Appendix A. In Section 3, we formalise our lower bounds. We discuss succinct and unbounded
universal samplers in Section 4. Finally, we present our party-dynamic constructions in Section 5.

2 Technical Overview

We now give a high-level overview of the techniques used to obtain our results.

Notation. We denote the security parameter by λ. Even when not explicitly written, we assume that
all random variables depend on λ. We use bold font to denote vectors, e.g. v, single coordinates will
be indicated using subscripts, e.g. vi. The symbol ∼c denotes computational indistinguishability. We
represent the set of corrupted players by C, the set of honest players is instead denoted by H. We indicate
the bit-length of any string s by |s|. If c is a circuit, we use a similar notation |c| to denote the number of
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gates. We use struct(c) to denote the structure of c. With an abuse of notation, we identify distributions
D with circuits mapping uniformly random strings of bits into samples. We say that a distribution is
efficient if its circuit has poly(λ) size. We present additional preliminaries, including a discussion about
distributed samplers and entropy, in Appendix A.

2.1 (Im)possibility of Distributed Samplers without Random Oracle

As we motivated in the introduction, actively secure distributed samplers in the plain model with black-
box simulation are impossible. In the CRS model, instead, they are trivial to build: the CRS can directly
encode a sample from the underlying distribution. The result is a distributed sampler in which the parties
do not even need to communicate, since they just output the CRS.

We study how interactive constructions can improve upon the trivial solution. In principle, the ad-
vantages can be multiple: the same CRS can be reused in many distributed sampler executions produc-
ing independent-looking outputs. Moreover, the CRS of distributed samplers can be nicer (i.e. easier to
generate) than the direct encoding of a sample, for instance because of the smaller size, or because it is
unstructured (i.e. a uniformly random string of bits). The result of our analysis is that none of the above
properties can be satisfied: without a random oracle, distributed samplers essentially provide no advan-
tage over the trivial solution. In order for this impossibility to hold, we do not even need to aim for active
security, it suffices that the adversary is strongly semi-malicious: it may adaptively choose the randomness
of the corrupted parties after seeing the honest messages, but all corrupted players follow the protocol.

On the Unpredictability of Distributed Samplers in the CRS Model. All the negative results
mentioned above are consequences of the main theorem of this work: in a strongly semi-malicious dis-
tributed sampler, where the underlying distribution D has high min-entropy, namely H∞(D) = ω(log λ),
the Shannon entropy of the output conditioned on the CRS is O(log λ).

All through the paper we carefully juggle different variants of entropy, each bringing a unique set of
properties we require during the proofs. Shannon entropy H has a powerful chain rule. Collision entropy
H2 gives us an elegant tool for building distinguishers, but lacks a chain rule and is not invariant under
computational indistinguishability (i.e. for two computationally indistinguishable random variables, H2

can be vastly different). We also use min-entropy H∞, this is the smallest of the above mentioned and
has the fewest properties. Our assumption on the entropy of the random source D is H∞(D) = ω(log λ)
(clearly the task is trivial if D is constant) – this becomes the weakest assumption one can make using
any of the above notions (and thus makes our theorem stronger). Finally, Yao’s entropy is the only
entropy we use that remains invariant under computational indistinguishability (i.e. two computationally
indistinguishable random variables have the same Yao entropy). For formal definitions please refer to
Appendix A.7.

Distributed samplers against a rushing adversary. In order to understand the idea behind the result, we
need to recall the definition of distributed samplers with security against an active adversary [2]. The
corresponding functionality provides the adversary with as many samples from the underlying distribu-
tion as the adversary wants. The adversary can then select one of these values; the functionality out-
puts it to all the honest parties. This kind of behaviour is needed to model the fact that, in the case of a
rushing adversary, the corrupted parties see the honest messages before they publish their own. In other
words, before committing to a choice, they can always test their candidate messages and discard them
if they are not happy.

Definition 2.1 (Distributed sampler - security against rushing adversaries). Let D(1lλ) be
an efficiently samplable distribution. An n-party actively secure (resp. strongly semi-maliciously secure)
distributed sampler for D(1lλ) is a one-round protocol implementing the functionality FD (see Fig. 1)
against a static and active (resp. strongly semi-malicious) adversary corrupting up to n− 1 parties.

The security model. We consider the UC model against the “dummy adversary”, the one that simply
follows the instructions given by the environment. We recall that a protocol is UC-secure if and only if
it is secure against the dummy adversary [15]. In this setting, there exists a unique simulator that works
for every environment. Since the role of the adversary is essentially assumed by the environment, we will
use the terms adversary and environment interchangeably. We work in the dishonest majority setting.
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The Functionality FD
Initialisation. On input Init from every honest party and the adversary, the functionality activates and
sets Q := ∅. (Q will be used to keep track of queries.) If all the parties are honest, the functionality outputs

R
$← D(1lλ) to every honest party and sends R to the adversary, then it halts.

Query. On input Query from the adversary, the functionality samples R
$← D(1lλ) and creates a fresh label

id. It sends (id, R) to the adversary and adds the pair to Q.

Output. On input (Output, îd) from the adversary, the functionality retrieves the only pair (id, R) ∈ Q with

id = îd. Then, it outputs R to every honest party and terminates.

Fig. 1: The distributed sampler functionality for rushing adversaries

Our proof will only consider adversaries that behave honestly, i.e. they choose the randomness of the
corrupted parties uniformly at random and they follow the protocol. Notice that since we are proving a
lower bound, considering very weak adversaries such as the honest one makes our results even stronger.

In the ideal world, the outputs are restricted to a small set. The simulator of the distributed sampler
needs to provide the honest parties’ messages and the CRS to the adversary before learning the choices
of the corrupted players. Since the simulator runs in polynomial time, the number of samples received
from the functionality before the delivery is polynomially bounded. Let the corresponding set be Q.

Once the adversary supplies the corrupted messages, the output of the protocol is fixed (indeed, we
cannot rewind the adversary, as the UC model does not allow it). If the latter belongs to Q, the simulator
can easily instruct the functionality to output the right sample to all honest players. If instead that is not
the case, the only choice left for the simulator is to keep querying the functionality for new samples and
hope for a collision. Since the distribution has high min-entropy, this occurs with negligible probability.
In other words, the output must belong to Q with overwhelming probability. If that does not happen,
the adversary can easily distinguish the real protocol from the ideal world as the simulator is not able
to make the honest parties output the right result.

In the real world, the output is easily predictable from the CRS and the messages of the honest parties. Let
R denote the output of the distributed sampler, let σ be the CRS and let UH and UC denote the messages
of the honest and the corrupted parties respectively. The fact that the CRS and the messages of the
honest parties restrict the output is a set of polynomial size is a strong property. In particular, the latter
implies that H(R|σ, UH) = O(log λ). This equality holds in the ideal world, but what about the real world?
Unfortunately, Shannon’s entropy does not behave well under computational indistinguishability, i.e.
computationally indistinguishable random variables may have very different entropy. We prove, however,
that if the adversary honestly follows the protocol in the real world, H(R|σ, UH) = O(log λ).

Consider the distinguisher that, after receiving the CRS and UH , keeps regenerating the messages of
the corrupted parties following the protocol, and stores the outputs obtained in this way. In the ideal
world, the distinguisher will never obtain more than q(λ) different samples, where q(λ) is a polynomial
upper-bound on the cardinality of Q, the set of values queried by the simulator to the functionality. We
notice that without loss of generality q(λ) is known to the distinguisher as the simulator is fixed.

Using a technical argument based on entropy, we show that if H(R|σ, UH) is not O(log λ), in the real
world, there exists a non-negligible function δ(λ) such that for every polynomial j(λ), the j-th output
obtained by the distinguisher differs from all the previous ones with probability at least δ(λ). The crucial
point is that δ(λ) is independent of j. Indeed, as j increases, the probability of obtaining new outputs
becomes lower (the probability of colliding with one of the previous outcomes gets higher and higher).
If this probability decreases too fast, the number of different outputs obtained by the distinguisher may
converge to a certain threshold smaller than q(λ). Since the probability is always bounded from below
by δ(λ), however, in the real world, the distinguisher is able to obtain more than q(λ) different outputs
in a polynomial number of steps. This is sufficient to break the security of distributed samplers.

The final result: an easy application of the strong chain rule. At this point, proving our theorem becomes
simple. Since we are considering an honest adversary, the result described in the previous paragraph
immediately implies that H(R|σ, UC) is also O(log λ). Furthermore, UH is independent of UC , given the
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Fig. 2: Entropy diagram of the distributed sampler.

CRS. In other words, H(UH |σ) = H(UH |σ, UC). By a simple application of the strong chain rule for
Shannon’s entropy, it is easy to show that H(R|σ) = O(log λ).

Indeed, consider the entropy diagram in Fig. 2.7 Observe that H(R|σ) corresponds to the union of the
blue, red, green and yellow areas, i.e. H(R|σ) = a+ b+ c+ d. We know that H(R|σ, UH) corresponds to
the union of the red and yellow areas, so, c+ d = H(R|σ, UH). Similarly, H(R|σ, UC) corresponds to the
union of the green and yellow areas, so, b+ d = H(R|σ, UC). We also observe that the union of the blue
and purple areas correspond to H(UH |σ)− H(UH |σ, UC) = 0, so a+ e1 + e2 = 0. Finally, we notice that
both e1+e2 and d are non-negative. Indeed, the former corresponds to H(UH |σ,R)−H(UH |σ,R,UC) ≥ 0,
whereas the latter corresponds to H(R|σ, UH , UC) ≥ 0. The fact that e1+e2 ≥ 0 also implies that a ≤ 0, so

H(R|σ) = a+ b+ c+ d ≤ b+ c+ 2d = H(R|σ, UH) + H(R|σ, UC) = O(log λ).

Bad News for Distributed Samplers. All the results we discuss below hold in absence of a random
oracle and for distributed samplers that achieve UC-security against a strongly semi-malicious adversary.

Distributed sampler CRSs cannot be used twice. The first corollary of Theorem 1.1 is that two distributed
sampler executions using the same CRS have colliding outputs with non-negligible probability. We recall
that our theorem applies when the min-entropy of the underlying distribution is high, i.e. ω(log λ). For
all such distributions, the collision probability is negligible, i.e. two independent samples from D(1lλ) will
almost always be different. As a consequence, by reusing the same CRS twice, we obtain samples that
do not look independent.

The reason at the base of our first corollary is that, by a simple application of Jensen’s inequality,
the average collision entropy H̃2(R|σ) is bounded from above by H(R|σ) = O(log λ). We recall that the
average collision entropy is defined as

H̃2(R|σ) := − log
(
Pr[R = R′]

)
where R and R′ are two distributed sampler outputs computed using the same CRS σ and the probability
is also over the randomness of σ. We conclude that Pr[R = R′] ≥ 1/poly(λ).

Distributed sampler CRSs are long. We prove that CRSs of strongly semi-malicious distributed samplers
cannot be small: they can be at most O(log λ) bits shorter than the Yao entropy of the underlying
distribution HYao(D)8.

7 The diagram is not completely general as some of the intersections between the sets are empty, however, the
figure is sufficiently generic to describe our argument.

8 The Yao entropy of D roughly measures how much a sample from D can be compressed in polynomial time
without losing information.
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We prove this result by first observing that HYao(R|σ) = O(log λ). Indeed, as we motivated in the
previous paragraph, two distributed sampler executions using the same CRS have colliding outputs with
non-negligible probability. We can therefore consider the Yao’s compressor that outputs nothing and
the associated decompressor that, provided with the CRS σ, reruns the distributed sampler protocol
in its head and outputs the result R′. With 1/poly(λ) probability, R′ coincides with the input of the
compressor.9 This is enough to conclude that HYao(R|σ) = O(log λ).

We then show that HYao(R|σ) ≥ HYao(R)−|σ|. We prove this by noticing that, given a compressor-de-
compressor pair (c′, d′) for HYao(R|σ), we can build a compressor-decompressor pair (c, d) for HYao(R) as
follows: c provides its input R to the distributed sampler simulator, corrupting no party. It obtains a fake
CRS σ′ that looks like the real one. It then outputs c′(R, σ′) along with σ′. The decompressor d is exactly
the same as d′. The success probability of (c, d) is the same as for (c′, d′) except for a negligible quantity.
The size of the compressed string has however grown by |σ| bits, increasing HYao(R) by the same amount.

We point out that, in order to prove the above inequality, we cannot use the Yao chain rule of [41,
Appendix B] as their compressor for HYao(R) has O(2|σ|) size.

Distributed sampler CRSs are ugly. Suppose that there exists a strongly semi-malicious distributed
sampler for the distribution D having CRS σ. We prove that it is possible to non-interactively and
securely generate a sample from D given only σ and public random coins. In other words, if there exists
a distributed sampler with nice CRS, also the underlying distribution can be encoded in a nice CRS. The
second solution may be preferable as it often requires less communication. As an additional corollary,
if the distributed sampler uses a URS (i.e. the CRS is a random string of bits), we can sample from D
using just public random coins. So, in the random oracle model, we would not even need a CRS.

Our idea is that, given σ and public random coins, each party can just rerun the distributed sampler
protocol with σ as CRS and the public coins as randomness for the players. The result R is clearly
indistinguishable from a sample from D. However, in order to prove that this protocol is secure, we need
to be able to simulate σ and the public coins, given R.

We simulate σ by feeding R to the distributed sampler simulator (we corrupt no party). Unfortunately,
the simulator cannot provide us with the randomness used by the parties. We proceed by brute-force:
we rerun the protocol in our head using the fake CRS and we hope that the output collides with R. If
we fail, we retry sampling a new fake CRS. Once we succeed, we output the fake σ and the randomness
of the parties that led to the collision.

By the first corollary of Theorem 1.1, we know that, on average over R, the collision probability is
1/poly(λ). So, for a polynomial fraction of all possible values R, the simulation succeeds after a polynomial
number of tries. For the remaining fraction of the support of D, our approach fails, meaning that the
CRS and the randomness of the parties might leak too much information about the output.

In other words, the sampling protocol we described is secure only for a polynomial fraction of the
support of D. The good news is that it is possible to tell if the result of our non-interactive sampling
protocol lies in the secure subset or not: the parties can locally run the simulator. If it succeeds with
sufficiently high frequency, they can be sure their output is secure, otherwise, they need to discard it,
generate a new σ and public coins and rerun the protocol. Since there is a polynomial fraction of the
support of D that will not be discarded, the players need a polynomial number of attempts before
succeeding. We also point out that the distribution of the outputs will be biased, but not significantly:
if D describes the distribution of another protocol’s CRS, it is still secure to use the outputs of our
procedure as CRSs for such protocol.

How General is the Impossibility? Our arguments seem to apply not only to the UC model but also
to the more powerful settings of security with superpolynomial simulation, and standalone security with
rewinding. Informally, what Theorem 1.1 is saying is that the size of the distributed sampler messages
sets an information-theoretic bound B on the number of samples that a simulator can encode in the
messages it produces. An adversary can rerun the distributed sampler protocol in its head a number of
times that is significantly larger than B. In the real world, it is supposed to obtain more than B distinct
outputs, on the other hand, in the ideal world, this does not happen. This suggests that the impossibility
holds even if we rely on superpolynomial simulation.

9 We can make the decompressor deterministic using a PRF.
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Even rewinding does not seems to help: in the ideal world, with high probability, the output R of
the distributed sampler has non-negligible probability of being resampled (i.e., if the distinguisher reruns
the protocol in its head, regenerating the messages of the corrupted players, it has a high chance of
reobtaining R after a few tries). This is because R was the result of the rewinding process. If R had
a low probability of being resampled, the probability that rewinding output R would have been low in
the first place. On the other hand, in the real world, R has very low probability of being resampled (we
want H(R|σ, UH) = ω(log λ), otherwise, we rerun into the problems of the UC model). This leads to a
successful attack. Whether these ideas can be formalised will be part of future work.

2.2 Constructing Unbounded Universal Samplers

Our first positive result is a construction of an unbounded universal sampler in the shared randomness
model. Recall that in a universal sampler (US), the trusted setup algorithm outputs some sampler
parameters U , which are later used to securely sample from a distribution D. Our goal is to ensure that
the size of the circuit that samples from D may be unbounded, and in particular, independent of U .

Succinct, Bounded Universal Samplers. We start by building a US that is not totally unbounded,
but is succinct, meaning that the size of U is only polylogarithmic in the maximum circuit size L of the
supported distribution D. To see the challenge in achieving this, recall that the sampler parameters in
the selective, one-time universal sampler by Hofheinz et al. [33] consist of an obfuscated program. To
sample from a distribution D, the program is fed with the circuit describing D. It then uses a puncturable
PRF to generate random bits used to sample from D and outputs the result. If we want to obtain
succinctness then there is no way the obfuscated program can evaluate the sampling circuit, which may
now be significantly larger than the sampler parameters. Therefore, we cannot even provide D as input
to the program, let alone evaluate it.

Taking advantage of the locality of garbled circuits. Our solution is to use garbled circuits. We obfuscate
a program SUSProg, which, instead of evaluating D itself, will output a garbling of D along with one
random label for each input wire and both labels for each output wire. At any point in time, a party can
evaluate the garbled circuit produced by SUSProg obtaining a sample from D.

The big advantage of garbled circuits is its locality: as long as there is way to retrieve the labels
associated with the input and output wires of any gate g, we can garble g without knowing the whole
circuit to which g belongs. Specifically, each execution of SUSProg takes as input a single gate of D and
outputs its garbling. The description of the gate will consists of a type (input, output, XOR or AND) and
identifiers for the input and output wires of the gate10. Since the operations SUSProg needs to perform
are now independent of D, the size of SUSProg can remain small. A similar idea was adopted by Garg
and Srinivasan for the construction of obfuscation for Turing machines [25] (see Section 1.2 for more
discussion).

Making the garbled gates consistent. The first problem is that we need to ensure that different gates are
garbled consistently, in that whenever a wire of the circuit is re-used, the same wire labels are used. As
a consequence, all the executions of SUSProg associated with D cannot be independent, they all need to
have access to some common information.

To ensure this, we use a master garbling key gk to derive, using a PRF F , the randomness needed
by the garbling and the random bits given as input to D. Formally, the labels associated with a wire w
will be (k0w, k

1
w) ← F (gk, w). For each input gate g, we also use F to sample a random input bit, and

give out the corresponding wire label. For each XOR or AND gate g, we additionally use F to sample a
permutation to reorder the ciphertexts. For each output gate, we provide both wire labels.

We observe that every execution of SUSProg associated with D needs to retrieve the same key gk.
Furthermore, different distributions D and D′ need to use independent-looking garbling keys. If that is
not the case, we risk garbling different circuits using the same labels, which would compromise privacy.

10 Notice that the terminology distinguishes between input gate and input wire of a gate. The first one is used
to denote an input to the circuit, the second one is used to denote the input to a gate, i.e. the bit to which we
apply an XOR or an AND. A similar discussion applies to output gates and output wires.
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The Program PSUS[K, hk]

Hardcoded: A PRF key K and an SSB hash key hk.
Input: SSB hash z of D, index i, gate g and SSB proof π.

1. If SSB.Verify
(
hk, z, i, g, π

)
= 0, output ⊥.

2. gk← F1

(
K, z

)
3. Output Garble(1lλ, g, gk)

Fig. 3: Warm-up attempt for the unobfuscated SUS program

We solve these issues by providing SUSProg also with a hash z of the circuit D. Since the size of z
is O(logL), we can input it to SUSProg without any troubles. The obfuscated program SUSProg will
be equipped with a puncturable PRF F1 and a key K. Using z as input for F1, SUSProg will retrieve
gk and use the latter to garble the provided gate. By the collision resistance of the hash function,
different distributions will correspond to different hashes and so, by the security of the puncturable
PRF, to independent-looking garbling keys. To make this argument compatible with indistinguishability
obfuscation, we use a somewhere statistically binding (SSB) hash function [35].

Limiting the leakage using SSB hashing. So far, nothing prevents the adversary from garbling a circuit
using SUSProg while providing an inconsistent digest z. This means that the adversary can retrieve the
randomness used to produce the sample from D by simply garbling the identity function along with z =
Hash(D).

Luckily, SSB hash functions help us in countering this attack. Indeed, SSB hashing can be used to
prove that a certain gate g is the i-th element in the preimage of z. So, if we provide the proof along
with z, g, i and the SSB hash key hk, the obfuscated program is able to check if g really is the i-th gate
of D. If the verification succeeds, the program can garble g using gk, otherwise, it can simply output ⊥.

SSB hash functions set an upper bound on the length of the messages that can be hashed. In our
construction, we set this to L(λ) blocks11. A nice feature of some SSB hashing schemes [35] is that both the
hash key and the SSB proofs have size O(logL). Furthermore, the proofs can also be verified in O(logL)
time. In other words, verifying the proofs in the code of SUSProg does not blow up the size of the program.

We present the construction so far in the program shown in Fig. 3. To summarise, the adversary can
make SUSProg output only the garbling of D or independent-looking information. Indeed, any execution
inputting a hash other than z would lead to an independent-looking garbling key and hence, independent-
looking information. If instead z is input, all the adversary can receive is the garbled gates of D. If it
tries to provide a different gate, the hash check will fail.

Taking control over the outputs with a trapdoor. To prove security, we need to argue that our program
reveals no information in addition to the output of the garbled circuit. This is formalised by saying that
we can simulate SUSProg given a sample R from D. Clearly, the simulated SUSProg needs to output R
when run on D. Unfortunately, our obfuscated program cannot satisfy this property in the current state.
Indeed, the sample R may contain significantly more information than the size of SUSProg.

Here, we rely on the shared randomness model, where we require any party obtaining a sample to
have a long, uniform string u. Using u, we equip SUSProg with a trapdoor that allows us to program
its output in the security proof; we do this using the delayed backdoor programming technique from the
adaptive universal sampler in [33], also used in the malicious constructions of [2]. To garble the i-th gate
gi, we provide SUSProg with a ui, corresponding to the i-th block of the randomness u. We hardcode
into our program an additional key k for a special kind of authenticated encryption scheme. In each
execution, after verifying the SSB proofs, SUSProg tries to decrypt ui using k. If decryption succeeds,
the program outputs the underlying plaintext, otherwise it resumes its usual behaviour, i.e. it garbles
the provided gate.

The encryption scheme, which is based on puncturable PRFs, is designed so that ciphertexts are
indistinguishable from random strings, but the overwhelming majority of strings are not valid ciphertexts.

11 Each block will be the description of a different gate.
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The Program PSUS[K, hk]

Hardcoded: A PRF key K and an SSB hash key hk.
Input: SSB hashes h and z of u and D respectively, index i ∈ [L], random string v, gate g and SSB
proofs π and π′.

1. b← SSB.Verify
(
hk, h, i, v, π

)
2. b′ ← SSB.Verify

(
hk, z, i, g, π′

)
3. If b = 0 or b′ = 0, output ⊥.
4. (gk, k)← F1

(
K, (h, z)

)
5. x← Dec(k, v)
6. If x 6= ⊥, output x.
7. Otherwise, output Garble(1lλ, g, gk)

Fig. 4: Informal description of the unobfuscated SUS program

When a random ui is input into SUSProg, then, the probability of activating the trapdoor is negligible.
In the simulation, however, u will be the encryption of a garbled circuit simulated using R and D. By
the security of iO, the adversary will not be able to tell if the output is generated using the trapdoor or
the standard procedure.

Binding the trapdoor to the distribution. Finally, there is one weakness remaining in the construction:
we need to bind the random string u to the distribution D. At the moment, the adversary can easily
tell if u hides the encryption of a random circuit or not. It can simply garble D twice, once using u and
once inputting a random string. If the outputs differ, it must be that u activates the trapdoor.

Clearly, we cannot prevent the adversary from choosing the distribution and the random string as it
pleases, however, we can make sure that for different choices of (D,u), we obtain independent-looking
executions. Specifically, instead of equipping SUSProg with a hardcoded trapdoor key k, we generate k
along with gk using the PRF F1. Recall that the input given to F1 is a hash of D. In this way, different
distributions would use different trapdoor keys and so u would activate the trapdoor only in conjunction
with D.

Finally, we also want to ensure that when given different random strings, the garbled circuit output
by SUSProg changes. That corresponds to having a different garbling key gk. To ensure this, in each
execution, we provide SUSProg also with an SSB hash h of u. We then input h into the puncturable PRF
F1 along with z. In conclusion, we obtain a different garbling key and a different trapdoor key for every
choice of distribution and random string. To ensure that the string ui input to the program is consistent
with the hash h, we additionally modify SUSProg to receive an SSB proof that ui is the i-th block of
the preimage of h. The program checks the proof and outputs the garbled gate only if the verification
succeeds. Otherwise, it outputs ⊥.

To summarise, if the adversary does not input (h, z) into SUSProg, the program outputs information
that looks independent of the sample R. If it inputs (z, h) instead, the adversary is forced to provide a
pair (gi, ui) for a certain i ∈ [L] where gi denotes the i-th gate of D. If this is the case, the adversary
receives the scheduled garbling of gi, otherwise, it receives ⊥.

We present an informal description of the final version of the program in Fig. 4. For the complete,
formal construction and its security proof, we refer to Section 4.1.

From Succinct to Unbounded Universal Samplers. Once we have a succinct, but bounded, US,
it is quite straightforward to obtain an unbounded US. Our construction will simply run the setup
procedure from the succinct US, and output its sampler parameters U . This already allows us to sample
from any distribution D up to some polynomial bound. To sample from a larger D, we simply use U
to run the setup algorithm for a second succinct US, with a bound of twice the size (since the first US
was succinct, this will always be possible for a sufficiently large security parameter). This process is then
iterated until we have a sampler that can support the distribution D.

For technical reasons, to prove this construction secure we need an additional property of the un-
bounded US, which we call randomness extractability. Intuitively, this says that given a sampler output
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R and the randomness that was used to compute the sampler parameters, it is possible to extract the
randomness that “explains” the output R from distribution D. We show that this property holds for our
construction, and in fact is easily achievable in a generic way for any universal sampler.

2.3 Building Unbounded and Party-Dynamic, Distributed Universal Samplers

Our next goal is to obtain unbounded distributed universal samplers, where the sampler is derived from
n messages, one from each out of a set of n parties. As well as allowing the choice of distribution D to be
unbounded, and not tied to the sampler parameters, here we also want the sampler to be party-dynamic,
so the set of parties can be chosen dynamically from an unbounded set of possible parties.

A toy construction of a bounded, party-dynamic distributed sampler can be easily obtained from any
n-party distributed sampler for a fixed number of parties: each party simply runs the i-party distributed
sampler algorithm, for i = 2, . . . , n, and publishes all the n − 1 messages. Of course, this construction
requires the size of each message to scale at least linearly with n.

To get an unbounded construction, we modify this blueprint by instead having each party publish a
single message consisting of an unbounded universal sampler. Later, to sample from a distribution with
some size-n subset of the parties, those parties’ unbounded USes will each be used to generate an n-party
distributed sampler message on-the-fly. Since we use an unbounded US, this construction is inherently
tied to the shared randomness model, where the subset of n parties must all hold a common string of
uniform bits to obtain their sample. We prove security in the one-time setting, against a non-rushing
and semi-malicious adversary.

Modelling Active Security. In the non-rushing setting, modelling security is quite straightforward and
similar to the case of non-party-dynamic definitions. When moving to an active adversary, however, we
have to be careful how to define security. Recall that with a static number of parties, active security of a
distributed sampler is defined using an ideal functionality, which allows the adversary to obtain several
samples from the distribution D, before settling on one it likes. This corresponds to the fact that in a
construction, every choice of a corrupt party’s randomness may lead to a different result from D.

In the party-dynamic setting, we consider a static adversary in the UC model: whenever a new party
joins the system, the adversary must decide whether that party is corrupted or not. At the same time,
we need a way to model the fact that the adversary can try candidate messages of a corrupt party Pj ,
obtaining different samples, before Pj has actually joined the system. To do this, we allow the adversary
to input a label idj , corresponding to a new choice of message for Pj , and can then obtain a sample for
the desired subset of parties that includes Pj . When Pj eventually joins, the adversary can either choose
one of the previously sent labels, “fixing” the relevant outputs to the corresponding samples, or choose
a fresh label which leads to freshly sampled outputs.

Achieving Active Security and Reusability. Next, we upgrade our construction to be actively secure, and
also reusable for an unbounded number of queries on arbitrary distributions. We do this in a black-box
way, starting from any one-time secure, party-dynamic construction. The main idea is to have each party
publish an adaptive (or reusable), bounded universal sampler [33] as its message, together with a NIZK
showing that it is well-formed. Then, whenever a subset of parties wants to obtain a sample, the adaptive
US is used to generate a message for a one-time, party-dynamic distributed US. By relying on a reusable
US, we ensure that each message from the one-time, party-dynamic construction is only used once.
Recall that our one-time, party-dynamic construction requires a source of public, shared randomness u
to obtain the sample; to generate u in a reusable way, we use a random oracle.

There is still one problem with this approach, though. An adversary may still adaptively choose the
messages of the corrupt parties, and the distribution D, after seeing the honest parties’ messages from
the one-time, party-dynamic distributed US (which is not secure against a rushing adversary). To fix
this, we again rely on the random oracle model. We force the adversary to commit to its messages before
seeing these messages, by making it query the random oracle with input the subset of parties, distribution
D, and adaptive universal sampler messages. The output of the random oracle is a λ-bit tag, which is
fed into the adaptive US before generating the one-time messages. Since the tag is unpredictable, this
ensures that the adversary cannot learn any outputs without first committing to its messages.
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Party-Dynamic, Public-Key Pseudorandom Universal Correlation Functions (PCFs). Our
last construction is an application of party-dynamic distributed universal samplers, for generating corre-
lated randomness. A public-key PCF [13, 2] is a one-round protocol for securely sampling from n corre-
lated random variables, where each party obtains one of the outputs, while learning nothing of the other
parties’ outputs. We show how to build public-key PCFs in the party-dynamic setting where the corre-
lation is adaptively chosen after the messages of the parties are sent. Our construction is quite simple,
and follows the blueprint of the previous construction for a fixed number of parties [2]: each party sends
a public key for a PKE scheme, plus a message for a distributed universal sampler. The distributed uni-
versal sampler messages are then used to sample from the distribution that encrypts the n outputs of the
correlation function under each of the parties’ public keys, allowing only the correct party to recover its
output. By relying on our party-dynamic distributed universal sampler, we immediately obtain a public-
key, universal PCF in the party-dynamic setting.

We present the construction directly in the actively secure and reusable setting (in the random oracle
model). Because of this, we achieve the stronger notion of an ideal public-key PCF, which securely
realizes the ideal sampling functionality (with suitable relaxations to account for rushing adversaries).
In contrast, without a random oracle, this type of PCF is impossible to achieve, unless one allows the
parties’ messages to be as long as the total output length of all queries to the correlation.

3 Impossibility of Distributed Samplers without Random Oracle

We now present and prove our main theorem, namely that in a strong semi-malicious distributed sampler
H(R|σ) = O(log λ). The idea was sketched in the technical overview (see Section 2.1).

Theorem 3.1. Let D(1lλ) be an efficient distribution such that H∞(D) = ω(log λ). In a strongly semi-
maliciously secure distributed sampler for D(1lλ) in the UC model, we have that H(R |σ) = O(log λ).

Proof. Consider the distributed sampler execution in which the adversary controls a subset C of parties,
but behaves exactly as in the protocol. In particular, the adversary waits to receive the messages of the
honest parties and then it generates random (and independent) messages for the corrupted parties.

Let Sample be the algorithm used by the parties to reconstruct their output. In order to be as general
as possible, compared to Def. A.1, we change the syntax of the procedure by providing it also with the
CRS σ, the index i of the party running it and the randomness used by Pi to generate its DS message
Ui. Let Gen(1lλ, σ, j) be the algorithm used by party Pj to generate its message. We assume that such
algorithm requires Lj(λ) bits of randomness. Suppose that the generation of the CRS requires L(λ) bits
of randomness.

Consider the security game of the protocol, we start by focusing on the ideal world. Since the simula-
tor runs in polynomial time, there exists a polynomial upper bound q(λ) on the number of samples the
simulator queries to the functionality before providing (σ, UH) to the adversary. Let Q be the set con-
taining the responses to these queries.

Claim 3.1. In the ideal world, with overwhelming probability, R ∈ Q.

Proof of the claim. After the adversary provides UC , the output of the protocol R is determined and
known to the adversary. Notice that, if everybody is honest in the real world, all the parties obtain the
same R with overwhelming probability, so R is well defined. If that was not the case, the adversary can
easily distinguish the protocol from the simulation (in the ideal world, the honest parties always output
the same value, in the real one they would not). After receiving UC , the simulator needs to communicate
to the functionality that it must output R to the honest parties.

Now, observe that

Pr[D(1lλ) = R] =
∑
x

Pr[R = x] · Pr[D(1lλ) = x] ≤

≤ max
x

Pr[D(1lλ) = x] = 2−H∞(D) = 2−ω(log λ).

So, Pr[D(1lλ) = R] is negligible.
As a consequence, the simulator can make the honest parties output R only if R ∈ Q. Indeed, once

R is fixed, the probability that any subsequent query to the functionality collides with R is negligible.
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We conclude that R ∈ Q with overwhelming probability, otherwise it would be possible to distinguish
between real world and ideal world. �

The next claim is used to prove that, in the real world, H(R |UH , σ) = O(log λ). We introduce some
notation.

Let p(λ) be a polynomial and let ι be the index of a fixed corrupted party. Consider the algorithm
D′UH ,σ

(1lλ) defined as follows:

1. ∀j ∈ C : rj
$← {0, 1}Lj(λ)

2. ∀j ∈ C : U ′j
$← Gen(1lλ, σ, j; rj)

3. Output R′ ← Sample(σ, UH , U
′
C , ι, rι)

Let S be the random variable denoting the set of samples produced by running D′UH ,σ
(1lλ) p(λ) times.

Let E0 be the random variable having value 1 if R is well defined (i.e. every party outputs the same
value), 0 otherwise. Similarly, let E1 be random variable having value 1 if R ∈ S, 0 otherwise. Finally,
we define M(λ) := L(λ) +

∑
i∈[n] Li(λ).

Claim 3.2. Suppose that, in the real world, H(R |UH , σ) is not O(log λ). Then, for every λ0 ∈ N, there
exists λ ≥ λ0 such that Pr[R 6∈ S|E0 = 1] ≥ 1/M(λ).

Proof of the claim. Observe that, for every x, y, z, w, we have

Pr[R = x |UH = y, σ = z, S = w] = Pr[R = x |UH = y, σ = z].

Indeed, given UH = y and σ = z, the value of R is determined only by the randomness used to generate
UC . Such randomness is independent of S. So, H(R |UH , σ, S) = H(R |UH , σ). We have that

H(R |UH , σ) = H(R |UH , σ, S) ≤ H(R,E0 |UH , σ, S) =

= H(R |UH , σ, S,E0) + H(E0 |UH , σ, S) ≤
≤ H(R |UH , σ, S,E0) + H0(E0) =

= H(R |UH , σ, S,E0) + 1. (1)

Now, we have that H(R |UH , σ, S,E0) is equal to

Pr[E0 = 0] · H(R |UH , σ, S,E0 = 0) + Pr[E0 = 1] · H(R |UH , σ, S,E0 = 1). (2)

We know that Pr[E0 = 0] is negligible, moreover,

H(R |UH , σ, S,E0 = 0) ≤ H0(R) ≤ log
(

2L(λ) ·
∏
i∈[n]

2Li(λ)
)

= M(λ).

We have proven that H(R |UH , σ, S,E0 = 0) = poly(λ), so, putting it together with (1) and (2), we obtain

H(R |UH , σ) ≤ H(R |UH , σ, S,E0 = 1) + 1 + negl(λ). (3)

Now, we observe that

H(R |UH , σ, S,E0 = 1) ≤ H(R,E1 |UH , σ, S,E0 = 1) =

= H(R |UH , σ, S,E1, E0 = 1) + H(E1 |UH , σ, S,E0 = 1) ≤
≤ H(R |UH , σ, S,E1, E0 = 1) + H0(E1) =

= H(R |UH , σ, S,E1, E0 = 1) + 1. (4)

Furthermore, H(R |UH , σ, S,E1, E0 = 1) is equal to

Pr[E1 = 0|E0 = 1] · H(R |UH , σ, S,E1 = 0, E0 = 1)+

Pr[E1 = 1|E0 = 1] · H(R |UH , σ, S,E1 = 1, E0 = 1). (5)
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We observe that

H(R |UH , σ, S,E1 = 1, E0 = 1) =

=
∑
w

Pr[S = w] · H(R |UH , σ, S = w,E1 = 1, E0 = 1) ≤

≤
∑
w

Pr[S = w] · H0(R |S = w,E1 = 1, E0 = 1) ≤

≤
∑
w

Pr[S = w] · log
(
p(λ)

)
= log

(
p(λ)

)
. (6)

We also notice that

H(R |UH , σ, S,E1 = 0, E0 = 1) ≤ H0(R) ≤ L(λ) +
∑
i∈[n]

Li(λ) = M(λ). (7)

Now, suppose that there exists λ0 ∈ N such that, for all λ ≥ λ0, Pr[E1 = 0|E0 = 1] ≤ 1/M(λ). We would
have that

H(R |UH , σ) ≤ H(R |UH , σ, S,E0 = 1) + 1 + negl(λ) ≤ by (3)

≤ H(R |UH , σ, S,E1, E0 = 1) + 2 + negl(λ) ≤ by (4)

≤ 1

M(λ)
·M(λ) + log

(
p(λ)

)
+ 2 + negl(λ) = by (5),(6),(7)

= log
(
p(λ)

)
+ 3 + negl(λ).

So, H(R |UH , σ) would be O(log λ) contradicting our initial assumption. We conclude that for every λ0 ∈
N, there exists λ ≥ λ0 such that Pr[E1 = 0|E0 = 1] ≥ 1/M(λ). �

Claim 3.3. In the real world, H(R |UH , σ) = O(log λ).

Proof of the claim. By contradiction suppose that, in the real world, H(R |UH , σ) is not O(log λ).
Now, consider the adversary A that, given σ, UH , samples (q(λ) + 1) · λ ·M(λ) independent elements

from D′UH ,σ
(1lλ) and outputs 1 if and only if it obtains strictly more than q(λ) distinct values in this way.

We show that such adversary can distinguish between real world and ideal world with non-negligible
advantage.

First of all, we notice that A runs in polynomial time. Let R′j,ι be the output of the j-th execution

of D′UH ,σ
(1lλ). Observe that the distribution of R′j,ι conditioned on UH , σ is the same as the distribution

of Rι, the output of the ι-th party, conditioned on UH , σ. By Claim 3.1,

Pr[R′j,ι 6∈ Q] = Pr[Rι 6∈ Q] ≤ Pr[E0 = 0] + Pr[R 6∈ Q] = negl(λ).

Hence, by the union bound and due to the fact that |Q| ≤ q(λ), in the ideal world, A outputs 0 with
overwhelming probability.

Now, let Sj be the random variable containing the values of the first j − 1 samples from D′UH ,σ
(1lλ).

We know that, in the real world,

Pr[R′j,ι ∈ Sj ] = Pr[Rι ∈ Sj ] =

= Pr[E0 = 0] · Pr[Rι ∈ Sj |E0 = 0] + Pr[E0 = 1] · Pr[Rι ∈ Sj |E0 = 1] ≤
≤ negl(λ) + Pr[R ∈ Sj |E0 = 1].

We conclude that, for every λ0 ∈ N, there exists a λ ≥ λ0 such that

Pr[R′j,ι ∈ Sj ] ≤ 1− 1

2M(λ)

Now, we observe that, for every λ0 ∈ N, there exists a λ ≥ λ0 such that

Pr
[
|Sj·λ·M | = |S(j+1)·λ·M |

]
≤
(

1− 1

2M(λ)

)λ·M(λ)
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and so, by the union bound, for the same values of λ,

Pr[|S(q(λ)+1)·λ·M+1| ≤ q(λ)] ≤Pr
[
∃j s.t. |Sj·λ·M | = |S(j+1)·λ·M |

]
≤

≤(q(λ) + 1) ·
(

1− 1

2M(λ)

)λ·M(λ)

Observe that

lim
λ→∞

(q(λ) + 1) ·
(

1− 1

2M(λ)

)λ·M(λ)

= 0,

so, Pr[|S(q(λ)+1)·λ·M+1| ≤ q(λ)] is definitively smaller than 1/3. Therefore, for every λ0 ∈ N, there exists
a λ ≥ λ0 such that

AdvA(λ) =
∣∣∣Pr[A(1lλ) = 0|ideal]− Pr[A(1lλ) = 0|real]

∣∣∣ ≥
≥ 1− negl(λ)− 1/3 ≥ 1/2− 1/3.

We conclude that A distinguishes between the real world and the ideal world with non-negligible advan-
tage. This contradicts the security of the distributed sampler, therefore, in the real world, H(R |UH , σ) =
O(log λ). �

Claim 3.4. In the real world, we have that H(R |UC , σ) = O(log λ).

Proof of the claim. The messages of the corrupted parties are distributed as in the fully honest case. So,
switching the role of honest and corrupted parties does not affect the distribution of (σ, (Ui)i∈[n], R).
By applying the result of Claim 3.3 on the new set of corrupted parties, we obtain that H(R |UC , σ) =
O(log λ). �

Claim 3.5. In the real world, H(R |σ) = O(log λ).

Proof of the claim. By the strong chain rule of Shannon’s entropy, we have that

H(R |UH , σ) + H(R |UC , σ)− H(R |UH , UC , σ)+

+ H(UH |σ)− H(UH |UC , σ)+

+ H(UC |R,UH , σ)− H(UC |R, σ) =

=H(R,UH |σ)− H(UH |σ) + H(R,UC |σ)− H(UC |σ)+

− H(R,UH , UC |σ) + H(UH , UC |σ)+

+ H(UH |σ)− H(UH , UC |σ) + H(UC |σ)+

+ H(UC , R, UH |σ)− H(R,UH |σ)− H(UC , R |σ) + H(R |σ) =

=H(R |σ).

We observe that H(UC |R,UH , σ) ≤ H(UC |R, σ) and H(R |UH , UC , σ) ≥ 0. Moreover, since UH and UC
are independent given σ, H(UH |σ) = H(UH |UC , σ). We conclude that, by Claim 3.3 and 3.4, H(R |σ) ≤
H(R |UH , σ) + H(R |UC , σ) = O(log λ). �

3.1 Distributed Sampler CRSs Cannot be Used Twice

We now discuss the first consequence of Theorem 3.1. Suppose that our distribution D(1lλ) has high
min-entropy, i.e. H∞(D) = ω(log λ). We observe that the probability that two independent samples from
D(1lλ) collide is negligible. Indeed, denoting the two independent outputs by R and R′, we have

Pr[R = R′] = 2−H2(D) ≤ 2−H∞(D) = 2−ω(log λ).

We show, however, that if we run a strongly semi-maliciously secure distributed sampler for D(1lλ) twice
using the same CRS, the outputs collide with non-negligible probability. As a consequence, we cannot
hope to reuse the same CRS to generate independent looking samples.
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The game GInvA (1lλ)
The challenger performs the following operations

1. b
$← {0, 1}

2. σ
$← CRS(1lλ), r

$← U(1lλ)
3. R← De(σ, r)
4. If test(R) = 0, go back to step 2.
5. If b = 0, provide the adversary with (σ, r), otherwise provide it with En(R).

The adversary wins if it terminates its execution outputting b.

Fig. 5: Invertibility game

Corollary 3.2. Let D(1lλ) be an efficiently samplable distribution such that H∞(D) = ω(log λ). Consider
a strongly semi-maliciously secure distributed sampler protocol for D(1lλ) in the UC model and let R and
R′ denote the outputs of two protocol executions having the same CRS. Then, Pr[R = R′] ≥ 1/poly(λ).

Proof. By Theorem 3.1, we know that H(R|σ) = O(log λ). Now, we have that

Pr[R = R′] =
∑
z

Pr[σ = z] · Pr[R = R′|σ = z] =
∑
z

Pr[σ = z] · 2−H2(R|σ=z) ≥

≥
∑
z

Pr[σ = z] · 2−H(R|σ=z)

We observe that f(x) := 2−x is a convex function, so, by Jensen’s inequality

Pr[R = R′] ≥
∑
z

Pr[σ = z] · 2−H(R|σ=z) ≥ 2−
∑

z Pr[σ=z]·H(R|σ=z) = 2−H(R|σ).

Observe that 2−H(R|σ) = 1/poly(λ).

Proof. We start by defining the algorithm De, which on input σ and random string r, runs the distributed
sampler protocol using σ as CRS and r as randomness for the parties, outputting the result.

Claim 3.1. De
(
CRS(1lλ),U(1lλ)

)
∼c D(1lλ)

Proof of the claim. We observe that R := De
(
CRS(1lλ),U(1lλ)

)
is distributed exactly as the distributed

sampler output. By the security of the distributed sampler, we conclude that R ∼c D(1lλ). �

We now define the PPT algorithm Inv as follows: Inv feeds the input R to the distributed sampler
simulator for the fully honest case. In this way, it obtains a fake CRS σ′ and messages (Ui)i∈[n]. Finally,
Inv picks a uniformly random string r and outputs (σ′, r).

Claim 3.2. Let R denote a sample from D(1lλ). Then, there exists a polynomial q(λ) such that

Pr[De(Inv(R)) = R] ≥ 1

q(λ)

Proof of the claim. Let (σ′, r) := Inv(R). By the security of distributed samplers, we know that (σ′, R)

is computationally indistinguishable from (σ,De(σ, r)) where σ
$← CRS(1lλ) and r is uniformly random.

We conclude that for r and r′ independent and uniformly random(
σ,De(σ, r′),De(σ, r)

)
∼c
(
σ′, R,De(σ′, r)

)
(8)

By Corollary 3.2, we know that

Pr[De(σ, r′) = De(σ, r
)
] ≥ 1

poly(λ)
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We conclude that, by (8),

Pr[De(Inv(R)) = R] = Pr[De(σ′, r′) = R] ≥ 1

poly(λ)
− negl(λ) ≥ 1

poly(λ)

�

We now define the algorithm test as follows: on input R, test checks if De(Inv(R)) = R for 4λ · q(λ)
times. If the equation is satisfied less than λ times, test outputs 0, otherwise it output 1.

In a similar way, we define En: on input R, En computes (σ′, r)
$← Inv(R) and checks if De(σ′, r) = R.

If that is the case, it outputs (σ′, r). Otherwise, it repeats the operation. If the procedure fails for more
than 8λ · q(λ), En outputs ⊥.

Claim 3.3.

Pr[test
(
D(1lλ)

)
= 1] ≥ 1

8q(λ)

Proof of the claim. We define px := Pr[De(Inv(x)) = x]. Let R be a sample from D(1lλ). By Claim 3.2,
we know that

E[pR] =
∑
x

Pr[R = x] · px = Pr[De(Inv(R)) = R] ≥ 1

q(λ)

Since 0 ≤ px ≤ 1, we have that E[p2R] ≤ E[pR], so, by the Paley-Zygmund inequality,

Pr
[
pR ≥

1

2q(λ)

]
≥ Pr

[
pR >

1

2
E[pR]

]
≥ 1

4
· E[pR]2

E[p2R]
≥ 1

4
· E[pR] ≥ 1

4q(λ)

Define now Ωgood = {x|px ≥ 1
2q(λ)}. Suppose now that x ∈ Ωgood. If we run the check De(Inv(x)) = x for

8λ · q(λ) times, by the Chernoff bound, we know that it succeeds more than

1

2
· 4λq(λ) · px ≥ λ

times with overwhelming probability. So if x ∈ Ωgood, test(x) = 1 with overwhelming probability. We
conclude that

Pr[test
(
R
)

= 1] ≥ Pr[test(R) = 1|R ∈ Ωgood] · Pr[R ∈ Ωgood] ≥

≥ min
x∈Ωgood

Pr[test(x) = 1] · Pr[R ∈ Ωgood] ≥
1

8q(λ)

�

Claim 3.4. No PPT adversary can win the game GInvA (1lλ) (see Fig. 5) with non-negligible advantage.

Proof of the claim. As in the previous claim, let px := Pr[De(Inv(x)) = x]. Define now Ωbad = {x|px ≤
1

8q(λ)}. Suppose that x ∈ Ωbad. If we run the check De(Inv(x)) = x for 4λ · q(λ) times, by the Chernoff

bound, we know that it succeeds less than

2 · 4λq(λ) · px ≤ λ

times with overwhelming probability. So, if x ∈ Ωbad, test(x) = 0 with overwhelming probability.

Let R
$← D(1lλ). We observe that

Pr[En(R) = ⊥|test(R) = 1] ≤ Pr[R ∈ Ωbad|test(R) = 1] + Pr[En(R) = ⊥|R 6∈ Ωbad].

We know that

Pr[R ∈ Ωbad|test(R) = 1] ≤ Pr[test(R) = 1|R ∈ Ωbad]

Pr[test(R) = 1]
≤

≤ 8q(λ) · max
x∈Ωbad

Pr[test(x) = 1] = negl(λ).
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Furthermore,
Pr[En(R) = ⊥|R 6∈ Ωbad] ≥ min

x 6∈Ωbad

Pr[En(x) = ⊥].

Notice that for every x 6∈ Ωbad, px >
1

8q(λ) . Observe also that En tries to invert the input up to 8λ ·q(λ) >

λ/px times, so, with overwhelming probability En(x) 6= ⊥. We conclude that Pr[En(R) = ⊥|test(R) =
1] = negl(λ).

Now, suppose that En(R) = (σ′, r′) 6= ⊥. We recall that σ′ is obtained by running Sim(1lλ, R), so

by the security of distributed samplers (R, σ′) ∼c (De(σ, r), σ) where σ
$← CRS(1lλ) and r

$← U(1lλ). We
also know that r′ is random conditioned on satisfying De(σ′, r′) = R. In other words, (R, σ′, r′) is com-
putationally indistinguishable from (De(σ, r), σ, r). We conclude our proof observing that (R,En(R)) ∼c
(De(σ, r),En(De(σ, r))). �

4 Succinct and Unbounded Universal Samplers

Universal samplers. In [33], Hofheinz et al. introduced the notion of universal sampler: a particular type
of trusted setup, called the sampler parameters, which allows non-interactively and securely generating
samples from any distribution D. The authors considered two notions of security. The first one is selec-
tive, one-time security, meaning that for a certain distribution D fixed before generating the sampler
parameters, the construction reveals no information in addition to the corresponding sample. The sec-
ond notion is adaptive security, meaning that the sampler parameters can generate samples from multi-
ple distributions adaptively chosen by the adversary, even after seeing the parameters. If adaptive secu-
rity holds, the construction is still guaranteed to reveal no information in addition to the outputs. Un-
fortunately, adaptive universal samplers can only exist in the random oracle model.

Limitations on the size of supported distributions. Independently of the notion of security, all known
universal sampler constructions [33] suffer from a particular limitation: the circuit size of the supported
distributions is bounded from above by the size of the sampler parameters. In this paper, we show how
to get around this problem. We highlight that in order to obtain a truly non-interactive solution, we are
forced to rely on a random oracle. Indeed, in the plain model, the parameters cannot be smaller than
the Yao incompressibility entropy of the sample we want to produce.

Succinct and unbounded universal samplers. Rather than aiming full-on to our objective, we linger in
the plain model for a little longer and we rephrase the definition of universal sampler. We relax the
sampling algorithm, Sample, to take as input a long string of uniform bits u, as well as the trusted
sampler parameters U . In our final solution, called an unbounded universal sampler (UUS), U will impose
no restrictions on the set of supported distributions. Instead, we require the length of u to depend on
the distribution. The good news is that if u is too short to sample from our distribution, it is not hard
to extend it (e.g. using a coin tossing protocol or in the random oracle model). Notice that by extending
u, we increase the entropy of the setup and so, get around the impossibility.

In our quest for unbounded universal samplers, we introduce an intermediate stepping stone of a
succinct universal sampler (SUS). An SUS differs from an unbounded one as its sampler parameters U
set a polynomial upper bound L on the circuit size of the supported distributions. However, we also
require that U can be generated using a circuit of poly(λ, logL) size. This implies that the size of U is
also polylog(L).

We first recall the definition of a universal sampler from [33], which we refer to as a bounded universal
sampler. For now, we focus on selective, one-time security. Compared with [33], we explicitly give the size
bound as an input to Setup, instead of fixing it in advance. We also allow Sample to take as input some
public random coins u, of length p(λ, |D|) bits, where p is some polynomial and D is the distribution
being sampled from.

Definition 4.1 (Bounded Universal Sampler). Let p(λ,X) be a polynomial. A (bounded) universal
sampler is a pair of algorithms (Setup,Sample) with the following syntax:

1. Setup is a PPT algorithm taking as input the security parameter 1lλ and a polynomial bound L(λ).
The output is a sampler U .
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2. Sample is a deterministic algorithm taking as input a sampler U , a distribution D(λ) with circuit
size |D| ≤ L(λ) and a random string u ∈ {0, 1}p(λ,|D|). The output is a sample R.

We say that the US satisfies selective one-time security if there exists a PPT simulator Sim such that, for
every polynomial L(λ) and distribution D with |D| ≤ L(λ), no PPT adversary can distinguish betweenU,u, R

∣∣∣∣∣∣∣∣
U

$← Setup
(
1lλ, L

)
u

$← {0, 1}p(λ,|D|)

R← Sample(U,D,u)

 and

{
U,u, R

∣∣∣∣∣ R
$← D

(u, U)
$← Sim(1lλ, L,D, R)

}

The definition of selective, one-time security states that, for any distribution D fixed ahead of time,
R = Sample(U,D,u) is indistinguishable from a random sample from D. Furthermore, the pair (U,u)
leaks no information in addition to R. We also point out that for bounded universal samplers, the length
of u does not need to depend on D, we can simply set it to p(λ, L). Finally, we notice that the selective,
one-time universal sampler of [33] is a bounded universal sampler where p(λ,X) = 0.

We also consider the following succinctness property (which is not satisfied by [33]).

Definition 4.2 (Succinct, Bounded Universal Sampler). We say that a bounded US is succinct if
the circuit size of Setup(1lλ, L) is |Setup(1lλ, L)| ≤ poly(λ, logL).

In our final goal of an unbounded universal sampler, we remove the size constraint on D.

Definition 4.3 (Unbounded Universal Sampler). An unbounded universal sampler is defined the
same way as a bounded US, except that (1) the Setup algorithm omits the L(λ) argument, and (2) the
Sample algorithm only requires that |D| = poly(λ) (and still u ∈ {0, 1}p(λ,|D|)).

Randomness extractability in universal samplers. We now introduce a new property, which is needed
later for our party-dynamic distributed US (Section 5). We say that a universal sampler is randomness
extractable if knowing the random coins used for generating the sampler parameters allows us to retrieve
the randomness used to produce the sampled output. In other words, if R is the universal sampler
output for a distribution D, given the randomness used to compute the CRS, we can extract ρ such
that R = D(1lλ; ρ). Since we use this property to learn information about the samples produced by an
adversarially generated sampler, we ask extractability to hold for every choice of the coins used by the
adversary. Furthermore, we allow the extractor to simulate the public random coins u used to generate
R from the sampler, giving the option of inserting a trapdoor to help.

Definition 4.4 (Randomness Extractable Universal Sampler). Suppose that (Setup,Sample) is
a universal sampler, let M(λ) denote the bit-length of the randomness needed by Setup. We say that
(Setup,Sample) is randomness extractable if there exists a PPT algorithm Extract such that, for any
ρ0 ∈ {0, 1}M(λ), polynomial L(λ) and supported distribution D(1lλ), it holds that

Pr

D(1lλ; ρ) = R

∣∣∣∣∣∣∣
U ← Setup(1lλ, L; ρ0)

(ρ,u)
$← Extract(1lλ,D, L, ρ0)

R← Sample(U,D,u)

 = 1− negl(λ)

and the following distributions are indistinguishable{
u, ρ0

∣∣∣u $← {0, 1}p(λ,|D|)
}
,
{
u, ρ0

∣∣∣(ρ,u)
$← Extract(1lλ,D, L, ρ0)

}
.

We define the randomness extractability property also for unbounded universal samplers. In such case,
we need to modify the syntax: we remove L(λ) from the inputs of Setup and Extract.

We note that the construction of [33] is randomness extractable, because the Setup algorithm samples
a PRF key that is used to generate the randomness ρ for the sampled output. In cases where the property
does not obviously hold, though, we note that it can be obtained without loss of generality. Indeed, if
(Setup,Sample) is not randomness extractable, we can easily build a universal sampler (Setup′,Sample′)
that is randomness extractable. The new scheme works exactly as (Setup,Sample) but the random coins
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u are slightly longer: they now encode a public key pk for a PKE scheme with pseudorandom public
keys12. Instead of directly sampling from a distribution D, the new universal sampler samples from the
distribution that outputs (R,Encpk(ρ)) where R = D(1lλ; ρ). The extractor can generate the random
coins u such that it knows the secret key for pk, which it uses as a trapdoor to learn the randomness ρ
used to generate R.

4.1 Our Succinct Universal Sampler

We now present a succinct universal sampler based on polynomially secure iO and SSB hash functions.
We refer back to Section 2.2 for an informal overview of the techniques and their motivation. Below, we
give the detailed construction and a brief description.

Detailed construction. The formal description of our succinct universal sampler is presented in Fig. 6.
The description of the unobfuscated program we designed is in Fig. 7.

Recall that L(λ) is the bound on the circuit size of the distribution D. Let m(λ) be an upper bound
on the bit-length of a garbled gate. The construction uses the following ingredients:

– SSB hash function SSB = (Gen,Hash,Open,Verify), with hash length `Hash(λ). Used to compress the
circuit of D, and the random coins u, into short digests.

– iO scheme iO.
– Puncturable PRF (F1,Punct1): maps 2`Hash-bit nonces into two λ-bit strings gk and k. The key gk

is used for randomness in garbling, while k is the authenticated encryption key.
– Puncturable PRF (F2,Punct2): maps (logL)-bit nonces into 2m(λ) λ-bit strings (y01 , y

1
1 , . . . , y

0
m, y

1
m).

This PRF is used to generate randomness for the encryption scheme in the trapdoor.
– Garbling and evaluation functions GC.Garble,GC.Eval

We now expand upon the flavour of Yao’s garbled circuits we use. Given a λ-bit garbling key gk, we
define the function G ← GC.Garble(1lλ, g, gk), which outputs a garbling of the gate g using gk as source
of randomness. Formally, the labels of any wire w connected to g are obtained as (k0w, k

1
w)← F (gk, w). If

g is an input gate, the algorithm also assigns a pseudorandom value for that input, given by the bit bg ←
F (gk, g), and then outputs only the label associated with that bit, i.e. Xg ← En(bg, eg) where eg represent
the encoding information of the input gate g. If instead, g is an XOR or an AND gate, the permutation
applied on the ciphertexts in the garbling is τg ← F (gk, g)13. This is all the randomness the garbler needs.

The encryption scheme used in the trapdoor encrypts an m(λ)-bit message x using a nonce i ∈ [L]
and the key k, and works as follows. It first computes (y01 , y

1
1 , . . . , y

0
m, y

1
m)← F2(k, i), and then outputs

the string (v1, v2, . . . , vm) where vj = y0j if xj = 0, vj = y1j otherwise. Decryption is performed by

reversing the operations. If there exists an index j such that vj 6∈ {y0j , y1j }, decryption fails. The nonce i
will correspond to the index of the gate we want to garble.

The sampler parameters output by Sample contain an obfuscation of the program PSUS (Fig. 7).
When generating a sample from a distribution D, with auxiliary random coins u, the program is run
on input a hash h of the random coins, and a hash z of the circuit description of D. Recall that u and
D themselves are too long to be input to the program directly. The program also takes as input a gate
index i, and the corresponding gate g′, and also the i-th portion of the random coins, denoted v.

First, the program checks the hashes are valid, to prevent malicious queries for inconsistent gates or
random coins, and then it generates the garbling key gk and trapdoor encryption key k. It then checks for
a trapdoor, outputting the embedded message if one exists, and otherwise, outputs the garbling of gate g′.

Theorem 4.5. Let L(λ) be a polynomial. If SSB = (Gen,Hash,Open,Verify) is an SSB hash function,
iO is an indistinguishability obfuscator, (F1,Punct1) and (F2,Punct2) are puncturable PRFs and Yao’s
garbled circuits are secure, the construction in Fig. 6 is a bounded universal sampler satisfying selective
one-time security and randomness extractability.

Moreover, suppose that iO is an obfuscator for the class of circuits of size s(λ). If the circuits for
SSB.Gen, SSB.Verify and for the evaluation of F2 on punctured and unpunctured keys have poly(λ, logL)
size and the circuit for iO has poly(λ, s) size, the universal sampler in Fig. 6 is succinct.

12 PKE with pseudorandom public keys is easily built from standard assumptions such as DDH or LWE.
13 We assume that F generates sufficiently long outputs. We truncate the excess bits.
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Succinct Universal Sampler
Let p(λ,X) = λ ·m(λ) ·X where m(λ) is the output size of Garble.
Setup

(
1lλ, L(λ)

)
:

1. hk
$← SSB.Gen(1lλ, L, 0)

2. K
$← {0, 1}λ

3. SUSProg
$← iO(1lλ,PSUS[K, hk])

4. Output U := (hk,SUSProg)

Sample(U = (hk, SUSProg),D,u) :
Let g := (gi)i∈[|D|] be a description of the gates of D. Let ui be the i-th

(
λ ·m(λ)

)
-bit block of u.

1. h← SSB.Hash(hk,u)
2. z ← SSB.Hash(hk, g)

3. ∀i ∈ [|D|] : πi
$← SSB.Open(hk,u, i)

4. ∀i ∈ [|D|] : π′i
$← SSB.Open(hk, g, i)

5. ∀i ∈ [|D|] : Gi ← SUSProg(h, z, ui, gi, πi, π
′
i) (see Fig. 7)

6. output R← GC.Eval(G)

Fig. 6: A succinct universal sampler

PSUS[K, hk]

Hardcoded: A PRF key K and an SSB hash key hk.
Input: Hashes h and z, index i ∈ [L], random string v, gate g′ and SSB proofs π and π′.

1. b← SSB.Verify
(
hk, h, i, v, π

)
2. b′ ← SSB.Verify

(
hk, z, i, g′, π′

)
3. If b = 0 or b′ = 0, output ⊥.
4. (gk, k)← F1

(
K, (h, z)

)
5. (y01 , y

1
1 , . . . , y

0
m, y

1
m)← F2

(
k, i
)

6. For every j ∈ [m] define

xj ←


0 if y0j = vj ,

1 if y1j = vj ,

⊥ otherwise.

7. If xj ∈ {0, 1} for every j ∈ [m], output x.
8. Otherwise, output Garble(1lλ, g′, gk)

Fig. 7: The unobfuscated succinct universal sampler program
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We observe that the SSB construction of [35], puncturable PRFs based on GGM [40, 11, 14, 26] and
most of the iO schemes satisfy the properties for succinctness. We also point out that L(λ), actually, does
not need to be polynomial. Unfortunately, however, in order to satisfy selective one-time security for a
super-polynomial L(λ), we need to rely on a subexponentially secure iO scheme and on a subexponentially
hiding SSB hash function.

Proof. We prove selective one-time security independently on whether L(λ) is polynomial or not. We do
this through a series of computationally indistinguishable hybrids. The only difference between the two
cases will be that the number of hybrids will be polynomial if and only if L(λ) is polynomial. If L(λ) is
super-polynomial, we need subexponentially secure primitives in order to achieve indistinguishability in
spite of the exponential number of hybrids.

We mark changes using red font. Let D be the distribution addressed by the selective, one-time
security game. Let g be the circuit describing D. In the proof, we define ĥ and ẑ as SSB.Hash(hk,u) and
SSB.Hash(hk, g) respectively. We always assume that the key K is sampled uniformly over {0, 1}λ.

Hybrid 0. This corresponds to the left distribution in Def. 4.1. The adversary is provided with an

honestly generated U = (hk,SUSProg)
$← Setup

(
1lλ, L(λ)

)
, a random sting u

$← {0, 1}p(λ,|D|) and R ←
Sample(U,D,u).

Hybrid 1. In this hybrid, the challenger punctures the PRF key K in (ĥ, ẑ) and hardcodes the result

in SUSProg. Furthermore, it programs the correct output in SUSProg by storing (ĝk, k̂)← F1

(
K, (ĥ, ẑ)

)
in it. Notice that by the correctness of the puncturable PRF F1, the input-output behaviour of PSUS

remains the same. So, by the security of iO, Hybrid 1 is indistinguishable from Hybrid 0.
More formally, the computations performed by the challenger for the generation of SUSProg become

the following (all the other operations in the game remain the same).

1. K ← Punct1
(
K, (ĥ, ẑ)

)
2. (ĝk, k̂)← F1

(
K, (ĥ, ẑ)

)
3. SUSProg

$← iO(1lλ,P1
SUS[K, hk, ĥ, ẑ, ĝk, k̂]) (see Fig. 8)

P1
SUS[K, hk, ĥ, ẑ, ĝk, k̂]

Hardcoded: A punctured PRF key K, an SSB hash key hk, the hashes ĥ and ẑ and the keys (ĝk, k̂).
Input: Hashes h and z, index i ∈ [L], random string v, gate g′ and SSB proofs π and π′.

1. b← SSB.Verify
(
hk, h, i, v, π

)
2. b′ ← SSB.Verify

(
hk, z, i, g′, π′

)
3. If b = 0 or b′ = 0, output ⊥.
4. If h = ĥ and z = ẑ, set gk← ĝk and k ← k̂.
5. Otherwise, (gk, k)← F1

(
K, (h, z)

)
.

6. (y01 , y
1
1 , . . . , y

0
m, y

1
m)← F2

(
k, i
)

7. For every j ∈ [m] define

xj ←


0 if y0j = vj ,

1 if y1j = vj ,

⊥ otherwise.

8. If xj ∈ {0, 1} for every j ∈ [m], output x.
9. Otherwise, output Garble(1lλ, g′, gk)

Fig. 8: The unobfuscated succinct universal sampler program – Hybrid 1

Hybrid 2. In this hybrid, the challenger samples the keys ĝk and k̂ uniformly in {0, 1}λ instead of

computing F1

(
K, (ĥ, k̂)

)
. Notice that this hybrid is indistinguishable from Hybrid 1 by the security of

the puncturable PRF F1.
More formally, the operations performed by the challenger for the generation of SUSProg become the

following.
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P2
SUS[K, hk, ĥ, ẑ, ĝk, k̂, l]

Hardcoded: A punctured PRF key K, an SSB hash key hk, the hashes ĥ and ẑ, the keys (ĝk, k̂) and the
index l.
Input: Hashes h and z, index i ∈ [L], random string v, gate g′ and SSB proofs π and π′.

1. b← SSB.Verify
(
hk, h, i, v, π

)
2. b′ ← SSB.Verify

(
hk, z, i, g′, π′

)
3. If b = 0 or b′ = 0, output ⊥.
4. If h = ĥ and z = ẑ, set gk← ĝk and k ← k̂.
5. Otherwise, (gk, k)← F1

(
K, (h, z)

)
.

6. (y01 , y
1
1 , . . . , y

0
m, y

1
m)← F2

(
k, i
)

7. For every j ∈ [m] define

xj ←


0 if y0j = vj ,

1 if y1j = vj ,

⊥ otherwise.

8. If xj ∈ {0, 1} for every j ∈ [m], output x.

9. If h = ĥ and z = ẑ and i < l, output ⊥.
10. Otherwise, output Garble(1lλ, g′, gk)

Fig. 9: The unobfuscated succinct universal sampler program – Hybrid 3.l.0.

1. K ← Punct1
(
K, (ĥ, ẑ)

)
2. ĝk

$← {0, 1}λ

3. k̂
$← {0, 1}λ

4. SUSProg
$← iO(1lλ,P1

SUS[K, hk, ĥ, ẑ, ĝk, k̂]) (see Fig. 8)

We now introduce a counter l and we initially set it to 0. For each value assumed by l, we proceed
from Hybrid 3.l.0 to Hybrid 3.l.4. We then increment l by 1 and we repeat the procedure starting from
Hybrid 3.(l+ 1).0. We stop when l = |D|+ 1. At that point, we move to Hybrid 4.l.0 keeping l unvaried.

Hybrid 3.l.0. In this hybrid, the challenger makes the hash key hk statistically binding at index l.
Furthermore, the challenger changes the program PSUS. Specifically, if the inputs h and z coincide with
ĥ and ẑ and i < l, the program tries now to decrypt v using k̂. If the operation succeeds, PSUS outputs
the result, otherwise, it outputs ⊥. All the rest, including the generation of u, remains as in the previous
hybrid.

Notice that if l = 0, i cannot be smaller than l, so the new block of code is never executed. Moreover,
hk was already statistically binding in 0. Since the input-output behaviour of the program remains
unvaried, by the security of iO, no PPT adversary can distinguish between Hybrid 2 and Hybrid 3.0.0.
If instead l > 0, Hybrid 3.l.0 is identical to Hybrid 3.(l − 1).4.

Formally, the challenger produces SUSProg by computing

SUSProg
$← iO(1lλ,P2

SUS[K, hk, ĥ, ẑ, ĝk, k̂, l]) (see Fig. 9).

Hybrid 3.l.1. In this hybrid, the challenger punctures k̂ in l and hardcodes the punctured key in
SUSProg. Moreover, it computes Ĝl ← Garble(1lλ, gl, ĝk) and, for every j ∈ [m] and b ∈ {0, 1}, sets

ŷbj ← ujl if b = Ĝjl , ŷbj
$← {0, 1}λ otherwise.

Finally, it hardcodes (ŷ01 , ŷ
1
1 , . . . , ŷ

0
m, ŷ

1
m) into the program. Such a tuple will be used by SUSProg when

(h, z, i) = (ĥ, ẑ, l), instead of computing F2(k̂, l). The last modification we apply to SUSProg is that when

(h, z, i) = (ĥ, ẑ, l) and the decryption of v in the trapdoor fails, the program outputs ⊥. The code of the
unobfuscated version of SUSProg can be found in Fig. 10.

We argue that the new program maintains the same input-output behaviour as in the previous hybrid.
As a consequence, by the security of iO, no PPT adversary can distinguish between Hybrid 3.l.0 and
3.l.1. We analyse the inputs case by case:
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P3
SUS[K, hk, ĥ, ẑ, ĝk, k, l, (ŷbj)j,b]

Hardcoded: A punctured PRF keys K and k, an SSB hash key hk, the hashes ĥ and ẑ, the key ĝk, the
index l and the values (ŷbj)j,b.
Input: Hashes h and z, index i ∈ [L], random string v, gate g′ and SSB proofs π and π′.

1. b← SSB.Verify
(
hk, h, i, v, π

)
2. b′ ← SSB.Verify

(
hk, z, i, g′, π′

)
3. If b = 0 or b′ = 0, output ⊥.
4. If h = ĥ and z = ẑ, set gk← ĝk and k ← k.
5. Otherwise, (gk, k)← F1

(
K, (h, z)

)
.

6. If h = ĥ and z = ẑ and i = l, set ybj ← ŷbj for every j ∈ [m] and b ∈ {0, 1}.
7. Otherwise, compute (y01 , y

1
1 , . . . , y

0
m, y

1
m)← F2

(
k, i
)
.

8. For every j ∈ [m] define

xj ←


0 if y0j = vj ,

1 if y1j = vj ,

⊥ otherwise.

9. If xj ∈ {0, 1} for every j ∈ [m], output x.

10. If h = ĥ and z = ẑ and i ≤ l, output ⊥.
11. Otherwise, output Garble(1lλ, g′, gk)

Fig. 10: The unobfuscated succinct universal sampler program – Hybrid 3.l.1

– If (h, z, i) 6= (ĥ, ẑ, l), the input-output behaviour of P2
SUS (see Fig. 9) and P3

SUS (see Fig. 10) are the
same by the correctness of puncturable PRFs. Indeed, line 6 of P3

SUS is never run. Moreover, line 10
is run only if it was run in P2

SUS.

– If (h, z, i) = (ĥ, ẑ, l) but (v, g′) 6= (ul, gl), with overwhelming probability over the randomness of hk,
both P2

SUS and P3
SUS output ⊥. This is because the SSB key is binding at position l.

– If (h, z, i, v, g′) = (ĥ, ẑ, l, ul, gl) but either π or π′ does not verify, both P2
SUS and P3

SUS output ⊥.

– If (h, z, i, v, g′) = (ĥ, ẑ, l, ul, gl) and both π and π′ verify, the output of P3
SUS is Ĝl. Indeed, for every

j ∈ [m], we have xj = Ĝjl as

ŷ
Ĝj

l
j = ujl = vj .

Moreover, for every j ∈ [m], we have ŷ
1−Ĝj

l
j 6= ujl with overwhelming probability. The output of P2

SUS

was the same. Indeed, since ul was sampled independently of k̂, with overwhelming probability, there
existed a j ∈ [m] such that ujl 6∈ {y0j , y1j } (we recall that y0j , y

1
j were computed by evaluating the PRF

F2 with key k̂ in position l).

Formally, the challenger generates SUSProg as follows.

1. k̂
$← {0, 1}λ

2. k ← Punct2(k̂, l)

3. Ĝl ← Garble(1lλ, gl, ĝk)

4. ∀j ∈ [m] : ŷ
Ĝj

l
j ← ujl

5. ∀j ∈ [m] : ŷ
1−Ĝj

l
j

$← {0, 1}λ

6. SUSProg
$← iO(1lλ,P3

SUS[K, hk, ĥ, ẑ, ĝk, k, l, (ŷbj)j,b]) (see Fig. 10)

Hybrid 3.l.2. In this hybrid, the challenger generates all the values (ŷbj)j,b as

(ŷ01 , ŷ
1
1 , . . . , ŷ

0
m, ŷ

1
m)← F2(k̂, l).

Moreover, for every j ∈ [m], the challenger sets ujl ← ŷbj where b = Ĝjl . Observe that this hybrid is
indistinguishable from Hybrid 3.l.1 by the security of the puncturable PRF F2. Formally, the challenger
now generates SUSProg and ul as follows:
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1. k̂
$← {0, 1}λ

2. k ← Punct2(k̂, l)

3. Ĝl ← Garble(1lλ, gl, ĝk)

4. (ŷbj)j,b ← F2(k̂, l)

5. ∀j ∈ [m] : ujl ← ŷ
Ĝj

l
j

6. SUSProg
$← iO(1lλ,P3

SUS[K, hk, ĥ, ẑ, ĝk, k, l, (ŷbj)j,b]) (see Fig. 10)

Hybrid 3.l.3. In this hybrid, rather than obfuscating P3
SUS (see Fig. 10), the challenge generates

SUSProg using P2
SUS (see Fig. 9) hardcoding l + 1 instead of l. Specifically, it sets

SUSProg
$← iO(1lλ,P2

SUS[K, hk, ĥ, ẑ, ĝk, k̂, l + 1]).

The generation of ul remains as in Hybrid 3.l.2. We observe that the input-output behaviour of SUSProg
remains the same as in the previous hybrid. Indeed, the changes can affect only executions where
(h, z, i) = (ĥ, ẑ, l). Since in the previous hybrid (ŷbj)j,b = F2(k̂, l), the program SUSProg behaves as be-
fore even in the above case. We conclude that Hybrid 3.l.2 and Hybrid 3.l.3 are indistinguishable by the
security of iO.

Hybrid 3.l.4. In this hybrid, the challenger makes hk statistically binding at index l + 1

hk
$← SSB.Gen(1lλ, L, l + 1).

We conclude that Hybrid 3.l.4 is indistinguishable from Hybrid 3.l.3 by the hiding property of SSB
hashing.

At this point, we go to Hybrid 3.(l+ 1).0 incrementing l by 1. If l = |D|+ 1, notice that u hides now
an encryption of a garbling of G. In this case, we proceed to Hybrid 4.l.0 keeping l unvaried. We then
continue to Hybrid 4.l.1. At that point, we increment again l and we move on to Hybrid 4.(l+ 1).0. We
stop when l = L(λ).

Hybrid 4.l.0. This hybrid is identical to Hybrid 3.l.3: the challenger increments by 1 the threshold
l stored in SUSProg. Specifically, when (h, z) = (ĥ, ẑ), i = l and the decryption in the trapdoor fails, the
new program PSUS immediately outputs ⊥. Previously, instead, SUSProg garbled the provided gate using
ĝk. We observe that hk is statistically binding at index l, so, when i = l the input-output behaviour of
SUSProg remains the same as before. Indeed, with overwhelming probability, there exists no (g′, π′) such
that SSB.Verify(hk, ẑ, l, g′, π′) = 1. We conclude that if l = |D|+ 1, Hybrid 4.l.0 is indistinguishable from
Hybrid 3.(l−1).4 by the security of iO. Furthermore, for the same reason, Hybrid 4.l.0 is indistinguishable
from Hybrid 4.(l − 1).1 for l > |D|+ 1.

Formally, the challenger now generates SUSProg as

SUSProg
$← iO(1lλ,P2

SUS[K, hk, ĥ, ẑ, ĝk, k̂, l + 1]) (see Fig. 9).

Hybrid 4.l.1. This hybrid is identical to Hybrid 3.l.4: the challenger makes hk statistically binding
at index l + 1

hk
$← SSB.Gen(1lλ, L, l + 1).

We conclude that Hybrid 4.l.1 is indistinguishable from Hybrid 4.l.0 by the hiding property of SSB
hashing.

At this point, we increment l. If l < L(λ), we move again to Hybrid 4.l.0, otherwise we proceed to
Hybrid 5.

Hybrid 5. In this hybrid, we notice that SUSProg does not use ĝk anymore. So, we remove it
from the program. Notice that the input-output behaviour of SUSProg remains unvaried, so Hybrid 5 is
indistinguishable from Hybrid 4.L.1 by the security of obfuscation.

Formally, the challenger generates now SUSProg as

SUSProg
$← iO(1lλ,P4

SUS[K, hk, ĥ, ẑ, k̂]) (see Fig. 11).

Hybrid 6. We observe that the program SUSProg contains no information about ĝk. Therefore, in
this hybrid, the challenger generates the garbled circuit hidden in u using true randomness instead of
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P4
SUS[K, hk, ĥ, ẑ, k̂]

Hardcoded: A punctured PRF key K, an SSB hash key hk, the hashes ĥ and ẑ and the key k̂.
Input: Hashes h and z, index i ∈ [L], random string v, gate g′ and SSB proofs π and π′.

1. b← SSB.Verify
(
hk, h, i, v, π

)
2. b′ ← SSB.Verify

(
hk, z, i, g′, π′

)
3. If b = 0 or b′ = 0, output ⊥.
4. If h = ĥ and z = ẑ, set k ← k̂.
5. Otherwise, (gk, k)← F1

(
K, (h, z)

)
.

6. (y01 , y
1
1 , . . . , y

0
m, y

1
m)← F2

(
k, i
)

7. For every j ∈ [m] define

xj ←


0 if y0j = vj ,

1 if y1j = vj ,

⊥ otherwise.

8. If xj ∈ {0, 1} for every j ∈ [m], output x.

9. If h = ĥ and z = ẑ, output ⊥.
10. Otherwise, output Garble(1lλ, g′, gk)

Fig. 11: The unobfuscated succinct universal sampler program – Hybrid 5

extracting it from ĝk using a PRF. We conclude that this hybrid is indistinguishable from Hybrid 5 by
the PRF security.

Let `D denote the bit-length of the randomness need by D. Formally, the challenger generates now u
as follows:

1. k̂
$← {0, 1}λ

2. (Ĝ, e, d)
$← Garble(1lλ,D)

3. r
$← {0, 1}`D

4. X ← En(r, e)

5. (Ĝi)i∈[|D|] ← (X, Ĝ, d)

6. ∀i ∈ [|D|] : (ybi,j)j,b ← F2(k̂, i)

7. ∀i ∈ [|D|] and j ∈ [m] : uji ← ybi,j where b = Ĝji .

Hybrid 7. This hybrid corresponds to the right distribution in Def. 4.1. The challenger generates

now the garbled circuit hidden in u using the simulator GC.Sim
(
1lλ, struct(D), R

)
where R

$← D. By
the security of garbled circuits, Hybrid 6 and Hybrid 7 are indistinguishable. Formally, the operations
performed by the SUS simulator Sim(1lλ, L,D, R) are the following.

1. hk
$← SSB.Gen(1lλ, L, L)

2. k̂
$← {0, 1}λ

3. (Ĝ,X, d)
$← GC.Sim

(
1lλ, struct(D), R

)
4. (Ĝi)i∈[|D|] ← (X, Ĝ, d)

5. ∀i ∈ [|D|] : (ybi,j)j,b ← F2(k̂, i)

6. ∀i ∈ [|D|] and j ∈ [m] : uji ← ybi,j where b = Ĝji .

7. ĥ← SSB.Hash(hk,u)

8. ẑ ← SSB.Hash(hk, g)

9. K
$← {0, 1}λ

10. K ← Punct1
(
K, (ĥ, ẑ)

)
11. SUSProg

$← iO(1lλ,P4
SUS[K, hk, ĥ, ẑ, k̂]) (see Fig. 11)

12. Output (hk,SUSProg).
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Succinctness. We analyse the size of the unobfuscated programs PSUS, P1
SUS, P2

SUS, P3
SUS and P4

SUS.
We observe that the only parts that depend on L are the input i ∈ [L], the SSB proofs π and π′, their
verification, the evaluation of the puncturable PRF F2, the hash key hk, the punctured key k and the
index l. Also the description of the gate g′ and the circuit for Garble may depend on L as length of the
identifiers of the wires grows with L. The dependency is however logarithmic. We notice that the size of
of i and l is logL. Also the comparisons that are sometimes computed between i and l and |D| can be
computed using O(logL) gates.

By hypothesis, the circuits needed for the evaluation of F2(k, i) and F2(k, i) have O(logL) size. We
conclude that also the size of k is O(logL).

Finally, by the assumptions on SSB, the size of the circuit describing SSB.Gen and SSB.Verify is also
O(logL). As a consequence, the size of hk, π and π′ is also O(logL). We conclude that all programs
PSUS,P1

SUS,P2
SUS,P3

SUS and P4
SUS have size smaller than q(λ, logL) for a certain polynomial q(λ,X).

Now, let iO be an indistinguishability obfuscator for the class of circuits having size smaller than
q(λ, logL). Notice that such class contains all the programs we used in the hybrids. We know that the
size of the circuit describing iO is poly(λ, q(λ, logL)). We conclude that the size of the circuit describing
Setup

(
1lλ, L(λ)

)
is poly(λ, logL).

Randomness Extractability. The extractor is provided with D, L(λ) and the random coins ρ0 fed
into Setup. The coins allow us to retrieve the PRF key K and the hash key hk used in the construction.

The extractor can sample a random u
$← {0, 1}p(λ,|D|). With overwhelming probability, the execution

of Sample(U,D,u) does not activate the trapdoor in SUSProg. We can argue for this using entropy. We
observe that for every i ∈ [L], the Yao entropy of ui is 2λ ·m(λ), so, for every compressor-decompressor
pair (c, d) where c has an `(λ)-bit output, we have

Pr[d
(
c(ui)

)
= ui] ≤

2`(λ)

22λ·m(λ)
+ negl(λ).

Now consider the circuit c that on input ui, performs the same operations as in PSUS (see Fig. 7) and
outputs (k, x). In particular, the compressor c generates K and hk using ρ0 as randomness. Then, it hashes
u and the circuit for D obtaining h and z. Finally it runs PSUS on input (h, z) along with i and ui

14.
We also consider the decompressor d that on input (k, x) computes (y01 , y

1
1 , . . . , y

0
m, y

1
m) ← F2(k, i) and

outputs, for every j ∈ [m], ybj where b = xj . If such b does not exists for any j, the decompressor outputs⊥.
We notice that c uses u in its code without knowing anything about it except for its i-th entry ui.

We fix the values (uj)j 6=i so that Pr[d
(
c(ui)

)
= ui] is maximal. Observe that the output size of c is

`(λ) = λ+m(λ).
The probability that the u generated by the extractor triggers the trapdoor in SUSProg when used

in conjunction with the index i is smaller than the probability that d
(
c(ui)

)
= ui. In other words, it is

bounded by

Pr[d
(
c(ui)

)
= ui] ≤

2λ+m(λ)

22λ·m(λ)
+ negl(λ).

We observe that the RHS of the above equation is negligible.
Since, the probability of triggering the trapdoor is negligible, it means that the outputs of SUSProg

are generated by directly garbling D and using gk as source of randomness. We notice that also the
bits input into the circuit are generated using gk. The garbling key gk can be computed as (gk, k) ←
F1

(
K, (h, z)

)
. So, the extractor is able to retrieve the randomness used to generate the sample with

overwhelming probability.

4.2 Building Unbounded Universal Samplers from Polynomially Secure Primitives

We now explain how we can use succinct universal samplers to build an unbounded universal sampler.
By combining the result in this section with Theorem 4.5, we conclude that it is possible to design
unbounded universal samplers based on polynomially secure primitives only (including iO).

The construction is rather simple: we start from a succinct universal sampler having bound L̂(λ).

This sampler immediately allows to sample from any distribution of size smaller than L̂(λ). If instead

14 The compressor can skip the verification of the SSB proofs.
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our distribution D(1lλ) has size s(λ) > L(λ), we use the succinct universal sampler to generate a succinct

universal sampler with bound 2L̂(λ). If s(λ) ≤ 2L̂(λ), we can now use the new universal sampler to
compute the output, otherwise, we repeat the operation, generating another universal sampler with twice
as big circuit bound. Since D(1lλ) is efficiently samplable, we are sure that we stop after a polynomial
number of iterations. We formalise our idea in Fig. 12.

Unbounded Universal Sampler
Let L̂(λ) be a polynomial such that, for every i ∈ N and λ ∈ N,

∣∣SUS.Setup(1lλ, 2i+1 · L̂(λ)
)∣∣ ≤ 2i · L̂(λ).

UUS.Setup(1lλ):

1. output U
$← SUS.Setup

(
1lλ, L̂(λ)

)
UUS.Sample(U,D(1lλ),u) : Define t := dlog(|D|/L)e. For every i ∈ [t], define Di to be the circuit describing

SUS.Setup(1lλ, 2i · L̂). Rewrite u as (u0, u1, . . . , ut) where ui−1 is a random p(λ, |Di|)-bit string and ut is
p(λ, |D|)-bit long.

1. U0 ← U
2. For i = 1, 2, . . . , t : Ui ← SUS.Sample(Ui−1,Di, ui−1)
3. Output R← SUS.Sample(Ut,D, ut)

Fig. 12: An unbounded universal sampler

Theorem 4.6. If (SUS.Setup,SUS.Sample) is a succinct universal sampler satisfying selective, one-time
security, then the construction (UUS.Setup,UUS.Sample) in Fig. 12 is an unbounded universal sampler
satisfying selective, one-time security. Moreover, if (SUS.Setup,SUS.Sample) is randomness extractable,
also (UUS.Setup,UUS.Sample) is randomness extractable.

Proof. We start by arguing that L̂(λ) exists.

Claim 4.1. There exists a polynomial L̂(λ) such that, for every i ∈ N and λ ∈ N,

|SUS.Setup
(
1lλ, 2i+1L̂(λ)

)
| ≤ 2i · L̂(λ).

Proof of the claim. Since (SUS.Setup,SUS.Sample) is succinct, we know that there exists a polynomial
q(λ, L) such that

|SUS.Setup(1lλ, L)| ≤ q(λ, logL)

for sufficiently large λ and L. Define c := deg q(X,Y ) + 1, we know that

|SUS.Setup(1lλ, L)| ≤ q(λ, logL) ≤ (λ · logL)c

for λ ≥ λ0 and L ≥ L0. As a consequence, for every λ ≥ λ0, i ∈ N and L ≥ L0,

|SUS.Setup(1lλ, 2i+1 · L)| ≤ q
(
λ, log(2i+1 · L)

)
≤
(
λ · log(2i+1 · L)

)c
.

Now, define L′(λ) := λc+1 and observe that(
λ · log

(
2i+1 · L′(λ)

))c
2i · L′(λ)

=

(
(c+ 1) · log λ+ i+ 1

)c
2i · λ

≤
(
(c+ 1) · log λ+ (i+ 1) · 2−i/c

)c
λ

We observe that limi→∞(i+ 1) · 2−i/c = 0, to there exists a constant d such that(
λ · log

(
2i+1 · L′(λ)

))c
2i · L′(λ)

≤
(
(c+ 1) · log λ+ d

)c
λ

−−−−→
λ→∞

0.
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As a consequence, there exists λ1 ∈ N such that
(
λ · log

(
2i+1 ·L′(λ)

))c ≤ 2i ·L′(λ) for every λ ≥ λ1 and

i ∈ N. We define L̂(λ) := L′(λ+ λ) where

λ = min{λ ∈ N|λ ≥ λ0, λ ≥ λ1, L′(λ) ≥ L0}.

Notice that L′(λ) is an increasing function, so L̂(λ) ≥ L0 for every λ ∈ N. �

The above claim shows that the succinct universal sampler Ui can sample from the distribution Di+1.
We observe that t = polylog(λ). Indeed, we know that |D(1lλ)| is smaller than a polynomial s(λ), so t ≤
log s(λ) − log L̂(λ) + 1 = polylog(λ). We also notice that all the bounds input in SUS.Setup are smaller

than 2t · L̂(λ) = poly(λ). In other words, all the bounds input into SUS.Setup are polynomial.

Claim 4.2. The construction in Fig. 12 satisfies selective one-time security.

Proof of the claim. We proceed with a series of t + 1 indistinguishable hybrids. Starting from the real
execution of the universal sampler and moving towards the simulated one. We present the simulator in
the last stage.

Hybrid 0. This hybrid corresponds to the left distribution in Def. 4.3: we generate U as in the
construction and we sample u uniformly at random.

Hybrid 1. In this hybrid, we generate U and u0 using the SUS simulator. Specifically, we start

by sampling U1
$← SUS.Setup

(
1lλ, 2 · L̂(λ)

)
. Then, we set (u0, U)

$← SUS.Sim(1lλ, L̂(λ),D1, U1). All the
elements (ui)i>0 are sampled uniformly at random. Notice that Hybrid 1 is indistinguishable from Hybrid
0 by the selective one-time security of the succinct universal sampler.

Hybrid i for i = 2, . . . , t. This hybrid is identical to Hybrid i− 1 except that we change the way we
generate Ui−1 and ui−1. Similarly to Hybrid 1, we compute

Ui
$← SUS.Setup

(
1lλ, 2i · L̂(λ)

)
.

Then, we feed Ui in the SUS simulator

(ui−1, Ui−1)
$← SUS.Sim(1lλ, 2i−1 · L̂(λ),Di, Ui).

Notice that Ui−1 is then immediately fed into another execution of SUS.Sim. This hybrid is indistin-
guishable from Hybrid i− 1 by the selective one-time security of the succinct universal sampler.

Hybrid t+ 1. In this hybrid, corresponding to the right distribution in Def. 4.3, we change the way

in which we generate Ut and ut. We repeat the same procedure as before. Specifically, we sample R
$←

D(1lλ) and we compute

(ut, Ut)
$← SUS.Sim(1lλ, 2t · L̂(λ),D, R).

Once again, this hybrid is indistinguishable from the previous one by the selective one-time security of
the succinct universal sampler.

To summarise, the operations performed by the unbounded universal sampler simulator UUS.Sim
(
1lλ,D(1lλ), R

)
are the following.

1. t← dlog(|D|/L)e
2. (ut, Ut)

$← SUS.Sim(1lλ, 2t · L̂(λ),D, R)

3. For i = t, t− 1, . . . , 1 : (ui−1, Ui−1)
$← SUS.Sim(1lλ, 2i−1 · L̂(λ),Di, Ui)

4. Output u := (u0, u1, . . . , ut) and U0.

Clearly, we have that UUS.Sample(U0,D,u) = R. �

Claim 4.3. If (SUS.Setup,SUS.Sample) is randomness extractable, also the unbounded universal sampler
(UUS.Setup,UUS.Sample) is randomness extractable.

Proof of the claim. We consider the extractor UUS.Extract(1lλ,D(1lλ), ρ0) which performs the following
operations

1. For i = 1, 2, . . . , t : (ρi, ui−1)
$← SUS.Extract

(
1lλ,Di(1lλ), 2i−1 · L̂(λ), ρi−1

)
2. (ρ, ut)

$← SUS.Extract
(
1lλ,D(1lλ), 2t · L̂(λ), ρt

)
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3. output ρ and u := (u0, u1, . . . , ut).

We argue that the value u simulated by the extractor is indistinguishable from random even for
an adversary knowing ρ0, though a series of t + 1 indistinguishable hybrids. Along the way, we also
show that R, the sample from D(1lλ) generated by the universal sampler, coincides with D(1lλ; ρ) with
overwhelming probability.

Hybrid 0. This hybrid corresponds to the real execution of the unbounded universal sampler: we
generate U using ρ0 as randomness and we sample u uniformly. We provide the adversary with (ρ0,u).

Hybrid i for i = 1, 2, . . . , t. This hybrid is identical to Hybrid i− 1 except that we change the way
we generate ui−1. Specifically, we compute

(ρi, ui−1)
$← SUS.Extract

(
1lλ,Di(1lλ), 2i−1 · L̂(λ), ρi−1

)
.

We know that, with overwhelming probability, we have Ui = Di(1lλ; ρi). Here Ui denotes the i-th succinct
universal sampler generated in UUS.Sample(U,D(1lλ),u). Furthermore, we know that the distribution of
(ρ0,u) is indistinguishable from the one in Hybrid i− 1 thanks to the property of the SUS extractor.

Hybrid t + 1. This hybrid corresponds to the simulated execution in which u is generated by the
extractor. Compared to Hybrid t, we change the way in which we generate ut. Specifically, we compute

(ρ, ut)
$← SUS.Extract

(
1lλ,D(1lλ), 2t · L̂(λ), ρt

)
.

We know that, with overwhelming probability, we have R = D(1lλ; ρ). Furthermore, we know that the
distribution of (ρ0,u) is indistinguishable from the one in Hybrid t thanks to the property of the SUS
extractor. �

5 Party-Dynamic Distributed Universal Samplers

Distributed universal samplers. In [2], the authors designed an n-party distributed universal sampler
(DUS). This is a particular distributed sampler that is not tailored to any specific distribution D: the
latter can be provided as input to the sampling algorithm. In particular, the messages published by the
parties are independent of D. Abram, Scholl and Yakoubov present two types of constructions. The first
one achieves weakly semi-malicious security as long as we generate only one sample and the corresponding
distribution is fixed before the generation of the messages. The second one achieves active security and
permits reusing the same messages to sample from multiple distributions (of bounded size). The latter
can be adaptively chosen by the environment after fixing the messages. While the first construction was
built in the plain model, the second one had to rely on a random oracle.

Party-dynamic distributed universal samplers. In this section, we define and construct an even more
powerful DUS. Not only we allow the messages to be independent of the distribution we sample from,
we also require that the messages are independent of the group of participants, setting no upper bound
on their number. We call the result a party-dynamic distributed universal sampler.

Following the blueprint of [2], we define party-dynamic DUSs in two flavours: with one-time, weakly
semi-malicious security and with reusable, active security. In the first case, the construction guarantees
security for only one sample and only as long as the distribution, the subset of parties taking part to
the computation as well as the randomness of the corrupted players are fixed before the generation of
the honest messages. Furthermore, the adversary is not allowed to deviate from the protocol except for
the choice of the randomness of the corrupted parties. In the second case, instead, the adversary is free
to misbehave as it pleases. It can activate parties at any point in time and reuse the same messages
to sample from multiple distributions and with different subsets of participants. Furthermore, all its
decisions, including the messages of the corrupted parties, can be made after seeing the honest-parties
messages. The result is a very powerful primitive: every player just needs to publish a single messages
on a bulletin board upon activation. No subsequent communication is needed, the players can gather in
subsets (potentially more than one at the same time) and use the already published messages to sample
from any distribution. All the parties in the same group are guaranteed to receive the same output
without learning any additional information.
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The relation between party-dynamic DUSs and random oracles. Both notions of party-dynamic dis-
tributed universal samplers are inherently tied to random oracles, the second one more than the first. In
the reusable version of the primitive, the random oracle is fundamental to gain control over the adaptive
choices made by the adversary. Without it, we would run into the same impossibility results described in
Section 3. The other reason why we need the random oracle is instead connected to the entropy of the out-
puts. In particular, the size of a DUS message needs to be larger than the Yao entropy of the outputs that
can be produced from it. If we consider the ideal execution of a DUS, a honest message should be able to
output ideal samples15 even if all the other players are corrupted. Since we aim to produce an independent
sample from any queried distribution and for any subset of parties involved in the computation, without
random oracle, the size of the messages would blow up. This would happen even if we bounded the set of
parties and the set of supported distributions. We highlight that our construction sets no such bounds.

The entropy argument described above applies, to some extent, also to one-time party-dynamic
distributed samplers. Here, our setting is easier as the messages are used to create a single sample,
however, the entropy of such sample can be arbitrarily big.

5.1 One-Time, Party-Dynamic DUS

In this section, we formalise the definition of one-time party-dynamic DUS with weakly semi-malicious
security. We then present the first construction of this kind.

To get around the entropy problem highlighted in the above paragraph, we adopt the same approach
used for UUSes: we split the messages into a small structured part and a long random string of bits. We
require the structured part to be independent of the sampled distributions and the group of participants.
The size of the random string is instead allowed to change based on the number of parties and the
distribution we want to sample from. In the end, the total entropy in the construction will be sufficient
to achieve security, but since we can build the unstructured part of the messages using a random oracle
(or any other source of public randomness), all the information sent by the players will be independent
of the group of participants and the distributions. We therefore obtain exactly what we aimed for.

Definition 5.1 (One-time, party-dynamic distributed universal sampler). Let pD(λ,X) be a
polynomial for any efficiently samplable distribution D(1lλ). A party-dynamic, distributed universal sam-
pler is a pair of PPT algorithms (Gen,Sample) with the following syntax:

1. Gen takes as input the security parameter 1lλ. The output is the distributed sampler message U . We
assume that Gen needs M(λ) bits of randomness.

2. Sample is a deterministic algorithm taking as input a set of parties P of any size n = poly(λ), a
distribution D(1lλ) of circuit size poly(λ), n messages (Ui)i∈P , n random strings (ui)i∈[n] of size
pD(λ, n) each. The output is a sample R.

We say that the distributed sampler is weakly semi-maliciously, one-time secure if there exists a PPT
simulator Sim such that, for every set P ∈ 2{0,1}

∗
of size poly(λ), every subset C ( P of corrupted

parties, associated randomness (ri)i∈C , and every efficiently samplable distribution D(1lλ), the following
two distributions are computationally indistinguishable.

(Ui)i∈P , (ui)i∈P

(ri)i∈C , R

∣∣∣∣∣∣∣∣∣∣∣

ri
$← {0, 1}M(λ) ∀i ∈ H

Ui ← Gen(1lλ; ri) ∀i ∈ P

ui
$← {0, 1}pD(λ,|P|) ∀i ∈ P

R← Sample
(
P, (Uj)j∈P , (uj)j∈P ,D

)

{
(Ui)i∈P , (ui)i∈P

(ri)i∈C , R

∣∣∣∣∣ R
$← D(1lλ)

(Ui, ui)i∈P
$← Sim

(
1lλ,P, C,D, R, (ri)i∈C

)
}

The above definition states that even for the worst choice of the randomness of the corrupted parties,
the adversary cannot distinguish between the real DUS messages and fake ones specifically crafted to
output an ideal sample from D when used in conjunction with the corrupted messages. In other words,

15 With ideal samples we mean truly random samples from the queried distributions.
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the construction does not reveal any information i addition to the output. We highlight that in order for
this definition to work, it is fundamental that the adversary provides the corrupted randomness, the set
of participant and the distribution before the honest messages are dealt. We also notice that we do not
allow the adversary to control the unstructured part of the corrupted messages: we are modelling the
fact that the latter will be generated by the random oracle.

Our Construction. The idea at the base of our one-time, party-dynamic DUS is very simple: we let
each party publish the structured part of an unbounded universal sampler. If a subset of n participants,
for any n ∈ N, wants to sample from a distribution D, they generate random n-party distributed sampler
messages for the distribution D using their unbounded universal samplers. In particular, the UUS of party
Pj is used to produce the DS message of Pj . In this way, the adversary obtains the DS messages of the
honest parties without learning any other information. All is left to do is to reconstruct the distributed
sampler output, which will look like a sample from D. As long as one party is honest, no additional
information about the output is revealed.

The formal description of our solution is presented in Fig. 13.

Party-Dynamic Distributed Sampler with Weakly Semi-Malicious Security

Let DSDn denote an n-party, weakly semi-malicious distributed sampler for the distribution D. For every i ∈
[n], let D′i be the distribution described by DSDn .Gen(1lλ, i). We define pD(λ, n) := q

(
λ,maxi∈[n]|D′i|

)
where q

is the polynomial describing the length of the random strings input in the unbounded universal sampler UUS.

Gen(1lλ) :

1. Output U
$← UUS.Setup(1lλ).

Sample
(
P, (Ui)i∈P , (ui)i∈P ,D

)
:

Let n be |P|.

1. Relabel the indices in P as 1, . . . , n.
2. ∀i ∈ P : Vi ← UUS.Sample(Ui,D′i, ui).
3. output R← DSDn .Sample(V1, V2, . . . , Vn).

Fig. 13: Party-dynamic distributed sampler with one-time, weakly semi-malicious security

Theorem 5.2. Suppose that UUS = (Setup,Sample) is an unbounded universal sampler with selective,
one-time security and randomness extractability. For any n ∈ N and efficient distribution D, let DSDn
be an n-party distributed sampler for D with weak, semi-malicious security. Then, the construction in
Fig. 13 is a party-dynamic distributed universal sampler with weakly semi-malicious, one-time security.

Proof. We prove the result though a series of computationally indistinguishable hybrids. Let D be the
efficient distribution we want to sample from. Let P be the subset of parties that needs to compute the
sample, we denote |P| by n. In each hybrid, we mark the changed operations using red font.

Hybrid 0. This hybrid corresponds to the real world: we generate the unbounded universal samplers
of the honest parties according to the protocol and the random strings (uj)j∈P are sampled at random.

Hybrid 1. In this hybrid, we generate the messages published by the honest parties and the cor-
responding random strings using the unbounded universal sampler simulator. Specifically, we generate
(Ui, ui)i∈P by performing the following operations:

1. ∀i ∈ P ∩ C : Ui ← UUS.Setup(1lλ; ri)

2. ∀i ∈ P ∩ C : ui
$← {0, 1}pD(λ,n)

3. ∀i ∈ P ∩H : V̂i
$← DSDn .Gen(1lλ, i)

4. ∀i ∈ P ∩H : (ui, Ui)
$← UUS.Sim(1lλ,D′i, V̂i).
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Notice that, with overwhelming probability, for every i ∈ P ∩H, we have

V̂i = UUS.Sample(Ui,D′i, ui).

This hybrid is indistinguishable from the previous one by the selective one-time security of UUS.
Hybrid 2. In this hybrid, we change how we generate the random strings of the corrupted parties.

Specifically, we use the unbounded universal sampler extractor for their generation. Formally, we generate
(Ui, ui)i∈P as follows:

1. ∀i ∈ P ∩ C : (ρi, ui)
$← UUS.Extract(1lλ,D′i, ri)

2. ∀i ∈ P ∩H : V̂i
$← DSDn .Gen(1lλ, i)

3. ∀i ∈ P ∩H : (ui, Ui)
$← UUS.Sim(1lλ,D′i, V̂i)

4. ∀i ∈ P ∩ C : Ui ← UUS.Setup(1lλ; ri).

Notice that, with overwhelming probability, for every i ∈ P ∩ C, we have

UUS.Sample(Ui,D′i, ui) = DSDn .Gen(1lλ, i; ρi).

This hybrid is indistinguishable from the previous one by the randomness extractability of UUS.
Hybrid 3. In this hybrid, we generate the distributed sampler messages (V̂i)i∈P∩H using the simulator

for DSDn . Formally, the operations we perform for the generation of (Ui, ui)i∈P become the following:

1. ∀i ∈ P ∩ C : Ui ← UUS.Setup(1lλ; ri)

2. ∀i ∈ P ∩ C : (ρi, ui)
$← UUS.Extract(1lλ,D′i, ri)

3. R
$← D

4. (V̂i)i∈P∩H
$← DSDn .Sim

(
1lλ,P ∩ C,R, (ρi)i∈P∩C

)
5. ∀i ∈ P ∩H : (ui, Ui)

$← UUS.Sim(1lλ,D′i, V̂i).

Notice that with overwhelming probability the final output is now R. This hybrid is indistinguishable
from Hybrid 2 by the weakly semi-malicious security of DSDn .

We summarise the operations performed by the one-time, party-dynamic simulator Sim
(
1lλ,P,P ∩

C,D, R, (ri)i∈P∩C
)

are the following.

1. ∀i ∈ P ∩ C : Ui ← UUS.Setup(1lλ; ri)

2. ∀i ∈ P ∩ C : (ρi, ui)
$← UUS.Extract(1lλ,D′i, ri)

3. (V̂i)i∈P∩H
$← DSDn .Sim

(
1lλ,P ∩ C,R, (ρi)i∈P∩C

)
4. ∀i ∈ P ∩H : (ui, Ui)

$← UUS.Sim(1lλ,D′i, V̂i).
5. Output (Ui, ui)i∈P .

5.2 Reusable, Maliciously Secure Construction

In this section, we show how we can upgrade our one-time, party-dynamic distributed universal sampler
with weakly semi-malicious security so that we can reuse the messages published by the parties to sample
from multiple distributions and for different subsets of parties, achieving at the same security against
a fully malicious adversary. We call a construction satisfying the above properties a reusable, party-
dynamic DUS with malicious security.

The security model. Formally, in our security model, we let the adversary choose when to make a party
join the construction. At that point, the adversary can decide whether to corrupt the party or not, the
state of the corruption cannot be changed afterwards. Upon activation, each party is asked to publish a
single message on a bulletin board. If the party is corrupt, we let the adversary choose the message. At any
point, any subset of active parties can pool their messages on the bulletin board and use them to sample
from any distribution they desire. We set no bound on the circuit size of the distribution. Furthermore,
we can reuse the same messages to sample from different distributions and for different subsets of parties.
We let the environment control from which distributions we sample and the corresponding subset of
parties. The correctness of the protocol requires that all the honest parties belonging to the chosen
subset, output the same sample. Security instead, states that the adversary cannot learn any information
in addition to the outputs of the honest parties, which must be random.
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The Functionality FpdDUS

Initialisation. The functionality initialises the set of honest parties H, of corrupted parties C and queries
Q to ∅.
Query. On input (Query,P, (idj)j∈P\H ,D) from the adversary where P is a subset of parties, the function-
ality performs the following operations:

– If Q contains a tuple (P, (idj)j∈P\H ,D, R), send R to the adversary.

– Otherwise, sample R
$← D, store (P, (idj)j∈P\H ,D, R) in Q and send R to the adversary.

Join. On input Join from a party Pi where i 6∈ C∪H, the functionality waits for a message from the adversary.

– If the adversary sends (corrupt, îdi), the functionality sets C ← C ∪ {i} and stores (i, îdi).
– Otherwise, it sets H ← H ∪ {i}.

Sample. On input (Sample,P,D) from a honest party Pi where i ∈ P ⊆ H ∪C, the functionality performs
the following operations

– If there exists a j ∈ P ∩ C such that îdj = ⊥, output ⊥ to Pi.

– If there exists a tuple
(
P, (îdj)j∈P∩C ,D, R

)
∈ Q, output R to Pi.

– Otherwise, sample R
$← D, output R to Pi and store

(
P, (îdj)j∈P∩C ,D, R

)
in Q.

Fig. 14: Reusable, party-dynamic distributed universal sampler functionality

Influence of the adversary. We observe that a reusable, party-dynamic distributed universal sampler with
active security unavoidably allows some influence to the environment. Indeed, the adversary can always
activate the corrupted parties after the honest parties, benefiting from the opportunity of choosing the
malicious messages when the honest ones are already fixed. In particular, the adversary can generate the
corrupted messages multiple times in its head and test them on the honest ones. In this way, it obtains
multiple samples from different distributions and for different subsets of players. The adversary can then
select the messages of the corrupted parties corresponding to the group of samples it likes the most. If
the environment ever recreates the tested executions, the adversary is guaranteed that the honest players
will output the precomputed values.

Formalising the model. We formalise the definition of reusable, party-dynamic DUS with malicious
security using the UC model. In the correspondent functionality FpdDUS, each candidate message for a
party Pj is modelled as a different label idj . Before taking its final decision on the corrupted messages,
the adversary is allowed to test the candidates (idj)j∈C by querying them to the functionality along
with the distribution and the subset of parties they would be used for. The answer is a random sample
from the selected distribution. At the moment of Pj ’s activation, the adversary needs to take a binding

decision, specifying a label îdj . If any of the tested executions is ever recreated by the environment, the
functionality outputs the test response to all honest players involved in the computation.

Definition 5.3 (Reusable, party-dynamic DUS with malicious security). A reusable, party-
dynamic distributed universal sampler with malicious security is a protocol implementing the functionality
FpdDUS (see Fig. 14) against an active adversary in the UC model. Each party is required to send at most
one message during its whole execution.

To further motivate why we need a random oracle, notice that if the construction of Def. 5.3 existed
in the plain model (with or without) CRS, it would be possible to construct adaptively secure universal
samplers in the plain model [33]. Furthermore, they could be used to build actively secure distributed
samplers that violate the results described in Section 3.

On the labelling system in FpdDUS. At first, it may seem that there exist easier ways of labelling the queries
in FpdDUS. It turns out, however, that simpler solutions make the functionality weaker. We observe that
it is important that the adversary specifies the labels fixing the outputs upon activation of the corrupted
parties: if we allow the adversary to supply the chosen label at the time of sampling, the adversary can
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The Game GadUSA (1lλ)
Initialisation. The challenger instantiates a random oracle H and a sampling oracle O. The latter is a
equipped with a truly random function F outputting L(λ) bits. Upon receiving any distribution D having
circuit size at most L(λ), the oracle O outputs the sample R← D(F (D)).
Then, the challenger performs the following operations:

1. b
$← {0, 1}

2. adU0
$← Setup

(
1lλ, L(λ)

)
3. (adU1, τ)

$← SimO(1lλ, L(λ))
4. provide A with adUb.

Oracle query. On input (oracle,D) from the adversary, the challenger performs the following operations:

1. r0 ← H(D)

2. (r1, τ)
$← SimROO(τ,D)

3. provide A with rb.

Sample query. On input (sample,D) from the adversary, the challenger performs the following operations:

1. R0 ← SampleH(adU0,D)
2. R1 ← O(D)
3. provide A with Rb.

The adversary wins if it ends its execution outputting b.

Fig. 15: The adaptive universal sampler game

base its decision on all information received16 since the activation of the corrupted parties. In many
contexts, this would be problematic.

We also observe that abstracting every test query under a single, monolithic identifier (i.e. the identi-
fier cannot be split into the contributions of the single parties) makes our model less expressive. Indeed,
in the protocol, when the adversary fixes the messages of the corrupted parties in a subset P, it inevitably
fixes also all outputs relative to subsets P ′ ⊆ P. Modelling this fact using monolithic identifiers is complex.

Adaptive Universal Samplers and Randomness Extractability. The reusable, party-dynamic
DUS we will present in the next section relies on an adaptive (bounded) universal sampler [33]. The latter
differs from its selectively, one-time secure version as its CRS can be reused multiple times to sample from
different distributions. Even if such distributions are adaptively chosen by the adversary after receiving
the CRS, the construction is still guaranteed to reveal no information in the addition to the outputs.

Below, we recall the formal definition of adaptive universal sampler [33]. We point out that such
construction can exist only in the programmable random oracle model, so, its definition is intrinsically
connected to such model.

Definition 5.4 (Adaptive and bounded universal sampler). An adaptive and bounded universal
sampler is a pair of PPT algorithms (Setup,Sample) with the following syntax:

– Setup is a PPT algorithm taking as input the security parameter 1lλ and a bound L(λ). The output
is an adaptive sampler adU.

– Sample is a deterministic algorithm having access to a random oracle H. The inputs are a sampler
adU and a distribution D having circuit size at most L(λ). The output is a sample R.

The sampler satisfied adaptive security if there exist PPT simulators Sim and SimRO such that, for
every bound L(λ), no PPT adversary A can win the game GadUSA (1lλ) (see Fig. 15) with non-negligible
advantage.

16 The functionality FpdDUS can be used as a resource for another protocol in which the parties are constantly
interacting. Sampling may occur several rounds after the players’ activation.
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Essentially, the above definition states that the real universal sampler cannot be distinguished from
a fake one which can be programmed to output ideal samples via the random oracle.

Randomness extractable unbounded universal sampler. Our reusable, party-dynamic DUS requires an
additional property from adaptive distributed samplers. Specifically, we require that if we know the
randomness used to generate the universal sampler, then, we can efficiently extract the randomness used
to generate the outputs. We formalise the definition below. Using the same techniques in the proof of
Theorem 4.5, it is easy to prove that the adaptive distributed sampler of [33] is randomness extractable.

Definition 5.5 (Randomness extractable adaptive universal sampler). Suppose that (Setup,Sample)
is an adaptive universal sampler with random oracle H. Let M(λ) denote the bit-length of the random-
ness needed by Setup. We say that (Setup,Sample) is randomness extractable if there exists a PPT algo-
rithm Extract having access to H such that, for any PPT adversary A and polynomial L(λ), it holds that

Pr

D(ρ) = R

∣∣∣∣∣∣∣∣∣∣
(D, r) $← AH(1lλ, L(λ))

U ← Setup(1lλ, L(λ); r)

ρ← ExtractH(1lλ,D, L(λ), r)

R← SampleH(U,D)

 = 1− negl(λ)

The above probability is taken also over the random coins of the oracle.

Building Reusable, Party-Dynamic DUS with Malicious Security. We now explain how to up-
grade a one-time, party-dynamic DUS with weakly semi-malicious security into a reusable one achieving
security against an active adversary.

The main challenge: from selectively chosen inputs to adaptively chosen ones. One-time, party-dynamic
DUSs permit any subset of parties to sample from any distribution. The main challenge, however, is that
they achieve security only if the messages are used only once and the distribution and the corresponding
subset of parties are fixed before the generation of the messages. In reusable, party-dynamic DUSs, this
does not happen: the environment can choose the distributions and the subsets of parties as well as the
messages of the corrupted parties after seeing the honest messages. Furthermore, we reuse the messages
to sample multiple times.

Reusing the same message to sample from multiple distributions and for multiple subsets of parties. Our
idea is to non-interactively generate new, independent-looking one-time, party-dynamic DUS messages
for every distribution D and subset of parties P. Clearly, it is sufficient to produce only the structured
part of the messages, the generation of the unstructured part is instead entrusted to the random oracle.
We achieve our goal by making each party Pj publish an adaptive universal sampler adUj . We generate
the one-time, party-dynamic DUS messages by querying the corresponding distributions. Notice that,
now, we never use any of the one-time DUS messages twice.

A minor issue we encounter is that, if an adaptive universal sampler is queried multiple times with
the same distribution, the output remains always the same. We solve this problem by parametrising
the queried distributions with a different tag h ∈ {0, 1}λ and the identifier j of the addressed party:
the distribution labelled with (j, h) outputs h and j along with a random one-time, party-dynamic
DUS message. Since all the queried distributions are now different, the adaptive universal samplers are
guaranteed to output independent-looking samples.

Dealing with the adaptive choices of the adversary using a random oracle. We observe that the solution
described in the previous paragraph is not secure yet. The main issue is that there is nothing that prevents
the adversary from adaptively choosing the subset of parties P, the distribution D and the messages of
the corrupted parties after seeing the one-time, party dynamic DUS messages of the honest players.

Following the blueprint of [33] and [2], we solve this issue using the random oracle. In particular, we
force the adversary to query the subset of parties, the corresponding adaptive universal samplers and the
distribution it wants to sample from to the random oracle. The response is the tag h ∈ {0, 1}λ parametris-
ing the distributions of the one-time, party-dynamic DUS messages. In other words, the adversary cannot
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Reusable, Party-Dynamic Distributed Universal Sampler with Malicious Security

CRS. Provide all the parties with urs
$← NIZK.Gen(1lλ).

Join. In order to join the protocol, party Pi performs the following operations:

1. ri
$← {0, 1}M(λ)

2. adUi ← adUS.Setup
(
1lλ, L(λ); ri

)
3. πi

$← NIZK.Prove(1lλ, urs, adUi, ri)
4. Publish (adUi, πi) on the public bulletin board.

Sample. On input a set of parties P and a distribution D, each party Pi for i ∈ P performs the following
operations:

1. Retrieve the messages (adUj , πj)j∈P on the bulletin board.
2. If there exists j ∈ P such that NIZK.Verify(urs, πj , adUj) = 0, output ⊥.
3. Query

(
P, (adUj , πj)j∈P ,D

)
to the random oracle H. Let h ∈ {0, 1}λ be the answer.

4. For every j ∈ P, let Dj,h, be the distribution that outputs (j, h) along with a random sample from
pdDUS.Gen(1lλ).

5. ∀j ∈ P : Uj ← adUS.SampleH(adUj ,Dj,h)
6. For every i ∈ P, query

(
P, (Uj)j∈P ,D, i

)
to the one-time, party-dynamic DUS random oracle. Let ui

be the pD(λ, |P|)-bit response.
7. Output R← pdDUS.Sample

(
P, (Uj)j∈P , (uj)j∈P ,D).

Fig. 16: Reusable, party-dynamic DUS with malicious security

learn any outputs without first presenting its plans to the random oracle. In the security proof, this allows
us to use the one-time, party-dynamic DUS simulator and program the final output. Specifically, we gen-
erate the honest, one-time, party-dynamic DUS messages (Uj)j∈P∩H by feeding an ideal sample R from D
into the corresponding simulator. Then, we use the adaptive universal sampler programmability to make
adUj output Uj for every j ∈ P ∩H. In this way, the output of the construction is guaranteed to be R.

Detecting malformed messages and extracting the randomness of the corrupted parties. We observe that
the one-time, party-dynamic DUS simulator needs to be provided with the randomness of the corrupted
parties. We need to find a way to extract it. In the current state, the construction suffers also from
another vulnerability: nothing prevents the corrupted parties from publishing malformed and potentially
malicious messages. We solve both issues using simulation-extractable NIZKs. The latter bases its security
on a CRS. In many instantiations, however, the CRS is unstructured, so, we can use the random oracle
to generate it without any interaction.

We modify our construction so that each party Pj , now, publishes a proof of well-formedness πj
along with its adaptive universal sampler. Before outputting any sample, the parties involved in the
computation check the NIZK proofs of the other participants. If any verification fails, the players output
⊥. We slightly change also the queries issued to the random oracle by appending the well-formedness
proofs. In this way, in the security proof, we can extract the randomness used to generate (adUj)j∈P\H .
Using the randomness extractability of the adaptive universal samplers, we can then retrieve the random
coins used for the generation of the one-time, party-dynamic DUS messages of the corrupted parties.

Formal description. The precise description of our reusable, party-dynamic DUS with malicious secu-
rity is in Fig. 16. The construction relies on an adaptive universal sampler adUS = (Setup,Sample) sat-
isfying randomness extractability. We use M(λ) to denote the bit-length of the randomness needed by
adUS.Setup. We also use a one-time, party-dynamic DUS pdDUS = (Gen,Sample) satisfying weakly semi-
malicious security. We denote by Dj,h the distribution that outputs the tag (j, h) along with a sample

from pdDUS.Gen(1lλ). We choose L(λ) to be a polynomial upper bound on the circuit length of Dj,h. Fi-
nally, we rely on a simulation-extractable NIZK scheme NIZK = (Gen,Prove,Verify) having unstructured
CRS. The corresponding language is{

(U, r)
∣∣∣U = adUS.Setup

(
1lλ, L(λ); r

)}
.
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The Resource FBulletin

Publish. On input (Publish,mi) from party Pi, the functionality stores (i,mi). Subsequent queries of this
kind from party Pi are ignored.
Read. On input (Read, j) from a party Pi, retrieve the pair (j,mj) if it was previously stored, and send mj

to Pi.

Fig. 17: The bulletin board resource

Finally, the construction assumes the existence of a bulletin board functionality FBulletin (see Fig. 17).
The latter permits each party Pi to publish a single message. At any point in the future, the other players
can retrieve the message published by Pi without needing further communication from Pj . It is possible
to implement such a functionality using blockchains.

Since there exist multiple primitives using the random oracle in our protocol, we assume that each
oracle query is prepended with a description of its context. For instance, any query relative to Pj ’s
adaptive universal sampler will be prepended with adUj .

Theorem 5.6. Assume that NIZK = (Gen,Prove,Verify) is a simulation-extractable NIZK, adUS =
(Setup,Sample) is an adaptively secure universal sampler and pdDUS = (Gen,Sample) is a party-dynamic
DUS with weakly semi-malicious, one-time security. Then, the construction in Fig. 16 is a reusable, party
dynamic DUS with malicious security in the FBulletin-hybrid model with random oracle.

Proof. We prove the security of the construction through a sequence of computationally indistinguishable
hybrids. Hybrid 0 corresponds to the real protocol, the last hybrid corresponds to the ideal world. We
present the precise description of the simulator at the end. To simplify the notation, we assume that we
have access to multiple random oracles: the random oracle H of the construction, a random oracle HadU

for every possible adaptive universal samplers adU and the one used by the one-time party-dynamic DUS
HpdDUS. It is easy to implement the three oracles using only one17. In each hybrid, we mark the changed
operations using red font.

Hybrid 0. This hybrid corresponds to the real world. The simulator provides the parties with urs
$←

NIZK.Gen(1lλ). When a honest party joins, the simulator generates a reusable, party-dynamic message
following the protocol and publishes it on the bulletin board. The samples output by the honest parties are
also generated as in the protocol. Finally, the random oracle queries are answered using random strings.

Hybrid 1. In this hybrid, we generate the URS and the zero-knowledge proofs of the honest parties
using the simulators for the simulation-extractable NIZK. Specifically, urs is generated as

(urs, τ)
$← NIZK.Sim1(1lλ)

Whenever an honest party Pi joins, the simulator generates its message (adUi, πi) as follows:

1. adUi
$← adUS.Setup

(
1lλ, L(λ)

)
2. πi

$← NIZK.Sim2(urs, τ, adUi)

This hybrid is indistinguishable from Hybrid 0 due to the multi-theorem zero-knowledge property of NIZK.
Hybrid 2. In this hybrid, instead of generating the adaptive samplers for the honest parties using

adUS.Setup, we use the simulator adUS.Sim. We also use adUS.SimRO to simulate the queries to the
corresponding random oracles. Formally, we generate the message of the honest party Pi as follow:

1. We instantiate a sampling oracle Oi equipping it with a random function Fi. On input a distribution
D of size at most L(λ), Oi outputs D(Fi(D)).

2. (adUi, τi)
$← adUS.SimOi

(
1lλ, L(λ)

)
3. πi

$← NIZK.Sim2(urs, τ, adUi)

We reply to the oracle queries to HadUi
using adUS.SimROOi(τi). Since adUi has large entropy, the

probability that the adversary as already queried HadUi before is negligible. We conclude that this hybrid
is indistinguishable from the previous one by the adaptive security of adUS = (Gen,Sample).

17 It is sufficient to prepend the label of the addressed oracle to each query.
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We now repeat Hybrid 3.t for t = 1, 2, . . . , T . Here, T denotes a polynomial upper bound on the
number of oracle queries issued by the adversary.

Hybrid 3.t. We introduce some notation. Assume that

q :=
(
P̂, (âdUj , π̂j)j∈P̂ , D̂

)
is the t-th random oracle query issued by the adversary where

– NIZK.Verify(urs, π̂j , âdUj) = 1 for every j ∈ P̂
– (âdUj , π̂j) = (adUj , πj) for every j ∈ P̂ ∩H.

We define the set W ⊆ P̂ \ H containing the indexes j such that (âdUj , π̂j) is the copy of an honest

party’s message on the bulletin board. Let Z = P̂ \ (H ∪W ) and let ĥ ∈ {0, 1}λ denote the answer of H
to the query q. For every j ∈ Z, we define the element Ûj such that

adUS.Sample
H

âdUj
(
âdUj ,Dj,ĥ

)
= (j, ĥ, Ûj).

In this hybrid, for every j ∈ P̂ ∩H, we change the answer of the sampling oracle Oj on input Dj,ĥ.
For every j ∈ W , we also change the answer of the sampling oracle of the copied party on input Dj,ĥ.

Specifically, instead of outputting a random sample from pdDUS.Gen(1lλ), we use the simulator for the
one-time party dynamic DUS with weakly semi-malicious security pdDUS. In such computation, we treat
the parties in W ∪ (P̂ ∩H) as honest (the adversary knows nothing about how their messages have been
generated).

We notice that simulator for pdDUS needs to be provided with the randomness (ρj)j∈Z used for the

generation of (Ûj)j∈Z . We extract such randomness in two steps: first, using the simulation-extractability

of NIZK, we retrieve the random coins used to generate âdUj for every j 6∈ P̂ ∩ H. Then, using the
randomness extractability of adUS, we obtain (ρj)j∈P̂\H .

We also provide pdDUS.Sim with a sample R from D̂. We obtain the latter by querying the function-
ality with (

Query, P̂, (âdUj , π̂j)j∈P̂\H , D̂
)
.

The simulator of pdDUS provide us also with random strings (ûj)j∈P̂ . From now on, if (P̂, (Ûj)j∈P̂ , D̂, i)
with i ∈ P̂ is ever queried to the one-time, party-dynamic DUS oracle, we reply with ûi.

Formally, in this hybrid the simulator performs the following steps:

1. Send
(
Query, P̂, (âdUj , π̂j)j∈P̂\H , D̂

)
to the functionality. Let R be the reply.

2. ∀j ∈ Z : rj ← NIZK.Extract(urs, τ, âdUj , π̂j)

3. ∀j ∈ Z : ρj ← adUS.Extract
H

âdUj
(
1lλ,Dj,ĥ, L(λ), rj

)
4. (Ûj , ûj)j∈P̂

$← pdDUS.Sim
(
1lλ, P̂, Z, D̂, R, (ρj)j∈Z

)
5. For every j ∈ P̂ ∩H, if Dj,ĥ is queried to Oj , we reply with Ûj .

6. For every j ∈W who copied the honest party Pi, if Dj,ĥ is queried to Oi, we reply with Ûj .

7. If (P̂, (Ûj)j∈P̂ , D̂, i) with i ∈ P̂ is ever queried to HpdDUS, we reply with ûi.

We notice that by the simulation extractability of NIZK, for every j ∈ Z, we have that âdUj =

adUS.Setup(1lλ, L(λ); rj). Furthermore, by the randomness extractability of adUS, for every j ∈ Z, we

have that Ûj = pdDUS.Gen(1lλ; ρj). Both equations holds with overwhelming probability.
By the weakly semi-malicious, one-time security of pdDUS, we also know that

(Ûj , ûj)j∈P̂
$← pdDUS.Sim

(
1lλ, P̂, Z, D̂, R, (ρj)j∈Z

)
is indistinguishable from (Uj , uj)j∈P̂

∣∣∣∣∣∣∣∣
Uj

$← pdDUS.Gen(1lλ) ∀j ∈ P̂ \ Z

Uj ← Ûj ∀j ∈ Z

uj
$← {0, 1}pD(λ,n) ∀j ∈ P̂


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Indistinguishability holds even if the adversary knows the inputs to pdDUS.Sim. We observe that the re-
sponses of HpdDUS that we changed look like random strings of the right size. Furthermore, with over-
whelming probability, the adversary has never issued the modified queries before. This is a consequence
of the fact that Ûj has ω(log λ) min-entropy for every j ∈ H (otherwise, pdDUS would not be secure). As
a consequence, the adversary cannot notice that we changed the oracle responses only after receiving q.

Finally, we observe that, with overwhelming probability, any Oi (including Oj) is never queried with

Dj,ĥ before q is sent either. Indeed, the executions of adUS.Sim and adUS.SimRO are independent of ĥ until
the query q is issued. Moreover, for any i, adUS.Sim and adUS.SimRO can issue only a polynomial number
of queries to Oi, while ĥ is uniformly distributed over {0, 1}λ. Since the answers of Oi to different queries
look independent, the adversary cannot detect if we change the answer of Oi to Dj,ĥ only after receiving

q. Notice also that if i ∈ P̂, we are changing the answer of Oi to two different queries: Dj,ĥ and Di,ĥ.
By the above arguments, we conclude that Hybrid 3.1 is indistinguishable from Hybrid 2. Furthermore,

for every t > 1, Hybrid 3.t is indistinguishable from Hybrid 3.(t− 1).

We conclude our proof by observing that, by the security of adUS, for every j ∈ P̂ ∩H,

adUS.SampleSimRO(τj)(adUj ,Dj,ĥ) = Oj(Dj,ĥ) = (j, ĥ, Ûj).

Moreover, for any j ∈W copying the messages of the honest party Pi, we have

adUS.SampleSimRO(τi)(âdUj ,Dj,ĥ) = Oi(Dj,ĥ) = (j, ĥ, Ûj).

The above equations hold except with negligible probability. We conclude that, if the adversary activates

and corrupts all the parties in P̂ \H choosing (âdUj , π̂j)j∈P̂\H as their messages, the sample output by

any honest party Pj on input (P̂ , D̂) is

pdDUS.Sample
(
P̂, (Ûj)j∈P̂ , (ûj)j∈P̂ , D̂).

By the one-time security of pdDUS, the latter coincides with the sample provided by the functionality.
In other words, we can let the functionality deal the outputs of the honest parties without the adversary
noticing it.

We summarise the operations performed by our simulator in Fig. 18.

5.3 Party-Dynamic, Ideal Public-Key PCFs.

Public-key PCFs. Public-key pseudorandom correlation functions (PCFs), introduced by [44] and for-
malised in [2], are one-round protocols permitting a set of players to generate large amounts of corre-
lated randomness in a distributed way and with minimal communication. In the construction, each party
generates a key pair broadcasting the public counterpart. Using the public keys of all participants and
their own secret key, the players are able to generate large amounts of correlated randomness. Clearly,
each party can obtain only the material addressed to it, the other players’ outputs remain secret.

An issue with entropy (again). One of the most important qualities we require from a public-key PCF is
that the public keys are small (i.e. sublinear in size) compared to the amount of produced material. In
this way, we can design protocols for the generation of correlated material with minimal communication
complexity. This requirement conflicts however with entropy. Indeed, the size of the keys should be at least
equal to the Yao entropy of the outputs. In other words, if we want to generate ideal correlated samples
in the plain model, the size of the public keys must be at least linear in the size of the produced material.

Known solutions. In the last years, two solutions to the above problem were found: weakening the security
definition of public-key PCFs [12] or relaying on the random oracle to non-interactively introduce entropy
in the construction [2]. The first line of research led to the standard definition of PCFs. The notion asks
that the adversary is unable to distinguish between the real outputs of the honest parties and fake ones
produced from the outputs of the corrupted players conditioned on satisfying the desired correlation rule.
Not all types of correlation permit this kind of operation, so the standard notion of public-key PCFs is
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The Simulator Sim
Initialisation. All the oracle queries are initially answered using random elements. The simulator keeps a
log of the queries elements and if a value is queried multiple times, it replies always in the same way. The
simulator generates the CRS as follows:

1. (urs, τ)
$← NIZK.Sim1(1lλ)

2. Output urs.

Join. When a corrupted party Pj joins the protocol, the simulator performs the following operation:

1. Receive (adUj , πj) from the adversary.

2. If NIZK.Verify(urs, πj , adUj) = 0, send (corrupt, îdj = ⊥) to the functionality.

3. Otherwise, send (corrupt, îdj = (adUj , πj)).
4. Publish (adUj , πj) on the bulletin board on behalf of Pj .

If Pj joins instead as a honest party, the simulator performs the following steps:

1. Instantiate a sampling oracle Oj . On input any distribution D of size at most L(λ), the oracle replies

with R
$← D. The simulator keeps a log of all the responses of Oj . If the same distribution is queried

multiple times, the simulator always provides the same answer.

2. (adUj , τj)
$← adUS.SimOj

(
1lλ, L(λ)

)
3. πj

$← NIZK.Sim2(urs, τ, adUj)
4. Publish (adUj , πj) on the bulletin board on behalf of Pj .
5. Queries to HadUj are from now on replied using adUS.SimROOj (τj).

Queries to H. All queries to H are answered with random elements in {0, 1}λ. However, the sim-

ulator performs the following operations if the query is of the form
(
P̂, (âdUj , π̂j)j∈P̂ , D̂

)
where

NIZK.Verify(urs, π̂j , âdUj) = 1 for every j ∈ P̂ and (âdUj , π̂j) = (adUj , πj) for every j ∈ P̂ ∩ H. If Z = ∅,
the simulator changes nothing.

1. Let ĥ be the answer of H.
2. ∀j ∈ Z : rj ← NIZK.Extract(urs, τ, âdUj , π̂j)

3. ∀j ∈ Z : ρj ← adUS.Extract
H

âdUj
(
1lλ,Dj,ĥ, L(λ), rj

)
4. query

(
Query, P̂, (âdUj , π̂j)j∈P̂\H , D̂

)
to the functionality. Let R be the answer.

5. (Ûj , ûj)j∈P̂
$← pdDUS.Sim

(
1lλ, P̂, Z, D̂, R, (ρj)j∈Z

)
6. If Oj is ever queried with Dj,ĥ for any j ∈ P̂ ∩H, from now on, the sampling oracle replies with Ûj .

7. For every j ∈W who copied the honest party Pi, if Dj,ĥ is queried to Oi, we reply with Ûj .

8. If the one-time, party-dynamic DUS random oracle is ever queried with (P̂, (Ûj)j∈P̂ , D̂, i) for any i ∈ P̂,
from now on, the simulator replies with ûi.

Fig. 18: The reusable, party-dynamic DUS simulator
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The Functionality Fideal-pkPCF

Initialisation. The functionality initialises the set of honest parties H, of corrupted parties C and queries
Q to ∅.
Query. On input (Query,P, (idj)j∈P\H , C) from the adversary where P is a subset of parties and C is a |P|-
party correlation function, the functionality performs the following operations:

– If Q contains a tuple (P, (idj)j∈P\H , C, (Rj)j∈P), send (Rj)j∈P\H to the adversary.

– Otherwise, sample (Rj)j∈P
$← C, store (P, (idj)j∈P\H , C, (Rj)j∈P) in Q and send (Rj)j∈P\H to the

adversary.

Join. On input Join from a party Pi where i 6∈ C∪H, the functionality waits for a message from the adversary.

– If the adversary sends (corrupt, îdi), the functionality sets C ← C ∪ {i} and stores (i, îdi).
– Otherwise, it sets H ← H ∪ {i}.

Sample. On input (Sample,P, C) from a honest party Pi where i ∈ P ⊆ H ∪ C and C is a |P|-party
correlation function, the functionality performs the following operations

– If there exists a j ∈ P ∩ C such that îdj = ⊥, output ⊥ to Pi.

– If there exists a tuple
(
P, (îdj)j∈P∩C , C, (Rj)j∈P

)
∈ Q, output Ri to Pi.

– Otherwise, sample (Rj)j∈P
$← C, store

(
P, (îdj)j∈P∩C , C, (Rj)j∈P

)
in Q and output Ri to Pi.

Fig. 19: Reusable, party-dynamic, ideal public-key PCF functionality

restricted to a particular family of functions called reverse samplable18. We also notice that this weaker
definition of PCF does not prevent the adversary from having very strong influence on the protocol. For
instance, a PCF can be secure even if the corrupted parties are allowed to choose their output. This
might be problematic in some contexts.

The second line of research led to the definition of ideal, public-key PCFs [2]. These constructions
satisfy a stronger security definition: the protocol directly implements the functionality that generates
the desired correlated material and distributes it to the parties. Since it is a one-round protocol, in the
actively secure case, the functionality allows some limited influence in the form of providing multiple
samples (a polynomial number and only the parts addressed to the corrupted parties) and letting the
adversary choose which to output the the honest players. Due to the random oracle, ideal public-key
PCFs do not need to be tailored to any specific correlation, the latter can be provided as input to the
sampling algorithm. The big advantage of ideal public-key PCFs is also that they do not restrict to reverse
samplable correlation. Furthermore, they limit the influence of the adversary. The big disadvantage is
that they need a random oracle.

Generating Correlated Randomness for a Dynamically Changing Set of Parties. In [2],
Abram, Scholl and Yakoubov presented the first ideal public-key PCF, which was built using obfuscation
and distributed samplers. The construction is tailored to a certain number of parties n, meaning that if
the set of participants changes, the players are forced to restart the protocol. In this section, we formalise
an even stronger definition of ideal public-key PCF in which the messages of the parties are independent
of the set of participants. Following the same approach that we used for party-dynamic DUSs, we could
start by considering the weaker one-time, semi-maliciously secure definition. Since we have to rely on
the random oracle anyway and our construction is fairly simple, we go straight to the reusable, actively
secure version.

Definition 5.7 (Reusable, party-dynamic, ideal public-key PCF with malicious security).
A reusable, party-dynamic, ideal public-key PCF with malicious security is a protocol implementing the
functionality Fideal-pkPCF (see Fig. 19) against an active adversary in the UC model. Each party is required
to send at most one message during its whole execution.

Notice that the above definition follows the blueprint of Def. 5.3. As before, the adversary is free to
misbehave as it pleases. The environment has total control over when to activate parties. Moreover, it is

18 For instance, it is impossible to generate garbled circuits using standard PCFs.
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completely free to choose from which correlation functions to sample and the set of parties involved in
the computation. The messages of the honest parties can be reused to sample from multiple correlations
and for different subsets of players (even more than one at the same time). The environment is also free
to make these choices as well as to choose the corrupted messages after seeing the messages of the honest
parties. We highlight that the state of corruption is chosen upon activation of a party and cannot be
changed afterwards. So, we achieve static security.

We represent all possible messages of a corrupted player Pj via a label idj . The functionality allows
the adversary to test the messages of the corrupted parties before publishing them. This is modelled by
the querying procedure: after providing the set of participants, the candidate corrupted messages and
the correlation function, the functionality provides the adversary with the corresponding samples of the
corrupted players, while keeping those of the honest parties secret. If the adversary decides to use the
queried corrupted messages and the environment recreates the tested situation, the functionality reveals
the honest samples that were previously kept secret by outputting them to the honest players. The
adversary specifies the chosen message for a corrupted Pj by providing the corresponding label îdj to
the functionality upon Pj ’s activation.

A Reusable, Party-Dynamic, Ideal Public-Key PCF. We use the simple idea of [2]: we let each
party publish the public counterpart of a PKE key. Let C the correlation function we want to sample from,
let P be the set of participants. We use a reusable, party-dynamic DUS to sample from the distribution
DC that runs C and, for every j ∈ P, encrypts its j-th output under Pj ’s public key. In this way, only Pj
is able to retrieve its sample.

A Reusable, Party-Dynamic, Ideal Public-Key PCF
Join. In order to join the protocol, each party Pi performs the following operations:

1. (pki, ski)
$← PKE.Gen(1lλ)

2. Send Join to FpdDUS.
3. Publish pki on FBulletin and keep ski secret.

Sample. On input a subset of players P where i ∈ P and a |P|-party correlation function C, each party Pi
performs the following operations:

1. Read the public keys (pkj)j∈P from FBulletin.

2. Let DC be the distribution that computes (Rj)j∈P
$← C, derives cj

$← PKE.Enc(pkj , Rj) for every j ∈ P
and outputs (cj)j∈P .

3. Send (Sample,P,DC) to FpdDUS. If the result is ⊥, Pi outputs ⊥, otherwise, let (cj)j∈P be the result.
4. Output Ri ← PKE.Dec(ski, ci).

Fig. 20: A reusable, party-dynamic, ideal public-key PCF

We formally describe the construction in Fig. 20. We work in the (FpdDUS, FBulletin)-hybrid model (see
Fig. 14 and Fig. 17). We also rely on an IND-CPA public key encryption scheme PKE = (Gen,Enc,Dec).

Theorem 5.8. If PKE = (Gen,Enc,Dec) is an IND-CPA public-key encryption scheme, the construction
in Fig. 20 is a reusable, party-dynamic, ideal public-key PCF with malicious security in the (FpdDUS,FBulletin)-
hybrid model.

Proving Theorem 5.8 is rather straightforward. The result is immediately implied by the IND-CPA
security of PKE. For this reason, we do not provide a formal proof.

Public-key PCF with master secrets. We notice that our construction has some advantages over the ideal
public-key PCF of [2]. Indeed, thanks to the unbounded universal sampler hidden in FpdDUS, we set no
bound on the circuit size of the correlation functions we sample from. As a consequence, differently from
the solution of [2], our ideal public key PCF supports also master secrets. We say that a correlation
function has master secrets if it is parametrised by random values, one for each party, which must remain
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private. An example of this kind of correlation is authenticated beaver triples: each sample from the
correlation is authenticated using the same MAC key. Each party holds a share of the key, such share
must remain private. We say that a public-key PCF supports master secrets if it allows the generation
of multiple samples using the same master secrets while leaking no information about the secrets of the
honest parties. We notice that the master secrets are not necessarily input by the parties, they can also
be sampled at random by the public-key PCF itself. We refer to [2] for a more formal definition.

How to sample with master secrets. In our construction, the parties can input a special distribution Dms
C

into FpdDUS: Dms
C generates the master secrets for all parties and uses them to produce multiple samples

from the correlation function. Then, it encrypts each result under the public keys of the participants. If
FpdDUS is implemented using our unbounded universal sampler, the parties do not even need to retrieve
all the generated samples in one go. They can indeed use the unbounded universal sampler to garble
only the parts of Dms

C that they need (for instance the part computing the first ` outputs). If, at a later
stage, the parties need additional correlated material, they can garble and evaluate a new piece of Dms

C .
The downside is that before even beginning the garbling, the parties need to hash Dms

C and the random
oracle responses. The operation requires linear computation in the amount of generated material. Our
solution has also another disadvantage: the amount of correlated randomness we can generate using the
same master secrets is polynomially bounded. The bound is chosen when Dms

C is input in FpdDUS. When
the parties deplete their source of correlated material, they are forced to query Dms

C again19. The new
batch of correlated material will however use independent master secrets.

We highlight that it is actually possible to use the techniques we just described also in the construction
of [2], in that case, however, the size of the PCF public keys would blow up linearly in the amount of
generated correlation.
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A Additional Preliminaries

In this appendix, we present the notions we used for our proofs and constructions. In particular, we
recall the definitions of distributed samplers, indistinguishability obfuscation, puncturable PRFs, SSB hash
functions, garbled circuits and simulation-extractable NIZKs. Then, in Appendix A.7, we recall various
definitions of entropy and basic results.

Additional notation. If an algorithm Alg is assisted by an oracle H in its computations on input x, we
write AlgH(x). We use a simple arrow ← to assign the output of a deterministic algorithm Alg(x) or a
fixed value c to a variable a, i.e. we write a← Alg(x) and a← c. If the algorithm is instead randomised,

we write a
$← Alg(x). The notation assumes that in this case, Alg(x) is provided also with uniformly

sampled randomness. We write instead a← Alg(x; r) if we fix the randomness of the algorithm to be r.

Finally, we write a
$← X where X is a finite set, to denote that a is uniformly sampled from X. If instead

a is sampled from a distribution D, we write a
$← D.

A.1 Distributed Samplers

Distributed samplers (DS) are a strong primitive allowing n parties to securely generate CRSs with a
single round of interaction. Specifically, a distributed sampler for the distribution D(1lλ) is a one-round
protocol that generates a sample R from D(1lλ) without revealing any information except R itself.

The notion was introduced for the first time by Abram, Scholl and Yakoubov in [2]. In the paper,
the authors show how to build the primitive from indistinguishability obfuscation and multi-key FHE.
In this section, we recall their definition considering multiple adversarial models.

We start by consider security against a weakly semi-malicious adversary, i.e. a non-rushing adversary
that, as in the semi-honest model, follows the protocol, but before beginning the execution, it chooses
the random tapes of the corrupted parties as it prefers. If the adversary follows the protocol but instead
chooses the randomness of the corrupted parties after seeing the honest messages, we say that we are
dealing with a strongly semi-malicious adversary.

Definition A.1 (Weakly semi-maliciously secure distributed sampler). Let D(1lλ) be an effi-
ciently samplable distribution. An n-party distributed sampler (DS) for D(1lλ) is a pair of PPT algo-
rithms (Gen,Sample) having the following syntax:

1. Gen is a probabilistic algorithm taking as input the security parameter 1lλ and the index i of the party
running it. The output is the distributed sampler message Ui of the i-th party. We assume that Gen
needs M(λ) bits of randomness.
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2. Sample is a deterministic algorithm taking as input n distributed sampler messages (Uj)j∈[n], one for
each party. The output is a sample R.

We say that the distributed sampler is weakly semi-maliciously secure if there exists a PPT simulator
Sim such that, for every subset C ( [n] of corrupted parties and associated randomness (ρi)i∈C , the
following two distributions are computationally indistinguishable. (Ui)i∈H

(ρi)i∈C , R

∣∣∣∣∣∣∣
ρi

$← {0, 1}M(λ) ∀i ∈ H
Ui ← Gen(1lλ, i; ρi) ∀i ∈ [n]

R← Sample(U1, . . . , Un)

{
(Ui)i∈H

(ρi)i∈C , R

∣∣∣∣∣ R
$← D(1lλ)

(Ui)i∈H
$← Sim

(
1lλ, C,R, (ρi)i∈C

)
}

The security definition essentially states that even for the worst randomness choice of the corrupted
parties, the honest messages leak no information except the output itself. Observe that if we run Sample
over the simulated messages, the output coincides with R with overwhelming probability. Notice that
any adversary corrupting no party but just listening to the conversations is always able to obtain the
output. Indeed, the latter is just a deterministic function of the transcript.

It is possible to reformulate the above definition by saying that weakly semi-maliciously secure dis-
tributed sampler is a one-round protocol implementing the functionality that provides all the parties
with the same sample R from D(1lλ). Unfortunately, it is impossible to implement the above function-
ality against rushing adversaries. Indeed, after receiving the messages of the honest parties, the adver-
saries can always rerun the protocol in its head multiple times, changing only the messages of the cor-
rupted parties. In this way, the attacker obtains multiple samples from D(1lλ), it can therefore choose
the one it likes the most and send the corresponding corrupted messages in the protocol. In other words,
the adversary can always choose the output among a set of polynomially many samples. For this reason,
in the rushing setting, distributed samplers are defined as in Def. 2.1.

A.2 Indistinguishability Obfuscation

Some of the constructions presented in this work are based on indistinguishability obfuscation [5, 24].
An indistinguishability obfuscator is a cryptographic primitive that on input a circuit in a certain class
outputs an equivalent circuit, i.e. a circuit with exactly the same input-output behaviour. The operations
performed by the output circuit are however so different from the original ones that it is impossible to tell
how the input circuit was behaving. In the context of obfuscation, we often refer to circuits as programs.
We recall now the formal definition.

Definition A.2 (Indistinguishability obfuscator). Let {Lλ}λ∈N be a class of circuits where each
element c ∈ Lλ maps an inp(λ)-bit input into an out(λ)-bit output. An indistinguishability obfuscator
for {Lλ}λ∈N is a PPT algorithm iO satisfying the following properties:

– Correctness. For every λ ∈ N, x ∈ {0, 1}inp(λ) and c ∈ Lλ, we have that

Pr
[
c′(x) = c(x)

∣∣∣c′ $← iO(1lλ, c)
]

= 1.

– Security. For every circuits c0, c1 ∈ Lλ such that c0(x) = c1(x) for every x ∈ {0, 1}inp(λ), we have

iO(1lλ, c0) ∼c iO(1lλ, c1).

We point out that every obfuscator is tailored to a specific class of circuits. As the latter grows, the
size of the obfuscated programs and of the obfuscator itself often increases.

The first candidate indistinguishability obfuscator was designed by Garg et al. in [24] based on non-
standard assumptions. The work opened the way to a vast line of research focused on weakening the as-
sumptions needed by iO [38]. All the constructions presented so far, however, either rely on subexponen-
tially secure primitives or an exponential number of polynomially secure ones.
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A.3 Puncturable PRFs

This paper also makes use of puncturable PRFs [40, 11, 14]. As for standard PRFs, the latter is a
primitive that using a random secret key, maps a nonce into a pseudorandom string. These constructions
however satisfy an additional property: it is possible to remove from any key K all the information about
the expansion of a chosen nonce x. The operation is called puncturing and basically, provides a modified
key K. The latter can be expanded as the original one for every nonce except x, obtaining exactly the
same outputs. However, the expansion of x using K looks random even for an adversary holding K. We
recall the formal definition below.

Definition A.3 (Puncturable PRF). A puncturable PRF with output space (Zλ)λ∈N and nonce space
(Yλ)λ∈N is a pair of PPT algorithms (F,Punct) satisfying the following properties

– correctness. For every λ ∈ N, and K ∈ {0, 1}λ and x, y ∈ Yλ such that x 6= y, we have that

Pr
[
F (K, y) = F (K, y)

∣∣∣K ← Punct(K,x)
]

= 1.

– Security. For every x ∈ Yλ, no PPT adversary can distinguish betweenK, z
∣∣∣∣∣∣∣
K

$← {0, 1}λ

K ← Punct(K,x)

z ← F (K,x)


K, z

∣∣∣∣∣∣∣∣
K

$← {0, 1}λ

K ← Punct(K,x)

z
$← Zλ


It is easy to build puncturable PRFs using the GGM construction [11, 26]. Puncturable PRFs are

part of the standard toolkit for iO based cryptography [48].

A.4 Somewhere Statistically Binding Hash Functions

We recall the definition of somewhere statistically binding hash functions (SSB hashing) [35, 43]. Infor-
mally speaking, an SSB hash function is a hash function with block alphabet Σ hashing messages of
length at most L(λ). The particular property of the construction is that it hides an index i in its hash
key hk. As for any hash function, despite being hard to find, there always exist messages x 6= x′ having
colliding hashes Hash(hk,x) = Hash(hk,x′). SSB hash functions satisfy however an additional binding
property: if the hash of x collides with the hash of x′, the i-th block of x is guaranteed to coincide with
the i-th block in x′.

The construction allows also the generation of (usually short) proofs proving that a certain value
x ∈ Σ coincides with the j-th block of a preimage of a digest h. The index j does not need to be the one
hidden in the hash key. The proofs are not necessarily zero-knowledge. We recall the formal definition.

Definition A.4 (SSB hash function). An somewhere statistically binding (SSB) hash function with
block alphabet Σ and output length `Hash(λ) is a tuple of PPT algorithms (Gen,Hash,Open,Verify) with
the following syntax:

– Gen is a PPT algorithm taking as input the security parameter 1lλ, a bound L ≤ 2λ and an index
i ∈ [L]. The output is an SSB hash key hk.

– Hash is a deterministic algorithm taking as input an SSB hash key hk and a message x ∈ Σ≤L. the
output is a digest h ∈ {0, 1}`Hash(λ).

– Open is a PPT algorithm taking as input an SSB hash key hk, a message x ∈ Σ≤L and an index
i ∈ [L]. The output is an SSB proof π.

– Verify is a deterministic algorithm taking as input an SSB hash key hk, a digest h, an index i ∈ [L],
a value x ∈ Σ and an SSB proof π. The output is a bit b ∈ {0, 1}.

We also require the following properties:

– Correctness. For any λ ∈ N, bound L ≤ 2λ, indexes i, j ∈ [L] and message x ∈ Σ≤L k-length at
most L, we have

Pr

Verify(hk, h, j, xj , π) = 1

∣∣∣∣∣∣∣∣
hk

$← Gen(1lλ, L, i)

h← Hash(hk,x)

π
$← Open(hk,x, j)

 = 1
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– Index hiding. For every bound L(λ) ≤ 2λ and indexes i, j ∈ [L(λ)],

Gen(1lλ, L(λ), i) ∼c Gen(1lλ, L(λ), j)

– Somewhere statistically binding. For every bound L(λ) ≤ 2λ and index i ∈ [L(λ)], we have

Pr


∃(x, x′, h, π, π′) s.t.

x 6= x′

Verify(hk, h, i, x, π) = 1

Verify(hk, h, i, x′, π′) = 1

∣∣∣∣∣∣∣∣∣hk
$← Gen(1lλ, L(λ), i)

 = negl(λ).

We point out that thanks to both correctness, hiding and binding, SSB hash functions are also collision
resistant. Furthermore, we also highlight that in order for binding to hold, the digest length `Hash must
be at least log|Σ|.

SSB hash functions can be built from various cryptographic assumptions including FHE [35], DDH
and DCR [43].

A.5 Garbled Circuits

This work uses garbled circuits [51, 6]. A garbling scheme is a cryptographic primitive allowing us to
encrypt a circuit and its inputs. The result of such operation is called the garbling. A party provided
with the garbled circuit is able to retrieve its output without learning any additional information except
the structure of the circuit.

We point out that garbled circuits and obfuscation are very different concepts. Garbled circuits can
be usually evaluated on at most one input and the structure of the circuit is always leaked. Obfuscated
programs instead have no bound on the number of times they can be evaluated and they never leak
any information about the original circuit. The difference between the two notions is also mirrored
by the assumptions needed for their construction: while all the candidate obfuscators are based on
subexponentially secure primitives, garbled circuits can be built from one-way functions.

We recall the formal definition of garbling scheme.

Definition A.5 (Garbling scheme). A garbling scheme is a tuple of PPT algorithms (Garble,Eval,En,De)
with the following syntax:

– Garble is a PPT algorithm taking as input the security parameter 1lλ and a circuit c. The output is
the garbled circuit G, the encoding information e and the decoding information d.

– En is a deterministic algorithm taking as input a value x and the encoding information e. The output
is the input information X.

– Eval is a deterministic algorithm taking as input a garbled circuit G and the input information X.
The output is the output information Y .

– De is a deterministic algorithm taking as input the output information Y and the decoding information
d. The output is a value y.

We require the scheme to satisfy the following properties:

– Correctness. For any λ ∈ N, circuit c and input x,

Pr

De(Y, d) = c(x)

∣∣∣∣∣∣∣
(G, e, d)

$← Garble(1lλ, c)

X ← En(x, e)

Y ← Eval(G,X)

 = 1− negl(λ).

– Security. There exists a PPT simulator Sim such that, for every circuit c and input x, the following
distributions are computationally indistinguishable:{

G,X, d

∣∣∣∣∣(G, e, d)
$← Garble(1lλ, c)

X ← En(x, e)

}
and

{
Sim

(
1lλ, struct(c), c(x)

)}
.
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A famous garbling scheme. The constructions in this paper do not make a black-box use of the primitive.
We therefore sketch how it is possible to garble and evaluate a circuit using a 2-keyed PRF only. The
scheme below is credited to [51].

The labels of the wires. Suppose that c is a binary circuit made of XOR and AND gates. We associate
every wire w of c with two random strings k0w, k

1
w ∈ {0, 1}λ, called the labels of w. The two labels are

associated with the value that w can assume, namely 0 and 1 and they correspond to keys of the PRF.
At the right time, the party performing the evaluation will learn only one of the two labels for every
wire, specifically, the one associated with the value of w in that particular execution of the circuit. The
evaluator will not know however if the known label is k0w or k1w.

Garbling the gates. Each gate g in c is garbled by “encrypting” the labels of the output wire under
the labels of the corresponding inputs. The operations is performed using the 2-keyed PRF. Specifically,
let u, v be the input wires and let w be the output wire. For every pair (b1, b2) ∈ {0, 1} × {0, 1}, we

encrypt k
g(b1,b2)
w using kb1u and kb2v . The evaluator is provided with all the four ciphertexts generated in

this way. We permute their order to avoid leaking the value of the inputs to which they are associated.
Notice that the evaluator can retrieve a label of the output wire if and only if it knows the labels of the
corresponding inputs. In other words, it can decrypt only one of the four ciphertexts, in the other cases,
it will obtain random looking strings. If we properly pad the plaintexts before encryption, the evaluator
can learn when the decryption succeeds and when it fails.

The encoding and decoding information. In order to allow the evaluator compute c(x) without learning
any additional information about x, we provide it with the labels of the input wires associated with x,
i.e. for every i, we reveal kxi

wi
where wi is the i-th input wire and xi is the i-th bit in x. This is sufficient

to trigger the chain of decryptions that leads to labels of the output wires. In order to decode the latter,
we provide the evaluator with both labels k0w and k1w for every output wire w.

The locality of garbling. An important property of the garbling scheme we just described is its locality : as
long as we know the labels associated with the input and output wires of a gate, we can garble it without
knowing any information about the rest of the circuit. This will be fundamental in the constructions
presented in this paper.

A.6 Simulation-Extractable NIZKs

The last cryptographic primitive we need in in this paper is multi-theorem simulation-extractable NIZKs
[27]. A NIZK (or non-interactive zero-knowledge proof) is a construction proving that a public input x,
called the statement, belongs to an NP language L. The construction relies on a CRS. Given the latter
and a witness w for x, it is possible to efficiently generate a proof π. The proof can easily be verifier on
the CRS and the statement without further interaction.

The construction satisfies multi-theorem zero-knowledge, meaning that, even if we prove multiple
statements using the same CRS, the adversary cannot distinguish between the real proofs and fake ones
simulated without using the witnesses by relying on a trapdoor embedded in the CRS. The construction
satisfies also simulation extractability, meaning that the trapdoor in the CRS allows to efficiently extract
the witness from the valid proofs generated by any PPT adversary. The condition holds even if the
adversary is provided with simulated proofs for multiple statements chosen ahead of time. In other words,
a simulation-extractable NIZK is a proof of knowledge.

Below, we recall the formal definition of multi-theorem simulation-extractable NIZK.

Definition A.6 (Multi-theorem simulation-extractable NIZK). A multi-theorem simulation-extractable
NIZK (non-interactive zero-knowledge proof) for an NP relation R is a triple of PPT algorithms (Gen,Prove,Verify)
with the following syntax:

– Gen is a PPT algorithm taking as input the security parameter 1lλ and outputs a CRS σ.
– Prove is a randomised algorithm taking as input the security parameter 1lλ, a CRS σ, a statement x

and a witness w. The output is a proof π for x.
– Verify is a deterministic algorithm taking as input a CRS σ, a proof π and a statement x. The output

is a bit b ∈ {0, 1}.
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We require the following properties:

– Completeness. For every (x,w) ∈ R, we have

Pr

[
Verify(σ, π, x) = 1

∣∣∣∣∣σ
$← Gen(1lλ)

π
$← Prove(1lλ, σ, x, w)

]
= 1− negl(λ).

– Multi-Theorem Zero-Knowledge. There exists PPT simulators Sim1 and Sim2 such that, for
every polynomial L(λ) and tuple of pairs (xi, wi)i∈[L] ∈ R, no PPT adversary can distinguish between
the following distributions{

σ, (πi)i∈[L]

∣∣∣∣∣σ
$← Gen(1lλ)

∀i ∈ [L] : πi
$← Prove(1lλ, σ, xi, wi)

}
{
σ, (πi)i∈[L]

∣∣∣∣∣ (σ, τ)
$← Sim1(1lλ)

∀i ∈ [L] : πi
$← Sim2(σ, τ, xi)

}

– Simulation Extractability There exists a PPT extractor Extract such that, for every polynomial
L(λ), statements (xi, wi)i∈[L] ∈ R and PPT adversary A, we have

Pr


∀i ∈ [L] : (x′, π′) 6= (xi, πi)

Verify(σ, π′, x′) = 1

(x′, w′) 6∈ R

∣∣∣∣∣∣∣∣∣∣∣

(σ, τ)
$← Sim1(1lλ)

∀i ∈ [L] : πi
$← Sim2(σ, τ, xi)

(x′, π′)
$← A

(
1lλ, σ, (xi, πi)i∈[L]

)
w′ ← Extract(σ, τ, x′, π′)

 = negl(λ).

We point out that it is possible to build multi-theorem simulation-extractable NIZK where the CRS
is unstructured [22, 28, 45, 10], i.e. it can be derived in a secure way from a random string of bits.
Unstructured CRSs can always be generated without interaction in the random oracle model.

A.7 Notions of Entropy

In information theory, entropy is used to measure the unpredictability of random variables. After almost
a century of research, several definitions have been formalised. In this appendix, we recall some of the
important notions and the related properties. We start with Shannon’s entropy [49].

Definition A.7 (Shannon’s entropy). Let X be a random variable having finite support. The Shan-
non’s entropy of X is

H(X) := −
∑
x

Pr[X = x] · log
(
Pr[X = x]

)
.

We recall also the notion of conditional Shannon’s entropy.

Definition A.8 (Conditional Shannon’s entropy). Let X and Y be random variables having finite
support and let E be an event. The Shannon’s entropy of X conditioned on E is

H(X|E) := −
∑
x

Pr[X = x|E] · log
(
Pr[X = x|E]

)
.

The Shannon’s entropy of X conditioned on Y is instead

H(X|Y ) :=
∑
y

Pr[Y = y] · H(X|Y = y).

Shannon’s entropy satisfies an important property called the strong chain rule. We recall it below.

Theorem A.9 (Strong chain rule). Let X and Y be random variables with finite support. Then,

H(X,Y ) = H(Y ) + H(X|Y ).
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Notice that (X,Y ) is a random variable, so H(X,Y ) is defined as in Def. A.7. We also recall the
following properties of Shannon’s entropy.

Lemma A.10. Let X,Y and Z be random variables with finite support. Then,

– If X is uniform over a set of cardinality m, H(X) = logm.

– If X is independent of Y , given Z, H(X|Y, Z) = H(X|Z).

– H(X|Y, Z) ≤ H(X|Z).

– If f is a deterministic function, H(f(X)) ≤ H(X).

We now recall other definitions of entropy that are used to prove our results.

Definition A.11 (Max entropy). Let X be a random variable with finite support, let E be an event.
We define the max entropy of X to be

H0(X) = log|Supp(X)|.

We define the max entropy of X conditioned on E to be

H0(X|E) = log|Supp(X|E)|.

Definition A.12 (Min entropy). Let X be a random variable with finite support, let E be an event.
We define the min entropy of X to be

H∞(X) = − log
(
max
x

Pr[X = x]
)
.

We define the min entropy of X conditioned on E to be

H∞(X|E) = − log
(
max
x

Pr[X = x|E]
)
.

Finally, we recall the definition of collision entropy.

Definition A.13 (Collision entropy). Let X and Y be random variables with finite support, let E be
an event. We define the collision entropy of X to be

H2(X) = − log
(∑

x

Pr[X = x]2
)

= − log
(
Pr[X = X ′]

)
,

where X ′ is independent and identically distributed to X. We define the collision entropy of X conditioned
on E to be

H2(X|E) = − log
(∑

x

Pr[X = x|E]2
)
.

The average collision entropy of X given Y is instead

H̃2(X|Y ) = − log
(∑
x,y

Pr[Y = y] · Pr[X = x|Y = y]2
)
.

All the above definitions of entropy are not equivalent. For instance, Shannon’s entropy can assume
values that are significantly larger than min and collision entropy. The definitions are however related
by the following well-known inequalities.

Theorem A.14. Let X be a random variable with finite support, let E be an event. We have that

0 ≤ H∞(X) ≤ H2(X) ≤ H(X) ≤ H0(X),

0 ≤ H∞(X|E) ≤ H2(X|E) ≤ H(X|E) ≤ H0(X|E) ≤ H0(X).
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Yao’s Incompressibility Entropy. All the entropy notions we recalled above are great for measuring
information theoretic properties, however, they all suffer from an important disadvantage, namely, they
do not behave well under computational indistinguishability. Specifically, if X ∼c X ′, the entropy of X
can be significantly different from the entropy of X ′, it does not matter which of the above definitions
we consider.

We solve this issue by relying on a notion of computational entropy [50, 34]. We recall the definition.

Definition A.15 (Yao’s entropy). Let (Xλ)λ∈N be an ensemble of random variables. We say that the
Yao entropy of X is smaller or equal to k(λ), written HYao(X) ≤ k(λ), if there exists a pair of polynomial
sized deterministic circuits (cλ, dλ)λ∈N such that

Pr[dλ(cλ(X)) = X] ≥ 2`(λ)

2k(λ)
− negl(λ).

In the above formula, `(λ) denotes the output size of cλ. The circuit cλ is called a compressor, whereas
dλ is called a decompressor.

In [34], Hsiao, Lu and Reyzin generalised the definition to the conditional case. We recall it below.

Definition A.16 (Conditional Yao’s entropy). Let (Xλ)λ∈N and (Yλ)λ∈N be two ensembles of ran-
dom variables. We say that the Yao entropy of X conditioned on Y is smaller or equal to k(λ), written
HYao(X|Y ) ≤ k(λ), if there exists a pair of polynomial sized deterministic circuits (cλ, dλ)λ∈N such that

Pr[d(c(X,Y ), Y ) = X] ≥ 2`(λ)

2k(λ)
− negl(λ).

In the above formula, `(λ) denotes the output size of cλ. The circuit cλ is called a compressor, whereas
dλ is called a decompressor. If HYao(X|Y ) ≤ k(λ) where k(λ) is O(log λ), we will simply write that
HYao(X|Y ) = O(log λ).

Essentially, Yao’s incompressibility entropy measures how much it is possible to compress, in poly-
nomial time, samples from a distribution X given that the outcome of the possibly correlated random
variable Y is known.

We observe that Yao’s entropy can assume values that are significantly larger than Shannon’s entropy.
Examples of this kind are the outputs of PRGs. In some particular cases, however, also the opposite is
true. For instance, there exist distributions X such that H∞(X) = O(log λ) but H(X) = ω(log λ). For
all such X, we have HYao(X) = O(log λ) (consider the compressor that outputs the empty string and the
decompressor that outputs the most likely element).

The following well-known lemma formalises the fact that Yao’s entropy preserves under computational
indistinguishability.

Lemma A.17. Let (Xλ, Yλ)λ∈N and (X ′λ, Y
′
λ)λ∈N be two ensembles of random variables such that (Xλ, Yλ) ∼c

(X ′λ, Y
′
λ). Then, HYao(X|Y ) ≤ k(λ) if and only if HYao(X

′|Y ′) ≤ k(λ).

We highlight that Yao’s entropy is not the only notion of computational entropy [47, 30, 34]. Among
all the studied notions, it is however the one assuming highest values [34]. We decided to use Yao’s
entropy exactly for this reason, making the results presented in this paper as strong as possible.
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