
Tighter QCCA-Secure Key Encapsulation
Mechanism with Explicit Rejection in the

Quantum Random Oracle Model

Jiangxia Ge1,2 , Tianshu Shan1,2 , and Rui Xue1,2(�)

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing
100049, China

{gejiangxia, shantianshu, xuerui}@iie.ac.cn

Abstract. Hofheinz et al. (TCC 2017) proposed several key encapsu-
lation mechanism (KEM) variants of Fujisaki-Okamoto (FO) transfor-
mation, including FO/⊥,FO/⊥

m,QFO/⊥
m,FO⊥,FO⊥

m and QFO⊥
m, and they are

widely used in the post-quantum cryptography standardization launched
by NIST. These transformations are divided into two types, the implicit
and explicit rejection type, including {FO/⊥,FO/⊥

m,QFO/⊥
m} and {FO⊥,

FO⊥
m, QFO⊥

m}, respectively. The decapsulation algorithm of the implicit
(resp. explicit) rejection type returns a pseudorandom value (resp. an
abort symbol ⊥) for an invalid ciphertext.
For the implicit rejection type, the IND-CCA security reduction of FO/⊥

in the quantum random oracle model (QROM) can avoid the quadratic
security loss, as shown by Kuchta et al. (EUROCRYPT 2020). However,
for the explicit rejection type, the best known IND-CCA security reduc-
tion in the QROM presented by Hövelmanns et al. (ASIACRYPT 2022)
for FO⊥

m still suffers from a quadratic security loss. Moreover, it is not
clear until now whether the implicit rejection type is more secure than
the explicit rejection type.
In this paper, a QROM security reduction of FO⊥

m without incurring a
quadratic security loss is provided. Furthermore, our reduction achieves
IND-qCCA security, which is stronger than the IND-CCA security. To
achieve our result, two steps are taken: The first step is to prove that
the IND-qCCA security of FO⊥

m can be tightly reduced to the IND-CPA
security of FO⊥

m by using the online extraction technique proposed by
Don et al. (EUROCRYPT 2022). The second step is to prove that the
IND-CPA security of FO⊥

m can be reduced to the IND-CPA security of
the underlying public key encryption (PKE) scheme without incurring
quadratic security loss by using the Measure-Rewind-Measure One-Way
to Hiding Lemma (EUROCRYPT 2020).
In addition, we prove that (at least from a theoretic point of view),
security is independent of whether the rejection type is explicit (FO⊥

m)
or implicit (FO/⊥

m) if the underlying PKE scheme is weakly γ-spread.

Keywords: Fujisaki-Okamoto transformation · quantum random ora-
cle · key encapsulation mechanism · quantum chosen-ciphertext attack.

https://orcid.org/0000-0002-1671-7933
https://orcid.org/0000-0002-1918-7464
https://orcid.org/0000-0001-6024-3635

1 Introduction

The Fujisaki-Okamoto (FO) transformation [11] combines a public key encryp-
tion (PKE) scheme and a symmetric key encryption (SKE) scheme to obtain
a hybrid scheme that is secure against the indistinguishability under chosen-
ciphertext attacks (IND-CCA) in the random oracle model (ROM) [2]. It is known
as the first generic transformation from an arbitrary OW-CPA-secure PKE to an
IND-CCA-secure PKE in the ROM. Dent [8] introduced the first key encapsu-
lation mechanism (KEM) variant of FO obtaining an IND-CCA-secure KEM in
the ROM. Hofheinz et al. [14] provided a fine-grained and modular toolkit of
transformations including T,U/⊥,U⊥,U/⊥

m, U⊥m,QU/⊥
m and QU⊥m. They then pre-

sented the KEM variants of FO as FO/⊥,FO⊥,FO/⊥
m,FO⊥m,QFO/⊥

m and QFO⊥m by
combining T with U/⊥,U⊥,U/⊥

m,U
⊥
m,QU/⊥

m and QU⊥m, respectively. Here /⊥ (resp.
⊥) indicates that the transformation belongs to the implicit (resp. explicit) re-
jection type, which means that a pseudorandom value (resp. an abort symbol
⊥) is returned if the ciphertext fails to decapsulate. In what follows, we refer to
above KEM variants of FO as FO-like transformations.

As FO-like transformations are frequently used in the NIST post-quantum
cryptography standardisation process [23], the post-quantum security of FO-like
transformations have drawn much attention. In the post-quantum setting, the
ROM should be lifted to the quantum random oracle model (QROM) [4], and
thus the IND-CCA security reduction of FO-like transformations in the QROM is
more concerned. To this problem, a sequence of works has been given [16,17,18].
The core tool used in their reductions is the One-Way to Hiding (O2H) Lemma
[1,26], and their reductions all suffer from a quadratic security loss.

For the implicit rejection type of FO-like transformations, Kuchta et al. pro-
posed a new O2H variant named Measure-Rewind-Measure One-Way to Hiding
(MRM O2H) Lemma [20], with which an IND-CCA security reduction of FO/⊥

in the QROM avoiding the quadratic security loss is provided. For the explicit
rejection type of FO-like transformations, the best known reduction is provided
by Hövelmanns et al. [15]. They proved the IND-CCA security of FO⊥m in the
QROM and their reduction still suffers from a quadratic security loss. The core
tool used in their reduction is a new O2H variant named semi-classical OWTH
in the eQROMf , which can be considered as the combination of the extractable
RO-simulator [9] and the semi-classical O2H [1].

In addition to avoiding the quadratic security loss, Xagawa and Yamakawa
[27] also considered the QROM security of FO-like transformations against quan-
tum adversaries that can mount quantum superposition queries to the decapsu-
lation oracle. They introduced a new security notion for KEM named indistin-
guishability under quantum chosen-ciphertext attacks (IND-qCCA) by following
the notion of Boneh and Zhandry [5], and provided an IND-qCCA security reduc-
tion of SXY in the QROM. Here SXY designed in [27] is identical to U/⊥

m. Liu and
Wang [21] modified the definition of disjoint simulatability secure proposed in
[27] and applied the MRM O2H lemma to prove that the transformation KC de-
fined in [24] can transform a OW-CPA-secure deterministic public key encryption

2

(DPKE) scheme with correctness errors into a modified disjoint simulatability
secure PKE scheme. Furthermore, they proved that transformation SXY ◦ KC
and SXY ◦ KC ◦ T can also achieve the IND-qCCA security.

Compared with the implicit rejection type, the explicit rejection type of FO-
like transformations is more natural and has a positive performance on the ro-
bustness [13]. Unfortunately, the best known QROM reduction of the explicit
rejection type FO-like transformations provided by Hövelmanns et al. [15] still
suffers from a quadratic security loss, and their IND-CCA security reduction
seems to be insufficient to prove the IND-qCCA security3. Hence, a natural ques-
tion arises:

Is it possible to give an IND-qCCA security reduction of the explicit rejection
type of FO-like transformations in the QROM avoiding quadratic security loss?

In addition, the impact of the different rejection type of the FO-like trans-
formations on the security of the final scheme is also discussed in the literature.
Bindel et al. [3] proved that the transformation FO/⊥ (resp. FO⊥) is secure iff
FO/⊥

m (resp. FO⊥m) is secure. They also showed that the security of FO⊥m implies
security of FO/⊥

m, and that the security of FO/⊥
m implies security of QFO⊥m. Further,

Hövelmanns et al. [15] showed that the security of FO⊥m implies security of all
remaining FO-like transformations. However, it is not clear until now whether
the security of FO/⊥

m implies security of FO⊥m, and thus the results of [3] and [15]
do not imply that the implicit rejection type of FO-like transformations is as se-
cure as their explicit rejection counterparts. Therefore, there still exists an open
problem on the implicit and explicit rejection types of FO-like transformations
as follows:

Is the explicit rejection type as secure as their implicit rejection counterparts?
In other words, does the security of FO/⊥

m imply the security of FO⊥m?

1.1 Our Contribution

Avoiding the quadratic security loss, an IND-qCCA security reduction of FO⊥m in
the QROM is provided (Corollary 1), and the corresponding security bound is
shown in Table 1.1. Compared with security bounds of FO⊥m provided in [9,15],
our security bound of FO⊥m is much tighter, and we achieve a stronger (IND-
qCCA) security4 with the same or even weaker requirements.
3 Indeed, in the IND-CCA security reduction of [15], Game G1 records the decapsula-

tion query ci (i = 1, . . . , qD) and computes eCO.E(ci) for each ci via the extraction
interface eCO.E in its end. The record procedure is available in the IND-CCA se-
curity reduction. However, due to the quantum no-cloning principle, it is infeasible
to perfectly record the quantum decapsulation queries in the IND-qCCA security
reduction.

4 If a PKE/KEM scheme is IND-qCCA-secure, it is also IND-CCA-secure, because
classical decryption/decapsulation queries can be implemented by quantum decryp-
tion/decapsulation queries. That is why we say that IND-qCCA security is a stronger
security.

3

Table 1. Security bounds of different transformations in the QROM. Here q is the total
number of query times to the random oracles, d and w is the query depth and query
width of the random oracles, qD is the adversary’s query times to the decapsulation
oracle. ϵ is the security bound of the underlying PKE scheme P.

Transformation Underlying
security

Achieved
security Requirement Security

bound(≈)
FO⊥

m [9] OW-CPA IND-CCA P is weakly γ-spread q ·
√
ϵ

FO⊥
m [15] OW-CPA IND-CCA P is γ-spread (d+ qD) ·

√
w · ϵ

FO⊥
m Our work IND-CPA IND-qCCA P is weakly γ-spread d(d+ qD) · ϵ

Moreover, in the QROM, we prove that FO/⊥
m is IND-qCCA-secure if FO⊥m is

IND-qCCA-secure (Theorem 5), and conversely that FO⊥m is IND-qCCA-secure if
FO/⊥

m is IND-qCCA-secure (Theorem 6).
In more detail, in the proof of Theorem 5, we tightly reduce the IND-qCCA

security of FO/⊥
m to the IND-qCCA security of FO⊥m.

As for the Theorem 6, let (ϵ⊥, T⊥, S⊥) denote the success probability, running
time and memory space of an adversary against the IND-qCCA security of FO⊥m,
respectively, and let (ϵ/⊥, T /⊥, S /⊥) denote the success probability, running time
and memory space of a reduction algorithm against the IND-qCCA security of
FO/⊥

m, respectively. In the proof of Theorem 6, suppose that the underlying PKE
scheme is weakly γ-spread, we prove that (Here qD and q is the notion used in
Table 1.1.)

ϵ⊥ ≤ ϵ/⊥ +O(qD · 2−γ/2), T /⊥ ≈ T⊥ +O(q2), S /⊥ ≈ S⊥ +O(q).

This indicates that the IND-qCCA security of FO⊥m can be reduced to the IND-
qCCA security of FO/⊥

m with an additional error of O(qD · 2−γ/2), a quadratic
running time expansion, and a linear space expansion of the reduction algorithm.

Overall, assuming that the underlying PKE scheme is weakly γ-spread, it
can be concluded that the explicit rejection type of FO-like transformations is
as secure as their implicit rejection counterparts. This implies that the security
of FO-like transformations is independent of the rejection type if the underlying
PKE scheme is weakly γ-spread.

1.2 Technical Overview

Our IND-qCCA security reduction of FO⊥m in the QROM can be decomposed into
two steps as shown in Fig. 1:

1. In the first step, we prove that, in the QROM, the IND-qCCA security of
FO⊥m can be tightly reduced to the IND-CPA security of FO⊥m (Theorem 2).

2. In the second step, we prove that, in the QROM, U⊥m can transform a
OW-CPA-secure DPKE scheme dPKE into an IND-CPA-secure KEM scheme
U⊥m[dPKE] without the quadratic security loss (Theorem 3). Then combin-
ing with Lemma 8 and the property that FO⊥m = U⊥m ◦ T, we prove that, in

4

the QROM, the IND-CPA security of FO⊥m can be reduced to the IND-CPA
security of the underlying randomized PKE scheme P without the quadratic
security loss.

IND-CPA
FO⊥

m

Theorem 2−−−−−−−→ IND-qCCA
FO⊥

m

IND-CPA
δ-correct P

T−−−−−−−−→
Lemma 8 [3]

OW-CPA
dPKE

U⊥
m−−−−−−−→

Theorem 3

IND-CPA
U⊥

m[dPKE]

Fig. 1. Two steps of the IND-qCCA security reduction of FO⊥
m in the QROM.

Here we first consider the second step. Using the MRM O2H lemma, it is
straightforward to prove Theorem 3. We stress that this lemma requires the
simulator simulates both H and G and we circumvent this problem by using the
Lemma 4 in [21] (i.e. Lemma 9 in our paper.).

For the first step, we prove Theorem 2 via a series of hybrid games from G0

to G6, where game G0 is the IND-qCCA game of FO⊥m with adversary A in the
QROM. Define Adv(Gi,Gi+1) := |Pr[1← Gi]−Pr[1← Gi+1]| for i = 0, . . . , 5.
In the proof of Theorem 2, our basic idea is to analyze the upper bound of
Adv(Gi,Gi+1) for i = 0, . . . , 5, and finally construct an IND-CPA adversary Ã
against FO⊥m in the QROM by the adversary A in game G6. The overview of
games G1 to G6 are as follows.

– Game G1 is identical with G0, except the extractable RO-simulator S(f1) :=
{eCO.RO, eCO.Ef1} is introduced and the quantum queries to random oracle
H is simulated by the RO-interface eCO.RO. In game G1, A’s quantum
queries to H have been recorded in database imperfectly.

– From game G2 to G3, we gradually change the simulation of the quantum
accessible decapsulation oracle, and finally simulate it without secret key sk
in game G3.

– From game G4 to G6, our aim is to make the database just before adversary
A performs its operation be irrelevant to the challenge plaintext m∗.

In the following, we describe the difference between every two adjacent games
of games G1, . . . ,G6 and analyze them at a high level.

Game G1-G2: In order to simulate the quantum accessible decapsulation oracle
qDeca without sk, our idea is to use the extraction-interface of the extractable
RO-simulator to read out the information recorded in the database and pre-
pare replies to the qDeca. We emphasize that this simulating can only read the
database and cannot update or change it. However, the simulation of qDeca in
game G1 has no such limitation because it can query H (which is simulated by

5

eCO.RO) and update the database at certain points. Therefore, we design the
following game G2 in our proof to clarify the error produced when changing the
simulation of qDeca from updating the database to reading it.

– Game G2: This game is the same as game G1, except that the operation
eCO.Ef1 ◦OG ◦ eCO.Ef1 as shown in Fig. 2 is used to simulate qDeca.

Here eCO.Ef1 maps |c,D,m〉 to |c,D,m⊕ x〉, x = Decsk(c) if Decsk(c) 6= ⊥ and
Encpk(Decsk(c), D(Decsk(c))) = c. Otherwise x = ⊥5. Operation OG simulates
the random oracle G and we set G(⊥) = ⊥.

register I |c⟩

eCO.Ef1 eCO.Ef1

|c⟩

database register D |D⟩ |D⟩

register M |0m⟩
OG

|0m⟩

register O |y⟩

Fig. 2. Operation eCO.Ef1 ◦OG ◦eCO.Ef1 . Here I/O is input/output register of qDeca,
M is the internal register used by operation eCO.Ef1 ◦OG ◦ eCO.Ef1 .

For any computational basis state |c,D, y〉 on registers IDO that satisfies
Decsk(c) 6= ⊥ and D(Decsk(c)) = ⊥, it is easily verified that the qDeca in game
G2 returns state |c,D, y⊕⊥〉 for input state |c,D, y〉 since G(⊥) = ⊥. However,
the qDeca in game G1 may not return |c,D, y ⊕ ⊥〉, because the simulation
of qDeca in game G1 can update the database to a uniform superposition of
database D ∪ (Decsk(c), y) for y ∈ {0, 1}n.

The difference between game G1 and G2 above actually corresponds to
the classical event GUESS in the ROM reduction of FO⊥m provided in [15], i.e.,
the adversary queries a ciphertext c to the decapsulation oracle satisfying that
Decsk(c)(6= ⊥) is never queried to H before but Encpk(Decsk(c),H(Decsk(c))) =
c. The probability that GUESS occurs can be upper bounded by 2−γ if the un-
derlying PKE scheme is γ-spread, since H(x) is uniformly random in {0, 1}n
if x is never queried to H, and the maximum number of elements y meeting
Encpk(x, y) = c in {0, 1}n is 2n−γ .

We analyze the difference between game G1 and G2 in a similar way, that
is to say, even if the database is updated to a uniform superposition of database
D ∪ (Decsk(c), y) for y ∈ {0, 1}n in game G1, there are not many y ∈ {0, 1}n
such that

eCO.Ef1 |c,D ∪ (Decsk(c), y),m〉 = |c,D ∪ (Decsk(c), y),m⊕ Decsk(c)〉

5 For simplify, we do not consider the case of c = c∗ here. c∗ is the challenge ciphertext.

6

if the underlying PKE scheme is weakly γ-spread. We stress that we finally
(upper) bound Adv(G1,G2) by 8qD · 2−γ/2 since decapsulation oracle qDeca is
quantum accessible in our reduction.

Game G2-G3: Game G3 is the same as game G2 except that the extractable
RO-simulator is changed to S(f2) := {eCO.RO, eCO.Ef2}.

For computational basis state |c,D,m〉 on registers IDM , eCO.Ef2 extracts
the minimum x satisfying Encpk(x,D(x)) = c and returns state |c,D,m ⊕ x〉 if
such x exists. Otherwise, returns state |c,D,m ⊕ ⊥〉. Note that the implemen-
tation of eCO.Ef2 does not need sk because it no longer cares about if above
x also equals Decsk(c) like eCO.Ef1 . However, eCO.Ef1 and eCO.Ef2 may have
different effect on state |c,D,m〉 that triggers decryption errors (x exists s.t.
Encpk(x,D(x)) = c but x 6= Decsk(c)).

In the proof of Theorem 2, a database set RD
pk,sk is defined. We find that

eCO.Ef1 and eCO.Ef2 have the same effect on state |c,D,m〉 if D /∈ RD
pk,sk.

Then, we use the compressed semi-classical one-way to hiding theorem6 proved
in [12] to (upper) bound Adv(G2,G3) by O(qH)

√
δ, where qH is the query times

to random oracle H and δ is the correctness error of the underlying PKE scheme.

Game G3-G4-G5: Note that game G3 uses operation eCO.Ef2 ◦OG ◦ eCO.Ef2 ,
which no longer needs sk, to simulate qDeca. However, the challenge ciphertext
c∗ (= Encpk(m∗,H(m∗))) still needs classically query H (which is simulated
using eCO.RO) by challenge plaintext m∗ to generate. The database state just
before adversary A performs its operations in game G3 can be written as

StdDecompm∗ |D⊥ ∪ (m∗,H(m∗))〉,

where database D⊥ only contains (⊥, 0n) pairs, StdDecompm∗ is the local de-
compression procedure defined in [29], and we also denote it as Sm∗ in what
follows for convenience. Obviously, this state contains the information of m∗,
hence a new adversary without m∗ unable to simulate game G3 for A.

To circumvent this problem, our idea is as follows. Let O be a new random
oracle that has the same input/output length as H, roughly speaking, if the
extractable RO-simulator S(f2) in game G3 perfectly simulates random oracle
H at point m∗, we can equivalently compute c∗ as Encpk(m∗, O(m∗)) and the
database state just before adversary A performs its operation at this time is
irrelevant to m∗. What we need to do next is to ensure that A will get O(m∗)
accordingly when querying H (which is simulated using eCO.RO) by m∗ and
design a simulation method for qDeca following the modification of the compu-
tation of c∗.

Unfortunately, the extractable RO-simulator S(f2) in game G3 cannot per-
fectly simulate the random oracle H at point m∗. Note that state Sm∗ |D⊥ ∪

6 Actually, this theorem is a generalization of the compress oracle O2H theorem (The-
orem 10) in [7], since the quantum oracle algorithm in this theorem can also make
database read queries.

7

(m∗,H(m∗))〉 is a superposition of |D⊥ ∪ (m∗, y)〉 for y ∈ {0, 1}n and |D⊥〉 [29],
the extraction-interface eCO.Ef2 used in game G3 may disturb this superposition
state. Then, we design game G4 as follows in our reduction.

– Game G4: It is the same as game G3 except that Sm∗ is performed before
and after the applying of eCO.Ef2 . Thus, a new extractable RO-simulator

S ′(f2) := {eCO.RO, Sm∗ ◦ eCO.Ef2 ◦ Sm∗}

is applied in this game.

The Adv(G3,G4) can be easily upper bounded by using the operator norm
‖[eCO.Ef2 , Sm∗]‖ since Sm∗ is an involution [29].

In contrast to game G3, the extractable RO-simulator S ′(f2) in game G4

perfectly simulates the random oracle H at point m∗. Intuitively, the operation
Sm∗ ◦eCO.Ef2 ◦Sm∗ seems to implement one classical compressed standard oracle
query at point m∗, except that the operation CNOT is changed to eCO.Ef2 .
Indeed, it is precisely because of this query-like structure, Sm∗ ◦ eCO.Ef2 ◦ Sm∗

will not cause disturbance to Sm∗ |D⊥ ∪ (m∗,H(m∗))〉 like eCO.Ef2 . We observe
that the internal joint state of game G4 before and after the implementation of
operation Sm∗ ◦ eCO.Ef2 ◦ Sm∗ can always be written as∑

Z,D

Sm∗ |Z,D ∪ (m∗,H(m∗))〉7.

Hence, the random oralce H in game G4, which is simulated using eCO.RO,
will always return H(m∗) for the input m∗ and H(m∗) is a uniformly random
value in {0, 1}n. Thus, the extractable RO-simulator S ′(f2) in game G4 perfectly
simulates the random oracle H at the point m∗.

As for the decapsulation oracle qDeca, it is simulated by operation

Sm∗ ◦ eCO.Ef2 ◦ Sm∗ ◦OG ◦ Sm∗ ◦ eCO.Ef2 ◦ Sm∗

in game G4. In our reduction, we prove that the extraction result of the operation
Sm∗ ◦eCO.Ef2 ◦Sm∗ acting on state Sm∗ |c,D∪(m∗,H(m∗)),m〉 is the same as the
extraction result of the operation eCO.Ef2 acting on state |c,D,m〉. Therefore,
if c∗ is computed as Encpk(m∗, O(m∗)) in game G4, we can equivalently use the
operation eCO.Ef2 ◦ OG ◦ eCO.Ef2 to simulate qDeca. That is to say, game G4

and following game G5 are identical.

– Game G5: This game is like game G4, except for the following modifications:
A new random oracle O is introduced and the challenge ciphertext c∗ is
generated as Encpk(m∗, O(m∗)). The decapsulation oracle qDeca in this game
is simulated by the operation eCO.Ef2 ◦ OG ◦ eCO.Ef2 . When adversary A
queries H by |x, y〉, a conditional operation U as follows is applied.

U|x, y,D〉 =
{

eCO.RO|x, y,D〉 (x 6= m∗)
|x, y ⊕O(m∗), D〉 (x = m∗).

7 Here we abbreviate other registers that may entangled with the database register
(e.g. registers of the adversary) as Z.

8

Game G5-G6: However, another problem arises in game G5, the conditional
operation U still needs m∗ to perform a test checking if x = m∗. In game G6,
the conditional operation U is replaced by a new conditional operation U′ as

U′|x, y,D〉 =
{

eCO.RO|x, y,D〉 (Encpk(x,O(x)) 6= c∗)
|x, y ⊕O(m∗), D〉 (Encpk(x,O(x)) = c∗).

Obviously, if x′ satisfying Encpk(x′, O(x′)) = Encpk(m∗, O(m∗)) does not exist,
games G5 and G6 are identical. Indeed, if the underlying PKE scheme is δ-
correct, the probability that such x′ exists is at most 2δ by using the Lemma 4
in [21].

As for the relation between the security of FO⊥m and FO/⊥
m, it is easy to prove

that the IND-qCCA security of FO⊥m implies the IND-qCCA security of FO/⊥
m

8.
The proof in the opposite direction heavily relies on Theorem 2 and contains the
following two steps:

1. By using Theorem 2, we obtain that any IND-qCCA adversary against FO⊥m
can be transformed to an IND-CPA adversary against FO⊥m.

2. Then we prove that any IND-CPA adversary against FO⊥m can be efficiently
transformed to an IND-qCCA adversary against FO/⊥

m.

Related Work The reduction from the IND-CCA security of FO⊥m in the QROM
to the IND-CPA security of FO⊥m has been argued in [15]. Their IND-CPA security
of FO⊥m is in the eQROMEnc, in which the random oracle H is simulated by an
extractable RO-simulator S(Enc) := {eCO.RO, eCO.EEnc} and the decapsulation
oracle is simulated by using the extraction-interfaces eCO.EEnc. They then re-
duced the IND-CPA security of FO⊥m in the eQROMEnc to the OW-CPA security of
the underlying PKE by using the semi-classical OWTH in the eQROMf , which
brings a quadratic security loss to their reduction.

In contrast, we reduce the IND-qCCA security of FO⊥m in the QROM to the
IND-CPA security of FO⊥m in the QROM (not eQROMEnc), which enables us to
use the MRM O2H lemma and avoid the quadratic security loss.

Recently, Ge et al. [12] proved a lifting theorem for a class of games called
the oracle-hiding game, and then proved the IND-qCCA security of FO⊥m in the
QROM by directly applying that lifting theorem. However, their reduction still
has a quadratic security loss. Additionally, by combining Theorem 2 of [21] and
Theorem 5.1 of [27], the transformation HU ◦ KC can transform an OW-CPA-
secure DPKE scheme into an IND-qCCA-secure KEM scheme in the QROM. The
corresponding reduction also avoids the quadratic security loss, and HU ◦ KC is
also an explicit rejection type KEM transformation. However, compared with
the FO⊥m, the encapsulation and decapsulation algorithms of HU ◦ KC are more
complicated, and the underlying PKE scheme of HU ◦KC is restricted to DPKE
scheme.
8 Note that any IND-qCCA adversary against FO/⊥

m can be efficiently transformed to
an IND-qCCA adversary against FO⊥

m.

9

2 Preliminaries

2.1 Notation

By [x = y] we denote a bit that is 1 if x = y and 0 otherwise. H : X → Y
represents a function with domain X and codomain Y, and ΩH is the set of
all such functions. For a finite set S, we denote the sampling of a uniformly
random element x by x $←− S. x ← D represents that the chosen x is subject to
distribution D. Let y ← A(x) denote that the algorithm A outputs y on input
x, and let y ← G denote that the game G finally returns y. For a function
or algorithm A, Time(A) (resp. Space(A)) denotes the time complexity (resp.
memory space) of (an algorithm computing) A.

2.2 Quantum Random Oracle Model

We refer to [22] for detailed basics of quantum computation and quantum infor-
mation. In Appendix A, we provide an overview of important quantum notions
that are used in this paper.

Here we first briefly introduce the quantum random oracle model (QROM).
The random oracle model (ROM) is an ideal model in which a uniformly random
function H : X → Y is selected and all parties have access to H. In the quantum
setting, the QROM is considered and the adversary has quantum access to the
random oracle in this model [4]. In the QROM, we take the random oracle H as
a unitary operation OH such that OH : |x, y〉 7→ |x, y ⊕H(x)〉.

Next, we introduce two lemmas that are used throughout this paper.

Lemma 1 (Simulate the QROM [28]). Let O be a random oracle, and H be
a function uniformly chosen from the set of 2q-wise independent functions. For
any adversary A with any input z and at most q quantum queries, we have

Pr[1← AH(z)] = Pr[1← AO(z)].

Lemma 2 (Measure-Rewind-Measure One-Way to Hiding [20], Lemma
3.3). Let H,G : X → Y be random functions, z be a random value, and S ⊆ X be
a random set such that H(x) = G(x) for every x /∈ S. The tuple (H,G, S, z) may
have arbitrary joint distribution D. Furthermore, let AO be a quantum oracle al-
gorithm (not necessarily unitary) that makes at most q queries to oracle O. Let d
be the query depth of A’s oracle O queries. Then we can construct an algorithm
BH,G(z) such that Time (B) ≈ 2 ·Time (A), Space(B) ≈ O(Space(A) +Time(A))
and

|Pr[1← AH(z) : (H,G, S, z)← D]− Pr[1← AG(z) : (H,G, S, z)← D]|
≤ 4d · Pr

[
T ∩ S 6= ∅ : T ← BH,G(z), (H,G, S, z)← D

]
.

Here BH,G(z) makes at most 3q queries in total to random functions H and G.

10

Remark 1. Here we omit the detailed construction of algorithm BH,G(z) since
it is slightly complicated. We emphasize that the property that Time (B) ≈
2 · Time (A) and the fact that BH,G(z) makes at most 3q queries in total are
both easily obtained from the detailed construction of BH,G(z) as presented
in [20]. The property Space(B) ≈ O(Space(A) + Time(A)) is proved by Jiang
et al. in [19]. According to the analysis in [19], BH,G(z) requires A’s quantum
gate operations to be explicitly described and accessed, resulting in the need for
additional quantum memory space (or quantum register) to implement a unitary
variant9 of A if A is not unitary.

2.3 Compressed Oracle Technique

The compressed oracle technique was introduced by Zhandry in [29]. Roughly
speaking, its core idea is to purify the quantum random oracle and use the pu-
rified version to record information about the quantum queries. In this section,
we only introduce the database model and a specific version of the compressed
oracle called the compressed standard oracle. Additionally, we set the query up-
per bound for the compressed standard oracle to a constant value of q > 0.

Definition of the database: Let ⊥ /∈ {0, 1}m and ⊥ /∈ {0, 1}n. A database D
is a q-pair collection of pairs (x, y) ∈ {0, 1}m × {0, 1}n and (⊥, 0n) as:

D = ((x1, y1), (x2, y2), . . . , (xi, yi), (⊥, 0n), . . . , (⊥, 0n)) ,

where (xj , yj) ∈ {0, 1}m × {0, 1}n (j = 1, . . . , i), x1 < x2 < · · · < xi, and all
(⊥, 0n) pairs are at the end of the collection. Let Dq be the set of all these
databases. For a x ∈ {0, 1}m, we will write D(x) = y if y exists such that
(x, y) ∈ D, and D(x) = ⊥ otherwise. Let n(D) be the number of pairs (x, y) ∈ D
that x 6= ⊥.

For a pair (x, y) ∈ {0, 1}m × {0, 1}n and a database D ∈ Dq with n(D) < q
andD(x) = ⊥, write D∪(x, y) to be the new database obtained by first deleting a
(⊥, 0n) pair, then inserting (x, y) appropriately into D and maintain the ordering
of the x values.

A quantum register Dq defined over set Dq is a complex Hilbert space with
orthonormal basis {|D〉}D∈Dq

, where the basis state |D〉 is labeled by the el-
ements of Dq. As mentioned in Appendix A, this basis is the computational
basis. We also refer to Dq as the database register. For a database D ∈ Dq that
n(D) < q and D(x) = ⊥, define a superposition state on the database register
Dq as

|D ∪ (x, r̂)〉 := 1√
2n

∑
y∈{0,1}n

(−1)y·r|D ∪ (x, y)〉,

where x ∈ {0, 1}m and r ∈ {0, 1}n.
For a x ∈ {0, 1}m, the local decompression procedure StdDecompx acts on

the database register Dq as follows:
9 The unitary variant of a quantum oracle algorithm is explained in Appendix A.

11

– For D ∈ Dq, if D(x) = ⊥ and n(D) < q, StdDecompx|D〉 = |D ∪ (x, 0̂n)〉.
– For D ∈ Dq, if D(x) = ⊥ and n(D) < q, StdDecompx|D ∪ (x, 0̂n)〉 = |D〉

and
StdDecompx|D′ ∪ (x, r̂)〉 = |D′ ∪ (x, r̂)〉 (r 6= 0n).

– For D ∈ Dq that D(x) = ⊥ and n(D) = q, StdDecompx|D〉 = |D〉.

For any x ∈ {0, 1}m, it is obvious that StdDecompx is a unitary operation and

StdDecompx ◦ StdDecompx = I.

Here I is the identity operator.

Definition 1 (Compressed Standard Oracle). Let X (resp. Y) be the quan-
tum register defined over {0, 1}m (resp. {0, 1}n). Let |D⊥〉 be the initial state on
database register Dq, where D⊥ ∈ Dq is the database containing q pairs (⊥, 0n).
A query to the compressed standard oracle with input/output register X/Y is
implemented by performing the following unitary operation CStO on registers
XYDq.

CStO :=
∑

x∈{0,1}m
|x〉〈x|X ⊗ StdDecompx ◦ CNOTx

YDq
◦ StdDecompx.

For state |y,D〉 (y ∈ {0, 1}n, D ∈ Dq), CNOTx
YDq
|y,D〉 = |y ⊕ D(x), D〉 if

D(x) 6= ⊥, CNOTx
YDq
|y,D〉 = |y,D〉 if D(x) = ⊥10.

Zhandry proved that the compressed standard oracle is perfectly indistin-
guishable from the quantum random oracle.
Lemma 3 ([29]). For any adversary making at most q queries, the compressed
standard oracle defined in Definition 1 and quantum random oracle H : {0, 1}m →
{0, 1}n are perfectly indistinguishable.

Let X (resp. Y) be the quantum register defined over a finite set X (resp. Y).
For any function f with domain X × Dq and codomain Y, define the unitary
operation Readf acting on registers XDqY as

Readf |x,D, y〉 = |x,D, y + f(x,D)〉, (1)

where + : Y × Y → Y is a group operation on Y. Note that Readf does not
change the database in the computational basis state, it only computes f(x,D)
and returns the result in register Y. We call Readf a database read operation.

We now recall the compressed semi-classical oracle and the compressed semi-
classical one-way to hidding lemma from [12].

Compressed semi-classical oracle: Let S be a subset of Dq. Define a func-
tion fS such that fS(D) = 1 if D ∈ S, and fS(D) = 0 otherwise. The com-
pressed semi-classical oracle OCSC

S performs the following operation on input
state

∑
αz,D|z,D〉:

10 The property that CNOTx
YDq

acts trivially on the state |y,D⟩ satisfies D(x) = ⊥, as
defined in [9], is actually equivalent to the property that "y⊕⊥ = y" defined in [29].

12

1. Initialize a single qubit register L with |0〉L, transform state
∑
αz,D|z,D〉|0〉L

into state
∑
αz,D|z,D〉|fS(D)〉L.

2. Measure L and output the measurement outcome.

Denote by Find the event that OCSC
S ever returns 1.

Theorem 1 (Compressed Semi-Classical One-Way to Hidding [12], The-
orem 3). Let H : {0, 1}m → {0, 1}n be a quantum random oracle that is im-
plemented by the compressed standard oracle with database register Dq. Let S be
a subset of Dq that D⊥ /∈ S and z be a random string. The tuple (S, z) may
have arbitrary joint distribution D. Let H\S be an oracle that first queries H
and then queries OCSC

S .
Let A be a quantum oracle algorithm (not necessarily unitary) that makes at

most q1 ≤ q11 (resp. q2) queries to oracle H (resp. oReadf). Here f is a function
with domain X ×Dq and codomain Y, and oracle oReadf is implemented by the
database read operation Readf defined in (1). Define

Pleft := Pr
[
1← AH,oReadf (z) : (S, z)← D

]
,

Pright := Pr[1← AH\S,oReadf (z) : (S, z)← D],
Pfind := Pr[Find occurs in AH\S,oReadf (z) : (S, z)← D].

Then

|Pleft − Pright| ≤
√
(q1 + 1) · Pfind,

∣∣∣√Pleft −
√
Pright

∣∣∣ ≤√(q1 + 1) · Pfind.

Define JS :=
∑

D∈S |D〉〈D| as a projector on the database register Dq, let CStO
be as in Definition 1. Then we have

Pfind ≤ q1 · E
(S,z)←D

‖[JS ,CStO]‖2 .

2.4 The Extractable RO-Simulator

In [9], Don et al. generalized the compressed standard oracle and defined the
extractable RO-simulator. Roughly speaking, this simulator simulates the quan-
tum random oracle H by using the compressed standard oracle, and has an
extraction-interface that can output a x satisfying f(x,H(x)) = t for an input
t. In the following, we present the details of the extractable RO-simulator and
introduce a lemma that will be used in the next section. We stress that, similar
to Section 2.3, the database register used here is also Dq. Therefore, unlike the
inefficient version defined in [9], the extractable RO-simulator described here is
efficient.
11 In fact, even if q1 > q, Theorem 1 is still valid. We require q1 ≤ q here because we

have set the query upper bound for the compressed standard oracle to a constant
value of q.

13

Let f be an arbitrary but fixed function with domain {0, 1}m × {0, 1}n and
codomain Y. For a fixed t ∈ Y, we define relation Rf

t ⊂ {0, 1}m × {0, 1}n and
corresponding parameter ΓRf

t
as

Rf
t := {(x, y) ∈ {0, 1}m × {0, 1}n|f(x, y) = t},

ΓRf
t
:= max

x∈{0,1}m
|{y ∈ {0, 1}n|f(x, y) = t}|.

For relation Rf
t , we define following projectors on the database register Dq:

Σx :=
∑

D s.t. (x,D(x))∈Rf
t

x′<x,(x′,D(x′))/∈Rf
t

|D〉〈D| (x ∈ {0, 1}m), Σ⊥ := I−
∑

x∈{0,1}m
Σx.

Then we define a measurement MRf
t on database register Dq to be the set of

projectors {Σx}x∈{0,1}m∪⊥.
Indeed, the measurement MRf

t returns the smallest x such that (x,D(x)) ∈
Rf

t . If such x does not exist, MRf
t will return⊥. Similar to [9], we also consider the

purified measurement MRf
t

DqP corresponding to MRf
t , which is a unitary operation

that acts on registers DqP as

M
Rf

t

DqP|D, p〉 =
∑

x∈{0,1}m∪⊥

Σx|D〉|p⊕ x〉.

Here P is a quantum register defined over {0, 1}m+112, D ∈ Dq and p ∈
{0, 1}m+1.

Definition 2 (The Extractable RO-Simulator (efficient version)). The
extractable RO-simulator S(f) with an internal database register Dq is a black-
box oracle with two interfaces: the RO-interface eCO.RO and the extraction-
interface eCO.Ef . S(f) prepares its database register Dq to be in state |D⊥〉 at
the beginning, where D⊥ ∈ Dq is the database containing q pairs (⊥, 0n). Then,
the RO-interface eCO.RO and the extraction-interface eCO.Ef act as follows:

– Let X (resp. Y) be the quantum register defined over {0, 1}m (resp. {0, 1}n),
T be the quantum register defined over Y.

– eCO.RO: For any quantum RO-query on query registers XY, S(f) imple-
ments a compressed standard oracle query on registers XYDq by the CStO
defined in Definition 1.

– eCO.Ef : For any quantum extraction-query on query registers TP, S(f) ap-
plies

Extf :=
∑
t∈Y
|t〉〈t|T ⊗M

Rf
t

DqP (2)

to registers TDqP.
12 Here we embed the set {0, 1}m ∪⊥ into the set {0, 1}m+1 as explained in Appendix

A.

14

Moreover, by the Theorem 4.3 of [9], the total runtime of S(f) is bounded13 by

TS = O(qRO · qE · Time[f] + q2RO),

where qRO(≤ q)14 and qE are the number of queries to eCO.RO and eCO.Ef ,
respectively.

The eCO.RO (resp. eCO.Ef) can also be classically queried. In this case, the
query registers XY (resp. TP) are measured after applying the unitary operation
CStO (resp. Extf). The eCO.RO can also be queried in parallel, and k-parallel
queries to eCO.RO are processed by sequentially implementing CStO k times [6].

In addition, for any computational basis state |t,D, p〉 on register TDqP, it
is straightforward to check that

Extf |t,D, p〉 = |t,D, p⊕ g(t,D)〉. (3)

Here function g : Y×Dq → {0, 1}m+1 on input (t,D) outputs the smallest value
x that satisfies (x,D(x)) ∈ Rf

t . If such x does not exist, function g outputs ⊥.
Therefore, by the definition of the database read operation given in Section 2.3,
Extf can also be considered as a database read operation.

Lemma 4 ([12] Lemma 2). For any x ∈ {0, 1}m, let StdDecompx and CStO
be the unitary operation defined in Section 2.3, then

‖[Extf , StdDecompx]‖ ≤ 16 ·
√
max
t∈Y

ΓRf
t
/2n, ‖[CStO, Σ⊥]‖ ≤ 8 ·

√
ΓRf

t
/2n.

Here [A,B] := AB −BA is the commutator of two operations A,B acting on a
quantum register.

3 From IND-CPAFO⊥
m[P] to IND-qCCAFO⊥

m[P]

In this section, we prove that, in the QROM, the IND-qCCA security of KEM
scheme FO⊥m[P,H,G] can be tightly reduced to its IND-CPA security. Particularly,
our reduction does not require the perfect correctness property of the underlying
randomized PKE scheme P. The formal definitions of cryptographic primitives,
correctness and spreadness used in this section are shown in Appendix B.

Transformation FO⊥m: Let P = (Gen,Enc,Dec) be a randomized PKE with
message spaceM(= {0, 1}m), randomness space {0, 1}n and ciphertext space C.
Let H :M→ {0, 1}n and G : {0, 1}∗ → {0, 1}n′ be hash functions. We associate

KEM⊥m := FO⊥m[P,H,G] = (Gen,Encam,Deca⊥m).

The constituting algorithms of KEM⊥m are given in Fig. 3.
13 Although [9] defined an inefficient version of the extractable RO-simulator, the total

runtime of the efficient version is given instead in the Theorem 4.3 of [9].
14 This is because we have set the query upper bound for the compressed standard

oracle to a constant value of q.

15

Gen
(pk, sk)← Gen
return (pk, sk)

Encapm (pk)

c = Encpk (m,H(m))

K = G(m)

return (K, c)

m
$←−M

Deca⊥
m (sk, c)

m′ = Decsk (c)
if m′ = ⊥

return ⊥
else if c ̸= Encpk (m′;H(m′))

return ⊥
return K = G(m′)

Fig. 3. Key Encapsulation Mechanism KEM⊥
m = (Gen,Encam,Deca⊥

m).

Before we prove the main result of this section, we first describe how to
simulate a quantum accessible decapsulation oracle qDeca for KEM⊥m.

Denote by I/O the input/output register of qDeca, where I is defined over C
and O is defined over {0, 1}n′+115. As shown in Fig. 3, decapsulation algorithm
Deca⊥m needs to queryH andG in its process. Specifically, it queriesH to perform
the re-encryption check (i.e., check if c = Encpk(m′,H(m′))), and then queries G
by m′ to produce the key K if m′ passes the re-encryption check. Following this
process, a unitary operation Um acting on registers IM is presented as follows:

Um|c〉I|0m〉M =

{
|c〉I|m′〉M if m′ := Decsk(c) 6= ⊥ ∧ Encpk(m′,H(m′)) = c
|c〉I|⊥〉M otherwise.

Here M is a quantum register defined over {0, 1}m+115. With this operation,
the re-encryption check can be performed in superposition. The quantum circuit
implementation of Um is shown in Appendix C, which two queries to H is needed.

To simulate qDeca on input state |c〉I|y〉O, the following unitary operation is
performed on state |c〉I|y〉O|0m〉M:

UqD := (Um)† ◦OG ◦Um, (4)

where unitary operation OG maps |m′〉M|y〉O to |m′〉M|y ⊕G(m′)〉O, and we set
G(⊥) = ⊥. The register M used by Um can be viewed as the internal register of
UqD, it stores the plaintext m′. Note that this register is always in state |0m〉M
before and after once simulation of qDeca.

Theorem 2 (IND-CPAKEM⊥
m

QROM⇒ IND-qCCAKEM⊥
m

). Let P be a randomized
PKE scheme that is δ-correct and weakly γ-spread. Let A be an IND-qCCA ad-
versary against KEM⊥m in the QROM, making at most qH , qG and qD queries to
random oracle H, random oracle G and decapsulation oracle qDeca∗16, respec-
tively. Let dH (resp. dG) be the query depth of A’s random oracle H (resp. G)
15 Here we embed the set {0, 1}n

′
∪⊥ (resp. {0, 1}m ∪⊥) into the set {0, 1}n

′+1 (resp.
{0, 1}m+1) as explained in Appendix A.

16 Here and in what follows, we following [16] to make the convention that qH and
qG counts the total number of times H and G is queried in the security game,
respectively.

16

queries. Let wH (resp. wG) be the query width of A’s random oracle H (resp.
G) queries.

Then there exists an IND-CPA adversary Ã against KEM⊥m in the QROM
such that

AdvIND-qCCA
KEM⊥

m,A ≤ AdvIND-CPA
KEM⊥

m,Ã + 8
√
qH(qH + 1) · δ + (64qH + 2) · δ + 40qD · 2−γ/2.

The adversary Ã makes at most 2qH (resp. qG + qD) queries to random oracle
H (resp. G). The query depth of Ã to random oracle H (resp. G) is 2dH (resp.
dG + qD). The running time and memory space of Ã is bounded as Time(Ã) ≈
Time(A) +O(qHqD + q2H) and Space(Ã) ≈ Space(A) +O(qH), respectively.
Proof. To prove this theorem, a series of hybrid games are defined (see also Fig.
4).

GAMESG0-G6

1, (pk, sk)← Gen //G0-G6

2, H $←− ΩH , G
$←− ΩG, O

$←− ΩH //G0-G6

3, b $←− {0, 1}, m∗ $←−M //G0-G6

4, c∗ = Encpk(m∗, H(m∗)) //G0-G6

5, K∗
0 = G(m∗), K∗

1
$←− K //G0-G6

6, b′ ← AH,G,qDeca∗(pk, c∗,K∗
b) //G0-G1

b′ ← AH,G,qDeca⋄(pk, c∗,K∗
b) //G2-G6

7, return [b = b′] //G0-G6

H(|xH , yH⟩) //G0-G6

8, return |xH , yH ⊕H(xH)⟩ //G0

9, query eCO.RO by |xH , yH⟩ //G1-G4

10, if xH = m∗ //G5

return |xH , yH ⊕O(xH)⟩
else query eCO.RO by |xH , yH⟩

11, if Encpk(xH , O(xH)) = c∗ //G6

return |xH , yH ⊕O(xH)⟩
else query eCO.RO by |xH , yH⟩

G(|xG, yG⟩) //G0-G6

12, return OG|xG, yG⟩ = |xG, yG ⊕G(xG)⟩

qDeca∗(|c, y⟩) //G0-G1

13, if c = c∗ return |c, y ⊕⊥⟩
else return
(Um)† ◦OG ◦Um|c, y⟩ //G0

(Ũm)† ◦OG ◦ Ũm|c, y⟩ //G1

qDeca⋄(|c, y⟩) //G2-G6

14, if c = c∗ return |c, y ⊕⊥⟩
else return
eCO.Ef ◦OG ◦ eCO.Ef |c, y⟩

S(f) = {eCO.RO, eCO.Ef} //G1-G6

15, eCO.RO: apply CStO //G1-G6

16, eCO.Ef : f = f1, apply Extf1 //G1-G2

eCO.Ef : f = f2, apply Extf2 //G3

eCO.Ef : f = f2, //G4

apply Sm∗ ◦ Extf2 ◦ Sm∗

eCO.Ef : f = f2, apply Extf2 //G5-G6

Fig. 4. Games G0 to G6 in the proof of Theorem 2. In these games, the adversary A
can make parallel quantum queries to H and G and quantum queries to qDeca∗. In
this figure, for brevity, we just write the input state of H, G and qDeca∗ as |xH , yH⟩,
|xG, yG⟩ and |c, y⟩, respectively. We also stress that the H(m∗) used to compute c∗

(= Encpk(m∗, H(m∗))) in game G1 to G4 is generated by classically query eCO.RO
with input m∗.

Game G0: This is the IND-qCCA game of KEM⊥m with adversary A in the
QROM. The decapsulation oracle qDeca∗ in this game is identical to qDeca that

17

is simulated by UqD as defined in (4), except that qDeca∗ returns ⊥ if c = c∗.

AdvIND-qCCA
KEM⊥

m,A =

∣∣∣∣Pr[1← G0]−
1

2

∣∣∣∣ . (5)

We recall that the input/output register of the decapsulation oracle is de-
noted as I/O, and UqD also has an internal register M. Here we denote the private
register of adversary A as A, which contains the query registers of the random
oracle H and G.

Define Pc∗ := |c∗〉〈c∗| as a projector on the input register I, U⊥ as a unitary
operation that acts on the output register O and maps |y〉 to |y ⊕⊥〉. Then the
decapsulation oracle qDeca∗ in game G0 is simulated by the unitary operation

U0
qD := U⊥ ◦ Pc∗ + (Um)† ◦OG ◦Um ◦ (I− Pc∗).

Let DqH be the database register defined over set DqH (Section 2.3). Let
S(f1) := {eCO.RO, eCO.Ef1} be the extractable RO-simulator with internal
database register DqH (Definition 2), where function f1 :M×{0, 1}n∪⊥ → C∪⊥
is that

f1(x, y) =

{
c if y 6= ⊥ ∧ Encpk(x, y) = c ∧ x = Decsk(c)
⊥ otherwise.

Game G1: This game is identical to game G0, except that the extractable RO-
simulator S(f1) := {eCO.RO, eCO.Ef1} is introduced and the queries to random
oracle H are answered by querying the RO-interface eCO.RO.

In game G1, the decapsulation oracle qDeca∗ is simulated by the unitary
operation

U1
qD := U⊥ ◦ Pc∗ + (Ũm)† ◦OG ◦ Ũm ◦ (I− Pc∗).

Here Ũm acts the same as Um, except that the internal two random oracle H
queries are answered by querying eCO.RO.

In game G1, although the extractable RO-simulator S(f1) is used to an-
swer the queries to random oracle H, the extraction-interface eCO.Ef1 is never
queried. By using Lemma 3, we have

Pr[1← G0] = Pr[1← G1]. (6)

Game G2: This game is identical to game G1, except that the decapsulation
oracle qDeca∗ is replaced with qDeca⋄.

Instead of using Ũm to perform the re-encryption check in superposition,
the decapsulation oracle qDeca⋄ in game G2 queries eCO.Ef1 to directly extract
plaintext m′ that passes the re-encryption check from the database register.
Moreover, the decapsulation oracle qDeca⋄ in game G2 is simulated by the uni-
tary operation

U2
qD := U⊥ ◦ Pc∗ + Extf1 ◦OG ◦ Extf1 ◦ (I− Pc∗)

18

that acts on the registers IODqH M, where Extf1 :=
∑

c∈C |c〉〈c|I ⊗M
Rf1

c

DqH
M acts

on registers IDqH M17. Similar to (3) in Section 2.4, the unitary operation Extf1
can also be rewritten as

Extf1 |c,D,m〉IDqH
M = |c,D,m⊕ x〉IDqH

M.

Here x is the smallest value that satisfies f1(x,D(x)) = c. If such x does not
exist, Extf1 returns ⊥ in register M.

Indeed, we can prove the following lemma and the detailed proof is shown in
Appendix D.1.

Lemma 5. |Pr[1← G1]− Pr[1← G2]| ≤ 8qD · 2−γ/2.

Game G3: This game is the same as game G2, except that the extractable
RO-simulator is replaced to S(f2) := {eCO.RO, eCO.Ef2}, where function f2 :
M×{0, 1}n → C ∪⊥ is that f2(x, y) = Encpk(x, y).

In game G3, the decapsulation oracle qDeca⋄ is simulated by the unitary
operation

U3
qD := U⊥ ◦ Pc∗ + Extf2 ◦OG ◦ Extf2 ◦ (I− Pc∗) (7)

that acts on registers IODqH M, where Extf2 :=
∑

c∈C |c〉〈c|I ⊗ M
Rf2

c

DqH
M acts on

registers IDqH M. Similar with Extf1 , the unitary operation Extf2 can be rewritten
as

Extf2 |c,D,m〉IDqH
M = |c,D,m⊕ x〉IDqH

M.

Here x is the smallest value satisfies f2(x,D(x)) = c. If such x does not exist,
Extf2 returns ⊥ in register M. We note that the implementation of Extf2 does
not require sk since the computation of function f2 only uses pk. Therefore, the
implementation of U3

qD also does not require sk.
Compared with f1, function f2 directly computes Encpk(x, y) and ignores

the check of whether x equals Decsk(c), where c = Encpk(x, y). Hence, for any
computational basis state |c,D,m〉IDqH

M, if Extf1 does not map it to |c,D,m⊕
⊥〉IDqH

M, then Extf2 will also be unable to map it to |c,D,m⊕⊥〉IDqH
M. Indeed,

Extf2 may have a different return than Extf1 only on the following type of input
state:

(a) |c,D,m〉IDqH
M: c 6= c∗, Extf1 maps it to |c,D,m ⊕ ⊥〉IDqH

M, but Extf2 does
not.

(b) |c,D,m〉IDqH
M: c 6= c∗, neither Extf1 nor Extf2 maps it to |c,D,m⊕⊥〉IDqH

M,
but the return state of Extf1 and Extf2 is different.

17 Note that the codomain of function f1 is the union of C and ⊥. However, we ig-
nore the extraction with input ⊥ in Extf1 , which is different from its definition as
shown in Definition 2. That is to say, we restrict the adversary A from querying the
decapsulation oracle by ⊥ in our reduction. Indeed, this is reasonable since ⊥ /∈ C.

19

For a fixed (pk, sk) pair, define a set of database as

RD
pk,sk := {D|D ∈ DqH ,∃x s.t. D(x) 6= ⊥∧ Encpk(x,D(x)) = c ∧Decsk(c) 6= x}.

(8)
It is straightforward to check that the database D in state |c,D,m〉IDqH

M of
types (a) and (b) above must satisfy D ∈ RD

pk,sk. Hence, we can conclude that
the extraction-interfaces eCO.Ef1 and eCO,Ef2 proceed identically for any input
state |c,D,m〉IDqH

M if D /∈ RD
pk,sk.

By using Theorem 1, we can prove the following lemma. The detailed proof
is shown in Appendix D.3.

Lemma 6. |Pr[1← G2]− Pr[1← G3]| ≤ 8 ·
√
qH(qH + 1) · δ + 64qH · δ.

Game G4: This game is the same as game G3, except that the extraction in-
terface eCO.Ef2 is implemented by unitary operation Sm∗ ◦ Extf2 ◦ Sm∗ . Here,
Sm∗ is the abbreviation of StdDecompx defined in Section 2.3.

Obviously, the decapsulation oracle qDeca⋄ in game G4 is simulated by uni-
tary operation

U4
qD := U⊥ ◦ Pc∗ + Sm∗ ◦ Extf2 ◦ Sm∗ ◦OG ◦ Sm∗ ◦ Extf2 ◦ Sm∗ ◦ (I− Pc∗).

For a fixed (pk, sk) pair, one can check that the parameter Γ
R

f2
c

related to
function f2 defined in Section 2.4 satisfies

max
c∈C

Γ
R

f2
c
/2n ≤ γ(pk, sk),

since the underlying PKE scheme P is weakly γ-spread. Then, by Lemma 4,

‖[Extf2 , Sm∗]‖ ≤ 16 ·
√
max
c∈C

Γ
R

f2
c
/2n ≤ 16 ·

√
γ(pk, sk).

Notice that Sm∗ ◦ Sm∗ = I, thus we can conclude that Sm∗ ◦ Extf2 ◦ Sm∗ is
indistinguishable from Extf2 except for an error of 16 ·

√
γ(pk, sk).

In game G4, the query times to decapsulation oracle qDeca⋄ are at most qD,
thus the unitary operation U4

qD is implemented at most qD times. Then, for a
fixed (pk, sk) pair, it is easy to obtain

|Pr[1← G3 : (pk, sk)]− Pr[1← G4 : (pk, sk)]| ≤ 32qD ·
√
γ(pk, sk).

Here Pr[1 ← G : (pk, sk)] is the probability that game G returns 1 for fixed
(pk, sk). By averaging the (pk, sk), we obtain

|Pr[1← G3]−Pr[1← G4]| ≤ 32qD ·
√

E
(pk,sk)←Gen

γ(pk, sk)
(a)

≤ 32qD ·2−γ/2. (9)

Here (a) uses the fact that the underlying PKE scheme P is weakly γ-spread.
In game G4, c∗ is computed by H(m∗), which is generated by classically

querying the RO-interface eCO.RO with m∗. As defined in Definition 2, eCO.RO

20

is implemented by the unitary operation CStO. Indeed, by the definition of the
CStO (Definition 1), the joint state of game G4 just before A performs its first
query to qDeca⋄ can be written as∑

z,c,y,D

αz,c,y,DSm∗ |z, c, y,D ∪ (m∗,H(m∗))〉AIODqH
|0m〉M.

Then, for any basis state

|ψ〉 := Sm∗ |z, c, y,D ∪ (m∗,H(m∗)), 0m〉,

suppose unitary operation Extf2 maps state |z, c, y,D∪(m∗,H(m∗)), 0m〉 to state
|z, c, y,D ∪ (m∗,H(m∗)),m〉, we have

Sm∗ ◦ Extf2 ◦ Sm∗ |ψ〉 = Sm∗ ◦ Extf2 |z, c, y,D ∪ (m∗,H(m∗)), 0m〉
= Sm∗ |z, c, y,D ∪ (m∗,H(m∗)),m〉.

(10)

Therefore, if we abbreviate the other registers as R, the internal joint state of
game G4 before and after the implementation of Sm∗ ◦ Extf2 ◦ Sm∗ always can
be written as ∑

r,D

βr,D|r,D ∪ Sm∗(m∗,H(m∗))〉RDqH
.

Now, by the definition of the CStO (Definition 1), we can conclude that
the random oracle H query (which is simulated by eCO.RO) with m∗ makes
by A in game G4 will return H(m∗) again, thus the extractable RO-simulator
S(f2) = {eCO.RO,Sm∗ ◦ eCO.Ef2 ◦ Sm∗} of game G4 perfectly simulates the
random oracle H at point m∗.

In addition, we can prove the following lemma.

Lemma 7. For any basis state |z, c, y,D〉, suppose c 6= c∗,

Extf2 |z, c, y,D ∪ (m∗,H(m∗)), 0m〉 = |z, c, y,D ∪ (m∗,H(m∗)),m〉

and Extf2 |z, c, y,D, 0m〉 = |z, c, y,D,m′〉, then we have m = m′.

Proof. We recall that c∗ = Encpk(m
∗,H(m∗)). Denote databaseD∪(m∗,H(m∗))

as D′, then we have D′(m∗) = H(m∗). By the definition of function f2, if the
value m 6= ⊥, it satisfies that D′(m) 6= ⊥ and Encpk(m,D′(m)) = c. Then we can
conclude that m cannot be m∗, because m = m∗ implies Encpk(m∗, D′(m∗)) = c,
which is contradictory to c 6= c∗.

So even if database D ∪ (m∗,H(m∗)) contains more information than D,
the return of Extf2 on input state |z, c, y,D ∪ (m∗,H(m∗)), 0m〉 is irrelevant
to that additional information. Thus, Extf2 returns the same value on state
|z, c, y,D ∪ (m∗,H(m∗)), 0m〉 and |z, c, y,D, 0m〉, i.e., m = m′. ut

By using above lemma and (10), we obtain that the return of operation
Sm∗ ◦ Extf2 ◦ Sm∗ acting on state

Sm∗ |z, c, y,D ∪ (m∗,H(m∗)), 0m〉 (c 6= c∗)

21

is identical to the return of operation Extf2 acting on state |z, c, y,D, 0m〉. This
implies that even if we do not query eCO.RO by m∗ to generate c∗ in game
G4, and generate it as Encpk(m∗, O(m∗)) instead (O $←− ΩH), the operation
Sm∗ ◦Extf2 ◦Sm∗ in game G4 can then be reduced to operation Extf2 directly. In
other words, we can transform game G4 to the following game G5 equivalently.

Game G5: Compared with game G4, this game has two modifications:

– The simulation of random oracle H is changed. Let O $←− ΩH be a new
random oracle, when H is queried with state |x, y〉XY, a conditional operation
to registers XY is applied:
• Query eCO.RO if x 6= m∗, query random oracle O with input/output

register X/Y if xi = m∗.
The simulation of parallel queries can be done in a similar manner. We note
that the c∗ in this game is computed as Encpk(m

∗, O(m∗)).
– The extraction-interface eCO.Ef2 is implemented by the unitary operation

Extf2 . Therefore, the decapsulation oracle qDeca⋄ in this game is simulated
by the unitary operation U3

qD defined in (7).

Pr[1← G4] = Pr[1← G5]. (11)
Notice that game G5 needs m∗ to implement a conditional operation when

simulating H. In the following game G6, a new conditional operation without
using m∗ is implemented instead.

Game G6: This game is the same as G5, except that a new conditional operation
as follows is implemented to simulate random oracle H.

• Query eCO.RO if Encpk(x,O(x)) 6= c∗, query random oracle O with in-
put/output register X/Y if Encpk(x,O(x)) = c∗.

Define a subset of message space M as

Scollisionpk,sk,O := {m|∃m′ 6= m,Encpk(m,O(m)) = Encpk(m′, O(m′))}.

It is obvious that games G5 and G6 are identical if m∗ /∈ Scollisionpk,sk,O for (pk, sk)←

Gen and O
$←− ΩH . By using Lemma 9 and the δ-correct property of the under-

lying PKE scheme P, we obtain

|Pr[1← G5]− Pr[1← G6]| ≤ 2δ. (12)

Now, we define an IND-CPA adversary Ã against KEM⊥m in the QROM as fol-
lows. To avoid confusion, we denote the two random oracles quantum accessible
to Ã in the IND-CPA game of KEM⊥m as H ′ and G′.

1. The input of Ã is (pk, c∗,K∗b), where c∗ = Encpk(m∗,H ′(m∗)).
2. Ã initializes register M with state |0m〉, prepares database register DqH , and

implements the extractable RO-simulator S(f2) = {eCO.RO, eCO.Ef2}. Then
Ã runs adversary A, simulates game G6 for it, and output A’s output.

22

(a) When A queries random oracle H in parallel with state |x1, y1〉X1Y1
· · ·

|xwH
, ywH

〉XwH
YwH

on wH pairs input/output registers, Ã answers it
by applying a conditional operation to registers XiYi(i = 1, . . . , wH)
sequentially:

i. For the registers XiYiDqH , implement the RO-interface eCO.RO if
Encpk(xi,H ′(xi)) 6= c∗, query random oracle H ′ with input/output
register Xi/Yi if Encpk(xi,H ′(xi)) = c∗.

(b) When A queries random oracle G, Ã answers it by querying random
oracle G′ directly.

(c) When A queries decapsulation oracle qDeca with input state |c, y〉IO, Ã
answers it by implementing unitary operation

U⊥ ◦ Pc∗ + Extf2 ◦OG′ ◦ Extf2 ◦ (I− Pc∗)
on registers IODqH M. Here, OG′ represents querying random oracle G′
with input/output register M/O.

One can check that, adversary Ã makes at most 2qH (resp. qG + qD) queries to
H ′ (resp. G′), the query depth of Ã to H ′ (resp. G′) is 2dH (resp. dG + qD). As
for the running time, since Ã implements eCO.RO and eCO.Ef2 at most qH and
2qD times, respectively, the running time of Ã can be bounded as Time(Ã) ≈
Time(A) + O(qHqD + q2H) by the Definition 2. As for the memory space, note
that Ã needs to prepare database register DqH to implement the extractable
RO-simulator S(f2), hence, we have Space(Ã) ≈ Space(A) +O(qH).

Obviously, we have

AdvIND-CPA
KEM⊥

m,Ã =

∣∣∣∣Pr[1← G6]−
1

2

∣∣∣∣ . (13)

Finally, combining Lemma 5 and Lemma 6 with (5), (6), (9), (11), (12) and (13),
we obtain

AdvIND-qCCA
KEM⊥

m,A ≤ AdvIND-CPA
KEM⊥

m,Ã + 8
√
qH(qH + 1) · δ + (64qH + 2) · δ + 40qD · 2−γ/2.

ut

4 From IND-CPAP to IND-CPAFO⊥
m[P]

In this section, we prove that, in the QROM, the IND-CPA security of KEM
scheme FO⊥m[P,H,G] can be reduced to the IND-CPA security of PKE scheme
P without the quadratic security loss. Similar to Theorem 2, our reduction does
not require the perfect correctness property of the PKE scheme P.

Before we prove the main result of this section, we first review the transfor-
mation T and U⊥m introduced in [14].

Transformation T: Let P = (Gen,Enc,Dec) be a randomized PKE scheme with
message space M(= {0, 1}m) and randomness space {0, 1}n. Let H : M →
{0, 1}n be a hash function. We associate PKE scheme T[P,H] := (Gen,Enc1,Dec1).
The constituting algorithms of T[P,H] are given in Fig. 5.

23

Gen
(pk, sk)← Gen
return (pk, sk)

Enc1 (pk,m)

c = Encpk (m;H(m))

return c

Dec1 (sk, c)
m′ = Decsk (c)
if m′ = ⊥

return ⊥
else if c ̸= Encpk (m′;H(m′))

return ⊥
return m′

Fig. 5. PKE scheme T[P, H] = (Gen,Enc1,Dec1).

We introduce the following two lemmas about transformation T. Note that
the final upper bound of the first lemma avoids the quadratic security loss.

Lemma 8 (Security of T in the QROM [3], Theorem 1). For any adver-
sary A against the OW-CPA security of PKE scheme T[P,H] making qH queries
to H with depth dH , there exists an adversary B against the IND-CPA security
of PKE scheme P such that

AdvOW-CPA
T[P,H],A ≤ (dH + 2) ·

(
AdvIND-CPA

P,B +
8(qH + 1)

|M|

)
,

Time(B) ≈ Time(A) and Space(B) ≈ Space(A).

Lemma 9 ([21], Lemma 4). Let P=(Gen,Enc,Dec) with message space M
and randomness space {0, 1}n be δ-correct. Define a set with respect to fixed
(pk, sk)← Gen and H :M→ {0, 1}n:

Scollision
pk,sk,H := {m ∈M|∃m′ 6= m,Encpk(m′,H(m′)) = Encpk(m,H(m))} .

Then we have

Pr[m ∈ Scollision
pk,sk,H |(pk, sk)← Gen,H $←− ΩH ,m

$←−M] ≤ 2δ.

Gen
(pk, sk)← Gen
return (pk, sk)

Enca (pk)

c = dEncpk (m)

K = G(m)

return (K, c)

m
$←−M

Deca (sk, c)
m′ = dDecsk (c)
if m′ = ⊥

return ⊥
else return K = G(m′)

Fig. 6. KEM scheme U⊥
m[dPKE, G] = (Gen,Enca,Deca).

Transformation U⊥m: Let dPKE = (Gen,dEnc,dDec) be a DPKE scheme with
message space M(= {0, 1}m). Let G : M → {0, 1}n be a hash function. We

24

associate KEM scheme U⊥m[dPKE, G] := (Gen,Enca,Deca). The constituting al-
gorithms of U⊥m[dPKE, G] are given in Fig. 6.

Obviously, we have FO⊥m[P,H,G] = U⊥m [T [P,H] , G]. Next, we prove the
following theorem, which indicates that the IND-CPA security of U⊥m[dPKE, G]
in the QROM can be reduced to the OW-CPA security of dPKE without the
quadratic security loss.

Theorem 3 (OW-CPAdPKE
QROM⇒ IND-CPAU⊥

m[dPKE,G]). Let A be an IND-
CPA adversary against U⊥m[dPKE,G] in the QROM making at most qG queries
to random oracle G with depth dG. Then there exists an OW-CPA adversary Ã
against dPKE such that

AdvIND-CPA
U⊥

m[dPKE,G],A ≤ 2dG ·AdvOW-CPA
dPKE,Ã + 2dG · Pr[EdPKE].

Here EdPKE is the event that

EdPKE : m
$←−M, ∃m′ 6= m, dEncpk(m) = dEncpk(m′).

The running time and memory space of Ã is bounded as Time(Ã) ≈ 2·Time(A)+
O(qG) and Space(Ã) ≈ O(Space(A) + Time(A)), respectively.

Proof. Define two games Gb=0 and Gb=1 as shown in Fig. 7. Here D is a joint
distribution of (G,H,m∗, pk), where G $←− ΩG, m∗ $←− M, H is identical to G,
except that H(m∗) is a fresh random value uniformly sampled from {0, 1}n, and
pk is sampled by (pk, sk)← Gen. Then we have

AdvIND-CPA
U⊥

m[dPKE,G],A =
1

2
|Pr[1← Gb=0]− Pr[1← Gb=1]|. (14)

Gb=0

1, (G,H,m∗, pk)← D
2, b = 0

c∗ = dEncpk (m∗)

K∗
0 = G(m∗), K∗

1
$←− {0, 1}n

3, b′ ← AG(pk, c∗,K∗
b)

4, return b′

NGb=0

1, (G,H,m∗, pk, c∗,K)← D1

2, b′ ← AG(pk, c∗,K)

3, return b′

Gb=1

1, (G,H,m∗, pk)← D
2, b = 1

c∗ = dEncpk (m∗)

K∗
0 = G(m∗), K∗

1
$←− {0, 1}n

3, b′ ← AG(pk, c∗,K∗
b)

4, return b′

NGb=1

1, (G,H,m∗, pk, c∗,K)← D1

2, b′ ← AH(pk, c∗,K)

3, return b′

Fig. 7. Game Gb=0, Gb=1, NGb=0 and NGb=1.

25

Next, we rewrite game Gb=0 and Gb=1 to new games NGb=0 and NGb=1,
respectively, as shown in Fig. 7. The D1 in games NGb=0 and NGb=1 are joint
distributions identical to D, except that two additional values c∗ and K are
sampled, where c∗ = dEncpk(m∗) and K = G(m∗). Then we have

Pr[1← Gb=0] = Pr[1← NGb=0], Pr[1← Gb=1] = Pr[1← NGb=1]. (15)

Define z := (pk, c∗,K) and z′ := (G,H,m∗, pk, c∗,K), we obtain

Pr[1← NGb=0] = Pr[1← AG(z) : z′ ← D1],

Pr[1← NGb=1] = Pr[1← AH(z) : z′ ← D1].
(16)

By applying Lemma 2 with X =M, Y = {0, 1}n, S = {m∗}, and z = (pk, c∗,K),
there exists an adversary B that makes oracle queries to G and H and satisfies

|Pr[1← AG(z) : z′ ← D1]− Pr[1← AH(z) : z′ ← D1]|
≤ 4dG · Pr[T ∩ S 6= ∅ : T ← BG,H(z), z′ ← D1].

(17)
The running time of B is Time(B) ≈ 2 · Time(A), the memory space of B is
Space(B) ≈ O(Space(A) + Time(A)), and B makes at most 3qG queries in total
to oracles H and G.

Now, we construct an adversary Ã that against the OW-CPA security of dPKE
as follows.

1. Ã gets the challenge ciphertext c∗ = dPKEpk(m
∗) and public key pk.

2. Ã samples K uniformly from {0, 1}n and chooses a 3qG-wise function f
uniformly.

3. Ã uses (pk, c∗,K) as input to run adversary B:
(a) When B queries H with state |x, y〉IO on input/output register I/O, Ã

answers by applying unitary operation Of to registers IO directly, where
Of |x, y〉 → |x, y ⊕ f(x)〉.

(b) When B queries G with state |x, y〉I1O1
on input/output register I1/O1,

Ã answers by applying a conditional operation to registers I1O1:
Apply Of if dPKEpk(x) 6= c∗, apply UK if dPKEpk(x) = c∗, where
UK |x, y〉I1O1 = |x, y ⊕K〉I1O1 .

4. After B returns its output T , Ã searches x that satisfies dPKEpk(x) = c∗

from T and output the minimum one. If such x does not exist, Ã output ⊥.

One can check that the running time of Ã is Time(Ã) ≈ Time(B) + O(qG), the
memory space of Ã is Space(Ã) ≈ Space(B).

The adversary Ã cannot get m∗ to simulate H and G directly. In the above
construction, Ã tests if x equals m∗ by checking if dPKEpk(x) equals c∗. There-
fore, similar to the event m∗ /∈ Scollisionpk,sk,O used in the game G6 of the proof of
Theorem 2, if the following event EdPKE does not occur, the adversary Ã simu-
lates the oracle H and G for B perfectly.

EdPKE: m∗ $←−M, ∃m′ 6= m∗, dEncpk(m∗) = dEncpk(m′).

26

Then, we have

Pr[T ∩ S 6= ∅ : T ← BG,H(z), z′ ← D1] ≤ AdvOW-CPA
dPKE,Ã + Pr[EdPKE]. (18)

Combining (14), (15), (16), (17) and (18), we finally obtain

AdvIND-CPA
U⊥

m[dPKE,G],A ≤ 2dG ·AdvOW-CPA
dPKE,Ã + 2dG · Pr[EdPKE].

ut

Theorem 4 (IND-CPAP
QROM⇒ IND-CPAFO⊥

m[P,H,G]). Let A be an IND-CPA
adversary against FO⊥m[P,H,G] in the QROM that making at most qH and qG
queries to random oracle H and G, respectively. Let dH (resp. dG) be the query
depth of A’s random oracle H (resp. G) queries. Then there exists an IND-CPA
adversary B against P such that

AdvIND-CPA
FO⊥

m[P,H,G],A ≤ 2dG(dH + 2) ·AdvIND-CPA
P,B + 16dG(dH + 2)

(qH + 1)

|M|
+ 4dG · δ.

The running time and memory space of B is bounded as Time(B) ≈ 2 ·Time(A)+
O(qG) and Space(B) ≈ O(Space(A) + Time(A)), respectively.

Proof. Since FO⊥m[P,H,G] = U⊥m [T [P,H] , G], we have

AdvIND-CPA
FO⊥

m[P,H,G],A = AdvIND-CPA
U⊥

m[T[P,H],G],A

(a)

≤ 2dG ·AdvOW-CPA
T[P,H],Ã + 2dG · Pr[ET[P,H]]

(b)

≤ 2dG ·AdvOW-CPA
T[P,H],Ã + 4dG · δ

(c)

≤ 2dG(dH + 2) ·AdvIND-CPA
P,B + 16dG(dH + 2)

(qH + 1)

|M|
+ 4dG · δ.

Here (a) and (c) uses the Theorem 3 and Lemma 8, respectively. (b) uses the
Lemma 9.

By the result of Theorem 3, the running time of Ã is Time(Ã) ≈ 2·Time(A)+
O(qG). By the result of Lemma 8, the running time of B is Time(B) ≈ Time(Ã).
Therefore the running time of B is Time(B) ≈ 2 ·Time(A)+O(qG). The memory
space of B can be obtained in a similar way. ut

Combining Theorem 2 and Theorem 4, we obtain following result.

Corollary 1 (IND-CPAP
QROM⇒ IND-qCCAFO⊥

m[P,H,G]). Let P be a random-
ized PKE scheme that is δ-correct and weakly γ-spread. Let A be an IND-qCCA
adversary against KEM⊥m := FO⊥m[P,H,G] in the QROM, making at most qH , qG
and qD queries to random oracle H, random oracle G and decapsulation oracle
qDeca∗, respectively. Let dH (resp. dG) be the query depth of A’s random oracle
H (resp. G) queries.

27

Then there exists an IND-CPA adversary B against P such that

AdvIND-qCCA
KEM⊥

m,A ≤ 2(dG + qD)(2dH + 2) ·AdvIND-CPA
P,B + 40qD · 2−γ/2

+ 8
√
qH(qH + 1) · δ + (64qH + 4dG + 4qD + 2) · δ

+ 16(dG + qD)(2dH + 2)
(2qH + 1)

|M|
.

The running time and memory space of B is bounded as Time(B) ≈ 2 ·Time(A)+
O(qHqD + q2H + qG) and Space(B) ≈ O(Space(A) +Time(A) + qH), respectively.

5 Explicit Rejection and Implicit Rejection

In this section, we prove that, in the QROM, FO/⊥
m is IND-qCCA-secure if FO⊥m

is IND-qCCA-secure and vice versa.

Transformation FO/⊥
m: Let P = (Gen,Enc,Dec) be a randomized PKE scheme

with meassage spaceM(= {0, 1}m) and randomness space {0, 1}n. Let H :M→
{0, 1}n and G : {0, 1}∗ → {0, 1}n′ be hash functions. Let F be a pseudorandom
function (PRF) with key space Kprf . We associate

KEM/⊥
m := FO/⊥

m[P,H,G] = (Gen/⊥,Encam,Deca/⊥
m).

The constituting algorithms of KEM/⊥
m are given in Fig. 8.

Gen/⊥

(pk, sk)← Gen
s

$←− Kprf

sk′ := (sk, s)

return (pk, sk′)

Encapm (pk)

c = Encpk (m;H(m))

K = G(m)

return (K, c)

m
$←−M

Deca/⊥
m (sk′ = (sk, s), c)

m′ = Decsk (c)
if m′ = ⊥

return F(s, c)
else if c ̸= Encpk (m′;H(m′))

return F(s, c)
return K = G(m′)

Fig. 8. KEM scheme KEM/⊥
m = (Gen/⊥,Encam,Deca/⊥

m).

Theorem 5 (Explicit → implicit). Let P be a randomized PKE scheme. Let
A be an IND-qCCA adversary against KEM/⊥

m in the QROM. Then there exists
an IND-qCCA adversary B against KEM⊥m such that

AdvIND-qCCA
KEM/⊥

m,A = AdvIND-qCCA
KEM⊥

m,B .

The running time and memory space of B is bounded as Time(A) ≈ Time(B)
and Space(A) ≈ Space(B), respectively.

28

Proof. The only difference between the adversary in the IND-qCCA game of
KEM⊥m and KEM/⊥

m is that the former gets ⊥ from the decapsulation oracle for
an input c failed to decapsulate, the latter instead gets pseudorandom value
F(s, c). Indeed, the former adversary can also choose s itself and compute F(s, c)
after it gets ⊥ from the decapsulation oracle for input c. Following this way, we
construct an adversary B against the IND-qCCA security of KEM⊥m as follows:

1. B chooses PRF key s $←− Kprf and runs adversary A.
2. B answers the random oracle H/G queries of A by querying H/G directly.
3. B initializes a register K defined over {0, 1}n′+118 with state |0n′〉K. When
A queries the decapsulation oracle with input state |c〉I|y〉O, B answers by
applying following operations sequentially:
(a) Query the decapsulation oracle with input state |c〉I|0n

′〉K, suppose the
output state is |c〉I|k〉K.

(b) If k = ⊥, perform unitary operation Us : |c〉I|y〉O → |c〉I|y ⊕ F(s, c)〉O.
Otherwise, perform unitary operation UXOR : |y〉O|k〉K → |y ⊕ k〉O|k〉K.

(c) Query the decapsulation oracle with input state |c〉I|k〉K, now the register
K is guaranteed to contain 0n

′ .
4. B finally outputs A’s output.

Obviously, adversary B perfectly simulates the IND-qCCA game of KEM/⊥
m for

adversary A and the running time (resp. memory space) of B is nearly the same
as the running time (resp. memory space) of A. Thus

AdvIND-qCCA
KEM/⊥

m,A = AdvIND-qCCA
KEM⊥

m,B .

ut

Theorem 6 (Implicit→ explicit). Let P be a randomized PKE scheme that is
δ-correct and weakly γ-spread. Let A be an IND-qCCA adversary against KEM⊥m
that making at most qH , qG and qD queries to random oracle H, random oracle
G and decapsulation oracle qDeca∗, respectively.

Then there exists an IND-qCCA adversary B against KEM/⊥
m such that

AdvIND-qCCA
KEM⊥

m,A ≤ AdvIND-qCCA
KEM/⊥

m,B + 8
√
qH(qH + 1) · δ + (64qH + 2) · δ + 40qD · 2−γ/2.

The running time and memory space of B is bounded as Time(B) ≈ Time(A) +
O(qHqD + q2H) and Space(B) ≈ Space(A) +O(qH), respectively.

Proof. By using Theorem 2, there exists an IND-CPA adversary Ã against KEM⊥m
such that

AdvIND-qCCA
KEM⊥

m,A ≤ AdvIND-CPA
KEM⊥

m,Ã+8
√
qH(qH + 1) · δ+(64qH+2)·δ+40qD·2−γ/2. (19)

18 Here we embed the set {0, 1}n
′
∪⊥ into the set {0, 1}n

′+1 as explained in Appendix
A.

29

The running time and memory space of Ã is bounded as Time(Ã) ≈ Time(A) +
O(qHqD + q2H) and Space(Ã) ≈ Space(A) +O(qH), respectively.

We note that, in the IND-qCCA game of KEM/⊥
m, the PRF key s chosen as

part of the secret key is useless if the adversary never queries the decapsulation
oracle. This implies that, even though the IND-qCCA adversary against KEM/⊥

m

does not know the PRF key s, it can still perfectly simulate the IND-CPA game
of KEM⊥m for the adversary Ã. Now, we construct an IND-qCCA adversary B
against KEM/⊥

m as follows:

1. B runs adversary Ã and B never queries the decapsulation oracle.
2. B answers the random oracle H/G queries of Ã by querying H/G directly.
3. B finally outputs Ã’s output.

It is straightforward to check that adversary B perfectly simulates the IND-CPA
game of KEM⊥m for adversary Ã, and the running time (resp. memory space) of
B is nearly the same as the running time (resp. memory space) of Ã. Thus

AdvIND-CPA
KEM⊥

m,Ã = AdvIND-qCCA
KEM/⊥

m,B .

Combining above equation with (19), we obtain our result. ut

Remark 2. In Theorem 6, different from Corollary 1, we note that our reduction
only introduces a linear memory space expansion O(qH). The reason is that the
adversary Ã in Theorem 2 only invokes adversary A once in a black-box manner,
and it just uses an additional database register DqH to process the oracle queries
of A.

Acknowledgments. We thank the anonymous reviewers of CRYPTO 2023,
and Shujiao Cao for their insightful comments and suggestions. This work is sup-
ported by National Natural Science Foundation of China (Grants No. 62172405).

30

References

1. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-
classical oracles. In: Advances in Cryptology - CRYPTO 2019 - 39th Annual In-
ternational Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019,
Proceedings, Part II. pp. 269–295. Springer (2019). https://doi.org/10.1007/
978-3-030-26951-7_10

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: CCS ’93, Proceedings of the 1st ACM Conference on Com-
puter and Communications Security, Fairfax, Virginia, USA, November 3-5, 1993.
pp. 62–73. ACM (1993). https://doi.org/10.1145/168588.168596

3. Bindel, N., Hamburg, M., Hövelmanns, K., Hülsing, A., Persichetti, E.: Tighter
proofs of CCA security in the quantum random oracle model. In: Theory of
Cryptography Conference. pp. 61–90. Springer (2019). https://doi.org/10.1007/
978-3-030-36033-7_3

4. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Advances in Cryptology - ASIACRYPT
2011 - 17th International Conference on the Theory and Application of Cryptology
and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings.
pp. 41–69. Springer (2011). https://doi.org/10.1007/978-3-642-25385-0_3

5. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In: Advances in Cryptology - CRYPTO 2013 - 33rd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part II. pp. 361–379. Springer (2013). https://doi.org/10.1007/
978-3-642-40084-1_21

6. Chung, K., Fehr, S., Huang, Y., Liao, T.: On the compressed-oracle technique, and
post-quantum security of proofs of sequential work. In: Advances in Cryptology -
EUROCRYPT 2021 - 40th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021,
Proceedings, Part II. pp. 598–629. Springer (2021). https://doi.org/10.1007/
978-3-030-77886-6_21

7. Czajkowski, J., Majenz, C., Schaffner, C., Zur, S.: Quantum lazy sampling and
game-playing proofs for quantum indifferentiability. Cryptology ePrint Archive,
Paper 2019/428 (2019), https://eprint.iacr.org/2019/428, https://eprint.
iacr.org/2019/428

8. Dent, A.W.: A designer’s guide to kems. In: IMA International Conference on
Cryptography and Coding. pp. 133–151. Springer (2003). https://doi.org/10.
1007/978-3-540-40974-8_12

9. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Online-extractability in the quantum
random-oracle model. In: Advances in Cryptology - EUROCRYPT 2022 - 41st
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Trondheim, Norway, May 30 - June 3, 2022, Proceedings, Part III. pp.
677–706. Springer (2022). https://doi.org/10.1007/978-3-031-07082-2_24

10. Duman, J., Hartmann, D., Kiltz, E., Kunzweiler, S., Lehmann, J., Riepel, D.:
Group action key encapsulation and non-interactive key exchange in the QROM.
In: Advances in Cryptology - ASIACRYPT 2022 - 28th International Confer-
ence on the Theory and Application of Cryptology and Information Security,
Taipei, Taiwan, December 5-9, 2022, Proceedings, Part II. Lecture Notes in Com-
puter Science, vol. 13792, pp. 36–66. Springer (2022). https://doi.org/10.1007/
978-3-031-22966-4_2

31

https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-030-36033-7_3
https://doi.org/10.1007/978-3-030-36033-7_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-030-77886-6_21
https://doi.org/10.1007/978-3-030-77886-6_21
https://eprint.iacr.org/2019/428
https://eprint.iacr.org/2019/428
https://eprint.iacr.org/2019/428
https://doi.org/10.1007/978-3-540-40974-8_12
https://doi.org/10.1007/978-3-540-40974-8_12
https://doi.org/10.1007/978-3-031-07082-2_24
https://doi.org/10.1007/978-3-031-22966-4_2
https://doi.org/10.1007/978-3-031-22966-4_2

11. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. J. Cryptol. 26(1), 80–101 (2013). https://doi.org/10.1007/
s00145-011-9114-1

12. Ge, J., Shan, T., Xue, R.: On the fujisaki-okamoto transform: from classical cca se-
curity to quantum cca security. Cryptology ePrint Archive, Paper 2023/792 (2023),
https://eprint.iacr.org/2023/792, https://eprint.iacr.org/2023/792

13. Grubbs, P., Maram, V., Paterson, K.G.: Anonymous, robust post-quantum public
key encryption. In: Advances in Cryptology - EUROCRYPT 2022 - 41st Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Trondheim, Norway, May 30 - June 3, 2022, Proceedings, Part III. pp.
402–432. Springer (2022). https://doi.org/10.1007/978-3-031-07082-2_15

14. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the fujisaki-okamoto
transformation. In: Theory of Cryptography Conference. pp. 341–371. Springer
(2017). https://doi.org/10.1007/978-3-319-70500-2_12

15. Hövelmanns, K., Hülsing, A., Majenz, C.: Failing gracefully: Decryption fail-
ures and the fujisaki-okamoto transform. In: Advances in Cryptology - ASI-
ACRYPT 2022 - 28th International Conference on the Theory and Application
of Cryptology and Information Security, Taipei, Taiwan, December 5-9, 2022,
Proceedings, Part IV. pp. 414–443. Springer (2022). https://doi.org/10.1007/
978-3-031-22972-5_15

16. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: Ind-cca-secure key encapsula-
tion mechanism in the quantum random oracle model, revisited. In: Advances in
Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part III. pp. 96–125.
Springer (2018). https://doi.org/10.1007/978-3-319-96878-0_4

17. Jiang, H., Zhang, Z., Ma, Z.: Key encapsulation mechanism with explicit rejection
in the quantum random oracle model. In: Public-Key Cryptography - PKC 2019 -
22nd IACR International Conference on Practice and Theory of Public-Key Cryp-
tography, Beijing, China, April 14-17, 2019, Proceedings, Part II. pp. 618–645.
Springer (2019). https://doi.org/10.1007/978-3-030-17259-6_21

18. Jiang, H., Zhang, Z., Ma, Z.: Tighter security proofs for generic key encapsulation
mechanism in the quantum random oracle model. In: Post-Quantum Cryptography
- 10th International Conference, PQCrypto 2019, Chongqing, China, May 8-10,
2019 Revised Selected Papers. pp. 227–248. Springer (2019). https://doi.org/
10.1007/978-3-030-25510-7_13

19. Jiang, H., Zhang, Z., Ma, Z.: On the non-tightness of measurement-based reduc-
tions for key encapsulation mechanism in the quantum random oracle model.
In: Advances in Cryptology - ASIACRYPT 2021 - 27th International Confer-
ence on the Theory and Application of Cryptology and Information Security, Sin-
gapore, December 6-10, 2021, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 13090, pp. 487–517. Springer (2021). https://doi.org/10.1007/
978-3-030-92062-3_17

20. Kuchta, V., Sakzad, A., Stehlé, D., Steinfeld, R., Sun, S.: Measure-rewind-measure:
Tighter quantum random oracle model proofs for one-way to hiding and CCA secu-
rity. In: Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, May 10-14, 2020, Proceedings, Part III. pp. 703–728. Springer (2020).
https://doi.org/10.1007/978-3-030-45727-3_24

21. Liu, X., Wang, M.: Qcca-secure generic key encapsulation mechanism with tighter
security in the quantum random oracle model. In: Public-Key Cryptography - PKC

32

https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://eprint.iacr.org/2023/792
https://eprint.iacr.org/2023/792
https://doi.org/10.1007/978-3-031-07082-2_15
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-031-22972-5_15
https://doi.org/10.1007/978-3-031-22972-5_15
https://doi.org/10.1007/978-3-319-96878-0_4
https://doi.org/10.1007/978-3-030-17259-6_21
https://doi.org/10.1007/978-3-030-25510-7_13
https://doi.org/10.1007/978-3-030-25510-7_13
https://doi.org/10.1007/978-3-030-92062-3_17
https://doi.org/10.1007/978-3-030-92062-3_17
https://doi.org/10.1007/978-3-030-45727-3_24

2021 - 24th IACR International Conference on Practice and Theory of Public Key
Cryptography, Virtual Event, May 10-13, 2021, Proceedings, Part I. pp. 3–26.
Springer (2021). https://doi.org/10.1007/978-3-030-75245-3_1

22. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information
(10th Anniversary edition). Cambridge University Press (2016)

23. NIST: National institute for standards and technology. post quantum crypto
project. https://csrc.nist.gov/projects/post-quantum-cryptography (2017)

24. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mecha-
nism in the quantum random oracle model. In: Advances in Cryptology - EU-
ROCRYPT 2018 - 37th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018
Proceedings, Part III. pp. 520–551. Springer (2018). https://doi.org/10.1007/
978-3-319-78372-7_17

25. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
IACR Cryptol. ePrint Arch. p. 332 (2004)

26. Unruh, D.: Revocable quantum timed-release encryption. J. ACM 62(6), 49:1–
49:76 (2015). https://doi.org/10.1145/2817206

27. Xagawa, K., Yamakawa, T.: (tightly) qcca-secure key-encapsulation mechanism
in the quantum random oracle model. In: Post-Quantum Cryptography - 10th
International Conference, PQCrypto 2019, Chongqing, China, May 8-10, 2019 Re-
vised Selected Papers. pp. 249–268. Springer (2019). https://doi.org/10.1007/
978-3-030-25510-7_14

28. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings. pp. 758–
775. Springer (2012). https://doi.org/10.1007/978-3-642-32009-5_44

29. Zhandry, M.: How to record quantum queries, and applications to quantum indif-
ferentiability. In: Advances in Cryptology - CRYPTO 2019 - 39th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019,
Proceedings, Part II. pp. 239–268. Springer (2019). https://doi.org/10.1007/
978-3-030-26951-7_9

33

https://doi.org/10.1007/978-3-030-75245-3_1
https://csrc.nist.gov/projects/post-quantum-cryptography
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1145/2817206
https://doi.org/10.1007/978-3-030-25510-7_14
https://doi.org/10.1007/978-3-030-25510-7_14
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9

A Quantum Background

A quantum system (register) Q is a complex Hilbert space HQ with an inner
product 〈·|·〉, notation like ’|·〉’ or ’〈·|’ is called the Dirac notation. We denote
HQ = C[X] if Q is defined over a finite set X , the orthonormal basis of C[X] is
{|x〉}x∈X , where the basis state |x〉 is labeled by the element x of X . We refer
to {|x〉}x∈X as the computational basis. The state |ψ〉 of the quantum system
Q is a unit vector, and we also write this state as |ψ〉Q.

A qubit in superposition is a linear combination vector |b〉 = α|0〉 + β|1〉 of
two computational basis states |0〉 and |1〉 with α, β ∈ C2 and |α|2+|β|2= 1, α,
β are the probability amplitudes of |b〉. Given quantum systems Q1 and Q2, we
call tensor product Q1 ⊗Q2 is the composite quantum system and the product
state is |ψ1〉 ⊗ |ψ2〉 ∈ Q1 ⊗ Q2 where |ψ1〉 ∈ Q1, |ψ2〉 ∈ Q2. An n-qubit system
is Q⊗n where Q is a single qubit system. We call state |ψ〉 ∈ Q1 ⊗Q2 a product
state if |ψ〉 can be rewritten as |ψ〉 = |ψ1〉 ⊗ |ψ2〉 and |ψ1〉 ∈ Q1, |ψ2〉 ∈ Q2, if
|ψ〉 is not a product state, we say that the systems Q0 and Q1 are entangled,
otherwise un-entangled. The norm of a state |ψ〉 is defined as ‖|ψ〉‖ :=

√
〈ψ|ψ〉,

where 〈ψ|ψ〉 is the inner product of |ψ〉.
The evolution of a closed quantum system is described by a unitary operation.

That is the state |ψ〉 of the system at time t1 is related to the state |ψ′〉 of the
system at time t2 by a unitary operation U which depends only on the times t1
and t2, that |ψ′〉 = U|ψ〉. In our paper, we also write UQ to emphasize that the
unitary operation U acts on the quantum system (register) Q. For any unitary
operation U acts on a quantum system, we have U ◦ U† = I, where U† is the
Hermitian transpose of U and I is the identity operator over the quantum system.
The norm of an operator U is defined as ‖U‖ := max∥|Φ⟩∥=1 ‖U|Φ〉‖.

Then we introduce a special operation called projector, for state |ψ〉 of an
n-qubit register, a projector M|y⟩⟨y| applies the projection |y〉〈y| map to the
state |ψ〉 to get the new state |y〉〈y|ψ〉. M|y⟩⟨y| can also be generalized to a new
projector My∈S which applies the projection

∑
y∈S |y〉〈y|. We stress that any

projector operator M is Hermitian (i.e., we have M† = M) and idempotent (i.e.,
we have M2 = M).

State |ψ〉 can be measured with respect to a basis, for example, suppose |ψ〉 =∑
x αx|x〉 with computational basis {|x〉}, if we measure |ψ〉 in computational

basis, the measurement outputs the value x with probability |〈x|ψ〉|2 = |αx|2.
Note that state |ψ〉 collapses to state |x〉 after the measurement, so the state will
stay |x〉, and the subsequent measurements will always output x. Measurements
on other basis are defined analogously. In this paper, we will generally only
consider measurements on the computational basis. A general projective mea-
surement M is defined by a set of projection operators M1, . . . ,Mn where Mi are
mutually orthogonal and

∑n
i=1 Mi = I. Any general projective measurement can

be implemented by composing a unitary operation followed by a measurement
in the computational basis.

A quantum oracle algorithm AO(z) is an algorithm A(z) that is given quan-
tum oracle access to oracle O. In this paper, we default that oracle O can be

34

implemented by a unitary operation UO that operates on the corresponding in-
put/output register. The algorithm A(z) is allowed to perform parallel queries
to O with input/output register Ii/Oi for i = 1, . . . , w, suppose A(z) can per-
form parallel queries at most d times, then we call w (resp. d) the query width
(resp. query depth) and the total query times of A(z) is q := w · d. Moreover,
once parallel query to O with input/output register Ii/Oi for i = 1, . . . , w can
be implemented by unitary operation (UO)

⊗w

There is a well-known fact that we can construct a unitary variant AO
U(z) for

any quantum oracle algorithm AO(z) with some constant factor computational
overhead and these two algorithms have same query width and query depth [1],
AO

U(z) also called a unitary quantum oracle algorithm. As shown in Definition
8 of [10], the detailed execution of a unitary quantum oracle algorithm can be
described as follows:

Unitary quantum oracle algorithm BO: Suppose B’s query depth is d and
query width is p, then B’s execution can be described as

Ud ◦ (UO)
⊗p ◦Ud−1 ◦ (UO)

⊗p ◦ . . . ◦U1 ◦ (UO)
⊗p|ψ〉.

Here U1, . . . ,Ud is the fixed unitary operations applied between queries, and |ψ〉
is the initial pure state. B perform a projective measurement on its quantum
register after applying Ud and output the measure outcome. For multiple ora-
cles case, as explained in the Remark 8 of [10], if B have quantum access to all
oracles, then the execution of B can be described analogously.

Moreover, in this paper, we sometimes use a special symbol ⊥ to expand
a finite set {0, 1}n, thus default ⊥ /∈ {0, 1}n and then consider a new finite
set {0, 1}n ∪ ⊥. Roughly speaking, the reason is that, when we define a special
unitary operation, we need ⊥ to denote "not defined (yet)" or "computation
failure".

As for the detailed representation of {0, 1}n∪⊥, we use the extension method
introduced in [6]. That is to say, we use a classical encoding function enc that
enc(⊥) = 1||0n ∈ {0, 1}n+1 and enc(x) = 0||x ∈ {0, 1}n+1 for any x ∈ {0, 1}n,
then the set {0, 1}n ∪ ⊥ can be embedded into the set {0, 1}n+1. Under this
representation, the binary operation x ⊕ y for x, y ∈ {0, 1}n ∪ ⊥ that used in
this paper actually means enc(x) ⊕ enc(y), where operation ⊕ denotes bitwise
addition modulo 2, a group operation on {0, 1}n+1. Overall, with this represen-
tation, the quantum register defined over set {0, 1}n ∪ ⊥ is implemented by a
quantum register defined over set {0, 1}n+1.

35

B Cryptographic Primitives and Security Definitions

Definition 3 (Public Key Encryption). A public key encryption (PKE)
scheme consist of a finite message space M and three polynomial algorithm
(Gen,Enc,Dec) according to security parameter λ.

1. Gen: a probabilistic algorithm with input 1λ and output a public/secret key
pair (pk, sk).

2. Enc: a probabilistic algorithm with input a message m ∈ M and output
a ciphertext c ∈ C(C is the ciphertext space). it choose r ← R(R is the
randomness space), computes c := Encpk(m, r) and output ciphertext c. If
Enc do not use randomness to compute c, Enc is a deterministic algorithm
and output c := Encpk(m).

3. Dec: a deterministic algorithm with input a ciphertext c ∈ C and secret key
sk, computes m := Decsk(c) and output m or a rejection symbol ⊥ /∈M.

Definition 4 (OW-CPA/IND-CPA secure). We say PKE = (Gen,Enc,Dec) is
OW-CPA (resp. IND-CPA) secure if for any quantum polynomial adversary A,
the OW-CPA (resp. IND-CPA) advantage of A against PKE defined as

AdvOW-CPA
PKE,A := Pr[1← GameOW-CPA

A,PKE] (resp.
AdvIND-CPA

PKE,A := |Pr[1← GameIND-CPA
A,PKE]− 1/2|)

is negligible. The game GameOW-CPA
A,PKE (resp. GameIND-CPA

A,PKE) is defined in Fig. 9.

GameOW-CPA
A,PKE

(pk, sk)← Gen
m∗ $←−M
c∗ = Encpk (m∗)

m′ ← A(pk, c∗)
return [m′ = m∗]

GameIND-CPA
A,PKE

(pk, sk)← Gen
b

$←− {0, 1}
(m∗

0,m
∗
1)← A(pk)

c∗ = Encpk (m∗
b)

b′ ← A(pk, c∗)
return [b′ = b]

Fig. 9. Game GameOW-CPA
A,PKE and GameIND-CPA

A,PKE .

Definition 5 (Correctness [14]). We say that PKE = (Gen,Enc,Dec) is δ-
correct if

E
[
max
m∈M

Pr[Decsk(c) 6= m : c← Encpk(m)]

]
≤ δ,

where the expectation is taken over (pk, sk)← Gen. Define

δ(pk, sk) := max
m∈M

Pr[Decsk(c) 6= m : c← Encpk(m)],

then we have E[δ(pk, sk)] ≤ δ.

36

Definition 6 (weakly γ-spread [9]). We say that PKE = (Gen,Enc,Dec) is
weakly γ-spread if

E
[

max
m∈M,c∈C

Pr[c = Encpk(m)]

]
≤ 2−γ ,

where the expectation is taken over (pk, sk) ← Gen and the probability is over
the randomness of the encryption. We also define

γ(pk, sk) := max
m∈M,c∈C

Pr[c = Encpk(m)].

Definition 7 (Key-encapsulation mechanism). A key-encapsulation mech-
anism (KEM) consists of three algorithms Gen, Enca and Deca. The key gen-
eration algorithm Gen outputs a key pair (pk, sk). The encapsulation algorithm
Enca, on input pk, outputs a tuple (K, c) where c is said to be an encapsulation
of the key K which is contained in key space K. The deterministic decapsula-
tion algorithm Deca, on input sk and an encapsulation c, outputs either a key
K := Decask(c) ∈ K or a special symbol ⊥ /∈ K to indicate that c is not a valid
encapsulation.

Definition 8 (IND-qCCA/IND-CPA secure). We say KEM = (Gen,Enca,Deca)
is IND-qCCA (resp. IND-CPA) secure if for any quantum polynomial adversary
A, the IND-qCCA (resp. IND-CPA) advantage of A against KEM defined as

AdvIND-qCCA
KEM,A := |Pr[1← GameIND-qCCA

A,KEM]− 1/2| (resp.
AdvIND-CPA

KEM,A := |Pr[1← GameIND-CPA
A,KEM]− 1/2|)

is negligible. The game GameIND-qCCA
A,KEM (resp. GameIND-CPA

A,KEM) is defined in Fig. 10.

GameIND-qCCA
A,KEM

(pk, sk)← Gen
b

$←− {0, 1}
(c∗, k∗

0)← Enca(pk)
k∗
1

$←− K
b′ ← AqDeca∗(pk, c∗, k∗

b)

return [b′ = b]

qDeca∗(
∑

c,k αc,k|c, k⟩)
return

∑
c,k αc,k|c, k ⊕ fc∗(c)⟩

fc∗(c)

if c = c∗

return ⊥
else return Decask(c)

GameIND-CPA
A,KEM

(pk, sk)← Gen
b

$←− {0, 1}
(c∗, k∗

0)← Enca(pk)
k∗
1

$←− K
b′ ← A(pk, c∗, k∗

b)

return [b′ = b]

Fig. 10. Game GameIND-qCCA
A,KEM and GameIND-CPA

A,KEM .

37

C The Quantum Circuit Implementation of Um

Define function f : C →M∪⊥ and g :M∪⊥× {0, 1}n ∪ ⊥× C → {0, 1} as:

f(c) = Decsk(c), g(x, y, c) =

{
0 if Encpk(x, y) = c ∧ x, y 6= ⊥
1 otherwise.

Obviously, function f and g can be efficiently computed. Thus, the unitary op-
eration Uf : |c, z〉 → |c, z ⊕ f(c)〉 and Ug : |x, y, c, b〉 → |x, y, c, b⊕ g(x, y, c)〉 can
also be efficiently implemented by the basic theory of quantum computation.

By using Uf and Ug above, unitary operation Um can be implemented by
the following procedure:

– Initialize three new registers R1, R2 and R3 to 0, here R3 is a one qubit
register.

– Apply Uf to registers IR1, here R1 is the output register. Then apply Uf to
registers IM, here M is the output register.

– Query H by registers R1R2, here R2 is the output register and we default
H(⊥) = ⊥.

– Apply Ug to registers IR1R2R3, here R3 is the output register.
– Apply the following two conditional operations.
• The controlling bit is R3, and apply Uf to registers IM if b = 1, here M

is the output register.
• The controlling bit is R3, and apply unitary operation U⊥ to register M

if b = 1, where U⊥|0m〉 = |⊥〉, U⊥|⊥〉 = |0m〉 .
– Apply Ug to registers IR1R2R3, here R3 is the output register.
– Query H by registers R1R2, here R2 is the output register.
– Apply Uf to registers IR1, here R1 is the output register. Now the registers

R1, R2 and R3 are guaranteed to contain 0, so they can be discarded.

We stress that two queries to H is needed in above procedure.

38

D Missing Proofs of Section 3

Here we introduce the following corollary, which will be used in the proof of
Lemma 5.

Corollary 2. For any state |ψ1〉 to |ψq〉, we have ‖
∑q

i=1 |ψi〉‖2 ≤ q·
∑q

i=1 ‖|ψi〉‖2.

Proof. The proof is simple:∥∥∥∥∥
q∑

i=1

|ψi〉

∥∥∥∥∥
2

(a)

≤

(
q∑

i=1

‖|ψi〉‖

)2
(b)

≤ q ·
q∑

i=1

‖|ψi〉‖2.

Here (a) uses the triangle inequality, and (b) uses the AM-QM (or Jensens)
inequality.

D.1 Proof of Lemma 5

Proof. Obviously, we can construct an oracle algorithm BqDeca⋄(pk, sk,G) to ex-
ecute game G2. The algorithm generates the challenge ciphertext (c∗,K∗b) and
runs adversaryA to get b′. It finally outputs [b = b′]. Algorithm BqDeca⋄(pk, sk,G)
prepares database register DqH and implements the extractable RO-simulator
S(f1) itself. The queries to qDeca⋄ made by algorithm BqDeca⋄(pk, sk,G) can be
answered by applying unitary operation U2

qD to registers IODqH M19. Then, if we
change qDeca⋄ into qDeca∗ that is answered by applying U1

qD, we get an oracle
algorithm BqDeca∗(pk, sk,G) that runs game G1. Therefore,

Pr
[
1← BqDeca∗(pk, sk,G)

]
= Pr [1← G1 : (pk, sk,G)] ,

Pr
[
1← BqDeca⋄(pk, sk,G)

]
= Pr [1← G2 : (pk, sk,G)] .

(20)

Here Pr[1← Gi : (pk, sk,G)] is the probability that game Gi outputs 1 for fixed
(pk, sk) and G.

As explained in Appendix A, for oracle algorithm BO(pk, sk,G), we can con-
struct its unitary variant BOU (pk, sk,G) that acts on registers ZIODqH . Here
register Z contains the adversary A’s register A and the other registers used
by BOU . Indeed, the corresponding final joint state of BqDeca∗

U (pk, sk,G) and
BqDeca⋄
U (pk, sk,G) just before the projective measurement M :=

{
M|0⟩⟨0|,M|1⟩⟨1|

}
can be written as:

BqDeca∗
U : |Ψ1〉|0m〉M = UqD ◦U1

qD · · ·U2 ◦U1
qD ◦U1 ◦U1

qD|ψ〉|0m〉M,

BqDeca⋄
U : |Ψ2〉|0m〉M = UqD ◦U2

qD · · ·U2 ◦U2
qD ◦U1 ◦U2

qD|ψ〉|0m〉M.

19 This might be confusing because algorithm B holds the database register itself and
it can also perform U2

qD efficiently. Indeed, algorithm B is an artificial algorithm
designed only for proof, and there is no ambiguity in its definition.

39

Here |ψ〉 is the initial pure state on registers ZIODqH and we suppose that
(pk, sk,G, c∗,K∗b) is encoded in this state without loss of generality. U1, . . . ,UqD

are the unitary operations that act on registers ZIODqH between oracle queries.
Then we have

Pr[1← BqDeca∗(pk, sk,G)] = Pr[1← BqDeca∗
U (pk, sk,G)],

Pr[1← BqDeca⋄(pk, sk,G)] = Pr[1← BqDeca⋄
U (pk, sk,G)].

(21)

By the analysis of Appendix D.2, for any unit joint state |Φ〉 on registers
ZIODqH just before the application of U1

qD and U2
qD, we have∥∥∥U1

qD|Φ〉|0m〉M −U2
qD|Φ〉|0m〉M

∥∥∥ ≤ 8 · √γpk,sk.

By using the hybrid argument, it is straightforward to obtain

‖|Ψ1〉|0m〉M − |Ψ2〉|0m〉M‖ ≤ 8qD ·
√
γpk,sk.

Then, by using the Lemma 4 of [1], we have∣∣∣Pr [1← BqDeca∗
U (pk, sk,G)

]
− Pr

[
1← BqDeca⋄

U (pk, sk,G)
]∣∣∣ ≤ 8qD ·

√
γpk,sk.

By (21), we get∣∣∣Pr [1← BqDeca∗(pk, sk,G)
]
− Pr

[
1← BqDeca⋄(pk, sk,G)

]∣∣∣ ≤ 8qD ·
√
γpk,sk.

Finally, combining above equation with (20) and averaging the (pk, sk,G), we
obtain

|Pr[1← G1]− Pr[1← G2]| ≤ 8qD ·
√

E
(pk,sk)←Gen

[γpk,sk]
(a)

≤ 8qD · 2−γ/2.

Here (a) uses the fact that the PKE scheme P is weakly γ-spread. ut

40

D.2 Bound on
∥∥∥U1

qD|Φ⟩|0m⟩M − U2
qD|Φ⟩|0m⟩M

∥∥∥
Define set Γc,x := {y ∈ {0, 1}n : f1(x, y) = c}, by the weakly γ-spread property
of PKE scheme P, we have

max
c∈C,m∈M

|Γc,m|
2n

= max
c∈C,m∈M

|{y ∈ {0, 1}n : f1(m, y) = c}|
2n

≤ max
c∈C,m∈M

|{y ∈ {0, 1}n : Encpk(m, y) = c}|
2n

≤ γpk,sk.
(22)

We rewrite the unit joint state |Φ〉 on registers ZIODqH just before the ap-
plication of U1

qD and U2
qD as

|Φ〉 =
∑

z∈{0,1}∗,c∈C
y∈{0.1}n

′+1,D∈DqH
,n(D)<qH

αz,c,y,D|z〉Z|c, y〉IO|D〉DqH
.

Here n(D) < qH because the RO-interface in algorithm BqDeca∗
U and BqDeca⋄

U

is implemented at most qH times. For the sake of convenience, we abbreviate
z∈{0,1}∗,c∈C

y∈{0.1}n
′+1,D∈DqH

,n(D)<qH
into z, c, y,D, n(D) < qH and |z〉Z|c, y〉IO|D〉DqH

into
|z, c, y,D〉 in the following.

Next, we separate |Φ〉 into four mutual orthogonal parts that

|Φ〉 = |Φ1〉+ |Φ2〉+ |Φ3〉+ |Φ4〉,

where |Φ1〉, |Φ2〉, |Φ3〉 and |Φ4〉 are the following states:

|Φ1〉 =
∑

z,c,y,D,n(D)<qH
c=c∗∨Decsk(c)=⊥

βz,c,y,D|z, c, y,D〉,

|Φ2〉 =
∑

z,c,y,D,n(D)<qH
m:=Decsk(c)̸=⊥
c ̸=c∗,D(m)=⊥

βz,c,y,D|z, c, y,D〉,

|Φ3〉 =
∑

z,c,y,D,n(D)<qH−1
m:=Decsk(c)̸=⊥
c̸=c∗,D(m)=⊥
r∈{0,1}n,r ̸=0n

βz,c,y,D,r
1√
2n

∑
y1∈{0,1}n

(−1)y1·r|z, c, y,D ∪ (m, y1)〉,

|Φ4〉 =
∑

z,c,y,D,n(D)<qH−1
m:=Decsk(c) ̸=⊥
c ̸=c∗,D(m)=⊥

βz,c,y,D,0n
1√
2n

∑
y1∈{0,1}n

|z, c, y,D ∪ (m, y1)〉.

41

For a fixed (z, c, y,D) with c 6= c∗, m := Decsk(c) 6= ⊥, n(D) < qH and
D(m) = ⊥, define states

|Υ1[r, ν]〉z,cy,D :=
∑

y1∈Γc,m

(−1)y1·r|z, c, y ⊕ ν,D ∪ (m, y1)〉,

|Υ2[r]〉z,cy,D :=
∑

y1 /∈Γc,m

(−1)y1·r|z, c, y ⊕⊥, D ∪ (m, y1)〉,

|Υ3[r, ν]〉z,cy,D :=
∑

y1∈Γc,m

(−1)y1·r|z, c, y ⊕ ν,D〉,

|Υ4[r, ν]〉z,cy,D :=
∑

y1∈Γc,m

(−1)y1·r
∑

y2∈{0,1}n

1√
2n
|z, c, y ⊕ ν,D ∪ (m, y2)〉.

(23)

Here r ∈ {0, 1}n and ν ∈ {G(m),⊥}.
By the quantum circuit implementation of unitary operation Um as shown

in Appendix C and the definition of U1
qD and U2

qD, we have20

U1
qD|Φ1〉|0m〉 = U2

qD|Φ1〉|0m〉 =
∑

z,c,y,D,n(D)<qH
c=c∗∨Decsk(c)=⊥

βz,c,y,D|z, c, y ⊕⊥, D〉|0m〉,

U1
qD|Φ2〉|0m〉 =

∑
z,c,y,D,n(D)<qH
m:=Decsk(c) ̸=⊥
c̸=c∗,D(m)=⊥

βz,c,y,D√
2n

(
Sm|Υ1[0

n, G(m)]〉z,cy,D + Sm|Υ2[0]〉z,cy,D

)
|0m〉,

U2
qD|Φ2〉|0m〉 =

∑
z,c,y,D,n(D)<qH
m:=Decsk(c)̸=⊥
c̸=c∗,D(m)=⊥

βz,c,y,D|z, c, y ⊕⊥, D〉|0m〉,

U1
qD|Φ3〉|0m〉 =

∑
z,c,y,D,n(D)<qH−1

m:=Decsk(c) ̸=⊥
c ̸=c∗,D(m)=⊥
r∈{0,1}n,r ̸=0n

βz,c,y,D,r√
2n

(
Sm|Υ1[r,G(m)]〉z,cy,D + Sm|Υ2[r]〉z,cy,D

)
|0m〉,

U2
qD|Φ3〉|0m〉 =

∑
z,c,y,D,n(D)<qH−1

m:=Decsk(c) ̸=⊥
c ̸=c∗,D(m)=⊥
r∈{0,1}n,r ̸=0n

βz,c,y,D,r√
2n

(
|Υ1[r,G(m)]〉z,cy,D + |Υ2[r]〉z,cy,D

)
|0m〉.

(24)
As for the U1

qD|Φ4〉|0m〉 and U2
qD|Φ4〉|0m〉, we note that the state with the form

of 1√
2n

∑
y1∈{0,1}n |z, c, y,D ∪ (m, y1)〉 cannot appear just before the application

20 Here we omit the detailed computational process since the implementation of Um is
not very simple. Nevertheless, we stress that, following the implementation of Um,
one can get the state shown in (24) by direct computation.

42

of U1
qD

21. Hence we add a complement of the operation of U1
qD as

U1
qD

1√
2n

∑
y1∈{0,1}n

|z, c, y,D ∪ (m, y1)〉 :=
1√
2n

∑
y1∈{0,1}n

|z, c, y ⊕⊥, D ∪ (m, y1)〉,

which is easily to implement since the state 1√
2n

∑
y1∈{0,1}n |z, c, y,D ∪ (m, y1)〉

must be orthogonal with |Φ1〉, |Φ2〉 and |Φ3〉. With this complement, we have

U1
qD|Φ4〉|0m〉 =

∑
z,c,y,D,n(D)<qH−1

m:=Decsk(c) ̸=⊥
c ̸=c∗,D(m)=⊥

βz,c,y,D,0n√
2n

∑
y1∈{0,1}n

|z, c, y ⊕⊥, D ∪ (m, y1)〉|0m〉,

U2
qD|Φ4〉|0m〉 =

∑
z,c,y,D,n(D)<qH−1

m:=Decsk(c) ̸=⊥
c ̸=c∗,D(m)=⊥

βz,c,y,D,0n√
2n

(
|Υ1[0

n, G(m)]〉z,cy,D + |Υ2[0
n]〉z,cy,D

)
|0m〉.

Then we can obtain U1
qD|Φ1〉 −U2

qD|Φ1〉 = 0 and

(U1
qD −U2

qD)|Φ2〉|0m〉 =
∑

z,c,y,D,n(D)<qH
m:=Decsk(c) ̸=⊥
c ̸=c∗,D(m)=⊥

βz,c,y,D√
2n

Sm

(
|Υ1[0

n, G(m)]〉z,cy,D − |Υ1[0
n,⊥]〉z,cy,D

)
|0m〉,

(U1
qD −U2

qD)|Φ3〉|0m〉 =
∑

z,c,y,D,n(D)<qH−1
m:=Decsk(c) ̸=⊥
c ̸=c∗,D(m)=⊥
r∈{0,1}n,r ̸=0n

βz,c,y,D,r

2n

(|Υ3[r,G(m)]〉z,cy,D−|Υ3[r,⊥]〉z,cy,D

+|Υ4[r,⊥]〉z,cy,D−|Υ4[r,G(m)]〉z,cy,D

)
|0m〉,

(U1
qD −U2

qD)|Φ4〉|0m〉 =
∑

z,c,y,D,n(D)<qH−1
m:=Decsk(c) ̸=⊥
c ̸=c∗,D(m)=⊥

βz,c,y,D,0n√
2n

(
|Υ1[0

n,⊥]〉z,cy,D − |Υ1[0
n, G(m)]〉z,cy,D

)
|0m〉.

21 Roughly speaking, this property can be obtained from the definition of Sm (Section
2.3), thus it always transforms the uniform superposition |D∪ (x, 0̂n)⟩ into |D⟩. This
property is also used in the proof of Lemma 5 of [29]. However, the state with that
form can appear just before the application of U2

qD, since U2
qD uses the extraction-

interface eCO.Ef1 .

43

Therefore, we have∥∥(U1
qD −U2

qD)|Φ2〉|0m〉
∥∥2

=

∥∥∥∥∥∥∥∥
c ̸=c∗,D(m)=⊥∑

z,c,y,D,n(D)<qH
m:=Decsk(c) ̸=⊥

βz,c,y,D√
2n

(
Sm|Υ1[0

n, G(m)]〉z,cy,D − Sm|Υ1[0
n,⊥]〉z,cy,D

)∥∥∥∥∥∥∥∥
2

(a)
=

∥∥∥∥∥∥∥∥
c̸=c∗,D(m)=⊥∑

z,c,y,D,n(D)<qH
m:=Decsk(c)̸=⊥

βz,c,y,D√
2n

(
|Υ1[0

n, G(m)]〉z,cy,D − |Υ1[0
n,⊥]〉z,cy,D

)∥∥∥∥∥∥∥∥
2

(b)

≤ 2

∥∥∥∥∥∥∥∥
c̸=c∗,D(m)=⊥∑

z,c,y,D,n(D)<qH
m:=Decsk(c)̸=⊥

βz,c,y,D√
2n
|Υ1[0

n, G(m)]〉z,cy,D

∥∥∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥∥∥
c̸=c∗,D(m)=⊥∑

z,c,y,D,n(D)<qH
m:=Decsk(c)̸=⊥

βz,c,y,D√
2n
|Υ1[0

n,⊥]〉z,cy,D

∥∥∥∥∥∥∥∥
2

(c)
= 4

c̸=c∗,D(m)=⊥∑
z,c,y,D,n(D)<qH
m:=Decsk(c)̸=⊥

|Γc,m|
2n

|βz,c,y,D|2 ≤ 4 max
c∈C,m∈M

|Γc,m|
2n

c̸=c∗,D(m)=⊥∑
z,c,y,D,n(D)<qH
m:=Decsk(c)̸=⊥

|βz,c,y,D|2

= 4 max
c∈C,m∈M

|Γc,m|
2n

· ‖Φ2‖2.

(25)
Here (a) uses the fact that Sm is a unitary operation, (b) uses Corollary 2, and
(c) uses the definition of state |Υ1[r, ν]〉z,cy,D in (23).

Similar with the computation of ‖(U1
qD−U2

qD)|Φ2〉|0m〉‖2, we can also obtain

∥∥(U1
qD −U2

qD)|Φ4〉|0m〉
∥∥2 ≤ 4 max

c∈C,m∈M

|Γc,m|
2n

· ‖Φ4‖2. (26)

As for the ‖(U1
qD −U3

qD)|Φ3〉|0m〉‖2, we first compute

‖|Φ3〉‖2 =

∥∥∥∥∥∥∥∥
c̸=c∗,D(m)=⊥
r∈{0,1}n,r ̸=0n∑

z,c,y,D,n(D)<qH−1
m:=Decsk(c)̸=⊥

βz,c,y,D,r
1√
2n

∑
y1∈{0,1}n

(−1)y1·r|z, c, y,D ∪ (m, y1)〉

∥∥∥∥∥∥∥∥
2

=

c̸=c∗,D(m)=⊥∑
z,c,y,D,n(D)<qH−1

m:=Decsk(c)̸=⊥

∑
y1∈{0,1}n

∥∥∥∥∥∥
∑

r∈{0,1}n,r ̸=0n

βz,c,y,D,r
(−1)y1·r
√
2n
|z, c, y,D ∪ (m, y1)〉

∥∥∥∥∥∥
2

=

c̸=c∗,D(m)=⊥∑
z,c,y,D,n(D)<qH−1

m:=Decsk(c)̸=⊥

∑
y1∈{0,1}n

∣∣∣∣∣∣
∑

r∈{0,1}n,r ̸=0n

(−1)y1·r
√
2n

βz,c,y,D,r

∣∣∣∣∣∣
2

.

(27)

44

Then we have

∥∥(U1
qD −U2

qD)|Φ3〉|0m〉
∥∥2 =

∥∥∥∥∥∥∥∥
c̸=c∗,D(m)=⊥
r∈{0,1}n,r ̸=0n∑

z,c,y,D,n(D)<qH−1
m:=Decsk(c)̸=⊥

βz,c,y,D,r

2n

(|Υ3[r,G(m)]〉z,cy,D−|Υ3[r,⊥]〉z,cy,D

+|Υ4[r,⊥]〉z,cy,D−|Υ4[r,G(m)]〉z,cy,D

)∥∥∥∥∥∥∥∥
2

(d)

≤ 4

∥∥∥∥∥∥∥∥
c ̸=c∗,D(m)=⊥
r∈{0,1}n,r ̸=0n∑

z,c,y,D,n(D)<qH−1
m:=Decsk(c) ̸=⊥

βz,c,y,D,r

2n
|Υ3[r,G(m)]〉z,cy,D

∥∥∥∥∥∥∥∥
2

+ 4

∥∥∥∥∥∥∥∥
c̸=c∗,D(m)=⊥
r∈{0,1}n,r ̸=0n∑

z,c,y,D,n(D)<qH−1
m:=Decsk(c)̸=⊥

βz,c,y,D,r

2n
|Υ3[r,⊥]〉z,cy,D

∥∥∥∥∥∥∥∥
2

+ 4

∥∥∥∥∥∥∥∥
c ̸=c∗,D(m)=⊥
r∈{0,1}n,r ̸=0n∑

z,c,y,D,n(D)<qH−1
m:=Decsk(c)̸=⊥

βz,c,y,D,r

2n
|Υ4[r,⊥]〉z,cy,D

∥∥∥∥∥∥∥∥
2

+ 4

∥∥∥∥∥∥∥∥
c̸=c∗,D(m)=⊥
r∈{0,1}n,r ̸=0n∑

z,c,y,D,n(D)<qH−1
m:=Decsk(c)̸=⊥

βz,c,y,D,r

2n
|Υ4[r,G(m)]〉z,cy,D

∥∥∥∥∥∥∥∥
2

(e)
= 16

c ̸=c∗,D(m)=⊥∑
z,c,y,D,n(D)<qH−1

m:=Decsk(c) ̸=⊥

∣∣∣∣∣∣
r∈{0,1}n,r ̸=0n∑

y1∈Γc,m

(−1)y1·r

2n
βz,c,y,D,r

∣∣∣∣∣∣
2

(f)

≤ 16

c̸=c∗,D(m)=⊥∑
z,c,y,D,n(D)<qH−1

m:=Decsk(c)̸=⊥

∑
y1∈Γc,m

|Γc,m|
2n

∣∣∣∣∣∣
∑

r∈{0,1}n,r ̸=0n

(−1)y1·r
√
2n

βz,c,y,D,r

∣∣∣∣∣∣
2

≤ 16 max
c∈C,m∈M

|Γc,m|
2n

c ̸=c∗,D(m)=⊥∑
z,c,y,D,n(D)<qH−1

m:=Decsk(c)̸=⊥

∑
y1∈Γc,m

∣∣∣∣∣∣
∑

r∈{0,1}n,r ̸=0n

(−1)y1·r
√
2n

βz,c,y,D,r

∣∣∣∣∣∣
2

(g)

≤ 16 max
c∈C,m∈M

|Γc,m|
2n

· ‖|Φ3〉‖2.

(28)
Here (d) uses Corollary 2 again, (e) uses the definition of state |Υ3[r, ν]〉z,cy,D and
|Υ4[r, ν]〉z,cy,D in (23), (f) uses the Cauchy-Schwarz inequality, (g) uses (27).

Combining (22), (25), (26) and (28), we finally obtain

∥∥(U1
qD −U2

qD)|Φ〉|0m〉
∥∥ (h)

≤
4∑

i=0

∥∥(U1
qD −U2

qD)|Φi〉|0m〉
∥∥

≤

√
4 max
c∈C,m∈M

|Γc,m|
2n

· ‖|Φ2〉‖+

√
16 max

c∈C,m∈M

|Γc,m|
2n

· ‖|Φ3〉‖+

√
4 max
c∈C,m∈M

|Γc,m|
2n

· ‖|Φ4〉‖

(i)

≤

√
4 max
c∈C,m∈M

|Γc,m|
2n

+

√
16 max

c∈C,m∈M

|Γc,m|
2n

+

√
4 max
c∈C,m∈M

|Γc,m|
2n

≤ 8 · √γpk,sk.

Here (h) uses triangle inequality, (i) uses the fact that ‖|Φi〉‖ ≤ 1 (i = 1, . . . , 4).

45

D.3 Proof of Lemma 6

Proof. We first introduce two new games as follows:

Game G2a: This game is identical to game G2, except that the compressed semi-
classical oracle OCSC

RD
pk,sk

is queried just after each querying of the RO-interface
eCO.RO.

Game G3a: This game is identical to game G3, except that the compressed semi-
classical oracle OCSC

RD
pk,sk

is queried just after each querying of the RO-interface
eCO.RO.

In game G2, the RO-interface eCO.RO of the extractable RO-simulator S(f1)
is used to simulate the quantum random oracleH. Since the RO-interface eCO.RO
is implemented by the unitary operation CStO, the quantum random oracle H
in game G2 is actually implemented by the compressed standard oracle.

In game G2, the extraction-interface eCO.Ef1 of the extractable RO-simulator
S(f1) is used to simulate the decapsulation oracle qDeca⋄. As explained in Sec-
tion 2.4, for any fixed function f , the extraction-interface eCO.Ef is processed
by a database read operation Extf .

Now, we construct a quantum oracle algorithm BH,eCO.Ef1 (pk, sk) that exe-
cutes game G2, this algorithm makes at most qH queries to quantum random
oracle H. Then,

Pr[1← G2] = Pr[1← BH,eCO.Ef1 (pk, sk) : (RD
pk,sk, pk, sk)← D].

Here D is a joint distribution that (pk, sk)← Gen, and set RD
pk,sk defined in (8)

is determined by (pk, sk). Correspondingly, we have

Pr[1← G2a] = Pr[1← BH\RD
pk,sk,eCO.Ef1 (pk, sk) : (RD

pk,sk, pk, sk)← D],
Pr[1← G3] = Pr[1← BH,eCO.Ef2 (pk, sk) : (RD

pk,sk, pk, sk)← D],

Pr[1← G3a] = Pr[1← BH\RD
pk,sk,eCO.Ef2 (pk, sk) : (RD

pk,sk, pk, sk)← D].

Thus, by using Theorem 1, we have

|Pr[1← G2]−Pr[1← G2a]| ≤
√
qH(qH + 1) · E

(RD
pk,sk,pk,sk)←D

∥∥∥[JRD
pk,sk

,CStO
]∥∥∥2,

(29)
and

|Pr[1← G3]−Pr[1← G3a]| ≤
√
qH(qH + 1) · E

(RD
pk,sk,pk,sk)←D

∥∥∥[JRD
pk,sk

,CStO
]∥∥∥2.

(30)
By the analysis just before Lemma 6 in the proof of Theorem 2, we know that

the extraction-interfaces eCO.Ef1 and eCO.Ef2 proceed identically for any input

46

state |c,D,m〉IDqH
M ifD /∈ RD

pk,sk. Therefore, algorithms BH\R
D
pk,sk,eCO.Ef1 (pk, sk)

and BH\R
D
pk,sk,eCO.Ef2 (pk, sk) proceed identically if the compressed semi-classical

oracle OCSC
RD

pk,sk
never returns 1. This implies that

Pr[Find occurs in BH\R
D
pk,sk,eCO.Ef1 (pk, sk) : (RD

pk,sk, pk, sk)← D]

= Pr[Find occurs in BH\R
D
pk,sk,eCO.Ef2 (pk, sk) : (RD

pk,sk, pk, sk)← D],

then by the difference lemma of [25], we have

|Pr[1← G2a]− Pr[1← G3a]|

≤ Pr[Find occurs in BH\R
D
pk,sk,eCO.Ef2 (pk, sk) : (RD

pk,sk, pk, sk)← D]
(a)

≤ qH · E
(RD

pk,sk,pk,sk)←D

∥∥∥[JRD
pk,sk

,CStO
]∥∥∥2 . (31)

Here (a) uses Theorem 1 again.
Combining (29), (30) and (31), we obtain

|Pr[1← Gq
2]− Pr[1← Gq

3]| ≤
√
qH(qH + 1) · E

(RD
pk,sk,pk,sk)←D

∥∥∥[JRD
pk,sk

,CStO
]∥∥∥2

+ qH · E
(RD

pk,sk,pk,sk)←D

∥∥∥[JRD
pk,sk

,CStO
]∥∥∥2 .

(32)
Define function g : {0, 1}m × {0, 1}n → {0, 1} as

g(x, y) =

{
1 if Enc(pk, x, y) = c ∧ Dec(sk, c) 6= x
0 otherwise.

The relation Rg
1 and the corresponding parameter ΓRg

1
defined in Section 2.4 can

be written as

Rg
1 := {(x, y) ∈ {0, 1}m × {0, 1}n|g(x, y) = 1},

ΓRg
1
:= max

x∈{0,1}m
|{y ∈ {0, 1}n|Enc(pk, x, y) = c ∧ Dec(sk, c) 6= x}|

(b)

≤ 2nδpk,sk.

(33)
Here (b) uses the fact that the underlying PKE scheme P is δ-correct.

For the relation Rg
1, define following projectors on database register DqH :

Σx :=
∑

D s.t. (x,D(x))∈Rg
1

x′<x,(x′,D(x′))/∈Rg
1

|D〉〈D| (x ∈ {0, 1}m), Σ⊥ := I−
∑

x∈{0,1}m
Σx.

By the definition of set RD
pk,sk defined in (8), it is obvious that JRD

pk,sk
=∑

x∈{0,1}m Σx, thus Σ⊥ = I− JRD
pk,sk

. Hence we have∥∥∥[JRD
pk,sk

,CStO
]∥∥∥ (c)

=
∥∥∥[I− JRD

pk,sk
,CStO

]∥∥∥ =
∥∥[Σ⊥,CStO

]∥∥ (d)

≤ 8 ·
√
ΓRg

1
/2n.

(34)

47

Here (c) uses the basic property of the commutator, (d) uses Lemma 4.
Combining (32), (33) and (34), we finally obtain

|Pr[1← Gq
2]− Pr[1← Gq

3]| ≤ 8 ·
√
qH(qH + 1) · δ + 64qH · δ.

ut

48

	Tighter QCCA-Secure Key Encapsulation Mechanism with Explicit Rejection in the Quantum Random Oracle Model

