
Cutting the GRASS:
Threshold GRoup Action Signature Schemes

Michele Battagliola1,4 , Giacomo Borin3 , Alessio Meneghetti1 , and
Edoardo Persichetti2

1 Università di Trento, Italy
2 Florida Atlantic University, Boca Raton, USA and Sapienza University, Rome,

Italy,
3 IBM Research, Zurich and University of Zurich

4 Università Politecnica delle Marche
m.battagliola@staff.univpm.it, giacomo.borin@ibm.com,

alessio.meneghetti@unitn.it, epersichetti@fau.edu

Abstract. Group actions are fundamental mathematical tools, with
a long history of use in cryptography. Indeed, the action of finite groups
at the basis of the discrete logarithm problem is behind a very large por-
tion of modern cryptographic systems. With the advent of post-quantum
cryptography, however, other group actions, such as isogeny-based ones,
received interest from the cryptographic community, attracted by the
possibility of translating old discrete logarithm-based functionalities.

Usually, research focuses on abelian group actions; however in this work
we show that isomorphism problems which stem from non-abelian cryp-
tographic group actions can be viable building blocks for threshold sig-
nature schemes. In particular, we construct a full N -out-of-N threshold
signature scheme, and discuss the efficiency issues arising from extending
it to the generic T -out-of-N case. To give a practical outlook on our con-
structions, we instantiate them with two different flavors of code-based
cryptographic group actions, respectively at the basis of the LESS and
MEDS signature schemes, two of NIST’s candidates in the recent call for
post-quantum standardization.

1 Introduction

With the threat of quantum computers looming ever closer, the community
has stirred to produce alternative cryptographic solutions, that will be resistant
to attackers equipped with such technology. Indeed, considering the timeline ex-
pected to design, standardize, implement and deliver such solutions, initiatives
such as NIST’s [57] are definitely timely. To be sure, NIST’s standardization
effort can be considered a first step, with more to follow. For instance, while
the first standards are about to be drafted, covering key encapsulation and sig-
natures, the situation with the latter is considered not fully satisfactory, to the
point that NIST launched an “on-ramp” process to standardize new signature
designs [58]. Furthermore, there is a scarcity of threshold-friendly schemes among

https://orcid.org/0000-0002-8269-2148
https://orcid.org/0009-0001-7311-3802
https://orcid.org/0000-0002-5159-7252
https://orcid.org/0000-0002-1895-377X

the current solutions, which is prompting more research in this area, and will
lead to its own standardization process [24].

Code-based cryptography, which makes use of problems and techniques com-
ing from coding theory, is the second largest area within the post-quantum realm,
capable of offering interesting solutions, particularly in the context of key estab-
lishment. Indeed, all three candidates in NIST’s 4th round of standardization are
code-based [4,5,2], with two of them expected to be added to the current list of
standards (which, for KEMs, includes only Kyber [60]). On the other hand, this
area has historically struggled to produce efficient signature schemes: as a litmus
test, none of those presented to NIST in 2017 made it past the first round. This
steered the community towards experimenting with different paradigms, such as,
for instance MPC-in-the-head [50,42,41].

The work of LESS [19], which started in 2020 and continued with various
follow-ups [7,8,9], uses a different approach, stepping away from the traditional
decoding problem, and focusing instead on the difficulty of finding an isometry
between two linear codes. In fact, the security of LESS relies solely on the well-
known code equivalence problem. This idea was recently extended [30] to the class
of matrix codes, which are measured in the rank metric, and yields the parallel
notion of matrix equivalence. Interestingly, the action of isometries on the re-
spective types of codes can be formulated as a (non-commutative) group action,
which gives a new perspective on the field, and opens the way to other construc-
tions beyond plain signatures. Indeed, the use of group actions in cryptography
dates back all the way to Diffie and Hellman, and has found new vigor as a
post-quantum method, thanks to the recent developments on isogenies [27,18].

Non commutativity of code-based group actions has advantages from a secu-
rity viewpoint since it prevents quantum attacks on commutative group actions
like Kuperberg’s algorithm for the dihedral hidden subgroup problem [52]. How-
ever this clearly reduce the possible cryptographic primitives based on them,
for example we cannot build a Diffie-Hellmann like key exchange or use Linear
Secret Sharing.

1.1 Related Work

A pT,Nq-threshold digital signature scheme is a protocol designed to distribute
the right to sign messages to any subset of at least T out of N key owners, with
the restriction that none of the N players can repudiate a valid signature. A key
point in most threshold digital signature schemes is compatibility with existing
schemes: even though the key generation and signing algorithms are multi-party
protocols (MPC), in fact, the verification algorithm is identical to that of an
existing signature scheme, usually referred to as the “centralized” scheme.

In 1996, a first pT ` 1, 2T ` 1q-threshold digital signature scheme was pro-
posed [46]. A few years later, the same authors discuss the security of distributed
key generation for the case of schemes based on the Discrete Logarithm Prob-
lem [47,48]. Since 2001, several authors started working first on two-party vari-
ants of digital signatures [55,56] and then on ECDSA [37,53]. The first general

2

pT,Nq-threshold scheme was proposed in 2016 [45], improved first in 2017 [21],
and then again in 2018 [44]. In 2019, the work of [37] has been generalized by the
same authors to the multi-party case [38]. While the signing algorithm requires
the participation of at least T players to take part in a multi-party protocol,
the key generation algorithm requires the involvement of a Trusted Authority or
the active participation of all N players. This requirement has been relaxed in a
recent p2, 3q threshold ECDSA version [14], where the key generation algorithm
involves only 2 out the 3 parties.

As noted in [23], a challenging task in designing a threshold version of the
EdDSA signature scheme is the distribution among the parties of the determinis-
tic nonce generation, a task that can be carried out either with MPC techniques
or with zero-knowledge proofs (ZKP). Following the latter approach, the work
presented in [14] has successively been extended to a p2, 3q-threshold EdDSA
instantiation [13]. In [22], the authors propose instead an MPC-based threshold
scheme for HashEdDSA. In the latter, T is bounded to be less than N

2 ` 1.
Finally, in 2022, a variant of [13] suitable for Schnorr signatures has been pro-
posed [11] and then generalized to a ZKP-based pT,Nq-threshold Schnorr digital
signature scheme whose key generation algorithm does not involve any trusted
party [12].

Recently, driven by both the NIST call for Post-Quantum Standardization [57]
and the call for Multi-Party Threshold Schemes [24], many researchers have
started to wonder whether it could be possible to design post-quantum versions
of threshold digital signature schemes. Since most of the existing literature for
threshold schemes focuses on trapdoors that rely on the difficulty of the Discrete
Logarithm Problem, new methods have to be investigated, likely starting with
tools already utilized to design plain signatures, such as lattices, codes, mul-
tivariate equations etc. In [32], the (round 2) proposals of the standardization
process were analyzed in order to determine ways to define threshold variants,
eventually identifying multivariate schemes as the most suitable starting point,
with schemes based on the Unbalanced Oil and Vinegar (UOV) framework being
the most promising. Even though, from a theoretical point of view, it appears
to be indeed possible to obtain a threshold version of UOV by exploiting MPC
protocols using Linear Secret Sharing Schemes (LSSS), this approach remains,
at the present time, only theoretical.

Notably, threshold signature schemes for cryptographic cyclic group actions
have been already discussed in 2020 and applied to isogeny-based schemes [36],
where they proposed a way to apply a group actions in a threshold like way by
using the classical Shamir Secret sharing on a group action induced by a cyclic
group. They showed how to apply this for an El Gamal like encryption schemes
and a signature based on Σ-protocols proving their simulatability, however this
schemes are only secure in the honest-but-curious model and miss a distributed
key generation mechanisms. In [33] they showed a way to combine the use of
zero-knowledge proofs and replicated secret sharing to obtain a secure threshold
signature scheme from isogeny assumptions. The work is an important step for
the research and can be extended to more general group actions, but the main

3

drawbacks are the number of shares necessary to implement replicated secret
sharing and the important slow down caused by the additional ZKPs required.
In [16] they showed how to define a distributed key generation algorithm by using
a new primitive called piecewise verifiable proofs; proving their security in the
quantum random oracle model. All previous techniques are then incorporated in
[26] to have actively secure attributed based encryption and signature schemes,
in which threshold signature are a particular case.

1.2 Our Contribution

In this work, we investigate constructions for post-quantum threshold signature
schemes, using cryptographic group actions as the main building block. However,
our goal is to take a step back, and keep requirements to a minimum, without
needing additional properties such as, for instance, commutativity. This will
allow our frameworks to be instantiated with a wider variety of candidates, such
as the aforementioned code-based signature schemes.

A full threshold scheme. As a first contribution, we present a construction for
a “full” pN,Nq-threshold signature scheme with a distributed key generation
mechanism. The core idea is to split both the secret key and the ephemeral
map as a product of N group elements, i.e. as g “ g1 ¨ ¨ ¨ gN , so that thanks
to this shared knowledge the users are able to prove the knowledge of secret
the key. We then prove its security via a reduction to the original centralized
signature5 without relying on additional ZKPs during the signature phase, but
instead relying on a securely generated salt. The details of the construction, as
well as the security proof, are given in Section 3.

Bootstrapping using Replicated Secret Sharing. Our second contribution is the
pT,Nq version of scheme. Since we cannot assume any properties on the groups
(except the security of the group actions), our construction is quite inefficient in
terms of memory required. This is because we need to distribute multiple keys
to each user. We illustrate this by presenting some performance figures in the
selected scenario, namely, the code-based setting. Nevertheless, our construction
remains practical for certain use cases, especially for low values of T and N , or
whenever T and N are very close.

1.3 Outline

We begin in Section 2, where we provide all the necessary preliminary definitions
and notions used in the paper. Then, in Section 3 we present the full threshold
version of the signature, together with a security proof. In Section 4 we show
how to construct a possible solution to obtain a general pT,Nq-version, adapting
the previous framework as well as its proof. To provide a practical outlook, we
present a concrete instantiation of both protocols, in Section 5, utilizing the
code equivalence group actions at the basis of the LESS and MEDS signature
schemes. We conclude in Section 6.
5 This is a generic signature scheme that is simply an abstraction, but has appeared
in literature when instantiated in various works, such as LESS [8] and MEDS [30].

4

2 Preliminaries

We begin by laying down our notation. Throughout the paper we will denote with
capital letters objects such as sets and groups, and with lowercase letters their
elements. We will use instead boldface letters to denote vectors and matrices.
We indicate by Fq the finite field of cardinality q, and by Fkˆn

q the set of k ˆ n
matrices with entries in Fq; when k “ 1, we write simply Fn

q , which denotes the
corresponding vector space over Fq. Due to space constraints, we omit standard
notions from coding theory; these are included, for completeness, in Appendix 1.

2.1 Cryptographic Group Actions

A group action is a well-known object in mathematics. It can be described as a
function, as shown below, where X is a set and G a group.

‹ : G ˆ X Ñ X

pg, xq ÞÑ g ‹ x

A group action’s only requirement is to be compatible with the group; using
multiplicative notation for G, and denoting with e its identity element, this
means that for all x P X we have e ‹ x “ x and that moreover for all g, h P G,
it holds that h ‹ pg ‹ xq “ ph ¨ gq ‹ x. The orbit of a set element is the set
Opxq :“ tg ‹ x | g P Gu. A group action is also said to be:

– Transitive, if for every x, y P X, there exists g P G such that y “ g ‹ x;
– Faithful, if there does not exist a g P G such that x “ g ‹ x for all x P X,

other than the identity;
– Free, if an element g P G is equal to identity whenever there exists an x P X

such that x “ g ‹ x;
– Regular, if it is free and transitive.

The adjective cryptographic is added to indicate that the group action in
question has additional properties that are relevant to cryptography. For in-
stance, a cryptographic group action should be one-way, i.e. given randomly
chosen x, y P X, it should be hard to find g P G such that g ‹ x “ y (if such
a g exists). Indeed, the problem of finding such an element is known as the
vectorization problem, or sometimes Group Action Inverse Problem (GAIP).

Problem 1 (GAIP). Given x and y in X, compute an element g P G such that
y “ g ‹ x.

A related problem asks to compute the action of the product of two group
elements, given the result of the individual actions on a fixed element. This is
known as the parallelization problem, and it corresponds to, essentially, the com-
putational version of the Diffie-Hellman problem, formulated for generic group
actions. A definition is given next.

Problem 2 (cGADH). Given x, g ‹x and h‹x, for g, h P G, compute pg ¨hq ‹x.

5

In fact, the analogy to the case of discrete logarithms is easily drawn, once
one realizes that this is simply the group action given by the exponentiation
map on finite cyclic groups. Then GAIP corresponds to DLP and cGADH to
the CDH problem. Observe that GAIP is related to the one-wayness of the group
action while the cGAGH is linked to its pseudorandomness, in fact requiring the
hardness of the decisional version is implied by the following stronger definition:

Definition 1. A group action is 2-weakly pseudorandom if no probabilistic poly-
nomial time algorithm that given px, g ‹ xq can distinguish with non negligible

probability between px1, yq and px1, g ‹ x1q with x, x1, y
$

ÐÝ X and g
$

ÐÝ G.

Note that Definition 1 is a weaker assumption than the classical weak pseu-
dorandomness from [3, Definition 3.6]. This new assumption is required since it
was recently shown that many cryptographic group actions do not achieve the
weakly pseudorandomness property, as per [34].

It is possible to obtain a signature scheme from cryptographic group actions,
in full generality; a description is given in Appendix 2. A quick overview of code-
based group actions can also be found in the appendix, namely, in Appendix 3.

2.2 Threshold Signatures

We briefly summarize here the relevant notions for threshold signature schemes.
In a nutshell, a pT,Nq-threshold signature is a multi-party protocol that allows
any T parties out of a total of N to compute a signature that may be verified
against a common public key. We assume that each user has access to a secure,
reliable and authenticated private channel with each of the other users, without
worrying about specific design and peculiarities of the channel.

Usually, threshold signature protocols involve a key-generation protocol that
constructs the key pair psk, pkq as well as shares of the private key ski, and
a multiparty signature protocol Thre.Sign, such that any set of T parties who
agree on a common message m is able to compute a signature, which is verifiable
against the public key via the procedure Verify. KeyGen can be executed by a
trusted party or by the N parties alone collaborating. In this “decentralized”
case, the parties get access to the additional exchanged information.

Often, threshold signature protocols are obtained by adapting “plain” signa-
ture schemes, which are then referred to as “centralized”, for obvious reasons.
In this case, a common requested property is that signatures produced by the
threshold protocol are indistinguishable from signatures produced by the cen-
tralized one. We refer as the view of a user as the probability distribution on the
transcripts of all the data available to him during the execution of the multi-
party protocol.

The main security property for threshold signature schemes is Existential
Unforgeability under Chosen Message Attacks (EUF-CMA):

Definition 2. A threshold digital signature is secure in the EUF-CMA if for
any probabilistic polynomial-time adversary Evl that is allowed to:

6

1. Corrupt T ´ 1 out of N users;
2. Query a key generation oracle for the T ´ 1 corrupted users shares and the

public key pk. In the decentralized case it gets access also to the corrupted
users view of KeyGen during the shared execution;

3. Perform a polynomial number of adaptive queries to a signing oracle that on
chosen messages mi obtaining the view of Thre.Sign;

it is not able to obtain a valid signature on a non queried message, i.e.

AdvEvlCMA “ P
„

DS.Verifyppk,m˚, σ˚q “ 1

ˇ

ˇ

ˇ

ˇ

m˚, σ˚ Ð Evl ,
m˚ ‰ mi @i .

ȷ

ď neglpλq (1)

Informally, the idea is that less than T views cannot be combined to obtain
a valid signature.

3 The Full Scheme

We start our analysis with the full threshold cases, in which all the users are
required to produce a signature (i.e. T “ N).

Decentralized Key Generation Algorithm The goal of this protocol is to produce
a common public key y “ g ‹ x with g “ g1 ¨ ... ¨ gN , where each party holds one
gi, in the same way of [10,33]. To do so the users sequentially apply a previously
committed random group element to the origin x and add the non-interactive
Zero-Knowledge proof from [33] (see it also in Figure 4, in the appendix) to
show the freshness of the group element. The resulting protocol is shown in
Algorithm 1. At line 5, the Zero-Knowledge Proof is sent and tested by the
other parties; the protocol is trusted by all of them if and only if all the ZKPs
are valid. The main difference with [33] is that our scheme is specialized for
non-abelian group actions and we are able to prove the security with only one
ZKP per user, compared to the two required by [33].

Algorithm 1 KeyGen

Require: x P X origin.
Ensure: Public key y “ g ‹ x, each participant holds gi such that

ś

gi “ g.
1: Each participant Pi chooses gi P G and publishes a commitment to it comKG

i .
2: Set x0 “ x.
3: for i “ 1 to N do
4: Pi computes xi “ gi ‹ xi´1

5: Pi publishes a ZKP as in Appendix 4 proving the consistence of xi with the
commitment comKG

i .
6: Pi sends xi to Pi`1 (if i ă N)

7: return y “ xN . The private key of Pi is gi.

A relevant limitation, for the proposed protocol, is that each user Pi needs to
receive the set element xi´1 by Pi´1 before starting its computations. Thus, as

7

explained in [36], it is necessary to adopt a sequential round-robin communication
structure that makes it impossible to parallelize the algorithm; this results in a
slowing of the execution time. Moreover, the users need to agree on a precise
execution order at the start.

The initial commitment comKG
i depends on the group action being pseudo-

random or not. More details about it in Appendix 4.

Signing Algorithm The signing protocol generalizes the one presented in [33,36]
for non-abelian group actions, by computing the commitment and response phase
of the protocol in Figure 3 in a multiparty setting.

In the commitment phase, each user Pi receives x
j
i´1, computes xj

i “ g̃ji ‹xj
i´1

for random g̃i and outputs it. During the response phase (lines 17,18) Pi get u
j
i´1

and outputs uj
i “ g̃ji u

j
i´1g

´chj
i . In line 19 for the challenge chj “ 0 the parties

verify that x̃j
i “ uj

i ‹ x, while in the other case they check x̃j
i “ uj

i ‹ xi.

The idea of this multiparty protocol is illustrated in Figure 1.

x0 x1 xN´1 xN

x̃1

x̃N´1

x̃N

g̃1 ‹

g1 ‹ gN ‹

g̃N ‹

Fig. 1: Scheme representing the idea behind the protocol in Algorithm 2. In blue
are the ephemeral group elements revealed on ch “ 0, while in red the map
reconstructed for ch “ 1.

A detailed description of the algorithm is given in Algorithm 2. We also in-
clude the verification algorithm Algorithm 3, which is the same as the centralized
one, for completeness.

A key feature of Algorithm 2, with respect to the previous literature, is the
use of secure salt during the challenge evaluation (line 11), a technique used also
in [28]. The salt is crucial to reduce the number of ZKPs in the signing protocol
while maintaining security in the presence of malicious users. Indeed, without the
salt verification, the scheme can be attacked by a malicious adversary opening
several concurrent sessions. Intuitively, suppose that the adversary is in control
of the N -th user and wants to sign the message m for the public key y “ g ‹ x,
knowing only gN . He can proceed in the following way:

1. The adversary starts λ signing sessions for any messages m1,...,mλ.

8

Algorithm 2 Thre.Sign

Require: x P X, security parameter λ, hash function H, public key px, y “ g ‹ xq,
secure commitment scheme COM. The party Pi knows the (multiplicative) share
gi of g “ g1 ¨ ¨ ¨ gN .

Ensure: A valid signature for the message m under the public key px, yq.
1: P1 set xj

0 “ x for all j “ 1 to λ Ź Shared commitment generation phase
2: for i “ 1 to N do
3: Each party pick salti uniformly random and sends COMpsaltiq

4: for i “ 1 to N do
5: If i ą 1 Pi receives x

j
i´1 from Pi´1 for all j “ 1 to λ

6: for j “ 1 to λ do
7: Pi chooses g̃

j
i P G and computes xj

i “ g̃ji ‹ xj
i´1

8: Pi outputs x
j
i ;

9: Set xj
“ xj

N for all j “ 1 to λ. Party N broadcasts all xj to all players.
10: Each party publishes salti and checks the consistency of the received data with the

initial commitment.
11: salt “

ř

i salti
12: Compute ch “ Hpx1

}...}xλ
}salt}mq Ź Non-iterative challenges evaluation

13: P1 set uj
0 “ e for all j “ 1 to λ Ź Shared response generation phase

14: for i “ 1 to N do
15: If i ą 1 Pi receives u

j
i´1 from Pi´1 for all j “ 1, ..., λ

16: for j “ 1 to λ do

17: Pi computes uj
i “ g̃jiu

j
i´1g

´chj
i

18: Pi outputs u
j
i

19: All users verify uj
i is valid;

20: respj “ uj
N for all j “ 1 to λ

21: sig “ ch}salt}rsp1}...}rspλ

9

2. For every session s, he receives by PN´1 x1
N´1, ..., x

λ
N´1. At this point he

evaluates x1
N “ g̃1N ‹ x1

N´1 for each session s as described in the protocol.
Let us call this element x̂s for each session.

3. He evaluates the challenge ch “ Hpx̂1}...}x̂λ}mq.

4. For each session s, the adversary then evaluates x2
N , ..., xλ´1

N legitimately,
then chooses g̃λN so that the first bit of Hpx1

N }...}xλ
N }miq is equal to the s-th

bit of ch. This would not be possible if we had a secure salt.

5. Finally, the adversary closes all the concurrent sessions obtaining, for the ses-
sion s, the response u1

N´1 received from PN´1, which is used to evaluate rsp1.
This can be used to answer chs and obtain a valid signature ch} ˆrsp1}...} ˆrspλ.

Algorithm 3 Verify

Require: x P X, security parameter λ, hash function H, public key px, y “ g ‹ xq.
Ensure: Accept if the signature for the message m is valid under the public key px, yq.
1: Parse ch, salt, rsp1, ..., rspλ from sig
2: for j “ 1 to λ do
3: if chj “ 0 then
4: set x̂j

“ rspj ‹ x
5: else
6: set x̂j

“ rspj ‹ y

7: Accept if ch “ Hpx̂1
}...}x̂λ

}salt}mq

3.1 Security Proof

Theorem 1. For a free group action (Definition 1), if the centralized signature
is unforgeable in the quantum random oracle model, then the full-threshold sig-
nature scheme composed by KeyGen, Thre.Sign (Algorithms 1 and 2) and the
verification Verify is EUF-CMA secure in the quantum random oracle model.

Lemma 1. For a 2-weakly pseudorandom free group action (Definition 1), the
protocol KeyGen can be simulated in the quantum random oracle model in poly-
nomial time so that any probabilistic polynomial-time adversary is convinced that
the public key is any fixed pair x, y P X.

The main idea of the proof is to use the ZKPs to recover their secret shares
and simulate a view of the protocol. Unlike [33], here we only have one ZKP for
any user, thus we rely in rewinding the tape to change the set element sent in
line 6. This proof works in the quantum random oracle model since the protocol
in Figure 4 is a non-interactive zero-knowledge quantum proof of knowledge in
the quantum random oracle for a free group action [16, Theorem 1] .

10

Algorithm 4 Sim.KeyGen (Simulation of KeyGen)

Require: x, y P X, a non corrupted user Pi0 .
1: Send to Evl a random x1

i0 generated from x (as normal);
2: Checks all the ZKP for i ă i0 (as normal);
3: Send to Evl a random xi0 ;
4: Send a ZKP for xi0 and x1

i0 .
5: Continue the protocol and estranct gi from the ZKPs for all i ą i0;
6: Rewind the tape of the adversary up to the same state as in line 3;
7: Send xi0 “ pg´1

i0`1...g
´1
N q ‹ y;

8: Simulate again ZKP for xi0 and x1
i0 .

9: The protocol is executed normally leading to x, y as public key.

Proof of Lemma 1. Algorithm 4 shows the simulation strategy for a probabilistic
polynomial-timeadversary Evl. We now need to prove that the simulation termi-
nates in expected polynomial time, it is indistinguishable from a real execution,
and outputs y.

The simulation terminates in polynomial time with non-negligible probability
if also Evl is a probabilistic polynomial-time algorithm; in fact we have to carry
over:

– one rewind of Evl in line 6;
– at most N ´1 extractions of secrets from the ZKPs, that can be carried over

in polynomial time using the Forking Lemma ([15]) on the single ZKP. The
probability for the adversary to fake the ZKP where a share does not exists
is negligible, assuming the one-wayness of the group action.

Note that the rewinding can be performed since the adversary has already
committed to the values gi before the rewinding phase. In addition, thanks to
the ZKPs, these group elements must exist, and the adversary is forced to apply
them on xi0 “ pg´1

i0`1...g
´1
N q‹y, so that the output of the simulation is the public

key x, y as desired.

To send the crafted element xi0 and simulate the ZKPs in lines 7 and 8,
we need the 2-weakly pseudorandom property (Definition 1). This is because a
common group element gi0 such that x1

i0
“ gi0 ‹ x ^ xi0 “ gi0 ‹ xi0´1 does not

exist anymore. The simulation can be carried over in the quatum random oracle
since the protocol in Figure 4 is a non-interactive zero-knowledge quantum proof
of knowledge (see Proposition 3).

The proof of Theorem 1 follows the game-based argument proposed in [49,
Theorem 3]. The key idea is to reduce the security of the full threshold signature
to the security of the centralized one. We need 3 games (Algorithm 5), and we
need to reprogram the random oracle, thanks to [49, Proposition 1].

Proof Theorem 1. Consider a probabilistic polynomial-time adversary Evl that
make up to qs sign queries and qh quantum call to the random oracle H. By

11

in Lemma 1 we can simulate the KeyGen on any public key x, y, so we will not
discuss it here again.

Consider the games from Algorithm 5. Since the protocol Thre.Sign and
KeyGen are executed in multiparty, if by any reason the protocol is aborted
because of Evl misbehaviour, the game ends and returns 0.

Game G0. This game is the same one played for the EUF-CMA security in
Definition 2, thus PrGEvl

0 Ñ 1s “ AdvEvlCMA by definition.

Game G1. In this game nothing is changed but we set ch at random and we
reprogram the random oracle. We can observe that any statistical difference
between the games can be used to build a distinguisher for the reprogramming
of the oracle; in particular we can adapt the distinguisher from the proof of [49,
Theorem 3]. In total, we reprogram the oracle qs times (one for every signature)
and Evl performs qh quantum calls. Moreover, note that x1, ..., xλ,m are (at least
partially) controlled by the adversary, while salt is randomly sampled thanks to
the initial commitments and the secure aggregation. Thus, by [49, Proposition
1] we have:

|PrGEvl
0 Ñ 1s ´ PrGEvl

1 Ñ 1s| ď
3gs
21`λ

?
qh (2)

Game G2. First of all, note that during the computation of the response, it is
possible to check whether the received uj

i is correct or not, if the user i ` 1
saved all the xi during the key generation step. We exploit this property in our
simulation. Indeed, to simulate a signature, the simulator first acts honestly and
follows the protocol. Upon receiving all the responses uj

i of P1, ..., Pi0´1, it checks
the correctness of all of them. If they are all correct, it rewinds the adversary up
until receiving x̃i0´1 and chooses x̃i0 according to challenge chj (Figure 2 shows
schematically of how the simulation strategy works). In particular:

– linking x̃i0´1 and x̃i0 on challenge chj “ 0;
– linking xi0 and x̃i0 on challenge chj “ 1;

The idea is that every time the adversary acts honestly until Pi0 , the simulator
produces an indistinguishable transcript that will not be rejected during the
response computation. When, instead, the adversary sends something wrong
before Pi0 , the simulation is perfect. Indeed, even if Pi0 is not able to answer to
the challenge, the error spotted allows for an early abort and the simulation is
indistinguishable.

We have shown thatG2 simulates the multiparty signature protocol Thre.Sign,
thus we need to bound the distance between the two last games. We are able
to prove that the two views have the same distribution, implying null game
distance.

If the simulator spots an error and aborts, the simulation is correct and in-
distinguishable from the real execution, since Pi0 followed the protocol normally.
If the simulator rewind the adversary, then the view is given by salti0 , x

j
i0
, g̃ji0

for all j “ 1, ..., λ. The salt and the group elements are uniformly distributed

12

x0 x1 x2 x3

x̃1

x̃2

x̃3

g̃1 ‹

g1 ‹ gi0 ‹ g3 ‹

ch“1
ch“0

g̃3 ‹

Fig. 2: Example of simulation for N “ 3 and i0 “ 2, in red the missing link,
while in blue the elements used to generate xi0 and to answer the challenge.

both in the signature and in the simulation, so they are indistinguishable even
for an unbounded adversary. Also for j with chj “ 0 the set elements xj

i0
are

indistinguishable since the simulator is just following the protocol Thre.Sign.

For j with chj “ 1 we consider the tuples px̃j
i0´1, x̃

j
i0

q with x̃j
i0

“ g̃ji0 ‹ x̃j
i0´1

in the honest execution and x̃j
i0

“ g̃ji0 ‹ xi0 in the simulated ones.

We have rewound Evl, so we know that x̃j
i0´1 “ uj

i0´1 ‹ xi0´1 P Opxi0´1q “

Opxq. Since the group action is free, there exists a unique h̃ with x̃j
i0

“ h̃‹ x̃j
i0´1.

The element h̃ has the same distribution as g̃ji0 thanks to the uniqueness of the
solution; it follows that these pairs are again indistinguishable.

Finally, we observe that game G2 is executed entirely without the use of the
secret share gi0 , thanks to the simulation, and so succeeding in the game implies
being able to forge a signature for the centralized scheme in the quantum random
oracle. Since we assumed quantum unforgebility for the centralized signature,
this probability is negligible. Combining all the game distances we prove the
desired reduction by the resulting equivalence:

AdvEvlCMA ď
3gs
21`λ

?
qh ` neglpλq .

4 Threshold via Replicated Secret Sharing

In this section, we explain how to modify the full threshold scheme, to obtain a
T -out-of-N scheme, via replicated secret sharing6 [51]. Our approach was first
proposed in [33].

Definition 3. A monotone access structure A for the parties P :“ tP1, .., PNu

is a family of subsets S Ă P that are authorized (to sign a message) such that

6 Unfortunately, while standard linear secret sharing would be more efficient, it is
difficult to use in a non-abelian setting.

13

Algorithm 5 Threshold Signature Simulation

1: procedure Games G0 ´ G1 ´ G2

2: Evl chose at least a non corrupted user Pi0 ;
3: Execute KeyGen with Evl;
4: m˚, σ˚

Ð EvlSign,|Hy;
5: return Verifyppx, yq, σ˚,m˚

q ^ m˚
R SM .

6: procedure Sign(m)
7: SM Ð SM Y tmu;
8: Run Thre.Signpm, gi0q up to line 11; Ź G0 ´ G1

9: ch Ð Hpx1
}...}xλ

}salt}mq; Ź G0

10: Get ch
$

ÐÝ t0, 1u
λ; Ź G1

11: H Ð Hpx1}...}xλ}salt}mqÞÑch; Ź G1

12: Run Thre.Signpm, gi0q to the end; Ź G0 ´ G1

13: Run Sim.Thre.Signpmq; Ź G2

14: return salti0 , x̃
j
i0
, uj

i0
for all j.

15: procedure Sim.Thre.Sign(m, gi for i ‰ i0)
16: Run Thre.Signpm, gi0q until line 15.
17: Check all the uj

i0´1 received.

18: if At least one uj
i0´1 is not correct then:

19: return 0 Ź Abortion in Thre.Sign
20: else
21: Rewind Evl to line 4 after having received xj

i0´1

22: for j “ 1, ..., λ do
23: Get g̃ji0 Ð G;

24: Set g̃ji0 Ð g̃ji0 ¨ pgN ¨ ¨ ¨ gi0`1q
´chj ;

25: if chj “ 0 then
26: output xj

i0
“ g̃ji0 ‹ xj

i0´1;
27: else
28: output xj

i0
“ g̃ji0 ‹ y;

29: After receiving xj
N , open salti0 ;

30: if salti are correct then
31: compute salt “

ř

i salti;
32: else return 0 Ź Abortion in Thre.Sign

33: H Ð Hpx1}...}xλ}salt}mqÞÑch;
34: Output uj

i0
“ g̃ji0 for all j;

14

given any S P A and S1 Ą S then S1 P A. To each access structure we can
associate a family of unqualified sets U that satisfies that for all S P A, U P U
then S X U “ H. For all the section we will define the unqualified sets in the
canonical way as U “ 2PzA.

If we want to share a secret s in a group G for a monotone access structure A,
we need to consider the family U` of the maximal unqualified set with respect
to inclusion and define I as the family of complements for U`, i.e.

I :“ tI P A | @U P U . U Ě PzI ùñ U “ PzIu .

Having fixed M “ #I, we sort the elements in I as I1, I2, ... and for each
l P t1, ...,Mu we define the shares sl so that s “ s1 ¨ ¨ ¨ sM ; each party Pi is then
given access to sl if and only if Il Q i. This leads to the following (already known)
result.

Proposition 1. Any authorized subset J P A of users can get the secret s, whilst
any non-authorized set A P U of users cannot retrieve at least one share.

Proof. We prove that it is possible to recover the share by proving that any share
sI for I P I is known by at least one user in J . In fact, suppose that there exists
I P I so that no user in J has access to it. This means that I S Pi for all Pi P J ,
so we have I X J “ H. This implies that S Ď Ic. Since A is monotone, we have
Ic P A, but Ic lies also in U` (because of the definition of I), so Ic P A X U ,
which is impossible due to Definition 3.

For any A P U , we know that there exists a maximal element B P U` such
that B Ě A. This implies Bc Ď Ac and Bc X A “ H. In addition, we have that
Bc P I by definition, but no Pi P A can have access to sBc since otherwise there
would be an intersection.

By using this proposition, the parties in the authorized set J can recover the
secret just by agreeing on which one of them should be the one sharing each
share, i.e. by agreeing on a turn function τpJ, iq such that τpJ, iq P Ii (i.e. PτpJ,iq

knows Ii).

For the T -out-of-N scheme, the authorized sets are the ones having cardinal-
ity at least T . In this way, U` are all the subsets with at most T ´ 1 element, I
the ones of cardinality N ´ T ` 1 and M “ #I “

`

N
T´1

˘

. The final protocol is
depicted in Algorithm 6.

Distributed key generation. The distributed key generation protocol in Algo-
rithm 1 can be used also in this threshold case. The central point is that during
the generation each share gi is known to several users, so to apply it on xi´1

they can:

1. jointly generate a shard of it and then combine the shard, essentially repeat-
ing a protocol similar to the key generation;

15

Algorithm 6 Thre.SignT,N

Require: x P X, a security parameter λ, a hash function H, a public key px, y “ g‹xq,
a secure commitment scheme COM, a set J of T parties and the turn function τ .
Observe that the party Pi knows all the (multiplicative) shares gIj of g “ gI1 ¨ ¨ ¨ gIN
so that Ij Q i.

Ensure: A valid signature for the message m under the public key px, yq.
1: for t P J do
2: Pt pick saltt uniformly random and sends COMpsalttq

3: PτpJ,1q set xj
0 “ x for all j “ 1 to λ Ź Shared commitment generation phase

4: for i “ 1 to M do
5: If i ą 1 PτpJ,iq receives xj

i´1 from PτpJ,i´1q for all j “ 1 to λ
6: for j “ 1 to λ do
7: PτpJ,iq chooses g̃ji P G and computes xj

i “ g̃ji ‹ xj
i´1

8: Pi outputs x
j
i

9: Set xj
“ xj

N for all j “ 1 to λ. Party τpJ,Nq broadcast all xj to all players.
10: Each party publish saltt and checks the consistency of the received data with the

initial commitment.
11: salt “

ř

t saltt
12: Compute ch “ Hpx1

}...}xλ
}salt}mq Ź Non-iterative challenges evaluation

13: PτpJ,1q set uj
0 “ e for all j “ 1 to λ Ź Shared response generation phase

14: for i “ 1 to M do
15: If i ą 1 PτpJ,iq receives uj

i´1 from PτpJ,i´1q for all j “ 1, ..., λ
16: for j “ 1 to λ do

17: PτpJ,iq computes uj
i “ g̃jiu

j
i´1g

´chj
i

18: PτpJ,iq outputs uj
i

19: All users verify uj
i is valid;

20: respj “ uj
N for all j “ 1 to λ

21: sig “ ch}salt}rsp1}...}rspλ

2. delegate one of the users that should know a share to apply it; said user can
then share it with the others.

We prefer the second option since it has a lower latency for the non-abelian
case, but still achieves the same security, assuming that all the users take part
to at least one generation round, thanks to the zero-knowledge proofs.

The signature algorithm is also performed in the same way as the full thresh-
old scheme, using the turn function τ to determine which party sends which
messages at each round. The proof of security for this scheme is practically equal
to the full threshold one: in fact, one can imagine that, after an initial phase to
see who has the required shares, the scheme is essentially an pM,Mq-threshold
scheme.

Theorem 2. For a 2-weakly pseudorandom free group action, if the central-
ized signature is unforgeable in the quantum random oracle model, then the
pT,Nq-threshold signature scheme composed by KeyGen, Thre.SignT,N adjoined

16

with replicated secret sharing and the verification Verify is EUF-CMA secure in
the quantum random oracle model.

Sketch. The proof is very similar to that of the full threshold case (Theorem 1).
First of all, note that, since the adversary controls at most T ´ 1 players, there
must be at least a set Iho P I composed only by honest players on which the
adversary has no control, as showed in the proof of Proposition 1. Thus we just
use the strategies from Algorithm 4 and Algorithm 5 using as non corrupted
user PτpJ,hoq.

Usability of replicated secret sharing. The main drawback of replicated secret
sharing is that the number of shares grows proportionally to the cardinality of
U`, which is usually exponential in the number of parties. In particular, in the
threshold case, there are

`

N
T´1

˘

shares in total, and each party needs to save
`

N
T

˘

shares. Since the group is non-abelian, the number of rounds cannot be reduced
and is equal to the total number of shares.

All of this means that the scheme is practical only in certain scenarios; for
example, for T “ N (full threshold) or N small. For the case T “ N ´ 1
and N ą 3, the size of the shares is already linear in N and the rounds are
quadratic in N . Nevertheless, we would like to point out that for the most used
combinations of pT,Nq such as p2, 3q or p3, 5q, the number of shares (and rounds)
is manageable and the protocol maintains an acceptable level of efficiency.

5 Concrete Instantiations

In this section, we show how several optimizations used in literature for generic
group actions can also be used for this multiparty protocol. We will then present
concrete instantiations of our protocols, based on the LESS and MEDS signature
schemes [8,30], and discuss tailored optimizations. We will denote by ξ the bit-
weight of an element of X, and γ to denote that of an element of G.

5.1 Multi-bit Challenges

Multi-bit challenges are a way to reduce the computational time at the price of
bigger keys and are widely used in signature design (e.g. [35]). In a nutshell, the
optimization consists of replacing the binary challenge space of the verifier with
one of cardinality r ą 1, where each challenge value corresponds to a different
public key. Note that the case r “ 2 corresponds to the original protocol. In this
way, it is possible to amplify soundness, at the cost of an increase in public key
size. Security is then based on a new problem:

Problem 3 (mGAIP: Multiple Group Action Inverse Problem). Given a col-
lection x0, ..., xr´1 in X, find, if any, an element g P G and two different indices
j ‰ j1 such that xj1 “ g ‹ xj .

17

It is folklore that this problem is equivalent to the one-wayness of the group
action, e.g. see Theorem 3 from [8]. We can then consider r ´ 1 public keys
x1, ..., xr´1 generated from the initial element x0 by r´1 shared keys gp1q, ..., gpr´1q

(with the notation gp0q “ e). At this point the challenge is generated as an in-
teger ch P t0, ..., r ´ 1u, thus to evaluate the response (line 17) Pi computes

uj
i “ g̃ji u

j
i´1pg

pchjq

i q´1. As mentioned above, the soundness error is reduced to

r´1, thus in the signing algorithm we only need to execute r λ
log2prq

s rounds, re-

ducing both signature size and computational cost, but increasing the public key
size.

5.2 Fixed-weight challenges

Another possible optimization is to use fixed-weight challenge strings, as shown
for instance in [17,8]. Indeed, while ch “ 1 requires to send a group element, in
the case ch “ 0 the Prover can simply send the PRNG seed used to generate
the random group element g̃. This consists usually of only λ bits, thus is usually
much shorter than a a group element. To exploit this, we can use a hash function
H that returns a vector of fixed weight ω and length t.

To avoid a security loss we need to have a preimage security (the difficulty of
guessing in the challenge space) of still λ bits, thus t, ω are such that:

`

t
ω

˘

ě 2λ.
In this way, for carefully selected parameters, we can obtain shorter signature
size at the price of an higher number of rounds.

To further reduce the signature size, it is possible to send multiple seeds at
the same time by using a seed tree. This primitive uses a secret master seed to
generate t seeds recursively exploiting a binary structure: each parent node is
used to generate two child nodes via a PRNG. When a subset of t ´ ω seeds is
requested for the signature, we only need to send the appropriate nodes, reducing
the space required for the seeds from λpt´ωq to a value bounded above by λNseeds,
where

Nseeds “ 2rlogpωqs ` ωprlogptqs ´ rlogpωqs ´ 1q ,

as shown in [50,30]. In [28], the author noted that, to avoid collisions attacks, a
fresh salt should be used in combination of the seed tree structure. Since salti is
already needed to achieve the security of the threshold construction, the parties
could use it also for the PRNG call.

Applying this optimization to a threshold signature is not straightforward
and requires particular parameters to be used. Indeed, the parties can not share
a single seed used for the generation of the ephemeral map g̃, but have to share
M “

`

N
T´1

˘

of them. Thus, if the challenge bit is 0, the parties need to send
all the M bits, and the total communication cost becomes M ¨ λ. So, for this
strategy to make sense, we need Mλ to be smaller than the weight of the group
element. Moreover, in some applications, it can be desirable to not disclose the
parameters T and N , and thus the fixed-weight challenge should not be used.

18

5.3 Scheme Parameters

When the two approaches are combined, the final signature weight result is
pNseedsM ` 2qλ ` ωγ ` t with t the number of rounds (#rounds) satisfying

ˆ

t

ω

˙

pr ´ 1qω ě 2λ .

In our signing algorithm, for each of the
`

N
T´1

˘

iteration of the for loop over
1, ...,M , each user needs to send the following quantities to the next user:

– #rounds ¨ ξ bits for the commitment phase,
– #rounds ¨ γ ` 2λ bits in general and pNseedsM ` 2qλ ` ωγ when using fixed-

weight challenges.

At this point, we can see specific choices for LESS and MEDS. In our analysis,
we choose the public parameters that satisfy the requirement of 128 bits of
classical security and at least 64 bits of quantum security, and evaluate ξ and γ
accordingly. We include here the data for the original signature schemes, as well
as parameters that we found in order to optimize the sum |pk| ` |σ| for the cases
p2, 3q, p3, 5q and the case without fixed-weight challenges to hide T and N .

Instantiations with LESS. From [6] we have taken the secure balanced LESS
parameters for the NIST Security Category 1 n “ 252, k “ 126 (length and
dimension of the code), q “ 127 (the field size). We obtain that the size of a
single code in systematic form is given by pn´ kqkrlog2pqqs bits, so ξ “ 13.7KiB.
Instead, to send a monomial map, we can use the IS-LEP technique from [59].
This recent optimization requires the use of a new canonical representation of the
generator matrices via information sets. In this way, the equality can be verified
using only the monomial map, truncated on the preimage of the information set,
thus nearly halving the communication cost to kprlog2pq´1qs`rlog2pnqsq bits for
each group element. This optimization (and any other possible new optimization
based leveraging modified canonical forms, such as [31]) can be used also for the
threshold protocol since:

– for the commitment phase, the last user can simply commit using the mod-
ified canonical form, then store the additional information received (the in-
formation set used);

– for the response phase, when the monomial map g´1g̃ is recovered, it can be
truncated again by the last user by using the additional information from
the commitment.

For the cases in which fixed-weight cannot be used, we simply send all the
truncated monomial maps. In this case, we can cut the signature size without
enlarging too much the public key, by decreasing the code dimension to k “ 50.
Clearly, this requires to increase the code length up to n “ 440 for q “ 127
leading to a public key size of 17.1KiB and truncated monomial map size of
100B. Numbers are reported in Table 1, where we report, in the last column,
also the total amount of exchanged data.

19

Case Variant t ω |pk| (KiB) |sig| (KiB) Exc. (MiB)

centralized Fixed 247 30 13.7 8.4 -

(2,3) Fixed 333 26 13.7 10.59 13.30

(3,5) Fixed 333 26 13.7 21.09 44.43

(N,T) r440, 50s127 - - 16.68 12.55
`

N
T´1

˘

2.19

Table 1: Parameters for the threshold version of LESS

Instantiations with MEDS. From [29] we have taken the secure parameters
for the matrix code equivalence problem: n “ m “ k “ 14 (matrix sizes and
dimension of the code), q “ 4093 (the field size). Thus we obtain that the
size of a single code in systematic form is given by pnm ´ kqkrlog2pqqs bits, so
ξ “ 3.84KiB. Observe that in the distributed key generation case we cannot use
the public key compression mechanism from [30, Section 5]. A group element is
instead composed by two invertible matrices, so it has size pn2 ` m2qrlog2pqqs

bits and we have γ “ 588B.

Numbers are reported in Table 2; as above, in the last column we report the
total amount of exchanged data.

Case Variant t ω r |pk| (KiB) |sig| (KiB) Exc. (MiB)

MEDS-13220 F+M 192 20 5 13.2 13.0 -

(2,3) F+M 291 19 4 11.26 14.49 3.24

(3,5) F+M 113 22 6 18.76 20.80 4.34

(*,*) M - - 8 26.24 24.74
`

N
T´1

˘

0.182

[29, Section 8] M - - 3 7.50 3.37
`

N
T´1

˘

0.342

Table 2: Parameters for the threshold version of MEDS

To reduce signature size, another compression technique for group elements is
proposed in [29, Section 8], and we briefly recall it here. Consider two equivalent
rm ˆ n, ks matrix codes C, C1 “ ACB; the core idea is that, using two pairs of
independent codewords pCi,C

1
iq P C ˆ C1 satisfying ACiB “ C1

i for i “ 1, 2, the
two invertible matrices A,B can be recovered in polynomial time just by solving
the system:

"

AC1 “ C1
1B

´1

AC2 “ C1
2B

´1 . (3)

Note that this is the same process used for key compression in [29, Section 3.2].
To see how it is implemented for the MEDS signature, it is enough to see [29,
Section 8]; in here, instead, we propose a slightly less efficient version which is

20

however more suitable for the multiparty calculations (in which the last user
modifies its execution).

– Commitment: the last user generates via a public seed a full-rank ma-
trix R P F2ˆmn

q , i.e. random independent codewords, and takes two random
codewords in the code received by the previous user. Finally he solves Equa-
tion (3) to get ÃM , B̃M and evaluate the final code as usual.

– Response: At the end of the response phase, the last user has access (for
each round) to Ã, B̃ such that SFpGchpÃJ b B̃qq “ G̃, thus from R he can
find the two associated codewords that can be used to recover the group
element as RpÃJ b B̃q´1. Since these codewords are in the code Cch, they
can be represented as linear combinations of the Gch rows, i.e. as a 2 ˆ k
matrix M such that

RpÃJ b B̃q´1 “ MGch .

From M, the verifier can recover the group element as explained in [29,
Section 8]; thus, the communication cost per round is cut down to 2krlog2pqqs

bits.

Remark 1. Unlike the original optimization, in this case we do not know the
change-of-basis matrix used in the public key, implying that:

– there are additional linear systems to be solved since we need to invert
pÃJ b B̃q and find M;

– in the case ch “ 0, we cannot save space by sending only the seed used to
sample the codewords. To be precise, we could send it together with the
seeds used for the previous ephemeral elements, but in most cases it would
not save space since seeds and 2 ˆ k matrices have comparable sizes.

5.4 Latency

Because of the sequential round-robin structure each party must wait for the
previous one results to start its execution, both during the commitment and the
response phase, thus increasing the latency of the protocol. Usually the most
expensive computation is the group action evaluation, so we can estimate the
latency per round as t group actions for the commitment phase and t group ac-
tions for the response, since each of the users (in particular the one responsible to
publish uj

i) verify the previous user responses. Thus, we have 2Mt group actions,

where M is the number of shares equal to
`

N
T´1

˘

while t is the number of repeti-
tions for the basic identification protocol. Note that these are already much less
then the group actions estimated for Sashimi in Section 4.1 [33].

The latency can be lowered by observing that, if several consecutive rounds
are assigned to the same user, the required group actions can be reduced to only
one by previously multiplying the group elements, both during commitment and
verification phase. For example, in the 2-out of-N case where for each user misses
only one of the secret shares, we can always chose the turn function τ so that

21

the rounds can be divided in two consecutive series assigned to the two parties,
thus compressing the latency to just 4t group actions per user. An estimate and
comparison of the latency for the different protocols can be seen in Table 3.

Per party: Sashimi T-LESS T-MEDS

gr. actions 55377 1332 1164

time 283 s 279 ms 230 ms

Table 3: Comparison of the estimated latency for the 2-out of-N case for Sashimi
(from [33]) and the threshold version of LESS and MEDS proposed in this work.
We assumed a latency per group actions of 0.21 ms for LESS [6] and 0.24 ms for
MEDS [29].

6 Conclusions

We introduced a threshold signature scheme based on the Group Action Inverse
Problem that is agnostic about which particular group action is used, and works
without any further hypotheses. Our schemes are similar to well-known abelian
group action threshold schemes such as the one presented in [33,36,26], and share
the strictly sequential round-robin communication sequence. Unfortunately, this
structure seems to be unavoidable due to the inherent properties of group action
computation.

Additionally, we were able to prove the security of the key generation algo-
rithm using fewer ZKPs than in [33]. Differently from [36,26], we use the jointly
generated salt to reduce the security of the scheme to that of the centralized one
without relying on intensive use of ZKPs, cutting by a lot communication cost
and overhead computations.

When instantiated, our proposed schemes benefit from optimizations in use,
eventually adapted to the multiparty scenario, and are practical for several real-
world instances, such as p2, 3q or p3, 5q sharing, but cannot be used for arbitrary
pT,Nq since the number of shares required grows as a binomial coefficient.

7 Acknowledgement

This publication was created with the co-financing of the European Union FSE-
REACT-EU, PON Research and Innovation 2014-2020 DM1062/2021. The au-
thors acknowledge support from Ripple’s University Blockchain Research Ini-
tiative. The first author acknowledges support from TIM S.p.A. through the
Ph.D. scholarship. The second author acknowledges support from Telsy S.p.A.
and De Componendis Cifris through the M.Sc. scholarship and Collegio Clesio.
The third author is a member of the INdAM Research Group GNSAGA. The
fourth author acknowledges support from NSF through grant 1906360 and NSA

22

through grant H98230-22-1-0328.
All the authors would like to thank Giuseppe D’Alconzo and Leonardo Errati
for their comments and suggestions.
The core of this work is contained also in the second author’s M.Sc. thesis.

References

1. M. Abdalla, J. H. An, M. Bellare, and C. Namprempre. From identification to
signatures via the fiat-shamir transform: Minimizing assumptions for security and
forward-security. In EUROCRYPT 2002. Springer Berlin Heidelberg.

2. C. Aguilar Melchor, N. Aragon, S. Bettaieb, L. ı̈c Bidoux, O. Blazy, J.-C.
Deneuville, P. Gaborit, E. Persichetti, G. Zémor, and J. Bos. HQC. NIST PQC
Submission, 2020.

3. N. Alamati, L. De Feo, H. Montgomery, and S. Patranabis. Cryptographic group
actions and applications. In ASIACRYPT 2020. Springer.

4. M. R. Albrecht, D. J. Bernstein, T. Chou, C. Cid, J. Gilcher, T. Lange, V. Maram,
I. von Maurich, R. Misoczki, R. Niederhagen, K. G. Paterson, E. Persichetti, C. Pe-
ters, P. Schwabe, N. Sendrier, J. Szefer, C. J. Tjhai, M. Tomlinson, and W. Wang.
Classic McEliece. NIST PQC Submission, 2020.

5. N. Aragon, P. Barreto, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville, P. Ga-
borit, S. Gueron, T. Guneysu, C. Aguilar Melchor, R. Misoczki, E. Persichetti,
N. Sendrier, J.-P. Tillich, G. Zémor, V. Vasseur, and S. Ghosh. BIKE. NIST PQC
Submission, 2020.

6. M. Baldi, A. Barenghi, L. Beckwith, J.-F. Biasse, A. Esser, K. Gaj, K. Mo-
hajerani, G. Pelosi, E. Persichetti, M.-J. O. Saarinen, P. Santini, and R. Wal-
lace. Matrix equivalence digital signature. https://www.less-project.com/

LESS-2023-08-18.pdf, 2023. Accessed: 2023-09-15.
7. A. Barenghi, J.-F. Biasse, T. Ngo, E. Persichetti, and P. Santini. Advanced signa-

ture functionalities from the code equivalence problem. Cryptology ePrint Archive,
Paper 2022/710, 2022. https://eprint.iacr.org/2022/710.

8. A. Barenghi, J.-F. Biasse, E. Persichetti, and P. Santini. Less-fm: fine-tuning
signatures from the code equivalence problem. In Post-Quantum Cryptography:
12th International Workshop, PQCrypto 2021, Daejeon, South Korea, July 20–22,
2021, Proceedings 12, pages 23–43. Springer, 2021.

9. A. Barenghi, J.-F. Biasse, E. Persichetti, and P. Santini. On the computational
hardness of the code equivalence problem in cryptography. Advances in Mathe-
matics of Communications, 17(1):23–55, 2023.

10. A. Basso, G. Codogni, D. Connolly, L. De Feo, T. B. Fouotsa, G. M. Lido, T. Mor-
rison, L. Panny, S. Patranabis, and B. Wesolowski. Supersingular curves you can
trust. In Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 405–437. Springer, 2023.

11. M. Battagliola, A. Galli, R. Longo, and A. Meneghetti. A provably-unforgeable
threshold schnorr signature with an offline recovery party. In DLT2022 at Itasec
2022, CEUR Workshop Proceedings, 2022.

12. M. Battagliola, R. Longo, and A. Meneghetti. Extensible decentralized secret
sharing and application to schnorr signatures. preprint: https://eprint.iacr.
org/2022/1551, 2022.

13. M. Battagliola, R. Longo, A. Meneghetti, and M. Sala. A provably-unforgeable
threshold EdDSA with an offline recovery party. preprint: https://arxiv.org/
abs/2009.01631, 2020.

23

https://www.less-project.com/LESS-2023-08-18.pdf
https://www.less-project.com/LESS-2023-08-18.pdf
https://eprint.iacr.org/2022/710
https://eprint.iacr.org/2022/1551
https://eprint.iacr.org/2022/1551
https://arxiv.org/abs/2009.01631
https://arxiv.org/abs/2009.01631

14. M. Battagliola, R. Longo, A. Meneghetti, and M. Sala. Threshold ECDSA with
an offline recovery party. Mediterranean Journal of Mathematics, 19(4), 2022.

15. M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a
general forking lemma. In Proceedings of the 13th ACM Conference on Computer
and Communications Security, CCS ’06, page 390–399, New York, NY, USA, 2006.
Association for Computing Machinery.

16. W. Beullens, L. Disson, R. Pedersen, and F. Vercauteren. Csi-rashi: distributed key
generation for csidh. In International Conference on Post-Quantum Cryptography,
pages 257–276. Springer, 2021.

17. W. Beullens, S. Katsumata, and F. Pintore. Calamari and falafl: Logarithmic
(linkable) ring signatures from isogenies and lattices. Cryptology ePrint Archive,
Paper 2020/646, 2020. https://eprint.iacr.org/2020/646.

18. W. Beullens, T. Kleinjung, and F. Vercauteren. Csi-fish: efficient isogeny based
signatures through class group computations. In ASIACRYPT 2019. Springer,
2019.

19. J.-F. Biasse, G. Micheli, E. Persichetti, and P. Santini. Less is more: Code-based
signatures without syndromes. In AFRICACRYPT 2020. Springer International
Publishing, 2020.

20. M. Bläser, Z. Chen, D. H. Duong, A. Joux, N. T. Nguyen, T. Plantard, Y. Qiao,
W. Susilo, and G. Tang. On digital signatures based on isomorphism problems:
Qrom security, ring signatures, and applications. Cryptology ePrint Archive, 2022.

21. D. Boneh, R. Gennaro, and S. Goldfeder. Using level-1 homomorphic encryption
to improve threshold dsa signatures for bitcoin wallet security. In International
Conference on Cryptology and Information Security in Latin America, pages 352–
377. Springer, 2017.

22. C. Bonte, N. P. Smart, and T. Tanguy. Thresholdizing hasheddsa: Mpc to the
rescue. International Journal of Information Security, 20:879 – 894, 2021.

23. L. T. A. N. Brandão and M. Davidson. Notes on threshold eddsa/schnorr signa-
tures. Accessed: 2023-05-01.

24. L. T. A. N. Brandão, M. Davidson, and A. Vassilev. Nist roadmap toward criteria
for threshold schemes for cryptographic primitives. Accessed: 2020-08-27.

25. A. Budroni, J.-J. Chi-Domı́nguez, G. D’Alconzo, A. J. D. Scala, and M. Kulkarni.
Don’t use it twice! solving relaxed linear code equivalence problems. Cryptology
ePrint Archive, Paper 2024/244, 2024. https://eprint.iacr.org/2024/244.

26. F. Campos and P. Muth. On actively secure fine-grained access structures from
isogeny assumptions. In International Conference on Post-Quantum Cryptography,
pages 375–398. Springer, 2022.

27. W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes. Csidh: an efficient
post-quantum commutative group action. In ASIACRYPT 2018. Springer.

28. A. Chailloux. On the (in) security of optimized stern-like signature schemes. WCC,
2022.

29. T. Chou, R. Niederhagen, E. Persichetti, L. Ran, T. H. Randrianarisoa, K. Rei-
jnders, S. Samardjiska, and M. Trimoska. Matrix equivalence digital signature.
https://meds-pqc.org/spec/MEDS-2023-05-31.pdf, 2023. Accessed: 2023-09-12.

30. T. Chou, R. Niederhagen, E. Persichetti, T. H. Randrianarisoa, K. Reijnders,
S. Samardjiska, and M. Trimoska. Take your meds: Digital signatures from matrix
code equivalence. In International Conference on Cryptology in Africa. Springer,
2023.

31. T. Chou, E. Persichetti, and P. Santini. On linear equivalence, canonical forms,
and digital signatures. https://tungchou.github.io/papers/leq.pdf, 2023. Ac-
cessed: 2023-09-20.

24

https://eprint.iacr.org/2020/646
https://eprint.iacr.org/2024/244
https://meds-pqc.org/spec/MEDS-2023-05-31.pdf
https://tungchou.github.io/papers/leq.pdf

32. D. Cozzo and N. P. Smart. Sharing the luov: threshold post-quantum signatures.
In IMA International Conference on Cryptography and Coding, pages 128–153.
Springer, 2019.

33. D. Cozzo and N. P. Smart. Sashimi: Cutting up csi-fish secret keys to produce an
actively secure distributed signing protocol. In J. Ding and J.-P. Tillich, editors,
Post-Quantum Cryptography, pages 169–186, Cham, 2020. Springer International
Publishing.

34. G. D’Alconzo and A. J. D. Scala. Representations of group actions and their
applications in cryptography. Cryptology ePrint Archive, Paper 2023/1247, 2023.

35. L. De Feo and S. D. Galbraith. Seasign: compact isogeny signatures from class
group actions. In EUROCRYPT 2019. Springer, 2019.

36. L. De Feo and M. Meyer. Threshold schemes from isogeny assumptions. In PKC
2020. Springer, 2020.

37. J. Doerner, Y. Kondi, E. Lee, and A. Shelat. Secure two-party threshold ecdsa
from ecdsa assumptions. In 2018 IEEE Symposium on Security and Privacy (SP),
pages 980–997. IEEE, 2018.

38. J. Doerner, Y. Kondi, E. Lee, and A. Shelat. Threshold ecdsa from ecdsa assump-
tions: The multiparty case. In 2019 IEEE Symposium on Security and Privacy
(SP), pages 1051–1066. IEEE, 2019.

39. J. Don, S. Fehr, C. Majenz, and C. Schaffner. Security of the fiat-shamir transfor-
mation in the quantum random-oracle model. In CRYPTO 2019, 2019.

40. J. Don, S. Fehr, C. Majenz, and C. Schaffner. Security of the fiat-shamir trans-
formation in the quantum random-oracle model. In CRYPTO 20199. Springer,
2019.

41. T. Feneuil, A. Joux, and M. Rivain. Syndrome decoding in the head: Shorter
signatures from zero-knowledge proofs. In CRYPTO 2022. Springer, 2022.

42. T. Feneuil, A. Joux, and M. Rivain. Shared permutation for syndrome decod-
ing: New zero-knowledge protocol and code-based signature. Designs, Codes and
Cryptography, 91(2):563–608, 2023.

43. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In A. M. Odlyzko, editor, CRYPTO’ 86. Springer Berlin
Heidelberg, 1987.

44. R. Gennaro and S. Goldfeder. Fast multiparty threshold ecdsa with fast trustless
setup. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 1179–1194, 2018.

45. R. Gennaro, S. Goldfeder, and A. Narayanan. Threshold-optimal dsa/ecdsa signa-
tures and an application to bitcoin wallet security. In International Conference on
Applied Cryptography and Network Security, pages 156–174. Springer, 2016.

46. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold dss signa-
tures. In International Conference on the Theory and Applications of Cryptographic
Techniques, pages 354–371. Springer, 1996.

47. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key gener-
ation for discrete-log based cryptosystems. In EUROCRYPT’99. Springer, 1999.

48. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key gener-
ation for discrete-log based cryptosystems. Journal of Cryptology, 20:51–83, 2007.

49. A. B. Grilo, K. Hövelmanns, A. Hülsing, and C. Majenz. Tight adaptive repro-
gramming in the qrom. In ASIACRYPT 2021. Springer, 2021.

50. S. Gueron, E. Persichetti, and P. Santini. Designing a practical code-based signa-
ture scheme from zero-knowledge proofs with trusted setup. Cryptography, 6(1):5,
2022.

25

51. M. Ito, A. Saito, and T. Nishizeki. Secret sharing scheme realizing general access
structure. Electronics and Communications in Japan, 1989.

52. G. Kuperberg. Another subexponential-time quantum algorithm for the dihedral
hidden subgroup problem. In S. Severini and F. G. S. L. Brandão, editors, TQC
2013, volume 22 of LIPIcs. Schloss Dagstuhl, 2013.

53. Y. Lindell. Fast secure two-party ecdsa signing. In CRYPTO 2017. Springer, 2017.
54. Q. Liu and M. Zhandry. Revisiting post-quantum fiat-shamir. In CRYPTO 2019,

2019.
55. P. MacKenzie and M. K. Reiter. Two-party generation of dsa signatures. In

CRYPTO 2001. Springer, 2001.
56. P. MacKenzie and M. K. Reiter. Two-party generation of dsa signatures. Interna-

tional Journal of Information Security, 2004.
57. NIST. Post-Quantum Cryptography Standardization, 2017. URL: https://csrc.

nist.gov/Projects/Post-Quantum-Cryptography.
58. NIST. Call for Additional Digital Signature Schemes for the Post-Quantum

Cryptography Standardization Process, 2023. URL: https://csrc.nist.gov/

projects/pqc-dig-sig/standardization/call-for-proposals.
59. E. Persichetti and P. Santini. A new formulation of the linear equivalence problem

and shorter less signatures. Cryptology ePrint Archive, 2023.
60. P. Schwabe, R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky,

J. M. Schanck, G. Seiler, and D. Stehlé. CRYSTALS-KYBER. NIST PQC Sub-
mission, 2020.

61. D. Unruh. Post-quantum security of fiat-shamir. In Advances in Cryptology–
ASIACRYPT 2017. Springer, 2017.

26

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
 https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals
 https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals

1 Coding Theory Notions

A linear code C is a vector subspace C Ď Fn
q of dimension k, and it is usually

referred to as an rn, ks linear code. It follows that a basis for C is given by a set
of k linearly independent vectors in Fn

q . When these vectors are put as rows of
a matrix G, this is known as a generator matrix for the code, as it can generate
each vector of C (i.e. a codeword) as a linear combination of its rows. Note
that such a generator is not unique, and any invertible k ˆ k matrix S yields
another generator via a change of basis; however, it is always possible to utilize
a “standard” form simply performing a Gaussian elimination on the left-hand
side. This is usually called systematic if the result is the identity matrix (i.e. if
the leftmost k ˆ k block is invertible); we denote this by SF.

Linear codes are traditionally measured with the Hamming metric, which
associates a weight to each codeword by simply counting the number of its
non-zero entries. It follows, then, that an isometry (i.e. a map preserving the
weight) is given by any n ˆ n permutation matrix P acting on each word, or
indeed, on the columns of G (since every codeword can be generated as a linear
combination of the rows of G). Moreover, it is possible to generalize this notion
by adding some non-zero scaling factors from Fq to each column. Such a matrix
is commonly known as a monomial matrix, and we denote it by Q; it can be
seen as a product D ¨ P between a permutation matrix and a diagonal matrix
with non-zero components.

The notion of linear codes can be generalized to the case where each codeword
is a matrix, instead of a vector; more precisely, mˆn matrices over Fq. We talk
then about rmˆn, ks matrix code, which can be seen as a k-dimensional subspace
C of Fmˆn

q . These objects are usually measured with a different metric, known
as rank metric, where the weight of each codeword corresponds to its rank as
a matrix. In this case, then, isometries are maps which preserve the rank of
a matrix, and are thus identified by two non-singular matrices A P GLm and
B P GLn acting respectively on the left and on the right of each codeword, by
multiplication.

In both of the metrics defined above, we are able to formulate a notion of
equivalence in the same way, by saying that two codes are equivalent if they are
connected by an isometry. In other words, with a slight abuse of notation, we
say that two linear codes C and C1 are linearly equivalent if C1 “ CQ, and two
matrix codes C and C1 are matrix equivalent if C1 “ ACB. Note that the notion
of permutation equivalence is just a special case of linear equivalence (with the
diagonal matrix D being the identity matrix), yet is often treated separately for
a variety of reasons of both historical and practical nature (for instance, certain
solvers behave quite differently).

27

2 Signatures from Generic Group Actions

We summarize here briefly how to design a signature scheme from generic group
actions. To begin, we formulate the Sigma protocol described in Figure 3.

Public Data : Group G acting on X via ‹, element x P X and hash function H.
Private Key : Group element g with gi P G.
Public Key : y “ g ‹ x.

PROVER VERIFIER

Get g̃
$

Ð G, send com “ Hpg̃ ‹ xq
com
ÝÑ
ch

ÐÝ ch
$

Ð t0, 1u.
If ch “ 0 then rsp Ð g̃. rsp

ÝÑ
Accept if Hprsp ‹ xq “ com.

If ch “ 1 then rsp Ð g̃g´1. Accept if Hprsp ‹ yq “ com.

Fig. 3: Identification protocol for the knowledge of the private key.

The protocol above intuitively provides a soundness error of 1/2; it is in
fact trivial to prove that an adversary who could solve answer both challenges
simultaneuosly, would be able to recover a solution to GAIP. It is then necessary
to amplify soundness, in order to reach the desired authentication level. This
is accomplished, in the simplest way, by parallel repetition; in practice, several
optimizations can be applied, as we will see in Section 5, without impacting
security. At this point, a signature scheme can be obtained using the Fiat-Shamir
transformation [43], which guarantees EUF-CMA security in the (Quantum)
Random Oracle Model. The next result is intentionally a little vague, since it
is well-known in literature, and we do not want to overly expand this section.
Proofs tailored to the specific instantiations can be found, for example, in [35,8].
For further discussions on Fiat-Shamir, and its security in the ROM and QROM,
we point instead the reader to [43,1,39,54].

Proposition 2. Let I be the identification protocol described above, and S be the
signature scheme obtained by iterating I and then applying Fiat-Shamir. Then S
is existentially unforgeable against chosen-message attacks, based on the hardness
of GAIP.

Note that the protocol does not require any specific property from the group
action in use, except those connected to efficient sampling and computation.
Indeed, even though the action could in principle be non-transitive, as is the
case for code-based group actions, the construction makes it so that we operate
on a single orbit (i.e. it is transitive by design in this specific use case). It is
however advisable to utilize a free group action, since this could have an impact
on the difficulty of GAIP.

28

3 Code-based Group Actions

We now present the group action associated to code equivalence, according to
the definitions given in the previous sections. First, consider the set X Ď Fkˆn

q

of all full-rank k ˆ n matrices, i.e. the set of generator matrices of rn, ks-linear
codes. We then set G “ Mn, by which we denote the group of monomial matrices.
Note that this group is isomorphic to pF˚

q qn¸Sn if we decompose each monomial
matrix Q P Mn into a product D ¨ P. The group operation can be then seen
simply as multiplication, and the group action is given by

‹ : G ˆ X Ñ X

pG,Qq Ñ SFpGQq

It is easy to see that the action is well-formed, with the identity element being
In, and compatible with respect to (right) multiplication.

Remark 2. The definition above considers a standardized choice of representative
by utilizing the systematic form SF. This simplifies the definition and makes
sure to avoid cases where multiple generators for the same code could be chosen.
Indeed, since the systematic form uniquely identifies linear codes, this allows us
to see our group action as effectively acting on linear codes, rather than on their
representatives (generator matrices).

The case of matrix code equivalence can be framed analogously. In this case,
the set X is formed by the k-dimensional matrix codes of size m ˆ n over some
base field Fq; similarly to linear codes, matrix codes can be represented via
generator matrices G P Fkˆmn

q . Then, the action of the group G “ GLm ˆ GLn

on this set can be described compactly as follows:

‹ : G ˆ X Ñ X

ppA,Bq,Gq Ñ SFpGpAJ b Bqq

Note that this is equivalent to applying the matrices A and B to each code-
word C in the matrix code as ACB; indeed this is often the most convenient
notation.

Note that, in both cases, the action is not commutative and in general neither
transitive nor free. It is however possible to restrict the set X to a single well-
chosen orbit to make the group action both transitive and free. In fact, picking
any orbit generated from some starting code ensures transitivity, and the group
action is free if the chosen code has a trivial automorphism group, where triv-
ial means up to scalars in Fq. The non-commutativity is both a positive and
negative feature: although it limits the cryptographical design possibilities, e.g.
key exchange becomes hard, it prevents quantum attacks to which commutative
cryptographic group actions are vulnerable, such as Kuperberg’s algorithm for
the dihedral Hidden Subgroup Problem [52].

The vectorization problems for the code-based group actions are well-known
problems in coding theory. We report them below.

29

Problem 4 (Linear Equivalence (LEP)). Given two k-dimensional linear codes
C, C1 Ď Fn

q , find, if any, Q P Mn such that C1 “ CQ.

We have not defined explicitly here the Permutation Equivalence Problem
(PEP), since we will not use it directly; this can be seen as just a special case
of LEP, where the monomial matrix Q is a permutation.

Problem 5 (Matrix Code Equivalence (MCE)). Given two k-dimensional ma-
trix codes C, C1, find, if any, A P GLm,B P GLn such that C1 “ ACB.

Note that both of the above problems are traditionally formulated as de-
cisional problems. Extensive discussion of their hardness is given, for instance,
in [9,30].

4 Zero-Knowledge Proof for Action Equality

In the Distributed Key Generation given in Algorithm 1, we need that each
party commitm to its onw shard gi and then prove the the consistence of the
commitment with the its output data. When the action is pseudorandom, a
possible idea is to define comKG

i as yi “ gi‹x and then, when sending xi “ gi‹xi´1,
we need a proof for the knowledge of a set element gi such that the following
relation holds:

yi “ gi ‹ x ^ xi “ gi ‹ xi´1 .

The protocol presented below is a straightforward generalization of the one
presented in Section 3.1 of [33], for a general group action.

Public Data : xa, xb P X and hash function H.
Private Key : Group element g P G.
Public Key : ya “ g ‹ xa and yb “ g ‹ xb.

PROVER VERIFIER

Choose g̃
$

Ð G and set:
com
ÝÑx̃a “ g̃ ‹ xa, x̃b “ g̃ ‹ xb.

Set com “ Hpx̃a}x̃bq.
ch

ÐÝ ch
$

Ð t0, 1u.
If ch “ 0 then rsp “ g̃. rsp

ÝÑ
Accept if Hprsp ‹ xa}rsp ‹ xbq “ com.

If ch “ 1 then rsp “ g̃g´1. Accept if Hprsp ‹ ya}rsp ‹ ybq “ com.

Fig. 4: One round of the identification protocol prove that the Private Key is used
for the calculation.

For completeness we report here the proof of security for the non interactive
version of the protocol, contained in [33] and [16].

30

Proposition 3. The protocol in Figure 4 can be rendered to a non interactive
computationally zero-knowledge quantum proof of knowledge for a free 2-weakly
pseudorandom group actions in the QROM.

Proof. First we prove that the underlying protocol is complete, sound and com-
putationally zero-knowledge. The completeness is straightforward. We need to
prove soundness and zero knowledge.

– Soundness: suppose that the Prover is able to answer both the challenges
with u0 and u1, by the collision resistance of the hash function at this point
we would retrieve g as u´1

1 u0 against the one wayness of the group action
(thus also against 2-weakly pseudorandomness) and having that the public
keys are generated by the same group elements.

– Zero Knowledge: to simulate the protocol without knowing the secret g
and for any pairs of elements pxa, yaq, pxb, ybq the Prover flips a coin c. If
c “ 0, the Prover follows the protocol normally and is able to answer the
challenge if b “ 0. If c “ 1, it computes x̄a “ ḡya and x̄b “ ḡyb and sends
them in place of x̃a and x̃b. In this way it is able to answer to the challenge
b “ 1. Thus, if c “ b the prover can convince the verifier, otherwise it rewind
the verifier and try again. Since at every iteration the prover has probability
1
2 of guessing the correct c the simulation ends in expected polynomial time.
Note that this transcript is indistinguishable from the honestly-obtained one,
because a distinguisher between the honestly generated transcripts and the
simulated one can be used to distinguish pairs px̄, g ‹ āq from random ones,
against the 2-weakly pseudorandomness.

For the quantum resistance we can observe that since the automorphisms are all
trivial the sigma protocol has perfect unique responses (see [20, Lemma 1]) then
by [40, Theorem 25] the protocol is a quantum proof of knowledge. Then the
protocol has completeness, high min entropy7 and HVZK and is zero-knowledge
against quantum adversaries thanks to [61].

4.1 Alternative Protocol Using Weaker Assumptions

The problem of the above protocol is that it requires a 2-weakly pseudorandom
group action. It was recently shown that many commonly used non commutative
group actions are not weakly pseudorandom, in particular for linear code equiv-
alence with code rate 1{2 is not even 2-weakly pseudorandom, i.e. by having
access to px, g ‹ x, y, g ‹ yq allows to recover g in polynomial time [25]. So for
LESS based distributed key generation [8] we need a different and less efficient
zero knowledge proof. The strategy is basically to prepare the whole proof before
the key generation, committing to both the possible response. So instead of com-
mitting to a set element yi “ gi ‹ x they commit to the group elements used for
the protocol hidden in the merkle tree root, opening only the relevant responses
to perform the classical protocol from Figure 3 during the key generation phase.

7 i.e. the probability of guessing the commitment is negligible

31

This way the user, against the binding property of the merkle tree, is forced to
apply a fixed group element.

Formally, Pi samples uniformly the secret gi P G and the ephemeral elements
g̃k P G for k “ 1, ..., λ, then commits to

comKG
i “

`

Merkle ppg̃kqk“1,...,λq ,Merkle
`

pg̃kg
´1
i qk“1,...,λ

˘˘

(4)

where the function Merklepvq computes the root of the Merkle Tree have as leafs
the entries of the vector v. Later Pi performs the protocol of Figure 5 to prove
the knowledge of gi.

Public Data : xi´1, xi “ gi ‹ xi´1, com
KG
i as in (4)

Private Key : gi P G and g̃k P G for all k “ 1, ..., λ.

PROVER VERIFIER
for k “ 1, ..., λ do:

x̃k Ð g̃k ‹ xi´1

Set com Ð x̃1||...||x̃λ
com

ÝÝÑ
ch

ÐÝ ch
$

Ð t0, 1u
λ.

for k “ 1, ..., λ do:

rspk Ð g̃kg
´chk
i .

covk Ð Hpg̃kg
chk´1
i q.

rsp Ð rsp1||...||rspλ
cov Ð cov1||...||covλ

rsp,cov
ÝÝÝÝÑ Parse rsp and cov

Check comKG
i as in (4)

for k “ 1, ..., λ do:
if chk “ 0 then:

Check rspk ‹ xi´1 “ x̃k

else:
Check rspk ‹ xi “ x̃k

Fig. 5: Identification protocol for a non pseudorandom group action

Sketch of the Security Properties The completeness and zero knowledge property
are trivial to prove, the simulator can simply adopt the strategy used for the
previous protocol, given that the hash function H is hiding.

The soundness is more tricky. It is immediate to see that the protocol is sound
for the GAIP relation (Problem 1) on pxi´1, xiq using the same arguments used
for the protocol in Figure 3.

However, we also need now to show that, for a free group action, the witness
is uniquely determined by comKG

i . The problem is that the protocol does not
ensure that all the leaf of rooti are correctly formed, indeed suppose that an
adversary cheat on one leaf, then probability of being detected is only 1

2 , since
half of the time that leaf is not open. What the protocol ensure is that, against

32

the binding properties of the hash function H, all the group elements involved in
the in the proof are the same, so given two pairs pxi´1, xiq and px˚

i´1, x
˚
i q they

share the same witness, since the extraction depends only on the group elements
involved in the protocol.

33

	Cutting the GRASS: Threshold GRoup Action Signature Schemes

