
An extended abstract of this paper appears in the proceedings of CRYPTO’23.
This is the full version.

On Optimal Tightness for Key

Exchange with Full Forward Secrecy via

Key Confirmation

Kai Gellert1, Kristian Gjøsteen2, H̊akon Jacobsen3,4, and Tibor Jager∗1

1University of Wuppertal, {kai.gellert,jager}@uni-wuppertal.de, 2Norwegian
University of Science and Technology, kristian.gjosteen@ntnu.no, 3Thales

Norway, 4University of Oslo, hakon.jacobsen@its.uio.no

February 21, 2024

Abstract

A standard paradigm for building key exchange protocols with full
forward secrecy (and explicit authentication) is to add key confirmation
messages to an underlying protocol having only weak forward secrecy (and
implicit authentication). Somewhat surprisingly, we show through an
impossibility result that this simple trick must nevertheless incur a linear
tightness loss in the number of parties for many natural protocols. This
includes Krawczyk’s HMQV protocol (CRYPTO 2005) and the protocol
of Cohn-Gordon et al. (CRYPTO 2019).

Cohn-Gordon et al. gave a very efficient underlying protocol with
weak forward secrecy having a linear security loss, and showed that this
is optimal for certain reductions. However, they also claimed that full
forward secrecy could be achieved by adding key confirmation messages,
and without any additional loss. Our impossibility result disproves this
claim, showing that their approach, in fact, has an overall quadratic loss.

Motivated by this predicament we seek to restore the original linear
loss claim of Cohn-Gordon et al. by using a different proof strategy.
Specifically, we start by lowering the goal for the underlying protocol with
weak forward secrecy, to a selective security notion where the adversary
must commit to a long-term key it cannot reveal. This allows a tight
reduction rather than a linear loss reduction. Next, we show that the
protocol can be upgraded to full forward secrecy using key confirmation
messages with a linear tightness loss, even when starting from the weaker
selective security notion. Thus, our approach yields an overall tightness
loss for the fully forward-secret protocol that is only linear, as originally
claimed. Finally, we confirm that the underlying protocol of Cohn-Gordon
et al. can indeed be proven selectively secure, tightly.

∗Supported by the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme, grant agreement 802823.

{kai.gellert,jager}@uni-wuppertal.de
kristian.gjosteen@ntnu.no
hakon.jacobsen@its.uio.no

1 Introduction

A security reduction is said to be tight if it preserves the security of the object
being reduced to. The benefit of a tight reduction is that it allows to closely
relate the security of a complex object to a simpler and, hopefully, more easy
to analyze object. Moreover, a tight reduction allows cryptographic schemes
to be instantiated with optimal parameters in a theoretically sound way. Un-
fortunately, for key exchange protocols the security reductions have historically
been inordinately non-tight. But recent works have started to address these
deficiencies either by doing more careful analyses of existing protocols, or by
proposing new protocols more suitable for tighter reductions. Typically the
approach has either been to use digital signatures with tight multi-user secu-
rity [BHJ+15, GJ18, PQR21, HJK+21], or signature-less protocols based on
some variant of Diffie-Hellman [CCG+19, JKRS21]. While the latter tend to be
more efficient than the signature-based approaches in practice, the comparison
isn’t completely fair since the signature-based protocols provide full forward
secrecy and explicit authentication (AKE) while the protocols based on Diffie-
Hellman ones only give weak forward secrecy and implicit authentication.

Forward secrecy, authentication and key confirmation. Full forward
secrecy refers to the ability of a protocol to provide security of session keys
even if the long-term secret key of a party is leaked [BG20]. It is considered
an essential standard security goal for modern key exchange protocols. Weak
forward secrecy achieves this property under the assumption that the adversary
does not actively interfere with the protocol messages in the sessions it attacks.

The notions of weak and full forward secrecy are also intimately connected
to authentication [BPR00, BG11, dFW20]. Explicit authentication guarantees
that the intended communication partner is indeed “online”, having actively
participated in the protocol and derived the session key. Implicit authentica-
tion, on the other hand, only guarantees that the intended peer will be able to
derive the same session key, not that it actually has participated in the proto-
col. Typically, for key exchange protocols having only implicit authentication,
an adversary can efficiently impersonate Alice towards Bob, in the sense that it
sends messages on behalf of Alice and such that Bob derives a session key that
he believes is suitable for communicating with Alice, but the adversary will still
not be able to distinguish this session key from a random one.

A natural question then is how to upgrade a protocol from weak forward
secrecy and implicit authentication to full forward secrecy and explicit authen-
tication, while still maintaining tightness and efficiency. Probably the most
obvious idea is to have the participants send key confirmation messages derived
from the session key. This solution is simple, efficient, and has already been
treated in multiple works [BPR00, Kra05, Yan13, FGSW16, CCG+19, dFW20].
Key confirmation ensures that the other protocol participant has indeed com-
puted the same session key, turning an implicitly authenticated protocol into an
explicitly authenticated protocol [dFW20]. It also serves a dual role of upgrad-
ing weak forward secrecy to full forward secrecy. The HMQV-C [Kra05] protocol

2

is a notable example of this usage. In this paper we use key confirmation in
both senses above.

Finally, while implicit (resp. explicit) authentication often corresponds to
weak (resp. full) forward secrecy, we note that these are in fact separate notions.
Protocols having explicit authentication but no forward secrecy are common
(see for instance the AKEP1 protocol in [BR94, Fig. 2]). Examples of proto-
cols achieving full forward security without explicit authentication are given in
[BG11, Protocol 4] and [CF15, Fig. 3].

Does key confirmation preserve tightness? Suppose Π is an arbitrary
key exchange protocol providing weak forward secrecy and implicit authentica-
tion. The protocol participants exchange a session key using Π and from this
derive key confirmation messages as well as a new session key using a pseudoran-
dom function (PRF). They then exchange and verify the confirmation messages
before outputting the new session key. Call this extended protocol Π+. Intu-
itively, protocol Π+ should achieve explicit authentication via a tight reduction
to the implicit authentication of protocol Π as well as the multi-user security of
the PRF. Indeed, this is the claim of Theorem 6 in [CCG+19]. Unfortunately,
this claim turns out to be wrong. In fact, as we will show, for certain natural
protocols, such as the protocol from Cohn-Gordon et al. [CCG+19] and HMQV
[Kra05], adding key confirmation messages like this or in any other determin-
istic way must necessarily lose a factor of U , where U is the number parties
in the protocol. Hence, it seems that the notions of weak forward secrecy and
implicit authentication are too weak to be tightly upgraded to full forward se-
crecy and explicit authentication by simply adding key confirmation messages.
Interestingly and surprisingly, we will however also argue that an even weaker
selective security notion is sufficient to obtain security with the same linear
loss, which provides a new approach to obtain full forward secrecy with optimal
linear tightness loss.

The flaw in Cohn-Gordon et al. [CCG+19]. The high-level idea of the
security reduction from protocol Π+ to protocol Π in [CCG+19] is as follows.
The reduction uses Test or Reveal queries to get the session keys from Π and
uses these to simulate the key confirmation messages of protocol Π+. However,
the reduction must decide which session keys it will reveal and which it will
issue a Test query for. The trivial standard strategy would be to guess which
session the adversary will test, but this cannot be deployed in [CCG+19] as it
would immediately incur a linear security loss in the number of users times the
number of sessions per user. Instead, the reduction proceeds as follows: once a
session has reached an accepting state in the underlying AKE protocol Π, the
reduction will base its decision on which query to use on the current freshness
of the session. If the session is not fresh, it will issue a Reveal query. If the
session is fresh, it will issue a Test query.

The problem with this strategy is that the freshness notion is with respect
to protocol Π, which is only guaranteeing weak forward secrecy. Unfortunately

3

this notion is too weak (i.e., too restrictive) to accommodate the reduction.
More specifically, in a weak forward secrecy model the adversary is forbidden
from both being active in a Test session and revealing the long-term secret of
its peer. This is due to a classic attack described by [BPR00] and [Kra05] (see
[BG11] and [CF15] for further discussions).

In this attack the adversary A impersonates Alice towards Bob by creating
the DH share gx on her behalf. Once Bob receives this message he creates its
own DH share gy and accepts in protocol Π. Since A has not (yet) revealed the
long-term key of Alice, Bob is at this point still fresh in protocol Π according
to weak forward secrecy. Consequently, the reduction will issue a Test query
in order to simulate its key confirmation message. However, if A now reveals
the long-term key of Alice, then Bob will no longer be fresh (in protocol Π). At
this point the reduction is stuck. This means that the reduction in Theorem 6
of Cohn-Gordon et al. [CCG+19] does not work.

1.1 Our contributions

While the reduction of [CCG+19] does not work, can the result nevertheless be
salvaged? On the one hand, we show that a tight reduction from full forward
secrecy and explicit authentication to weak forward secrecy and implicit security
is impossible for a large class of compilers and protocols of interest for practical
applications. In particular, this includes the common key confirmation message
compiler discussed above and the key exchange protocol of [CCG+19]. We prove
this using a meta-reduction described in more detail below.

On the other hand, by considering what the actual end goal of [CCG+19] is,
we can in fact recover the intended result by a rearranging of arguments. That is,
the end goal is to create an as efficient as possible key exchange protocol having
full forward secrecy and explicit authentication, with optimal tightness. Here,
tightness is with respect to the lowest-level building block of the protocol. In the
case of [CCG+19] this is the strong Diffie-Hellman (stDH) assumption [ABR01].
It was shown in [CCG+19] that a large class of DH-based implicitly authenti-
cated key exchange protocols must lose a factor of U when reducing to stDH,
where U is the number of parties. If the reduction from Π+ to Π had been tight,
as mistakenly claimed in [CCG+19], then the overall result would have been a
protocol Π+ with full forward secrecy and an optimal tightness loss of U to the
stDH assumption. However, in light of our impossibility result, the best one
can hope for using this approach is a loss of U2, since there is a tightness loss
of U going from Π+ to Π and a tightness loss of U going from Π to stDH.

But this begs the question: if we know from the beginning that we at least
have to lose a factor of U , is there some other way of structuring our arguments
in order to avoid a quadratic loss? The solution is to first reduce the security
of protocol Π+ to an even weaker notion of implicit security for protocol Π,
taking the “hit” of U here. Then, we show that this weaker notion for Π can
be reduced further to stDH but now tightly. Thus, overall we obtain a modular
reduction from Π+ down to stDH losing only a factor of U .

What is this weaker notion for Π? It is a type of selective security game

4

where the adversary must commit to a single party it will not reveal the long-
term key of. This is related to the selective security notion from [KPW13], but
differs in two important ways. First, the requirement that one long-term key
must stay unrevealed—rather than simply being involved in some event—makes
the two notions technically incomparable (see Remark 3.8). Second, in [KPW13]
the adversary commits to both parties and their sessions involved in the event.
This incurs a quadratic security loss, making it unsuitable for our purposes.

In summary, our main results are:

• We give a generic impossibility result showing that no security proof for
adding key confirmation to a weakly forward-secret key exchange protocol
can avoid a loss factor of U (Section 6).

• We provide an optimal security proof (i.e., with a linear loss in U) for
adding key confirmation, which reduces to a weaker security notion for
the underlying key exchange protocol (Section 4). This weaker notion
allows us to avoid a tightness loss when proving the underlying protocol
secure.

• Finally, we give a tight proof of the CCGJJ protocol [CCG+19] under
the weaker notion, showing that the overall strategy achieves the end goal
(Section 5).

One important consequence of our work is that future key exchange protocols
having only weak forward secrecy can now be designed towards the goal of
selective key secrecy, not full key secrecy. As shown by the analysis of CCGJJ
[CCG+19], this may simplify proofs significantly.

Basic idea of the impossibility result. Our impossibility result shows es-
sentially that if one constructs a protocol Π+ from an underlying implicitly
authenticated protocol Π by extending Π with two additional key confirmation
messages, and if the security analysis of Π+ includes a reduction R to the se-
curity of Π, then R loses a factor which is at least linear in the number U of
parties. The basic idea of the argument is as follows.

We first define a (hypothetical) adversary A, which proceeds in four steps:

1. First A receives the public keys pk1, . . . , pkU of all parties.

2. Then it interacts with R to create a session si,j of protocol Π+ for every
pair of parties i, j. In all of these sessions the protocol is executed until
R outputs the first of the two key confirmation messages.

Note that R may simulate messages of Π+ that correspond to messages of
the underlying protocol Π by relaying these messages to its own security
experiment. However, R also has to simulate the first key confirmation
messages, which depend on the session key k of protocol Π.

3. Finally, A reveals the long-term secret keys of all but one party, receiving
ski for all i ∈ {1, . . . , U}\{i∗}, where i∗ is chosen at random by A. Then A

5

uses these secret keys to verify all key confirmation messages received from
R for all sessions si,j with i ̸= i∗. If at least one of these key confirmation
messages is invalid, then A terminates.

4. If all key confirmation messages are correct, then A breaks the security of
Π+ in a target session si∗,j for some j.

A is a valid adversary that breaks Π+ in the security experiment with max-
imal advantage. The choice of i∗ is perfectly hidden from the reduction until
Step 3 of A, as all queries in Step 2 are independent of i∗. Note in particular
that we can trivially simulate A, if R outputs at least one invalid key confirma-
tion message for any session si,j , i ̸= i∗. Furthermore, note that we can always
simulate the first three steps of A efficiently.

We will essentially argue that the reduction R is only able to simulate all
key confirmation messages of sessions si,j of parties i ̸= i∗ properly, if it asks its
security experiment to reveal the corresponding session keys ki,j . However, at
the same time R must not ask its security experiment to reveal the session key
ki∗,j of the target session si∗,j , as otherwise it cannot leverage A to break the
security of this session. Hence, the reduction faces the challenge that it has to
“predict” i∗ already in Step 2 of the adversary, in order to make sure that the
key confirmation messages are simulated correctly, but still A can be leveraged
to break the security of Π. Since i∗ is chosen uniformly from {1, . . . , U}, this
yields a linear loss in U .

We stress that this sketch of the impossibility result is simplified, the actual
formal result is more involved and subtle. For instance, in Section 6.1 we formu-
late precise conditions on which classes of reductions, protocols Π, and which
constructions of Π+ are covered by the impossibility result. These will cover
the construction from [CCG+19] but also many other natural constructions.

The common way of arguing that a reductionR does not “need” A in certain
cases is to perform a meta-reduction where A can efficiently be simulated in
these cases. Normally, the standard approach of meta-reductions used in many
prior works, such as [HJK12, LW14, BJLS16], is to rewind R in order to be
able to simulate A properly. Unfortunately, these results are usually only able
to rule out reductions to non-interactive hardness assumptions. In contrast,
the assumption that Π is secure is interactive. By rewinding R and running it
multiple times with different queries from the “snapshot” state, we might cause
R to make a sequence of queries that is not allowed in the key exchange security
experiment of Π, such as revealing and then testing the same session s. Hence,
we need to find another argument that avoids rewinding.

2 Definitions

The formalism and definitions we use to model key exchange protocols are
adapted from de Saint Guilhelm et al. [dFW20]. Unlike the traditional Bellare–
Rogaway [BR94, BR95, BPR00] and (e)CK models [CK01, LLM07], security in
this model is not formulated as a single all-in-one game that implicitly captures

6

all the properties a protocol should have. Instead, security is split into many
smaller definitions that each captures a single “atomic” security property. This
leads to a slight increase in the number of definitions, as well as the number
proofs one have to carry out in order to establish a protocol as “secure”. On
the other hand, the advantage of this approach is that each definition/property
is much simpler and focused, and the corresponding proofs similarly simple.

2.1 Syntax

A key exchange protocol is a tuple of algorithms (KeyGen, Init,Run) where KeyGen
is the long-term key generation algorithm; Init creates a session state at party i
having intended peer j and role role, and returns this session’s initial message
(empty if a responder role); and Run takes as input a session state st and a
message m and outputs an updated state st′ and response message m′.

Session state. A session state st consists of the following variables.

• accept ∈ {true, false,⊥} – indicates the status of the key exchange run;
initialized to ⊥ and indicates a running, non-completed, session.

• key ∈ {0, 1}∗∪{⊥} – the local session key derived during the key exchange
run; set once accept = true.

• role ∈ {init, resp} – the role of the session in the key exchange run.

• party – the party identity to which this session belongs.

• peer – the party identity of the intended peer for this key exchange run.

• sk – the secret long-term key of the party this session belongs to.

• pk – the public long-term key of the intended peer of the session.

• transcript – the (ordered) transcript of all messages sent and received by
session s. We use transcript− to denote the transcript minus the last
message.

• aux – auxiliary protocol specific state, such as internal randomness and
ephemeral values.

Security experiment We shall use the generic formal experimentExpPred
Π,U (A)

given in Fig. 1 to define the various security properties of a key exchange pro-
tocol (see Section 3). The experiment is parameterized on a security predicate
Pred that captures the security property being modeled. The experiment uses
a number of counters, variables and collections for bookkeeping purposes.

• query ctr – incremented for each query made by the adversary. Used to
order events in time; needed to define (full) forward secrecy.

7

ExpPred
Π,U (A)

101: i∗ ← A
102: b $←− {0, 1}
103: query ctr← 0
104: session ctr← 0
105: Accepted← Dict
106: Revealed← Dict
107: RevealedLTK← Dict
108: Tested← Dict
109: sk,pk← Dict
110: for i ∈ [1 . . . U]:
111: (sk[i],pk[i]) $←− Π.KeyGen
112: RevealedLTK[i]← 0
113: if i ̸= i∗:
114: RevealedLTK[i]← 1

115: b′ ← AO(pk, sk \ sk[i∗])
116: return ¬Pred

NewSession(i ∈ [1, U], j ∈ [1, U], role)

201: query ctr++
202: session ctr++
203: s← session ctr
204: Accepted[s]← 0
205: Revealed[s]← 0

206: Tested[s]← 0

207: (m, st)← Π.Init(i, j, role,pk[j], sk[i])
208: s.st ← st
209: return (s,m)

Send(s,m)

301: query ctr++
302: (m′, st ′)← Π.Run(s.st ,m)
303: s.st ← st ′

304: if s.accept = true:
305: Accepted[s]← query ctr

306: return m′

Reveal(s)

401: query ctr++
402: Revealed[s]← query ctr
403: return s.key

RevealLTK(i ∈ [1, U])

501: query ctr++
502: if i = i∗:
503: return ⊥
504: if RevealedLTK[i] = 0:
505: RevealedLTK[i]← query ctr

506: return sk[i]

Test(s)

601: query ctr++
602: if Tested[s] ̸= 0:
603: return ⊥
604: if s.accept ̸= true:
605: return ⊥
606: Tested[s]← query ctr
607: K0 ← s.key
608: K1

$←− K
609: return Kb

Figure 1: Generic experiment parameterized on pred-
icate Pred, where A can make the queries in O =

{NewSession,Send,Reveal,RevealLTK, Test }. Code in dashed

boxes is only for the key secrecy game; code in filled boxes is only for the
selective key secrecy game. The notation s.st ← st ′ means to assign all the
variables in st ′ to the corresponding variables associated with session s. Dict
defines an associative array.

• session ctr – incremented for each new session created. Each session state
is associated with a unique session number which functions as an admin-
istrative label for that session (state). The session number is also given
to the adversary which can use it as an opaque handle to refer to a given
session in its queries. We use the notation “s.x” to refer to the variable
x of the session state identified by the administrative session number s.
Note that the adversary cannot “dereference” a session number in order
to obtain internal variables of the session state.

8

• Accepted, Tested, Revealed, RevealedLTK – associative arrays that record
when a session accepted, was tested, or when its session or long-term key
was revealed.

Common predicates. It will be useful to introduce a number of predicates
on the security experiment.

Definition 2.1 (Origin sessions). A (possibly non-accepted) session s′ is an
origin-session for an accepted session s if predicate Orig(s, s′) holds true, where

Orig(s, s′) ⇐⇒ s′.transcript ∈ {s.transcript, s.transcript−}. (1)

Definition 2.2 (Partnering). Two sessions s, s′ are partners if they have match-
ing conversations; that is, if the predicate Partner(s, s′) holds true, where

Partner(s, s′) ⇐⇒ s.transcript = s′.transcript. (2)

Like [dFW20] we do not require partners to agree upon each other’s iden-
tities. This is an authentication property which will be covered by other def-
initions in Section 3. Unlike [dFW20] we use matching conversations instead
of abstract session identifiers as our partnering mechanism. This is mainly
done for the sake of concreteness and is not a fundamental difference, although
certain well-known pitfalls need to be avoided when using matching conversa-
tions [LS17].

Definition 2.3 (SameKey). The predicate SameKey(s, s′) holds true if the ses-
sions both have established a session key and they are equal, that is

SameKey(s, s′) ⇐⇒ [s.key = s′.key ̸= ⊥]. (3)

Definition 2.4 (Authentication fresh). A session is authentication fresh if the
long-term key of its intended peer has not been revealed, that is:

aFresh(s) ⇐⇒ RevealedLTK[s.peer] = 0. (4)

Finally, we define freshness predicates used for the key secrecy games. These
come in two flavors: weak forward secrecy and full forward secrecy [BPR00].
Common to both is that the adversary cannot reveal the session key of a tested
session or its partner. The difference is how long-term key leakage is handled.
For weak forward secrecy the adversary is forbidden from revealing the long-
term key of a session’s peer if it was actively interfering in the protocol run of the
session (indicated by the lack of an origin-session for the session in question).
For full forward secrecy this restriction is lifted, provided the leak happened
after the session in question accepted.

9

Definition 2.5 (Session key freshness). Let s.peer = j. The kFreshWFS(s)
(resp. kFreshFFS(s)) predicate hold if:

Revealed[s] = 0 (5)

∀s′ :: Partner(s, s′) =⇒ Revealed[s′] = 0 ∧ Tested[s′] = 0 (6)

(wFS) {s′ | Orig(s, s′)} = ∅ =⇒ aFresh(s) (7)

(fFS) {s′ | Orig(s, s′)} = ∅ =⇒ aFresh(s) ∨ (RevealedLTK[j] > Accepted[s])
(8)

3 Protocol security properties

This section defines the security properties a secure key exchange protocol ought
to have. The breakdown follows that of [dFW20] and consists of: soundness
properties (match and key-match soundness); various authentication properties
(implicit/explicit key and entity authentication); and session key secrecy. An
application will typically require all of these properties. Refer to [dFW20] for
further discussion and background.

3.1 Match soundness

Match soundness is primarily a sanity check on the choice of partnering mech-
anism. Namely, partnered sessions should derive the same session key (9); and
sessions will at most have one partner (10).

Definition 3.1 (Match soundness). The Match predicate evaluates to 1 iff
∀s, s′, s′′:

Partner(s, s′) =⇒ SameKey(s, s′) (9)

(Partner(s, s′) ∧ Partner(s, s′′)) =⇒ s′ = s′′ (10)

The match soundness advantage of an adversary A is

AdvMatch
Π,U (A) def

= Pr[ExpMatch
Π,U (A)⇒ 1] (11)

3.2 Key-match soundness

Key-match soundness (KMSound) is basically the converse of Match sound-
ness. While Match soundness says that partners should have equal session keys,
KMSound says that sessions having equal session keys should be partners.

Definition 3.2 (Key-match soundness). The KMSound predicate evaluates to
1 if and only if

∀s :: (aFresh(s) ∧ s.accept) =⇒ ∀s′ :: (SameKey(s, s′) =⇒ Partner(s, s′)) (12)

The key-match soundness advantage of an adversary A is

AdvKMSound
Π,U (A) def

= Pr[ExpKMSound
Π,U (A)⇒ 1]. (13)

10

3.3 Implicit key authentication

Implicit key authentication stipulates that two sessions that derive the same
session key should agree upon whom they are sharing this key with.

Definition 3.3 (Implicit key authentication). The iKeyAuth predicate evaluates
to 1 if and only if

∀s :: s.accept =⇒ ∀s′ :: (SameKey(s, s′) =⇒ s.peer = s′.party)

The implicit key authentication advantage of an adversary A is

AdviKeyAuth
Π,U (A) def

= Pr[ExpiKeyAuth
Π,U (A)⇒ 1]. (14)

3.4 Explicit key authentication

Explicit key authentication stipulates that any two sessions that derive the
same session key should agree upon whom they are sharing this key with (as for
implicit key authentication), and as long as the session is authentication fresh
some other session deriving the same session key should exist.

Obviously, the session that sends the last message can never guarantee that
this message arrives at its destination, which means that this session can only
achieve the notion of almost-full key authentication, namely that an origin ses-
sion should exist and any origin session that has derived a session key has derived
the same key. A session that receives the last message, however, can guarantee
that another session exists that has derived the same key, and thereby achieve
full key authentication.

Let Lrcv denote the collection of all sessions that receive the last message of
the protocol, and let Lsend denote the collection of all sessions that send the last
message of the protocol.

Definition 3.4 (Explicit key authentication). The fexKeyAuth predicate (resp.
afexKeyAuth predicate) evaluates to 1 if and only if

∀s ∈ Lrcv (resp. Lsend) :: s.accept =⇒ ∀s′ :: (SameKey(s, s′) ⇒ s.peer = s′.party)

∧
(full) aFresh(s) ⇒ ∃s′ :: SameKey(s, s′)

(almost-full) aFresh(s) ⇒ ∃s′ ::
(
Orig(s, s′) ∧ [s′.key ̸= ⊥ =⇒ SameKey(s, s′)]

)
The full (resp. almost-full) explicit key authentication advantage of A is

AdvfexKeyAuth
Π,U (A) def

= Pr[ExpfexKeyAuth
Π,U (A)⇒ 1] (15)

AdvafexKeyAuth
Π,U (A) def

= Pr[ExpafexKeyAuth
Π,U (A)⇒ 1] (16)

11

3.5 Explicit entity authentication

Explicit entity authentication is almost identical to explicit key authentication,
the only difference being that the former is based on the Partner predicate while
the latter is based on the SameKey predicate. Basically, explicit key authentica-
tion says that if a session with an honest peer accepts then there is some other
session holding the same session key, while explicit entity authentication says
that if a session with an honest peer accepts then it has a partner session.

Explicit key authentication and explicit entity authentication are closely
related, as shown in [dFW20] and further expounded in Appendix A.2.

Definition 3.5 (Explicit entity authentication). The fexEntAuth predicate (resp.
afexEntAuth predicate) evaluates to 1 if and only if

∀s ∈ Lrcv (resp. Lsend) :: s.accept =⇒ ∀s′ ::(Partner(s, s′) =⇒ s.peer = s′.party)

∧
(full) aFresh(s) =⇒ ∃s′ :: Partner(s, s′)

(almost-full) aFresh(s) =⇒ ∃s′ ::
(
Orig(s,s′) ∧ [s′.accept =⇒ Partner(s, s′)]

)
The full (resp. almost-full) explicit entity authentication advantage of A is

AdvfexEntAuth
Π,U (A) def

= Pr[ExpfexEntAuth
Π,U (A)⇒ 1] (17)

AdvafexEntAuth
Π,U (A) def

= Pr[ExpafexEntAuth
Π,U (A)⇒ 1] (18)

3.6 Key secrecy

Key secrecy is defined as usual with the adversary using a Test query to get the
real session key or a random key of a session. The adversary may make multiple
test queries, and they all share the same challenge bit, so that either all Test
queries return real keys, or all Test queries return random (and independently)
sampled keys. Our experiment does not prevent the adversary from making
Test queries for sessions that are not key fresh, so we need to account for this
in the definition of advantage (called the penalty-style in [RZ18]).

Definition 3.6 (Key secrecy). If ∀s ∈ Tested :: kFreshWFS(s) = true (resp.
kFreshFFS(s) = true), the KeySecWFS (resp. KeySecFFS) predicate returns 1 if
and only if b′ = b. Else it returns b. The weak (resp. full) forward key secrecy
advantage of an adversary A is

AdvKeySecWFS
Π,U (A) def

=
∣∣∣2 · Pr[ExpKeySecWFS

Π,U (A)⇒ 1]− 1
∣∣∣ (19)

AdvKeySecFFS
Π,U (A) def

=
∣∣∣2 · Pr[ExpKeySecFFS

Π,U (A)⇒ 1]− 1
∣∣∣ (20)

Selective key secrecy. The selective key secrecy experiment is defined over
the experiment given in Fig. 1, where now the code inside the blue boxes is
included. In the selective security experiment the adversary has to commit to
one party it will not reveal the long-term key of throughout the game.

12

Alice Bob

Πk, t, t′ k, t, t′

t

t′

accept if received t is valid

accept if received t′ is valid

Figure 2: Protocol Π+ obtained by extending protocol Π with key confirmation
tags. All session variables in Π+ are inherited from Π, except for accept which
is defined as shown. The session sending the last message in protocol Π sends
tag t, and the session receiving the last message in protocol Π sends tag t′.

Definition 3.7 (Selective key secrecy). If ∀s ∈ Tested :: kFreshWFS(s) = true,
the SelKeySecWFS predicate returns 1 if and only if b′ = b. Else it returns b.
The selective key secrecy advantage of an adversary A is

AdvSelKeySecWFS
Π,U (A) def

=
∣∣∣2 · Pr[ExpSelKeySecWFS

Π,U (A)⇒ 1]− 1
∣∣∣ . (21)

Remark 3.8. Contrary to what one might expect, ordinary key secrecy does
not trivially reduce to selective key secrecy via a standard guessing argument
(with a tightness loss of U). In particular, an adversary that starts by revealing
all long-term keys will make a reduction to selective key secrecy unable to
simulate the one key it committed to. This makes our selective security notion
incomparable to the selective notion of [KPW13].

4 The security of adding key confirmation

Let Π denote an arbitrary key exchange protocol, and let Π+ denote the protocol
that extends Π by adding key confirmation messages from each side as illustrated
in Fig. 2. Conventionally, the key confirmation messages are derived from the
session key of Π using a PRF (and possibly a MAC) but in order to simplify
the later analysis we assume that Π produces session keys of the form (k, t, t′)
directly. Protocol Π+ is then derived from Π simply by defining its session key
to be k, and the key confirmation tags to be t and t′. Using this trick we can
relate the security of protocol Π+ purely to the security of protocol Π without
having to rely on PRFs or MACs.

Unfortunately, defining Π+ in terms of the key triple output by Π introduces
one technicality. We will often want to make an assertion of the form “if s
and s′ have equal keys in protocol Π+ (meaning k), then they also have equal
keys in protocol Π (meaning (k, t, t′))”. While this assertion easily follows in
practice1, in the generality we have presented Π and Π+ above the assertion

1For example if (k, t, t′) is derived from the session transcript using a function for which

13

does not automatically follow. To cleanly state and prove our generic results we
therefore introduce the implication “equal k =⇒ equal (k, t, t′)” as an explicit
security property.

To this end, let prefix : {0, 1}∗ → {0, 1}∗ be a function that returns a prefix
of a particular length (left unspecified) from its argument and define

SamePrefix(s, s′) ⇐⇒ [s.key, s′.key ̸= ⊥ ∧ prefix(s.key) = prefix(s′.key)]. (22)

Definition 4.1 (Same prefix security). The PreEqAllEq predicate evaluates to
1 if and only if

∀s, s′ : SamePrefix(s, s′) =⇒ SameKey(s, s′). (23)

The same prefix advantage of A is

AdvPreEqAllEq
Π,U (A) def

= Pr[ExpPreEqAllEq
Π,U (A)⇒ 1]. (24)

Remark 4.2. As mentioned above, proving same prefix security for a concrete
protocol will typically be straightforward assuming the keys are derived using a
reasonable function. However, it is also possible to avoid the notion altogether
(even for completely generic protocols) using the proof technique of Lemma 4.6
in Section 4.2. Specifically, if s and s′ have equal keys in protocol Π+ but not
in protocol Π, then this allows to break the (selective) key secrecy of protocol
Π, albeit with a tightness loss in the number of parties U .

4.1 Main result

We now state the first main theorem of the paper: a protocol with weak forward
secrecy can be upgraded to full forward secrecy by adding key confirmation
messages with a linear security loss in the number of parties. The second main
theorem of the paper is that this linear security loss is unavoidable for a larger
class of compilers (see Section 6).

Theorem 4.3. Let A be an adversary against key secrecy for Π+. Then there
exist adversaries B1,B2, . . . ,B6, all with about the same runtime as A, such that

AdvKeySecFFS

Π+,U
(A) ≤ 4 · U ·AdvSelKeySecWFS

Π,U (B1) + 8 ·AdviKeyAuth
Π,U (B2) +

4US

2taglen

+ 4 ·AdvMatch
Π,U (B3) + 4 ·AdvKMSound

Π,U (B4)

+ 12 ·AdvPreEqAllEq
Π,U (B5) + 4 ·AdvKeySecWFS

Π,U (B6),

where taglen is the length of the key confirmation tags used by Π+ and S is the
number of sessions.

The outline of the proof of Theorem 4.3 is shown in Fig. 3. At a high level
the proof consists of two parts: one where all accepting sessions with peers

getting a collision just in k is unlikely, such as an extendable-output function or a random
oracle

14

KeySecFFS

fexEntAuth
+

afexEntAuth fexKeyAuth
+

afexKeyAuth

Match

iKeyAuth

PreEqAllEq

SelKeySecWFS

KMSound

KeySecWFS

Th
m.

4.3
4.3

Thm. 4.34.3

Pro
p. 4

.10
4.10

Prop. 4.104.10

Prop. 4.104.10

Prop. 4.104.10

Lem
ma 4.6
4.6

Lemma 4.64.6

Lemma 4.64.6

Figure 3: Steps in the proof of Theorem 4.3. A dashed line from X to Y means
that Y is not part of the statement of X but only an intermediate step inside
its proof. A bold line from X to Y means that the reduction loses a factor of U .
Note that some reductions include additional intermediate steps not shown.

whose long-term keys are unrevealed have an origin session, and one where
they don’t. In the first case full forward key secrecy of protocol Π+ reduces
straightforwardly to the weak forward key secrecy of protocol Π. The main
challenge is to deal with the second case, namely to prove that protocol Π+

achieves explicit entity authentication. In fact, the main technical tool for this
is to prove that Π+ achieves explicit key authentication, which is where we use
the selective key secrecy notion. The proof of explicit key authentication is the
focus of Section 4.2.

Proof (of Theorem 4.3). We prove that

AdvKeySecFFS

Π+,U
(A) ≤ 2 ·AdvfexEntAuth

Π+,U (A) + 2 ·AdvafexEntAuth
Π+,U (A) + 4 ·AdvKeySecWFS

Π,U (B6)

(25)

from which the result will follow by Proposition 4.10.

Let WinGi
denote that A wins in Game i, i.e., b′ = b and all Test sessions are

key fresh.

Game 0. This is the original key secrecy game for protocol Π+.

15

Game 1. In this game all sessions s having honest peers (i.e., aFresh(s) =
true), but not having an origin session reject all tags. In particular, this means
that these sessions will never accept in protocol Π+.

Claim 4.4.

Pr[WinG0] ≤ Pr[WinG1] +AdvfexEntAuth
Π+,U (A) +AdvafexEntAuth

Π+,U (A) (26)

Proof. Let E be the event that a session with an honest peer accepts in protocol
Π+, but without having an origin session. Since Game 0 and Game 1 are
identical unless event E occurs it is sufficient to bound Pr[E].

Suppose s is a session that triggers event E. In particular, (i) s.accept = true,
(ii) aFresh(s) = true, and (iii) {s′ | Orig(s′, s)} = ∅. By the last property s also
doesn’t have a partner, and by the first two properties this means that either
fexEntAuth is violated (in case s ∈ Lrcv) or afexEntAuth is violated (in case
s ∈ Lsend).

Game 2. In this game all kFreshWFS sessions which accept have their session
keys replaced by random.

Claim 4.5.

Pr[WinG1] ≤ Pr[WinG2] + 2 ·AdvKeySecWFS
Π,U (B6). (27)

Proof. Algorithm B6 begins by drawing a random bit bsim, then simulates the
following game for A. Whenever A makes a query pertaining to protocol Π,
then B6 forwards it to its own (weak forward secrecy) game. When a session s
accepts in protocol Π, then B6 simulates protocol Π+ for A as follows.

• If s is not kFreshWFS in protocol Π then B6 issues a Reveal(s) query
to its key secrecy game and uses the returned key (k, t, t′) to simulate s’s
tags in protocol Π+.

• If s is kFreshWFS, but does not have an origin session (in Π), then B6
issues a Reveal(s) query to its key secrecy game and uses the returned
key (k, t, t′) to simulate the tag sent by s. If s receives a tag, then it is
simply rejected.

• If s is kFreshWFS and has an origin session s′ (in Π), then,

– if s′ haven’t accepted in Π yet (and thus haven’t been issued a Test
or Reveal query), then B6 issues a Test query to s to obtain a key
(k, t, t′);

– if, on the other hand, s′ have already accepted, then by the previous
cases B6 must already have issued a Test or Reveal query to s′,
which returned a key (k, t, t′).

In either case, B6 uses the returned key (k, t, t′) to simulate both how s
sends and receives tags.

16

To answer A’s Reveal queries (in Π+), B6 uses the “k” element of the tuples
it obtained above. To answer A’s RevealLTK queries, B6 simply forward these
to its own game. To answer A’s Test queries, B6 answers as follows.

• If the session has already been tested, or has not accepted yet, return ⊥.

• If bsim = 0 then B6 returns key from the (k, t, t′) tuple it previously ob-
tained for this session, as described above.

• If bsim = 1 then B6 returns a random key k̃.

Finally, when A stops and outputs a bit b′, then B6 outputs 1 to its own key
secrecy game if and only if b′ = bsim.2

We first claim that if the secret bit in B6’s key secrecy game is 0 (hence B6’s
Test queries are answered with real session keys), then B6 perfectly simulates
either Game 1 or Game 2, depending on the bit bsim.

Note first that if s is not kFreshWFS, then B6 obtains s’s actual key in
protocol Π, hence simulates protocol Π+ correctly. Second, if s is kFreshWFS,
but does not have an origin session, then s rejects any tag, and thus never accepts
in protocol Π+. This is exactly what happens after the change in Game 1.
Finally, if s is kFreshWFS and has an origin session, then it behaves exactly as
in Game 1 if bsim = 0 (since then B6 is using the actual key from Π) and exactly
as in Game 2 if bsim = 1 (since then B6 is using a completely random key).

On the other hand, if the secret bit in B6’s key secrecy game is 1, then B6
simulates Game 2 independently of what bsim is. Specifically, this means that
bsim is completely hidden from A in this case.

Consequently, assuming the secret bit in B6’s key secrecy game is b, we have

Pr[B6 wins] = Pr[B6 wins | b = 0 ∧ bsim = 0] · 1
4

+ Pr[B6 wins | b = 0 ∧ bsim = 1] · 1
4

+ Pr[B6 wins | b = 1] · 1
2

(28)

= Pr[WinG1] ·
1

4
+ (1− Pr[WinG2]) ·

1

4
+

1

4
(29)

= Pr[WinG1] ·
1

4
− Pr[WinG2] ·

1

4
+

1

2
. (30)

Hence,

AdvKeySecWFS
Π,U (B6) = |2 · Pr[B6 wins]− 1| = 1

2
· |Pr[WinG1

]− Pr[WinG2
]| (31)

which proves the claim.

2Assuming all tested sessions are key fresh (according to kFreshFFS). Otherwise B6 simply
outputs a random bit.

17

Concluding the proof of Theorem 4.3. By the change in Game 2 all
session keys of kFreshWFS sessions are now random, hence Pr[WinG2] = 1/2.
Combining the bounds from (26) and (27), and multiplying by 2, yields (25),
from which Theorem 4.3 follows by Proposition 4.10.

4.2 Implicit to explicit key authentication

In this section, we establish that explicit key authentication can be based on
selective key secrecy, implicit key authentication, and same prefix security. This
is a key technical result needed to restore the tight security of the explicitly
authenticated protocol of [CCG+19]. The use of selective security may also have
further applications in constructing highly efficient explicitly authenticated key
exchange protocols with full forward secrecy in the future.

Lemma 4.6. Let A be an adversary against full (resp. almost full) explicit key
authentication for Π+. Then there exists an adversary B2 against selective key
secrecy and an adversary B1 against implicit key authentication and same prefix
security, both with the same runtime as A, such that

AdvfexKeyAuth

Π+,U
(A) ≤ AdviKeyAuth

Π,U (B1)+AdvPreEqAllEq
Π,U (B1)+U ·AdvSelKeySecWFS

Π,U (B2)+
US

2taglen
,

AdvafexKeyAuth

Π+,U
(A) ≤ AdviKeyAuth

Π,U (B1)+AdvPreEqAllEq
Π,U (B1)+U ·AdvSelKeySecWFS

Π,U (B2)+
US

2taglen
,

where taglen is the length of the key confirmation tags used by Π+ and S is the
number of sessions.

Since the proofs of full and almost full key authentication are virtually iden-
tical, we only prove the fist bound. We need to deal with two cases. The first
case considers attacks on explicit authentication that result from breaking im-
plicit authentication of the underlying protocol Π. This case does not incur a
tightness loss.

The second case considers attacks on explicit authentication that rely on
breaking the weak forward secrecy of the underlying protocol Π. The important
point is that in order to break explicit authentication, the partner long-term
key must be unrevealed at the point in time where authentication is broken.
This means that the session will be fresh at the time authentication is broken,
which means that we can deduce the challenge bit at the point in time where
authentication is broken. Any subsequent reveal of the partner long-term key
can therefore be ignored.

Proof. The proof is structured as a sequence of games. Let WinGi denote the
event that A wins in Game i. Winning in this case means that full explicit key
authentication in (15) from Definition 3.4 does not hold.

Game 0. This is the original game for protocol Π+. We have that

AdvfexKeyAuth
Π+,U (A) = Pr[WinG0]. (32)

18

Game 1. We modify the game so that if (15) does not hold for the Π part
of a session of Π+, then that session never accepts. Let ExceptG1

be the event
that this happens.

It is immediate that until ExceptG1
happens, Game 1 proceeds exactly as

Game 0, so
|Pr[WinG1]− Pr[WinG0]| ≤ Pr[ExceptG1

]. (33)

We create an adversary B1 against implicit key authentication for Π that
runs a copy of A and uses its experiment to run the Π part of Π+. When a
session of Π outputs a session key, B1 reveals the session key and uses that
to simulate sending and receiving the key confirmation messages. Let WinB1

denote the probability that B1 wins.
It is immediate that B1 and its experiment together simulate the experiment

in Game 0 perfectly with respect to the copy of A run by B1. Since SameKey for
Π+ implies SamePrefix for Π, if (15) does not hold for Π+ in an execution, either
it will not hold when we consider the game as an execution of Π, or PreEqAllEq
will not hold when we consider the game as an execution of Π. In other words,

Pr[ExceptG1
] ≤ Pr[WiniKeyAuthB1

] + Pr[WinPreEqAllEqB1
]. (34)

Game 2. We modify the game by sampling j ∈ {1, 2, . . . , U} at the start. Let
Win′G2

be the event thatWinG2 happens and one session for which authentication
is broken has the jth key as its peer’s public key. Clearly,

Pr[Win′G2
] ≥ 1

U
Pr[WinG2

] =
1

U
Pr[WinG1

]. (35)

Game 3. We modify the game so that if (15) holds for a session of Π+ that
has the jth key as its peer public key but it has no origin session, then that
session samples random tags to use for the Π+ part of the protocol, instead of
the tags output by Π.

It is immediate that

Pr[Win′G3
] ≤ S

2taglen
. (36)

We create an adversary B2 against selective key secrecy for Π that runs a
copy of A and uses its experiment to run the Π part of Π+, simulating the
sending and receiving of key confirmation messages as modified in Game 2,
further modified as follows:

• At the start, B2 selects an integer j ∈ {1, 2, . . . , U}.

• When a session of Π, using the ith key as its peer key, outputs a session
key, (15) holds for the session and it has no origin session, then:

– If i ̸= j, then B2 reveals the session key of the session and uses that
key to simulate the Π+ part of the session.

– If i = j, then B2 tests the Π instance and uses that key to simulate
the Π+ part of the session.

19

• If A reveals the jth long-term key, B2 outputs 0 and stops.

If A breaks authentication for a session with the jth key as its peer key, B2
outputs 1, otherwise B2 outputs 0.

Let Win′B2,b denote the event that B2 outputs 1, when its experiment has
the secret bit b. We have that

AdvSelKeySecWFS
Π,U (B2) = |Pr[WinB2,0]− Pr[WinB2,1]|. (37)

If the experiment’s secret bit b = 0, then B2 perfectly simulates Game 2
with respect to the Win′G2

event, since the only observable difference is that
B2 terminates when Win′G2

no longer can occur (when the jth long-term key is
revealed), so

Pr[WinB2,0] = Pr[Win′G2
]. (38)

If the experiment’s secret bit b = 1, then B2 perfectly simulates Game 3 with
respect to the Win′G3

event, again because of termination, so

Pr[WinB2,1] = Pr[Win′G3
]. (39)

The claim follows from (32)–(39).

4.3 Additional security reductions

Lemma 4.6 is the key result needed to show that protocol Π+ achieves full
forward secrecy (and explicit authentication) from the weakly forward-secret
(and implicitly authenticated) protocol Π in a way that only incurs a tightness
loss of U . From this result all the other security properties defined in Section 3
follow in a straightforward and modular way as we demonstrate in the following
subsections. Moreover, none of these reductions lose more than a factor of U
(in fact, most of the reductions are fully tight; those that are not only accrue
the U term as a result of invoking Lemma 4.6).

Match soundness. Match soundness of protocol Π+ follows directly from
match soundness of Π.

Proposition 4.7. Let A be an adversary against match security for Π+. Then
there exists an adversary B against match security for Π with the same runtime
as A, such that

AdvMatch
Π+,U (A) ≤ AdvMatch

Π,U (B).

Proof. If any condition on the left hand side in Definition 3.1 (partnering via
matching conversations) is satisfied for protocol Π+ then it is also satisfied for
protocol Π since the transcript of Π is a prefix of the transcript for Π+. Hence
any violation in Π+ implies a violation in Π.

The adversary B against Π therefore trivially simulates an execution of Π+

by revealing session keys and simulating the key confirmation messages. This
simulation is perfect and does not require extra resources.

20

Key-match soundness. Key-match soundness breaks down into two cases
depending on whether or not s and s′ have the same key in protocol Π. Here
we again use the same-prefix security notion PreEqAllEq as in Lemma 4.6.

Proposition 4.8. Let A be an adversary against key match soundness for Π+.
Then there exists an adversary B against key match soundness, match security
and same-prefix security for Π with the same runtime as A, such that

AdvKMSound
Π+,U (A) ≤ AdvKMSound

Π,U (B) +AdvPreEqAllEq
Π,U (B).

Proof. Suppose s and s′ are such that key-match soundness (Definition 3.2) is vi-
olated for protocol Π+. That is, s has accepted, aFresh(s) = true, SameKey(s, s′) =
true, but Partner(s, s′) = false. Note that all of these predicates are relative to
protocol Π+.

We consider two cases:

1. s and s′ also have the same key (k, t, t′) in protocol Π;

2. s and s′ do not have the same key in protocol Π.

In case 1, s and s′ have the same key confirmation tags t, t′, hence for them
not to be partners in Π+, they cannot be partners in protocol Π (recall that
partnering is based on matching conversations). But this then violates key-
match soundness of Π. In case 2, PreEqAllEq fails for protocol Π.

Implicit key authentication. The proof of implicit key authentication fol-
lows the exact same structure as the key-match soundness proof.

Proposition 4.9. Let A be an adversary against implicit key authentication
for Π+. Then there exists an adversary B against implicit key authentication,
match security and same-prefix security for Π with the same runtime as A, such
that

AdviKeyAuth
Π+,U (A) ≤ AdviKeyAuth

Π,U (B) +AdvPreEqAllEq
Π,U (B).

Proof. Suppose s and s′ are such that implicit key authentication (Defini-
tion 3.3) is violated for protocol Π+. That is, s has accepted, aFresh(s) = true,
SameKey(s, s′) = true, but s.peer ̸= s′.party. Note that all of these predicates
are relative to protocol Π+.

We consider two cases:

1. s and s′ also have the same key (k, t, t′) in protocol Π;

2. s and s′ do not have the same key in protocol Π.

In case 1 implicit key authentication is also violated for protocol Π. In case 2,
PreEqAllEq fails for protocol Π.

21

Explicit entity authentication. Proving explicit entity authentication is
straightforward, though it relies on a technical result from Appendix A.2.

Proposition 4.10. Let A be an adversary against full (resp. almost-full) ex-
plicit entity authentication for Π+. Then there exists adversaries B1,B2, . . . ,B6
against, respectively, match security, implicit key authentication, key match
soundness, key secrecy, selective key secrecy and implicit key authentication for
Π, all with the same runtime as A, such that

AdvfexEntAuth
Π+,U (A) ≤ AdvMatch

Π,U (B1) + 2 ·AdviKeyAuth
Π,U (B2) +AdvKMSound

Π,U (B3)

+ 3 ·AdvPreEqAllEq
Π,U (B4) +

US

2taglen
+ U ·AdvSelKeySecWFS

Π,U (B5)

AdvafexEntAuth
Π+,U (A) ≤ AdvMatch

Π,U (B1) + 2 ·AdviKeyAuth
Π,U (B2) +AdvKMSound

Π,U (B3)

+ 3 ·AdvPreEqAllEq
Π,U (B4) +

US

2taglen
+ U ·AdvSelKeySecWFS

Π,U (B5)

Proof. The proofs of full and almost-full explicit entity authentication are vir-
tually identical so we only give a proof of the former.

By Proposition A.2 we have (note that Π+ appears on both sides of the
inequality)

AdvfexEntAuth
Π+,U (A) ≤ AdvMatch

Π+,U (A)+AdviKeyAuth

Π+,U
(A)+AdvKMSound

Π+,U (A)+AdvfexKeyAuth

Π+,U
(A)

Proposition 4.10 now follows by bounding all the individual terms on the
right using, respectively, Proposition 4.7, Proposition 4.9, Proposition 4.8, and
Lemma 4.6.

5 The CCGJJ protocol

The CCGJJ protocol [CCG+19], shown in Fig. 4, is a highly efficient implicitly
authenticated key exchange protocol with optimal tightness. We use this pro-
tocol to illustrate our framework, which means we need to prove it satisfies the
various security properties defined in Section 3.

We begin by proving that the protocol has the basic properties we want, in
particular match soundness, key match soundness and the same prefix property.

Proposition 5.1. Let A be an adversary against the CCGJJ protocol. Then

AdvMatch
CCGJJ,U (A) ≤ S2

2|key|
, AdvKMSound

CCGJJ,U (A) ≤ S2

|G| and AdviKeyAuth
CCGJJ,U (A) ≤ S2

2|key|
.

Proof. Since the KDF used to compute the session key includes the transcript
and the secrets included are fully determined by the public values, it follows
that any two sessions that are partners will compute the same session key, and
a session will compute the same key as any origin session.

Match soundness could fail if a session has more than one partner, but this
will only happen if two sessions choose the same randomness.

22

Alice Bob

U ← gr V ← gs
“Alice”, A, U

“Bob”, B, V
key← Π.KDF(ctxt∥V a∥Br∥V r) key← Π.KDF(ctxt∥As∥U b∥Us)

Figure 4: The CCGJJ protocol from [CCG+19] for a prime-ordered group G
with generator g. Alice has secret long-term key a with public key A← ga; Bob
has secret long-term key b with public key B ← gb. Their context ctxt contains
their names, their public keys and the two messages U and V . We include
names and public keys in the messages; in practice these may be communicated
in other ways.

Since the information in the transcript, and in particular names, is included
in the KDF that computes the key, two sessions that compute the same session
key must either be partners/agree on identities or there must be a collision in
the KDF.

In either case, the claims follows from a birthday bound.

Proposition 5.2. Let A be an adversary against the CCGJJ protocol. Then

AdvPreEqAllEq
CCGJJ,U (A) ≤ S2

2|key|−2taglen
.

Proof. Two sessions have identical prefixes but distinct keys only if the data
hashed is distinct and there is a partial collision in the KDF. Since we model
the KDF as a random oracle, the birthday bound applies.

Proposition 5.3. Let A be an adversary against selective key secrecy for CCGJJ.
Then there exists adversaries B1, B2 and B3 against strong Diffie-Hellman (in
group G with generator g) with essentially the same runtime as A such that

AdvSelKeySecWFS
CCGJJ,U (A) ≤ AdvstDH

G,g (B1) +AdvstDH
G,g (B2) +AdvstDH

G,g (B3) +
US2

|G|
.

The proof of Proposition 5.3 closely follows the structure of the proof in
[CCG+19], so we only sketch the argument, with emphasis on the differences,
which entirely relate to avoiding hybrid arguments involving the users. (Also
note that the proof in [CCG+19] proves more than just key secrecy, since they
use a different security model.)

Proof (sketch). Note that all of the adversaries we construct below have the
same runtime as A and the number of DH oracle calls is essentially bounded by
the number of random oracle queries made by A.

Recall from the proof in [CCG+19] that there are five classes of sessions: (I)
initiator sessions that have an origin session/partner that it agrees on identities

23

with; (II) other initiator sessions that are authentication fresh when they accept;
(III) responder sessions that have an origin session that it agrees on identities
with; (IV) other responder sessions that are authentication fresh when they
accept; and (V) sessions where the intended peer’s long-term key has been
revealed.

The proof proceeds as a sequence of games, where the initial (zeroth) game is
the selective key secrecy game. The first game prevents two honest sessions from
having the same randomness. The second game changes to lazy evaluation of
the random oracle Π.KDF. We use the birthday bound to bound the advantage
loss from the first change, while the second change is unobservable.

The third game modifies type IV responder sessions whose peer is the se-
lected party so that it never modifies the random oracle to be consistent with
the session key. This is only observable if the adversary makes the correspond-
ing hash query. By embedding our challenge DH tuple into the public key of the
selected party and (rerandomized) into the message sent by type IV responder
sessions, we get a strong Diffie-Hellman adversary B1 that succeeds whenever
such a hash query is made. This adversary uses its DH oracle to recognize and
reprogram hash queries related to sessions running as the selected party. Un-
like in [CCG+19], the strong Diffie-Hellman adversary does not have to guess a
party whose secret long-term key will not be revealed, so it does not lose a factor
U in advantage.

The fourth game modifies type III responder sessions so that they never
modify the random oracle to be consistent with the session key. This is only
observable if the adversary makes the corresponding hash query. By embedding
our challenge DH tuple (rerandomized) into the initial messages of type I and
II initiator sessions and (rerandomized) into the responder messages of type III
responder sessions, we get a strong Diffie-Hellman adversary B2 that succeeds
whenever such a hash query is made. This adversary uses its DH oracle to
recognize and reprogram hash queries related to type II initiator sessions.

The fifth game modifies type II initiator sessions whose peer is the selected
party so that they never modify the random oracle to be consistent with the
session key. This is only observable if the adversary makes the corresponding
hash query. By embedding our challenge DH tuple into the public key of the
selected party and (rerandomized) into the message sent by type I or II initiator
sessions, we get a strong Diffie-Hellman adversary B3 that succeeds whenever
such a hash query is made. This adversary uses its DH oracle to recognize
and reprogram hash queries related to sessions running as the selected party.
Again, unlike in [CCG+19], the strong Diffie-Hellman adversary does not have
to guess a party whose secret long-term key will not be revealed, so it does not
lose a factor U in advantage.

At this point, we observe that every session key fresh session fails to re-
program the random oracle to be consistent with its session key, which means
that every testable session key is independent of anything the adversary has
observed. It follows that the adversary’s advantage in this game is 0, and the
claim follows.

24

6 Impossibility of tightly secure explicit authen-
tication via key confirmation

In this section we show that a large, natural, and widely-used class of compil-
ers for turning implicitly authenticated protocols into explicitly authenticated
protocols, inevitably must incur a linear security loss in the number of parties.
The class includes the generic compiler from [CCG+19] which was incorrectly
claimed to achieve tight security but also the MAC-based approach to turn
HMQV into HMQV-C [Kra05] (which does not give explicit security bounds)
and the compiler by Yang [Yan13] (which has a linear loss in the number of
parties times sessions per party).

6.1 Requirements on Π and Π+

We want to consider generic approaches that turn any implicitly authenticated
key exchange protocol Π into an explicitly authenticated protocol Π+. To this
end, we will in the sequel focus on underlying protocols Π and constructions Π+

that satisfy certain requirements that we define in this section.

Messages of Π are independent of the secret long-term keys. We con-
sider protocols Π where the messages sent are independent of the parties’ secret
long-term keys. More precisely, with respect to the protocol syntax in Fig. 1,
the Init algorithm does not use a secret long-term key sk as input, i.e.,

(m, st)← Π.Init(i, j, role, pk,−) (40)

and any subsequent updates of the session state st by the Run algorithm only
depend on the received message and the current session state (minus the secret
long-term key). However, we still want to allow the final session key to depend on
the secret long-term key, so we model this by associating a session key derivation
algorithm to protocol Π that explicitly takes as input the secret long-term key.
That is, the session key k is computed as

k ← Π.KDF(st , sk), (41)

where st is the session’s state (minus the secret long-term key), and sk is the
secret long-term key.

The messages of Π must be independent of the secret long-term key because
we will construct an efficient adversary which has to send messages on behalf of
other parties without knowing their secret long-term keys. This includes typical
implicitly authenticated protocols, such as protocols where each party sends a
group element gx for random x ← Zp and the long-term secret keys are only
used during key derivation at the end of the protocol. Many protocols are of
this form, in particular the implicitly authenticated variant of the CCGJJ19
protocol [CCG+19], as well as the HMQV protocol [Kra05].

25

Remark 6.1. One class of protocols which is not covered by this assumption
are those based on digital signatures, such as the signed Diffie-Hellman protocol.
Digitally signing messages is thus a way to circumvent our impossibility result.
However, note that implicitly authenticated key exchange protocols, such as
[CCG+19, Kra05], typically avoid the use of digital signatures since they add
very significant overhead (w.r.t. computation and communication) to the pro-
tocol. This holds in particular when tightness is considered, where the most
efficient signature schemes with fully tight multi-user security (in the random
oracle model) [DGJL21] are significantly more expensive than corresponding
schemes without tight security.

An extension to NAXOS-like protocols [LLM07], where parties send a group
element gx where x← H(sk, r) depends on the secret key of the sending party
and some randomness r, as well as to reductions in the random oracle model, is
discussed in Section 6.3.

Π+ adds key confirmation messages derived from the Π session key.
Given an n-message protocol Π we define the key confirmation extension pro-
tocol Π+ to be the (n + 1)-message protocol consisting of the n messages of
protocol Π, but where the n-th message is extended with a key confirmation
tag, and then a final (n + 1)-th key confirmation message is added to the end.
The key confirmation tags t, t′ are derived deterministically from the session key
and message transcript T of protocol Π using algorithms Π+.Conf and Π+.Conf ′,
respectively. In practice Π+.Conf,Π+.Conf ′ will be PRFs applied to the mes-
sage transcript of Π using the session key from Π as the key but formally the
security property we require is that they preserve the entropy of their input.3

Definition 6.2. We say that a function F : K× {0, 1}∗ → {0, 1}τ is δ-entropy-
preserving if for every t ∈ {0, 1}τ and every string T ∈ {0, 1}∗ it holds that

Pr
k $←−K

[F (k, T) = t] ≤ δ. (42)

Finally, we assume that the session key in Π+ is also derived deterministically
from the session key and message transcript T of protocol Π using another
algorithm Π+.KDF.

Remark 6.3. We have defined Π+ such that the first key confirmation message
is sent along with the last message of Π, and then the second key confirmation
message is sent as a reply. This adds one extra message to Π, that is, Π+ is
an (n + 1)-message protocol. Alternatively, we could have defined Π+ so that
the first key confirmation message is sent as a reply to the n-th message. This
would have added two messages to Π, making Π+ an (n+ 2)-message protocol.
We consider the former approach more natural, and this is the approach used
in CCGJJ19 [CCG+19] and HMQV-C [Kra05]. The latter approach is used by
Yang [Yan13]. Even though we only treat the former variant here, our results
apply equally to both variants.

3Technically, in our proof we only need the entropy preserving property when producing
the first tag t, i.e., we only need Definition 6.2 to hold for function Π+.Conf.

26

Security of Π+ from Π via a valid black-box reduction. We want to
consider generic constructions of a fully forward secret (and explicitly authenti-
cated) protocol Π+ based on the assumption that the underlying Π is a weakly
forward secret (and implicitly authenticated) protocol, plus possibly some addi-
tional assumptions, e.g., on the primitives used to create the key confirmation
messages, and so on. This excludes artificial constructions of Π+ which run
Π as a redundant subroutine, but where security is achieved in a completely
different way, such that Π is actually superfluous. The most natural way to
establish security of Π+ based on the security of Π is to have a security analysis
of Π+ which includes (possibly among other arguments and reductions) at least
one reduction R to the KeySecWFS security of Π. We will argue that such a
reduction cannot be tight. The full security analysis of Π+ might include fur-
ther arguments, such as reductions to the security of primitives used in the key
confirmation messages.

More precisely, we assume that the security proof of Π+ includes a black-
box reduction R, which treats the adversary A as a black box by submitting
inputs and receiving outputs from A as specified in the explicitly authenticated
security model, and which is able to leverage any successful A (independently
of how A works internally) to break the KeySecWFS security of Π. Reduction
R has access to the KeySecWFS security experiment of protocol Π, and to an
adversary A on the KeySecFFS security of Π+. We require that for every party i
in the Π+ security experiment, there exists a unique corresponding party i′ in
the Π security experiment, and that R relays all messages of Π between the
adversary and its security experiment. Hence, for every session si,j of Π+ there
exists a unique session s′i,j of Π. The additional key confirmation messages of
Π+ are simulated by R (in any arbitrary way).

We will also assume that the reduction is always “valid”, i.e., it never makes
any trivially invalid queries in its KeySecWFS security experiment. Examples of
such invalid queries are, for instance, asking Reveal(s) and Test(s) against
the same session s. We assume that a reduction rather aborts instead of making
invalid queries. Obviously, any reduction R′ that does not satisfy this can be
generically transformed into a reduction R that does, with essentially the same
running time and advantage, by simply putting a wrapper around R′ that relays
all queries and their replies, but terminates R′ when it asks the first trivially
invalid query.

Π has unique and efficiently verifiable secret keys. We assume that
the public key pk of every party running protocol Π uniquely determines a
matching secret key sk, and that one can efficiently and perfectly verify that
a given sk matches a given pk. Note that this also holds for many typical
implicitly authenticated high-efficiency protocols, in particular the CCGJJ19
protocol [CCG+19], but also HMQV [Kra05], NAXOS [LLM07], and many more,
where a public key is a group element y of a group of order p and the matching
secret key is the unique x ∈ Zp such that gx = y.

It is known that it is generally difficult to reduce the security of a protocol Π

27

with unique secret keys tightly to the hardness of some non-interactive complex-
ity assumption, due to the general impossibility results of Bader et al. [BJLS16].
However, note here that our impossibility result is not about the tightness of
security proofs for Π and reductions to non-interactive hardness assumptions,
but rather about the tightness of reducing the security of a protocol Π+ with
key confirmation to the security of some underlying protocol Π (which then may
or may not have a tight reduction to some hardness assumption). Hence, it is
independent of the question whether Π has a tight security proof under some
(non-interactive) hardness assumption or not. Note also that in order to rule out
tight generic constructions of explicit authentication via key confirmation, it is
sufficient to rule out such constructions for protocols with unique secret keys, as
a generic construction should work in particular for protocols with unique keys.

6.2 Impossibility result

Theorem 6.4. Let Π be an AKE protocol and let Π+ be an AKE protocol
constructed by extending Π with δ-entropy-preserving key confirmation; let R be
a reduction which converts any adversary A against the KeySecFFS security of
Π+ into an adversary R(A) against the KeySecWFS security of Π; and assume
that Π, Π+, and R satisfy all the requirements described in Section 6.1. Then
we can construct an efficient adversary B against the KeySecWFS security of Π
such that

AdvKeySecWFS
Π,U (B) ≥ AdvKeySecWFS

Π,U (R(A))− 1

U
− 1

2|key|
− δ, (43)

where U is the number of parties, and |key| is the length of the session keys
in Π+.4

Interpretation of Theorem 6.4. We can assume that 2−|key| and δ are
negligibly small. Hence, the theorem states that if AdvKeySecWFS

Π,U (R(A)) is sig-
nificantly greater than 1/U , then B breaks the security of Π with non-negligible

advantage AdvKeySecWFS
Π,U (B). But if Π is KeySecWFS-secure, this B cannot ex-

ist. Therefore the advantage AdvKeySecWFS
Π,U (R(A)) of the reduction R cannot be

significantly greater than 1/U . However, the reduction is a black-box reduction
and supposed to work even with an adversary with advantage close to 1 (such
as the hypothetical adversary A described below). Hence, the reduction must
lose a factor of at least U .

Theorem 6.4 is formulated in terms of key secrecy, as it considers reductions
leveraging an adversary A breaking the full forward secrecy (KeySecFFS) of Π+.
However, the impossibility result could equally have been phrased in terms of
entity authentication. To see this, note that while the proof of Theorem 6.4
describes a meta-reduction which simulates a hypothetical adversary A break-
ing key secrecy, in Step 4 of this hypothetical adversary A also breaks entity
authentication. Consequently, Theorem 6 of [CCG+19], which is technically a

4The proof of Theorem 6.4 has been slightly simplified compared to the conference version.

28

claim about entity authentication, not key secrecy, cannot be correct by (the
proof of) Theorem 6.4.

Proof. As common in proofs based on meta-reductions [HJK12, LW14, BJLS16]
we first describe an (inefficient) hypothetical adversary A. Then we explain how
it is possible to efficiently simulate this hypothetical adversary for any reduction
R that is “too tight”, which yields a contradiction. We call this A-simulating
meta-reduction B.

Description of the hypothetical adversary A. Consider the following
(hypothetical) adversary A against the kFreshFFS security of protocol Π+.

1. A receives a dictionary pk containing all the public keys of all users. It
picks i∗ $←− {1, . . . , U} at random.

2. A initiates U protocol runs as follows. For every party i it executes one
run of Π+ with party j = i + 1 mod U (in the remainder of this section
we use {1, . . . , U} as the representatives of integers modulo U , so j ∈
{1, . . . , U}), up to the point where the experiment outputs the first key
confirmation message on behalf of j. A does not respond with the second
key confirmation message.

More precisely, if Π is an n-message protocol for n even, then A imper-
sonates every party i as an initiator by querying

si,j ← NewSession(j, i, resp) (44)

to create a session id si,j . Note that in our notation the session identifier
si,j refers to a session at party j where the adversary impersonates party
i towards it in A’s experiment. Then A computes

(m, st i,j)← Π.Init(i, j, init, pkj ,−) (45)

and queries Send(si,j ,m) in order to send m to session si,j on behalf of
party i. Here we use the assumption that the protocol messages of Π are
independent of the secret long-term key ski.

If Π is a two-message protocol, then the experiment will respond with
the second message of Π and the key confirmation message on behalf
of j. If Π has more than two messages (i.e., n ∈ {4, 6, 8, . . .}), then A
continues to simulate all further messages of Π using st i,j on behalf of i
by appropriate Send queries, until the experiment outputs the first key
confirmation message.

If Π is an n-message protocol for n odd, then A proceeds similarly, except
that instead of sending the first protocol message, it queries (m, si,j) ←
NewSession(j, i, init) in order to receive the first protocol message m
from j to i and a corresponding session id si,j .

In total A obtains U key confirmation messages from its security experi-
ment.

29

3. So far all queries of A were independent of i∗. Now A obtains the long-
term keys ski of all parties except i

∗, by querying RevealLTK(i) for all
i ̸= i∗. The adversary aborts if anything is wrong. More precisely:

(a) A checks whether all secret keys returned by the experiment match
the public keys and aborts if not. Here we use that Π has unique and
efficiently verifiable secret keys.

Intuitively, this forces a reduction R simulating the experiment to
relay all RevealLTK queries to the security experiment of Π, as
otherwise we are able to leverage R to break Π, as R is able to
output a non-revealed, yet valid secret key. We prove this intuition
below.

(b) For all i ̸= i∗ and j = i + 1 mod U , A uses ski to derive the session
key k of si,j in protocol Π. Specifically, since the messages and ses-
sion states are independent of the secret long-term keys in protocol
Π, A can recreate si,j ’s final session state st . This can then be com-
bined with the secret long-term key to compute the session key k in
protocol Π as:

k ← Π.KDF(st , ski). (46)

From k and the protocol message transcript Ti,j , A computes the
first key confirmation messages as

t← Π+.Conf(k, Ti,j). (47)

A now checks that the first key confirmation message t matches the
key confirmation message it received earlier from the security exper-
iment for session si,j . A aborts if any key confirmation message is
incorrect.

Intuitively, this forces a reduction R simulating the security exper-
iment to produce correct key confirmation messages for all sessions
where R simulates party j in a session with a party i ̸= i∗. Below
we will argue that this is difficult for a reduction without predicting
the index i∗, which incurs a linear security loss.

4. This last step is the “hypothetical” part of the adversary. A somehow com-
putes the unique value ski∗ that corresponds to the secret key of party i∗.
We intentionally do not specify precisely how this is done, since a black-box
reduction R should be able to leverage any adversary that accomplishes
this. A then uses ski∗ to finish the key exchange protocol on behalf of i∗

with party j∗ = i∗ + 1 mod U . In particular, this involves deriving the
session key k in protocol Π for session si∗,j∗ as described in Step 3b), and
using this to compute the first key confirmation tag as

t← Π+.Conf(k, Ti∗,j∗). (48)

If t matches the tag that A received from the security experiment for this
run in Step 2, then A derives the second key confirmation message t′ of

30

Π+ and sends it to session si∗,j∗ . Otherwise, A aborts. In case of a match
the second key confirmation message is computed as

t′ ← Π+.Conf ′(k, Ti∗,j∗). (49)

Note that t′ is a valid key confirmation message so si∗,j∗ will accept in
protocol Π+ upon receiving it.5 Since si∗,j∗ is fresh according to kFreshFFS
it is eligible for a Test query. Now A asks Test(si∗,j∗) and receives back
a key k′, which is either the “real” session key or a random key. Locally
A computes si∗,j∗ ’s session key in protocol Π+ as

k+ ← Π+.KDF(k, Ti∗,j∗) (50)

and outputs 1 if k′ = k+, and 0 otherwise.

Note that A is a correct (hypothetical) adversary against the KeySecFFS
security of Π+ with

AdvKeySecFFS
Π+,U (A) = 1− 1/2|key|. (51)

The term 1/2|key| is the probability that a random key k′ equals the “real” session
key ki∗,j∗ “by accident”, which is the only case where A answers incorrectly.
Note that this is the best possible advantage that an adversary that asks only
a single Test query can achieve in the security experiment. Hence, any black-
box reduction R that works for any correct adversary should, in particular,
work for A. As common in proofs based on meta-reductions, such as [Cor02,
HJK12, LW14, BJLS16], our hypothetical adversary is not efficient, but we will
show how it can be efficiently simulated, if the reduction R is too tight. This
yields that either the reduction must be non-tight, or the underlying hardness
assumption (i.e., that Π is secure in an implicitly authenticated sense) must be
wrong. Since we assume that Π is secure (as otherwise any reduction to the
security of Π is meaningless and trivial, anyway), we can conclude that R must
be non-tight.

Construction of meta-reduction B. Adversary B runs R as a subroutine.
It relays all queries between R and the KeySecWFS security experiment of Π
and simulates the hypothetical adversary A towards R.

Recall from Section 6.1 that for every party i of the Π+ experiment, there
exists a unique corresponding party i′ in the Π security experiment. Recall
also that R relays all messages of Π between the adversary and its security
experiment, such that for every session si,j of Π+ there exists a unique session
s′i,j of Π, and we assume that R does not make any invalid queries in its security
experiment that make it trivially “lose” the KeySecFFS security experiment.
Consider the following events that may occur in the execution of B.

5This already breaks entity authentication of Π+ because the long-term key of si∗,j∗ ’s peer
has not been revealed. However, since our focus in Theorem 6.4 is on forward security we let
A continue.

31

Incorrect secret key ski with i ̸= i∗. Let IncorrectSK denote the event that
R outputs at least one secret key such that A aborts in Step 3a). That
is, one of the secret long-term keys for party i with i ̸= i∗ returned by R
is not correct.

Note that B can efficiently check whether IncorrectSK occurs and trivially
simulate A in this case. Hence, it remains to consider B when the event
¬IncorrectSK occurs.

No RevealLTK(i) for some i ̸= i∗. Let NotAllRevLTK(i) denote the event that
¬IncorrectSK occurs, and additionally there exists i ̸= i∗ such that R out-
puts ski, but it has not queried RevealLTK(i) to its security experiment
when A reaches Step 3a).

Note that in this case the adversary A simulated by B obtains from R
a secret long-term key ski for a party i, such that RevealLTK(i) was
not asked in the KeySecWFS security experiment. Note also that B can
efficiently check whether NotAllRevLTK(i) occurs, and for which party i.

If NotAllRevLTK(i) occurs, then we let B stop R before it issues any fur-
ther queries to the KeySecWFS security experiment. Then B creates an
additional new session si,j in the KeySecWFS experiment of Π, imperson-
ating i in a session with some other party j, and using the secret long-term
key ski of the non-revealed i to obtain the corresponding session key ki,j
in Π. Then, it asks Test(si,j), which is a valid query because the session
is fresh, obtaining a challenge key k. B returns 1 if and only if ki,j = k,
breaking the KeySecWFS security.

Incorrect key confirmation message for si,j with i ̸= i∗. Let IncorrectConf
denote the event that ¬IncorrectSK occurs, and additionally R outputs at
least one key confirmation message such that A aborts in Step 3b). That
is, one of the key confirmation messages for si,j with i ̸= i∗ returned by
R is not correct.

Note that, due to ¬IncorrectSK, B can efficiently detect whether IncorrectConf
occurs, and trivially simulate A in this case. Hence, it remains to consider
the case where event ¬IncorrectConf occurs, i.e., R outputs correct key
confirmation messages for all si,j with i ̸= i∗.

Reveal(si∗,j∗) before Step 4 of A. Let TargetRevealed denote the event that
R queries Reveal(si∗,j∗) before Step 4 of A, where j∗ = i∗ + 1 mod U
(again, we use {1, . . . , U} as the representatives of integers modulo U , so
j∗ ∈ {1, . . . , U}).
Recall that adversary B runs R as a subroutine by relaying all queries
between R and the KeySecWFS security experiment of Π. Hence, if R
queries Reveal(si∗,j∗) and receives in reply the session key k of this
session of Π, then B sees this query and therefore obtains the session
key k of the “target” session of Π that corresponds to si∗,j∗ as well.

32

Note that the only inefficient computation of the hypothetical adversary
A is the computation of k in its Step 4. Since B obtains k through the
Reveal(si∗,j∗) query of R, provided that TargetRevealed occurs, B is able
to efficiently simulate all four steps of adversary A.

In the sequel let

∆ := ¬IncorrectSK∩¬NotAllRevLTK(i)∩¬IncorrectConf∩¬TargetRevealed (52)

We now consider two different events, both in the case where ∆ occurs and thus
B cannot trivially simulate A in the ways explained above. In the first case,
R outputs a valid key confirmation message for session si∗,j∗ without making a
Test(si∗,j∗) query before the end of Step 2. Note that due to ¬TargetRevealed
R also does not query Reveal(si∗,j∗). Intuitively, in this case, R has to predict
a correct key confirmation message, which B can use as a test value to break
the KeySecWFS security of Π.

In the second case, we consider the complementary event, where R ei-
ther outputs an invalid key confirmation message for session si∗,j∗ , or makes
a Test(si∗,j∗) query before the end of Step 2. Intuitively, this requires R to
predict i∗ already before Step 3 of A, which happens with probability at most
1/U . Recall here that i∗ is chosen uniformly random and the view of R is
independent of i∗ until Step 3.

Valid key confirmation for si∗,j∗ and no Test(si∗,j∗). In this case event ∆
occurs, and additionally R outputs a correct key confirmation message for
session si∗,j∗ in Step 2 of A, and R has not asked a Test(si∗,j∗) query
for this session before the end of Step 2 (i.e., before Step 3 starts).

Note that R also did not query Reveal(si∗,j∗) before Step 4 of A, due to
event ¬TargetRevealed, thus, in particular it did not query Reveal(si∗,j∗)
in Step 2 of A. Yet, R is able to simulate a correct key confirmation
message for session si∗,j∗ . We argue that this enables B to break the
security of Π in the KeySecWFS experiment.

Concretely, B proceeds as follows. Let t̃ denote the correct key confir-
mation message simulated by R. If ∆ occurs and R does not query
Test(si∗,j∗) before the end of Step 2, then B runs R until it queries
Test(si∗,j∗). If R does not query Test(si∗,j∗), then it runs A until the
end of Step 3 of A, and then B queries Test(si∗,j∗) to the KeySecWFS
security experiment on behalf of R. Either way, B immediately stops R
after the Test(si∗,j∗) query.

The KeySecWFS security experiment returns a challenge key k. Then B
computes t ← Π+.Conf(k, Ti∗,j∗) and checks whether t = t̃. If this holds,
then it returns 0 to the KeySecWFS experiment (i.e., k is a “real” key). If
t ̸= t̃, then it returns 1.

If k is the “real” key, then we have t = t̃ and B outputs the correct bit
0 to the KeySecWFS experiment. If k is a “random” key, then we might

33

still have t = t̃ by accident, i.e., a false positive. This may happen either
if the random key chosen by the KeySecWFS experiment is equal to the
real key, which happens with probability 2−|key|. Or even for a random
key k we might have t̃ = Π+.Conf(k, Ti∗,j∗). However, due to the δ-
entropy-preserving property of Π+.Conf (see Definition 6.2) this happens
with probability at most δ. Hence, the false positive probability of B in
this case is at most 2−|key| + δ.

Invalid key confirmation for si∗,j∗ or Test(si∗,j∗). This is the final remain-
ing case, where ∆ occurs, but either R outputs an incorrect key confir-
mation message for session si∗,j∗ in Step 2 of A, or it asks Test(si∗,j∗)
query for this session before the end of Step 2 (i.e., before Step 3 starts).

In this case our meta-reduction B fails. We claim that

Pr[B fails] ≤ 1

U
. (53)

To see this, note thatR outputs valid key confirmation messages for all si,j
with i ̸= i∗, since ¬IncorrectConf occurs. However, since R is independent
of i∗ until Step 2 starts, it can only output an incorrect key confirmation
message for session si∗,j∗ in Step 2 by predicting i∗, which happens with
probability at most 1/U .

Furthermore, since ¬IncorrectSK occurs, R outputs all long-term secret
keys ski, with i ̸= i∗, correctly. Furthermore, since ¬NotAllRevLTK(i)
occurs, R asks RevealLTK(i) for all i ̸= i∗. However, if it makes a
Test(si∗,j∗) query before Step 3, then it must predict the i∗ for which a
RevealLTK(i∗) query is never asked already in Step 2. This happens
with probability at most 1/U .

This bounds the probability that B fails to 1/U , as desired.

6.3 Discussion of extensions and generalizations

Extension to NAXOS-like protocols. One limitation of the impossibil-
ity result is that it requires that all protocol messages are independent of
the long-term secret key. As already discussed, this holds for many implictly-
authenticated, in particular those aiming at maximal efficiency. However, one
interesting class of protocols that are unfortunately excluded are NAXOS-like
protocols [LLM07], where parties send a group element gx where x = H(sk, r)
depends on the secret key of the sending party and some randomness r.

We expect that Theorem 6.4 can also be generalized to such protocols,
though. Recall that our hypothetical adversary A establishes protocol sessions
between all parties in its Step 2. However, since it did not yet reveal the secret
long-term key of any party at this step, it cannot compute x = H(sk, r) for
the real secret key sk of a party. Observe, though that in such NAXOS-like
protocols a party receiving gx is not able to verify that x = H(sk, r), because
the receiving party also does not know sk (and also not r). Even though a

34

reduction R might somehow be able to check consistency of x (e.g., using the
random oracle queries made by A), it would still have to continue the key ex-
change protocol like the real security experiment. Hence, A could simply pick
x at random and send gx to R, and R would have to continue the protocol and
send a key confirmation message at the end, which leads to a similar security
loss as in the proof of Theorem 6.4, with almost exactly the same argument that
it essentially requires R to “predict” the index i∗ chosen by A already in Step 2
of A.

The reason why we did not consider this extension is because it seems we
would either have to consider specific protocols concretely, such as NAXOS
specifically, which would reduce the generality of the result, or alternatively we
would have to define a general notion of “efficient simulatability” of secret-key-
dependent protocol messages. We refrained from the former to obtain a general
impossibility result which explains the core reason of the inherent security loss of
standard ways to do key confirmation, and from the latter because the argument
in the proof of Theorem 6.4 is already relatively complex due to the inherent
complexity of key exchange security models, and we preferred an as-clean-as-
possible and more rigorous argument over full generality.

Extension to key confirmation in the random oracle model. Note that
the argument in the proof of Theorem 6.4 uses the key confirmation as a “test
value” to check whether a given challenge key k is real or random. This exploits
that the tag produced by R in the tested session is computed deterministically
from the real session key k′ and the public protocol message transcript Tn as

t← Π+.Conf(k′, Tn). (54)

In particular, the argument does not rely on random oracles.
Given that most highly-efficient implicitly authenticated protocols are proven

secure in the random oracle model, one might ask whether it is possible to give
a tightly-secure construction of Π+ from Π in the random oracle model. For
instance, one could consider computing the key confirmation message as

t← H(k′, Tn). (55)

By modeling H as a random oracle the reductionR could potentially avoid com-
mitting to the key confirmation messages it simulates by just sending random
strings t̃ that can later be “explained” by re-programming H.

Unfortunately, we expect this approach to have an inherent tightness loss
too. The reason for this is that the reduction needs to simulate the random
oracle H consistently. But in order to achieve this, R would have to be able to
distinguish a random oracle query H(k′, Tn) using the “real” key (in which case
it would have to return t̃) from a query H(k′′, Tn) using an independent string
k′′. Since k′ is the session key of Π, the reduction would thus have to be able
to distinguish session keys of Π from random, which should give rise to another
attacker B on Π that proceeds as follows:

35

1. B is again a meta-reduction, which runs R as a subroutine, relays all
queries between R and its security experiment, and simulates our hypo-
thetical adversary A until the end of Step 2.

2. Then B picks an arbitrary random session si,j and queries Test(si,j) to
the security experiment of Π, receving back a challenge key k.

3. Now B issues many random oracle queries of the form H(ki, Tn) to R,
where k1, ..., kQ are chosen at random, but kℓ := k is defined as the chal-
lenge key k for some random index ℓ $←− {1, . . . , Q}.

4. Now either R is able to distinguish the query with a “real” key k from
a “random” one. In this case, B can also distinguish the real key from a
random one, by checking whether mn+1 = H(kℓ, Tn).

Or R is not able to distinguish the query with a “real” key k from a
“random” one. In this case, R will fail with probability 1− 1/Q, so that
once again we can simulate A efficiently because it aborts if R fails.

The above proof idea is only a sketch, and we expect a rigorous proof to be
significantly more complex and subtle. In this paper we focused on the simpler
and cleaner case of ruling out tight standard model constructions, which is also
what was claimed in [CCG+19].

Acknowledgements

Thanks to Einar Karlsen Thesen for pointing out a flaw in the definition of
selective key security, where we forgot to mark non-selected long-term keys as
revealed.

References

[ABR01] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle
Diffie-Hellman assumptions and an analysis of DHIES. In David
Naccache, editor, Topics in Cryptology – CT-RSA 2001, volume
2020 of Lecture Notes in Computer Science, pages 143–158, San
Francisco, CA, USA, April 8–12, 2001. Springer, Heidelberg, Ger-
many. doi:10.1007/3-540-45353-9_12. 4

[BG11] Colin Boyd and Juan Manuel González Nieto. On forward secrecy
in one-round key exchange. In Liqun Chen, editor, 13th IMA In-
ternational Conference on Cryptography and Coding, volume 7089
of Lecture Notes in Computer Science, pages 451–468, Oxford, UK,
December 12–15, 2011. Springer, Heidelberg, Germany. 2, 3, 4

[BG20] Colin Boyd and Kai Gellert. A Modern View on Forward
Security. The Computer Journal, 64(4):639–652, 08 2020.

36

https://doi.org/10.1007/3-540-45353-9_12

arXiv:https://academic.oup.com/comjnl/article-pdf/64/4/

639/37161647/bxaa104.pdf, doi:10.1093/comjnl/bxaa104. 2

[BHJ+15] Christoph Bader, Dennis Hofheinz, Tibor Jager, Eike Kiltz, and
Yong Li. Tightly-secure authenticated key exchange. In Yev-
geniy Dodis and Jesper Buus Nielsen, editors, TCC 2015: 12th
Theory of Cryptography Conference, Part I, volume 9014 of Lec-
ture Notes in Computer Science, pages 629–658, Warsaw, Poland,
March 23–25, 2015. Springer, Heidelberg, Germany. doi:10.1007/
978-3-662-46494-6_26. 2

[BJLS16] Christoph Bader, Tibor Jager, Yong Li, and Sven Schäge. On the im-
possibility of tight cryptographic reductions. In Marc Fischlin and
Jean-Sébastien Coron, editors, Advances in Cryptology – EURO-
CRYPT 2016, Part II, volume 9666 of Lecture Notes in Computer
Science, pages 273–304, Vienna, Austria, May 8–12, 2016. Springer,
Heidelberg, Germany. doi:10.1007/978-3-662-49896-5_10. 6,
28, 29, 31

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authen-
ticated key exchange secure against dictionary attacks. In Bart
Preneel, editor, Advances in Cryptology – EUROCRYPT 2000, vol-
ume 1807 of Lecture Notes in Computer Science, pages 139–155,
Bruges, Belgium, May 14–18, 2000. Springer, Heidelberg, Germany.
doi:10.1007/3-540-45539-6_11. 2, 4, 6, 9

[BR94] Mihir Bellare and Phillip Rogaway. Entity authentication and key
distribution. In Douglas R. Stinson, editor, Advances in Cryptol-
ogy – CRYPTO’93, volume 773 of Lecture Notes in Computer Sci-
ence, pages 232–249, Santa Barbara, CA, USA, August 22–26, 1994.
Springer, Heidelberg, Germany. doi:10.1007/3-540-48329-2_21.
3, 6

[BR95] Mihir Bellare and Phillip Rogaway. Provably secure session key
distribution: The three party case. In 27th Annual ACM Sympo-
sium on Theory of Computing, pages 57–66, Las Vegas, NV, USA,
May 29 – June 1, 1995. ACM Press. doi:10.1145/225058.225084.
6

[CCG+19] Katriel Cohn-Gordon, Cas Cremers, Kristian Gjøsteen, H̊akon Ja-
cobsen, and Tibor Jager. Highly efficient key exchange protocols
with optimal tightness. In Alexandra Boldyreva and Daniele Mic-
ciancio, editors, Advances in Cryptology – CRYPTO 2019, Part III,
volume 11694 of Lecture Notes in Computer Science, pages 767–797,
Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg,
Germany. doi:10.1007/978-3-030-26954-8_25. 2, 3, 4, 5, 6, 18,
22, 23, 24, 25, 26, 27, 28, 36

37

https://arxiv.org/abs/https://academic.oup.com/comjnl/article-pdf/64/4/639/37161647/bxaa104.pdf
https://arxiv.org/abs/https://academic.oup.com/comjnl/article-pdf/64/4/639/37161647/bxaa104.pdf
https://doi.org/10.1093/comjnl/bxaa104
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1145/225058.225084
https://doi.org/10.1007/978-3-030-26954-8_25

[CF15] Cas Cremers and Michèle Feltz. Beyond eCK: perfect forward se-
crecy under actor compromise and ephemeral-key reveal. Des. Codes
Cryptogr., 74(1):183–218, 2015. URL: https://doi.org/10.1007/
s10623-013-9852-1. 3, 4

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange pro-
tocols and their use for building secure channels. In Birgit Pfitz-
mann, editor, Advances in Cryptology – EUROCRYPT 2001, vol-
ume 2045 of Lecture Notes in Computer Science, pages 453–474,
Innsbruck, Austria, May 6–10, 2001. Springer, Heidelberg, Germany.
doi:10.1007/3-540-44987-6_28. 6

[Cor02] Jean-Sébastien Coron. Optimal security proofs for PSS and other
signature schemes. In Lars R. Knudsen, editor, Advances in Cryp-
tology – EUROCRYPT 2002, volume 2332 of Lecture Notes in
Computer Science, pages 272–287, Amsterdam, The Netherlands,
April 28 – May 2, 2002. Springer, Heidelberg, Germany. doi:

10.1007/3-540-46035-7_18. 31

[dFW19] Cyprien Delpech de Saint Guilhem, Marc Fischlin, and Bogdan
Warinschi. Authentication in key-exchange: Definitions, relations
and composition. Cryptology ePrint Archive, Report 2019/1203,
2019. https://eprint.iacr.org/2019/1203. 41

[dFW20] Cyprien de Saint Guilhem, Marc Fischlin, and Bogdan Warinschi.
Authentication in key-exchange: Definitions, relations and compo-
sition. In Limin Jia and Ralf Küsters, editors, CSF 2020: IEEE
33st Computer Security Foundations Symposium, pages 288–303,
Boston, MA, USA, jun 22-26 2020. IEEE Computer Society Press.
doi:10.1109/CSF49147.2020.00028. 2, 6, 9, 10, 12, 40

[DGJL21] Denis Diemert, Kai Gellert, Tibor Jager, and Lin Lyu. More ef-
ficient digital signatures with tight multi-user security. In Juan
Garay, editor, PKC 2021: 24th International Conference on The-
ory and Practice of Public Key Cryptography, Part II, volume
12711 of Lecture Notes in Computer Science, pages 1–31, Virtual
Event, May 10–13, 2021. Springer, Heidelberg, Germany. doi:

10.1007/978-3-030-75248-4_1. 26

[FGSW16] Marc Fischlin, Felix Günther, Benedikt Schmidt, and Bogdan
Warinschi. Key confirmation in key exchange: A formal treatment
and implications for TLS 1.3. In 2016 IEEE Symposium on Security
and Privacy, pages 452–469, San Jose, CA, USA, May 22–26, 2016.
IEEE Computer Society Press. doi:10.1109/SP.2016.34. 2

[GJ18] Kristian Gjøsteen and Tibor Jager. Practical and tightly-secure
digital signatures and authenticated key exchange. In Hovav
Shacham and Alexandra Boldyreva, editors, Advances in Cryptol-
ogy – CRYPTO 2018, Part II, volume 10992 of Lecture Notes in

38

https://doi.org/10.1007/s10623-013-9852-1
https://doi.org/10.1007/s10623-013-9852-1
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-46035-7_18
https://doi.org/10.1007/3-540-46035-7_18
https://eprint.iacr.org/2019/1203
https://doi.org/10.1109/CSF49147.2020.00028
https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1109/SP.2016.34

Computer Science, pages 95–125, Santa Barbara, CA, USA, Au-
gust 19–23, 2018. Springer, Heidelberg, Germany. doi:10.1007/

978-3-319-96881-0_4. 2

[HJK12] Dennis Hofheinz, Tibor Jager, and Edward Knapp. Waters signa-
tures with optimal security reduction. In Marc Fischlin, Johannes
Buchmann, and Mark Manulis, editors, PKC 2012: 15th Interna-
tional Conference on Theory and Practice of Public Key Cryptogra-
phy, volume 7293 of Lecture Notes in Computer Science, pages 66–
83, Darmstadt, Germany, May 21–23, 2012. Springer, Heidelberg,
Germany. doi:10.1007/978-3-642-30057-8_5. 6, 29, 31

[HJK+21] Shuai Han, Tibor Jager, Eike Kiltz, Shengli Liu, Jiaxin Pan, Doreen
Riepel, and Sven Schäge. Authenticated key exchange and signatures
with tight security in the standard model. In Tal Malkin and Chris
Peikert, editors, Advances in Cryptology – CRYPTO 2021, Part IV,
volume 12828 of Lecture Notes in Computer Science, pages 670–700,
Virtual Event, August 16–20, 2021. Springer, Heidelberg, Germany.
doi:10.1007/978-3-030-84259-8_23. 2

[JKRS21] Tibor Jager, Eike Kiltz, Doreen Riepel, and Sven Schäge. Tightly-
secure authenticated key exchange, revisited. In Anne Can-
teaut and François-Xavier Standaert, editors, Advances in Cryp-
tology – EUROCRYPT 2021, Part I, volume 12696 of Lecture
Notes in Computer Science, pages 117–146, Zagreb, Croatia, Oc-
tober 17–21, 2021. Springer, Heidelberg, Germany. doi:10.1007/

978-3-030-77870-5_5. 2

[KPW13] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. On
the security of the TLS protocol: A systematic analysis. In
Ran Canetti and Juan A. Garay, editors, Advances in Cryptol-
ogy – CRYPTO 2013, Part I, volume 8042 of Lecture Notes in
Computer Science, pages 429–448, Santa Barbara, CA, USA, Au-
gust 18–22, 2013. Springer, Heidelberg, Germany. doi:10.1007/

978-3-642-40041-4_24. 5, 13

[Kra05] Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman
protocol. In Victor Shoup, editor, Advances in Cryptology –
CRYPTO 2005, volume 3621 of Lecture Notes in Computer Sci-
ence, pages 546–566, Santa Barbara, CA, USA, August 14–18, 2005.
Springer, Heidelberg, Germany. doi:10.1007/11535218_33. 2, 3,
4, 25, 26, 27

[LLM07] Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger
security of authenticated key exchange. In Willy Susilo, Joseph K.
Liu, and Yi Mu, editors, ProvSec 2007: 1st International Conference
on Provable Security, volume 4784 of Lecture Notes in Computer

39

https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-642-30057-8_5
https://doi.org/10.1007/978-3-030-84259-8_23
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/11535218_33

Science, pages 1–16, Wollongong, Australia, November 1–2, 2007.
Springer, Heidelberg, Germany. 6, 26, 27, 34

[LS17] Yong Li and Sven Schäge. No-match attacks and robust part-
nering definitions: Defining trivial attacks for security protocols
is not trivial. In Bhavani M. Thuraisingham, David Evans, Tal
Malkin, and Dongyan Xu, editors, ACM CCS 2017: 24th Confer-
ence on Computer and Communications Security, pages 1343–1360,
Dallas, TX, USA, October 31 – November 2, 2017. ACM Press.
doi:10.1145/3133956.3134006. 9

[LW14] Allison B. Lewko and Brent Waters. Why proving HIBE sys-
tems secure is difficult. In Phong Q. Nguyen and Elisabeth Os-
wald, editors, Advances in Cryptology – EUROCRYPT 2014, volume
8441 of Lecture Notes in Computer Science, pages 58–76, Copen-
hagen, Denmark, May 11–15, 2014. Springer, Heidelberg, Germany.
doi:10.1007/978-3-642-55220-5_4. 6, 29, 31

[PQR21] Jiaxin Pan, Chen Qian, and Magnus Ringerud. Signed diffie-hellman
key exchange with tight security. In Kenneth G. Paterson, edi-
tor, Topics in Cryptology – CT-RSA 2021, volume 12704 of Lec-
ture Notes in Computer Science, pages 201–226, Virtual Event,
May 17–20, 2021. Springer, Heidelberg, Germany. doi:10.1007/

978-3-030-75539-3_9. 2

[RZ18] Phillip Rogaway and Yusi Zhang. Simplifying game-based definitions
- indistinguishability up to correctness and its application to stateful
AE. In Hovav Shacham and Alexandra Boldyreva, editors, Advances
in Cryptology – CRYPTO 2018, Part II, volume 10992 of Lecture
Notes in Computer Science, pages 3–32, Santa Barbara, CA, USA,
August 19–23, 2018. Springer, Heidelberg, Germany. doi:10.1007/
978-3-319-96881-0_1. 12

[Yan13] Zheng Yang. Modelling simultaneous mutual authentication for au-
thenticated key exchange. In FPS, volume 8352 of Lecture Notes in
Computer Science, pages 46–62. Springer, 2013. 2, 25, 26

A Additional notes on definitions

A.1 Achieving key-match soundness.

We proved concretely (Proposition 5.1) that the CCGJJ protocol achieves key-
match soundness based on the protocol’s structure. Interestingly, de Saint Guil-
hem et al. [dFW20, Thm. 2] proved that key-match soundness generically follows
from key secrecy and regular match security. Unfortunately, their proof has a
large tightness gap since its main reduction needs to guess two sessions among

40

https://doi.org/10.1145/3133956.3134006
https://doi.org/10.1007/978-3-642-55220-5_4
https://doi.org/10.1007/978-3-030-75539-3_9
https://doi.org/10.1007/978-3-030-75539-3_9
https://doi.org/10.1007/978-3-319-96881-0_1
https://doi.org/10.1007/978-3-319-96881-0_1

all possible sessions. Avoiding this guess seems difficult to do in full generality.
However, if we are willing to impose a small amount of structure on our proto-
cols, as well as resorting to the random oracle model, we can prove it tightly.
The structure we require is that session keys are derived using a random oracle,
and that this random oracle call includes the protocol messages communicated
up to this point. Other values will typically also be included into this call,
such as Diffie-Hellman secrets, party identities, certificates, etc., but we only
explicitly require the messages to be included. This gives the following intuitive
result.

Proposition A.1. Let Π be a protocol where session keys are derived using a
random oracle, and where this random oracle call includes the messages up until
that point, then

AdvKMSound
Π,U (A) ≤ AdvSelKeySecWFS

Π,U (B1) +AdvMatch
Π,U (B2) +

qRO

2|key|
(56)

Note: this assumes partnering based on matching conversations.

A.2 Explicit entity authentication vs. explicit key authen-
tication.

Here we prove that explicit entity authentication reduces to explicit key au-
thentication. This is basically a restatement of Proposition 9 in [dFW19]6.
Note that Proposition A.2 describes a reduction for the same protocol Π unlike
in Section 4 where the reductions are from the extended protocol Π+ to the
underlying protocol Π.

Proposition A.2. Let Π be a protocol and A and adversary against Π for
(almost-)full entity authentication. Then A is also an adversary against match
soundness, implicit key authentication, key match soundness and (almost-)full
key authentication, and

AdvfexEntAuth
Π,U (A) ≤ AdvMatch

Π,U (A)+AdviKeyAuth
Π,U (A)+AdvKMSound

Π,U (A)+AdvfexKeyAuth
Π,U (A)

AdvafexEntAuth
Π,U (A) ≤ AdvMatch

Π,U (A)+AdviKeyAuth
Π,U (A)+AdvKMSound

Π,U (A)+AdvafexKeyAuth
Π,U (A)

Proof. The proofs of full and almost-full explicit entity authentication are iden-
tical so we only give a proof of the former.

Suppose s ∈ Lrcv is a session that receives the last message of the protocol,
and for which fexEntAuth is violated (so s has accepted). We consider two cases:

1. There is a session s′ such that Partner(s, s′) = true, but s.peer ̸= s.party.
We consider two further sub-cases:

(a) SameKey(s, s′) ̸= true. In this case Match is violated.

(b) SameKey(s, s′) = true. In this case iKeyAuth is violated.

6Although [dFW19, Prop. 9] appears to miss an iKeyAuth term.

41

2. There is no session s′ such that Partner(s, s′) = true, but aFresh(s) = true.
We consider two further sub-cases:

(a) There is session s′′ such that SameKey(s, s′′) = true. In this case
KMSound is violated.

(b) There is no session s′ such that SameKey(s, s′) = true. In this case
fexKeyAuth is violated.

42

	On Optimal Tightness for Key Exchange with Full Forward Secrecy via Key Confirmation
	1 Introduction
	1.1 Our contributions

	2 Definitions
	2.1 Syntax

	3 Protocol security properties
	3.1 Match soundness
	3.2 Key-match soundness
	3.3 Implicit key authentication
	3.4 Explicit key authentication
	3.5 Explicit entity authentication
	3.6 Key secrecy

	4 The security of adding key confirmation
	4.1 Main result
	4.2 Implicit to explicit key authentication
	4.3 Additional security reductions

	5 The CCGJJ protocol
	6 Impossibility of tightly secure explicit authentication via key confirmation
	6.1 Requirements on Π and Π⁺
	6.2 Impossibility result
	6.3 Discussion of extensions and generalizations

	References
	A Additional notes on definitions
	A.1 Achieving key-match soundness.
	A.2 Explicit entity authentication vs. explicit key authentication.

