
Unstoppable Wallets: Chain-assisted Threshold
ECDSA and its Applications

Guy Zyskind

guyz@mit.edu
MIT Media Lab

SCRT Labs

Avishay Yanai

ay.yanay@gmail.com
Alex "Sandy" Pentland

pentland@mit.edu
MIT Media Lab

Abstract
The security and usability of cryptocurrencies and other

blockchain-based applications depend on the secure

management of cryptographic keys. However, current

approaches for managing these keys often rely on third

parties, trusted to be available at a minimum, and even

serve as custodians in some solutions, creating single

points of failure and limiting the ability of users to fully

control their own assets. In this work, we introduce the

concept of unstoppable wallets, which are programmable

threshold ECDSA wallets that allow users to co-sign

transactions with a confidential smart contract, rather

than a singular third-party. We propose a new model that

encapsulates the use of a confidential smart contract as both

a party and the sole (broadcast) communication channel

in secure Multi-Party Computation (MPC) protocols. We

construct highly efficient threshold ECDSA protocols that

form the basis of unstoppable wallets and prove their

security under this model, achieving the standard notion of

fairness and robustness even in case of a dishonest majority

of signers. Our protocols minimize the write-complexity

for threshold ECDSA key-generation and signing, while

reducing communication and computation overhead. We

implement these protocols as smart contracts, deploy them

on Secret Network, and showcase their applicability for two

interesting applications, policy checking and wallet exchange,

as well as their efficiency by demonstrating low gas costs

and fees.

1 Introduction
Threshold ECDSA (Elliptic Curve Digital Signature

Algorithm) is a cryptographic technique that enables

multiple parties to jointly sign a message using a shared

secret key. It has gained increasing importance in the

custody of cryptocurrencies and Web3 due to its ability to

improve security and control over private key management.

By enabling multiple parties to jointly control a single

private key, threshold ECDSA allows for the creation of

multisignature (multisig) accounts that require multiple

approvals before a transaction can be signed. This enhances

security by reducing the risk of funds being stolen or lost due

to a single point of failure. Additionally, threshold ECDSA

enables the creation of flexible and customizable access

policies. However, the current deployment of threshold

ECDSA relies on a third-party for availability and is often

limited by closed-sourced vendors [42].

In this paper, we introduce unstoppable wallets as a

novel concept that addresses the limitations of current

threshold ECDSA systems. An unstoppable wallet is a

threshold ECDSA wallet where the counterparty co-signing

transactions with the user (or a set of users) is not a singular

third-party, but rather a blockchain itself. This enables

the creation of programmable wallets that are controlled

directly by a smart contract, such as those being explored

in Ethereum through the concept of account abstraction

[64]. Unstoppable wallets push this idea further, as they can

operate cross-chain and are not limited to Ethereum or EVM

chains only.

Since generally speaking, blockchains cannot keep a

private state, we require the use of blockchains that support

confidential smart contracts. These are gaining popularity

and are being explored in both research and practice (e.g.,

[12, 13, 15, 22, 29, 33, 43, 46, 57, 58, 68, 71]).

Unstoppable wallets offer several advantages over the

traditional third-party model. As blockchains are always

available, unstoppable wallets will not experience downtime

due to counterparty issues. The use of smart contracts

allows for greater flexibility and customization, enabling

custom access policies, support for new chains and assets, or

even new kinds of applications like a peer-to-peer wallet

(as opposed to asset) exchange. Additionally, the use of

a blockchain implies a public bulletin board, allowing us

to achieve other desired properties such as fairness and

robustness.

1.1 Practical Model for Cryptographic Protocols
In recent years, designers of cryptographic protocols

have been increasingly relying on blockchains as their

broadcast channel infrastructure [24, 39, 40, 51]. In both

theory and practice, blockchains can assist in achieving

desired protocol properties (e.g., [40]), including overcoming

known impossibility results (e.g., [24]). Such a transition

has prompted researchers to explore other benefits that

can be derived from blockchains. One might wish for

a blockchain that entirely handles sensitive information,

such as cryptographic keys, and is able to confidentially

perform operations (like sign and decrypt) using the keys.

While confidential smart contracts-enabled blockchains aim

to offer that, relying on them completely to safely store

long-term keys might be considered too risky, as breaking

the blockchain’s privacy layer would automatically and

irrevocably divulge all secret information to the attacker

[21, 41, 60–62].

This calls for solutions that rely on blockchains for

confidential computing on secrets, but also consider the

possibility of a breach and take measures to recover. In the

case of distributed signatures, we rely on the blockchain

to store a partial secret, which is only a share of the

actual underlying signing key. By doing so, breaking the

blockchain security layer only reveals that share of the secret,

and not the full key. Assuming attacks on the blockchain

are temporary [62], resharing the signing key revokes the

adversary’s gained information. Moreover, resharing resets

the adversary’s state when breaking into the users’ shares,

as long as the adversary does not break into 𝑡 + 1 or more

shares.

Equipped with this intuition, we present a protocol for

𝑛 parties, out of which at most 𝑡 < 𝑛 are malicious and

colluding, to generate an ECDSA key-pair and sign messages,

with the aid of a blockchain as described above. Then, the

blockchain is modeled as an additional semi-honest and non-

colluding party, referred to as 𝑃𝑐 . Such a party can easily

play the role of a broadcast channel (by simply relaying a

message to all other parties) and hold and operate on secrets.

In this model, parties do not necessarily need to know each

other in advance, or set up complex ad-hoc communication

networks with point-to-point channels across each set

of parties, or an underspecified broadcast channel, as is

common with MPC protocols. Moreover, parties can come

and go as they please, evenmid-execution of a protocol, since

all coordination is done on-chain, which is guaranteed to be

robust.

Lifting all communication on-chain is advantageous at

a high level because it simplifies protocol implementation

in practice, as each node only reads and writes to a

single endpoint, regardless of the number of counterparties.

Specifically, by relying on a blockchain, one does not need to

take care of network synchronization, and proofs of silence

(i.e., a proof that a participant did not send a message)

are taken for granted
1
. There are several other benefits to

this, such as pseudonimity, higher degree of censorship-

resistance, public accountability (e.g., in the context of DAO

multi-sigs), etc. Finally, recall that in some some settings, and

in the dishonestmajority setting that we address in particular,

implementation of a broadcast channel is impossible. Thus,

this blockchain assisted model implicitly outsource the

broadcast channel operation to an external entity.

1
This should not be interpreted as everything being perfect when using

a blockchain; rather, we argue that using a blockchain obscures these

problems away from the developer. Indeed, a block lacking a message from

a user does not necessarily mean the user did not send that message; for

example, the recent blockchain block’s validator/miner may have censored

that message.

In this new communication model every message, either

P2P or broadcast, is translated to a blockchain transaction,

which is inherently a broadcast message. Furthermore,

broadcasting on chain may entail significantly larger latency

than a plain broadcast that is implemented among the

parties. On the other hand, in such model all messages are

permanently public, which allows for publicly verifiable

protocols that encourages honesty of the parties. In addition,

all messages are available to the participants whenever they

are ready to consume them. This enables an easy recovery

and auditability by participants that experienced a temporary

offline period.

This necessitates the reassessment of the concept of

rounds – a crucial performance metric used to evaluate

protocols in the standard MPC model (without the aid of

blockchains). The number of rounds informally measures the

longest sequence of interdependent messages sent between

parties. In this modified model, each round consists of one

or more parties writing to the blockchain, followed by all

parties reading from it. Although one might assume that

this would typically involve decomposing each round into

two separate rounds, we must recognize that writing to a

blockchain is significantly more costly than reading, as it

necessitates consensus and updating a replicated state
2
.

As a result, our primary objective in this model is to

minimize the total number of messages, with a specific

focus on reducing the number of sequential writes, simply

referred to as ’writes’ hereafter. It is worth noting that

for all other threshold ECDSA protocols referenced in this

work, the number of writes is equivalent to the number

of rounds. However, this reduction does not apply to the

novel protocols presented in this work, highlighting the

importance of identifying a common performance metric.

Figure 1 illustrates the model we described. All parties are

connected via a slow write channel to the blockchain party

𝑃𝑐 , which also acts as a public bulletin board they can read

from (specifically, we assume 𝑃𝑐 has a public state anyone

can read from). Finally, being one of the computing parties,

𝑃𝑐 also maintains its own private state.

1.2 Our contributions
In this paper, we make the following main contributions:

• We introduce the concept of unstoppable wallets –

programmable threshold ECDSA wallets where the

counterparty co-signing transactions with the user (or

a set of users) is not a singular third-party we need to rely

on, but rather a confidential smart contract. In addition

to being completely programmable, these wallets ensures

liveness (on the counterparty’s perspective).

2
We note that writing to a blockchain may be more expensive than

broadcasting a message to a set of P2P connected group of participants,

as that group may implement a secure broadcast protocol that takes place

‘locally’, whereas writing to a blockchain is equivalent to broadcasting a

message ‘globally’.

2

Figure 1. Communication Model Illustrated

• We define a new model that encapsulates the use of a

confidential smart contract as both a party and the sole

(broadcast) communication channel in MPC protocols.

Such model exists in the real world; it has many practical

benefits to our application, and we believe it can find

interest by many other MPC protocols.

• We construct highly efficient threshold ECDSA protocols

(enough to run them inside a smart contract) that form

the basis of unstoppable wallets, and prove their security

under this model. Our protocols minimize the number

of write-complexity for threshold ECDSA key-generation

and signing to as low as one write per-party. We greatly

reduce communication and computation, and avoid the

use of expensive cryptographic primitives such as Paillier

encryption and costly zero knowledge proofs over Paillier

ciphertexts.

• Our protocols offer both fairness and robustness. We

achieve fairness with no additional overhead even for

𝑡 < 𝑛. We also achieve robustness in the sense that if 𝑡 + 1
parties agree to sign on a message (and hence participate

in the protocol faithfully), then they will obtain the signed

message.

• We implement these protocols as smart contracts in a

functioning blockchain and measure their real world

applicability in terms of gas costs and fees, and show they

can scale well even when considering many signers.

• To demonstrate programmability, we develop two

applications that showcase the applicability of unstoppable

wallets to a variety of use-cases that may not seem obvious

at a first glance.

1.3 Related Work
Our work builds upon the existing body of research on

concretely efficient threshold ECDSA protocols in the

dishonest majority setting. Previous works in this setting

can be grouped into several categories:

• Protocols using Paillier’s Homomorphic Encryption (HE)

with a small number of rounds but high computational

cost [11, 17, 35, 36, 49]. These also require expensive zero-

knowledge proofs over Paillier ciphertexts. Optimized

variants for the two-party variants also exist (e.g., [48, 67]).

• Replacing HE with class group-based schemes as in [18–

20], which improves the efficiency of zero-knowledge

proofs but not the number of rounds, while introducing

different assumptions on class groups of imaginary

quadratic fields.

• Oblivious transfer (OT)-based protocols [30, 31], that

reduce cryptographic assumptions and computational

overhead but increases round complexity.

• Protocols that are based on generic MPC; in particular in

such protocols multiplication triplets are pre-processed [1,

26]. These protocols typically increase the overall number

of rounds (and hence, the number of writes) and in some

cases introduce newer assumptions such as LPN or ring-

LPN [1].

In contrast to prior work, our protocol is designed to be

chain-friendly, meaning that we aim at reducing the number

of writes without resorting to heavyweight cryptographic

tools like HE and expensive zero-knowledge proofs that

are likely too inefficient to run in a constraint blockchain

environment.

Our protocol also achieves two often overlooked

properties for threshold ECDSA: fairness and robustness. The

current state-of-the-art honest majority threshold ECDSA

protocol by Damgard et al., [27] achieves fairness in six

writes, as opposed to 1-2 writes in our work, and by well-

known impossibility results, dishonest majority protocols

(without blockchain assistance) cannot hope to achieve

fairness at all [24, 25].

As to robustness, since the original work of Gennaro

et al., on threshold (EC)DSA for a super-honest majority

(𝑛 ≥ 4𝑡 + 1) more than two decades ago [37], most known

efficient protocols in the dishonest majority setting (e.g.,

[17, 35, 36, 49]) sacrifice robustness for additional efficiency

gains. These protocols move from threshold to additive secret

sharing as soon as pre-signing starts, leaving no room to

handle faults mid-execution. Recently, attempts to partially

address robustness have been proposed. Gagol et al. [34]

suggested a robust scheme which requires all parties to

participate honestly in the pre-signature phase, while others

proposed schemes with identifiable aborts instead (e.g., [17]

[20]). In a concurrent and independent work, Wong et al.,

[65] achieve a stronger notion of robustness they call ’self-

healing robustness’, where as long as the signers in the

online-phase are a subset of the signers in the pre-signature

phase, their scheme is either robust (for an honest majority)

or gracefully falls back to identifiable aborts otherwise. In

contrast, in this work we achieve the standard plain notion

of robustness, where signers in pre-signing and signing can

be disjoint.

3

For a comprehensive comparison of our work with the

existing literature, please refer to Table 1. Note that we

also describe a scenario unique to our work, where there

is a single signing party involved (i.e., 𝑛 = 1). This is an

interesting scenario, as it allows a single user to increase

their wallet security by having 𝑃𝑐 as a co-signer. Similarly,

some use cases, like wallet exchange, may make more sense

under this setting. However, for this scenario, we describe

a modified version of [48] and show that while it is less

efficient than our main protocol, it can still run on-chain.

Table 1. Comparison with related work

Protocol Parties Writes Messages Primitives Properties

LN18 [49] n 8 𝑂 (𝑛2) Paillier

CGGMP20 [17] n 4 𝑂 (𝑛2) Paillier IA

DKLS19 [31] n log(t) +

6

𝑂 (𝑛2) OT

BMP22 [10] n 4 𝑂 (𝑛) Paillier

CCLST20 [19] n 8 𝑂 (𝑛2) CL-HE

CGCL+23 [20] n 7 𝑂 (𝑛2) CL-HE IA,

Fairness

(Honest

Majority)

WMYC23 [65] n 5 𝑂 (𝑛2) Paillier Self-

healing

Lindell17 [48] 2 2 𝑂 (1) Paillier

XAXYC21 [67] 2 3 𝑂 (1) HE/OT

CCLST19 [18] 2 3 𝑂 (1) CL-HE

DKLS18 [30] 2 7 𝑂 (1) OT

This work n 1-2 𝑂 (𝑛) Group Fairness

This work n 1-2 𝑂 (𝑛2) Group Robustness

This work 1 1 𝑂 (1) Paillier

Table 2. Comparison with related work. For protocols that

support pre-signing – the number of writes consists of both

pre-sign and sign phase, ignoring amortization.

Other works address genericMPC with fairness and public

verifiability via bulletin boards (that can be implemented

with blockchains). Bentov et. al, Kumerasen et. al, and Baum

et. al [5, 9, 44, 45] achieve a revised form called ‘fairness with

penalties’ using gradual release mechanisms and deposits

using a blockchain. A similar mechanismwas used to achieve

fairness in exchanging digital goods []. Choudhuri et al. [24]

showed how to use blockchains to achieve the standard

notion of fairness (without penalties), by leveraging either

witness encryption, which is too expensive in practive, or

off-chain TEEs. Baum et al. and Rivinius et al. show how to

achieve public verifiablity and robustness using a public

bulletin board [4, 6, 54]. Similarly, a long line of works

of MPC-as-a-service systems inspired by blockchains have

emerged in recent years [7, 23, 28, 38–40, 50, 51, 63, 70, 71].

While they address how a blockchain can help with the

general MPC problem (or how MPC can add confidentiality

to blockchains), our work, as far as we know, showcases the

first threshold ECDSA protocol that effectively provides both

fairness and robustness, by relying on an external blockchain.

Finally, in contrast to all prior works we are aware of,

we are the first to introduce the concept of a (confidential)

smart contract, which have garnered significant interest in

recent years [2, 3, 8, 12, 13, 15, 22, 29, 33, 43, 46, 47, 57–

59, 66, 68, 69, 71], actively participating in an MPC protocol

alongside other parties.

2 Preliminaries
2.1 Notation
We use 𝜅 as a computational security parameter. For 𝑥,𝑦 ∈
{0, 1}∗ the expression 𝑥 | |𝑦 is the concatenation of 𝑥 and 𝑦.

Uniformly sampling a random value 𝑥 from a set𝑋 is denoted

by 𝑥 ← 𝑋 . The result of a probabilistic algorithm𝐴 on inputs

𝑥1, 𝑥2, . . . is written by 𝑥 ← 𝐴(𝑥1, 𝑥2, . . .); in addition, when

we want to explicitly mention the randomness used in the

algorithm we write 𝑥 = 𝐴(𝑥1, 𝑥2, . . . ; 𝑟). by (G,𝐺, 𝑞) we
denote the ECDSA elliptic curve group, its generator and its

order, respectively. For an element in the group 𝐻 ∈ G, we
write 𝐻.𝑥 to denote its 𝑥-coordinate.

2.2 The ECDSA Scheme and Functionality
The ECDSA scheme is defined by the following algorithms

(the group G,𝐺, 𝑞 is an implicit parameter in the algorithms):

• Gen(). Choose 𝑥 ← Z∗𝑞 and compute 𝑋 = 𝑥 ·𝐺 . Output 𝑥
as the private signing key and 𝑋 as the public verification

key.

• Sign(𝑥,𝑀). For a message 𝑀 ∈ {0, 1}∗, choose 𝑘 ← Z∗𝑞
and compute 𝑟 = (𝑘 · 𝐺).𝑥 mod 𝑞 and 𝑠 = 𝑘−1 (𝑚 + 𝑟𝑥)
mod 𝑞, where𝑚 = 𝐻𝑞 (𝑀) and𝐻𝑞 : {0, 1}∗ → Z𝑞 is a hash
function modeled as a random oracle. Output the signature

(𝑟, 𝑠).
• Verify(𝑋,𝑀, (𝑟, 𝑠)). For a message 𝑀 ∈ {0, 1}∗, compute

𝑚 = 𝐻𝑞 (𝑀) and output 1 iff (𝑚𝑠−1 ·𝐺+𝑟𝑠−1 ·𝑋).𝑥 mod 𝑞 =

𝑟 , otherwise output 0.

Indeed, if (𝑟, 𝑠) is computed correctly on𝑀 , then𝑚𝑠−1 ·𝐺 +
𝑟𝑠−1 · 𝑋 = 𝑚𝑠−1 · 𝐺 + 𝑟𝑥𝑠−1 · 𝐺 = (𝑚 + 𝑟𝑥)𝑠−1 · 𝐺 = (𝑚 +
𝑟𝑥)

(
𝑘−1 (𝑚 + 𝑟𝑥)

)−1 ·𝐺 = (𝑚+𝑟𝑥)𝑘 (𝑚+𝑟𝑥)−1 ·𝐺 = 𝑘 ·𝐺 = 𝑅

and so, projection to the 𝑥 coordinate results with 𝑅.𝑥 = 𝑟

as required.

The ECDSA functionality (Functionality 1) supports

two interfaces, the key-generation interface is called once,

followed bymany, calls to the sign interface.We note that our

robust protocol implements a slightly different functionality,

in which the gray text is omitted, in that functionality the

adversary does not get to decide on whether to forward

outputs to the parties or not.

2.3 Shamir Sharing and Lagrange Interpolation
Secret sharing enables a dealer to split a secret 𝑥 into 𝑛

pieces or shares, such that only a sufficiently large subset of

shares can be used to recover the secret. Shamir 𝑡-out-of-𝑛

4

FUNCTIONALITY 1.
(
The ECDSA Functionality: FECDSA

)
The functionality is parameterized with the ECDSA group

description (G,𝐺, 𝑞) as well as a threshold parameter 𝑡 , with

1 ≤ 𝑡 < 𝑛. The functionality works with parties 𝑃1, . . . , 𝑃𝑛 ,

𝑃𝑐 , and an adversary S as follows.

• Upon receiving (keygen) from all parties:

1. Generate an ECDSA key-pair (𝑋, 𝑥) by choosing a

random 𝑥 ← Z∗𝑞 and computing 𝑋 = 𝑥 ·𝐺 .
2. Choose a hash function 𝐻𝑞 : {0, 1} → {0, 1}⌊log𝑞⌋ .
3. If received (keygen, abort) from S then output ⊥ and

halt; otherwise, if received (keygen, continue) then
continue.

4. Store (𝐻𝑞, 𝑥), output 𝑋 to all parties, and ignore future

calls to keygen.
• Upon receiving (sign, sid, 𝑀) from 𝑃𝑐 and 𝑡 + 1 parties out
of {𝑃1, . . . , 𝑃𝑛}, if keygen was already called and sid was

not already used:

1. Choose a random 𝑘 ∈ Z∗𝑞 , compute 𝑅 ← 𝑘 · 𝐺 and let

𝑟 = 𝑅.𝑥 mod 𝑞; then send 𝑅 to all parties.

2. Let𝑚 = 𝐻𝑞 (𝑀). Compute 𝑠 ← 𝑘−1 (𝑚 + 𝑟𝑥) mod 𝑞.

3. If received (sign, sid, abort) from S then output ⊥ and

halt; otherwise, if received (sign, sid, continue) then
continue.

4. Send (𝑟, 𝑠) to all parties.

secret sharing over the field F (where 𝑡 < 𝑛 ∈ N) is defined
by a tuple of algorithms SSF = (Share,Reconstruct), where
[𝑥] = ([𝑥]1, . . . , [𝑥]𝑛) = Share𝑡,𝑛 (𝑥 ; 𝑟) denotes a sharing

of 𝑥 , and 𝑥 = Reconstruct([𝑥]𝑖1 , . . . , [𝑥]𝑖𝑡+1) denotes the

reconstruction using 𝑡 + 1 shares, which may result with

⊥ if the shares are inconsistent. See Section D for a full

description of Shamir sharing.

2.4 Schoenmakers’s Publicly Verifiable Random
Sharing Scheme

Verifiable secret sharing (VSS) enables a receiver to (1) check

in the dealing phase that the share received from the dealer

is consistent with a fully determined secret, and (2) check

in the reconstruction phase that the shares published by

other receivers are correct. Publicly VSS (PVSS) is a more

powerful tool that enables a receiver to check consistency

not only of its own share, but also all receivers’ shares;

furthermore, it enables an external party (who is not even

a receiver) to check that conditions (1) and (2) hold. While

information theoretic schemes for PVSS schemes have been

proposed [53], we use Schoenmakers’s scheme that is based

on the hardness of discrete logarithm, as it is the minimal

assumption in our context anyway. Specifically, we use

the special PVSS version in [55], in which the secret is

random, which allows using a simpler protocol.
3
Thus, in the

following we assume that 𝑥 is uniformly random from Z𝑞 .

3
When the secret 𝑥 is random it is possible for the dealer to publish 𝑥 ·𝐺 ,

whereas in case 𝑥 is not random the dealer has to publish a Pedersen

commitment 𝑥 · 𝐺 + 𝑟 · 𝐻 where 𝐻 is another generator of G for which

logG𝐻 is unknown.

Schoenmakers’s PVSS [55] over the group (G,𝐺, 𝑞) is
parameterized with the receivers’ encryption public keys,

namely, the 𝑖-th receiver is associatedwith El-Gamal key-pair

(ek𝑖 , dk𝑖) (see definition in Section G). Note that the scheme

could any encryption scheme, provided the existence of a

proper zero-knowledge proof, however, in our context the

El-Gamal scheme leads to a very simple implementation and

proof. The dealer invokes the zero-knowledge functionality

(see definition in Section H) with the relation

𝑅PVSS,𝑛,𝑡 =

{ (
{ek𝑖 , 𝑐𝑖 }𝑛𝑖=1, {𝐴 𝑗 }𝑡𝑗=0), ({𝑟𝑖 }𝑛𝑖=1, {𝑎 𝑗 }𝑡𝑗=0

)
s.t.

∀𝑛𝑖=1 : 𝑐𝑖 = EG.Enc

(
𝑡∑︁
𝑗=0

𝑖 𝑗 · 𝑎 𝑗 , 𝑟𝑖

)
∧ ∀𝑡𝑗=1 : 𝐴 𝑗 = 𝑎 𝑗 ·𝐺

}
.

That is, the claim is that 𝑐𝑖 is an encryption of 𝑃 (𝑖) =
∑𝑡

𝑗=0 𝑖
𝑗 ·

𝑎 𝑗 under the 𝑖-th public key ek𝑖 , where 𝑃 ′𝑠 coefficients are

log𝐺 (𝐴0), . . . , log𝐺 (𝐴𝑡). Note that given 𝐴 𝑗 ’s anyone can

compute 𝑄𝑖 = 𝑃 (𝑖) · 𝐺 by

∑𝑡
𝑗=0 𝑖

𝑗 · 𝐴 𝑗 , thus, interpretting

𝑐𝑖 = (𝐶𝑖,1,𝐶𝑖,2), this statement is reduced to the statement

that (𝑄𝑖 , 𝑋,𝐶𝑖,2 · (𝐶𝑖,1)−1) is a Diffie-Helman tuple, for every 𝑖 .

Indeed, the discrete logs are 𝑥, 𝑃 (𝑖) and 𝑥 · 𝑃 (𝑖), respectively.
There exists standard NIZK for that statement.

Then, the Schoenmakers’s scheme is defined

by the tuple of algorithms PVSS(G,𝐺,𝑞),{ek𝑖 }𝑖 =

(Share,Reconstruct,CheckDealer,CheckShare):
• ({𝑐𝑖 }𝑛𝑖=1, {𝐴 𝑗 }𝑡𝑗=0, 𝜋) ← Share𝑡,𝑛 (𝑥). Set 𝑎0 = 𝑥 and

pick 𝑎1, . . . , 𝑎𝑡 ∈ F and compute [𝑥] = {[𝑥]1, . . . , [𝑥]𝑛},
where [𝑥]𝑖 = 𝑃 (𝑖) and 𝑃 (𝑥) =

∑𝑗

𝑗=0
𝑎 𝑗 · 𝑥 𝑗

. Then,

pick 𝑟𝑖 ← Z∗𝑞 , compute 𝑐𝑖 = EG.Encek𝑖 ([𝑥]𝑖 , 𝑟𝑖) for
every 𝑖 ∈ [1, 𝑛], and compute 𝐴 𝑗 = 𝑎 𝑗 · 𝐺 for every

𝑗 ∈ [0, 𝑡]. Then, send (prove, sid, {ek𝑖 , 𝑐𝑖 , 𝑟𝑖 }𝑖 , {𝐴 𝑗 , 𝑎 𝑗 })
to F 𝑅PVSS

zk to obtain 𝜋 = (proof, sid, {ek𝑖 , 𝑐𝑖 }𝑖 , {𝐴 𝑗 }) and
output ({𝑐𝑖 }𝑛𝑖=1, {𝐴 𝑗 }𝑡𝑗=0, 𝜋).
• 𝑥 = Reconstruct([𝑥]𝑖1 , . . . , [𝑥]𝑖𝑡+1). Given 𝑡 + 1 shares

[𝑥]𝑖1 , . . . , [𝑥]𝑖𝑡+1 , where 1 ≤ 𝑖1 < 𝑖2 < . . . < 𝑖𝑡+1 ≤ 𝑛, for
which CheckShare({𝐴 𝑗 }, [𝑥]𝑖𝑘) = 1 for all 𝑘 ∈ [1, 𝑡 + 1],
interpolate a polynomial 𝑃 such that 𝑃 (𝑖𝑘) = [𝑥]𝑖𝑘 for all

𝑘 ∈ [1, 𝑡 + 1] and output 𝑥 = 𝑃 (0).
• 𝑏 ← CheckDealer({𝑐𝑖 }𝑛𝑖=1, {𝐴 𝑗 }𝑡𝑗=0 × ł𝜋). Output 𝑏 = 1 iff

𝜋 = (proof, sid, {ek𝑖 , 𝑐𝑖 }𝑖 , {𝐴 𝑗 }), and 𝑏 = 0 otherwise.

• 𝑏 ← CheckShare({𝐴 𝑗 }𝑡𝑗=0, [𝑥]𝑘). For 𝑘 ∈ Z∗𝑞 , output 𝑏 = 1

iff [𝑥]𝑘 ·𝐺 =
∑𝑡

𝑗=0 𝑘
𝑗 · 𝐴 𝑗 , and 𝑏 = 0 otherwise.

The scheme is a secure publicly verifiable secret sharing if

the DDH problem is hard relative to (G,𝐺, 𝑞).

2.5 Confidential Smart Contracts
A blockchain is a decentralized, distributed ledger that

records transactions across a network of nodes, ensuring

data integrity and transparency. Smart contracts are a

fundamental component of many blockchain platforms,

enabling users to automate the execution of agreements

and facilitate trustless interactions between parties. These

5

self-executing, deterministic
4
programs provide correctness

by ensuring that the code executes exactly as programmed

without downtime, censorship, fraud, or third-party

interference. However, traditional smart contracts do not

inherently provide privacy, as their logic and data are visible

to all network participants.

To address this issue, privacy-preserving blockchains

have been developed (e.g., [22, 46, 68, 71]), which enable

executing confidential smart contracts. This means that these

blockchains inherently hide sensitive input data fed into

contracts, persistent state data, and depending on the use

case, hide the output as well, even from the servers operating

the chain. To date, privacy-preserving blockchains that have

been deployed in production leverage Trusted Execution

Environments (TEEs). Attesting to their usefulness in

practice, a recent survey paper has identified and examined

17 such blockchains [46]. In their paper, the authors review

different design choices regarding how these blockchains are

built in practice. They identify systems where the contract

execution happens on-chain (e.g., [13, 56]), or off-chain (e.g.,

[22, 68]), in a permissioned setting, or a permissionless

one. These design choices show that different trade-offs

exists in terms of the guarantees these systems provide

(for example, in terms of liveness, correctness and privacy).

While these details are clearly important when implementing

and deploying our schemes in practice, we observe that our

suggested model of reducing these blockchains to a single

semi-honest and non-colluding coordinating party, neatly

captures all of these systems. In Section 7, we cover a specific

implementation under one of these blockchains, and the

concrete design choices and challenges we had to overcome

in practice.

3 Threshold ECDSA Protocol
As explained in Section 1.3, current threshold ECDSA

protocols require the use of expensive primitives (like HE or

OT) and require at the very least four rounds of interactions,

which in our model, translate to four consecutive writes to

the blockchain. That kind of latency, and more importantly,

the implied requirement from each user to sign four

transactions in a row in order to produce a signature is too

burdensome in practice.

In-line with our goals, we seek to construct a protocol that

would be chain-friendly, and would only require each party

to write once (which can also be done non-interactively).

As in our model the blockchain is modeled as an additional

semi-honest and non-colluding party, denoted 𝑃𝑐 , we take

a different approach and leverage techniques from honest-

majority MPC even though the adversary may corrupt the

majority of the parties 𝑃1, . . . , 𝑃𝑛 . We do this by assigning 𝑛

shares to the parties, and 𝑡 additional shares are held by 𝑃𝑐 ,

4
In our context, we require the contract to be non-deterministic in order to

sample random values, a challenge we address in our implementation.

for a total of 𝑁 = 𝑛 + 𝑡 shares. Our protocol ensures that as
long as there are 𝑡 + 1 honest signers they will generate a

valid signature; otherwise, no information is revealed.

In that sense, our protocol resembles the one by

Damgard et al. [27], which is secure in the honest majority

setting; However, we make significant changes to their

protocol, greatly improving the number of writes and the

communication costs. In particular, our protocol operates

with a single write (or at most two writes per party) for

signing, whereas their protocol requires six writes (or four

writes without fairness, which we obtain anyway).

For readability reasons, in the protocols below we write

that 𝑃𝑖 sends 𝑃 𝑗 a message although it is understood that 𝑃𝑖
only communicates through 𝑃𝑐 . That is, 𝑃𝑖 sends a ciphertext

to 𝑃𝑐 under 𝑃 𝑗 ’s encryption key, and then 𝑃 𝑗 decrypts that

message (implicitly implying PKI).

3.1 Key Generation
Our key generation protocol (Protocol 2) begins with a

standard joint random secret sharing generation protocol

having two dealers: 𝑃1 and 𝑃𝑐 . Given that the blockchain

is semi-honest and non-colluding, we can avoid a more

expensive coin-tossing protocol. This is a recurring theme

we use in all of our protocols. After both 𝑃1 and 𝑃𝑐 deal their

shares, each party computes their final share of the secret key

[𝑥]𝑖 and sends their share of the public key (𝑋𝑖 := [𝑥]𝑖 ·𝐺)
to 𝑃𝑐 . Finally, 𝑃𝑐 ensures that all shares of the public key are

consistent by interpolating in the exponent. If any of the

parties cheated, it aborts, otherwise it sends the generated

public key 𝑋 to all parties, which concludes the protocol

successfully.

3.2 Signing Protocol
Similarly to key generation, the signature protocol (Protocol

3) begins with a two-dealer random secret-sharing protocol

between 𝑃1 and 𝑃𝑐 , who jointly generate all required

randomness for a single execution. These include 𝑡-sharings

of fresh random values 𝑘, 𝑎, and 2𝑡-sharings of zero, denoted

as 𝑧, 𝑧′. Intuitively, 𝑘 is the usual ECDSA nonce produced

for every signature, and the other values are used internally

to mask 2𝑡-shares that are the product of two 𝑡-shares. For

concrete efficiency, the protocol does not check consistency

of any of these values. In fact, it may even be that the parties

hold inconsistent sharings, or that 𝑅 ≠ [𝑘] ·𝐺 . In the proof

we show that the adversary cannot learn anything even if it

cheats, and so it can only cause an abort.

After the parties obtain these sharings and 𝑟 := 𝑅.𝑥 , they

can locally compute their share of 𝑠1, 𝑠2, such that [𝑠1]𝑖 :=
[𝑎]𝑖 (𝑚 + 𝑟 [𝑥]𝑖) − [𝑧]𝑖 mod 𝑞 and [𝑠2]𝑖 := [𝑘]𝑖 [𝑎]𝑖 − [𝑧′]𝑖
mod 𝑞. Notice that each 𝑠1 and 𝑠2 has a multiplicative depth

of one, meaning that the resulting shares are lifted from a

degree 𝑡 polynomial to a degree 2𝑡 one. Furthermore, as these

shares may no longer be properly random, each party also

uses their share of 𝑧, 𝑧′ to rerandomize their resulting shares.

6

PROTOCOL 2.
(
Key-Generation: KeyGen

)
1. Users’ dealing:
a. Party 𝑃1 samples a random 𝑥𝑢 ← Z𝑞 .
b. Party 𝑃1 computes [𝑥𝑢] ← SS.Share(𝑥𝑢 , 𝑡, 𝑁).
c. Party 𝑃1 sends [𝑥𝑢]𝑖 to 𝑃𝑖 for all 𝑖 ∈ [1, 𝑛] and [𝑥𝑢]𝑖 to
𝑃𝑐 for all 𝑖 ∈ [𝑛 + 1, 𝑁].

2. Center’s dealing:
a. Party 𝑃𝑐 samples a random 𝑥𝑐 ← Z𝑞 .
b. Party 𝑃𝑐 computes [𝑥𝑐] ← SS.Share(𝑥𝑐 , 𝑡, 𝑁), and

sends [𝑥𝑐]𝑖 to 𝑃𝑖 for 𝑖 ∈ [1, 𝑛].
3. Compute key share:
a. For each 𝑗 ∈ 𝑛 + 1, ..., 𝑁 , 𝑃𝑐 computes [𝑥] 𝑗 = [𝑥𝑢] 𝑗 +
[𝑥𝑐] 𝑗 mod 𝑞 and 𝑋 𝑗 ← [𝑥] 𝑗 ·𝐺 .

b. Each party 𝑃𝑖 (𝑖 ∈ [1, 𝑛]) computes [𝑥]𝑖 = [𝑥𝑢]𝑖 + [𝑥𝑐]𝑖
mod 𝑞 and 𝑋𝑖 = [𝑥]𝑖 ·𝐺 .

c. Each party 𝑃𝑖 (𝑖 ∈ [1, 𝑛]) sends 𝑋𝑖 to 𝑃𝑐 .
4. Public key:
a. Let 𝑃 be the polynomial defined by the 𝑡 + 1

points (𝑛, [𝑥]𝑛), (𝑛 + 1, [𝑥]𝑛+1) . . . , (𝑁, [𝑥]𝑁), and let

𝜆
𝑗
𝑛, 𝜆

𝑗

𝑛+1, . . . , 𝜆
𝑗

𝑁
be the Lagrange coefficients s.t. 𝑃 (𝑗) =∑𝑁

𝑘=𝑛
𝜆
𝑗

𝑘
· [𝑥]𝑘 .

b. Party 𝑃𝑐 verifies that the keys are consistent: For every

𝑗 ∈ [1, 𝑛 − 1] compute 𝑋 ′
𝑗
= 𝑃 (𝑗) · 𝐺 =

∑𝑁
𝑘=𝑛

𝜆
𝑗

𝑘
· 𝑋𝑘 ,

then, abort if 𝑋 ′
𝑗
≠ 𝑋 𝑗 .

c. Othrewise (if all key shares are consistent) 𝑃𝑐

broadcasts the public key 𝑋 = 𝑃 (0) ·𝐺 =
∑𝑁
𝑘=𝑛

𝜆0
𝑘
·𝑋𝑘 .

Finally, each party sends ([𝑠1]𝑖 , [𝑠2]𝑖) to 𝑃𝑐 . After receiving
𝑡 +1 shares, 𝑃𝑐 can itself generate additional 𝑡 shares of these

values, and having 2𝑡 + 1 total shares of each, reconstruct
𝑠1, 𝑠2 to obtain the final 𝑠 := 𝑠1 · 𝑠−12

mod 𝑞. Finally, if (𝑟, 𝑠)
is a valid signature, 𝑃𝑐 sends it to all parties.

It should be clear that the protocol takes only a single

write (for producing the signature) by each party. The only

exception is the dealer 𝑃1, who needs to write twice (and can

be pre-processed).

Fairness. Our protocol provides fairness, since we make

sure that the first party to see a valid signature is 𝑃𝑐 , which

we know follows the protocol. Therefore, if 𝑃𝑐 releases

the signature to others, then we know it is indeed a valid

signature.

We prove the following theorem in Section C.1.

Theorem 3.1. Protocols 2-3 securely compute the ECDSA

functionality (Functionality 1) with perfect security with abort,

against a static malicious adversary who corrupts at most

𝑡 parties (which are the majority) of {𝑃1, . . . , 𝑃𝑛} or a semi-

honest adversary who corrupts 𝑃𝑐 .

Security follows since we can perfectly simulate the

adversary’s view by picking random values for its shares.

One challenge is to align all parties’ shares (those of the

adversary as well as those of the honest parties) with the

values obtained in from the ECDSA functionality (like the

public key 𝑋 , the random nonce 𝑅 and the signature 𝑠), in

which case we first make sure that the adversary’s share are

consistent with the those values, and then ‘interpolate’ the

PROTOCOL 3.
(
Signing: Sign (𝑀, (G,𝐺, 𝑞), sid)

)
Inputs.

1. Each party 𝑃𝑖 , 𝑖 ∈ [1, 𝑛], holds ([𝑥]𝑖 , 𝑋).
2. Party 𝑃𝑐 holds 𝑋 and [𝑥]𝑖 for all 𝑖 ∈ [𝑛 + 1, 𝑁].
3. The parties Compute𝑚 = 𝐻𝑞 (𝑀) and verify that sid

has not been used before (otherwise the protocol is

not executed).

The protocol.
1. Users’ dealing:
a. Party 𝑃1 samples a random 𝑘𝑢 , 𝑎𝑢 ← Z𝑞 .
b. Party 𝑃1 computes [𝑘𝑢] ← SS.Share(𝑘𝑢 , 𝑡, 𝑁) and
[𝑎𝑢] ← SS.Share(𝑎𝑢 , 𝑡, 𝑁).

c. Party 𝑃1 computes [𝑧𝑢] ← SS.Share(0, 2𝑡, 𝑁) and
[𝑧′𝑢] ← SS.Share(0, 2𝑡, 𝑁).

d. Party 𝑃1 sends ([𝑘𝑢]𝑖 , [𝑎𝑢]𝑖 , [𝑧𝑢]𝑖 , [𝑧′𝑢]𝑖) to party 𝑃𝑖
where 𝑖 ∈ [1, 𝑛] and to 𝑃𝑐 where 𝑖 ∈ [𝑛 + 1, 𝑁].

e. Party 𝑃1 sends 𝑅𝑢 = 𝑘𝑢 ·𝐺 to 𝑃𝑐 .

2. Center’s dealing:
a. Party 𝑃𝑐 computes 𝑘𝑐 = H(𝑥𝑐 ∥sid).
b. Party 𝑃𝑐 samples a random 𝑎𝑐 ← Z𝑞 .
c. Party 𝑃𝑐 computes [𝑘𝑐] ← SS.Share(𝑘𝑐 , 𝑡, 𝑁) and
[𝑎𝑐] ← SS.Share(𝑎𝑐 , 𝑡, 𝑁).

d. Party 𝑃𝑐 computes [𝑧𝑐] ← SS.Share(0, 2𝑡, 𝑁) and
[𝑧′𝑐] ← SS.Share(0, 2𝑡, 𝑁).

e. 𝑃𝑐 sends ([𝑘𝑐]𝑖 , [𝑎𝑐]𝑖 , [𝑧𝑐]𝑖 , [𝑧′𝑐]𝑖) to party 𝑃𝑖 for 𝑖 ∈
[1, 𝑛].

f. 𝑃𝑐 sends 𝑅 = 𝑘𝑐 ·𝐺 + 𝑅𝑢 to everyone.

3. Partial signature.
a. Every party 𝑃𝑖 for 𝑖 ∈ [1, 𝑛], and 𝑃𝑐 for 𝑖 ∈ [𝑛 + 1, 𝑁]:

i. Computes [𝛼]𝑖 = [𝛼𝑢]𝑖 + [𝛼𝑐]𝑖 mod 𝑞, for 𝛼 ∈
{𝑘, 𝑎, 𝑧, 𝑧′}.

ii. Computes [𝑠1]𝑖 = [𝑎]𝑖 (𝑚 + 𝑟 [𝑥]𝑖) − [𝑧]𝑖 mod 𝑞 and

[𝑠2]𝑖 = [𝑘]𝑖 [𝑎]𝑖 − [𝑧′]𝑖 mod 𝑞.

b. 𝑃𝑖 for 𝑖 ∈ [1, 𝑛] sends (𝑚, [𝑠1]𝑖 , [𝑠2]𝑖) to 𝑃𝑐 .
4. Finalization. Upon receiving 𝑡 + 1 messages,

{(𝑚, [𝑠1]𝑖 𝑗 , [𝑠2]𝑖 𝑗)}𝑡+1𝑗=1
, party 𝑃𝑐 :

a. Computes 𝑠1 = SS.Reconstruct({[𝑠1]𝑖 𝑗 }𝑡+1𝑗=1
, {[𝑠1] 𝑗 }𝑁𝑗=𝑛+1)

and 𝑠2 = SS.Reconstruct({[𝑠2]𝑖 𝑗 }𝑡+1𝑗=1
, {[𝑠2] 𝑗 }𝑁𝑗=𝑛+1).

b. Computes 𝑠 = 𝑠1 · 𝑠−1
2

mod 𝑞.

c. Broadcasts (𝑟, 𝑠) if it is a valid signature on MSG,
otherwise it broadcasts ⊥.

other parties’ shares to reside on the same, fully determined,

polynomial. Another challenge is that 𝑃𝑢 picks a secret

and shares it first (before this is done by 𝑃𝑐), however,

when simulating 𝑃𝑐 we need to know 𝑃𝑐 ’s secret (be it

𝑥𝑐 in the key generation protocol or 𝑘𝑐 in the signing

protocol) before simulating 𝑃𝑢 ’s dealing. To this end, in the

protocol we instruct 𝑃𝑐 to derive its secret fromH , which

is modeled as a random oracle that is programmable by the

simulator. Interestingly, since 𝑃𝑐 is semi-honest (and follows

the protocol) we can program the random oracle apriori.

That is, we can choose the secret values 𝑥𝑐 and 𝑘𝑐 on behalf

of 𝑃𝑐 even before it queried the random oracle for them. This

was not possible if 𝑃𝑐 is malicious, since 𝑃𝑐 could have query

the random oracle multiple times (or not at all), and the

7

simulator could not know which one was the right one (if at

all).

From ROM to the standard model. We stress that the

protocol can be described in a way that is secure in the

standard model, without the random oracle, by having 𝑃𝑐
commit to a PRF key as a first step in the key generation

protocol, and then this PRF can be used as a random oracle.

The simulator extracts that PRF key, as it takes the role of

the commitment functionality, and can reproduce any value

that 𝑃𝑐 produces during the protocol.

4 Robust Threshold ECDSA
Note that Protocols 2 and 3 are fair, but not robust. They

are fair because either all or none of the parties 𝑃1, . . . , 𝑃𝑛
obtain the result verification key 𝑋 and signatures. However,

robustness is not guaranteed, that is, if 𝑃1 cheats in its dealing

then the protocols abort and the parties will not learn the

public key or signatures. We can overcome that by using

a publicly verifiable secret sharing (cf. Section 2.4) in two

different approaches: (1) Let 𝑃1 be the only dealer (apart from

𝑃𝑐) as before, and if it cheats, repeat with 𝑃2 as the dealer,

and so on. This process will end by at most 𝑡 + 1 writes, as at
least one of 𝑃1, . . . , 𝑃𝑡+1 is honest; (2) Let all 𝑃1, . . . , 𝑃𝑡+1 be
dealers simultaneously which ensures that by one write this

dealing is complete. While optimistically the first approach

entails only one party to write to the blockchain, and hence

the overall protocol’s message complexity is 𝑂 (𝑛) (i.e., we
consider 𝑃𝑖 sending a share to 𝑃 𝑗 as one message), in the

worst case there are𝑂 (𝑡) rounds and𝑂 (𝑛2) messages. In the

second approach there is still 𝑂 (𝑛2) messages, but they are

all happen in parallel and so this approach is completed in

one round. Protocols 4 and 5 follow the second approach.

Note that ensuring correctness of sharing is not sufficient

for robustness - one has to make sure that the computation

of 𝑠1 = 𝑎(𝑚 + 𝑟𝑥) and 𝑠2 = 𝑘𝑎 of the partial signatures by

each party are computed correctly. Since these values are

the result of a non-linear function, they could not be verified

against existing values, 𝑚, 𝑟,𝐴, 𝐾 and 𝑋 , that are already

public. To this end, the parties provide additional auxiliary

information𝑀1 and𝑀2, such that𝑀1 = log(𝐴) · log(𝑋) ·𝐺
and𝑀2 = log(𝐴) · log(𝐾) ·𝐺 , then, everyone can check that

𝑠1 and 𝑠2 are computed correctly by verifying the equalities

𝑠1 ·𝐺 = 𝑟 ·𝑀1+𝑚 ·𝐴 and 𝑠2 ·𝐺 = 𝑀2. The last piece is verifying

that𝑀1 and𝑀2 are indeed computed correctly. This can be

done by having the parties provide a simple zero-knowledge

proof that (𝐴,𝑋,𝑀1) and (𝐴,𝐾,𝑀2) are Diffie-Helman tuples

(DHT), where the DHT relation is defined by

𝑅DHT = {(𝐴, 𝐵,𝐶) s.t. 𝑎 = log(𝐴), 𝑏 = log(𝐵), 𝑎𝑏 = log(𝐶)} .
Note that we use PVSS for the computation of 𝑃𝑐 even

though it is not needed as 𝑃𝑐 is semi-honest, we do this as

the interface already gives us the public values required for

the messages of parties 1, . . . , 𝑛 to be publicly verified.

We prove the following in Section C.2.

Theorem 4.1. Assuming the the decisional Diffie-Helman

(DDH) problem is hard relative to (G,𝐺, 𝑞), Protocols 4 and
5 securely compute the ECDSA functionality (Functionality

1) with guaranteed outupt delivery, against a static malicious

adversary who corrupts at most 𝑡 parties (which is the majority

of) of {𝑃1, . . . , 𝑃𝑛} or a semi-honest adversary who corrupts

𝑃𝑐 .

In addition to the challenges aforementioned above for the

non-robust protocol, which we solve in the same way here,

simulating the robust protocol introduces a new challenge

because the use of Shoenmakers’s PVSS scheme, which

involves El-Gamal encryptions. This extra challenge is

introduced only when 𝑃𝑐 is corrupted, since when it is not

(and we are in the first case in which a subset of 𝑃1, . . . , 𝑃𝑛 are

corrupted, and so the simulator simulates message arriving

from 𝑃𝑐) the simulator has to simulate only 𝑃𝑐 ’s messages,

which are not publicly verifiable, but are guaranteed to be

correct due to the fact that 𝑃𝑐 behaves honestly, thus, there

is no need to simulate encryptions of unknown plaintexts. In

contrast, when 𝑃𝑐 is corrupted, we need to simulate publicly

verifiable messages from parties 𝑃1, . . . , 𝑃𝑡+1, let’s focus on
one of them, 𝑃𝑢 . Then, in the key generation, the simulator

knows the public key 𝑋 (as received from the ECDSA

functionality) as well as the complementary part of the public

key𝑋𝑐 (which is extracted by the technique described above),

therefore the simulator knows 𝑋𝑢 = 𝑋 − 𝑋𝑐 . However, for a

perfect simulation the simulator has to share 𝑥𝑢 = log(𝑋𝑢)
using the PVSS scheme. Now, in contrast to the non-publicly

verifiable secret sharing in which each receiver receives its

own share only, in PVSS the dealer has to broadcast the

encryptions of all shares under their respective key, and

prove that they are consistent with the commitment of the

polynomial. In our case, the simulator does not know 𝑥𝑢 and

so it cannot produce a polynomial 𝑃 s.t. 𝑃 (0) = 𝑥𝑢 . Instead of
providing encryptions of the shares 𝑃 (1), . . . , 𝑃 (𝑁), which
are obviously unknown to the simulator, the simulator

picks random shares [𝑥𝑢]𝑛+1, . . . , [𝑥𝑢]𝑁 intended for 𝑃𝑐 and

encrypts those correctly. Then, the simulator produces the

commitment to the polynomial 𝐴0, . . . , 𝐴𝑡 , where 𝐴0 = 𝑋𝑢

since the polynomial must evaluate to 𝑥𝑢 at 0, and the

values 𝐴1, . . . , 𝐴𝑡 are computed from the linear system with

𝑡 equations and 𝑡 variables, where the 𝑗-th equation is∑𝑡
𝑗=0 𝑖

𝑗 ·𝐴 𝑗 = [𝑥𝑢]𝑖 ·𝐺 . By solving that system the simulator

obtains 𝐴1, . . . , 𝐴𝑡 and so it has all information required to

make all 𝑃𝑐 ’s values be consistent with 𝑋 and 𝑋𝑐 . Finally, for

the encryptions of parties 𝑃1, . . . , 𝑃𝑛 , that are also sent to 𝑃𝑐 ,

the simulator simply encrypts the value 0 ∈ Z𝑞 , which is

indistinguishable from an encryption of the actual value 𝑃 (𝑖)
that should have been encrypted, from the CPA-security of

El-Gamal.

8

PROTOCOL 4.
(
Robust Key-Generation: KeyGen

)
1. User’s dealing: Every 𝑃ℓ , (ℓ ∈ {1, . . . , 𝑡 + 1}):
a. Samples 𝑥ℓ ← Z𝑞 and computes and broadcasts

({𝑐ℓ𝑖 }
𝑁
𝑖=1, {𝐴

ℓ
𝑗 }
𝑡
𝑗=0, 𝜋

ℓ) ← PVSS.Share𝑡,𝑁 (𝑥ℓ) .
b. Let 𝑢 ∈ [1, 𝑡 + 1] be the first index for which

1 = PVSS.CheckDealer({𝑐𝑢𝑖 }
𝑁
𝑖=1, {𝐴

𝑢
𝑗 }

𝑡
𝑗=0, 𝜋

𝑢) .

Denote these values by {𝑐𝑖 }𝑁𝑖=1, {𝐴 𝑗 }𝑡𝑗=0 (i.e., dropping
the supertext 𝑢)

2. Center’s dealing:
a. 𝑃𝑐 computes [𝑥𝑐] ← SS.Share𝑡,𝑁 (𝑥𝑐) for 𝑥𝑐 ← H(𝑥)

where 𝑥 ← {0, 1}𝜅 .
b. 𝑃𝑐 sends [𝑥𝑐]𝑖 to 𝑃𝑖 for 𝑖 ∈ [1, 𝑛].
c. 𝑃𝑐 broadcasts 𝑋 = 𝑥𝑐 · 𝐺 + 𝐴0 and 𝑋𝑖 = [𝑥𝑐]𝑖 · 𝐺 +∑𝑡

𝑗=0 𝑖
𝑗 · 𝐴 𝑗 for 𝑖 ∈ [1, 𝑛].

3. Compute secret key shares: Each party 𝑃𝑖 computes

[𝑥𝑢]𝑖 = EG.Decdk𝑖 (𝑐𝑖) and [𝑥]𝑖 = [𝑥𝑢]𝑖 + [𝑥𝑐]𝑖 mod 𝑞.

5 A Solution for a Single User
So far the chain-assisted protocols were designed to support

a group of signers, but are not extended to the case in which

there is only one signer. To see this, observe that for the

smallest possible threshold 𝑡 = 1, we need at least two

parties that are not 𝑃𝑐 . We therefore need to utilize a different

protocol between the user and 𝑃𝑐 directly. This reduces to a

two-party ECDSA protocol between a user 𝑃𝑢 and 𝑃𝑐 . One of

the current state of the art protocols for two-party ECDSA is

that of Lindell’s [48]. Luckily, when taking into account that

our model allows for one of the parties to be semi-honest, we

can gain some performance improvements for this setting

as well, discussed shortly.

First note that the functionality is a bit different than a

typical 2PC ECDSA: since 𝑃𝑐 is only an assistant, party 𝑃𝑢 is

the only one who can ask for key generation or signatures.

The formal description appears in Functionality 8 (Section

E). Second, note that we employ the same technique for

extracting 𝑃𝑐 ’s secret inputs 𝑥𝑐 , 𝑘𝑐 as done in the multiparty

protocols above. As explained, however, this technique

can be replaced with a standard model technique using a

commitment on a PRF key. Third, since 𝑃𝑐 is semi-honest

in our model, and so it is guaranteed to choose its nonce

randomly and independently of 𝑃𝑢 ’s message, which is not

the case in Lindell’s protocol. This way, in our model the

two-party protocol enjoys non-interactive signing, or in other

words, requires only one write. As briefly discussed below,

that fact also enables simulation of both parties without

the additional non-standard ‘Paillier-EC’ assumption that

is used in [48]. The reason for that is that we assign 𝑃𝑐 the

role of the party who performs the linear evaluation on the

encryption of 𝑃𝑢 ’s secret key share (𝑐𝑘𝑒𝑦). Now, since 𝑃𝑐
follows the protocol’s description, it is guaranteed to not

cheat and produce an encryption of (𝑘𝑐)−1 (𝑚 + 𝑥𝑟) exactly
as described. This removes the need of (1) guessing whether

𝑃𝑐 will abort or not, (2) adding an expensive zero-knowledge

PROTOCOL 5.
(
Robust Signing: Sign (𝑀, (G,𝐺, 𝑞), sid)

)
Inputs.

1. Each party 𝑃𝑖 , 𝑖 ∈ [1, 𝑛], holds ([𝑥]𝑖 , 𝑋).
2. Party 𝑃𝑐 holds 𝑋 and [𝑥]𝑖 for all 𝑖 ∈ [𝑛 + 1, 𝑁].
3. The parties Compute𝑚 = 𝐻𝑞 (𝑀) and verify that sid

has not been used before (otherwise the protocol is

not executed).

The protocol.
1. User’s dealing: Every 𝑃ℓ , (ℓ ∈ {1, . . . , 𝑡 + 1}):
a. Samples 𝑘ℓ , 𝑎ℓ ← Z𝑞 and computes and broadcasts

({𝑐ℓ
𝑘,𝑖
}𝑁𝑖=1, {𝐾

ℓ
𝑗 }

𝑡
𝑗=0, 𝜋

ℓ
𝑘
) ← PVSS.Share𝑡,𝑁 (𝑘ℓ),

({𝑐ℓ𝑎,𝑖 }
𝑁
𝑖=1, {𝐴

ℓ
𝑗 }
𝑡
𝑗=0, 𝜋

ℓ
𝑎) ← PVSS.Share𝑡,𝑁 (𝑎ℓ),

({𝑐ℓ𝑧,𝑖 }
𝑁
𝑖=1, {𝑍

ℓ
𝑗 }

𝑡
𝑗=0, 𝜋

ℓ
𝑧) ← PVSS.Share2𝑡,𝑁 (0),

({𝑐ℓ𝑧′,𝑖 }
𝑁
𝑖=1, {𝑍

′ℓ
𝑗 }𝑡𝑗=0, 𝜋

ℓ
𝑧′) ← PVSS.Share2𝑡,𝑁 (0) .

b. Let 𝑢 ∈ [1, 𝑡 + 1] be the first index for which
1 = PVSS.CheckDealer({𝑐𝑢𝛼,𝑖 }

𝑁
𝑖=1, {𝛼

𝑢
𝑗 }

𝑡
𝑗=0, 𝜋

𝑢
𝛼)

for all 𝛼 ∈ {𝑘, 𝑎, 𝑧, 𝑧′}.
2. Center’s dealing:
a. 𝑃𝑐 computes 𝑘𝑐 = H(𝑥𝑐 ∥sid), samples 𝑎𝑐 ← Z𝑞

and computes [𝑘𝑐] ← SS.Share𝑁,𝑡 (𝑘𝑐), [𝑎𝑐] ←
SS.Share𝑁,𝑡 (𝑎𝑐), [𝑧𝑐] ← SS.Share𝑁,2𝑡 (0), and [𝑧′𝑐] ←
SS.Share𝑁,2𝑡 (0)

b. 𝑃𝑐 sends ([𝑘𝑐]𝑖 , [𝑎𝑐]𝑖 , [𝑧𝑐]𝑖 , [𝑧′𝑐]𝑖) to 𝑃𝑖 for 𝑖 ∈ [1, 𝑛]
c. 𝑃𝑐 broadcasts 𝐾 = 𝑘𝑐 ·𝐺 +𝐾𝑢

0
and (𝐾𝑖 , 𝐴𝑖 , 𝑍𝑖 , 𝑍 ′𝑖) for all

𝑖 ∈ [1, 𝑛], where 𝐸𝑖 = [𝑒𝑐]𝑖 ·𝐺 +
∑𝑡

𝑗=0 𝑖
𝑗 · 𝐸 𝑗 for every

(𝐸, 𝑒) ∈ {(𝐾,𝑘), (𝐴, 𝑎), (𝑍, 𝑧), (𝑍 ′, 𝑧′)}.
3. Local computation.
a. 𝑃𝑖 (𝑖 ∈ [1, 𝑁]) computes [𝛼]𝑖 = [𝛼𝑢]𝑖 + [𝛼𝑐]𝑖 mod 𝑞

for 𝛼 ∈ {𝑘, 𝑎, 𝑧, 𝑧′}, where [𝛼𝑢]𝑖 = EG.Decdk𝑖 (𝑐𝑢𝛼,𝑖).
b. 𝑃𝑖 (𝑖 ∈ [1, 𝑁]) computes [𝑠1]𝑖 = [𝑎]𝑖 (𝑚 + 𝑟 [𝑥]𝑖) − [𝑧]𝑖

mod 𝑞 and [𝑠2]𝑖 = [𝑘]𝑖 [𝑎]𝑖 − [𝑧′]𝑖 mod 𝑞.

c. 𝑃𝑖 (𝑖 ∈ [1, 𝑛]) computes 𝑀𝑖,1 = ([𝑎]𝑖 · [𝑥]𝑖) · 𝐺 and

𝑀𝑖,2 = ([𝑎]𝑖 · [𝑘]𝑖) ·𝐺 .
d. Everyone computes 𝑟 = 𝐾.𝑥 mod 𝑞.

4. Partial signature.
a. 𝑃𝑖 (𝑖 ∈ [1, 𝑛]) sends (prove, sid∥1, 𝐴𝑖 , 𝑋𝑖 , 𝑀𝑖,1, 𝑎𝑖 , 𝑥𝑖)

and (prove, sid∥2, 𝐴𝑖 , 𝐾𝑖 , 𝑀𝑖,2, 𝑎𝑖 , 𝑘𝑖) to F 𝑅𝐷𝐻𝑇

zk .

b. 𝑃𝑖 (𝑖 ∈ [1, 𝑛]) sends (𝑚, [𝑠1]𝑖 , [𝑠2]𝑖 , 𝑀1, 𝑀2) to 𝑃𝑐 .
5. Finalization. Upon receiving at least 𝑡 + 1 messages

(𝑚, [𝑠1]𝑖 , [𝑠2]𝑖 , 𝑀𝑖,1, 𝑀𝑖,2) for which [𝑠1]𝑖 · 𝐺 = 𝑟 ·
𝑀𝑖,1 + 𝑚 · 𝐴𝑖 − 𝑍𝑖 , [𝑠2]𝑖 · 𝐺 = 𝑀𝑖,2 − 𝑍 ′𝑖 , and proofs

(proof, sid∥1, 𝐴𝑖 , 𝑋𝑖 , 𝑀𝑖,1) and (proof, sid∥2, 𝐴𝑖 , 𝐾𝑖 , 𝑀𝑖,2)
were received from F 𝑅𝐷𝐻𝑇

zk , denote these indices by 𝐼 .

Then party 𝑃𝑐 :

a. Computes 𝑠1 = SS.Reconstruct({[𝑠1]𝑖 }𝑖∈𝐼 , {[𝑠1] 𝑗 }𝑁𝑗=𝑛+1)
and 𝑠2 = SS.Reconstruct({[𝑠2]𝑖 }𝑖∈𝐼 , {[𝑠2] 𝑗 }𝑁𝑗=𝑛+1).

b. Broadcasts 𝑠 = 𝑠1 · 𝑠−1
2

mod 𝑞.

proof on 𝑃𝑐 ’s last message, or (3) relying on a non-standard

assumption as Paillier-EC. Except of the changes mentioned

above, our protocol resembles that of Lindell. See Section F

for a formal description of the Paillier encryption scheme.

We prove the following theorem in Section C.3.

9

Theorem 5.1. Protocols 6 and 7 securely compute the ECDSA

functionality (Functionality 8) against a static malicious

adversary who corrupts 𝑃𝑢 or a semi-honest adversary who

corrupts 𝑃𝑐 .

PROTOCOL 6.
(
Two-Party Key-Generation: KeyGen

)
1. 𝑃𝑐 ’s randomness setup.
a. 𝑃𝑐 picks a random value 𝑣 ← {0, 1}𝜅 and computes

𝑣𝑥 = H(𝑣).
b. 𝑃𝑐 sends 𝑣𝑥 to 𝑃𝑢 .

2. Party 𝑃𝑢 ’s message:
a. 𝑃𝑢 samples a random 𝑥𝑢 ← Z∗𝑞 and computes 𝑋𝑢 =

𝑥𝑢 ·𝐺 .
b. 𝑃𝑢 generates a Paillier key-pair (𝑝𝑘, 𝑠𝑘) where 𝑝𝑘 =

𝑁 = 𝑃 ·𝑄 with 𝜅′-bit primes 𝑃,𝑄 , and computes 𝑐𝑘𝑒𝑦 =

Enc𝑝𝑘 (𝑥𝑢). (𝜅′ is the bit-length of the factors of 𝑁 for

the Paillier encryption scheme to be secure).

c. 𝑃𝑢 sends 𝑋𝑢 , 𝑝𝑘 = 𝑁 and 𝑐𝑘𝑒𝑦 to 𝑃𝑐 .

d. 𝑃𝑢 proves in zero-knowledge that 𝑁 ∈ 𝐿𝑃 and that it

knows a witness (𝑥𝑢 , 𝑃,𝑄) such that (𝑐𝑘𝑒𝑦, 𝑁 , 𝑋𝑢) ∈
𝐿𝑃𝐷𝐿 , by sending (prove, 𝑐𝑘𝑒𝑦, 𝑁 , 𝑋𝑢 , 𝑥𝑢 , 𝑃,𝑄) to

F keygen
𝑧𝑘

.

3. Party 𝑃𝑐 ’s message: Upon receiving (proof, 𝑐𝑘𝑒𝑦, 𝑁 , 𝑋𝑢)
from F keygen

𝑧𝑘
:

a. Verify that 𝑐𝑘𝑒𝑦 ∈ Z∗𝑁 2
and that 𝑁 is of length at least

2𝜅′.
b. 𝑃𝑐 computes 𝑥𝑐 = H(𝑣 ∥keygen), and 𝑋𝑐 = 𝑥𝑐 ·𝐺 and

𝑋 = 𝑥𝑐 · 𝑋𝑢 .
c. Send 𝑋 to 𝑃𝑢 .

4. Output:
a. 𝑃𝑢 outputs (𝑝𝑘, 𝑠𝑘, 𝑥𝑢 , 𝑋).
b. 𝑃𝑐 outputs (𝑝𝑘, 𝑥𝑐 , 𝑋, 𝑐𝑘𝑒𝑦).

6 Applications
Unstoppable wallets serve as a foundational component

for a diverse array of applications. To demonstrate

their applicability, we developed and implemented

two examples of applications that possess real-world

value. These applications were deployed to Secret

Network’s mainnet under contract addresses: (1)

secret1lge6kdh078u7yc778whz8wjdc39ce78knqjfjh; (2)

secret1lkvhyg4723fxreeyrm0mk7pkzgd4qaztmx4ztw. At

their core, these wallets are governed by a smart contract,

meaning that they may have all kinds of other use-cases as

well.

6.1 Multisignature Wallet with Policy Checks
In the traditional banking system, accounts often have

various checks and limits on spending to enhance security

and control. One can imagine a similar use case for

cryptocurrency transactions, integrating such checks and

constraints within a multisignature wallet.

Threshold ECDSA inherently supports a multisignature

transaction approval structure already, necessitating (𝑡 +

PROTOCOL 7.
(
2P Signing: Sign (𝑀, (G,𝐺, 𝑞), sid)

)
Inputs.
1. Party 𝑃𝑢 holds (𝑝𝑘, 𝑠𝑘, 𝑥𝑢 , 𝑋).
2. Party 𝑃𝑐 holds (𝑝𝑘, 𝑥𝑐 , 𝑋, 𝑐𝑘𝑒𝑦).
3. The parties Compute 𝑚 = 𝐻𝑞 (𝑀) and verify that sid

has not been used before (otherwise the protocol is not

executed).

The protocol.
1. Party 𝑃𝑢 ’s message:
a. 𝑃𝑢 chooses 𝑘𝑢 ← Z𝑞 and computes 𝑅𝑢 = 𝑘𝑢 ·𝐺 .
b. 𝑃𝑢 sends 𝑅𝑢 to 𝑃𝑐 .

c. 𝑃𝑢 sends (prove, sid, 𝑅𝑢 , 𝑘𝑢) to FDL
𝑧𝑘

to proves

knowledge of 𝑘𝑢 .

2. 𝑃𝑐 ’s message: Upon receiving (proof, sid, 𝑅𝑢) from FDL
𝑧𝑘

:

a. 𝑃𝑐 computes 𝑘𝑐 = H(𝑣 ∥sid) and computes 𝑅 = 𝑘𝑐 · 𝑅𝑢
and 𝑟 = 𝑅.𝑥 mod 𝑞.

b. 𝑃𝑐 chooses 𝜌 ← Z𝑞2 and 𝑟 ← Z∗𝑁 .

c. 𝑃𝑐 computes:

i. 𝑐1 = Enc𝑝𝑘 (𝜌𝑞 + [(𝑘𝑐)−1𝑚 mod 𝑞], 𝑟),
ii. 𝑣 = (𝑘𝑐)−1 · 𝑟 · 𝑥𝑐 mod 𝑞,

iii. 𝑐2 = 𝑐1 ⊕ (𝑣 ⊙ 𝑐𝑘𝑒𝑦)
d. 𝑃𝑐 sends 𝑅 and 𝑐2 to 𝑃𝑢 .

3. Output:
a. 𝑃𝑢 computes 𝑠′ = (𝑘𝑢)−1 · Dec(𝑠𝑘, 𝑐2) mod 𝑞 and 𝑟 =

𝑅.𝑥 mod 𝑞.

b. 𝑃𝑢 outputs (𝑟, 𝑠) where 𝑠 = min(𝑠′, 𝑞 − 𝑠′).

1)-out-of-𝑛 parties to endorse signing a transaction. On

top of this, with unstoppable wallets, we can introduce

further layers of spending policies into the smart-contract

component of the protocol, such as per-transaction spending

limits, daily spending limits, or a combination of both. These

policies offer increased control and security over transactions

involving cryptocurrency.

One can think of more elaborate schemes and use-cases as

well, that clearly benefit from the blockchain’s role as a public

bulletin board. For example, decentralized autonomous

organizations (DAOs) are often assumed to be governed by all

token holders, but their treasuries are in practice controlled

by a small committee of signers
5
. By leveraging unstoppable

wallets, the community could define clear spending limits in

a smart contract to prevent a DAO committee from abusing

their mandate.

To demonstrate the concept of a multisig wallet with

policy checks, we developed a contract that not only requires

a quorum of at least 𝑡 + 1 approvals, but also verifies the

transaction as a valid Ethereum transaction with a spending

limit of 1 ETH. We detail both the contract flow and give an

excerpt from the contract code in Section B.1.

5
As a concrete example, as of Sep, 2022, Frax treasury of

1.2B USD was unilaterally controlled by the team’s multisig

(https://www.blockworksresearch.com/research/risk-assessment-frax-

governance).

10

6.2 Wallet Exchange
Typically, users exchange cryptocurrencies, such as

swapping BTC for ETH between two parties. However, here

we propose an alternative model: instead of exchanging

assets, what if we could exchange the wallet itself directly?

This concept, a wallet exchange, is not merely theoretical.

For instance, venture capital funds often enter illiquid deals

for tokens that do not yet exist or have a certain lockup,

making selling the asset itself infeasible.

One could envision a wallet exchange platform that allows

sellers to list their wallets instead of their assets, and sell

these to buyers, who can be reassured that the seller provably

loses access after the transaction concludes. In light of the

recent collapse of large exchanges and centralized lenders

like FTX and Celsius
6
, an exchange that allows creditors

to sell their claims (likely at a discount) becomes more

appealing. Such exchanges have already started to emerge
7
,

and a wallet exchange mechanism could provide a more

secure way to facilitate this process.

Equipped with this motivation, we present an

implementation of a contract that enables selling a

wallet from the current owner (the seller) to an interested

buyer. Initially, the wallet is jointly held by the seller and

the chain. A prospective buyer can send a bid to the contract

governing the wallet, which the seller can either accept

or ignore. The buyer can set a timeout to release their

deposited bid if they have not received a response from the

seller after some time.

If the seller accepts the bid, they must re-encrypt their

share of the key with the buyer’s key and send it to the

contract in a separate transaction that concludes the sale.

The chain, after verifying that neither party has cheated,

assists in refreshing the shares and revoking the seller’s

share. The contract also atomically finalizes the payment,

completing the wallet exchange process securely. We detail

both the contract flow and give an excerpt from the contract

code in Section B.2.

7 Implementation and Evaluation
In this section, we provide an overview of the

implementation and evaluation of our proposed underlying

threshold ECDSA protocols. We implement the main

threshold ECDSA protocol in 2, 3, and the protocol for a

single user. Using these as building blocks, we implement

the applications discussed in Section 6. We also discuss the

practical aspects of implementing cryptographic primitives

on a (privacy-preserving) blockchain and delve into the

performance analysis of our approach in terms of gas

costs associated with on-chain transactions, which is the

6
1. https://www.investopedia.com/what-went-wrong-with-ftx-6828447;

2. https://www.polsinelli.com/publications/celsius-bankruptcy-case-

february-2-2023

7
https://opnx.com/

main performance bottleneck in addition to the number of

consecutive writes each user has to perform.

7.1 Implementation Details
Our implementation is tied and optimized for the secp256k1

curve, as that is the most commonly used curve related to

cryptocurrencies. However, our protocols are generic and our

implementation can be extended to support other curves as

well. The implementation is divided into two main parts: the

local execution by users, and the on-chain execution on the

blockchain. Our code is written in Rust, but it is important

to note that any language could be used for the client.

For the on-chain part of our proposed protocols, the

spectrum of options is more constrained, as we needed

a blockchain that supports confidential smart contracts.

We chose the Secret Network [56], a blockchain platform

that has been running with TEEs in production for several

years. Secret Network is built on top of Cosmos SDK and

Tendermint consensus algorithm [14], and it features a

smart contract framework based on CosmWasm, which

enables developers to write and deploy smart contracts

using Rust, ensuring compatibility with the local execution

part of our protocols. Communication between users and

the blockchain is established directly through transactions,

which are used for broadcasting data and writing it into

the chain’s state, and queries, which facilitate data retrieval

from the chain’s current state. Compared to our formal

terminology, transactions are writes (and are therefore slow),

and queries are reads.

Our entire implementation is open-source
8
, fostering

transparency and allowing for peer review. In total and

including our modifications below to existing repositories,

our implementation comprises roughly 6,500 lines of code.

7.2 Implementing Cryptographic Primitives on
Chain

In order to allow our protocols to run inside of a smart

contract, we needed to implement several cryptographic

building blocks in a way that allows them to run on-chain.

In particular, we needed libraries that support secret sharing

(over secp256k1’s specified field), elliptic curve operations

(over the same curve), and Paillier encryption.

This turned out to be especially challenging, since we

had to make sure these building blocks are efficient, do not

use randomness generated by the operating system, and

do not use floating-point types. The last two are practical

constraints present in any blockchain environment, which

needs to be deterministic due to consensus. As it turned

out, porting existing cryptographic libraries was especially

challenging, since practically all libraries need to generate

randomness at one point, and this issue propagates up the

dependency tree. We modified all relevant libraries to take

8
https://github.com/scrtlabs/unstoppable-secrets

11

in a custom PRG instead of using the operating system’s one,

and we used that as a hook to plug in a deterministic PRG

that is purpose-built for Secret Network contracts. Overall,

we modified approximately 1,350 lines of code across five

open-source repositories
9
.

7.3 Performance Evaluation
In this subsection, we assess the performance of our

proposed threshold ECDSA protocols by focusing on the

gas costs associated with on-chain transactions. Gas costs

represent the computational resources necessary to execute

a transaction on a blockchain, and are a popular cost metric

on all smart-contracts chains, starting with Ethereum [16].

These costs not only impact users monetarily but also impose

limitations on the number of gas-intensive transactions a

blockchain can process in a single block, as blockchains have

inherent constraints in terms of computational resources.

7.3.1 Multiparty Protocol Evaluation. In Table 3a we

show an evaluation for 𝑛 = 5, 𝑡 = 4. init marks the contract’s

initialization (for each wallet we deploy a different contract),

keygen is the dealing portion of the key generation protocol,

presig marks the dealing part of the signing protocol where

shared randomness and the nonce are produced, and sign_i

marks the cost for each signing party. On a per user basis,

the costs are negligible at the time of writing, and amount to

roughly one-tenth of a cent per user (with the exception of

the dealer who pays roughly three-tenths of a cent). Since

the actual cost was calculated based on the price of SCRT,

a volatile asset used to pay fees in Secret Network, it is

also useful to compare the unitless gas used metric between

threshold wallets and other common types of smart contract

executions. We reference these in Table 4 and note that

surprisingly our results are very appealing given that we

have essentially implemented an MPC protocol on-chain.

We also found that costs scale very well (practically

linearly, as expected) with the number of parties, making this

scheme highly efficient in terms of scalability. We capture

this close-to-linear relation in Figure 2, which examines

how the average gas expenditure changes (on average) per

party, as we increase the number of parties (and assume the

maximum corruption threshold of 𝑛 = 𝑡 − 1). We make the

same comparison for a fixed 𝑛 = 15 and a dynamic threshold

in Figure 3, and reach a similar result.

7.3.2 Two-Party Protocol Evaluation. Interestingly, as
can be observed in 3b, our performance evaluation reveals

that the multiparty protocol, even when accommodating

numerous parties, incurs significantly lower costs per party

compared to the two-party protocol. This finding can

be attributed to the relatively resource-intensive Paillier

9
https://github.com/scrtlabs/libsecp256k1, https://github.com/scrtlabs/rust-

paillier, https://github.com/scrtlabs/ramp, https://github.com/scrtlabs/num-

traits, https://github.com/scrtlabs/num-integer

Table 3. Benchmarks for Multiparty ECDSA and Two-party

ECDSA

(a) Table (a)

Tx Type Time (ms) Tx size

(bytes)

Gas Used Tx Cost (¢)

init 0.07 43 45,227 0.04¢

Keygen 7.93 1,206 132,792 0.11¢

Presig 11.65 4,335 237,195 0.19¢

Sign_1 1.62 295 138,865 0.11¢

Sign_2 1.55 295 140,599 0.11¢

Sign_3 1.51 295 142,328 0.11¢

Sign_4 1.85 295 144,046 0.12¢

Sign_5 12.95 295 187,238 0.15¢

(b) Table (b)

Tx Type Time (ms) Tx size

(bytes)

Gas Used Tx Cost (¢)

Keygen 175.35 2,707 856,051 0.68¢

Sign 313.75 287 1,882,619 1.51¢

Table 4. Gas cost baselines

Tx Type Gas Used

Token transfer 55,877

NFT Mint/Transfer 150,833

Token Swap (direct) 595,916

Token Swap (2-hops) 1,553,937

Encryption used in the two-party protocol, which is

used for a single user. It is also worth mentioning that

we have not implemented the expensive zero-knowledge

proofs necessary for this protocol on-chain, which would

undoubtedly widen the gap even more. Based on our results,

and assuming the maximum amount of corruptions, we

extrapolate that it would take around 𝑛 = 82 users for the

gas costs of the multiparty protocol to match the two party

one.

Also, given current gas limits in Secret Network, and given

that state-of-the-art multiparty threshold ECDSA protocols

(e.g., [17]) requires even more homomorphic operations and

many more zero-knowledge proofs, it is fair to assume any

existing multiparty variant would not even run on-chain.

These results support the need of devising chain-friendly

threshold ECDSA protocols, as demonstrated in this paper.

8 Conclusion
In conclusion, this paper introduced a practical and

useful chain-assisted model of security for Multi-

Party Computation (MPC) protocols, as demonstrated

by real-world examples like chain-assisted threshold

ECDSA and related applications. Our approach achieves

improved performance compared to existing solutions. The

contributions of this paper may pave the way for other

practical chain-assisted MPC protocols that provide better

trade-offs and can be deployed in practice today.

12

Acknowledgments. We wish to thank Itzik Grossman

and Assaf Morami from SCRT Labs for their contribution to

the implementation of the results in this paper.

References
[1] Damiano Abram, Ariel Nof, Claudio Orlandi, Peter Scholl, and

Omer Shlomovits. 2022. Low-bandwidth threshold ECDSA via

pseudorandom correlation generators. In 2022 IEEE Symposium on

Security and Privacy (SP). IEEE, 2554–2572.

[2] Aritra Banerjee, Michael Clear, and Hitesh Tewari. 2021. zkhawk:

Practical private smart contracts from mpc-based hawk. In 2021

3rd Conference on Blockchain Research & Applications for Innovative

Networks and Services (BRAINS). IEEE, 245–248.

[3] Carsten Baum, James Hsin-yu Chiang, Bernardo David, and

Tore Kasper Frederiksen. 2022. Eagle: Efficient Privacy Preserving

Smart Contracts. Cryptology ePrint Archive (2022).

[4] Carsten Baum, Ivan Damgård, and Claudio Orlandi. 2014. Publicly

auditable secure multi-party computation. In Security and

Cryptography for Networks: 9th International Conference, SCN

2014, Amalfi, Italy, September 3-5, 2014. Proceedings 9. Springer,

175–196.

[5] Carsten Baum, Bernardo David, and Rafael Dowsley. 2020. Insured

MPC: Efficient secure computation with financial penalties. In

Financial Cryptography and Data Security: 24th International

Conference, FC 2020, Kota Kinabalu, Malaysia, February 10–14, 2020

Revised Selected Papers 24. Springer, 404–420.

[6] Carsten Baum, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-

Vazquez. 2020. Efficient constant-round MPC with identifiable abort

and public verifiability. In Advances in Cryptology–CRYPTO 2020:

40th Annual International Cryptology Conference, CRYPTO 2020, Santa

Barbara, CA, USA, August 17–21, 2020, Proceedings, Part II. Springer,

562–592.

[7] Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi,

Hugo Krawczyk, Chengyu Lin, Tal Rabin, and Leonid Reyzin. 2020.

Can a public blockchain keep a secret?. In Theory of Cryptography:

18th International Conference, TCC 2020, Durham, NC, USA, November

16–19, 2020, Proceedings, Part I 18. Springer, 260–290.

[8] Iddo Bentov, Yan Ji, Fan Zhang, Lorenz Breidenbach, Philip Daian, and

Ari Juels. 2019. Tesseract: Real-time cryptocurrency exchange using

trusted hardware. In Proceedings of the 2019 ACM SIGSAC Conference

on Computer and Communications Security. 1521–1538.

[9] Iddo Bentov and Ranjit Kumaresan. 2014. How to use bitcoin to design

fair protocols. In Advances in Cryptology–CRYPTO 2014: 34th Annual

Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,

Proceedings, Part II 34. Springer, 421–439.

[10] Constantin Blokh, NikolaosMakriyannis, and Udi Peled. 2022. Efficient

Asymmetric Threshold ECDSA for MPC-based Cold Storage. IACR

Cryptol. ePrint Arch. (2022), 1296.

[11] Dan Boneh, Rosario Gennaro, and Steven Goldfeder. 2019. Using level-

1 homomorphic encryption to improve threshold DSA signatures for

bitcoin wallet security. In Progress in Cryptology–LATINCRYPT 2017:

5th International Conference on Cryptology and Information Security in

Latin America, Havana, Cuba, September 20–22, 2017, Revised Selected

Papers. Springer, 352–377.

[12] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush

Mishra, and Howard Wu. 2020. Zexe: Enabling decentralized private

computation. In 2020 IEEE Symposium on Security and Privacy (SP).

IEEE, 947–964.

[13] Marcus Brandenburger, Christian Cachin, Rüdiger Kapitza, and

Alessandro Sorniotti. 2018. Blockchain and trusted computing:

Problems, pitfalls, and a solution for hyperledger fabric. arXiv preprint

arXiv:1805.08541 (2018).

[14] Ethan Buchman. 2019. Tendermint: Byzantine Fault Tolerance in

the Age of Blockchains. In Proceedings of the 1st ACM Conference on

Advances in Financial Technologies. ACM, 49–61.

[15] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh.

2020. Zether: Towards privacy in a smart contract world. In Financial

Cryptography and Data Security: 24th International Conference, FC 2020,

Kota Kinabalu, Malaysia, February 10–14, 2020 Revised Selected Papers.

Springer, 423–443.

[16] Vitalik Buterin. 2014. Ethereum: A Next-Generation Smart Contract

and Decentralized Application Platform. https://ethereum.org/en/
whitepaper/.

[17] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos

Makriyannis, and Udi Peled. 2020. UC non-interactive, proactive,

threshold ECDSA with identifiable aborts. In Proceedings of the 2020

ACM SIGSAC Conference on Computer and Communications Security.

1769–1787.

[18] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico

Savasta, and Ida Tucker. 2019. Two-party ECDSA from hash proof

systems and efficient instantiations. In Advances in Cryptology–

CRYPTO 2019: 39th Annual International Cryptology Conference, Santa

Barbara, CA, USA, August 18–22, 2019, Proceedings, Part III 39. Springer,

191–221.

[19] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico

Savasta, and Ida Tucker. 2020. Bandwidth-efficient threshold EC-

DSA. In Public-Key Cryptography–PKC 2020: 23rd IACR International

Conference on Practice and Theory of Public-Key Cryptography,

Edinburgh, UK, May 4–7, 2020, Proceedings, Part II. Springer, 266–296.

[20] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico

Savasta, and Ida Tucker. 2023. Bandwidth-efficient threshold EC-DSA

revisited: Online/offline extensions, identifiable aborts proactive and

adaptive security. Theoretical Computer Science 939 (2023), 78–104.

[21] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang

Lin, and Ten H Lai. 2019. Sgxpectre: Stealing intel secrets from sgx

enclaves via speculative execution. In 2019 IEEE European Symposium

on Security and Privacy (EuroS&P). IEEE, 142–157.

[22] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes,

Noah Johnson, Ari Juels, AndrewMiller, and Dawn Song. 2019. Ekiden:

A platform for confidentiality-preserving, trustworthy, and performant

smart contracts. In 2019 IEEE European Symposium on Security and

Privacy (EuroS&P). IEEE, 185–200.

[23] Arka Rai Choudhuri, Aarushi Goel, MatthewGreen, Abhishek Jain, and

Gabriel Kaptchuk. 2021. Fluid MPC: secure multiparty computation

with dynamic participants. In Advances in Cryptology–CRYPTO 2021:

41st Annual International Cryptology Conference, CRYPTO 2021, Virtual

Event, August 16–20, 2021, Proceedings, Part II 41. Springer, 94–123.

[24] Arka Rai Choudhuri, MatthewGreen, Abhishek Jain, Gabriel Kaptchuk,

and Ian Miers. 2017. Fairness in an unfair world: Fair multiparty

computation from public bulletin boards. In Proceedings of the 2017

ACM SIGSAC Conference on Computer and Communications Security.

719–728.

[25] Richard Cleve. 1986. Limits on the Security of Coin Flips when Half the

Processors Are Faulty (Extended Abstract). In STOC, Juris Hartmanis

(Ed.).

[26] Anders Dalskov, Claudio Orlandi, Marcel Keller, Kris Shrishak, and

Haya Shulman. 2020. Securing DNSSEC keys via threshold ECDSA

from generic MPC. In Computer Security–ESORICS 2020: 25th European

Symposium on Research in Computer Security, ESORICS 2020, Guildford,

UK, September 14–18, 2020, Proceedings, Part II 25. Springer, 654–673.

[27] Ivan Damgård, Thomas P Jakobsen, Jesper Buus Nielsen, Jakob Illeborg

Pagter, andMichael BæksvangØstergaard. 2022. Fast threshold ECDSA

with honest majority. Journal of Computer Security 30, 1 (2022), 167–

196.

[28] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew Miller, Lefteris

Kokoris-Kogias, and Ling Ren. 2022. Practical asynchronous

13

https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/

distributed key generation. In 2022 IEEE Symposium on Security and

Privacy (SP). IEEE, 2518–2534.

[29] Didem Demirag and Jeremy Clark. 2021. Absentia: Secure Multiparty

Computation on Ethereum. In Financial Cryptography and Data

Security. FC 2021 International Workshops: CoDecFin, DeFi, VOTING,

and WTSC, Virtual Event, March 5, 2021, Revised Selected Papers 25.

Springer, 381–396.

[30] Jack Doerner, Yashvanth Kondi, Eysa Lee, andAbhi Shelat. 2018. Secure

two-party threshold ECDSA from ECDSA assumptions. In 2018 IEEE

Symposium on Security and Privacy (SP). IEEE, 980–997.

[31] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. 2019.

Threshold ECDSA from ECDSA assumptions: The multiparty case. In

2019 IEEE Symposium on Security and Privacy (SP). IEEE, 1051–1066.

[32] Taher ElGamal. 1985. A public key cryptosystem and a

signature scheme based on discrete logarithms. In Advances in

CryptologyâCRYPTOâ84. Springer, 10–18.

[33] Tommaso Frassetto, Patrick Jauernig, David Koisser, David Kretzler,

Benjamin Schlosser, Sebastian Faust, and Ahmad-Reza Sadeghi. 2022.

POSE: Practical Off-chain Smart Contract Execution. arXiv preprint

arXiv:2210.07110 (2022).

[34] Adam Gągol, Jędrzej Kula, Damian Straszak, and Michał Świętek. 2020.

Threshold ecdsa for decentralized asset custody. Cryptology ePrint

Archive (2020).

[35] Rosario Gennaro and Steven Goldfeder. 2018. Fast multiparty threshold

ECDSAwith fast trustless setup. In Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security. 1179–1194.

[36] Rosario Gennaro and Steven Goldfeder. 2020. One round threshold

ECDSA with identifiable abort. Cryptology ePrint Archive (2020).

[37] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal

Rabin. 1996. Robust threshold DSS signatures. In Advances in

CryptologyâEUROCRYPTâ96: International Conference on the Theory

and Application of Cryptographic Techniques Saragossa, Spain, May

12–16, 1996 Proceedings 15. Springer, 354–371.

[38] Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri,

Jesper Buus Nielsen, Tal Rabin, and Sophia Yakoubov. 2021. YOSO:

You Only Speak Once: Secure MPC with Stateless Ephemeral Roles.

In Advances in Cryptology–CRYPTO 2021: 41st Annual International

Cryptology Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021,

Proceedings, Part II. Springer, 64–93.

[39] Vipul Goyal, Abhiram Kothapalli, Elisaweta Masserova, Bryan Parno,

and Yifan Song. 2022. Storing and retrieving secrets on a blockchain. In

Public-Key Cryptography–PKC 2022: 25th IACR International Conference

on Practice and Theory of Public-Key Cryptography, Virtual Event, March

8–11, 2022, Proceedings, Part I. Springer, 252–282.

[40] Vipul Goyal, Elisaweta Masserova, Bryan Parno, and Yifan Song. 2021.

Blockchains enable non-interactive MPC. In Theory of Cryptography:

19th International Conference, TCC 2021, Raleigh, NC, USA, November

8–11, 2021, Proceedings, Part II 19. Springer, 162–193.

[41] Nerla Jean-Louis, Yunqi Li, Yan Ji, Harjasleen Malvai, Thomas Yurek,

Sylvain Bellemare, and Andrew Miller. 2023. SGXonerated: Finding

(and Partially Fixing) Privacy Flaws in TEE-based Smart Contract

PlatformsWithout Breaking the TEE. Cryptology ePrint Archive (2023).

[42] Uri Kirstein, Shelly Grossman, Michael Mirkin, James Wilcox, Ittay

Eyal, and Mooly Sagiv. 2021. Phoenix: A formally verified regenerating

vault. arXiv preprint arXiv:2106.01240 (2021).

[43] Ahmed Kosba, AndrewMiller, Elaine Shi, Zikai Wen, and Charalampos

Papamanthou. 2016. Hawk: The blockchain model of cryptography

and privacy-preserving smart contracts. In 2016 IEEE symposium on

security and privacy (SP). IEEE, 839–858.

[44] Ranjit Kumaresan and Iddo Bentov. 2016. Amortizing secure

computation with penalties. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security. 418–429.

[45] Ranjit Kumaresan, Vinod Vaikuntanathan, and Prashant Nalini

Vasudevan. 2016. Improvements to secure computation with penalties.

In Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security. 406–417.

[46] Rujia Li, Qin Wang, Qi Wang, David Galindo, and Mark Ryan.

2022. SoK: TEE-assisted confidential smart contract. arXiv preprint

arXiv:2203.08548 (2022).

[47] Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert, Emin Gün Sirer,

and Peter Pietzuch. 2019. Teechain: a secure payment network with

asynchronous blockchain access. In Proceedings of the 27th ACM

Symposium on Operating Systems Principles. 63–79.

[48] Yehuda Lindell. [n. d.]. Fast Secure Two-Party ECDSA Signing. In

CRYPTO, 2017 (Lecture Notes in Computer Science, Vol. 10402). 613–644.

[49] Yehuda Lindell andAriel Nof. 2018. Fast securemultiparty ECDSAwith

practical distributed key generation and applications to cryptocurrency

custody. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security. 1837–1854.

[50] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind,

Aniket Kate, and Andrew Miller. 2019. Honeybadgermpc and

asynchromix: Practical asynchronous mpc and its application to

anonymous communication. In Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications Security. 887–903.

[51] Sai Krishna Deepak Maram, Fan Zhang, Lun Wang, Andrew Low,

Yupeng Zhang, Ari Juels, and Dawn Song. 2019. CHURP: dynamic-

committee proactive secret sharing. In Proceedings of the 2019 ACM

SIGSAC Conference on Computer and Communications Security. 2369–

2386.

[52] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite

Degree Residuosity Classes. EUROCRYPT (1999), 223–238.

[53] Torben P Pedersen. 1991. A threshold cryptosystem without a trusted

party. In Advances in CryptologyâEUROCRYPTâ91. Springer, 522–526.

[54] Marc Rivinius, Pascal Reisert, Daniel Rausch, and Ralf Küsters. 2022.

Publicly accountable robust multi-party computation. In 2022 IEEE

Symposium on Security and Privacy (SP). IEEE, 2430–2449.

[55] Berry Schoenmakers. 1999. A Simple Publicly Verifiable Secret Sharing

Scheme and Its Application to Electronic. In CRYPTO, Vol. 1666.

Springer, 148–164.

[56] SCRT. 2021. The Secret Network Graypaper. https://scrt.network/
graypaper.

[57] Ravital Solomon and Ghada Almashaqbeh. 2021. smartfhe: Privacy-

preserving smart contracts from fully homomorphic encryption.

Cryptology ePrint Archive (2021).

[58] Samuel Steffen, Benjamin Bichsel, Roger Baumgartner, and Martin

Vechev. 2022. Zeestar: Private smart contracts by homomorphic

encryption and zero-knowledge proofs. In 2022 IEEE Symposium on

Security and Privacy (SP). IEEE, 179–197.

[59] Samuel Steffen, Benjamin Bichsel, and Martin Vechev. 2022. Zapper:

Smart Contracts with Data and Identity Privacy. In Proceedings of

the 2022 ACM SIGSAC Conference on Computer and Communications

Security. 2735–2749.

[60] Jo Van Bulck,MarinaMinkin, OfirWeisse, Daniel Genkin, Baris Kasikci,

Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom,

and Raoul Strackx. 2018. Foreshadow: Extracting the keys to the Intel

SGX kingdom with transient out-of-order execution. In Proceedings fo

the 27th USENIX Security Symposium. USENIX Association.

[61] Stephan Van Schaik, Andrew Kwong, Daniel Genkin, and Yuval Yarom.

2020. SGAxe: How SGX fails in practice.

[62] Stephan van Schaik, Alex Seto, Thomas Yurek, Adam Batori, Bader

AlBassam, Christina Garman, Daniel Genkin, Andrew Miller, Eyal

Ronen, and Yuval Yarom. 2022. SoK: SGX. Fail: How Stuff Get eXposed.

[63] Robin Vassantlal, Eduardo Alchieri, Bernardo Ferreira, and Alysson

Bessani. 2022. Cobra: Dynamic proactive secret sharing for confidential

bft services. In 2022 IEEE symposium on security and privacy (SP). IEEE,

1335–1353.

[64] Kristof Gazso Namra Patel Dror Tirosh Shahaf Nacson Tjaden Hess

Vitalik Buterin, Yoav Weiss. 2021. Account Abstraction Using Alt

14

https://scrt.network/graypaper
https://scrt.network/graypaper

Mempool. https://eips.ethereum.org/EIPS/eip-4337. Accessed: May 5,

2023.

[65] Harry WHWong, Jack PK Ma, Hoover HF Yin, and Sherman SM Chow.

[n. d.]. Real Threshold ECDSA. ([n. d.]).

[66] Alex Luoyuan Xiong, Binyi Chen, Zhenfei Zhang, Benedikt Bünz,

Ben Fisch, Fernando Krell, and Philippe Camacho. 2022. VERI-ZEXE:

Decentralized private computation with universal setup. Cryptology

ePrint Archive (2022).

[67] Haiyang Xue, Man Ho Au, Xiang Xie, Tsz Hon Yuen, and Handong

Cui. 2021. Efficient online-friendly two-party ECDSA signature. In

Proceedings of the 2021 ACM SIGSAC Conference on Computer and

Communications Security. 558–573.

[68] Hang Yin, Shunfan Zhou, and Jun Jiang. 2019. Phala network: A

confidential smart contract network based on polkadot.

[69] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi.

2016. Town crier: An authenticated data feed for smart contracts.

In Proceedings of the 2016 aCM sIGSAC conference on computer and

communications security. 270–282.

[70] Guy Zyskind, Oz Nathan, et al. 2015. Decentralizing privacy: Using

blockchain to protect personal data. In 2015 IEEE Security and Privacy

Workshops. IEEE, 180–184.

[71] Guy Zyskind, Oz Nathan, and Alex Pentland. 2015. Enigma:

Decentralized computation platform with guaranteed privacy. arXiv

preprint arXiv:1506.03471 (2015).

A Scalability across 𝑛 and 𝑡

Figure 2. Gas Used vs. Number of Users (n)

B Contract Examples
B.1 Multisignature with Policy Checks Contract
Diagram 4 shows the contract flow, and below is an excerpt

of the code with some of the boiler-plate details omitted.

// Contract code
#[entry_point]
// Contract hook to execute a transaction
pub fn execute(

// ...
) -> Result<Response, CustomContractError> {

match msg {
// ...
ExecuteMsg::Sign {

// ...

Figure 3. Gas Used vs. Threshold (t) for 15 users

Figure 4.Multisignature Wallet with Policy Checks

} => execute_sign(
// ...

),
}

}

const MAX_ALLOWANCE: u128 = 1_000_000_000_000_000_000;

fn execute_sign(
// ...
s1_i: Share<Secp256k1Scalar>,
s2_i: Share<Secp256k1Scalar>,
tx: EthTx, // Message to sign

) -> Result<Response, CustomContractError> {

// Contract enforces the spending limit
if tx.value.u128() > MAX_ALLOWANCE {

return

Err(CustomContractError::Std(StdError::generic_err(↩→
"cannot send more than max allowance of 1

ETH",↩→
15

https://eips.ethereum.org/EIPS/eip-4337

)));
}

// ...

// Contract gathers sufficient shares
// before producing a signature
if state.sig_num_shares.len() +

(state.threshold as usize)
< ((2 * state.threshold + 1) as usize)

{
save_state(deps.storage, state)?;
return Ok(Response::default());

}

// ... Continue producing a sig
}

B.2 Wallet Exchange Contract
Diagram 4 shows the contract flow, and below is an excerpt

of the code with some of the boiler-plate details omitted.

(a) Step 1: Buyer initiates a bid for the wallet

(b) Step 2: Seller approves the sale

Figure 5. Wallet Exchange Application Flow

// Contract code
#[entry_point]
pub fn execute(

// ...
) -> Result<Response, ContractError> {

match msg {
ExecuteMsg::Sign {

// ...
} => sign(

// ...
),
ExecuteMsg::Bid {

buyer_enc_public_key,
proof,

} => bid(
// ...

),
ExecuteMsg::Sell {

encrypted_buyer_signing_key,
buyer_enc_public_key,
proof,
payment_address,

} => sell(
// ...

),
}

}

fn bid(
buyer_enc_public_key: Binary,
proof: Binary,
deposit: Coin,
sender: Addr,
deps: DepsMut,

) -> Result<Response, ContractError> {
if
!verify_bidder_proof(buyer_enc_public_key.clone(),
proof) {

↩→
↩→

return

Err(ContractError::Std(StdError::generic_err(↩→
"Unable to verify bidder proof",

)));
}

BID_BIDDER.save(deps.storage, &sender)?;
BID_DEPOSIT.save(deps.storage, &deposit)?;

Ok(Response::default())
}

fn sell(
encrypted_buyer_signing_key: Binary,
buyer_enc_public_key: Binary,
proof: Binary,
payment_address: String,
_env: Env,
deps: DepsMut,

) -> Result<Response, ContractError> {
if

!verify_seller_proof(encrypted_buyer_signing_key.↩→
clone(), proof) {
return

Err(ContractError::Std(StdError::generic_err(↩→
"Unable to verify seller proof",

)));
}

let random_value = env.block.random.unwrap().0

16

let random_value =

Secp256k1Scalar::from_slice(&random_value).unwrap();↩→

let mut config: Config =

CONFIG.load(deps.storage)?;↩→
let chain_signing_key = config.chain_signing_key;
let chain_signing_key = chain_signing_key *

random_value.inv();↩→

let encrypted_buyer_signing_key:

EncodedCiphertext<BigInt> =↩→
bincode2::deserialize(

encrypted_buyer_signing_key.as_slice()).unwrap();↩→

let buyer_enc_public_key: EncryptionKey =
bincode2::deserialize(

buyer_enc_public_key.as_slice()).unwrap();

let encrypted_user_signing_key = Paillier::mul(
&buyer_enc_public_key,
encrypted_buyer_signing_key,
BigInt::from_str_radix(&random_value.to_hex(),

16).unwrap(),↩→
);

let public_signing_key_chain = secp256k1_g *

chain_signing_key.clone();↩→

config.enc_public_key = buyer_enc_public_key;
config.encrypted_user_signing_key =

encrypted_user_signing_key;↩→
config.chain_signing_key = chain_signing_key;
config.public_signing_key_chain =

public_signing_key_chain;↩→

CONFIG.save(deps.storage, &config)?;

Ok(
Response::default().add_message(

CosmosMsg::Bank(BankMsg::Send {
to_address: payment_address,
amount:

vec![BID_DEPOSIT.load(deps.storage)?],↩→
})),

)
}

C Security Proofs
C.1 Proof of Theorem 3.1
The proof below is separated to the two cases mentioned

in the Theorem, for each of which we present a perfect

simulation. Note that the use of H in the protocol is

merely to easily extract 𝑃𝑐 ’s randomly chosen 𝑥𝑐 . It is

possible to remove this random oracle usage by standard

commitment techniques. In both cases it is easy to see that

the joint distributions of the honest parties’ output and the

adversary’s view in the real and ideal worlds are identically

distributed.

Case 1. Let A be a malicious real world adversary who

corrupts 𝑃1 and a subset of {𝑃2, . . . , 𝑃𝑛} of size 𝑡 − 1. Denote
the set of corrupted parties by𝐶 and the rest of the parties by

𝐻 = {𝑃1, . . . , 𝑃𝑛} −𝐶 . We present an ideal world adversary

S that does as follows.

• Key Generation.
1. Send (keygen) to FECDSA.
2. Run A internally and simulates all other parties:

a. Receive all shares [𝑥𝑢]𝑖 for all 𝑖 ∈ 𝐻 ∪ [𝑛 + 1, 𝑁].
b. Reconstruct 𝑥𝑢 using the above |𝐻 | + 𝑡 shares.
c. If reconstruction fails then send (keygen, abort) to
FECDSA and halt. Otherwise, compute [𝑥𝑢]𝑖 for all
𝑃𝑖 ∈ 𝐶 .

d. Compute [𝑥𝑐] ← SS.Share(𝑥𝑐 , 𝑡, 𝑁) for a random

𝑥𝑐 ← Z𝑞 , and send [𝑥𝑐]𝑖 to every party 𝑃𝑖 ∈ 𝐶 .
e. Compute secret key shares [𝑥]𝑖 = [𝑥𝑢]𝑖 + [𝑥𝑐]𝑖

mod 𝑞 for all 𝑖 ∈ [1, 𝑁]. (Note that this 𝑥 is

not the actual secret key log𝐺 (𝑋) obtained by the

functionality, however, the simulator uses it in

order to checks whether the adversary cheats when

computing the signature.)

f. Receive 𝑋𝑖 for all 𝑖 ∈ 𝐶 and compute 𝑋𝑖 = [𝑥]𝑖 ·𝐺 =

([𝑥𝑢]𝑖 + [𝑥𝑐]𝑖) ·𝐺 for all 𝑖 ∈ 𝐻 ∪ [𝑛 + 1, 𝑁].
g. Check consistency of all𝑋𝑖 as done in the protocol, if

the check fails then send (keygen, abort) to FECDSA
and halt.

h. Send (keygen, continue) to FECDSA and obtain 𝑋

and 𝐻𝑞 .

i. Broadcasts 𝑋 and 𝐻𝑞 .

j. Output whatever A outputs.

• Sign.
1. Send (sign, sid) to FECDSA and obtain 𝑅.

2. Run A internally and simulates all other parties:

a. Receive all shares [𝑘𝑢]𝑖 and [𝑎𝑢]𝑖 for all 𝑖 ∈ 𝐻 ∪ [𝑛+
1, 𝑁].

b. Receive all shares [𝑧𝑢]𝑖 and [𝑧′𝑢]𝑖 for all 𝑖 ∈ 𝐻 ∪ [𝑛 +
1, 𝑁].

c. Receive 𝑅𝑢 .

d. Sample 𝑘𝑐 , 𝑎𝑐 ← Z𝑞 and compute [𝑘𝑐] ←
SS.Share(𝑘𝑐 , 𝑡, 𝑁), [𝑎𝑐] ← SS.Share(𝑎𝑐 , 𝑡, 𝑁),
[𝑧𝑐] ← SS.Share(0, 2𝑡, 𝑁) and [𝑧′𝑐] ←
SS.Share(0, 2𝑡, 𝑁)

e. Send [𝑘𝑐]𝑖 , [𝑎𝑐]𝑖 , [𝑧𝑐]𝑖 , [𝑧′𝑐]𝑖 to 𝑃𝑖 for all 𝑖 ∈ 𝐶 .
f. Compute [𝑘]𝑖 = [𝑘𝑢]𝑖 + [𝑘𝑐] mod 𝑞 and [𝑎]𝑖 =

[𝑎𝑢]𝑖 + [𝑎𝑐] mod 𝑞 for all 𝑖 ∈ 𝐻 ∪ [𝑛 + 1, 𝑁].
g. Send 𝑅 to all 𝑃𝑖 ∈ 𝐶 .
h. Receive [𝑠1]𝑖 and [𝑠2]𝑖 from all 𝑃𝑖 ∈ 𝐶 .
i. Compute [𝑠1]𝑖 and [𝑠2]𝑖 using values 𝑟,𝑚 and the

shares [𝑘]𝑖 , [𝑎]𝑖 , [𝑥]𝑖 for all 𝑃𝑖 ∈ 𝐻 ∪ [𝑛 + 1, 𝑁].
j. Reconstruct 𝑠1 and 𝑠2 using the the shares received

from the adversary (for parties in 𝐶) and the shares

computed above (for the parties in 𝐻 ∪ [𝑛 + 1, 𝑁]).
17

If reconstruction (of a 2𝑡-degree polynomial) failed

then send (sign, sid, abort) and halt.

k. Check whether 𝑟 and 𝑠 = 𝑠1 · 𝑠−12
mod 𝑞 is a valid

signature on 𝑀 using the secret key 𝑥 that was

computed in the key-generation phase (recall, this is

not the actual secret key used by the functionality).

l. If the check fails then send (sign, sid, abort) and halt.
m. Send (sign, sid, continue) and obtain (𝑟, 𝑠).

Broadcast (𝑟, 𝑠) and output whatever A outputs.

Case 2. LetA be a semi-honest real world adversary who

corrupts 𝑃𝑐 . We present an ideal world adversary S that does

as follows:

• Key Generation.
1. Send (keygen) and (keygen, continue) to FECDSA, and

obtain 𝑋 .

2. Run A internally and simulate parties (𝑃1, . . . , 𝑃𝑛):

a. Sample 𝑥𝑢 ← Z𝑞 , compute [𝑥𝑢] ←
SS.Share(𝑥𝑢, 𝑡, 𝑁) and send [𝑥𝑢]𝑖 to 𝑃𝑐 , for all

𝑖 ∈ [𝑛 + 1, 𝑁].
b. Receive [𝑥𝑐]𝑖 from 𝑃𝑐 for all 𝑖 ∈ [1, 𝑛], reconstruct 𝑥𝑐

(always succeeds because A follows the protocl) and

compute [𝑥𝑐]𝑖 for all 𝑖 ∈ [𝑛 + 1, 𝑁].
c. Let 𝜆

𝑗

0
and {𝜆 𝑗

𝑖
}𝑖∈[𝑛+1,𝑁] be the Lagrange coefficients

for a polynomial evaluation on 𝑗 , using points at 0

and the indices in [𝑛 + 1, 𝑁] (𝑡 + 1 points in total).

d. For every 𝑗 ∈ [1, 𝑛] compute 𝑋 𝑗 = 𝜆
𝑗

0
· 𝑋 +∑

𝑖∈[𝑛+1,𝑁] 𝜆
𝑗

𝑖
· 𝑋𝑖 .

e. Send 𝑋 𝑗 to 𝑃𝑐 for every 𝑖 ∈ [1, 𝑛]. (The above

computation ensures that the consistency verification

goes through.)

f. Output whatever A outputs.

• Sign.
1. Send (sign, sid) and (sign, sid, continue) to FECDSA and

obtain 𝑅 and (𝑟, 𝑠).
2. Run A internally and simulates all other parties:

a. Sample 𝑘𝑢, 𝑎𝑢 ← Z𝑞 and compute [𝑘𝑢] ←
SS.Share(𝑘𝑢, 𝑡, 𝑁), [𝑎𝑢] ← SS.Share(𝑎𝑢, 𝑡, 𝑁),
[𝑧𝑢] ← SS.Share(0, 2𝑡, 𝑁) and [𝑧′𝑢] ←
SS.Share(0, 2𝑡, 𝑁)

b. Send [𝑘𝑢]𝑖 , [𝑎𝑢]𝑖 , [𝑧𝑢]𝑖 , [𝑧′𝑢]𝑖 to 𝑃𝑐 for all 𝑖 ∈ [𝑛 +
1, 𝑁].

c. Sample 𝑘𝑐 ← Z𝑞 and programH(𝑥𝑐 ∥sid) ← 𝑘𝑐 .

d. Compute 𝑅𝑐 = 𝑘𝑐 ·𝐺 and 𝑅𝑢 = 𝑅 − 𝑅𝑐 .
e. Send 𝑅𝑢 to 𝑃𝑐 .

f. Receive all shares [𝑘𝑐]𝑖 and [𝑎𝑐]𝑖 for all 𝑖 ∈ [1, 𝑛].
g. Receive all shares [𝑧𝑐]𝑖 and [𝑧′𝑐]𝑖 for all 𝑖 ∈ [1, 𝑛]].
h. Receive 𝑅.

i. Compute [𝛼]𝑖 = [𝛼𝑢]𝑖 + [𝛼𝑐]𝑖 mod 𝑞 for all 𝑖 ∈
[𝑛 + 1, 𝑁] and for all 𝛼 ∈ {𝑘, 𝑎, 𝑧, 𝑧′}.

j. Compute [𝑠1]𝑖 = [𝑎]𝑖 (𝑚 + 𝑟 [𝑥]𝑖) − [𝑧]𝑖 mod 𝑞 and

[𝑠2]𝑖 = [𝑘]𝑖 [𝑎]𝑖 − [𝑧′]𝑖 mod 𝑞 for all 𝑖 ∈ [𝑛 + 1, 𝑁].

k. Sample random 2𝑡-degree polynomials 𝑆1 and 𝑆2,

such that 𝑆𝑏 (0) = 𝑠𝑏 and 𝑆𝑏 (𝑖) = [𝑠𝑏]𝑖 , for all 𝑖 ∈
[𝑛 + 1, 𝑁] and 𝑏 ∈ {1, 2}.

l. Send (𝑚, [𝑠1]𝑖 , [𝑠2]𝑖) to 𝑃𝑐 for all 𝑖 ∈ [1, 𝑛], where
[𝑠1]𝑖 = 𝑆1 (𝑖) and [𝑠2]𝑖 = 𝑆2 (𝑖).

C.2 Proof of Theorem 4.1
The proof below is separated to the two cases mentioned

in the Theorem, for each of which we present a perfect

simulation. As mentioned above, we use H as a random

oracle in order to easily extract 𝑃𝑐 ’s randomly chosen 𝑥𝑐 ,

but it is possible to replace it with standard commitment

techniques.

Case 1. Let A be a malicious real world adversary who

corrupts 𝑃1 and a subset of {𝑃2, . . . , 𝑃𝑛} of size 𝑡 − 1. Without

loss of generality, let that subset be 𝑃1, . . . , 𝑃𝑡 . We present an

ideal world adversary S that does as follows.

• Key Generation.
1. Send (keygen) to FECDSA, then send (keygen, continue)

to FECDSA and obtain 𝑋 and 𝐻𝑞 .

2. Run A internally and simulates all other parties

(knowing their encryption key-pair, so it is possible

to decrypt ciphertexts under their key):

a. Choose 𝑥𝑡+1 ← Z𝑞 , and send

({𝑐ℓ𝑡+1}𝑁𝑖=1, {𝐴𝑡+1
𝑗 }𝑡𝑗=0, 𝜋𝑡+1) ← PVSS.Share𝑡,𝑁 (𝑥𝑡+1),

to the adversary.

b. Receive ({𝑐ℓℓ }𝑁𝑖=1, {𝐴ℓ
𝑗 }𝑡𝑗=0, 𝜋 ℓ) from the adversary for

all ℓ ∈ [1, 𝑡].
c. Let 𝑢 ∈ [1, 𝑡 + 1] be the first index for which
1 = PVSS.CheckDealer({𝑐𝑢𝑖 }𝑁𝑖=1, {𝐴𝑢

𝑗 }𝑡𝑗=0, 𝜋𝑢).

Denote these values by {𝑐𝑖 }𝑁𝑖=1, {𝐴 𝑗 }𝑡𝑗=0 (i.e.,

dropping the supertext 𝑢). Note that there must be

such 𝑢, as the above certainly holds for 𝑢 = 𝑡 + 1 (as
this is the honest party simulated here.

d. Extract the secret 𝑥𝑢 by decrypting 𝑐𝑖 for 𝑡 +1 parties
(which is possible because there are at least 𝑡 + 1
parties under the control of the simulator). Note that

this also enables obtaining log(𝐴 𝑗) for all 𝑗 ∈ [0, 𝑡]
sent by 𝑃𝑢 .

e. Compute [𝑥𝑐] ← SS.Share(𝑥𝑐 , 𝑡, 𝑁) for a random

𝑥𝑐 ← Z𝑞 .
f. Send [𝑥𝑐]𝑖 to the adversary for every 𝑖 ∈ [1, 𝑡].
g. Set 𝑋0 = 𝑋 and compute 𝑋𝑖 = ([𝑥𝑢]𝑖 + [𝑥𝑐]𝑖) ·𝐺 for

every 𝑖 ∈ [1, 𝑡]. Then compute 𝑋𝑖 =
∑𝑡

𝑗=0 𝑖
𝑗 · 𝑋 𝑗 for

every 𝑖 ∈ [𝑡 + 1, 𝑛].
h. Broadcast 𝑋 and 𝑋𝑖 for every 𝑖 ∈ [1, 𝑛].
i. Output whatever A outputs.

• Sign.
1. Send (sign, sid) to FECDSA and obtain 𝑅, then send

(sign, sid, continue) and obtain (𝑟, 𝑠).
2. Run A internally and simulates all other parties:

18

a. Choose 𝑘𝑡+1, 𝑎𝑡+1 ← Z𝑞 , and send to the adversary

({𝑐𝑡+1
𝑘,𝑖
}𝑁𝑖=1, {𝐾𝑡+1

𝑗 }𝑡𝑗=0, 𝜋𝑡+1𝑘
) ← PVSS.Share𝑡,𝑁 (𝑘𝑡+1),

({𝑐𝑡+1𝑎,𝑖 }𝑁𝑖=1, {𝐴𝑡+1
𝑗 }𝑡𝑗=0, 𝜋𝑡+1𝑎) ← PVSS.Share𝑡,𝑁 (𝑎𝑡+1),

({𝑐𝑡+1𝑧,𝑖 }𝑁𝑖=1, {𝑍 𝑡+1
𝑗 }𝑡𝑗=0, 𝜋𝑡+1𝑧) ← PVSS.Share2𝑡,𝑁 (0),

({𝑐𝑡+1𝑧′,𝑖 }𝑁𝑖=1, {𝑍 ′
𝑡+1
𝑗 }𝑡𝑗=0, 𝜋𝑡+1𝑧′) ← PVSS.Share2𝑡,𝑁 (0).

b. For every 𝑖 ∈ [1, 𝑡], receive from the adversary

({𝑐𝑖
𝑘,𝑖
}𝑁𝑖=1, {𝐾𝑖

𝑗 }𝑡𝑗=0, 𝜋𝑖𝑘) ← PVSS.Share𝑡,𝑁 (𝑘𝑖),
({𝑐𝑖𝑎,𝑖 }𝑁𝑖=1, {𝐴𝑖

𝑗 }𝑡𝑗=0, 𝜋𝑖𝑎) ← PVSS.Share𝑡,𝑁 (𝑎𝑖),
({𝑐𝑖𝑧,𝑖 }𝑁𝑖=1, {𝑍 𝑖

𝑗 }2𝑡𝑗=0, 𝜋𝑖𝑧) ← PVSS.Share2𝑡,𝑁 (0),
({𝑐𝑖𝑧′,𝑖 }𝑁𝑖=1, {𝑍 ′

𝑖
𝑗 }2𝑡𝑗=0, 𝜋𝑖𝑧′) ← PVSS.Share2𝑡,𝑁 (0).

c. Let 𝑢 ∈ [1, 𝑡 + 1] be the first index for which all

sharings above are verified.

d. Denote the public values of 𝑃𝑢 by {𝐾 𝑗 , 𝐴 𝑗 }𝑡𝑗=0 and
{𝑍 𝑗 , 𝑍

′
𝑗 }2𝑡𝑗=0.

e. Extract the values 𝑘𝑢, 𝑎𝑢 and 𝑧𝑢, 𝑧
′
𝑢 (the values

𝑧𝑢 and 𝑧′𝑢 are extractable via the zero knowledge

functionality).

f. Generate the sharings [𝑘𝑐], [𝑎𝑐], [𝑧𝑐] and [𝑧′𝑐]
as in the protocol, and send the adversary

{[𝑘𝑐]𝑖 , [𝑎𝑐]𝑖 , [𝑧𝑐]𝑖 , [𝑧′𝑐]𝑖 } for every 𝑖 ∈ [1, 𝑡].
g. Broadcast 𝑅 (as received from the ECDSA

functionality).

h. Set 𝐾0 = 𝑅 and compute 𝐾𝑖 = ([𝑘𝑢]𝑖 + [𝑘𝑐]𝑖) ·𝐺 for

every 𝑖 ∈ [1, 𝑡]. Then compute 𝐾𝑖 =
∑𝑡

𝑗=0 𝑖
𝑗 · 𝐾 𝑗 for

every 𝑖 ∈ [𝑡 + 1, 𝑛].
i. Compute𝐴𝑖 = ([𝑎𝑢]𝑖+[𝑎𝑐]𝑖) ·𝐺 ,𝑍𝑖 = ([𝑧𝑢]𝑖+[𝑧𝑐]𝑖) ·
𝐺 and 𝑍 ′𝑖 = ([𝑧′𝑢]𝑖 + [𝑧′𝑐]𝑖) ·𝐺 for every 𝑖 ∈ [1, 𝑛].

j. Broadcast (𝐾𝑖 , 𝐴𝑖 , 𝑍𝑖 , 𝑍
′
𝑖) for every 𝑖 ∈ [1, 𝑛].

k. Send (proof, sid∥1, 𝐴𝑡+1, 𝑋𝑡+1, 𝑀𝑡+1,1) and

(proof, sid∥2, 𝐴𝑡+1, 𝐾𝑡+1, 𝑀𝑡+1,1) to the adversary, in

addition, receive and verify the adversary’s proof

on its𝑀𝑖,1, 𝑀𝑖,2 for every 𝑖 ∈ [1, 𝑡].
l. When received 𝑡 +1 messages ([𝑠1]𝑖 , [𝑠2]𝑖 , 𝑀𝑖,1, 𝑀𝑖,2)
for 𝑖 for which the proof is verified, broadcast

the signature (𝑟, 𝑠) as received from the ECDSA

functionality.

m. Output whatever A outputs.

First note that the honest parties’s output are identically

distributed in both real and ideal world. We now argue that

the adversary’s views in both world are computationally

indistinguishable. The only difference between the views

is that in the simulation the values 𝑋𝑖 and 𝐾𝑖 for 𝑖 ∈ [𝑡 +
1, 𝑛] that are observed by the adversary (since 𝑃𝑐 broadcasts

them) are not computed correctly by ([𝑥𝑢]𝑖 + [𝑥𝑐]𝑖) ·𝐺 and

([𝑘𝑢]𝑖 + [𝑘𝑐]𝑖) ·𝐺 ; rather, they are computed (interpolated)

directly from the values 𝑋0, . . . , 𝑋𝑡 and 𝐾0, . . . , 𝐾𝑡 (if they

were not interpolated this way then it would have been easy

to detect this). Now, since the adversary does not have any

information about ([𝑥𝑢]𝑖 + [𝑥𝑐]𝑖) or ([𝑘𝑢]𝑖 + [𝑘𝑐]𝑖) it cannot
tell the difference and so the views are identically distributed.

Case 2. LetA be a semi-honest real world adversary who

corrupts 𝑃𝑐 . We present an ideal world adversary S that does

as follows:

• Key Generation.
1. Send (keygen) and (keygen, continue) to FECDSA, and

obtain 𝑋 .

2. Run A internally and simulate parties (𝑃1, . . . , 𝑃𝑛):

a. Choose 𝑥𝑐 ← Z𝑞 (on behalf of 𝑃𝑐).

b. Compute 𝑋𝑢 = 𝑋 − 𝑥𝑐 ·𝐺 .
c. Choose random values [𝑥𝑢]𝑖 ← Z𝑞 and compute

𝑐𝑖 ← EG.Encek𝑖 ([𝑥𝑢]𝑖) for 𝑖 ∈ [𝑛 + 1, 𝑁]; and
𝑐𝑖 ←← EG.Encek𝑖 (1) for every other 𝑖 ∈ [1, 𝑛].
Finally compute 𝐴1, . . . , 𝐴𝑡 such that

∑𝑡
𝑗=0 𝑖

𝑗𝐴 𝑗 =

[𝑥𝑢]𝑖 · 𝐺 for every 𝑖 ∈ [𝑛 + 1, 𝑁] (this is a linear

system of 𝑡 equations with 𝑡 variables).

d. Broadcast {𝑐𝑖 }𝑁𝑖=1, {𝐴 𝑗 }𝑡𝑗=0, and 𝜋 , where 𝜋 is

generated by the HVZK simulator associated with

the zero-knowledge proof.

e. Receive a call toH from the adversary and respond

with 𝑥𝑐 chosen above.

f. Receive [𝑥𝑐]𝑖 from the adversary for every 𝑖 ∈ [1, 𝑛].
g. Receive 𝑋 and 𝑋𝑖 for every 𝑖 ∈ [1, 𝑛].
h. Output whatever the adversary outputs.

• Sign.
1. Send (sign, sid) and (sign, sid, continue) to FECDSA and

obtain 𝑅 and (𝑟, 𝑠).
2. Run A internally and simulates all other parties:

a. Choose 𝑘𝑐 ← Z𝑞 (on behalf of 𝑃𝑐).

b. Compute 𝑅𝑢 = 𝑅 − 𝑘𝑐 ·𝐺 .
c. Choose random values [𝑘𝑢]𝑖 ← Z𝑞 and compute

𝑐𝑖 ← EG.Encek𝑖 ([𝑘𝑢]𝑖) for 𝑖 ∈ [𝑛 + 1, 𝑁]; and
𝑐𝑖 ←← EG.Encek𝑖 (1) for every other 𝑖 ∈ [1, 𝑛].
Finally compute 𝐾1, . . . , 𝐾𝑡 such that

∑𝑡
𝑗=0 𝑖

𝑗𝐾 𝑗 =

[𝑘𝑢]𝑖 · 𝐺 for every 𝑖 ∈ [𝑛 + 1, 𝑁] (this is a linear

system of 𝑡 equations with 𝑡 variables).

d. Broadcast {𝑐𝑘,𝑖 }𝑁𝑖=1, {𝐾 𝑗 }𝑡𝑗=0, and 𝜋𝑘 , where 𝜋𝑘 is

generated by the HVZK simulator associated with

the zero-knowledge proof.

e. Choose random 𝑎𝑢 ← Z𝑞 and compute

({𝑐𝑎,𝑖 }𝑁𝑖=1, {𝐴 𝑗 }𝑡𝑗=0, 𝜋𝑎) ← PVSS.Share𝑡,𝑁 (𝑎𝑢),
({𝑐𝑧,𝑖 }𝑁𝑖=1, {𝑍 𝑗 }𝑡𝑗=0, 𝜋𝑧) ← PVSS.Share2𝑡,𝑁 (0),

({𝑐𝑧′,𝑖 }𝑁𝑖=1, {𝑍 ′𝑢 𝑗 }𝑡𝑗=0, 𝜋𝑧′) ← PVSS.Share2𝑡,𝑁 (0).

f. Broadcast the PVSS results above.

g. Receive a call toH from the adversary and respond

with 𝑘𝑐 chosen above.

h. Receive ([𝑘𝑐]𝑖 , [𝑎𝑐]𝑖 , [𝑧𝑐]𝑖 , [𝑧′𝑐]𝑖) from 𝑃𝑖 for 𝑖 ∈
[1, 𝑛], and extract 𝑎𝑐 (𝑧𝑐 and 𝑧′𝑐 could not be

extracted since they are shared using a sharing of

degree 2𝑡).

19

i. Receive 𝐾 and (𝐾𝑖 , 𝐴𝑖 , 𝑍𝑖 , 𝑍
′
𝑖) for all 𝑖 ∈ [1, 𝑛].

j. At this point the simulator knows the values

[𝑠1]𝑖 , [𝑠2]𝑖 for every 𝑖 ∈ [𝑛+1, 𝑁] that are computed

by the adversary in the local computation step.

k. The simulator generates random sharings of degree

2𝑡 for random values 𝑠1, 𝑠2 such that: (1) the shares

at points 𝑖 ∈ [𝑛 + 1, 𝑁] are those computed by the

adversary; (2) it holds that 𝑠1 · 𝑠−12
= 𝑠 and 𝑠 is the

value received from the ECDSA functionality.

l. The simulator also compute the values 𝑀𝑖,1, 𝑀𝑖,2

according to the constraints implied in the protocol.

Note that these values will not meet the constraints

required by the zero-knowledge proof, however,

the proof will be successfully verified since it is

simulated using the HVZK simulator associated

with it.

m. The simulator sends [𝑠1]𝑖 , [𝑠2]𝑖 , 𝑀𝑖,1, 𝑀𝑖,2 to the

adversary for all 𝑖 ∈ [1, 𝑛].
n. Receive 𝑠 from the adversary and output whatever

it outputs.

Note that here the view of the adversary under the

simulation is identical to its view in the real world, except

the fact that the ciphertext that are published under the

encryption keys of parties 𝑃1, . . . , 𝑃𝑛 are incorrect, that is,

they encrypt 0 instead of the actual value. That value that

should have been encrypted is unknown to the simulator and

hence could not be used. This however is computationally

indistinguishable by the adversary and hence it will proceed

with the protocol exactly as it would have proceed if

these ciphertext were encrypting the correct messages, as

otherwise we could have used that adversary in order to

break the CPA-security of El-Gamal (which relies on the

DDH assumption).

C.3 Proof of Theorem 5.1
The two-party FECDSA is slightly different than the one

presented in Functionality 1. For the two-party, the

functionality works only with 𝑃𝑢 , 𝑃𝑐 and an adversary S,
who cannot abort the execution (but is mentioned in the

functionality solely to emphasize this). This is possible

because the first (and only) message sent in the protocol from

𝑃𝑢 to 𝑃𝑐 fully determines whether the adversary will abort or

not (by verifying the zero-knowledge proofs), and if so, the

honest party refuses to participate. In the ideal world, such

refusal is expressed by not invoking FECDSA at all. Finally,

since this case could not be translated to a honest majority

protocol we could not achieve fairness, and only 𝑃𝑢 obtains

the result signature from the functionality. For completeness,

the modified version is presented in Functionality 8.

We separately present a simulator to the case of malicious

𝑃𝑢 and semi-honest 𝑃𝑐 .

Case 1. Let A be a malicious real world adversary who

corrupts 𝑃𝑢 , consider an ideal world adversary S that does

as follows:

• Key Generation.
1. Run A internally and simulate the honest party 𝑃𝑐 :

a. Receive (𝑋𝑢, 𝑝𝑘, 𝑐𝑘𝑒𝑦) and

(prove, 𝑐𝑘𝑒𝑦, 𝑝𝑘, 𝑋𝑢, 𝑥𝑢, 𝑃,𝑄) from 𝑃𝑢 , set

𝑠𝑘 = (𝑃 − 1) (𝑄 − 1) and verify that (1) 𝑋𝑢 = 𝑥𝑢 · 𝐺 ,
(2) 𝑃,𝑄 are primes of length 𝜅′, (3) 𝑁 = 𝑃𝑄 , (4)

𝑥𝑢 = Dec(𝑠𝑘, 𝑐𝑘𝑒𝑦). If verification fails then halt,

otherwise continue.

b. Send (keygen) to FECDSA and receive 𝑋 .

c. Compute 𝑋𝑐 = (𝑥𝑢)−1 · 𝑋𝑢 and send 𝑋 to A.

d. Output whatever A outputs.

• Sign.
1. Run A internally and simulate the honest party 𝑃𝑐 :

a. Receive 𝑅𝑢 and (prove, sid, 𝑅𝑢, 𝑘𝑢) from 𝑃𝑢 , verify that

𝑅𝑢 = 𝑘𝑢 · 𝐺 . If verification fails then halt, otherwise

continue.

b. Send (sign, sid, 𝑀) to FECDSA and receive 𝑅 and (𝑟, 𝑠).
c. Choose 𝜌 ← Z𝑞2 and 𝑟 ← Z∗𝑁 , and compute 𝑐2 =

Enc(𝑝𝑘, 𝜌𝑞 + [𝑘𝑢 · 𝑠 mod 𝑞]), where 𝑠 is the signature
received from FECDSA.

d. Send 𝑐2 to A and output whatever A outputs.

Observe that the view of 𝑃𝑢 under simulation and in the

real execution are identically distributed, except of the value

𝑐2: in the simulation it is an encryption of 𝑧′
1
= 𝜌𝑞 + [𝑘𝑢 · 𝑠

mod 𝑞] whereas in the real execution it is an encryption of

𝑧′
2
= 𝜌𝑞+[(𝑘𝑐)−1𝑚 mod 𝑞]+ [(𝑘𝑐)−1𝑟𝑥𝑐 mod 𝑞] ·𝑥𝑢 , where

𝜌 is a random value from {0, . . . , 𝑞2 − 1}. Denote by 𝑧1, 𝑧2 the
values wihtout the addition of a randommultiple of 𝑞, that is,

𝑧1 = 𝑘𝑢 · 𝑠 mod 𝑞 and 𝑧2 = [(𝑘𝑐)−1𝑚 mod 𝑞] + [(𝑘𝑐)−1𝑟𝑥𝑐
mod 𝑞] ·𝑥𝑢 . Note that we consider 𝑧1 and 𝑧2 over the integers,
rather than over Z𝑞 . In [48] the values 𝑧′

1
and 𝑧′

2
are shown

to be statistically close (as long as all conditions on 𝑋𝑢, 𝑝𝑘

and 𝑐𝑘𝑒𝑦 are met, which is guaranteed by using an ideal

functionality for zero-knowledge). We present this analysis

here for completeness.

Consider the real world value 𝑧2, it is an integer result

of the addition of an element from Z𝑞 (namely (𝑘𝑐)−1𝑚
mod 𝑞) with the product of of two elements from Z𝑞 (namely

[(𝑘𝑐)−1𝑟𝑥𝑐 mod 𝑞] · 𝑥𝑢), and we know that by reducing

that integer modulo 𝑞 we get 𝑘𝑢 · 𝑠 mod 𝑞 (where (𝑟, 𝑠) the
ECDSA signature on𝑀 obtained by the functionality), thus

there exists some ℓ ∈ N such that [𝑘𝑢 · 𝑠 mod 𝑞] + ℓ ·𝑞 = 𝑧2.

Also, note that 0 ≤ ℓ < 𝑞 since 𝑧2 < 𝑞(𝑞−1), so the difference
between the simulation and the real world is:

• Real: ciphertext 𝑐2 encrypts 𝑧
′
2
= [𝑘𝑢 · 𝑠 mod 𝑞] + ℓ ·

𝑞 + 𝜌 · 𝑞, and
• Simulation: ciphertext 𝑐2 encrypts 𝑧′

1
= [𝑘𝑢 · 𝑠

mod 𝑞] + 𝜌 · 𝑞.
20

We show that with a random choice of 𝜌 ∈ Z𝑞2 the values
𝑧′
1
and 𝑧′

2
are statistically close. Fix 𝑘𝑢 and 𝑠 , then for every

0 ≤ 𝜁 < 𝑞 define 𝑣 = [𝑘𝑢 · 𝑠 mod 𝑞] + 𝜁 · 𝑞, we have:
• If 0 ≤ 𝜁 < ℓ then Pr[𝑧′

1
= 𝑣] = 1/𝑞2 but Pr[𝑧′

2
= 𝑣] = 0

(because 𝑧′
2
> [𝑘𝑢 · 𝑠 mod 𝑞] + ℓ · 𝑞).

• If 𝑞2 − 1 < 𝜁 < ℓ + 𝑞2 then Pr[𝑧′
2
= 𝑣] = Pr[𝜌 =

𝑞2−1−ℓ] = 1/𝑞2 but Pr[𝑧′
1
= 𝑣] = 0 (because 𝑧′

1
≤ [𝑘𝑢 ·𝑠

mod 𝑞] + (𝑞2 − 1)𝑞).
• If ℓ ≤ 𝜁 ≤ 𝑞2 − 1 then Pr[𝑧′

1
= 𝑣] = Pr[𝜌 = 𝜁] = 1/𝑞2

and Pr[𝑧′
2
= 𝑣] = Pr[𝜌 = 𝜁 − ℓ] = 1/𝑞2.

We get that Δ(𝑧′
1
, 𝑧′

2
) = ∑ℓ+𝑞2−1

𝜁=0

��
Pr[𝑧′

1
= 𝑣] − Pr[𝑧′

2
= 𝑣]

�� =
2ℓ
𝑞2
, which is negligible.

Case 2. LetA be a semi-honest real world adversary who

corrupts 𝑃𝑐 , consider an ideal world adversary S that does

as follows:

• Key Generation.
1. Run A internally and simulate the honest party 𝑃𝑢 :

a. Receive the oracle call and obtain 𝑣 , forward 𝑣 to the

RO and obtain 𝑣𝑥 , forward 𝑣𝑥 back to A.

b. Receive 𝑣𝑥 from A.

c. Compute 𝑥𝑐 = H(𝑣 ∥keygen), 𝑋𝑐 = 𝑥𝑐 · 𝐺 and 𝑋𝑢 =

(𝑥𝑐)−1 · 𝑋 .
d. Generate a Paillier key-pair (𝑝𝑘, 𝑠𝑘) where 𝑝𝑘 = 𝑁 =

𝑃 · 𝑄 , with 𝜅′-bit primes 𝑃,𝑄 , and compute 𝑐𝑘𝑒𝑦 =

Enc(𝑝𝑘, 0).
e. Send (𝑋𝑢, 𝑝𝑘, 𝑐𝑘𝑒𝑦) and (proof, 𝑐𝑘𝑒𝑦, 𝑁 , 𝑋𝑢) to 𝑃𝑐 .
f. Send (proof,
g. Receive 𝑋 from A and output whatever A outputs.

• Sign.
1. Run A internally and simulate the honest party 𝑃𝑐 :

a. Receive 𝑅 from FECDSA.
b. Compute 𝑘𝑐 = H(𝑣 ∥sid), and computes 𝑅𝑢 = (𝑘𝑐)−1 ·
𝑅.

c. Send 𝑅𝑢 and (proof, sid, 𝑅𝑢) to A.

d. Receive 𝑐2 from A and output whatever A outputs.

The views of A in the real execution and under

the simulation of the key generation protocol are

computationally indistinguishable: the value 𝑋𝑢 (and

therefore 𝑋) are identically distributed in G and the key-

pairs generated in both worlds are identically distributed.

The only difference is in the generation of ciphertext 𝑐𝑘𝑒𝑦 :

in the real execution this is an encryption of 𝑥𝑢 and in the

simulation this is an encryption of zero, and since Paillier

encryption scheme is CPA-secure it follows that that the two

views are computationally indistinguishable.

In addition the views of A in the real execution

and under the simulation of the signing protocol are

identically distributed, in both cases it only receives 𝑅𝑢 and

(proof, sid, 𝑅𝑢), such that 𝑘𝑐 · 𝑅𝑢 = 𝑅, with 𝑅 chosen by the

functionality. Note that unlike in [48], since we assumeA is

semi-honest it always reply with a ciphertext that holds a

correct evaluation on 𝑐𝑘𝑒𝑦 and so we do not need to guess

whether to abort or not, neither to rely on the ‘Paillier-EC’

assumption [48, Def. 5.2].

D Shamir Sharing and Lagrange
Interpolation

Secret sharing enables a dealer to split a secret 𝑥 into 𝑛

pieces or shares, such that only a sufficiently large subset of

shares can be used to recover the secret. Shamir 𝑡-out-of-𝑛

secret sharing over the field F (where 𝑡 < 𝑛 ∈ N) is defined
by a tuple of algorithms SSF = (Share,Reconstruct), where
[𝑥] = ([𝑥]1, . . . , [𝑥]𝑛) = Share𝑡,𝑛 (𝑥 ; 𝑟) denotes a sharing

of 𝑥 , and 𝑥 = Reconstruct([𝑥]𝑖1 , . . . , [𝑥]𝑖𝑡+1) denotes the

reconstruction using 𝑡 + 1 shares, which may result with

⊥ if the shares are inconsistent.

• [𝑥] = Share𝑡,𝑛 (𝑥 ; 𝑟). Given a secret 𝑥 ∈ F and a

random tape 𝑟 , pick 𝑎1, . . . , 𝑎𝑡 ∈ F and output [𝑥] =

{[𝑥]1, . . . , [𝑥]𝑛}, where [𝑥]𝑖 = 𝑃 (𝑖) and 𝑃 (𝑥) = 𝑥 + 𝑎1𝑥 +
𝑎2𝑥

2 + . . . + 𝑎𝑡𝑥𝑡 .
• 𝑥 = Reconstruct([𝑥]𝑖1 , . . . , [𝑥]𝑖𝑡+1). Given 𝑡 + 1 shares

[𝑥]𝑖1 , . . . , [𝑥]𝑖𝑡+1 , where 1 ≤ 𝑖1 < 𝑖2 < . . . < 𝑖𝑡+1 ≤ 𝑛,

interpolate a polynomial 𝑃 such that 𝑃 (𝑖 𝑗) = [𝑥]𝑖 𝑗 for all
𝑗 ∈ [1, 𝑡 + 1] and output 𝑥 = 𝑃 (0).

Lagrange interpolation is used in order to get 𝑃 (0) directly.
In our protocol we use Lagrange interpolation to get 𝑃 (𝑖)
also for 𝑖 ≠ 0, therefore, we describe below the general case.

Given 𝑡 + 1 points (𝑖1, [𝑥]𝑖1), . . . , (𝑖𝑡+1, [𝑥]𝑖𝑡+1), the

polynomial that passes through them is 𝐿(𝑥) = ∑𝑡+1
𝑗=1 [𝑥]𝑖 𝑗 ·

ℓ𝑗 (𝑥), where

ℓ𝑗 (𝑥) =
∏

1≤𝑘≤𝑡+1
𝑘≠𝑗

𝑥 − 𝑖𝑘
𝑖 𝑗 − 𝑖𝑘

.

Now, for some value 𝑣 , we define the coefficient 𝜆𝑣𝑗 = ℓ𝑗 (𝑣),
then, we have 𝐿(𝑣) = ∑𝑡+1

𝑗=1 𝜆
𝑣
𝑗 · [𝑥]𝑖 𝑗 .

In a typical use-case a dealer calls [𝑥] = Share𝑡,𝑛 (𝑥 ; 𝑟)
on its secret 𝑥 , and send [𝑥]𝑖 to the 𝑖-th receiver. In a later

point, the receivers want to reconstruct 𝑥 , so they gather

𝑡+1 of the shares and run 𝑥 = Reconstruct([𝑥]𝑖1 , . . . , [𝑥]𝑖𝑡+1).
It is a fact that Shamir secret sharing has perfect secrecy,

namely, 𝑡 shares reveal nothing about the secret, whereas

𝑡 + 1 shares completely determine it. Shamir secret sharing is

not protected from a malicious dealer, that is, the dealer

may use a polynomial 𝑃 of degree higher than 𝑡 , which

may lead to inconsistent reconstruction - different subset of

shares reconstruct to different secrets. In addition, Shamir

secret sharing is not protected from a malicious receiver,

that is, a receiver may contribute a wrong share to make

reconstruction output a wrong secret (not the one dealt by

the dealer). Verifiable secret sharing schemes solve those

issues.

21

FUNCTIONALITY 8.
(
2P ECDSA Functionality: FECDSA

)
The functionality is parameterized with the ECDSA group

description (G,𝐺, 𝑞) and works with parties 𝑃𝑢 , 𝑃𝑐 , and an

adversary S as follows.

• Upon receiving (keygen) from 𝑃𝑢 :

1. Generate an ECDSA key-pair (𝑋, 𝑥) by choosing a

random 𝑥 ← Z∗𝑞 and computing 𝑋 = 𝑥 ·𝐺 .
2. Choose a hash function 𝐻𝑞 : {0, 1} → {0, 1}⌊log𝑞⌋ .
a. Store (𝐻𝑞, 𝑥).
b. Output 𝑋 to 𝑃𝑢 and 𝑃𝑐 .

c. Ignore future calls to keygen.
• Upon receiving (sign, sid, 𝑀) from 𝑃𝑢 , if keygen was

already called and sid was not already used:

1. Choose a random 𝑘 ∈ Z∗𝑞
2. Compute 𝑅 ← 𝑘 ·𝐺 and let 𝑟 = 𝑅.𝑥 mod 𝑞; then send

𝑅 to 𝑃𝑢 and 𝑃𝑐 .

3. Let𝑚 = 𝐻𝑞 (𝑀). Compute 𝑠 ← 𝑘−1 (𝑚 + 𝑟𝑥) mod 𝑞.

4. Send (𝑟, 𝑠) to 𝑃𝑢 and S.

E Functionality for Two-Party ECDSA
F The Paillier Encryption Scheme
The Paillier encryption scheme [52] is defined by the tuple

of algorithms Paillier = (Gen, Enc,Dec) described below.

• Gen(1𝜅 , 𝑞). Given a security parameter 1
𝜅
and a prime

𝑞, sample poly(𝜅)-bit primes 𝑝1 and 𝑝2 and output

(𝑁 ; (𝑝1, 𝑝2)) where 𝑁 = 𝑝1 ·𝑝2 is the public encryption
key and 𝑠𝑘 = (𝑝1, 𝑝2) is the secret key. Define P =

(Z𝑞, +), R = (Z∗
𝑁
, ·) and C = Z∗

𝑁 2
.

• Enc(𝑝𝑘, 𝑥 ;𝜂). Given the public key 𝑁 , a message 𝑥 ∈
Z𝑞 and randomness 𝜂 ∈ Z∗

𝑁
, output

ct =
[
(1 + 𝑁)𝑥 · 𝜂𝑁 mod 𝑁 2

]
.

• Dec(𝑠𝑘, ct). Given the secret key (𝑝1, 𝑝2) and a

ciphertext ct, compute 𝑁 = 𝑝1 · 𝑝2 and output

pt =
[
[ct𝜙 (𝑁) mod 𝑁 2] − 1

𝑁
· 𝜙 (𝑁)−1 mod 𝑁

]
mod 𝑞.

G El-Gamal Encryption Scheme
The El-Gamal encryption scheme [32] over group (G,𝐺, 𝑞)
is defined by EG = (Gen, Enc,Dec):
• (ek, dk) ← Gen(). Pick 𝑥 ← Z∗𝑞 and output (𝑌, 𝑥) where
𝑌 = 𝑥 ·𝐺 (i.e., 𝑝𝑘 = 𝑌 and dk = 𝑥).

• 𝐶 = Encek (𝑚, 𝑟). For a uniformly random 𝑟 ∈ Z𝑞 and

arbitrary𝑚 ∈ Z∗𝑞 , output𝐶 = (𝐶1,𝐶2) = (𝑟 ·𝐺, (𝑟 · 𝑌) ·𝑚).
• 𝑚 = Decdk (𝐶). For 𝐶1,𝐶2 ∈ G, interpret 𝑐 = (𝐶1,𝐶2) and
𝑥 = dk, and output 𝐶2 · (𝑥 ·𝐶1)−1.

The scheme is proven to be CPA-secure under the assumption

that the decisional Diffie-Helman is hard relative to (G,𝐺, 𝑞).

H Zero Knowledge Proof of Knowledge
For an NP-relation 𝑅, we use the F 𝑅

zk functionality

(Functionality 9 below). The protocols we use to realize F 𝑅
zk

are public coin, therefore they can be instantiated with a

non-interactive version in the random oracle model via the

Fiat-Shamir transform.

FUNCTIONALITY 9.
(
The ZKPoK Functionality: F 𝑅

zk

)
The functionality works with a prover P and verifiers

®V .

• Upon receiving (prove, sid, 𝑥,𝑤) from P, if (𝑥,𝑤) ∈ 𝑅 and

sid has never been used before, send (proof, sid, 𝑥) to ®V .

22

	Abstract
	1 Introduction
	1.1 Practical Model for Cryptographic Protocols
	1.2 Our contributions
	1.3 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 The ECDSA Scheme and Functionality
	2.3 Shamir Sharing and Lagrange Interpolation
	2.4 Schoenmakers's Publicly Verifiable Random Sharing Scheme
	2.5 Confidential Smart Contracts

	3 Threshold ECDSA Protocol
	3.1 Key Generation
	3.2 Signing Protocol

	4 Robust Threshold ECDSA
	5 A Solution for a Single User
	6 Applications
	6.1 Multisignature Wallet with Policy Checks
	6.2 Wallet Exchange

	7 Implementation and Evaluation
	7.1 Implementation Details
	7.2 Implementing Cryptographic Primitives on Chain
	7.3 Performance Evaluation

	8 Conclusion
	References
	A Scalability across n and t
	B Contract Examples
	B.1 Multisignature with Policy Checks Contract
	B.2 Wallet Exchange Contract

	C Security Proofs
	C.1 Proof of Theorem 3.1
	C.2 Proof of Theorem 4.1
	C.3 Proof of Theorem 5.1

	D Shamir Sharing and Lagrange Interpolation
	E Functionality for Two-Party ECDSA
	F The Paillier Encryption Scheme
	G El-Gamal Encryption Scheme
	H Zero Knowledge Proof of Knowledge

