
Automated Generation of Masked Nonlinear Components:
From Lookup Tables to Private Circuits

Lixuan Wu1,2, Yanhong Fan1,2,3, Bart Preneel4, Weijia Wang1,2,3

and Meiqin Wang1,2,3(�)
1 School of Cyber Science and Technology, Shandong University, Qingdao, China

{yanhongfan,mqwang,weijiawang}@sdu.edu.cn,lixuanwu@mail.sdu.edu.cn
2 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education,

Shandong University, Jinan, China
3 Quan Cheng Shandong Laboratory, Jinan, China

4 imec-COSIC, KU Leuven, Belgium
bart.preneel@esat.kuleuven.be

Abstract. Masking is considered to be an essential defense mechanism against side-
channel attacks, but it is challenging to be adopted for hardware cryptographic
implementations, especially for high-security orders. Recently, Knichel et al. pro-
posed an automated tool called AGEMA that enables the generation of masked
implementations in hardware for arbitrary security orders using composable gadgets.
This accelerates the construction and practical application of masking schemes. This
article proposes a new automated tool named AGMNC that can generate masked
nonlinear components with much better performance. The effectiveness of AGMNC
is evaluated in several case studies. The evaluation results show a significant perfor-
mance improvement, particularly for the first-order secure SKINNY S-box: saving
41% area, 25% latency, and 49% dynamic power. We achieve such a good result
by integrating three key techniques: a new composable AND-XOR gadget, an opti-
mization strategy based on the latency asymmetry feature of the AND-XOR gadget,
and an implementation optimization for synchronization. Besides, we use the formal
verification tool SILVER and FPGA-based practical experiments to confirm the
security of the masked implementations generated by AGMNC.
Keywords: Side-Channel Analysis · Masking · Composable Gadget · AGMNC

1 Introduction
With the rapid growth of the Internet of Things (IoT), the number of connected devices
has increased significantly. IoT devices are attractive targets for a range of attacks; in
particular, the easy access to these devices renders them vulnerable to physical attacks.
Among these physical attacks, Side-Channel Analysis (SCA) attacks [Koc96, KJJ99] have
gained significant attention from researchers and practitioners due to their ability to extract
secret information from the devices without the need for direct access to the internal
components. SCA attacks can exploit various physical properties, such as timing [Koc96],
power consumption [KJJ99], electromagnetic (EM) emanations [GMO01], temperature and
heat dissipation [HS14], to extract secret information processed by the device. In response
to the severe threat posed by SCA attacks, numerous approaches have been proposed
to mitigate this risk. Among approaches, masking [CJRR99] has emerged as the most
widely studied and deployed countermeasure due to its sound theoretical foundations. For
example, the first necessary requirement of a masking scheme is the Ishai-Sahai-Wagner
(ISW) d-probing model [ISW03] that ensures that any d internal variables are independently
distributed from the secret input.

mailto:{yanhongfan, mqwang, weijiawang}@sdu.edu.cn, lixuanwu@mail.sdu.edu.cn
mailto:bart.preneel@esat.kuleuven.be

2 Automated Generation of Masked Nonlinear Components:

However, it is still non-trivial to adopt masking in practice, since d-probing security
is invalid in the presence of many known physical defaults. For instance, many masking
schemes (see, e.g., [ISW03, GMK17, GM18] for an incomplete list) were shown to be
insecure in hardware. It is mainly because they fall short in resisting glitches that are
known to be the most challenging hardware physical default to overcome. In this respect,
the glitch-extended probing model [FGP+18] has been proposed to formalize glitches.

Although introducing some simple, practical, and formal adversary models has facili-
tated the design and security verification of masking schemes, designing masking schemes
with high-security orders for complex circuits remains challenging due to the high com-
putational cost. Following a divide-and-conquer strategy, researchers have defined some
composable security notions that allow large circuits to be constructed by sub-circuits
satisfying composability, also known as gadgets. In this way, constructing large circuits is
reduced to the construction of small ones satisfying composability. Those security notions
include NI [BBD+15], SNI [BBD+16], PINI [CS20], and so on. Also, the glitch-extended
probing model and composable security notions are also combined. To further promote
the practical application of composability, an automation tool called AGEMA was intro-
duced by Knichel et al. [KMMS21], which allows designers to generate hardware masked
implementation from an unprotected implementation using composable gadgets.

We note that, albeit AGEMA can easily generate masked hardware circuit from a simple
but unprotected design, there still exists a large hardware performance gap between masked
circuits generated from AGEMA and manually designed ones. In this paper, based on the
fact that nonlinear components of the whole circuit are the most complex and difficult
part of masking, we propose a software tool AGMNC that takes some architecture-level
optimizations into account to reduce the gap.
1.1 Contributions

AGMNC can automatically generate hardware masked circuits from the look-up table
description of nonlinear components, such as an S-box. To generate a more efficient hard-
ware masked implementation, we proposes a new composable gadget (i.e., an AND-XOR
gadget) and two key optimization techniques (i.e., latency asymmetry and implementation
optimization).

A new composable AND-XOR gadget. There are usually XOR operations between
the quadratic terms and linear terms in the Boolean expressions of an S-box. Consider, for
example, the Boolean function f = ab + c : this function is realized in AGEMA by trivially
combining an HPC-AND gadget and XOR operations. The implementation in AGEMA
requires the insertion of additional registers in the input path of each share of primary
input c to synchronize the output shares. To overcome this disadvantage, we propose an
AND-XOR gadget, which considers the HPC-AND gadget and XOR operations jointly.
Compared to the trivial combination, the AND-XOR gadget saves d + 1 registers, where
d is the security order: a circuit is secure against attacks or order d if it can resist an
attacker that combines d measurements for each trace.

Two optimizations. In addition to the AND-XOR gadget, AGMNC integrates
two key techniques to improve the hardware performance of the masked implementation,
namely latency asymmetry and implementation optimization. The latency asymmetry
means that the latency from each input port to the output port is different in a gadget.
The HPC-AND gadget, for example, has a latency from the input port to the output
port of 1 cycle and 2 cycles, respectively. By using the properties of AND-XOR and
HPC-AND gadgets, this technique significantly reduces the latency and area of the final
implementation. Based on the observation and analysis, we describe a new optimization
technique to synchronize the latency of the final implementation. This technique requires
fewer registers than synchronization without optimization.

An automation tool AGMNC. Based on the previous gadget and key techniques,
we have developed a new automation tool AGMNC. The tool takes a look-up table as

Lixuan Wu, Yanhong Fan, Bart Preneel, Weijia Wang and Meiqin Wang (�) 3

input and automatically generates the masked circuit. To illustrate the effectiveness of this
tool, we apply AGMNC to several S-boxes. The results show a significant improvement
in the hardware performance of the masked implementations generated by AGMNC.
More specifically, for the first-order secure SKINNY S-box, AGMNC achieves a maximum
reduction of 41%, 25%, and 49% in area, latency, and dynamic power, respectively, compared
to AGEMA. Further, we apply the formal verification tool SILVER [KSM20] and FPGA-
based practical experiments to confirm the security of the masked implementations.

1.2 Outline
We first present some necessary notions in Sect. 2. In Sect. 3, we highlight a new

gadget and two key techniques applied in AGMNC, including the AND-XOR gadget, the
latency asymmetry feature and the implementation optimization. To further illustrate the
efficiency of AGMNC, Sect. 4 instantiates several S-boxes and full ciphers as case studies.
In Sect. 5, we offer theoretical and experimental security analysis for the final masked
implementations generated by AGMNC. We conclude our work in Sect. 6.

2 Preliminaries
In this section, we introduce the concepts and preliminary knowledge helpful to understand
the rest of the article: Boolean masking, probing security, composable masking schemes,
hardware private circuits, and the automation tool AGEMA.

2.1 Boolean Masking
We denote a binary random variable with lower-case italic x, the i-th share of a variable
with xi. A capital X(∈ Fn

2 , n > 1) represents a binary random vector, while Xj denotes
the j-th shares of a vector X.

Boolean masking based on secret sharing has gained significant attention in hardware
security as an essential defense against SCA attacks. The Boolean masking of a secret vector
X ∈ Fn

2 consists of s independent and random shares, denoted as (X0, X1, · · · , Xs−1).
It is necessary to ensure correctness by satisfying the condition X =

⊕s−1
i=0 Xi. Usually,

the process of obtaining the above s shares involves two steps. Firstly, the Xi (0 ≤
i ≤ s − 2) are initialized with uniformly random strings. Secondly, Xs−1 is derived as
Xs−1 = (

⊕s−2
i=0 Xi) ⊕ X. Rather than performing leaking computations on the vector X,

computations are performed on the shares Xi.

2.2 Probing Security
There are various models available to characterize and evaluate the security of masking
schemes. Among them, the d-probing model [ISW03] has gained significant popularity
and is widely used. In this model, the number d of probes reflects the order of the
attack [BDF+17, DDF14]. Since the d-probing model cannot characterize physical effects
in hardware implementations, such as glitches, the model is limited to software implemen-
tations. Specifically, glitches are switching activities of wires in a circuit due to different
delays of signals contributing to their intended values. To account for the impact of glitches,
Faust et al. [FGP+18] adapted the d-probing model and introduced the glitch-extended
probing model. This model assumes that each probe placed on a combinatorial circuit
propagates backward to the last synchronization point (e.g., registers). Since this article
is related to hardware implementations, our evaluations and assessments are conducted
under the glitch-extended probing model.

4 Automated Generation of Masked Nonlinear Components:

2.3 Composable Masking Schemes

Masking scheme designs that can achieve high order security remains a highly challenging
task, even for an experienced designer. This encourages the development of composable
gadgets, which are considered to be an efficient approach to designing masking schemes
for complex functions. Specifically, composable gadgets are modules that realize atomic
logic operations with specific properties under the glitch-extended probing model. Since
these gadgets achieve particular properties, combining these gadgets to construct masking
schemes for large circuits is possible. As a result, this approach of using composable
gadgets simplifies the construction of masking schemes for complex circuits, as the focus is
on finding gadgets realizing logic operations with specific properties rather than dealing
with the whole complex circuits.

To achieve the composability of secure gadgets, Barthe et al. proposed the concept of
Strong Non-Interferene (SNI) [BBD+16], which corrected the deficiencies of NI [BBD+15].
Under the concept of SNI, each probe placed on the output of the SNI-secure gadget is
restricted to be perfectly simulatable without any information captured by this probe.
Although SNI satisfies the composability of gadgets, it will lead to a large overhead with
respect to fresh entropy and circuit area, especially for high-security orders. As a more
efficient solution than SNI, Probe-Isolating Non-Interference (PINI) was introduced by
Cassiers et al. in [CS20]. Based on the concept of share domain [GMK16], any probe was
restricted to only propagate within its own share domain under the PINI. Formally, the
concept of PINI can be described through Definition 1.

Definition 1 (d-Probe-Isolating Non-Interference). Given a gadget G with secret input
X, X ∈ Fn

2 , let ti denotes probes placed on internal wires of G and to denotes probes
placed on output wires of G, suth that ti + to ≤ d. The gadget G is d-PINI if and only if
for all possible ti and to, there exists a set of primary input indexes PIi, with |PIi ≤ ti|,
primary output indexes PIo, with |PIo ≤ to|, such that the observations of ti and to can
be perfectly simulated by XP Ii∪P Io .

2.4 Hardware Private Circuits

Since PINI enables the trivial composition of hardware gadgets under the glitch-extended
probing model, several concrete implementations of composable gadgets have been proposed.
The HPC1 gadget introduced in [CGLS20] realizes the function of a 2-input AND gate
and can be simply extended to arbitrary security orders. Specifically, HPC1 consists
of a DOM-AND and a refresh gadget, where the sharing of one input of DOM-AND is
refreshed through the refresh gadget. The number of fresh masks required by HPC1 is
d(d + 1)/2 + [1, 2, 4, 5, 7, 9, 11, 12, 15, 17] 1 for security order d ≤ 10, where the former
is needed by DOM-AND and the latter is needed by the refresh gadget. Further, the
second composable gadget HPC2 was introduced in the same work. The HPC2 is another
construction for a 2-input AND gate that can be extended to arbitrary security orders.
Compared to HPC1, HPC2 requires less fresh randomness, i.e., d(d+1)/2. Both HPC1 and
HPC2 exhibit latency asymmetry feature: this means that if the first input sharing enters
the HPC1 or HPC2 gadget at cycle k and another input sharing enters the gadget at cycle
k+1, then the output can be generated at cycle k+2. Since each share-wise implementation
of a linear function already satisfies the concept of PINI, the XOR operation or NOT
operation can be realized without fresh randomness and without additional latency.

1This is a compact notation that indicates that for security order d = 1, 1 additional mask is required;
for security order d = 2, 2 additional masks are required; for security order d = 3, 4 additional masks are
required, and so on.

Lixuan Wu, Yanhong Fan, Bart Preneel, Weijia Wang and Meiqin Wang (�) 5

2.5 AGEMA
Knichel et al. [KMMS21] proposed an open-source software tool AGEMA, which makes it
easy for designers to generate hardware masked circuits based on the unprotected HDL
implementations. Based on the PINI concept, AGEMA supports several composable
gadgets, including HPC1 and HPC2. Pipelining and clock gating are two synchronization
techniques applied in AGEMA. Pipelining inserts additional registers to synchronize the
input signals of each composable gadget, and clock gating modulates the clock signals of
registers to achieve the same goal. Although pipelining requires a larger area overhead, it
achieves better throughput than clock gating. Pipelining is more efficient than clock gating
when large amounts of information are processed. Note that to provide a fair comparison,
the hardware performance below related to AGEMA is generated using the pipelining
synchronization technique.

3 New Techniques
In this section, we explain how AGMNC can generate more efficient masked implementations
of S-boxes than AGEMA. The key techniques of AGMNC include a new AND-XOR gadget,
latency asymmetry of the AND-XOR gadget, and implementation optimization.

3.1 AND-XOR Gadget
Cassiers et al. [CGLS20] introduced HPC1 and HPC2 to realize 2-input composable
AND gadgets under the PINI notion in the glitch-extended probing model. As they can
achieve arbitrary security orders, HPC1 and HPC2 are essential gadgets to be applied in
AGEMA to generate masked implementations for security order d ≥ 1. To facilitate the
explanation and analysis, we utilize the term HPC-AND gadget to generally represent the
implementation of a 2-input AND gadget using HPC1 or HPC2.

𝑎𝑎0 𝑎𝑎1𝑏𝑏0 𝑏𝑏1𝑟𝑟0

𝑟𝑟1

𝑓𝑓0 = 𝑎𝑎0𝑏𝑏 + 𝑐𝑐0 + 𝑟𝑟1 𝑓𝑓1 = 𝑎𝑎1𝑏𝑏 + 𝑐𝑐1 + 𝑟𝑟1

𝑐𝑐1𝑐𝑐0

(a) First-order AND-XOR based on HPC1.

𝑏𝑏0 𝑏𝑏1𝑟𝑟𝑎𝑎0

~

𝑟𝑟 𝑎𝑎1 𝑟𝑟

~

𝑐𝑐0 𝑐𝑐1

𝑓𝑓0 = 𝑎𝑎0𝑏𝑏 + 𝑐𝑐0 + 𝑟𝑟 𝑓𝑓1 = 𝑎𝑎1𝑏𝑏 + 𝑐𝑐1 + 𝑟𝑟

𝑏𝑏0 𝑏𝑏1

(b) First-order AND-XOR based on HPC2.

Figure 1: AND-XOR in AGEMA.

There are usually XOR operations between the quadratic terms and linear terms in
the Boolean expressions of nonlinear components, such as an S-box. The above scenario
can be denoted as the Boolean function f = ab + c, where a ∈ F2, b ∈ F2, c ∈ F2. In
AGEMA, the Boolean function f = ab + c is realized using the HPC-AND gadget and
XOR operations. The implementation for the first order security is depicted in Figs. 1(a)
and 1(b), where the red dashed line is the HPC-AND gadget, and the blue dashed line is
the XOR operations. Since the latency of a single HPC-AND is 2 cycles, it is necessary to

6 Automated Generation of Masked Nonlinear Components:

insert two layers of registers in the path of the shares of primary input c (i.e., c0, c1) to
synchronize the latency before performing the XOR operations.

After carefully analyzing the requirements, we construct two new compact designs for
the two cases in Figs. 1(a) and 1(b). As an example, we provide a schematic overview
of our designs for the first security order in Figs. 2(a) and 2(b), respectively. Although
the dashed line registers (referred to as Regpipe[] in Algorithms 1 and 2) are essential
for synchronization and a pipelined architecture, they do not impact the security under
the glitch-extended probing model. Both designs integrate the above HPC-AND gadget
and XOR operations into a new gadget (called AND-XOR1 and AND-XOR2 gadget,
respectively). Our new gadgets can achieve PINI security under the glitch-extended
probing model and are generic for arbitrary security orders. From Figure 2, it can be seen
that our new gadgets save a layer of registers in the path of the shares of primary input
c. Since the c consists of at least d + 1 shares, our designs generally reduce the number
of registers by d + 1 than the implementations in AGEMA, where d is the security order.
Next, we present the construction principle and security analysis of our new gadgets.

𝑎𝑎0 𝑎𝑎1𝑏𝑏0 𝑏𝑏1𝑟𝑟0

𝑟𝑟1

𝑓𝑓0 = 𝑎𝑎0𝑏𝑏 + 𝑐𝑐0 + 𝑟𝑟1 𝑓𝑓1 = 𝑎𝑎1𝑏𝑏 + 𝑐𝑐1 + 𝑟𝑟1

𝑐𝑐1𝑐𝑐0

(a) First-order AND-XOR1 gadget.

𝑏𝑏0 𝑏𝑏1𝑟𝑟𝑎𝑎0

~

𝑟𝑟 𝑎𝑎1 𝑟𝑟

~

𝑐𝑐0 𝑐𝑐1

𝑓𝑓0 = 𝑎𝑎0𝑏𝑏 + 𝑐𝑐0 + 𝑟𝑟 𝑓𝑓1 = 𝑎𝑎1𝑏𝑏 + 𝑐𝑐1 + 𝑟𝑟

𝑏𝑏0 𝑏𝑏1

(b) First-order AND-XOR2 gadget.

Figure 2: AND-XOR gadget.

Construction Principle. Algorithm 1 describes the generic algorithm-level of the
AND-XOR1 gadget: the first order case is depicted in the Fig. 2(a). At the start of
AND-XOR1 gadget (outlined in lines 1 to 11), a refresh gadget is essential to provide the
desired security under the glitch-extended probing model. The details of the refresh gadget
regarding the combinations of the shares of primary input b with some randomness are only
provided for the cases of the first security order (outlined in lines 2 to 3) and the second
security order (outlined in lines 5 to 8). The cases of security order d ≥ 3 are given in the
appendix of [CGLS20]. Then, some randomness is generated in lines 12 to 16. Lines 17
to 21 describe the cross-domain multiplications, i.e., the multiplications of two signals
from different domains, the results of which are XOR-ed with randomness and then stored
in registers. Lines 22 to 24 delineate three functionalities. Firstly, it multiplies signals
that belong to the same domain. Subsequently, the results of the multiplications above
are combined with the shares of primary input c utilizing XOR operations. Finally, the
XOR operations are utilized once more in combination with the results of the cross-domain
multiplications (lines 17 to 21). Note that in Algorithm 1, r0, r1, r2 in the refresh gadget
and rij in the cross-multiplications represent some randomness bits that are independent of
each other. From Algorithm 1, it can be seen that the difference between various security
orders of the AND-XOR1 gadget is the implementation of the refresh gadget (outlined in
lines 1 to 11).

Lixuan Wu, Yanhong Fan, Bart Preneel, Weijia Wang and Meiqin Wang (�) 7

Algorithm 1 AND-XOR1 gadget

Input: shares (ai)0≤i≤d, (bi)0≤i≤d and (ci)0≤i≤d, such that
⊕d

i=0 ai = a,
⊕d

i=0 bi = b

and
⊕d

i=0 ci = c.
Output: shares (fi)0≤i≤d, such that

⊕d
i=0 fi = ab + c.

1: if d = 1 then
2: M [b0] = Reg[b0 ⊕ r0]
3: M [b1] = Reg[b1 ⊕ r0]
4: else if d = 2 then
5: r2 = Reg[r0 ⊕ r1]
6: M [b0] = Reg[b0 ⊕ r0]
7: M [b1] = Reg[b1 ⊕ r1]
8: M [b2] = Reg[b2 ⊕ r2]
9: else if d ≥ 3 then

10: refer to the appendix of [CGLS20].
11: end if
12: for i = 0 to d do
13: for j = i + 1 to d do
14: rij = rji, denotes a random bit.
15: end for
16: end for
17: for i = 0 to d do
18: for j = 0 to d, j ̸= i do
19: uij = Reg[Regpipe[ai] ⊗ M [bj] ⊕ rij]
20: end for
21: end for
22: for i = 0 to d do
23: fi = Reg[Regpipe[ai] ⊗ M [bi] ⊕ Regpipe[ci]] ⊕ ⊕d

j=0,j ̸=i uij

24: end for

Algorithm 2 AND-XOR2 gadget

Input: shares (ai)0≤i≤d, (bi)0≤i≤d and (ci)0≤i≤d, such that
⊕d

i=0 ai = a,
⊕d

i=0 bi = b

and
⊕d

i=0 ci = c.
Output: shares (fi)0≤i≤d, such that f =

⊕d
i=0 fi = ab + c.

1: for i = 0 to d do
2: for j = i + 1 to d do
3: rij = rji, denotes a random bit.
4: end for
5: end for
6: for i = 0 to d do
7: for j = 0 to d, j ̸= i do
8: uij = Reg[Regpipe[ai] ⊗ Reg[rij]]
9: vij = Reg[bj ⊕ rij]

10: qij = Reg[Regpipe[ai] ⊗ vij]
11: tij = uij ⊕ qij

12: end for
13: end for
14: for i = 0 to d do
15: fi = Reg[Regpipe[ai] ⊗ Reg[bi] ⊕ Regpipe[ci]] ⊕ ⊕d

j=0,j ̸=i(tij)
16: end for

8 Automated Generation of Masked Nonlinear Components:

The AND-XOR2 gadget is our other design, shown in Algorithm 2. In addition, the
first-order secure AND-XOR2 gadget is illustrated in Fig. 2(b). The first five lines of
Algorithm 2 generate some randomness that will be used in the following operations. From
lines 6 to 13, four signals, namely uij , vij , qij and tij , are defined. The signal uij is used to
represent the results of ai ⊗rij . The signal vij masks the shares of the primary input b with
randomness rij using XOR operations. The multiplications of two signals from different
domains are computed by qij . The tij represents the combination of the results of ai ⊗ rij

with the cross-domain multiplications (i.e., qij) using XOR operations. Lines 14 to 16
correspond to two parts, one is the multiplications of two signals from the same domain
and the combination of the above multiplications with the shares of primary input c using
XOR operations, and the other one is the combination of the cross-domain multiplications
qij with uij . These final output shares of the AND-XOR2 gadget are generated by XORing
the results of these two parts.

Security Analysis. Below, we provide Theorems 1 and 2 to prove the PINI security
of AND-XOR1 and AND-XOR2 gadgets under the glitch-extended probing model.

Theorem 1. Assuming that all randomness bits used in the AND-XOR1 gadget are
statistically independent of each share of the primary inputs a, b and c, then the AND-
XOR1 gadget is correct and PINI under the glitch-extended probing model.

Proof. Correctness: According to the description of refresh gadget in [CGLS20], there is
the following relation among the output shares of refresh gadget:

d⊕
i=0

M [bi] =
d⊕

i=0
bi.

We skip all registers in Algorithm 1. Since rij = rji, it holds that

f =
d⊕

i=0
fi

=
d⊕

i=0

ai ⊗ M [bi] ⊕ ci ⊕
d⊕

j=0,j ̸=i

(ai ⊗ M [bj] ⊕ rij)


=

d⊕
i=0

ai ⊗
d⊕

j=0
M [bj] ⊕ ci

 ⊕
d⊕

i=0

 d⊕
j=0,j ̸=i

(rij)


=

d⊕
i=0

 d⊕
j=0

(ai ⊗ bj) ⊕ ci


=

d⊕
i=0

 d⊕
j=0

(ai ⊗ bj)

 ⊕
d⊕

i=0
ci = a ⊗ b ⊕ c.

PINI: Considering each case of probe placement and arguing for simulatability, we
prove that the AND-XOR1 gadget is PINI under the glitch-extended probing model.

i. When a probe placed on the input to M [bi], 0 ≤ i ≤ d, we can observe the variables
bi and its responding 1-bit randomness ri. This case can be denoted as Pbi

= [bi, ri],
which can be perfectly simulated by bi and 1-bit fresh randomness ri.

ii. When a probe placed on the input to uij , this case can be represented as Puij
=

[ai, bj ⊕ rj , rij], which can be perfectly simulated by ai and randomness rj and rij .
If the additional variable uji is probed, this can be simulated by adding aj to the
simulation set. This is because the randomness ri and rj (used to mask bi and bj ,
respectively) are independent of each other. All other probes can be categorized into
the above two cases, one with a single probe (i.e., uij) and the other one with a pair of

Lixuan Wu, Yanhong Fan, Bart Preneel, Weijia Wang and Meiqin Wang (�) 9

probes whose subscripts are rotated (i.e., uij and uji). This is in line with the concept
of PINI.

iii. The probe on fi, i.e., Pfi
= [ai, bi ⊕ ri, ci] ∪ {⋃d

j=0,j ̸=i uij} can be simulated by ai, ci

and bi ⊕ ri, which can be seen as a new random bit. If additionally Pfj needs to be
simulated, this can be done by following the description in step ii, i.e., adding the
share aj and cj to the simulation set. This is because two output shares have at most
one common cross-domain. This is in line with the PINI notion.

Theorem 2. Assuming that all randomness bits used in the AND-XOR2 gadget are
statistically independent of each share of the primary inputs a, b and c, then the AND-
XOR2 gadget is correct and glitch-robust PINI.

Proof. Correctness: We skip all registers in Algorithm 2. Since
tij = uij ⊕ qij

= ai ⊗ rij ⊕ ai ⊗ (bj ⊕ rij)
= ai ⊗ bj ⊕ rij

and rij = rji, it holds that

f =
d⊕

i=0
fi

=
d⊕

i=0

ai ⊗ bi ⊕ ci ⊕
d⊕

j=0,j ̸=i

(ai ⊗ bj ⊕ rij)


=

d⊕
i=0

 d⊕
j=0

(ai ⊗ bj) ⊕ ci

 ⊕
d⊕

i=0

 d⊕
j=0,j ̸=i

(rij)


=

d⊕
i=0

 d⊕
j=0

(ai ⊗ bj) ⊕ ci


=

d⊕
i=0

 d⊕
j=0

(ai ⊗ bj)

 ⊕
d⊕

i=0
ci = a ⊗ b ⊕ c.

PINI: Arguing for each probe placement and simulatability case, we prove that the
AND-XOR2 gadget is PINI under the glitch-extended probing model.

i. When a probe placed on the input to uij , we can observe the variables ai and rij .
It can be represented as Puij

= [ai, rij], which can be perfectly simulated by ai and
randomness rij .

ii. When a probe placed on the input to vij , this case can be represented as Pvij
= [bj , rij],

which can be perfectly simulated by bj and randomness rij .

iii. The probe on qij , i.e., Pqij = [ai, bj ⊕ rij] an be simulated by [ai, rij]. When an
additional variable qji is probed, this can be achieved by adding aj , bi and bj to the
simulation set. All other probes can be done based on the above two cases, one is
a single probe (i.e., qij) and the other one is a pair of probes whose subscripts are
rotated (i.e., qij and qji).

iv. The probe on tij , i.e., Ptij = [ai ⊗ rij , ai ⊗ (bj ⊕ rij)] can be simulated by ai, rij and
bj ⊕ rij , which can be seen as a new random bit. If additionally Ptji needs to be

10 Automated Generation of Masked Nonlinear Components:

simulated, this can be done by adding aj , bi, and bj to the simulation set. The above
case of considering two probes is in line with the notion of PINI. All other probes
can be processed using the above two cases, one with a single probe (i.e., tij) and the
other one with a pair of probes whose subscripts are rotated (i.e., tij and tji).

v. The probe on the output share, i.e., Pfi
= [ai, bi, ci] ∪ {⋃d

j=0,j ̸=i tij} can be simulated
by ai, bi, ci and processing d times the random bit rij to simulate tij . From the
expression of fi, it can be seen that two output shares have at most one cross-domain
in common, and using the same argument as described in step iv, i.e., adding some
input shares from only one other domain and some additional randomness to the
simulation set. This is in line with the notion of PINI.

Compared with the implementations in AGEMA (as shown in Figs. 1(a) and 1(b)),
the two new gadgets we proposed have d + 1 fewer registers while maintaining the same
requirements with respect to randomness and latency, where d is the security order. More
specifically, a single AND-XOR1 gadget requires d(d + 1)/2 + [1, 2, 4, 5, 7, 9, 11, 12, 15, 17]
bits of randomness and 2 cycles of latency. Similarly, a single AND-XOR2 gadget requires
d(d + 1)/2 bits of randomness and 2 cycles of latency. Due to the fewer registers, our new
gadgets require a lower area than the implementations in AGEMA for the Boolean function
f = ab + c. It is worth mentioning that, in addition to the area advantages of the Boolean
function mentioned above, we believe that these two new gadgets can yield comparable
results as two standalone gadgets in the S-box implementations. To facilitate the analysis
of the common features of these two new gadgets, we utilize the term AND-XOR gadget
to represent both the AND-XOR1 and AND-XOR2 gadgets generally in the remainder of
this article.

3.2 Latency Asymmetry of AND-XOR Gadget
To further enhance the latency of the AND-XOR gadget, we conduct a detailed analysis of
its latency asymmetry and integrate this feature into the automation tool AGMNC.

Latency asymmetry is a peculiar feature supported by the HPC-AND gadget. This
feature arises because only the shares from one primary input of the HPC-AND gadget
need to be refreshed. In other words, the HPC-AND gadget has two sorts of shares from
primary input, one of which has 1 cycle of latency and the other has 2 cycles of latency.
Interestingly, the AND-XOR gadget also exhibits this feature for the following reason: as
shown in Algorithms 1 and 2, only the shares from primary input b need to be refreshed,
while the shares from primary input a and c use Regpipe[] to compensate for the latency
asymmetry caused by the refresh of the shares from b. In other words, the AND-XOR
gadget has three sorts of input ports, one with a latency of 2 cycles (marked as "b") and
the remaining two with a latency of 1 cycle (marked as "a" and "c"). In the following, we
demonstrate the impact of the latency asymmetric feature with several concrete examples.

To demonstrate the impact of utilizing the latency asymmetry, Fig. 3 presents two
implementations with the Boolean function f = xyz as an example. Note that Fig. 3 is a
general schematic, where each signal is actually composed of d+1 shares and d is the security
order of the masked implementation. Fig. 3(a) emulates the AGEMA implementation
without considering the latency asymmetry, which requires 4(d + 1) additional registers to
synchronize the latency and yields an implementation with a latency of 4 cycles. On the
other hand, Fig. 3(b) emulates the AGMNC implementation, which takes into account
the latency asymmetry. This results in an implementation with only 2(d + 1) additional
registers and a latency of 3 cycles. Comparing these two implementations reveals that
Fig. 3(b) requires 50% fewer registers and 25% less latency than Fig. 3(a). It can be seen

Lixuan Wu, Yanhong Fan, Bart Preneel, Weijia Wang and Meiqin Wang (�) 11

that utilizing the latency asymmetry feature can lead to significant improvements in terms
of both area and latency.

a

b

a

b

𝑥𝑥

𝑦𝑦

𝑧𝑧

𝑓𝑓 = 𝑥𝑥𝑥𝑥𝑧𝑧

(a) The implementation by AGEMA.

𝑥𝑥

𝑦𝑦

aa

bb

a

b𝑧𝑧

𝑓𝑓 = 𝑥𝑥𝑦𝑦𝑧𝑧

(b) The implementation by AGMNC.

Figure 3: Functionality xyz implementations using HPC-AND.

The latency asymmetry feature can be effectively utilized in the implementation of
a Boolean function, as demonstrated by the following example using f = (xy + z)t + m.
Firstly, we connect the later arriving signal to the input port of the gadget with the
shorter latency, i.e., connecting the output of the AND-XOR gadget (marked as α) to the
input port "a" of the other AND-XOR gadget (marked as β), instead of the input port
"b" in Fig. 4(a). However, since the AND-XOR gadget has multiple input ports, there are
inevitably some input ports that do not satisfy the latency requirements, i.e., ports "a" and
"c" of the AND-XOR gadget (marked as α) and port "b" and "c" of the AND-XOR gadget
(marked as β) in Fig. 4(a). In such scenarios, inserting registers in the input path is a
viable solution to satisfy the latency constraints. Therefore, Fig. 4(b) presents the final
implementation of the delay asymmetry example using the solution above, i.e., 5(d + 1)
registers are inserted in the input path.

𝑥𝑥

z

𝑡𝑡 𝑓𝑓 = 𝑥𝑥𝑥𝑥 + 𝑧𝑧 𝑡𝑡 + 𝑚𝑚

a

c

b

a

c

b

𝑚𝑚

𝑦𝑦

(α)

(β)

(a) The latency requirements are not met.

𝑥𝑥

z

𝑚𝑚

𝑓𝑓 = 𝑥𝑥𝑦𝑦 + 𝑧𝑧 𝑡𝑡 + 𝑚𝑚

a

c

b

a

c

b𝑡𝑡

𝑦𝑦

(α)

(β)

(b) The latency requirements are met.

Figure 4: The example of latency asymmetry of AND-XOR gadget.

To the best of our knowledge, we are the first work to integrate the latency asymmetry
feature into an automated tool for generating masking schemes. Although a tool was also
developed to exploit this feature, [CGLS20] focused on finding a circuit representation
and did not automatically translate the circuit representation into a masked circuit. In
addition to supporting the new AND-XOR gadget, AGMNC has developed an automated
procedure to generate masked circuit integrating the latency asymmetry feature.

3.3 Implementation Optimization
Until now, we have presented two key techniques employed by AGMNC, namely the AND-
XOR gadget and its latency asymmetry, which result in most cases in a final S-box design
with considerably lower area or latency compared to the design generated by AGEMA. To

12 Automated Generation of Masked Nonlinear Components:

further optimize our design, we present an implementation optimization technique in this
section.

As elaborated in Sect. 3.2, if the latency requirements cannot be met by all input
ports of the HPC-AND or AND-XOR gadget, insertion of registers in the input path
becomes necessary to synchronize latency. Therefore, the number of registers inserted
to synchronize latency directly impacts the area of the final S-box design. Further, we
propose an efficient implementation technique for optimizing the number of registers
required for synchronization latency. We illustrate two synchronization methods using the
representation of SKINNY S-box2 as an example: one is the common method without
optimization (shown in Fig. 5), and the other one is an optimized method taken by our tool
(shown in Fig. 6). In this example there are three layers, where L0 and L1 are nonlinear
and F is linear. The t0, t1, t2 and t3 are the outputs of AND-XOR gadgets, while l0, l1, l2, l3
and l4 are the outputs of linear operations.

As shown in Fig. 5, we depict the common implementation without optimization, where
six, four, and zero different registers inserted in the L0, L1 and F layers, respectively, to
synchronize latency. The process of synchronization latency can be summarized as follows:
first, identify signals that fail to meet the required latency (i.e., x1 +1, x3, x3 +1, x0, x0 +x3
and x2 in layer L0, l1, l2, t1 and t0 in layer L1), and then insert some registers in the input
path of these signals until the latency constraints are satisfied (i.e., insert a register in the
input path of each of the above signals).

𝑥𝑥0

𝑥𝑥1 + 1

𝑡𝑡0

a

c

b

a

c

b𝑥𝑥2 + 1

𝑥𝑥3

𝑥𝑥3 + 1

𝑥𝑥2 + 1 𝑡𝑡1

𝑥𝑥0 + 𝑥𝑥3

𝑥𝑥1 + 1

𝑥𝑥2

𝑙𝑙0

𝑙𝑙1

𝑙𝑙2

𝑙𝑙2

𝑡𝑡0

𝑡𝑡2

a

c

b

a

c

b𝑙𝑙0
𝑙𝑙1

𝑡𝑡1 + 1

𝑙𝑙1 𝑡𝑡3

𝑡𝑡1

𝑡𝑡0

𝑙𝑙3

𝑙𝑙4

ℒ0 ℒ1

𝑡𝑡2 + 𝑙𝑙3

𝑡𝑡3

𝑙𝑙4

𝑙𝑙3

𝑦𝑦0

𝑦𝑦1

𝑦𝑦2

𝑦𝑦3

ℱ

Figure 5: Synchronization without optimization.

𝑥𝑥0

𝑥𝑥1

𝑥𝑥2

𝑥𝑥3

𝑥𝑥0′

𝑥𝑥1′ + 1

𝑡𝑡0

a

c

b

a

c

b𝑥𝑥2 + 1

𝑥𝑥3′

𝑥𝑥3′ + 1

𝑥𝑥2 + 1 𝑡𝑡1

𝑥𝑥0′ + 𝑥𝑥3′

𝑥𝑥1′ + 1

𝑥𝑥2′

𝑙𝑙0

𝑙𝑙1

𝑙𝑙2

ℒ0 (b)

𝑥𝑥0′

𝑥𝑥1′

𝑥𝑥2′

𝑥𝑥3′

ℒ0 (a)

Figure 6: Synchronization with optimization.
2The detail of the representation for SKINNY S-box is shown in the supplementary material of this

article.

Lixuan Wu, Yanhong Fan, Bart Preneel, Weijia Wang and Meiqin Wang (�) 13

After observing and analyzing the above implementation, we note that in layer L0, the
signals that do not satisfy the latency requirements are generated using linear operations of
the four primary inputs (i.e., x0, x1, x2 and x3). Additionally, some of these signals share
a common primary input. More specifically, signals x2 + 1 and x2 share the primary input
x2, signals x3, x3 + 1 and x0 + x3 share the primary input x3, and signals x0 and x0 + x3
share the primary input x0. Since the number of these signals is larger than the total
number of primary inputs used to generate them (i.e., 6 > 4), we propose a synchronization
method that involves the insertion of registers in the path of the primary inputs. By
doing so, we can ensure that the latency requirements of these primary inputs are met.
Once this is achieved, we can use these already synchronized primary inputs to generate
those signals that do not meet their latency requirements yet. This approach allows us to
realize the synchronization process with fewer registers and to ensure that all signals in the
circuit are correctly synchronized. Specifically, in the example of the SKINNY S-box, we
insert registers in the path of each primary input (i.e., x0, x1, x2 and x3) until the latency
constraints are satisfied, obtaining signals x′

0, x′
1, x′

2 and x′
3 at layer L0(a) of Fig. 6. Then,

at layer L0(b), we assign x′
0, x′

1,x′
2 and x′

3 to the signals, the latency of which does not
meet the requirements yet. At layer L0, this new approach requires only four registers
to synchronize latency, saving two registers compared to the approach of AGEMA shown
in Fig. 5. The L1 layer in the example exhibits a one-to-one correspondence between the
unsynchronized signals and the primary inputs to that layer (i.e., l1, l2, t1 and t0). This
implies that the number of unsynchronized signals in this layer is the same as the number
of primary input signals. As a result, the remaining layers behave the same as Fig. 5. It
should be noted that due to the masking scheme, i.e., each signal in Figs. 5 and 6 consists
of at least d + 1 shares, our implementation technique actually saves 2(d + 1) registers in
the above example, where d is the security order.

3.4 Automation Tool AGMNC

STP Solver

Replace
Cells

AGMNC

S-box Masked
Design

Analyze
Latency

Implementation
Optimization

Pre-processing

Design
Compiler

Implementation-processing

Constraints

Figure 7: The operation process of automation tool AGMNC.

Fig. 7 shows the principle of the implementation of the automation tool AGMNC. The
input of AGMNC is the look-up table description of nonlinear components (e.g., an S-box),
and the output is a hardware masked implementation. The operation process of AGMNC
consists of two phases: one is the pre-processing and the other one is the implementation-
processing. In the pre-processing phase, AGMNC first finds a circuit representation suitable
for our techniques and tool above for a given S-box using several constraints and the STP
solver described in the next paragraph. Then, this circuit representation is synthesized
into the corresponding netlist through the Design Compiler [Inc]. The unprotected netlist

14 Automated Generation of Masked Nonlinear Components:

is fed to the implementation-processing module. For the implementation-processing phase,
the first step is to extract and replace cells. This involves replacing the AND-XOR and
AND gates in the netlist with the AND-XOR and HPC-AND3 gadgets, respectively. The
next step is calculating the latency for each input and output port of each AND-XOR and
HPC-AND gadget. The latency asymmetry feature is checked and confirmed in this step.
Subsequently, the implementation optimization technique is executed to synchronize the
internal and output signals, the latency of which does not meet the requirements. The key
techniques in the implementation-processing phase have been detailed in Sects. 3.1 to 3.3,
hence this section focuses on the pre-processing phase.

Given the inherent complexity of searching for the circuit representation of a particular
S-box, we utilize a solver based on the Boolean satisfiability (SAT) problem, namely STP,
to find the circuit representation. As mentioned above, in the pre-processing phase, we
should add several constraints to the STP solver to find the circuit representation suitable
for our techniques and tool. The meaning and necessity of each constraint are described
below.

Constraint 1 (the number of layers of AND-XOR and HPC-AND gadgets). Since the
latency of each AND-XOR or HPC-AND gadget is two cycles, while the linear operations
can be executed without latency, we control the latency of the final design by constraining
the number of layers, i.e., the depth of AND-XOR and AND gadgets.

Constraint 2 (the number of AND-XOR and HPC-AND gadgets). Since the area
of a single AND-XOR or HPC-AND gadget is significantly higher than that of a linear
operation, especially for high-security orders, it is crucial to constrain the number of
AND-XOR and AND gadgets to construct a final design with excellent area.

Constraint 3 (latency asymmetry feature). Considering the latency asymmetry of
AND-XOR and AND gadgets, we have to add constraints so that the "b" input port of
each AND-XOR and HPC-AND gadget (as shown in Figs. 3 and 4) is assigned to the
signal generated by the linear operations of primary inputs or by the linear operations in
the previous layer.

Constraint 4 (the number of unique signals at specific positions). This constraint
is necessary to take advantage of the implementation optimization technique and further
reduce the area of the final design. The unique signals are the primary inputs and the
linear outputs in the previous layer. The specific positions are the "a" and "c" input ports of
each AND-XOR gadget, the "a" input port of each HPC-AND gadget, each linear output,
and the final output.

More specifically, Eq. (1) is a circuit representation of SKINNY S-box found by the
STP solver. Eq. (1) consists of two layers of AND-XOR gadget and one final output
layer. Two AND-XOR gadgets are in each AND-XOR gadget layer (i.e., t0, t1, t2 and t3),
respectively. There are three, two linear outputs in each AND-XOR gadget layer (i.e.,
l0, l1, l2, l3 and l4), respectively. The underlined terms are exactly the specific positions
in each layer, with 8 unique variables (i.e., x0, x1, x2, x3, l1, l2, l3 and l4). In other words,
at least 8(d + 1) registers need to be inserted to synchronize the latency, where d is the
security order.

3In some S-boxes, we find experimentally that using AND-XOR and HPC-AND gadgets together can
result in a lower hardware cost than only one of these gadgets, such as the PRINCE S-box shown in the
supplementary material of this article. Therefore, in addition to the AND-XOR gadget, AGMNC supports
the HPC-AND gadget.

Lixuan Wu, Yanhong Fan, Bart Preneel, Weijia Wang and Meiqin Wang (�) 15

S = F ◦ L1 ◦ L0

L0 : t0 = (x1 + 1)(x2 + 1) + x3, t1 = (x3 + 1)(x2 + 1) + x0, l0 = x0 + x3,

l1 = x1 + 1, l2 = x2

L1 : t2 = t0l0 + l1, t3 = (t1 + 1)l1 + l2, l3 = t1, l4 = t0

F : y0 = t2 + l3, y1 = t3, y2 = l4, y3 = l3.

(1)

4 Case Studies
This section provides several S-box and full cipher implementations to highlight the benefits
of applying our techniques and tool from Sect. 3.

4.1 S-boxes
Following [Sto16, LWH+21], we encode the constraints above described in Sect. 3.4 into
the STP solver. As a result, we find several circuit representations for the 4-bit S-boxes
of SKINNY [BJK+16], PRESENT [BKL+07], PRINCE [BCG+12] and Midori [BBI+15].
Further, we also adapt the design in [BP12] to reconstruct the 8-bit S-box of AES [DR99],
in which two parts are modified, one is the inversion in GF (24) (seen as a 4-bit S-box by
the STP solver), and the other one is the generation of the inputs signals for the inversion
in GF (24). In particular, we reduce an AND gate in the inversion in GF (24) compared to
the design from [BP12], further reducing some randomness and hardware area required
by the masked AND gadget. Note that all S-box representations are presented in the
supplementary material of this article, where each representation consists of three layers,
i.e., L0, L1 are the nonlinear layers, and F is the linear layer.

To compare our work to state of the art, we provide two different masking schemes, one
is generated by AGMNC, employing the designs found by STP solver, and the other one
is generated by AGEMA, referring to [CGLS20, BP12]. In this section, we use Synopsys
Design Compiler R-2020.09-SP4 and NanGate 45 nm standard cell library to synthesize
the masking schemes of different S-boxes. Tables 1 and 2 list the synthesized experimental
results of the SKINNY S-box and AES S-box; the performance of other S-boxes can be
found in the supplementary material of this article.

From the synthesized experimental results, our work significantly reduces the area
overhead compared to AGEMA. Specifically, we achieve an area reduction of about
21% ∼ 41% using AND-XOR1 gadgets and about 13% ∼ 34% using AND-XOR2 gadgets.
Notably, for the first-order secure SKINNY S-box, the reduction in area is approximately
41% and 34% using AND-XOR1 and AND-XOR2 gadgets, respectively. The area reduction
can be attributed to the utilization of AND-XOR gadgets and to two key techniques,
i.e., the latency asymmetry and implementation optimization. Regarding latency, our
work outperforms AGEMA by 25%, and specifically, for the AES Sbox, we reduce the
latency from eight cycles to six cycles. The latency asymmetry feature of AND-XOR
and HPC-AND gadgets leads to a latency reduction. In addition, compared to AGEMA,
our work reduces the dynamic power of about 16% ∼ 49% and about 23% ∼ 47% using
AND-XOR1 and AND-XOR2 gadgets, respectively. In particular, the dynamic power
reduction for the first-order secure SKINNY S-box is approximately 49% and 47% using
AND-XOR1 and AND-XOR2 gadgets, respectively. These results demonstrate that our
proposed techniques and tool not only greatly reduce the area and latency overhead, but
also significantly reduce the dynamic power.

16 Automated Generation of Masked Nonlinear Components:

Table 1: Hardware performance figures of the SKINNY S-box.

16 An automated generation tool of hardware masked S-box: AGEMA+

Design Compiler R-2020.09-SP4 and NanGate 45 nm standard cell library to synthesize481

the masking schemes of different S-boxes. Table 1 and 2 list the synthesized experimental482

results of SKINNY’s S-box and AES’s S-box; the performance of other S-boxes can be483

found in Appendix B.484

From the synthesized experimental results, our work significantly reduces area cost485

compared to AGEMA. Specifically, we achieve an area reduction of about 21% ∼ 41% using486

AND-XOR1 gadgets and about 13% ∼ 34% using AND-XOR2 gadgets. Notably, for the487

SKINNY S-box’s first-order secure masking scheme, the reduction in area is approximately488

41% and 34% using AND-XOR1 and AND-XOR2 gadgets, respectively. The area reduction489

can be attributed to the utilization of AND-XOR gadgets and to the implementation490

optimization. Regarding latency, our work outperforms AGEMA by 25%, and specifically,491

for the AES Sbox, we reduce the latency from eight cycles to six cycles. The latency492

asymmetry of AND-XOR and HPC-AND gadgets leads to a latency reduction. In addition,493

compared to AGEMA, our work reduces dynamic power of about 16% ∼ 49% and about494

23% ∼ 47% using AND-XOR1 and AND-XOR2 gadgets, respectively. In particular,495

the dynamic power reduction for SKINNY S-box’s first-order secure masking scheme is496

approximately 49% and 47% using AND-XOR1 and AND-XOR2 gadgets, respectively.497

These results demonstrate that our proposed techniques and tool not only greatly reduce498

the area and latency overhead, but also significantly reduce the dynamic power.499

Table 1: Hardware performance figures of the SKINNY S-box.

Masking
Scheme

Order Area
[GE]

Latency
[cycle]

Power
[uW]

Rand.
[bit]

Delay
[ns] Ref.

HPC1

1 658 4 5.39 8 0.34 [KMMS21]
2 1156 4 10.00 20 0.39 [KMMS21]
3 1733 4 15.90 40 0.39 [KMMS21]
4 2379 4 22.52 60 0.45 [KMMS21]

HPC2

1 785 4 6.79 4 0.39 [KMMS21]
2 1552 4 14.17 12 0.45 [KMMS21]
3 2570 4 24.08 24 0.50 [KMMS21]
4 3839 4 36.56 40 0.54 [KMMS21]

AND-
XOR1

1 385 3 2.75 8 0.30 This Work
2 747 3 5.81 20 0.36 This Work
3 1187 3 10.10 40 0.37 This Work
4 1696 3 15.20 60 0.44 This Work

AND-
XOR2

1 517 3 3.61 4 0.36 This Work
2 1151 3 8.65 12 0.43 This Work
3 2035 3 15.74 24 0.48 This Work
4 3169 3 15.74 40 0.54 This Work

(↓41%)

(↓34%)

(↓25%)

(↓25%)

(↓49%)

(↓47%)

Table 2: Hardware performance figures of the AES S-box.

Anonymous Submission to IACR ToSC 17

Table 2: Hardware performance figures of the AES S-box.

Masking
Scheme

Order Area
[GE]

Latency
[cycle]

Power
[uW]

Rand.
[bit]

Delay
[ns] Ref.

HPC1

1 4263 8 47.28 68 0.49 [KMMS21]
2 7840 8 85.81 170 0.54 [KMMS21]
3 12085 8 133.05 340 0.54 [KMMS21]
4 16920 8 188.31 510 0.60 [KMMS21]

HPC2

1 5340 8 61.43 34 0.60 [KMMS21]
2 11206 8 133.96 102 0.76 [KMMS21]
3 19203 8 231.31 204 0.91 [KMMS21]
4 29330 8 358.36 340 1.04 [KMMS21]

AND-
XOR1

1 2895 6 31.28 66 0.49 This Work
2 5745 6 63.54 165 0.57 This Work
3 9243 6 106.06 330 0.64 This Work
4 13314 6 157.48 495 0.74 This Work

AND-
XOR2

1 3967 6 42.90 33 0.55 This Work
2 9078 6 97.33 99 0.69 This Work
3 16239 6 173.77 198 0.78 This Work
4 25469 6 274.26 330 0.91 This Work

4.2 Full Ciphers500

For the full ciphers, we provide three case studies: SKINNY, which is round-based501

encryption, PRESENT, which is nibble-serial encryption, and AES, which is byte-serial502

encryption. The above cases refer to designs from [BJK+16, BKL+07, DR02], respectively.503

To ensure a fair comparison, we initially employ AGEMA to generate the masking504

scheme of the above ciphers and then replace its S-boxes with our constructions. Table 3505

and 4 list the hardware performance of SKINNY and AES; the performance of PRESENT506

can be found in Appendix B. Although our work focuses on S-box implementations,507

we have also made comparable performance in the full ciphers. Specifically, we achieve508

approximately 18% ∼ 27% (resp., 17% ∼ 24%), 20% ∼ 22% (resp., 20% ∼ 22%) and509

18% ∼ 32% (resp., 19% ∼ 31%) reduction in area, latency and dynamic power using510

AND-XOR1 gadgets (resp., AND-XOR2 gadgets), respectively. It is worth mentioning511

that compared to the current automated tool AGEMA, for the first order masking schemes512

of the SKINNY round-based encryption, we achieve a reduction of approximately 27%513

(resp., 24%) in the area and 20% (resp., 20%) in latency using AND-XOR1 gadgets514

(resp., AND-XOR2 gadgets), respectively. Due to the reduction of an AND gate in the515

representation of the AES’s S-box, we reduce the randomness by 2 (resp., 1), 5 (resp., 3),516

and 10 (resp., 6) bits in the AES byte-serial encryption with security order 1, 2 and 3517

using AND-XOR1 gadgets (resp., AND-XOR2 gadgets), respectively. Whether the security518

order is 1, 2, or 3, and whether using AND-XOR1 or AND-XOR2 gadgets, we achieve the519

reduction of approximately 20% in the area and 22% in latency, respectively. The reduction520

realized by our automation tool AGEMA+ almost bridge the gap between a hand-crafted521

implementation [MCS22] and the current automation tool AGEMA [KMMS21].522

(↓34%)

(↓26%) (↓30%)

(↓3%)

(↓3%)

(↓32%) (↓25%)

(↓25%)

Lixuan Wu, Yanhong Fan, Bart Preneel, Weijia Wang and Meiqin Wang (�) 17

4.2 Full Ciphers
For the full ciphers, we provide three case studies: SKINNY, which is round-based
encryption, PRESENT, which is nibble-serial encryption, and AES, which is byte-serial
encryption. The above cases refer to designs from [BJK+16, BKL+07, DR02], respectively.

To ensure a fair comparison, we initially employ AGEMA to generate the masking
scheme of the above ciphers and then replace its S-boxes with our constructions. Tables 3
and 4 list the hardware performance of SKINNY and AES; the performance of PRESENT
can be found in the supplementary material of this article. Although our work focuses on
S-box implementations, we have also made comparable performance in the full ciphers.
Specifically, we achieve approximately 18% ∼ 27% (resp., 17% ∼ 24%), 20% ∼ 22%
(resp., 20% ∼ 22%) and 18% ∼ 32% (resp., 19% ∼ 31%) reduction in area, latency and
dynamic power using AND-XOR1 gadgets (resp., AND-XOR2 gadgets), respectively. It
is worth mentioning that compared to the current automated tool AGEMA, for the first
order masking schemes of the SKINNY round-based encryption, we achieve a reduction
of approximately 27% (resp., 24%) in the area and 20% (resp., 20%) in latency using
AND-XOR1 gadgets (resp., AND-XOR2 gadgets), respectively. Due to the reduction of
an AND gate in the representation of the AES S-box, we reduce the randomness by 2
(resp., 1), 5 (resp., 3), and 10 (resp., 6) bits in the AES byte-serial encryption with security
order 1, 2 and 3 using AND-XOR1 gadgets (resp., AND-XOR2 gadgets), respectively.
Whether the security order is 1, 2, or 3, and whether using AND-XOR1 or AND-XOR2
gadgets, we achieve the reduction of approximately 20% in the area and 22% in latency,
respectively. The reduction realized by our automation tool AGMNC almost bridge the
gap between a hand-crafted implementation [MCS22] and the current automation tool
AGEMA [KMMS21].

Table 3: Hardware performance figures of the
SKINNY round-based encryption function.

18 An automated generation tool of hardware masked S-box: AGEMA+

Table 3: Hardware performance figures of the
SKINNY round-based encryption function.

Masking
Scheme

Order Area
[GE]

Latency
[cycle]

Power
[uW]

Rand.
[bit]

Delay
[ns] Ref.

HPC1
1 18855 165 191.98 128 0.57 [KMMS21]
2 30759 165 323.93 320 0.62 [KMMS21]
3 43931 165 459.97 640 0.62 [KMMS21]

HPC2
1 20881 165 221.47 64 0.62 [KMMS21]
2 37095 165 409.09 192 0.67 [KMMS21]
3 57328 165 646.12 384 0.72 [KMMS21]

AND-
XOR1

1 13694 132 129.83 128 0.45 This Work
2 23049 132 228.17 320 0.50 This Work
3 33663 132 334.16 640 0.50 This Work

AND-
XOR2

1 15806 132 151.74 64 0.50 This Work
2 29513 132 292.81 192 0.56 This Work
3 47231 132 476.81 384 0.60 This Work

(↓27%) (↓20%) (↓32%)

(↓24%) (↓20%) (↓31%)

18 Automated Generation of Masked Nonlinear Components:

Table 4: Hardware performance figures of the
AES byte-serial encryption function.

Anonymous Submission to IACR ToSC 19

Table 4: Hardware performance figures of the
AES byte-serial encryption function.

Masking
Scheme

Order Area
[GE]

Latency
[cycle]

Power
[uW]

Rand.
[bit]

Delay
[ns] Ref.

HPC1
1 39318 2043 396.84 68 1.24 [KMMS21]
2 59794 2043 600.98 170 1.42 [KMMS21]
3 80946 2043 820.55 340 1.94 [KMMS21]

HPC2
1 40395 2043 409.65 34 1.29 [KMMS21]
2 63161 2043 662.63 102 1.42 [KMMS21]
3 88050 2043 930.67 204 1.48 [KMMS21]

AND-
XOR1

1 30969 1589 306.53 66 1.22 This Work
2 47362 1589 477.11 165 1.49 This Work
3 64393 1589 651.54 330 1.60 This Work

AND-
XOR2

1 32041 1589 324.74 33 1.33 This Work
2 50695 1589 521.34 99 1.49 This Work
3 71409 1589 732.92 198 1.88 This Work

5 Security Analyses523

5.1 Theoretical524

Composable security is a crucial concept in the masking scheme, which ensures that the525

level of security of a composed circuit is maintained if its standalone secure sub-circuits526

meet certain requirements. To our knowledge, PINI is widely used as the most efficient527

method for defining these requirements. More specifically, if several sub-circuits, also528

known as gadgets, meet the concept of PINI under the glitch-extended probing model, and529

the connections of these sub-circuits do not intermix share domains, the overall composed530

circuit is also PINI secure under the glitch-extended probing model. It is essential to531

predicate the output shares of a gadget are connected with the input shares of another532

gadget in the same share indexes. For example, (y0, y1) and (x0, x1) are the two output533

shares of a gadget and the two input shares of another gadget, respectively, the only534

available connection is (x0, x1) = (y0, y1).535

To ensure the sub-circuits are PINI secure under the glitch-extended probing model,536

we have examined the implementations of all sub-circuits with SILVER [KSM20], in-537

cluding HPC1, HPC2, AND-XOR1, AND-XOR2, NOT_masked, XOR_masked and538

XNOR_masked. Further, the validity of the connection is guaranteed because determinis-539

tic procedures are used in the AGMSB to realize the connections between sub-circuits. In540

addition to the above analysis, for the masked S-boxes shown in Appendix A, we confirm541

the security of all 4-bit S-boxes and some AES S-boxes under the glitch-extended probing542

model using SILVER.543

Given that SILVER is not currently capable of analyzing full cipher implementations,544

we opted to perform experimental analysis. To this end, we implemented full ciphers with545

our masked S-boxes on the FPGA evaluation board and collected power consumption546

traces.547

5.2 Experimental548

We implement the full ciphers on a SAKURA-G [SAK] board, where a Spartan-6 FPGA is549

embedded for practical SCA evaluations. Our designs utilized in this section are provided550

(↓21%) (↓22%) (↓23%) (↓3%)

(↓21%) (↓22%) (↓21%) (↓3%)

5 Security Analysis

5.1 Theoretical Evaluation

Composable security is a crucial concept in the masking scheme, as it ensures that the
level of security of a composed circuit is maintained if its standalone secure sub-circuits
meet certain requirements. To our knowledge, PINI is widely used as the most efficient
method for defining these requirements. More specifically, if several sub-circuits, also
known as gadgets, meet the concept of PINI under the glitch-extended probing model, and
the connections of these sub-circuits do not intermix share domains, the overall composed
circuit is also PINI secure under the glitch-extended probing model. It is essential to
guarantee that the output shares of a gadget are connected with the input shares of
another gadget in the same share indexes. For example, if (y0, y1) and (x0, x1) are the two
output shares of a gadget and the two input shares of another gadget, respectively, the
only available connection is (x0, x1) = (y0, y1).

To ensure the sub-circuits are PINI secure under the glitch-extended probing model,
we have examined the implementations of all sub-circuits with the SILVER tool [KSM20],
including HPC1, HPC2, AND-XOR1, AND-XOR2, NOT_masked, XOR_masked and
XNOR_masked. Further, the validity of the connections is guaranteed because AGMNC
uses deterministic procedures to realize the connections between sub-circuits. In addition
to the above analysis, for the masked S-boxes described in this article, we confirm the
security of all 4-bit S-boxes and some AES S-boxes under the glitch-extended probing
model using SILVER.

Given that the SILVER is currently incapable of analyzing full cipher implementations,
we opted to perform experimental analysis. To this end, we implemented full ciphers with
our masked S-boxes on the FPGA evaluation board and collected power consumption
traces. The results are presented in the next section.

Lixuan Wu, Yanhong Fan, Bart Preneel, Weijia Wang and Meiqin Wang (�) 19

5.2 Experimental Evaluation

We implement the full ciphers on a SAKURA-G [SAK] board, where a Spartan-6 FPGA is
embedded for practical SCA evaluations. Our designs utilized in this section are provided
with a stable clock signal at the frequency of 24 MHz. The power consumption traces of the
above board are monitored with a PicoScope 5244D oscilloscope at a sampling frequency of
250 MS/s. Each randomness bit is dynamically generated during runtime with the use of a
31-bit maximum length Linear Feedback Shift Register (LFSR), with feedback polynomial
x31 + x28 + 14. Then, each LFSR is initialized with an independent random seed. As the
leakage assessment scheme, we perform fixed-versus-random t-test [GGJR+11], which is
widely used to evaluate the security of masked implementations. In each design, we keep
the key constant and collect 1 million traces to conduct the t-test analysis.

Figs. 8 and 9 depict the t-test results of SKINNY based on AND-XOR2 for the first-
order and second-order masking schemes, respectively. The results in Figs. 8(a), 9(a)
and 9(b) confirm the first-order security for the first-order design, as well as the first-
and second-order security for the second-order design. For comparison, we also provide
the results in Figs. 8(b) and 9(c) for the two designs when PRNG OFF to check our
measurement setup.

0 0.8 1.6 2.4 3.2 4.0 4.8 5.6

Time [s]

4

2

0

2

4

t-s
ta

tis
tic

s

4.5

-4.5

(a) PRNG ON, 1st-order t-test.

0 0.8 1.6 2.4 3.2 4.0 4.8 5.6

Time [s]
20

15

10

5

0

5

10

15

t-s
ta

tis
tic

s 4.5

-4.5

(b) PRNG OFF, 1st-order t-test.

Figure 8: SKINNY round-based encryption, first-order based on AND-XOR2.

0 0.8 1.6 2.4 3.2 4.0 4.8 5.6

Time [s]

4

2

0

2

4

t-s
ta

tis
tic

s

4.5

-4.5

(a) PRNG ON, 1st-order t-test.

0 0.8 1.6 2.4 3.2 4.0 4.8 5.6

Time [s]

4

2

0

2

4

t-s
ta

tis
tic

s

4.5

-4.5

(b) PRNG ON, 2nd-order t-test.

0 0.8 1.6 2.4 3.2 4.0 4.8 5.6

Time [s]
30

20

10

0

10

t-s
ta

tis
tic

s

4.5

-4.5

(c) PRNG OFF, 1st-order t-test.

Figure 9: SKINNY round-based encryption, second-order based on AND-XOR2.

4This LFSR design is one of the FPGA-optimized designs described in [Alf98].

20 Automated Generation of Masked Nonlinear Components:

6 Conclusions
In this article, we developed a user-friendly tool for the automated generation of masked
nonlinear components (AGMNC), which enables hardware designers, regardless of their
experience level, to elegantly and efficiently create secure masked hardware S-box circuits
starting from the look-up table description of an S-box.

AGMNC utilizes the AND-XOR gadget, latency asymmetry feature, and implementa-
tion optimization to generate efficient masked circuits. Furthermore, we show how to find
implementations of given S-boxes that satisfy our techniques using the STP solver. We
use AGMNC to generate a masked implementation of several S-boxes and evaluate the
hardware performance of the masked implementation from the perspective of the individual
S-box and the full cipher. The evaluation shows that our designs require less area, latency,
dynamic power, and even randomness, with a reduction of up to 41%, 25%, 49%, and 3%
than AGEMA, respectively. Finally, we use the SILVER tool and FPGA-based practical
experiments to verify the security of our designs. Based on the above results, we believe
that AGMNC is an elegant and efficient automated tool to generate secure masked designs,
with potential applications in various hardware design and implementation scenarios.

As an open problem, it is important to acknowledge that the hardware performance of
the final designs generated based on the composability notion of PINI is less efficient in
terms of area, latency, and randomness compared to the hand-crafted designs described
in related studies, e.g., [SM21a, SM21b, Sug19, GMK16]. This finding motivates the
need for additional composable gadgets and implementation optimization techniques to
improve the hardware performance. We believe that future research can focus on exploring
new techniques and methods to address these challenges and achieve optimal hardware
performance for secure masked cryptographic hardware circuits.

Lixuan Wu, Yanhong Fan, Bart Preneel, Weijia Wang and Meiqin Wang (�) 21

References
[Alf98] Peter Alfke. Efficient shift registers, LFSR counters, and long pseudo-random

sequence generators. 1998. https://docs.xilinx.com/v/u/en-US/xapp052.

[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order masking.
In Advances in Cryptology–EUROCRYPT 2015: 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part I, pages 457–485. Springer,
2015.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 116–129, 2016.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
block cipher for low energy. In Advances in Cryptology–ASIACRYPT 2015:
21st International Conference on the Theory and Application of Cryptology
and Information Security, Auckland, New Zealand, November 29–December 3,
2015, Proceedings, Part II 21, pages 411–436. Springer, 2015.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, et al. PRINCE–a low-latency block cipher for pervasive
computing applications. In Advances in Cryptology–ASIACRYPT 2012: 18th
International Conference on the Theory and Application of Cryptology and
Information Security, Beijing, China, December 2-6, 2012. Proceedings 18,
pages 208–225. Springer, 2012.

[BDF+17] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire,
FrançoiS-Xavier Standaert, and Pierre-Yves Strub. Parallel implementations
of masking schemes and the bounded moment leakage model. In Advances
in Cryptology–EUROCRYPT 2017: 36th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Paris, France,
April 30–May 4, 2017, Proceedings, Part I 36, pages 535–566. Springer, 2017.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
Advances in Cryptology–CRYPTO 2016: 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part
II 36, pages 123–153. Springer, 2016.

[BKL+07] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew JB Robshaw, Yannick Seurin, and Charlotte Vikkelsoe.
PRESENT: An ultra-lightweight block cipher. In Cryptographic Hardware
and Embedded SystemS-CHES 2007: 9th International Workshop, Vienna,
Austria, September 10-13, 2007. Proceedings 9, pages 450–466. Springer, 2007.

[BP12] Joan Boyar and René Peralta. A small depth-16 circuit for the AES S-Box.
In Information Security and Privacy Research: 27th IFIP TC 11 Information

https://docs.xilinx.com/v/u/en-US/xapp052

22 Automated Generation of Masked Nonlinear Components:

Security and Privacy Conference, SEC 2012, Heraklion, Crete, Greece, June
4-6, 2012. Proceedings 27, pages 287–298. Springer, 2012.

[CGLS20] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and FrançoiS-Xavier Stan-
daert. Hardware private circuits: From trivial composition to full verification.
IEEE Transactions on Computers, 70(10):1677–1690, 2020.

[CJRR99] Suresh Chari, Charanjit S Jutla, Josyula R Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In Advances in
Cryptology—CRYPTO’99: 19th Annual International Cryptology Conference
Santa Barbara, California, USA, August 15–19, 1999 Proceedings 19, pages
398–412. Springer, 1999.

[CS20] Gaëtan Cassiers and FrançoiS-Xavier Standaert. Trivially and efficiently
composing masked gadgets with probe isolating non-interference. IEEE
Transactions on Information Forensics and Security, 15:2542–2555, 2020.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage
models: from probing attacks to noisy leakage. In Advances in Cryptology–
EUROCRYPT 2014: 33rd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Copenhagen, Denmark, May
11-15, 2014. Proceedings 33, pages 423–440. Springer, 2014.

[DR99] Joan Daemen and Vincent Rijmen. AES proposal: Rijndael. 1999.

[DR02] Joan Daemen and Vincent Rijmen. The design of Rijndael, 2nd edition.
Springer, 2002.

[FGP+18] Sebastian Faust, Vincent Grosso, SMD Pozo, Clara Paglialonga, and F-X
Standaert. Composable masking schemes in the presence of physical defaults
& the robust probing model. 2018.

[GGJR+11] Benjamin Jun Gilbert Goodwill, Josh Jaffe, Pankaj Rohatgi, et al. A testing
methodology for side-channel resistance validation. In NIST non-invasive
attack testing workshop, volume 7, pages 115–136, 2011.

[GM18] Hannes Groß and Stefan Mangard. A unified masking approach. Journal of
cryptographic engineering, 8:109–124, 2018.

[GMK16] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-oriented masking:
Compact masked hardware implementations with arbitrary protection order.
Cryptology ePrint Archive, 2016.

[GMK17] Hannes Groß, Stefan Mangard, and Thomas Korak. An efficient side-channel
protected AES implementation with arbitrary protection order. In Topics in
Cryptology–CT-RSA 2017: The Cryptographers’ Track at the RSA Conference
2017, San Francisco, CA, USA, February 14–17, 2017, Proceedings, pages
95–112. Springer, 2017.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic
analysis: Concrete results. In Cryptographic Hardware and Embedded Sys-
tems—CHES 2001: Third International Workshop Paris, France, May 14–16,
2001 Proceedings 3, pages 251–261. Springer, 2001.

[HS14] Michael Hutter and Jörn-Marc Schmidt. The temperature side channel and
heating fault attacks. In Smart Card Research and Advanced Applications:
12th International Conference, CARDIS 2013, Berlin, Germany, November
27-29, 2013. Revised Selected Papers 12, pages 219–235. Springer, 2014.

Lixuan Wu, Yanhong Fan, Bart Preneel, Weijia Wang and Meiqin Wang (�) 23

[Inc] Synopsys Inc. Design compiler graphical. https://www.synopsys.com.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In Advances in Cryptology-CRYPTO 2003:
23rd Annual International Cryptology Conference, Santa Barbara, California,
USA, August 17-21, 2003. Proceedings 23, pages 463–481. Springer, 2003.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Advances in Cryptology—CRYPTO’99: 19th Annual International Cryptology
Conference Santa Barbara, California, USA, August 15–19, 1999 Proceedings
19, pages 388–397. Springer, 1999.

[KMMS21] David Knichel, Amir Moradi, Nicolai Müller, and Pascal Sasdrich. Automated
generation of masked hardware. Cryptology ePrint Archive, 2021.

[Koc96] Paul C Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Advances in Cryptology—CRYPTO’96: 16th
Annual International Cryptology Conference Santa Barbara, California, USA
August 18–22, 1996 Proceedings 16, pages 104–113. Springer, 1996.

[KSM20] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER–statistical inde-
pendence and leakage verification. In Advances in Cryptology–ASIACRYPT
2020: 26th International Conference on the Theory and Application of Cryp-
tology and Information Security, Daejeon, South Korea, December 7–11, 2020,
Proceedings, Part I 26, pages 787–816. Springer, 2020.

[LWH+21] Zhenyu Lu, Weijia Wang, Kai Hu, Yanhong Fan, Lixuan Wu, and Meiqin Wang.
Pushing the limits: Searching for implementations with the smallest area for
lightweight S-boxes. In Progress in Cryptology–INDOCRYPT 2021: 22nd
International Conference on Cryptology in India, Jaipur, India, December
12–15, 2021, Proceedings 22, pages 159–178. Springer, 2021.

[MCS22] Charles Momin, Gaëtan Cassiers, and FrançoiS-Xavier Standaert. Handcraft-
ing: Improving Automated Masking in Hardware with Manual Optimizations.
In Constructive Side-Channel Analysis and Secure Design: 13th International
Workshop, COSADE 2022, Leuven, Belgium, April 11-12, 2022, Proceedings,
pages 257–275. Springer, 2022.

[SAK] SAKURA. Side-channel Attack User Reference Architecture. http://satoh.
cs.uec.ac.jp/SAKURA/index.html.

[SM21a] Aein Rezaei Shahmirzadi and Amir Moradi. Re-consolidating first-order
masking schemes: Nullifying fresh randomness. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, pages 305–342, 2021.

[SM21b] Aein Rezaei Shahmirzadi and Amir Moradi. Second-order SCA security with
almost no fresh randomness. IACR Transactions on Cryptographic Hardware
and Embedded Systems, pages 708–755, 2021.

[Sto16] Ko Stoffelen. Optimizing S-box implementations for several criteria using
SAT solvers. In Fast Software Encryption: 23rd International Conference,
FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected Papers
23, pages 140–160. Springer, 2016.

[Sug19] Takeshi Sugawara. 3-share threshold implementation of AES S-box with-
out fresh randomness. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 123–145, 2019.

https://www.synopsys.com
http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://satoh.cs.uec.ac.jp/SAKURA/index.html

	Introduction
	Contributions
	Outline

	Preliminaries
	Boolean Masking
	Probing Security
	Composable Masking Schemes
	Hardware Private Circuits
	AGEMA

	New Techniques
	AND-XOR Gadget
	Latency Asymmetry of AND-XOR Gadget
	Implementation Optimization
	Automation Tool AGMNC

	Case Studies
	S-boxes
	Full Ciphers

	Security Analysis
	Theoretical Evaluation
	Experimental Evaluation

	Conclusions

