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Abstract
The Fujisaki-Okamoto (FO) transformation (CRYPTO 1999 and Journal of Cryptology 2013)

and its KEM variants (TCC 2017) are used to construct IND-CCA-secure PKE or KEM schemes
in the random oracle model (ROM).

In the post-quantum setting, the ROM is extended to the quantum random oracle model
(QROM), and the IND-CCA security of FO transformation and its KEM variants in the QROM has
been extensively analyzed. Grubbs et al. (EUROCRYPTO 2021) and Xagawa (EUROCRYPTO
2022) then focused on security properties other than IND-CCA security, such as the anonymity
aganist chosen-ciphertext attacks (ANO-CCA) of FO transformation in the QROM.

Beyond the post-quantum setting, Boneh and Zhandry (CRYPTO 2013) considered quantum
adversaries that can perform the quantum chosen-ciphertext attacks (qCCA). However, to the
best of our knowledge, there are few results on the IND-qCCA or ANO-qCCA security of FO
transformation and its KEM variants in the QROM.

In this paper, we define a class of security games called the oracle-hiding game, and provide
a lifting theorem for it. This theorem lifts the security reduction of oracle-hiding games in the
ROM to that in the QROM. With this theorem, we prove the IND-qCCA and ANO-qCCA security
of transformation FO/⊥, FO⊥, FO/⊥

m and FO⊥
m, which are KEM variants of FO, in the QROM.

Moreover, we prove the ANO-qCCA security of the hybrid PKE schemes built via the KEM-
DEM paradigm, where the underlying KEM schemes are obtained by FO/⊥, FO⊥, FO/⊥

m and FO⊥
m.

Notably, for those hybrid PKE schemes, our security reduction shows that their anonymity is
independent of the security of their underlying DEM schemes. Hence, our result simplifies the
anonymity analysis of the hybrid PKE schemes that obtained from the FO transformation.

Keywords: quantum chosen-ciphertext attacks, quantum random oracle model, anonymity,
Fujisaki-Okamoto transformation

1 Introduction
1.1 Background
Shor’s breakthrough result [Sho99] shows that quantum polynomial-time (QPT) adversary can break
cryptosystems based on the factoring problem and the discrete logarithm problem. This motivates
researchers to generate post-quantum cryptography and design quantum-resistant cryptosystems. In
the post-quantum setting, the adversaries are capable of quantum computing, in contrast to the clas-
sical computing power held by the cryptosystem users. Moreover, as introduced in [BDF+11], it is
reasonable to assume that the quantum adversary can query random oracles in superposition, and the
random oracle model (ROM) should be extended to the quantum random oracle model (QROM) for
post-quantum consideration.

1

https://orcid.org/0000-0002-1671-7933
https://orcid.org/0000-0002-1918-7464
https://orcid.org/0000-0001-6024-3635


The well-known Fujisaki-Okamoto (FO) transform [FO13] is a transformation that combines a
public-key encryption (PKE) scheme and a symmetric-key encryption (SKE) scheme to obtain a hybrid
PKE scheme that is secure against the indistinguishability under chosen-ciphertext attacks (IND-CCA)
in the ROM. Dent [Den03] then introduced a variant of FO, whose resulting scheme is an IND-CCA
secure key encapsulation mechanism (KEM). On the other hand, IND-CCA secure PKE schemes can
be built via the KEM-DEM1 paradigm with high efficiency and versatility [CS03]. Since then, it has
been paid more attention to the constructions of the IND-CCA-secure KEM.

In what follows, we also denote by KEM+DEM the PKE scheme built via the KEM-DEM paradigm
with KEM scheme KEM and DEM scheme DEM. Moreover, the scheme is denoted as T +DEM if the
underlying KEM scheme is obtained by transformation T .

Modular treatment of FO transformation for KEM variants: Following [Den03], Hofheinz
et al. [HHK17] provided a modular toolkit of transformations including T, U/⊥, U⊥, U/⊥

m, U⊥m, QU/⊥
m

and QU⊥m. By combining T with U/⊥, U⊥, U/⊥
m, U⊥m, QU/⊥

m and QU⊥m, it is obtained the KEM variants
of FO transformation FO/⊥, FO⊥, FO/⊥

m, FO⊥m, QFO/⊥
m and QFO⊥m, respectively. Here, ⊥ (resp. /⊥)

indicates that the transformation is explicit (resp. implicit) rejection type2 and Q means that the
transformation requires an additional ”key-confirmation” hash. In what follows, those KEM variants
of FO transformation are referred as FO-like transformations.

FO-like transformations are widely used in the submissions to NIST post-quantum cryptography
(PQC) standardization process [NIS17] starting from 2016. Among 39 Round-1 KEM submissions to
the standardization process, there are 25 submissions following the FO-like transformations to achieve
the IND-CCA security in the ROM or QROM. In July 2022, NIST announced the first group of winners
[NIS22], and CRYSTALS-Kyber, as the only selected KEM scheme for standardization, uses a variant
of FO-like transformation FO/⊥.

Different security guarantees of FO-like transformations under chosen-ciphertext attacks:
The classical IND-CCA reductions of FO-like transformations in the ROM were provided in [HHK17].
In the post-quantum setting, it has been heavily analysed the IND-CCA security of FO-like transfor-
mations in the QROM (e.g., [HHK17, XY19, JZC+18, JZM19, BHH+19, HKSU20, KSS+20, DFMS22,
HHM22]).

In addition to the standard IND-CCA security, researchers have also been studying the important
and useful security properties of FO-like transformations under chosen-ciphertext attacks in the post-
quantum setting as follows.

• Anonymity: This property in the public-key setting was first introduced by Bellare et al. [BBDP01].
Roughly speaking, a PKE scheme is anonymous if its ciphertexts leak little information of the
receiver.
Grubbs et al. [GMP22] were the first to study anonymity in PKE/KEM for post-quantum
considerations. They defined the anonymity against chosen-ciphertext attacks (ANO-CCA) and
provided the ANO-CCA security reductions of HFO⊥

′
(a variant of QFO⊥m) and FO

/⊥ in the QROM.
Moreover, they proved the ANO-CCA security of PKE scheme HFO⊥

′
+DEM and FO

/⊥+DEM in
the QROM.
Building on the result of [GMP22], Xagawa [Xag22] investigated the anonymity of NIST PQC
Round 3 KEM schemes. The core concept of this work is a new security notion called strong
pseudorandomness against chosen-ciphertext attacks (SPR-CCA).

• Robustness: This property was first introduced in [ABN10], and it means that the receiver can
recognize whether a ciphertext is intended for themselves and is difficult to be deceived.
In the post-quantum setting, Grubbs et al. [GMP22] defined the weak robustness under chosen-
ciphertext attacks (WROB-CCA) and strong robustness under chosen-ciphertext attacks (SROB-
CCA). They also proved the WROB-CCA and SROB-CCA security of PKE scheme FO

/⊥+DEM in
the QROM.

1DEM is an abbreviation for data encapsulation mechanism. Indeed, a DEM scheme is a SKE scheme, and we will
use the terms DEM and SKE interchangeably throughout this paper.

2The decapsulation algorithm of an implicit (resp. explicit) rejection type transformation returns a pseudorandom
value (resp. an abort symbol ⊥) when the ciphertext fails to be decrypted.
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• Key dependent message (KDM) security: The KDM security was first introduced in [BRS02].
Intuitively speaking, a KDM-secure PKE scheme remains secure even if the adversary can obtain
the encryption results of the secret key.
Kitagawa and Nishimaki [KN22] initialized the study of the KDM security of PKE in the post
quantum setting. They proved the key dependent message against chosen-ciphertext attacks
(KDM-CCA) security of PKE scheme U⊥,keyconfm +DEM in the QROM, where U⊥,keyconfm is a variant
of QU⊥m.

The extension to the post-quantum security arguments: It was further assumed that quan-
tum adversary has quantum access to secretive primitives. Especially for PKE, Boneh and Zhandry
[BZ13] defined a new security notion named indistinguishability against quantum chosen-ciphertext
attacks (IND-qCCA), in which the quantum adversary is able to query the decryption oracle in super-
position. They also presented the first IND-qCCA-secure PKE scheme by the transformation defined
in [BCHK07].

Following [BZ13], Xagawa and Yamakawa [XY19] introduced the IND-qCCA security for KEM
scheme, where the adversary can make quantum queries to the decapsulation oracle. They also provided
the IND-qCCA security reductions of transformation SXY (U/⊥

m) and HU (an adapted version of QU/⊥
m)

in the QROM. Later, Liu and Wang [LW21] gave a tighter IND-qCCA security reduction of SXY from
the standard security in the QROM.

Apart from the standard security, anonymity, robustness and key dependent message security,
these security properties under chosen-ciphertext attacks can be extended into ones under quantum
chosen-ciphertext attacks (e.g. ANO-qCCA, WROB-qCCA, SROB-qCCA, KDM-qCCA).

To the best of our knowledge, for GOAL ∈ {ANO,WROB,SROB,KDM}, the GOAL-qCCA security
of any PKE scheme KEM+DEM in the QROM, whose underlying KEM scheme KEM is obtained by
FO-like transformations, have not yet been studied. A natural question arises.

Can we prove security properties, such as anonymity, of those PKE schemes KEM+DEM even under
quantum chosen-ciphertext attacks?

Lift classical CCA reductions to qCCA reductions: In his seminal paper [Zha19], Zhandry proposed
the compressed oracle technique, which can be used to perfectly simulate quantum random oracles
and ”record” quantum queries on the database register without detecting. This technique can be
considered the quantum counterpart of on-the-fly simulation, and thus makes it possible to mimic
the classical security reduction in the ROM when proving security under quantum chosen ciphertext
attacks (qCCA). With this technique, Zhandry proved the IND-qCCA security of the FO transformation
in the QROM.

Based on the same technique, Don et al. [DFMS22] took the extracting action on the database
register as a whole part, and provided the generic extractability result (i.e. the extractable RO-
simulator and Theorem 4.3 of [DFMS22]), which can be applied to bound the loss caused by the
simulation of the decryption oracle in the QROM reductions. Moreover, it was proved that FO⊥m is
IND-CCA-secure in the QROM.

In contrast to [DFMS22], Shan et al. [SGX23] investigated a more specific setting. Their study
focused on PKE schemes that contain re-encryption computation in the decryption algorithms. In their
paper, plaintext extractor is developed to simulate quantum decryption oracle for this type of schemes,
and an upper bound of this simulation in the QROM reductions is also presented. Furthermore, several
transformations, including FO and REACT, were proved to be IND-qCCA-secure in the QROM, with
concrete security bounds.

The IND-qCCA and IND-CCA reductions in the aforementioned works can be regarded as the quan-
tum counterparts of the classical IND-CCA reductions of schemes, respectively. We adopt this view to
prove the IND-qCCA security of FO-like transformations, and furthermore, to explore the GOAL-qCCA
reductions of them for GOAL ∈ {ANO,WROB,SROB,KDM}. This promotes the following question.

Is there a lifting theorem that straightforwardly extends the classical CCA reduction of FO-like
transformations to the qCCA ones?
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1.2 Our Contribution
A lifting theorem for oracle-hiding games: To answer the second question, a lifting theorem
is proposed in this paper. This theorem is established on one type of games called the oracle-hiding
games, as shown in Definition 1.

Definition 1 (Oracle-hiding Game, informal). For random oracle H, G and a secret oracle Osk, we
call the game between adversary A and challenger C, as shown in Fig. 1, the oracle-hiding game.

Oracle-hiding game OHGC
A

1, (pk, sk)← KGen
2, OHG.A← AH,G,Osk(sk)

3, C perform following operation
m∗ $←− R1, r $←− R2

m0 ← cha1(pk,OHG.A,m
∗, r)

y0 = G(m∗||m0)

m1 ← cha2(pk,OHG.A, ys,m
∗, r)

y1 = H(m∗||m1)

OHG.B← cha3(pk,OHG.A, y0, y1,m
∗, r)

4, OHG.C← AH,G,Osk(pk,OHG.B)
5, t← verify(pk, sk,OHG.A,m∗, r, s,OHG.C)
C output t ∈ {0, 1} as game’s output

Osk(α)

1, If OHG.B is defined and
α = ota2(pk,m

∗||m1,H(m∗||m1))

return ⊥
Else return otaH,G(sk, α)

Figure 1: The oracle-hiding game OHGCA. Here cha1 to cha3 and verify are deterministic algorithms used
by challenger C. otaH,G is an oracle-testing algorithm and ota2 is an internal deterministic algorithm
of otaH,G.

We say that oracle-hiding game OHGCA is in the ROM if A has only classical access to oracle H, G
and Osk, and oracle-hiding game OHGCA is in the QROM if A can query oracle H, G and Osk in
superposition.

In fact, the IND-CCA (resp. IND-qCCA) game of any FO-like transformation in the ROM (resp.
QROM) can be rewritten as an oracle-hiding game in the ROM (resp. QROM), as long as we clearly
specify the basic elements shown in Fig. 1 (such as the randomness space R1, R2 and algorithms cha1
to cha3). We emphasize that the oracle-testing algorithm otaH,G appearing in Fig. 1 is actually an
abstraction of the decapsulation algorithm of FO-like transformations, and thus the secret oracle Osk

is actually an abstraction of the decapsulation oracle of FO-like transformations.
With the extractable RO-simulator defined in [DFMS22], we then provide a lifting theorem for the

oracle-hiding games, extending the ROM reductions to the QROM ones, as presented in Theorem 1.

Theorem 1 (Lifting Theorem of Oracle-hiding Game, informal3). Let ε be the parameter induced by
H, G and Osk. Denote by q be the total query times to oracle H, G and Osk. Let C be a challenger
of the oracle-hiding game.

Given any adversary A and oracle-hiding game OHGCA in the ROM, there exist adversary A1 and
A2, invoking A once in a black-box manner4 and making no queries to oracle H, G and Osk, such that

|Pr[1← OHGCA]− Pr[1← OHGCA1
]| ≤ O(q) · Pr[1← OHGC

′

A2
] +O(q) · ε. (1)

Here C′ is identical with C except that it finally generates t ∈ {0, 1} by a new algorithm verify′.
3The lifting theorem is formally described in Section 4.1, and is divided into two parts, Lemma 3 and Theorem 4, for

clarity.
4We stress that the rewinding procedure is not performed.
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Then for any quantum adversary B and oracle-hiding game OHGCB in the QROM, by mimicking the
construction of A1 and A2, we can directly construct quantum adversary B1 and B2, that invokes B in
a black-box manner without any queries to oracle H, G and Osk satisfy

|Pr[1← OHGCB]− Pr[1← OHGCB1
]| ≤ O(q) ·

√
Pr[1← OHGC′B2

] +O(q) ·
√
ε. (2)

Here, we take FO-like transformation FO⊥m for instance to illustrate (in a high level) how Theorem
1 lifts the classical IND-CCA reduction of FO⊥m in the ROM to the IND-qCCA reduction in the QROM.

Let game GameIND-CCA
A,FO⊥

m
be the IND-CCA game of FO⊥m with classical adversary A in the ROM, then

we can rewrite this game as an oracle-hiding game OHGCFOÃ by designing appropriate classical adversary
Ã and challenger CFO. Hence

Pr
[
1← GameIND-CCA

A,FO⊥
m

]
= Pr

[
1← OHGCFOÃ

]
. (3)

By Eq. (1), there exists adversary Ã1 and Ã2 without any oracle queries satisfy∣∣∣Pr [1← OHGCFOÃ
]
− Pr

[
1← OHGCFOÃ1

]∣∣∣ ≤ O(q) · Pr
[
1← OHGC

′

Ã2

]
+O(q) · ε. (4)

Then, we observe that for any adversary A without any oracle queries, the oracle-hiding game OHGCA
and oracle-hiding game OHGC

′

A must satisfy

Pr
[
1← OHGCFOA

]
=

1

2
, Pr

[
1← OHGC

′

A

]
= AdvOW-CPA

A,PKE . (5)

Here AdvOW-CPA
A,PKE is the A’s OW-CPA advantage against the underlying PKE scheme PKE. Thus combing

Eq. (3) to Eq. (5), we actually obtain the IND-CCA security reduction of FO⊥m in the ROM.
Based on the challenger CFO, the IND-qCCA game GameIND-qCCA

B,FO⊥
m

of FO⊥m with quantum adversary
B in the QROM can be rewritten as an oracle-hiding game OHGCFOB̃ by designing appropriate quantum
adversary B̃. Hence

Pr
[
1← GameIND-qCCA

B,FO⊥
m

]
= Pr

[
1← OHGCFOB̃

]
. (6)

Now we can use Theorem 1 to directly obtain B̃1 and B̃2 without any oracle queries satisfy∣∣∣Pr [1← OHGCFOB̃
]
− Pr

[
1← OHGCFOB̃1

]∣∣∣ ≤ O(q) ·
√
Pr
[
1← OHGC′B̃2

]
+O(q) ·

√
ε. (7)

By using Eq. (5), we get

Pr
[
1← OHGCFOB̃1

]
=

1

2
, Pr

[
1← OHGC

′

B̃2

]
= AdvOW-CPA

B̃2,PKE
. (8)

Combining Eq. (6) to Eq. (8), we actually obtain the IND-qCCA security reduction of FO⊥m in the
QROM. That is to say, by using Theorem 1, we directly lift the classical IND-CCA reduction of FO⊥m
in the ROM to the IND-qCCA reduction in the QROM with a square-root advantage loss.

Additionally, Theorem 1 might be of independent interest due to the abstraction of the oracle-
hiding game.

Standard indistinguishability and anonymity of FO-like transformations: With the lifting
theorem of oracle-hiding game, we provide the IND-qCCA reductions of FO-like transformation FO/⊥,
FO⊥, FO/⊥

m and FO⊥m in the QROM. The concrete security bounds of these transformations are as
shown in Table 1.

Additionally, the lifting theorem also helps to prove the ANO-qCCA security of FO-like transforma-
tion FO/⊥, FO⊥, FO/⊥

m and FO⊥m in the QROM. Furthermore, we also prove the ANO-qCCA security of
PKE scheme FO/⊥+DEM, FO⊥+DEM, FO/⊥

m+DEM and FO⊥m+DEM in the QROM, respectively. These
results partly answers the first question in the affirmative.
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Table 1: The concrete security bounds for several transformations in the QROM. Here q is adversary’s
total query times to the oracles. ϵO (resp. ϵS) is the success probability of an adversary against the OW-
CPA (SDS-IND) security of the underlying PKE scheme. ϵW is the success probability of an adversary
against the WANO-CPA security of the underlying PKE scheme. Disj is the statistical disjointness
parameter of the underlying PKE scheme.

Transformation Security Correctness Requirement Security bound(≈)
FO⊥m [DFMS22] IND-CCA δ-correct weakly γ-spread O(q2) 4

√
γ +O(q2)

√
δ +O(q)

√
ϵO

FO/⊥
m,FO/⊥ [Xag22]* ANO-CCA δ-correct — O(q2)

√
δ +O(q)

√
ϵO + ϵS + Disj

FO/⊥ [GMP22] ANO-CCA δ-correct — O(q2)
√
δ +O(q)

√
ϵO + ϵW + . . .**

FO⊥,FO⊥m Our work IND-qCCA δ-correct weakly γ-spread O(q)
√
γ +O(q)

√
δ +O(q)

√
ϵO

FO/⊥,FO/⊥
m Our work IND-qCCA δ-correct weakly γ-spread O(q)

√
γ +O(q)

√
δ +O(q)

√
ϵO

FO⊥,FO⊥m Our work ANO-qCCA δ-correct weakly γ-spread ϵS +O(q)
√
γ +O(q)

√
δ +O(q)

√
ϵO

FO/⊥,FO/⊥
m Our work ANO-qCCA δ-correct weakly γ-spread ϵS +O(q)

√
γ +O(q)

√
δ +O(q)

√
ϵO

FO⊥ + DEM

FO⊥m + DEM
Our work

ANO-qCCA δ-correct weakly γ-spread ϵS +O(q)
√
γ +O(q)

√
δ +O(q)

√
ϵO

FO/⊥ + DEM

FO/⊥
m + DEM

Our work
ANO-qCCA δ-correct weakly γ-spread ϵS +O(q)

√
γ +O(q)

√
δ +O(q)

√
ϵO

* The ANO-CCA security of FO/⊥
m and FO/⊥ has not been directly proven in [Xag22]. However, we can obtain the bound

we presented here by combining Theorem 4.1 and Theorem D.1 of [Xag22].
** The ANO-CCA security reduction of FO/⊥ in [GMP22] also needs the SCFR-CPA security of PKE scheme PKE1.

As shown in Table 1, our IND-qCCA security bound of FO⊥m is tighter than the IND-CCA security
bound of FO⊥m in [DFMS22]5.

In terms of the anonymity, our work has two requirements for the underlying PKE. One of the
requirements is that the underlying PKE scheme should be OW-CPA-secure and SDS-IND-secure, which
is also required in [Xag22]. The other requirement is that the PKE scheme should be weakly γ-spread,
which has been analyzed in [HHM22] for several KEM submissions to the NIST PQC competition.

For FO-like transformation FO/⊥, our ANO-qCCA security bound is more concise than that in
[GMP22], and has no additional security requirements for the underlying PKE except the SDS-IND
security. Moreover, Our ANO-qCCA security bound of FO/⊥

m and FO/⊥ is nearly identical to the ANO-
CCA security bound presented in [Xag22], with the only difference being the substitution of the term
Disj with O(q)

√
γ.

Perhaps surprisingly, it can be further noticed that our ANO-qCCA security bounds of PKE scheme
FO/⊥+DEM, FO⊥+DEM, FO/⊥

m+DEM and FO⊥m+DEM are irrelevant to the security of the underlying
DEM scheme. Specifically, the only security requirement of the ANO-qCCA security for those hybrid
PKE schemes is that the underlying PKE scheme, is SDS-IND-secure and OW-CPA-secure. This find-
ing may simplify the anonymity analysis of hybrid PKE scheme built via KEM-DEM paradigm with
underlying KEM obtained from the NIST KEM submissions.

A new variant of O2H: Czajkowski et al. [CMSZ19] proposed the One-way to Hiding (O2H) Lemma
for compressed oracles, that is a combination of the semi-classical O2H Theorem [AHU19] and the
compressed oracle technique [Zha19]. We generalize this lemma to the compressed semi-classical O2H
theorem, as shown in Theorem 2, by allowing quantum oracle algorithm A to make both compressed
oracle queries and database read queries.

In our paper, the compressed semi-classical O2H theorem is only applied to prove the lifting theorem
Theorem 1, but we emphasize that this theorem also might be of independent interest.

Theorem 2 (Compressed Semi-classical O2H, informal). Let H be the compressed oracle, S be a
subset of the database and z be a random string. Let H\S be an oracle that first queries H and then

5An IND-qCCA/ANO-qCCA secure scheme is also IND-CCA/ANO-CCA secure, due to the security definitions.
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queries OCSC
S . Let A be a quantum oracle algorithm that has quantum access to both H and database

read oracle oRead. Suppose A queries H (resp. oRead) at most q1 (resp. q2) times. Define

Pleft := Pr
[
1← AH,oRead(z)

]
,

Pright := Pr[1← AH\S,oRead(z)],

Pfind := Pr[Find occurs in AH\S,oRead(z)].

Here Find is the event that OCSC
S ever returns 1, then

|Pleft − Pright| ≤
√
(q1 + 1) · Pfind,

∣∣∣√Pleft −√Pright∣∣∣ ≤√(q1 + 1) · Pfind.

1.3 Techniques Overview
Our security reduction rely on Theorem 1, the lifting theorem for oracle-hiding games. We prove the
IND-qCCA security of FO-like transformations by rewriting their IND-qCCA game in the QROM as the
oracle-hiding game, computing ε for the oracle-hiding game, and apply Eq. (2) of Theorem 1 to derive
their IND-qCCA security bounds.

However, in the ANO-qCCA game, the challenger needs to generate two public/secret key pair,
(pk0, sk0) and (pk1, sk1), the challenge query are encrypted by pk0 and pk1, respectively, and the
adversary has quantum access to two decryption oracles: one decrypting with sk0 and the other with
sk1. This makes it difficult to rewrite the ANO-qCCA game FO-like transformations as the oracle-hiding
game. Therefore, on the ANO-qCCA security, a more subtle argument is needed.

We resolve this obstacle in terms of the pseudorandomness of PKE/KEM defined in [Xag22].
Taking PKE for instance, this property states that a ciphertext is indistinguishable from a random
string chosen by a simulator that takes the security parameter as input.

A strong pseudorandomness was proposed in [Xag22], and it was proved that the strong pseudo-
randomness implies the anonymity. Nevertheless, the strong pseudorandomness seems to be slightly
stronger than our requirement, and a weaker property, named weak pseudorandomness, is defined in
this paper and is proved to imply the anonymity. In the security game of weak pseudorandomness
(WPR-qCCA game defined in Appendix G), only one public/secret key pair is used, we can then rewrite
the game as the oracle-hiding game, and apply Theorem 1 to prove the weak pseudorandomness, and,
consequently, the anonymity.

In this way, the ANO-qCCA security of FO/⊥+DEM, FO⊥+DEM, FO/⊥
m+DEM and FO⊥m+DEM can

be irrelevant to the security of the underlying DEM scheme and Disj used in [Xag22].

Proof sketch of Theorem 1: Note that Theorem 1 actually consists of two results: Eq. (1) for any
oracle-hiding game in the ROM; Eq. (2) for any oracle-hiding game in the QROM.

• In the Section 4.2.1 of our paper, Eq. (1) is proved through a game sequence Gc
0 to Gc

4, where

Pr [1← Gc
0] = Pr

[
1← OHGCA

]
, Pr [1← Gc

4] = Pr
[
1← OHGCA1

]
,

3∑
i=0

∣∣Pr [1← Gc
i ]− Pr

[
1← Gc

i+1

]∣∣ ≤ O(q) · Pr
[
1← OHGC

′

A2

]
+O(q) · ε.

• In the Section 4.2.2 of our paper, Eq. (2) is proved through a game sequence Gq
0 to Gq

6, where

Pr [1← Gq
0] = Pr

[
1← OHGCB

]
, Pr [1← Gq

6] = Pr
[
1← OHGCB1

]
,

5∑
i=0

∣∣Pr [1← Gq
i ]− Pr

[
1← Gq

i+1

]∣∣ ≤ O(q) ·
√
Pr
[
1← OHGC′B2

]
+O(q) ·

√
ε.

Roughly speaking, the purpose of both game sequences Gc
0 to Gc

4 and Gq
0 to Gq

6 is to design an
adversary, i.e., A1 in Gc

4 and B1 in Gq
6, that invokes the adversary of the first game and does not

query any oracle.
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To achieve it, the main problem is to simulate classical and quantum accessed random oracle H,
G, as well as the secret oracle Osk. Here, we provide a high-level explanation of how we simulate these
oracles.

• For random oracle H and G, we simulate it on-the-fly by list LH and LG, respectively. Now
there exists a query transcript LH of random oracle H.

• For the quantum random oracle H, we simulate it by using the RO-interface eCO.RO of the
extractable RO-simulator S(:= {eCO.RO, eCO.E}). As for G, we simulate it with a 2q-wise
independent hash function.

• For the classical accessed secret oracle Osk, we simulate it by a classical plaintext-extractor
without using the secret key sk. For the secret oracle query, Osk replies it by reading and
extracting from the query transcript LH .

• For the quantum accessed secret oracle Osk, we simulate it by a quantum plaintext-extractor
without using the secret key sk. The extractor is constructed with the extraction-interface
eCO.E of the extractable RO-simulator.

Indeed, in our detailed proof of the lifting theorem Theorem 1, it can be observed that the quan-
tum plaintext-extractor, constructed by using the extraction-interface eCO.E, can be regarded as the
quantum counterpart of the classical plaintext-extractor. Moreover, it can be noticed that an one-
to-one correspondence exists between the operations of A1 and B1, and those of A2 and B2. This
correspondence enables us to construct B1 and B2 directly by mimicking the construction of A1 and
A2.

1.4 Related Works
[XY19] and [LW21] have argued the IND-qCCA security of FO-like transformations. However, their
work mainly focused on FO-like transformations with implicit rejection type. As for explicit rejection
type, only transformation HU, an adapted version of QU/⊥

m, has been analysed in [XY19].
To the post-quantum security of FO-like transformations with explicit rejection type, there have

been only [DFMS22] and [HHM22] providing the IND-CCA security reduction of FO⊥m, as far as we
know. Moreover, Hövelmanns et al. also showed that the IND-CCA security of FO⊥m implies the
IND-CCA security of all remaining FO-like transformations [HHM22].

It should be noted that the IND-CCA security reductions of FO⊥m given in [DFMS22] and [HHM22]
seem not to hold for the IND-qCCA security, where the adversary is allowed to query the decapsulation
oracle in superposition. There are two reasons as follows.

1. Both [DFMS22] and [HHM22] use property 4.a and 4.b of Theorem 4.3 in [DFMS22] to prove
the IND-CCA security, but these properties only hold for classical queries.

2. In the IND-CCA security reductions of [DFMS22] and [HHM22], a list is maintained to record
the adversary’s classical decapsulation queries. However, if the decapsulation oracle is quantum-
accessible, this record procedure becomes infeasible due to the quantum no-cloning principle.

The post-quantum anonymity of FO-like transformation was first studied by Grubbs et al. [GMP22].
Theorem 7 of [GMP22] implies that the ANO-CCA security of PKE scheme FO/⊥+DEM is guaranteed by
the ANO-CCA security of KEM obtained by FO

/⊥, the INT-CTXT security of DEM, and other security
requirements. Xagawa [Xag22] then proved that the ANO-CCA security of the hybrid PKE scheme
FO

/⊥+DEM in the QROM can be implied by the SPR-OTCCA security of DEM, the SPR-CCA and
SSMT-CCA security of KEM scheme obtained by FO

/⊥.
However, both in [GMP22] and [Xag22], the ANO-CCA security of hybrid PKE scheme FO

/⊥+DEM
depends on the security requirement of the underlying DEM.

As the last point, there have been several works on the lifting theorem from ROM proofs to QROM
proofs [BDF+11, CMS19, KS20, CFHL21, YZ21].
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2 Preliminaries
2.1 Notations
The security parameter is denoted by λ. We denote by boole[A] a bit that is 1 if the predicate A keeps
true and otherwise 0. For a finite set S, we denote the sampling of a uniformly random element x as
x

$←− S, and the cardinality of S as |S|. x← D represents that the x is chosen subject to distribution D.
Pr [A : B] is the probability that the predicate A keeps true where all variables in A are conditioned
according to predicate B. Let y ← A(x) represent the output of algorithm A on input x, y ← G
represent that the game G finally outputs y. Denote by Fm,n the set of all functions with domain
{0, 1}m and codomain {0, 1}n. For a function or an algorithm f , denote by Time[f ] the worst case of
the running time of f(x) for all input x.

2.2 Quantum Computation
We refer to [NC16] for detailed basics of quantum computation and quantum information, and we only
introduce some important quantum notions used in this paper in Appendix A.

2.3 The Quantum Random Oracle Model
The random oracle model (ROM) is an ideal model in which a uniformly random function H :
{0, 1}m → {0, 1}n is selected and all parties have access to a random oracle OH , where OH out-
put H(x) on input x. We can simulate the random oracle OH efficiently for the classical query by
on-the-fly technique. When a random oracle scheme is implemented, we select a concrete hash function
as an instantiation of the random oracle. In the quantum setting, a quantum adversary can evaluate a
hash function in superposition. To capture this issue, the quantum random oracle model (QROM) is
considered and the adversary has access to the quantum random oracle OH in this model [BDF+11].
The quantum random oracle OH can be viewed as a unitary operation that maps |x, y〉 to |x, y⊕H(x)〉,
where x ∈ {0, 1}m and y ∈ {0, 1}n. We will introduce several useful lemmas regarding the QROM in
Appendix B.

2.4 The Compressed Standard Oracle
The compressed oracle technique is introduced by Zhandry in [Zha19], by using this technique, one
can perfectly simulate the quantum accessible random oracle and record some information about the
adversary’s quantum query. In this subsection, we only introduce the database model and a specific
version of the compressed oracle named compressed standard oracle. Moreover, we fix the query bound
to the compressed standard oracle to be constant q since all results are about the adversary with fixed
query times.

Definition of the database. Let ⊥ /∈ {0, 1}m. A database D is a q pairs collection of pair (x, y) ∈
{0, 1}m × {0, 1}n and (⊥, 0n) as:

D = ((x1, y1), (x2, y2), . . . , (xi, yi), (⊥, 0n), . . . , (⊥, 0n)) ,

where i ≤ q, x1, x2, . . . , xi 6= ⊥ and x1 < x2 < · · · < xi, all (⊥, 0n) pairs are at the end of the collection.
Let Dq be the set of all these databases. For a x ∈ {0, 1}m, we will write D(x) = y if y exists such that
(x, y) ∈ D, and D(x) = ⊥ otherwise. Let n(D) be the number of pairs (x, y) ∈ D that x 6= ⊥. For a
pair (x, y) ∈ {0, 1}m × {0, 1}n and a database D ∈ Dq with n(D) < q and D(x) = ⊥, write D ∪ (x, y)
to be the new database obtained by first deleting a (⊥, 0n) pair, then inserting (x, y) appropriately
into D and maintain the ordering of the x values.

A quantum register Dq defined over set Dq is a complex Hilbert space with orthonormal basis
{|D〉}D∈Dq , where the basis state |D〉 is labeled by the elements of Dq. As mentioned in Appendix
A, this basis is the computational basis. We also refer to Dq as the database register. For a database
D ∈ Dq, n(D) < q and D(x) = ⊥, define a superposition state on the database register Dq as

|D ∪ (x, r̂)〉 := 1√
2n

∑
y∈{0,1}n

(−1)y·r|D ∪ (x, y)〉,

9



where x ∈ {0, 1}m and r ∈ {0, 1}n.
For a x ∈ {0, 1}m, Zhandry defined the local decompression procedure StdDecompx acts on the

database register Dq as follows:

• For D ∈ Dq, if D(x) = ⊥ and n(D) < q, StdDecompx|D〉 = |D ∪ (x, 0̂n)〉.

• For D′ ∈ Dq, if D′(x) = ⊥ and n(D′) < q, StdDecompx|D′ ∪ (x, 0̂n)〉 = |D′〉. For r 6= 0n,

StdDecompx|D′ ∪ (x, r̂)〉 = |D′ ∪ (x, r̂)〉.

• For D ∈ Dq such that D(x) = ⊥ and n(D) = q, StdDecompx|D〉 = |D〉.

It is obvious that StdDecompx is a unitary operation and StdDecompx ◦ StdDecompx = I for any
x ∈ {0, 1}m, where I is the identity operator.

Definition 2 (Compressed Standard Oracle). Let X (resp. Y) be the quantum register defined over
{0, 1}m (resp. {0, 1}n). Let the initial state on database register Dq be |D⊥〉, where D⊥ ∈ Dq is the
database only contains q pairs (⊥, 0n). A query to the compressed standard oracle with input/output
register X/Y is implemented by acting the following unitary operation CStO on registers XYDq.

CStO :=
∑

x∈{0,1}m
|x〉〈x|X ⊗ StdDecompx ◦ CNOTx

YDq
◦ StdDecompx. (9)

Here CNOTx
YDq

maps |y,D〉 (y ∈ {0, 1}n, D ∈ Dq) to |y⊕D(x), D〉 if D(x) 6= ⊥, to |y,D〉 if D(x) = ⊥6.

Zhandry proved that the compressed standard oracle is perfectly indistinguishable from the quan-
tum random oracle.

Lemma 1 ([Zha19]). For any adversary makes at most q times quantum queries, compressed stan-
dard oracle defined in Definition 2 and quantum random oracle H : {0, 1}m → {0, 1}n are perfectly
indistinguishable.

Let X (resp. Y) be a quantum register defined over a finite set X (resp. Y). For any function f
with domain X ×Dq and codomain Y, define unitary operation Readf acts on registers XDqY as

Readf |x,D, y〉 = |x,D, y + f(x,D)〉. (10)

Here + : Y × Y → Y is some group operation on Y. Note that Readf does not change the database
in the computational basis state, it only compute f(x,D) and return it in register Y, therefore we call
Readf a database read operation.

For an adversary A with access to the compressed standard oracle, we say A can make database
read queries if it can query oracle oReadf with input/output register X/Y for a fixed function f , where
oracle oReadf is implemented by acting the database read operation Readf defined in Eq. (10) on
registers XYDq.

2.5 The Extractable RO-Simulator
In [DFMS22], Don et al. generalized the compressed standard oracle and defined the extractable RO-
simulator. Roughly speaking, this simulator simulates the quantum random oracle H by using the
compressed standard oracle, and has an extraction-interface that can output a x satisfy f(x,H(x)) = t
for an input t. In the following, we introduce the extractable RO-simulator and prove a lemma that
will be used in the next section. We stress that, identical with Section 2.4, the database register used
here is also Dq. Therefore, different with the inefficient version defined in [DFMS22], the extractable
RO-simulator described here is an efficient version and it at most simulates q times queries to the
quantum random oracle H.

Let f be an arbitrary but fixed function with domain {0, 1}m × {0, 1}n and codomain Y. For a
fixed t ∈ Y, define relation Rf

t ⊂ {0, 1}m × {0, 1}n and corresponding parameter ΓRf
t

as follows:

Rf
t := {(x, y) ∈ {0, 1}m × {0, 1}n|f(x, y) = t}, ΓRf

t
:= max

x∈{0,1}m
|{y ∈ {0, 1}n|f(x, y) = t}|. (11)

6The CNOTx
YDq

acts trivially on the state |y,D⟩ that satisfies D(x) = ⊥ is additionally defined in [DFMS22], which
is also equivalent to the additional notation that ”y ⊕⊥ = y” defined in [Zha19].
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For the relation Rf
t , define following projectors act on database register Dq:

Σx :=
∑

D s.t. (x,D(x))∈Rf
t

x′<x,(x′,D(x′))/∈Rf
t

|D〉〈D| (x ∈ {0, 1}m), Σ⊥ := I−
∑

x∈{0,1}m
Σx. (12)

Then we define a measurement MRf
t on database register Dq to be the set of projectors {Σx}x∈{0,1}m∪⊥.

Indeed, the measurement MRf
t will return the smallest x such that (x,D(x)) ∈ Rf

t . If such x does
not exist, MRf

t will return ⊥. Similar with [DFMS22], we also consider the purified measurement MRf
t

DqP

corresponding to MRf
t given by a unitary operation acts on registers DqP as

M
Rf

t

DqP|D, p〉 =
∑

x∈{0,1}m∪⊥

Σx|D〉|p⊕ x〉.

Here P is a quantum register defined over {0, 1}m+17, D ∈ Dq and p ∈ {0, 1}m+1.

Definition 3 (The (efficient version of the) extractable RO-simulator). The extractable RO-simulator
S(f) with internal database register Dq is a black-box oracle with two interfaces, the RO-interface
eCO.RO and the extraction-interface eCO.Ef . S(f) prepares its database register Dq to be in state
|D⊥〉 at everything begins, where D⊥ ∈ Dq is the database only contains q pairs (⊥, 0n). Then, the
RO-interface eCO.RO and the extraction-interface eCO.Ef act as

• Let X (resp. Y) be the quantum register defined over {0, 1}m (resp. {0, 1}n), let T be the quantum
register defined over Y.

• eCO.RO: Upon a quantum RO-query, with query registers XY, S(f) applies CStO defined in
Definition 2 to registers XYDq.

• eCO.Ef : Upon a quantum extraction-query, with query registers TP, S(f) applies

Extf :=
∑
t∈Y
|t〉〈t|T ⊗M

Rf
t

DqP (13)

to registers TDqP.

Moreover, by the Theorem 4.3 of [DFMS22], the total runtime of S(f) is bounded as8

TS = O(qRO · qE · Time[f ] + q2RO),

where qRO(≤ q) and qE are the number of queries to eCO.RO and eCO.Ef , respectively.

The eCO.RO (resp. eCO.Ef ) can also be classically queried, in this case, the query registers XY
(resp. TP) are measured after applying the unitary operation CStO (resp. Extf ). The eCO.RO can also
be queried in parallel, and k-parallel queries to eCO.RO can be processed by sequentially implementing
CStO k times [CFHL21].

In addition, for any computational basis state |t,D, p〉 on registers TDqP, it is straightforward to
check that

Extf |t,D, p〉 = |t,D, p⊕ g(t,D)〉.

Here function g : Y × Dq → {0, 1}m+1 on input (t,D) output the smallest value x that satisfies
(x,D(x)) ∈ Rf

t , if such x does not exist, function g output ⊥. Therefore, by the definition of database
read operation given in Section 2.4, Extf can also be viewed as a database read operation.

Next we introduce a lemma about the extractable RO-simulator S(f), the detailed proof is shown
in Appendix C.

Lemma 2. Let StdDecompx be the unitary operation introduced in Section 2.4, let ΓRf
t
, Σ⊥ and Extf

be as in Eq. (11), (12) and (13), respectively. Then
7Here we embed the set {0, 1}m ∪ ⊥ into the set {0, 1}m+1 as explained in Appendix A.
8Although [DFMS22] defined an inefficient version of the extractable RO-simulator, the total runtime of the efficient

version is given instead in the Theorem 4.3 of [DFMS22].
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‖[Extf ,StdDecompx]‖ ≤ 16 ·
√
max
t∈Y

ΓRf
t
/2n, ‖[CStO,Σ⊥]‖ ≤ 8 ·

√
ΓRf

t
/2n.

Here [A,B] := AB −BA is the commutator of two operations A,B act on a quantum register.

Remark 1. Note that the definition of Extf and Σ⊥ are based on the efficient representation of the
compressed oracle (i.e. the compressed standard oracle). But we stress that Lemma 2 can still be easily
proved by using the Lemma 3.3 and Lemma 3.4 of [DFMS22], even these two lemmas are stated by
using the inefficient representation of the compressed oracle. The reason is that the two representations
are isometrically equivalent as discussed in the Sect. B of [DFMS22]. However, for convenience and
completeness, we directly prove Lemma 2 in Appendix C by using the representation of the compressed
standard oracle.

2.6 Compressed Semi-Classical One Way to Hidding
In this section, we generalize the O2H variant Theorem 10 in [CMSZ19] by allowing that the algo-
rithm A with access to the compresses standard oracle can also make database read queries. This new
theorem may can be applied to more scenes in the QROM.

Compressed semi-classical oracle. Let Dq be the database set defined in Section 2.4, let S be a sub-
set of Dq. Define function fS such that fS(D) = 1 if D ∈ S and fS(D) = 0 otherwise. The compressed
semi-classical oracle OCSC

S performs the following operation on input state
∑

z∈{0,1}∗,D∈Dq
αz,D|z,D〉:

1. Initialize a single qubit L with |0〉L, transform state
∑

z∈{0,1}∗,D∈Dq
αz,D|z,D〉|0〉L into state∑

z∈{0,1}∗,D∈Dq
αz,D|z,D〉|fS(D)〉L.

2. Measure L and output the measurement outcome.

Denote Find as the event that OCSC
S ever returns 1. Compared with the semi-classical oracle OSC

S ,
compressed semi-classical oracle OCSC

S performs the projective measurement on the database register.

Remark 2. The definition of OCSC
S is based on the definition of Algorithm 4 (Measurement of a

relation R) in [CMSZ19]. For computational basis state |z,D〉, the Algorithm 4 needs to compute
the number of non-padding pairs (i.e. n(D) in our paper) of the database D in a register and finally
uncompute it, since in [CMSZ19], it is only reasonable to check if the non-padding pairs are in the
relation R. We stress that OCSC

S does not need to compute n(D), because we do not care about the
internal pairs of D and only care about if D belong to the subset S.

Theorem 3 (Compressed semi-classical O2H with database read queries). Let H : {0, 1}m → {0, 1}n
be a quantum random oracle that is implemented by the compressed standard oracle. Let f be a function
with domain X ×Dq and codomain Y, Dq be the database register defined over Dq. Let S be a subset
of Dq that D⊥ /∈ S and z be a random string, where D⊥ is the database only contain q pairs (⊥, 0n),
S and z may have arbitrary joint distribution D. Let H\S be an oracle that first queries H and then
queries OCSC

S .
Let A be a quantum oracle algorithm (not necessarily unitary) that is given access to H and oReadf ,

and we suppose A queries H (resp. oReadf ) at most q1 ≤ q9 (resp. q2) times. Here oracle oReadf is
implemented by the database read operation Readf defined in Eq. (10). Define

Pleft := Pr
[
1← AH,oReadf (z) : (S, z)← D

]
,

Pright := Pr[1← AH\S,oReadf (z) : (S, z)← D],
Pfind := Pr[Find occurs in AH\S,oReadf (z) : (S, z)← D].

Then
|Pleft − Pright| ≤

√
(q1 + 1) · Pfind,

∣∣∣√Pleft −√Pright∣∣∣ ≤√(q1 + 1) · Pfind.

Let JS :=
∑

D∈S |D〉〈D| be the projector acts on the database register Dq, let CStO be as in Eq. (9),
we then have

Pfind ≤ q1 · E
(S,z)←D

‖[JS ,CStO]‖2 .
9This limitation on q1 is because that the database register Dq can only be used to perfectly simulate q times quantum

random oracle queries at most.
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The detailed proof of Theorem 3 is similar to the proof of the semi-classical O2H theorem [AHU19]
and we present it in Appendix D.

3 The Oracle-Hiding Game
In this section, we define a type of games called oracle-hiding games, which involves a classical chal-
lenger and an efficient adversary. The definitions introduced as follows are the foundation of the lifting
theorem, provided in the next section.

Definition 4 (Oracle-Testing Algorithm). Let key generator KGen be a polynomial time algorithm,
which on input 1λ, outputs a public/secret key pair (pk, sk). Let O0

$←− Fm(λ),n(λ) and O1
$←− Fm′(λ),n′(λ)

be random oracles, where m(λ), n(λ), m′(λ) and n′(λ) are functions of λ. The oracle-testing algorithm
otaO0,O1(1λ, sk, ·) is an algorithm that has access to random oracle O0 and O1, takes as input a α ∈ X
and is executed as follows.

1. Compute β := ota1(1
λ, sk, α) ∈ {0, 1}m′(λ) ∪ ⊥. If β = ⊥, return fota(α) ∈ {0, 1}l(λ).

2. Else, compute ota2(1
λ, pk, β, O1(β)) ∈ X . If ota2(1λ, pk, β, O1(β)) 6= α, return fota(α) ∈ {0, 1}l(λ).

(a) Else, compute γ := ota3(1
λ, pk, α, β) ∈ {0, 1}m(λ), return ota4(1

λ, pk, α, β,O0(γ)) ∈ {0, 1}l(λ).

Here ota1(1
λ, sk, ·), ota2(1

λ, pk, ·), ota3(1
λ, pk, ·) and ota4(1

λ, pk, ·) are deterministic polynomial time
algorithms, fota is a fixed function, l(λ) is a function of λ.

Define a subset of {0, 1}n′(λ) to be

ota.subα,βpk := {r ∈ {0, 1}n
′(λ) : ota2(1

λ, pk, β, r) = α}. (14)

Define parameter ota.time, ota.max and ota.union to be:

ota.time := Time[ota2] + Time[ota3] + Time[ota4],

ota.max :=
1

2n′(λ)
E

(pk,sk)←KGen(1λ)
max

α∈X ,β∈{0,1}m′(λ)

∣∣∣ota.subα,β
pk

∣∣∣ ,
ota.union :=

1

2n′(λ)
E

(pk,sk)←KGen(1λ)
max

β∈{0,1}m′(λ)

∣∣∣∣ ∪α∈Set.β
ota.subα,β

pk

∣∣∣∣ ,
(15)

where Set.β := {α ∈ X : ota1(1
λ, sk, α) 6= β}.

Definition 5 (Oracle-Hiding Game in the ROM/QROM). For a classical challenger C(1λ) and an
efficient adversary A(1λ), we call game OHGO0,O1,Oota

A(1λ),C(1λ), as shown in Fig. 2, an oracle-hiding game if
the following conditions are satisfied:

• A(1λ) has access to random oracle O0, random oracle O1 and secret oracle Oota, where Oota uses
the oracle-testing algorithm otaO0,O1(1λ, sk, ·) to reply its queries.

• C(1λ) uses random coins m∗, r and s, where s is sampled from {0, 1} subject to some distribution.

• C(1λ) does not query Oota and queries O0 (resp. O1) only by m∗||m0 (resp. m∗||m1).

• cha1(1
λ, pk, ·), cha2(1λ, pk, ·), cha3(1λ, pk, ·) and verify(1λ, pk, sk, ·) used by C(1λ) are deterministic

algorithms.

• It can be checked efficiently whether α = ota2(1
λ, pk,m∗||m1, O1(m

∗||m1)), by using OHG.B and
pk. This check takes very little running time and can be ignored.

We say that game OHGO0,O1,Oota

A(1λ),C(1λ) is in the ROM if A(1λ) has only classical access to O0, O1 and Oota.
If A(1λ) has quantum oracle access to O0, O1 and Oota, game OHGO0,O1,Oota

A(1λ),C(1λ) is in the QROM. Then
define

AdvOHG
A,C (1

λ) := Pr
[
1← OHGO0,O1,Oota

A(1λ),C(1λ)

]
.
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Game OHGO0,O1,Oota

A(1λ),C(1λ)

1, (pk, sk)← KGen(1λ)
2, OHG.A← AO0,O1,Oota(1λ, pk)

3, C(1λ) perform following operation
m∗ $←− R1, r $←− R2, s ∈ {0, 1}
ms ← cha1(1

λ, pk,OHG.A,m∗, r)

ys = Os(m
∗||ms)

m1−s ← cha2(1
λ, pk,OHG.A, ys,m

∗, r)

y1−s = O1−s(m
∗||m1−s)

OHG.B← cha3(1
λ, pk,OHG.A, ys, y1−s,m

∗, r)

4, OHG.C← AO0,O1,Oota(1λ, pk,OHG.B)
5, t← verify(1λ, pk, sk,OHG.A,m∗, r, s,OHG.C)
C(1λ) output t ∈ {0, 1} as game’s output

O0(x)

1, O $←− Fm(λ),n(λ), return O(x)

O1(x)

1, O′ $←− Fm′(λ),n′(λ), return O′(x)

Oota(α)

1, If OHG.B is defined and
α = ota2(1

λ, pk,m∗||m1, O1(m
∗||m1))

return ⊥
Else return otaO0,O1(1λ, sk, α)

Figure 2: The detailed process of game OHGO0,O1,Oota

A(1λ),C(1λ). We default that the length of m∗ is less than
or equal to m(λ) and m′(λ) for any parameter λ.

In oracle-hiding game OHGO0,O1,Oota

A(1λ),C(1λ), by using O0(m
∗||m0) and O1(m

∗||m1), the challenger com-
putes the adversary’s input OHG.B. The secret oracle Oota is implemented by using the oracle-testing
algorithm, and it outputs ⊥ for α = ota2(1

λ, pk,m∗||m1, O1(m
∗||m1)) after OHG.B is defined.

Therefore, even though the adversary has access to secret oracle Oota, it cannot obtain the output
ota4(1

λ, pk, α,m∗||m1, O0(γ))
10 by querying Oota on α. This means that, in game OHGO0,O1,Oota

A(1λ),C(1λ), the
random coin m∗ is hidden in adversary’s input by using the random oracle O0 and random oracle O1,
the value m∗||m1 is hidden by using Oota.

4 Lifting Theorem for Oracle-Hiding Game
In this section, we give a lifting theorem for the oracle-hiding game from ROM to QROM.

4.1 Statement of Lifting Theorem
First, we introduce a lemma of the oracle-hiding game in the ROM, and its detailed proof is given in
the next section.

Lemma 3. For any oracle-hiding game OHGO0,O1,Oota

A(1λ),C(1λ) in the ROM, suppose that the query times of
O0, O1 and Oota are q0, q1 and qota, respectively. Then there exist adversary A1(1

λ) and A2(1
λ), which

make no queries to oracles they have access to and invoke adversary A(1λ) once in a black-box manner
(without rewinding), such that∣∣∣AdvOHG

A,C (1
λ)− AdvOHG

A1,C(1
λ)
∣∣∣ ≤ qota · ota.max+ q1 · ota.union+ (q0 + q1) · AdvOHG

A2,Cfind(1
λ), (16)

where challenger Cfind(1λ) is identical with C(1λ), except that it finally outputs t = boole[OHG.C = m∗]
as game’s output. Moreover, the running time of A1(1

λ) and that of A2(1
λ) can be bounded by

Time[A1(1
λ)] ≈ Time[A2(1

λ)] ≤ Time[A(1λ)] + (q0 + q1) ·O(λ) + qota · ota.time.

Remark 3. The detailed construction of adversary A1(1
λ) and A2(1

λ) is complicated, and thus we
omit them in Lemma 3. They are clearly described in the proof of Lemma 3 in the next section.
10Here γ = ota3(1λ, pk, α,m∗||m1).
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Then we present our lifting theorem for oracle-hiding game as follows.

Theorem 4 (Lifting Theorem for Oracle-Hiding Game). For any oracle-hiding game OHGO0,O1,Oota

B(1λ),C(1λ)
in the QROM, suppose that the query times of O0, O1 and Oota are q0, q1 and qota, respectively.

By mimicking the construction of adversary A1(1
λ) and A2(1

λ) in Lemma 3, we can directly
construct adversary B1(1λ) and B2(1λ), which make no query to the oracle they have access to and
invoke adversary B once in a black-box manner (without rewinding) such that∣∣∣AdvOHG

B,C (1λ)− AdvOHG
B1,C(1

λ)
∣∣∣ ≤ 40qota ·

√
ota.max+ 8(q1 + 1) ·

√
ota.union + 64q1 · ota.union

+ 4(q0 + q1 + 1) ·
√
AdvOHG

B2,Cfind(1
λ).

(17)

where challenger Cfind(1λ) is identical with C(1λ), except that it finally outputs t = boole[OHG.C = m∗]
as game’s output. Moreover, the running time of B1(1λ) and that of B2(1λ) can be bounded by

Time[B1(1λ)] ≈ Time[B2(1λ)] ≤ Time[B(1λ)] +O((q0 + q1) · qota · ota.time + (q0 + q1)
2).

Remark 4. Similar with the Lemma 3, we omit the detailed construction of adversary B1 and B2 in
Theorem 4 since they are complicated. In the proof of Theorem 4 in the next section, we will clearly
give the detailed construction of adversary B1 and B2 and show that how to mimic the construction of
adversary A1 (resp. A2) to get the construction of adversary B1 (resp. B2).

Indeed, Theorem 4 shows that the adversary B1 and B2 satisfying Eq. (17) can be obtained by
mimicking the construction of A1 and A2 satisfying Eq. (16), respectively. It is also noted that the
upper bound shown in Eq. (17) is almost identical with Eq. (16), except for a square-root advantage
loss. In other words, Theorem 4 shows that the result on the oracle-hiding game in the ROM can be
lifted to the QROM with a square-root advantage loss.

4.2 Proof of Lifting Theorem
In this section, we give the detailed proof of Lemma 3 and Theorem 4. For notational clarity, we
sometimes omit the security parameter λ in the following text.

4.2.1 Proof of Lemma 3

Proof. The basic idea of this proof is to gradually change the simulation of random oracle O0, random
oracle O1 and secret oracle Oota by a sequence of games. The overview of all games is given in Fig. 3.

Game Gc
0: This game is identical with the oracle-hiding game OHGO0,O1,Oota

A(1λ),C(1λ) in the ROM except that
the random oracle O0 and O1 is simulated on-the-fly by using the query/reply record list L0 and L1,
respectively.

Notice that the line 4 and line 5 of secret oracle Oota in game Gc
0 tests whether O1(β) belongs

to ota.subα,βpk to determine whether ota2(pk, β, O1(β)) equals α. This is unproblematic since they are
equivalent by the definition of the subset ota.subα,βpk defined in Eq. (14). Then, we have

Pr[1← Gc
0] = AdvOHG

A,C (1
λ). (18)

Game Gc
1: In this game, the simulation of secret oracle Oota on query α is changed that it adds a new

rule:

For the query α, if β := ota1(sk, α) 6= ⊥ and L1(β) = ⊥, return fota(α).

Here L1 is the list just before the simulation of oracle Oota on query α.

For any fixed (pk, sk) that is generated by KGen, suppose the adversary’s i-th query to secret oracle
Oota is αi (i = 1, . . . , qota), define event DIFF0

i (resp. DIFF1
i ) as:

In game Gc
0 (resp. game Gc

1), αi satisfies βi := ota1(sk, αi) 6= ⊥, L1(βi) = ⊥ and
O1(βi) ∈ ota.subαi,βi

pk .
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Here L1 is the list just before the i-th Oota query. By simulation, it is easily to check that the secret
oracle Oota in game Gc

0 and game Gc
1 will output same value for the i-th query αi if event DIFF0

i

and DIFF1
i do not occur. Thus, game Gc

0 and game Gc
1 proceed identically if event ∨qota

i=1DIFF0
i and

∨qota
i=1DIFF1

i do not occur. This implies that

Pr
[
∨qota
i=1DIFF0

i

]
= Pr

[
∨qota
i=1DIFF1

i

]
,

Pr[1← Gc
0 : (pk, sk) ∧ ¬(∨qota

i=1DIFF0
i )] = Pr[1← Gc

1 : (pk, sk) ∧ ¬(∨qota
i=1DIFF1

i )].

Here 1← Gc
0 : (pk, sk) denote the event that game Gc

0 finally return 1 for the fixed (pk, sk). Then by
the difference lemma of [Sho04],

|Pr[1← Gc
0 : (pk, sk)]− Pr[1← Gc

1 : (pk, sk)]| ≤ Pr
[
∨qota
i=1DIFF1

i

]
. (19)

GAMES Gc
0-Gc

4

1, (pk, sk)← KGen //Gc
0-Gc

4

2, OHG.A← AO0,O1,Oota(pk) //Gc
0-Gc

3

OHG.A← A1(pk) //Gc
4

3, C perform following operation
m∗ $←− R1, r $←− R2, s ∈ {0, 1} //Gc

0-Gc
4

ms ← cha1(pk,OHG.A,m
∗, r) //Gc

0-Gc
4

ys = Os(m
∗||ms) //Gc

0-Gc
2,Gc

4

ys = rs //Gc
3

m1−s ← cha2(pk,OHG.A, ys,m
∗, r) //Gc

0-Gc
4

y1−s = O1−s(m
∗||m1−s) //Gc

0-Gc
2,Gc

4

y1−s = r1−s //Gc
3

OHG.B← cha3(pk,OHG.A, ys, y1−s,m
∗, r) //Gc

0-Gc
4

4, OHG.C← AO0,O1,Oota(pk,OHG.B) //Gc
0-Gc

3

OHG.C← A1(pk,OHG.B) //Gc
4

5, t← verify(pk, sk,OHG.A,m∗, r, s,OHG.C) //Gc
0-Gc

4

C output t ∈ {0, 1} as game’s output

O0(x)

1, O $←− Fm,n, return O(x) //Gc
0,Gc

4

2, If ∃ y s.t. (x, y) ∈ L0, return y //Gc
1-Gc

3

3, Else y
$←− {0, 1}n, L0 := L0 ∪ (x, y), //Gc

1-Gc
3

return y

O1(x)

1, O′ $←− Fm,n, return O′(x) //Gc
0,Gc

4

2, If ∃ y s.t. (x, y) ∈ L1, return y //Gc
1-Gc

3

3, Else y
$←− {0, 1}n′ , L1 := L1 ∪ (x, y), //Gc

1-Gc
3

return y

Oota(α)

1, If OHG.B is defined and //Gc
0-Gc

1,Gc
4

α = ota2(1
λ, pk,m∗||m1, O1(m

∗||m1))

return ⊥
2, Else if ota1(sk, α) = ⊥, return fota(α) //Gc

0-Gc
1,Gc

4

3, Else if β := ota1(sk, α) ̸= ⊥ and //Gc
1

L1(β) = ⊥, return fota(α)

4, Else if β := ota1(sk, α) ̸= ⊥ and //Gc
0-Gc

1,Gc
4

O1(β) /∈ ota.subα,βpk , return fota(α)

5, Else if β := ota1(sk, α) ̸= ⊥ and //Gc
0-Gc

1,Gc
4

O1(β) ∈ ota.subα,βpk ,
compute γ := ota3(pk, α, β)

return ota4(pk, α, β,O0(γ))

Oota(α)

1, Return Search(L1, α) //Gc
2-Gc

3

Figure 3: Summary of games for the proof of Lemma 3. The query/reply record list L0 (resp. L1)
used to simulated random oracle O0 (resp. O1) is a set of pair (x, y) ∈ {0, 1}m × {0, 1}n (resp.
(x, y) ∈ {0, 1}m′ × {0, 1}n′). Initially, list L0 and L1 are empty set. We say L1(x) = ⊥ if there does
not exist y s.t. (x, y) ∈ L1, we also denote y as L1(x) if a pair (x, y) ∈ L1.

Note that L1(βi) = ⊥ indicates βi has never been queried to random oracle O1 by the adversary,
and hence O1(βi) must be uniformly random in {0, 1}n′ by the basic rules of the on-the-fly simulation.
Then we have

Pr
[
∨qota
i=1DIFF1

i

]
≤

qota∑
i=1

Pr
[
DIFF1

i

]
≤

qota∑
i=1

Pr[O1(βi) ∈ ota.subαi,βi

pk : L1(βi) = ⊥]

≤ qota · max
α∈X ,β∈{0,1}m′

1

2n′

∣∣∣ota.subα,β
pk

∣∣∣ . (20)

Combining Eq. (19) with Eq. (20) and then averaging over (pk, sk)← KGen, we finally obtain

|Pr[1← Gc
0]− Pr[1← Gc

1]| ≤ qota · E
(pk,sk)←KGen

1

2n′ max
α∈X ,β∈{0,1}m′

∣∣∣ota.subα,β
pk

∣∣∣
(a)
= qota · ota.max.

(21)
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Here (a) uses Eq. (15).

Game Gc
2: In this game, the secret oracle Oota is simulated by using the operation Search, which is

operated on input (L1, α) as follows:
1. If OHG.B is defined and α = ota2(pk,m

∗||m1, O1(m
∗||m1)), return ⊥.

2. Else do: Find the smallest β such that L1(β) 6= ⊥ and L1(β) ∈ ota.subα,β
pk . If such β exists,

compute γ := ota3(pk, α, β) and return ota4(pk, α, β,O0(γ)), else return fota(α).
Notice that by Definition 5, whether α = ota2(pk,m

∗||m1, O1(m
∗||m1)) can be determined by using

OHG.B and only pk, thus the simulation of secret oracle Oota in game Gc
2 makes no use of the secret

key sk any more.
In the following analysis, we consider a fixed (pk, sk) that is generated by KGen. In game Gc

1, the
simulation of secret oracle Oota still uses secret key sk since it needs to compute ota1(sk, α) for query
α, and we also observe that Oota does not directly return fota(α) for query α only when L1(β) 6= ⊥ and
L1(β) ∈ ota.subα,β

pk , where β := ota1(sk, α) 6= ⊥. This means that the value ota1(sk, α) must be already
recorded in the list L1 if Oota does not directly return ⊥ for query α. Based on this observation,
in game Gc

2, we use operation Search to extract ota1(sk, α) from the list L1 and to avoid computing
ota1(sk, α) like game Gc

1 when we simulate secret oracle Oota on query α.
In order to bound the difference between the probability that game Gc

1 and game Gc
2 output 1, we

need to analyze under what conditions the output of the secret oracle Oota in game Gc
1 and game Gc

2

are different. Indeed, the secret oracle Oota in game Gc
1 and game Gc

2 only have different output on
query α if α and the list L1 just before this query are following cases:

1. ota1(sk, α) = ⊥, and there exists a β s.t. L1(β) 6= ⊥ and L1(β) ∈ ota.subα,β
pk .

2. β := ota1(sk, α) 6= ⊥, L1(β) = ⊥, and there exists a β′ s.t. L1(β
′) 6= ⊥ and L1(β

′) ∈ ota.subα,β′

pk .

3. β := ota1(sk, α) 6= ⊥, L1(β) 6= ⊥, L1(β) /∈ ota.subα,β
pk , and there exists a β′ s.t. L1(β

′) 6= ⊥ and
L1(β

′) ∈ ota.subα,β′

pk .

4. β := ota1(sk, α) 6= ⊥, L1(β) 6= ⊥, L1(β) ∈ ota.subα,β
pk , and there exists a β′ s.t. β′ < β,

L1(β
′) 6= ⊥ and L1(β

′) ∈ ota.subα,β′

pk .
We note that the list L1 in above four cases both satisfy the property that there exist α and β′ s.t.
β′ 6= ota1(sk, α), L1(β

′) 6= ⊥ and L1(β
′) ∈ ota.subα,β′

pk , we will call list L1 a bad list if it satisfies this
property in the following. Then we can conclude that the secret oracle Oota in game Gc

1 and game Gc
2

will output the same value on any query α if the list L1 just before this query is not a bad list.
Let BAD1 (resp. BAD2) be the event that in once query of secret oracle Oota in game Gc

1 (resp.
game Gc

2), the list L1 just before this query is a bad list. Hence, if event BAD1 and BAD2 do not
occur, game Gc

1 and game Gc
2 proceed identically. This implies that

Pr [BAD1] = Pr [BAD2] ,

Pr[1← Gc
1 : (pk, sk) ∧ ¬BAD1] = Pr[1← Gc

2 : (pk, sk) ∧ ¬BAD2].

Then by the difference lemma of [Sho04],

|Pr[1← Gc
1 : (pk, sk)]− Pr[1← Gc

2 : (pk, sk)]| ≤ Pr [BAD2] . (22)

In game Gc
1 and game Gc

2, we note that the simulation of secret oracle Oota does not change the
list L1 and only the simulation of random oracle O1 will update the list L1. Let BAD′ be the event
that in game Gc

2, just after once simulation of random oracle O1, the list L1 becomes a bad list. Let
BAD′i (1 ≤ i ≤ q1) be the event that in game Gc

2, L1 is not a bad list during the first i − 1 times
simulation of random oracle O1, but becomes a bad list just after the i-th simulation11. Then

Pr[BAD2] ≤ Pr[BAD′] =
q1∑
i=1

Pr[BAD′i]. (23)

11Since the initial list L1 is an empty set and obvious not a bad list, BAD′
1 actually the event that in game G2, just

after the 1-th simulation of random oracle O1, the list L1 becomes a bad list.
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Notice that a non-bad list L1 satisfies that there is no α and β′ s.t. β′ 6= ota1(sk, α), L1(β
′) 6= ⊥ and

L1(β
′) ∈ ota.subα,β′

pk . Hence once event BAD′i occurs, suppose the i-th query of random oracle O1 is
β′, then we can conclude that a pair (β′,L1(β

′)) must be added after the i-th simulation of random
oracle O1 and this pair satisfies that there exists a α s.t. β′ 6= ota1(sk, α), L1(β

′) 6= ⊥ and L1(β
′) ∈

ota.subα,β′

pk . In other word, the (β′,L1(β
′)) newly added must satisfies L1(β

′) ∈ ∪
α∈Set.β′

ota.subα,β′

pk ,
where set Set.β′ := {α ∈ X : ota1(sk, α) 6= β′}. For the newly added (β′,L1(β

′)), L1(β
′) is uniformly

random in {0, 1}n′ by the basic rules of the on-the-fly simulation, then we have

Pr[BAD′i] ≤
1

2n′ max
β′∈{0,1}m′

∣∣∣∣ ∪
α∈Set.β′

ota.subα,β′

pk

∣∣∣∣ . (24)

Combining Eq. (22), (23), (24) and then averaging over (pk, sk)← KGen, we finally obtain

|Pr[1← Gc
1]− Pr[1← Gc

2]| ≤ q1 · E
(pk,sk)←KGen

1

2n′ max
β′∈{0,1}m′

∣∣∣∣ ∪
α∈Set.β′

ota.subα,β′

pk

∣∣∣∣
(b)
= q1 · ota.union.

(25)

Here (b) uses Eq. (15).

Game Gc
3: This game is the same game as game Gc

2, except that we replace the value of y0 (resp. y1)
used to generate OHG.B with r0 (resp. r1) uniformly sampled from {0, 1}n (resp. {0, 1}n′).

After OHG.B is defined in game Gc
2, the list L1 can be written as L1 := L′1 ∪ {(m∗||m1, y1)} since

the challenger queried random oracle O1 on input m∗||m1. Note that the operation Search will directly
return ⊥ after OHG.B is defined if the input α = ota2(pk,m

∗||m1, O1(m
∗||m1)), by the construction

of Search, this makes the output of Search on any input (L1, α) cannot be ota4(pk, α,m
∗||m1, O0(γ)),

where γ = ota3(pk, α,m
∗||m1). Thus we can conclude that after OHG.B is defined in game Gc

2, the
adversary cannot get the information about (m∗||m1, y1) by making queries to the secret oracle Oota.

Hence, if the random oracle O0 and O1 in game Gc
2 is never queried by the adversary with input

form of m∗||∗ , the O0(m
∗||m0) and O1(m

∗||m1) used by the challenger to generate OHG.B is uniformly
random in adversary’s view. Let QUERY2 (resp. QUERY3) be an event as:

In game Gc
2 (resp. game Gc

3), the random oracle O0 and O1 is ever queried by the adversary with
input form of m∗||∗,

now we can conclude that game Gc
2 and game Gc

3 proceed identically if event QUERY2 and QUERY3

do not occur. This implies that

Pr [QUERY2] = Pr [QUERY3] ,

Pr[1← Gc
2 ∧ ¬QUERY2] = Pr[1← Gc

3 ∧ ¬QUERY3].

Then by the difference lemma of [Sho04],

|Pr[1← Gc
2]− Pr[1← Gc

3]| ≤ Pr [QUERY3] . (26)

Game Gc
4: This game is the same game as game Gc

3, except that the following changes:

• The adversary is changed to a new adversary A1, it does not query any oracles and invokes
adversary A once in a black-box manner (without rewinding) as follows:

1. After get the public key pk, invoke adversary A to get OHG.A and send it to the challenger.
After get the OHG.B computed by the challenger, invoke adversary A to get OHG.C and
send it to the challenger. The oracle queries performed by A is answer as:
(a) When the random oracle O0 (resp. O1) is queried by A, A1 answer it on-the-fly by

using the query/reply list L0 (resp. L1).
(b) When the secret oracle Oota is queried by A, A1 answer it by the operation Search as

the game Gc
3.
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• The random oracle O0, random oracle O1 and secret oracle Oota in game Gc
4 is simulated the

same as game Gc
0
12, and the value of ys (resp. y1−s) used to generate OHG.B in game Gc

4 is
replaced with Os(m

∗||ms) (resp. O1−s(m
∗||m1−s)).

Compared with game Gc
3, the change in game Gc

4 is only conceptual. Thus, let QUERY4 be the
event that the adversary A1 in game Gc

4 ever answered a query to the random oracle O0 or O1 with
the input form of m∗||∗, we have

Pr [QUERY3] = Pr [QUERY4] , Pr[1← Gc
3] = Pr[1← Gc

4]. (27)

Moreover, we observe that game Gc
4 is identical with game Gc

0 except that the adversary is replaced
to A1, then game Gc

4 is the oracle-hiding game OHGO0,O1,Oota

A1(1λ),C(1λ) and

Pr[1← Gc
4] = AdvOHG

A1,C(1
λ). (28)

As for the probability that event QUERY4 occurs, we consider oracle-hiding game OHGO0,O1,Oota

A2(1λ),C(1λ)
with a new challenger Cfind and a new adversary A2 as follows:

• The challenger Cfind is identical with C except that Cfind finally output t = boole[OHG.C = m∗] as
game’s output.

• The adversary A2 is identical with A1, except that A2 picks i $←− {1, . . . , q0 + q1} at everything
begins and record the i-th random oracle query m′||∗ it needs to answer, where m′ have the same
length as m∗. Then A2 output OHG.C = m′.

One can check that if QUERY4 occurs, the oracle-hiding game OHGO0,O1,Oota

A2(1λ),C(1λ) will output 1 with
probability 1/(q0 + q1), hence we obtain

Pr [QUERY4] ≤ (q0 + q1) · AdvOHG
A2,Cfind(1

λ). (29)

Tracing through the above game sequence from game Gc
0 to Gc

4, combining Eq. (18), (21), (25),
(26), (27), (28) and (29), we finally obtain∣∣∣AdvOHG

A,C (1
λ)− AdvOHG

A1,C(1
λ)
∣∣∣ ≤ qota · ota.max + q1 · ota.union + (q0 + q1) · AdvOHG

A2,Cfind(1
λ).

As for the running time of A1 and A2, by their construction, we know that they invoke adversary A
only once and simulate random oracle O0 (resp. O1) on-the-fly q0 (resp. q1) times, simulate secret
oracle Oota by operation Search qota times, hence we have

Time[A1(1
λ)] ≈ Time[A2(1

λ)] ≤ Time[A(1λ)] + (q0 + q1) ·O(λ) + qota · ota.time.

The definition of ota.time is given in Definition 4.

4.2.2 Proof of Theorem 4

Before we prove Theorem 4, we first show that how to simulate quantum accessible secret oracle Oota

for an oracle-hiding game in the QROM. The notation and simulation method introduced here will be
used in the proof of Theorem 4.

Since secret oracleOota is mainly processed by the oracle-testing algorithm otaO0,O1(sk, ·) (Definition
4), we first consider how to evaluate otaO0,O1(sk, ·) in superposition. Let Xota be the adversary’s input
register of secret oracle Oota defined over X , let Y be a quantum register defined over {0, 1}m′+113.
Define unitary operation Utest acts on registers XotaY as

Utest|α〉|0m〉 :=

{
|α〉|β〉 if β := ota1(sk, α) 6= ⊥ ∧ ota2(pk, β, O1(β)) = α

|α〉|⊥〉 otherwise.
(30)

12To avoid confusion, we stress that this O0, O1 and Oota are oracles queried in game Gc
4, they are independent with

the oracle O0, O1 and Oota appeared in the description of adversary A1.
13Here we embed the set {0, 1}m′ ∪ ⊥ into the set {0, 1}m′+1 as explained in Appendix A.
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Intuitively, Utest can implement all the test performed by otaO0,O1(sk, ·) in superposition, hence what
we need to do next is to compute the output of otaO0,O1(sk, ·) by using the β computed by Utest. Let
Yota be the adversary’s output register of secret oracle Oota defined over {0, 1}l+114, define unitary
operation Ucomp acts on registers XotaYotaY as

Ucomp|α〉|y〉|β〉 :=

{
|α〉|y ⊕ ota4(pk, α, β,O0(γ))〉|β〉 if β 6= ⊥
|α〉|y ⊕ fota(α)〉|β〉 if β = ⊥.

(31)

Here γ := ota3(pk, α, β). The detailed quantum circuit implementation of Utest and Ucomp is given in
Appendix E, which twice queries to random oracle O1 and random oracle O0 is needed, respectively.
Then, the quantum accessible secret oracle Oota can be simulated as follows:

• If the OHG.B is not defined, unitary operation

Uota := U†test ◦Ucomp ◦Utest

is applied to registers XotaYotaY.

• If the OHG.B is defined, unitary operation

U∗ota := U⊥ ◦ Phide +Uota ◦ (I− Phide)

is applied to registers XotaYotaY.

Here the register Y is initialized with state |0m〉 for everything begins, Phide := |y〉〈y|, where y =
ota2(pk,m

∗||m1, O1(m
∗||m1)), is a projector acts on register Xota, U⊥ is a unitary operation acts on

register Yota that maps |y〉 to |y ⊕ ⊥〉. By the construction of Uota, we observe that the register Y
always in state |0m〉 before and after once simulation of secret oracle Oota.

Proof. Similar to the proof of Lemma 3, the basic idea of this proof is to gradually change the simula-
tion of random oracle O0, random oracle O1 and secret oracle Oota by a sequence of games. Note that
O0, O1 and Oota can be quantum accessed if the oracle-hiding game in the QROM, hence we actually
consider the quantum simulation of O0, O1 and Oota in this proof, which is different with the proof of
Lemma 3. The overview of all games is given in Fig. 4.

Game Gq
0: This game is identical with the oracle-hiding game OHGO0,O1,Oota

B(1λ),C(1λ) in the QROM except
that following changes:

• The random oracle O0 and O1 is simulated by the unitary operation UO and UO′ , respectively.

• The secret oracle Oota is simulated by Uota and U∗ota defined above before and after OHG.B is
defined, respectively.

Obviously,
Pr[1← Gq

0] = AdvOHG
B,C (1λ). (32)

Game Gq
1: Compare with game Gq

0, there are only two changes as:

• The random oracle O0 is simulated by unitary operation Uf , where f : {0, 1}m → {0, 1}n is a
2q0-wise independent function.

• Let Dq1 be the database register defined over set Dq1 (Section 2.4). Let S(f1) be the extractable
RO-simulator defined in Section 2.5 with internal database register Dq1 , where function f1 :

{0, 1}m′ × {0, 1}n′ → X ∪⊥ is

f1(x, y) =

{
z if ota2(pk, x, y) = z ∧ ota1(sk, z) = x

⊥ otherwise.

The random oracle O1 in game Gq
1 is simulated by invoking the RO-interface eCO.RO of S(f1).

14Here we embed the set {0, 1}l ∪ ⊥ into the set {0, 1}l+1 as explained in Appendix A.
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Since the extraction-interface eCO.Ef1 of S(f1) is never used and the random oracle O0 and O1 are
queried at most q0 and q1 times, respectively, above simulations are perfect by Lemma 9 and Lemma
1. Hence

Pr[1← Gq
0] = Pr[1← Gq

1]. (33)
In game Gq

1, we stress that the secret oracle Oota is simulated by

U1
ota := Ũ†test ◦ Ũcomp ◦ Ũtest and U1,∗

ota := U⊥ ◦ Phide +U1
ota ◦ (I− Phide)

before and after OHG.B is defined, respectively. Here Ũtest (resp. Ũcomp) have the identical implemen-
tation with Utest (resp. Ucomp) except that the internal twice queries to random oracle O1 (resp. O0)
is simulated by Uf (resp. eCO.RO).

GAMES Gq
0-Gq

6

1, (pk, sk)← KGen //Gq
0-Gq

5

2, OHG.A← BO0,O1,Oota(pk) //Gq
0-Gq

5

OHG.A← B1(pk) //Gq
6

3, C perform following operation
m∗ $←− R1, r $←− R2, s ∈ {0, 1} //Gq

0-Gq
5

ms ← cha1(pk,OHG.A,m
∗, r) //Gq

0-Gq
5

ys = Os(m
∗||ms) //Gq

0-Gq
4,Gq

6

ys = rs //Gq
5

m1−s ← cha2(pk,OHG.A, ys,m
∗, r) //Gq

0-Gq
5

y1−s = O1−s(m
∗||m1−s) //Gq

0-Gq
4,Gq

6

y1−s = r1−s //Gq
5

OHG.B← cha3(pk,OHG.A, ys, y1−s,m
∗, r) //Gq

0-Gq
5

4, OHG.C← BO0,O1,Oota(pk,OHG.B) //Gq
0-Gq

5

OHG.C← B1(pk,OHG.B) //Gq
6

5, t← verify(pk, sk,OHG.A,m∗, r, s,OHG.C) //Gq
0-Gq

6

C output t as game’s output

O0(|x, y⟩)
1, O $←− Fm,n, return //Gq

0, Gq
6

UO|x, y⟩ := |x, y ⊕O(x)⟩
2, Return Uf |x, y⟩ := |x, y ⊕ f(x)⟩ //Gq

1-Gq
5

O1(|x, y⟩)
1, O′ $←− Fm′,n′ , return //Gq

0, Gq
6

UO′ |x, y⟩ := |x, y ⊕O′(x)⟩
2, Query eCO.RO by |x, y⟩ //Gq

1-Gq
5

Oota(|α, β⟩)
1, If OHG.B is not defined, return

Uota|α, β⟩ = U†
test ◦Ucomp ◦Utest|α, β⟩ //Gq

0, Gq
6

U1
ota|α, β⟩ = Ũ†

test ◦ Ũcomp ◦ Ũtest|α, β⟩ //Gq
1

U2
ota|α, β⟩ = eCO.Ef1 ◦ Ũcomp ◦ eCO.Ef1 |α, β⟩ //Gq

2

U3
ota|α, β⟩ = eCO.Ef2 ◦ Ũcomp ◦ eCO.Ef2 |α, β⟩ //Gq

3

U4
ota|α, β⟩ = eCO.E′

f2 ◦ Ũcomp ◦ eCO.E′
f2 |α, β⟩ //Gq

4

U5
ota|α, β⟩ = eCO.Ef2 ◦ Ũcomp ◦ eCO.Ef2 |α, β⟩ //Gq

5

Else return
U∗

ota|α, β⟩ = (U⊥ ◦ Phide +Uota ◦ (I− Phide))|α, β⟩ //Gq
0, Gq

6

U1,∗
ota |α, β⟩ = (U⊥ ◦ Phide +U1

ota ◦ (I− Phide))|α, β⟩ //Gq
1

U2,∗
ota |α, β⟩ = (U⊥ ◦ Phide +U2

ota ◦ (I− Phide))|α, β⟩ //Gq
2

U3,∗
ota |α, β⟩ = (U⊥ ◦ Phide +U3

ota ◦ (I− Phide))|α, β⟩ //Gq
3

U4,∗
ota |α, β⟩ = (U⊥ ◦ Phide +U4

ota ◦ (I− Phide))|α, β⟩ //Gq
4

U5,∗
ota |α, β⟩ = (U⊥ ◦ Phide +U5

ota ◦ (I− Phide))|α, β⟩ //Gq
5

S(f) = {eCO.RO, eCO.Ef1/eCO.Ef2/eCO.E
′
f2}

1, eCO.RO: apply unitary operation CStO

2, eCO.Ef1 : apply unitary operation Extf1

eCO.Ef2 : apply unitary operation Extf2

eCO.E′
f2 : apply unitary operation

StdDecompm∗||m1
◦ Extf2 ◦ StdDecompm∗||m1

Figure 4: Summary of games for the proof of Theorem 4. Note that the oracle O0, O1 and Oota in
these games can be quantum accessed, for brevity, we just write the input state of O0 and O1 both as
|x, y〉 and the input state of Oota as |α, y〉.

Game Gq
2: This game is the same as game Gq

1, except that the performing of Ũtest on registers XotaY
is replaced by invoking the extraction-interface eCO.Ef1 on registers XotaY in the simulation of secret
oracle Oota.

By the Definition 3, a query to eCO.Ef1 with registers XotaY is processed by applying unitary
operation

Extf1 :=
∑
α∈X
|α〉〈α|Xota ⊗M

Rf1
α

Dq1
Y

to registers XotaYDq1
15. Note that (Extf1)† = Extf1 , thus the secret oracle Oota in game Gq

2 is simulated
by U2

ota := Extf1 ◦ Ũcomp ◦ Extf1 and U2,∗
ota := U⊥ ◦ Phide + U2

ota ◦ (I − Phide) before and after OHG.B is
defined, respectively.
15Note that the codomain of function f1 is the union of X and ⊥. However, we ignore the extraction with input ⊥ in

Extf1 , which is different with its definition as shown in Definition 3. That is to say, we restrict the adversary B from
querying secret oracle by ⊥ in our proof. Indeed, this is reasonable since ⊥ just an abort symbol and ⊥ /∈ X .
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For a computational basis state |α, 0m′
, D〉 on registers XotaYDq1 , we have

Extf1 |α, 0m
′
, D〉 = |α, β,D〉,

where β is the smallest value that satisfies (β,D(β)) ∈ Rf1
α , by the definition of relation Rf1

α in Eq.
(11), this means that ota1(sk, α) = β, D(β) 6= ⊥ and ota2(pk, β,D(β)) = α. If such β does not exist,
we have Extf1 |α, 0m

′
, D〉 = |α,⊥, D〉.

Intuitively, since ota2(pk, β,D(β)) = α is equivalent with D(β) ∈ ota.subα,βpk , the check in the
simulation of secret oracle Oota in game Gc

1 in the proof of Lemma 3 is quantum implemented by
eCO.Ef1 except that the classical list is replaced with the database. Thus, the simulation of secret
oracle Oota in game Gq

2 can be viewed as a quantum counterpart of the simulation of secret oracle Oota

in game Gc
1 in the proof of Lemma 3.

Different with the proof of Lemma 3, which uses some classical events to analysis the difference
between the simulation of secret oracle Oota of game Gc

0 and game Gc
1, we actually use some special

projectors to analysis the difference between U1
ota and U2

ota. Roughly speaking, we divide the internal
state of game Gq

1 and game Gq
2 into some different parts by the projector and then consider the

difference for each of these parts after once application of U1
ota and U2

ota. We next introduce the
following lemma, that is detailed proved in Appendix F.1.

Lemma 4. |Pr[1← Gq
1]− Pr[1← Gq

2]| ≤ 8qota ·
√
ota.max.

Game Gq
3: This game is the same as game Gq

2, except that the extraction-interface eCO.Ef1 is replaced
into eCO.Ef2 , where function f2 : {0, 1}m × {0, 1}n → X is f2(x, y) = ota2(pk, x, y).

Similar to eCO.Ef1 , a query to eCO.Ef2 with registers XotaY is processed by applying unitary
operation

Extf2 :=
∑
α∈X
|α〉〈α|Xota ⊗M

Rf2
α

Dq1
Y

to registers XotaYDq1 . Then the secret oracle Oota in game Gq
3 is simulated by U3

ota := Extf2 ◦ Ũcomp ◦
Extf2 and U3,∗

ota := U⊥ ◦ Phide +U3
ota ◦ (I− Phide) before and after OHG.B is defined, respectively.

For a computational basis state |α, 0m′
, D〉 on registers XotaYDq1 , we have

Extf2 |α, 0m
′
, D〉 = |α, β,D〉,

where β is the smallest value that satisfies (β,D(β)) ∈ Rf2
α , if such β does not exist, we have

Extf2 |α, 0m
′
, D〉 = |α,⊥, D〉. By the definition of relation Rf2

α defined in Eq. (11), if β 6= ⊥, it
satisfies D(β) 6= ⊥ and ota2(pk, β,D(β)) = α.

Intuitively, the simulation of secret oracle Oota in game Gq
2 first extract the smallest β satisfies

ota2(pk, β,D(β)) = α (or D(β) ∈ ota.subα,βpk ) from the database by using eCO.Ef2 , and then compute
the output of Oota by using this β. Hence the simulation of secret oracle Oota in game Gq

2 can be
viewed as a quantum counterpart of the operation Search used in game Gc

2 of the proof of Lemma 3.
In order to bound the difference between the probability that game Gq

2 and game Gq
3 outputs 1,

we need to analyze under what types of database D, Extf1 and Extf2 will have different output on
input state |α, 0m′

, D〉. Fortunately, by the almost identical16 analysis from game Gc
1 to game Gc

2 in
the proof of Lemma 3, Extf1 and Extf2 only have different output on input state |α, 0m′

, D〉 if D ∈ S,
where

S := {D ∈ Dq1 : ∃α, β′ s.t. β′ 6= ota1(sk, α) ∧ ota2(pk, β
′, D(β′)) = α}. (34)

Thus, we can conclude that eCO.Ef1 and eCO.Ef2 proceed identically for any input state |α, 0m′
, D〉 if

D /∈ S.
Obvious we have D⊥ /∈ S, then by using the compressed semi-classical O2H with database read

queries Theorem 3, we can prove the following lemma, the detailed proof is shown in Appendix F.2.

Lemma 5. |Pr[1← Gq
2]− Pr[1← Gq

3]| ≤ 8 ·
√
q1(q1 + 1) · ota.union + 64q1 · ota.union.

16Indeed, the only difference is that the list L1 needs to replaced into the database D.
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Game Gq
4: This game is the same as game Gq

3, except that the extraction-interface eCO.Ef2 is im-
plemented by unitary operation StdDecompm∗||m1

◦Extf2 ◦StdDecompm∗||m1
after the OHG.B is defined.

In what follows, we abbreviate StdDecompm∗||m1
into Sm∗||m1

for convenience. Define

U4
ota := Sm∗||m1

◦ Extf2 ◦ Sm∗||m1
◦ Ũcomp ◦ Sm∗||m1

◦ Extf2 ◦ Sm∗||m1
.

Then, in game Gq
4, the secret oracle Oota is simulated by U3

ota and U4,∗
ota := U⊥ ◦Phide+U4

ota ◦ (I−Phide)
before and after OHG.B is defined, respectively.

For fixed (pk, sk), the parameter Γ
R

f2
t

related to function f2 defined in Eq. (11) is

Γ
R

f2
t

:= max
x∈{0,1}m′

|{y ∈ {0, 1}n|ota2(pk, x, y) = t}| = max
x∈{0,1}m′

|ota.subx,tpk |.

Then by using Lemma 2, we have

‖[Extf ,Sm∗||m1
]‖ ≤ 16 ·

√
max
t∈X

Γ
R

f2
t
/2n ≤ 16 ·

√
max

x∈{0,1}m′ ,t∈X
|ota.subx,tpk |. (35)

Notice that Sm∗||m1
◦ Sm∗||m1

= I, thus we can conclude that Sm∗||m1
◦ Extf2 ◦ Sm∗||m1

is indistin-
guishable with Extf2 except the error shown in (35). Then by a similar proof with Lemma 4, we have

|Pr[1← Gq
3]− Pr[1← Gq

4]| ≤ 32qota ·
√

E
(pk,sk)←KGen(1λ)

max
x∈{0,1}m′ ,t∈X

|ota.subx,tpk |

(a)
= 32qota ·

√
ota.max.

(36)

Here (a) uses Eq. (15).

Game Gq
4a: Let X0/Y0 and X1/Y1 be the adversary’s input/output register of random oracle O0 and

O1, respectively. Initialize register Z to 0. Define H as a constant zero function. This game is the same
as game Gq

4, except that H is queried on input/output register X0/Z (resp. X1/Z) just before every
time the simulation of random oracle O0 (resp. O1) on input/output register X0/Y0 (resp. X1/Y1).

Compared with game Gq
4, the change in game Gq

4a is only conceptual, thus

Pr[1← Gq
4] = Pr[1← Gq

4a]. (37)

Game Gq
4b: Define set Sm∗ := {x ∈ {0, 1}m′

: x = m∗||∗}. This game is the same as game Gq
4a, except

that the semi-classical oracle OSC
Sm∗ is queried on input/output register X0 (resp. X1) just before the

queries of H on input/output register X0/Z (resp. X1/Z).

Indeed, we can rewrite game Gq
4a as a quantum oracle algorithm BH with input z ∈ {0, 1}∗,

then game Gq
4b can be rewritten as BH\Sm∗ with input z ∈ {0, 1}∗ correspondingly. By using the

semi-classical O2H Lemma 10, we have

|Pr[1← Gq
4a]− Pr[1← Gq

4b]| ≤
√

(q0 + q1 + 1) · Pr[Findq4b], (38)

where Findq4b denotes the event that the semi-classical oracle OSC
Sm∗ in game Gq

4b ever outputs 1.
If Findq4b does not occur, the input state of O0 on registers X0/Y0 after the query of OSC

Sm∗ can be
written as

∑
x/∈Sm∗ ,y |x, y〉. Thus, O0 is not queried with input x ∈ Sm∗ by the adversary A in game

Gq
4b. That is to say, the O0(m

∗||m0) used by the challenger to generate OHG.B is uniformly random
in adversary’s view.

As for the O1(m
∗||m1), if Findq4b does not occur, after OHG.B is defined, the corresponding state

on the database register Dq1 can be abbreviated as17∑
D∈Dq1 ,n(D)<q1

Sm∗||m1
|D ∪ (m∗||m1, O1(m

∗||m1))〉.

17Here we omit the coefficient and other registers that may entangled with Dq1 .
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Note that the extraction-interface eCO.Ef2 in game Gq
4b is processed by Sm∗||m1

◦Extf2 ◦Sm∗||m1
after

OHG.B is defined. By the property that Sm∗||m1
◦Sm∗||m1

= I and Extf2 does not change the database
in the computational basis, we can conclude that the internal state on database register Dq1 always in
the form of

∑
D∈Dq1

,n(D)<q1
Sm∗||m1

|D ∪ (m∗||m1, O1(m
∗||m1))〉 before and after once application of

Sm∗||m1
◦ Extf2 ◦ Sm∗||m1

. This means that, if Findq4b does not occur in game Gq
4b, the simulation of

random oracle O1 at point m∗||m1 is not disturbed by the invoking of the extraction-interface eCO.Ef2

and the adversary only query O1 with input state
∑

x/∈Sm∗ |x〉. Hence the O1(m
∗||m1) used by the

challenger to generate OHG.B is also uniformly random in adversary’s view.
In addition, we can prove the following lemma:

Lemma 6. For the state Sm∗||m1
|α,D ∪ (m∗||m1, O1(m

∗||m1)), 0
m′〉 on registers XotaDq1Y, if α 6=

ota2(pk,m
∗||m1, O1(m

∗||m1)), suppose unitary operation Sm∗||m1
◦ Extf2 ◦ Sm∗||m1

acts on

Sm∗||m1
|α,D ∪ (m∗||m1, O1(m

∗||m1)), 0
m′〉

will return β to register Y and
Extf2 |α,D, 0m

′
〉 = |α,D, β′〉.

Then we have β = β′.

Proof. Since Sm∗||m1
◦ Extf2 ◦ Sm∗||m1

acts on state Sm∗||m1
|α,D ∪ (m∗||m1, O1(m

∗||m1)), 0
m′〉 return

β to register Y and Sm∗||m1
◦ Sm∗||m1

= I, we have

Sm∗||m1
◦ Extf2 ◦ Sm∗||m1

◦ Sm∗||m1
|α,D ∪ (m∗||m1, O1(m

∗||m1)), 0
m′
〉

= Sm∗||m1
◦ Extf2 |α,D ∪ (m∗||m1, O1(m

∗||m1)), 0
m′
〉

= Sm∗||m1
|α,D ∪ (m∗||m1, O1(m

∗||m1)), β〉,

where β is the smallest value that satisfies ota2(pk, β,D(β)) = α. Notice that in above state, α 6=
ota2(pk,m

∗||m1, O1(m
∗||m1)), hence the β in above formula can not be m∗||m1.

This means that, even if database D ∪ (m∗||m1, O1(m
∗||m1)) contains more information than D,

the return of Extf2 on input state |α,D ∪ (m∗||m1, O1(m
∗||m1)), 0

m′〉 is irrelevant to those additional
information if α 6= ota2(pk,m

∗||m1, O1(m
∗||m1)). Thus, Extf2 returns the same value on state |α,D ∪

(m∗||m1, O1(m
∗||m1)), 0

m′〉 and |α,D, 0m′〉, i.e., β = β′.

The above lemma implies that in game Gq
4b, if the challenger does not query RO-interface eCO.RO

by m∗||m1 to get O1(m
∗||m1) and uniformly random choose O1(m

∗||m1) from {0, 1}n instead, the
operation Sm∗||m1

◦ Extf2 ◦ Sm∗||m1
used by the extraction-interface eCO.Ef2 after OHG.B is defined,

can be reduced to operation Extf2 directly.
According to above analysis, we can conclude that game Gq

4b and following game Gq
4c are in-

distinguishable if the event Findq4b and Findq4c do not occur, where Findq4c denotes the event that the
semi-classical oracle OSC

Sm∗ in game Gq
4c ever outputs 1.

Game Gq
4c: This game is the same as game Gq

4b, except that the following two changes:

• The y0 = O0(m
∗||m0) and y1 = O1(m

∗||m1) used to generate OHG.B is replaced with r0 and r1
uniformly sampled from {0, 1}n and {0, 1}n′ , respectively.

• The unitary operation implements the extraction-interface eCO.Ef2 is changed back to Extf2 .

This implies that
Pr[Findq4b] = Pr[Findq4c],

Pr[1← Gq
4b ∧ ¬Find

q
4b] = Pr[1← Gq

4c ∧ ¬Find
q
4b].

Then by the difference lemma of [Sho04],

|Pr[1← Gq
4b]− Pr[1← Gq

4c]| ≤ Pr[Findq4c]. (39)

Game Gq
5: This game is the same as game Gq

4c except that the H and semi-classical oracle OSC
Sm∗ are

no longer queried.
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Similar with the analysis between game Gq
4a and game Gq

4b, we have

|Pr[1← Gq
4c]− Pr[1← Gq

5]| ≤
√

(q0 + q1) · Pr[Findq4c], (40)

Game Gq
6: This game is the same game as game Gq

5, except that the following changes:

• The adversary is changed to a new adversary B1, it does not query any oracles and invokes
adversary B once in a black-box manner (without rewinding) as follows:

1. After get the public key pk, adversary B1 chooses a 2q0-wise independent function f and im-
plements the extractable RO-simulator S(f2) = {eCO.RO, eCO.Ef2} with internal database
register Dq1 .

2. Adversary B1 invokes adversary B to get OHG.A and send it to the challenger. After get
the value OHG.B computed by the challenger, invoke adversary B to get OHG.C and send
it to the challenger. The oracle query performed by B is answer as:
(a) When the random oracle O0 is queried by B, B1 answer it by using the unitary operation

Uf : |x, y〉 7→ |x, y ⊕ f(x)〉.
(b) When the random oracle O1 is queried by B, B1 answer it by using the RO-interface

eCO.RO.
(c) When the secret oracle Oota is queried by B, B1 answer it by using the U3

ota := Extf2 ◦
Ũcomp ◦ Extf2 and U3,∗

ota := U⊥ ◦ Phide + U3
ota ◦ (I− Phide) before and after OHG.B being

defined, respectively.

• The random oracle O0 and O1, secret oracle Oota in game Gq
6 is simulated the same as game

Gq
0
18, and the value of y0 (resp. y1) used to generate OHG.B in game Gq

6 is replaced with
O0(m

∗||m0) (resp. O1(m
∗||m1)).

Compared with game Gq
5, the change in game Gq

6 is only conceptual, thus

Pr[1← Gq
5] = Pr[1← Gq

6]. (41)

Moreover, we observe that game Gq
6 is identical with game Gq

0 except that the adversary is replaced
to B1, then

Pr[1← Gq
6] = AdvOHG

B1,C(1
λ). (42)

As for the probability that event Findq4c occurs, we consider oracle-hiding game OHGO0,O1,Oota

B2(1λ),Cfind(1λ)

in the QROM with a new challenger Cfind and a new adversary B2 as follows:

• The challenger Cfind is identical with C except that Cfind finally output t = boole[OHG.C = m∗] as
game’s output.

• The adversary B2 is identical with B1, except that B2 picks i $←− {1, . . . , q0 + q1} at everything
begins and then measures the query input registers (just before) the i-th random oracle query
in the computational basis to get measurement outcome m′||∗, where m′ has the same length as
m∗. Then B2 output OHG.C = m′.

Then by using Lemma 11, we have

Pr [Findq4c] ≤ 4(q0 + q1) · AdvOHG
B2,Cfind(1

λ). (43)

Tracing through the above game sequence from game Gq
0 to game Gq

6, combining Eq. (32), (33)
and (36-43), Lemma 4 and Lemma 5, we finally obtain∣∣∣AdvOHG

B,C (1λ)− AdvOHG
B1,C(1

λ)
∣∣∣ ≤ 40qota ·

√
ota.max+ 8(q1 + 1) ·

√
ota.union + 64q1 · ota.union

+ 4(q0 + q1 + 1) ·
√
AdvOHG

B2,Cfind(1
λ).

18To avoid confusion, we stress that this O0, O1 and Oota are oracles queried in game Gq
6 , they are independent with

the oracle O0, O1 and Oota appeared in the description of adversary B1.
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As for the running time of B1 and B2, by their construction, we know that they invoke adversary B only
once and simulate random oracle O0 by a 2q0-wise independent function q0 times, simulate the random
oracle O1 and secret oracle Oota by the extractable RO-simulator S(f2) = {eCO.RO, eCO.Ef2}. The
RO-interface eCO.RO and extraction-interface eCO.Ef2 is invoked q0+q1 and 2qota) times, respectively.
Hence by the Definition 3, we have

Time[B1(1λ)] ≈ Time[B2(1λ)] ≤ Time[B(1λ)] +O((q0 + q1) · qota · ota.time + (q0 + q1)
2).

The definition of ota.time is given in Definition 4.

4.2.3 The Construction of Adversary A1, A2, B1 and B2
Compared with construction of adversary A1 in the proof of Lemma 3, the construction of adversary
B1 given in the proof of Theorem 4 only change the simulation of the oracles, we also give an overview
in Table 2.

Table 2: The overview of adversary A1 and B1.

Adversary Main procedure Random oracle O0 Random oracle O1 Secret oracle Oota
A1 invokes A on-the-fly on-the-fly Search
B1 invokes B 2q0-wise function f eCO.RO eCO.Ef2 ◦ Ũcomp ◦ eCO.Ef2

In fact, B1 can also simulate the random oracle O0 by the RO interface eCO.RO of a new extractable
RO-simulator, but this will require more quantum resources. Overall, we observe that the operations of
adversary A1 and B1 are one-to-one corresponding. Their operations both are invoking the underlying
adversary and simulating oracles for the underlying adversary. Although the simulation methods of
A1 and B1 are different, the simulation methods used by B1 can all be regarded as the quantum
counterpart of A1. This is why we wrote in Theorem 4 that we can directly construct B1 by mimicking
the construction of A1.

As for the adversary A2 in the proof of Lemma 3 and the adversary B2 in the proof of Theorem 4,
their operations are also one-to-one corresponding:

• Construction of A2: Run A1, picks i $←− {1, . . . , q0 + q1} and record the i-th random oracle query
m′||∗. Then output OHG.C = m′.

• Construction of B2: Run B1, picks i $←− {1, . . . , q0+q1} and measure the i-th random oracle query
to get measurement outcome m′||∗. Then output OHG.C = m′.

As B1 needs to handle quantum queries, B2 changed the ”record query” used by A2 to ”measure query”.
Obviously, similar to A1 and B1, we can directly construct B2 by mimicking the construction of A2.

5 Applications of Theorem 4
In this section, we apply our lifting theorem Theorem 4 to prove the IND-qCCA and ANO-qCCA security
of the FO-like transformation in the QROM. The formal definition of cryptographic primitives and
security notions used in this section are shown in Appendix G, along with the definition of correctness
and spreadness of PKE schemes. Similar with Section 4.2, we sometimes omit the security parameter
λ for notational clarity. Moreover, we only consider QPT adversary in this section.

To a a PKE scheme PKE = (Gen,Enc,Dec) with message space {0, 1}u and randomness space
{0, 1}v, and random oracles H : {0, 1}u → {0, 1}v, G : {0, 1}∗ → {0, 1}k and a pseudorandom function
(PRF) f with key space Kprf we associate

KEM⊥m = FO⊥m[PKE,H,G] = (Gen,Encapsm,Decaps⊥m),

KEM⊥ = FO⊥[PKE,H,G] = (Gen,Encaps,Decaps⊥),
KEM/⊥

m = FO/⊥
m[PKE,H,G] = (Gen/⊥

m,Encaps,Decaps/⊥m),

KEM
/⊥ = FO/⊥[PKE,H,G] = (Gen/⊥,Encaps,Decaps/⊥).

Their constituting algorithms are shown in Fig. 5.
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Gen/⊥ Gen/⊥
m

1: (pk, sk)← Gen
2: s

$←− {0, 1}u s
$←− Kprf

3: sk′ := sk||s
4: Return (pk, sk)

Encaps (pk) Encapsm (pk)

1: m
$←− {0, 1}u

2: c := Enc (pk,m;H(m))

3: K := G(m, c) K := G(m)

4: return (K, c)

Decaps⊥ (sk, c) Decaps⊥m (sk, c)

1: m′ := Dec (sk, c)
2: If c ̸= Enc (pk,m′;H(m′)) or m′ = ⊥

return ⊥
3: else return K := G(m′, c) K := G(m′)

Decaps/⊥ (sk′ = sk||s, c) Decaps/⊥m (sk′ = sk||s, c)
1: m′ := Dec (sk, c)
2: If c ̸= Enc (pk,m′;H(m′)) or m′ = ⊥

return K := G(s, c) K := f(s, c)

3: else return K := G(m′, c) K := G(m′)

Figure 5: KEM scheme KEM⊥m = (Gen,Encapsm,Decaps⊥m), KEM⊥ = (Gen,Encaps,Decaps⊥), KEM/⊥
m =

(Gen/⊥
m,Encaps,Decaps/⊥m) and KEM

/⊥ = (Gen/⊥,Encaps,Decaps/⊥).

To a DEM scheme DEM=(E,D) with key space {0, 1}k, we associate

PKE⊥m = KEM⊥m + DEM = (Gen,Encm,Dec⊥m),

PKE⊥ = KEM⊥ + DEM = (Gen,Enc,Dec⊥),
PKE/⊥

m = KEM/⊥
m + DEM = (Gen/⊥

m,Enc,Dec/⊥
m),

PKE
/⊥ = KEM

/⊥ + DEM = (Gen/⊥,Enc,Dec/⊥).

Their constituting algorithms are shown in Fig. 6. Here ”A+B” refer to a PKE scheme built via the
KEM-DEM paradigm with KEM scheme A and DEM scheme B.

Gen/⊥ Gen/⊥
m

1: (pk, sk)← Gen
2: s

$←− {0, 1}u s
$←− Kprf

3: sk′ := sk||s
4: Return (pk, sk)

Enc (pk,m) Encm (pk,m)

1: δ
$←− {0, 1}u

2: c1 := Enc (pk, δ;H(δ))

3: K := G(δ, c1) K := G(δ)

4: c2 := E(K,m)

5: return (c1, c2)

Dec⊥ (sk, c1, c2) Dec⊥m (sk, c1, c2)

1: δ′ := Dec (sk, c1)
2: If c1 ̸= Enc (pk, δ′;H(δ′)) or δ′ = ⊥

return ⊥
3: else compute K := G(δ′, c1) K := G(δ′)

return m′ := D(K, c2)

Dec/⊥ (sk′ = sk||s, c1, c2) Dec/⊥
m (sk′ = sk||s, c1, c2)

1: δ′ := Dec (sk, c1)
2: If c1 ̸= Enc (pk, δ′;H(δ′)) or δ′ = ⊥

compute K := G(s, c1) K := f(s, c1)

return m′ := D(K, c2)

3: else compute K := G(δ′, c) K := G(δ′)

return m′ := D(K, c2)

Figure 6: PKE scheme PKE⊥m = (Gen,Encm,Dec⊥m), PKE⊥ = (Gen,Enc,Dec⊥), PKE/⊥
m =

(Gen/⊥,Enc,Dec/⊥
m) and PKE

/⊥ = (Gen/⊥,Enc,Dec/⊥).

Before we giving the ANO-qCCA security reduction, we introduce a theorem indicates that weak
pseudorandomness of PKE immediately implies anonymity of PKE. The detailed proof of this theorem
is similar to the proof of Theorem 2.5 in [Xag22] and we present it in Appendix H.1.
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Theorem 5. Denote Π as a PKE scheme, S as a QPT simulator of the WPR-qCCA game of Π, then
for any adversary A against the ANO-qCCA game of Π, there exists adversary B such that

AdvANO-qCCA
A,Π ≤ 2 · AdvWPR-qCCA

B,S,Π

and Time[B] ≈ Time[A].

5.1 The IND-qCCA security of KEM⊥
m, KEM⊥, KEM/⊥

m and KEM/⊥ in the QROM
Here we only provide the IND-qCCA security reduction of KEM⊥m in the QROM, the reduction of
KEM⊥, KEM/⊥

m and KEM
/⊥ can be obtained in a similar way and they are presented in Appendix H.2.

Theorem 6. Suppose PKE = (Gen,Enc,Dec) is δ-correct and weakly γ-spread. Let A be an IND-qCCA
adversary against KEM⊥m in the QROM, making at most qH , qG and qD queries to random oracle H,
G and the decryption oracle, respectively. Then there exists an OW-CPA adversary A1 against PKE
such that

AdvIND-qCCA
A,KEM⊥

m
≤ 40qD ·

√
γ + 8(qH + 1) ·

√
δ + 64qH · δ + 4(qH + qG + 1) ·

√
AdvOW-CPA

A1,PKE .

The running time of adversary A1 can be bounded by

Time[A1] ≤ Time[A] +O(qH · qC · Time[Enc] + q2H).

Proof. The IND-qCCA game GA of KEM⊥m with adversary A in the QROM is shown in Fig. 7. Then
we have

AdvIND-qCCA
A,KEM⊥

m
=

∣∣∣∣Pr [1← GA]−
1

2

∣∣∣∣ . (44)

Game GA

1, (pk, sk)← Gen
2, b $←− {0, 1}, m∗ $←− {0, 1}u

c∗ = Enc(pk,m∗,H(m∗))

K∗
0 = G(m∗), K∗

1
$←− {0, 1}k

3, b′ ← AH,G,Deca(pk, c∗,K∗
b )

4, Return boole[b = b′]

Deca(c)

1, If c = c∗, return ⊥
Else return Deca⊥m(sk, c)

Figure 7: Game GA with adversary A in the QROM. Here {0, 1}k is the key space of KEM⊥m, A can
query random oracle H, G and the decapsulation oracle Deca in superposition.

Define fdec be a function that fdec(x) = ⊥ for any x. We first rewrite the decapsulation algorithm
Deca⊥m(sk, ·) shown in Fig. 5 as a new oracle algorithm decG,H(sk, ·) as follows.

1. For input c, compute m := Dec(sk, c). If m = ⊥, return fdec(c).

2. Else, compute Enc(pk,m,H(m)). If Enc(pk,m,H(m)) 6= c, return fdec(c).

(a) Else, compute m′ := dec1(pk, c,m) and return dec2(pk, c,m,G(m
′)).

• dec1(pk, ·) is a deterministic algorithm that returns y for input (x, y).
• dec2(pk, ·) is a deterministic algorithm that returns x for input (x, y, z).

Indeed, oracle algorithm decG,H(sk, ·) can be regarded as an oracle-testing algorithm. More detailed,
in Table 3, we provide the correspondence between the basic components, e.g. the internal algorithms,
of oracle algorithm decG,H(sk, ·) and oracle-testing algorithm otaO0,O1(sk, ·) introduced in Definition
4.
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Table 3: The correspondence between the basic components of algorithm decG,H(sk, ·) and oracle-
testing algorithm otaO0,O1(sk, ·).

Key generator Random oracle function Internal algorithms
otaO0,O1(sk, ·) (pk, sk)← KGen O0/O1 fota ota1(sk, ·)/ota2(pk, ·)/ota3(pk, ·)/ota4(pk, ·)
decH,G(sk, ·) (pk, sk)← Gen G/H fdec Dec(sk, ·)/Enc(pk, ·)/dec1(pk, ·)/dec2(pk, ·)

As for the corresponding parameter dec.time, dec.max and dec.union defined in Eq. (15), by the
δ-correctness and weakly γ-spreadness of PKE and their definitions in Appendix G, the following
inequalities are obtained:

dec.time ≈ Time[Enc], dec.max ≤ γ, dec.union ≤ δ. (45)

Based on the oracle-testing algorithm decG,H(sk, ·), we design an oracle-hiding game OHGG,H,Odec

Adec,Cdec
in the QROM as shown in Fig. 8, where Adec and Cdec satisfy the following properties:

• Without any computations, Adec generates OHG.A as ⊥ directly.

• cha1(pk, ·) and cha2(pk, ·), performed by Cdec, both return ∅ for any input, where ∅ satisfies
x||∅ := x for any x.

• cha3(pk, ·), performed by Cdec, generates OHG.B as (Enc(pk,m∗, y1), y0) (resp. (Enc(pk,m∗, y1),K))
for input (OHG.A, y0, y1,m

∗, (b,K)) if b = 0 (resp. b = 1).

• Adec just runs A of game GA
19, and returns the output b′ of A as OHG.C.

• The algorithm verify(pk, sk, ·), performed by Cdec, returns t = boole[b = OHG.C] for input
(OHG.A,m∗, (b,K), s,OHG.C) directly.

Oracle-hiding game OHGG,H,Odec

Adec,Cdec

1, (pk, sk)← Gen
2, (OHG.A = ⊥)← AG,H,Odec

dec (pk)

3, Cdec perform following operation
m∗ $←−M, (b,K)

$←− {0, 1} × K, s = 0

∅← cha1(pk,OHG.A,m
∗, (b,K))

y0 = G(m∗)

∅← cha2(pk,OHG.A, y0,m
∗, (b,K))

y1 = H(m∗)

OHG.B← cha3(pk,OHG.A, y0, y1,m
∗, (b,K))

(OHG.B = (Enc(pk,m∗, y1), y0) if b = 0)
(OHG.B = (Enc(pk,m∗, y1),K) if b = 1)

4, (OHG.C = b′)← AG,H,Odec

dec (pk,OHG.B)
5, t← verify(pk, sk,OHG.A,m∗, (b,K), s,OHG.C)

(t = booole[b = OHG.C])

Cdec output t ∈ {0, 1} as game’s output

G(x)

1, O $←− F∗,k, return O(x)

H(x)

1, O′ $←− Fu,v, return O′(x)

Odec(c)

1, If OHG.B is defined and
c = Enc(pk,m∗,H(m∗))

return ⊥
Else return decG,H(sk, c)

Figure 8: The oracle-hiding game OHGG,H,Odec

Adec,Cdec in the QROM.
19When the random oracle H, G and the decapsulation oracle Deca is queried by A, Adec answers it by querying H, G

and secret oracle Odec, respectively. Note that the test performed by Odec is exactly the check that c = c∗. Hence Adec

simulates A’s view in the game GA perfectly.
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Obviously, the running time of Adec and that of A are almost the same. And it is concluded that
the final output of game GA and oracle-hiding game OHGG,H,Odec

Adec,Cdec must be the same. Because these
two games actually perform the same computations, even though their symbolic representations are
different. Hence, we have

Time[Adec] ≈ Time[A], Pr [1← GA] = AdvOHG
Adec,Cdec(1

λ). (46)

By the properties of Adec given above, we know the query numbers of random oracle H, G and
secret oracle Odec in the oracle-hiding game OHGG,H,Odec

Adec,Cdec is qH , qG and qD, respectively. Then by
using Theorem 4 and Eq. (45), there exist adversary A1

dec and A2
dec, making no queries to any oracle,

satisfying that∣∣∣AdvOHG
Adec,Cdec(1

λ)− AdvOHG
A1

dec,Cdec
(1λ)

∣∣∣ ≤ 40qD ·
√
γ + 8(qH + 1) ·

√
δ + 64qH · δ

+ 4(qH + qG + 1) ·
√

AdvOHG
A2

dec,C
find
dec
(1λ),

(47)

and
Time[A1

dec] ≈ Time[A2
dec] ≤ Time[Adec] +O(qH · qC · Time[Enc] + q2H), (48)

where challenger Cfind
dec is identical with Cdec, except that algorithm verify used by Cfind

dec outputs t =
boole[OHG.C = m∗] for the input (OHG.A,m∗, (b,K), s,OHG.C).

Regarding AdvOHG
A1

dec,Cdec
(1λ) and AdvOHG

A2
dec,C

find
dec
(1λ), it is noted that A1

dec and A2
dec makes no queries to

any oracle. Therefore, the value y0 and y1, which are shown in Fig. 8 and generated by challenger
Cdec and Cfinddec , are uniformly random in the view of A1

dec and A2
dec in oracle-hiding game OHGG,H,Odec

A1
dec,Cdec

and OHGG,H,Odec

A2
dec,C

find
dec

, respectively. Hence, it can be concluded that the bit b chosen by challenger Cdec in
oracle-hiding game OHGG,H,Odec

A1
dec,Cdec

is independent from A1
dec’s view. Then we have

AdvOHG
A1

dec,Cdec
(1λ) =

1

2
. (49)

Moreover, it is concluded that there exists adversary A1 against the OW-CPA security of the underlying
PKE such that

AdvOHG
A2

dec,C
find
dec
(1λ) = AdvOW-CPA

A1,PKE , Time[A1] ≈ Time[A2
dec]. (50)

Combining Eq. (44) and Eq. (46) to (50), we finally obtain

AdvIND-qCCAA,KEM⊥
m
≤ 40qD ·

√
γ + 8(qH + 1) ·

√
δ + 64qH · δ + 4(qH + qG + 1) ·

√
AdvOW-CPA

A1,PKE ,

and
Time[A1] ≤ Time[A] +O(qH · qC · Time[Enc] + q2H).

5.2 The ANO-qCCA security of KEM⊥
m, KEM⊥, KEM/⊥

m and KEM/⊥ in the QROM
We first prove the SPR-qCCA security of KEM scheme KEM⊥m in the QROM.

Theorem 7. Suppose PKE = (Gen,Enc,Dec) is δ-correct, weakly γ-spread and SDS-IND-secure w.r.t.
QPT simulator S. Let A be a SPR-qCCA adversary against KEM⊥m in the QROM, making at most qH ,
qG and qD queries to random oracle H, G and decapsulation oracle, respectively20. Then there exist
an OW-CPA adversary A1 against the PKE and a SDS-IND adversary A2 against the PKE such that

AdvSPR-qCCA
A,S,KEM⊥

m
≤ 24qD ·

√
γ + 8(qH + 1) ·

√
δ + 64qH · δ + 2(qH + qG + 1) ·

√
AdvOW-CPA

A1,PKE + AdvSDS-IND
A2,S,PKE.

The running time of adversary A1 and A2 can be bounded as
20Following [JZC+18, GMP22], we make the convention that qH and qG counts the total number of times H and G is

queried in the SPR-qCCA game, respectively.
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Time[A1] ≈ Time[A2] ≤ Time[A] +O(qH · qD · Time[Enc] + q2H).

Proof. Based on the SPR-qCCA game of KEM⊥m with adversary A and simulator S, define game Gb=0
A

and game Gb=1
A as shown in Fig. 9, then we have

|Pr[1← Gb=0
A ]− Pr[1← Gb=1

A ]| = 2 · AdvSPR-qCCA
A,S,KEM⊥

m
. (51)

Game Gb=0
A

1: (pk, sk)← Gen, b = 0

2: m∗ $←− {0, 1}u

c∗0 := Enc(pk,m∗,H(m∗))

K∗
0 := G(m∗)

3: b′ ← AH,G,O
c∗0
dec (pk, c∗0,K

∗
0 )

4: Return b′

O
c∗0
dec(c)

1: If c = c∗0, return ⊥
Else return Deca⊥m(c)

O
c∗1
dec(c)

1: If c = c∗1, return ⊥
Else return Deca⊥m(c)

Game Gb=1
A

1: (pk, sk)← Gen, b = 1

2: m∗ $←− {0, 1}u

c∗1 := S(1λ)
K∗

1
$←− {0, 1}k

3: b′ ← AH,G,O
c∗1
dec (pk, c∗1,K

∗
1 )

4: Return b′

Figure 9: Game Gb=0
A and game Gb=1

A . Here adversary A can query its oracles in superposition.

By using lifting theorem Theorem 4, we can prove following lemma, its detailed proof is shown in
Appendix H.3

Lemma 7. There exists adversary B and A1 without query any oracles it can access such that

|Pr[1← Gb=0
A ]−Pr[1← Gb=0

B ]| ≤ 40qD ·
√
γ+8(qH +1) ·

√
δ+64qH · δ+4(qH + qG+1) ·

√
AdvOW-CPA

A1,PKE ,

and
|Pr[1← Gb=1

A ]− Pr[1← Gb=1
B ]| ≤ 8qD ·

√
γ + 8(qH + 1) ·

√
δ + 64qH · δ.

The running time of adversary B and A1 can be bounded as

Time[B] ≈ Time[A1] ≤ Time[A] +O((qG + qH) · qD · Time[Enc] + (qG + qH)2).

Notice that the adversary B in Lemma 7 does not query any oracles it can access, hence in game
Gb=0
B and game Gb=1

B , the K∗0 and K∗1 both are uniformly random in adversary B’s view. It is
easy to obtain that there exist an adversary A2 against the SDS-IND security of PKE that satisfying
Time[A2] ≈ Time[B] and

|Pr[1← Gb=0
B ]− Pr[1← Gb=1

B ]| = 2 · AdvSDS-IND
A2,S,PKE. (52)

Thus by using the upper bound given in Lemma 7, we have

AdvSPR-qCCA
A,S,KEM⊥

m
= |Pr[1← Gb=0

A ]− Pr[1← Gb=1
A ]|/2

≤ |Pr[1← Gb=0
A ]− Pr[1← Gb=0

B ]|/2 + |Pr[1← Gb=0
B ]− Pr[1← Gb=1

B ]|/2
+ |Pr[1← Gb=1

B ]− Pr[1← Gb=1
A ]|/2

≤ 24qD ·
√
γ + 8(qH + 1) ·

√
δ + 64qH · δ + 2(qH + qG + 1) ·

√
AdvOW-CPA

A1,PKE + AdvSDS-IND
A2,S,PKE.

Corollary 1. Suppose PKE = (Gen,Enc,Dec) is OW-CPA-secure and SDS-IND-secure, then KEM⊥m is
ANO-qCCA-secure in the QROM.

This follows from the Theorem 2.5 of [Xag22], which indicates that the SPR-qCCA security of KEM
schemes implies its ANO-qCCA security21. Similar with the proof of Theorem 7, we can also prove the
SPR-qCCA security of KEM scheme KEM⊥, KEM/⊥

m and KEM
/⊥ in the QROM. We give these proofs in

Appendix H.4. Then by using the Theorem 2.5 of [Xag22] again, we obtain following corollary:
Corollary 2. Suppose PKE = (Gen,Enc,Dec) is OW-CPA-secure and SDS-IND-secure, then KEM⊥,
KEM

/⊥
m and KEM

/⊥ is ANO-qCCA-secure in the QROM.
21Note that the Theorem 2.5 of [Xag22] actually states that the SPR-CCA security of KEM schemes implies its ANO-

CCA security. Although their proof is not specific to the ”qCCA” case, it can be easily modified to accommodate it.
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5.3 The ANO-qCCA security of PKE⊥
m, PKE⊥, PKE/⊥

m and PKE/⊥ in the QROM
We first prove the WPR-qCCA security of KEM scheme KEM⊥m in the QROM.

Theorem 8. Suppose PKE = (Gen,Enc,Dec) is δ-correct, weakly γ-spread and SDS-IND-secure w.r.t.
QPT simulator S. Let A be a WPR-qCCA adversary against PKE⊥m in the QROM, making at most qH ,
qG and qD queries to random oracle H, G and decapsulation oracle, respectively22. Then there exist
a QPT simulator S ′ of PKE⊥m, an OW-CPA adversary A1 against the PKE and a SDS-IND adversary
A2 against the PKE such that

AdvWPR-qCCA
A,S′,PKE⊥

m
≤ 24qD ·

√
γ + 8(qH + 1) ·

√
δ + 64qH · δ + 2(qH + qG + 1) ·

√
AdvOW-CPA

A1,PKE + AdvSDS-IND
A2,S,PKE.

The running time of adversary A1 and A2 can be bounded as

Time[A1] ≈ Time[A2] ≤ Time[A] +O(qH · qD · Time[Enc] + q2H).

Proof. Based on the WPR-qCCA game of PKE⊥m with adversary A and simulator S ′, define game Gb=0
A

and game Gb=1
A as shown in Fig. 10, then we have

|Pr[1← Gb=0
A ]− Pr[1← Gb=1

A ]| = 2 · AdvWPR-qCCA
A,S′,PKE⊥

m
. (53)

As shown in Fig. 10, S ′ generates ciphertext (c1, c2) by first runs S to get ciphertext c1, then randomly
choose K ∈ {0, 1}k and compute c2 := E(K,m∗). Hence S ′ also a QPT simulator.

Game Gb=0
A

1: (pk, sk)← Gen, b = 0

2: m∗ ← AH,G,O0
dec(pk)

3: δ∗
$←− {0, 1}u

c1 := Enc(pk, δ∗,H(δ∗))

K := G(δ∗)

c2 := E(K,m∗), c∗0 := (c1, c2)

4: b′ ← AH,G,O0
dec(pk, c∗0)

5: Return b′

O0
dec(c)

1: If c∗0 is defined and
c = c∗0, return ⊥
Else return Dec⊥m(c)

O1
dec(c)

1: If c∗1 is defined and
c = c∗1, return ⊥
Else return Dec⊥m(c)

Game Gb=1
A

1: (pk, sk)← Gen, b = 1

2: m∗ ← AH,G,O1
dec(pk)

3: S ′(1λ,m∗) perform:
c1 ← S(1λ)
K

$←− {0, 1}k

c2 := E(K,m∗), c∗1 := (c1, c2)

4: b′ ← AH,G,O1
dec(pk, c∗1)

5: Return b′

Figure 10: Game Gb=0
A and game Gb=1

A . Here adversary A can query its oracles in superposition.

By using lifting theorem Theorem 4, we can prove following lemma, its detailed proof is similar
with Lemma 7 and we omit it.

Lemma 8. There exists adversary B and A1 without query any oracles it can access such that

|Pr[1← Gb=0
A ]−Pr[1← Gb=0

B ]| ≤ 40qD ·
√
γ+8(qH +1) ·

√
δ+64qH · δ+4(qH + qG+1) ·

√
AdvOW-CPA

A1,PKE ,

and
|Pr[1← Gb=1

A ]− Pr[1← Gb=1
B ]| ≤ 8qD ·

√
γ + 8(qH + 1) ·

√
δ + 64qH · δ.

The running time of adversary B and A1 can be bounded as

Time[B] ≈ Time[A1] ≤ Time[A] +O((qG + qH) · qD · Time[Enc] + (qG + qH)2).

Notice that the adversary B in Lemma 8 does not query any oracles it can access, hence in game
Gb=0
B , the H(δ∗) and G(δ∗) used to generate c∗0 both are uniformly random in adversary B’s view.

This means that the c2 game Gb=0
B and Gb=1

B have the same distribution in adversary B’s view. Then
we define an adversary A2 against the SDS-IND security of PKE with simulator S as follows:
22Following [JZC+18, GMP22], we make the convention that qH and qG counts the total number of times H and G is

queried in the SPR-qCCA game, respectively.
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1. A2 gets pk and a ciphertext c from the challenger, where c is generated by either the encryption
algorithm Enc or simulator S(1λ).

2. A2 runs B(pk) to get m∗.

3. A2 computes c′ := E(K,m∗), where K $←− {0, 1}u, then runs B(pk, (c, c′)) to get b′ and output it.

Obviously, A2 perfectly simulate game Gb=0
B (resp. game Gb=1

B ) if c is generate by the encryption
algorithm Enc (resp. simulator S(1λ)). Hence we have Time[A2] ≈ Time[B] and

|Pr[1← Gb=0
B ]− Pr[1← Gb=1

B ]| = 2 · AdvSDS-IND
A2,S,PKE. (54)

Thus by using the upper bound given in Lemma 8, we have

AdvWPR-qCCA
A,S′,PKE⊥

m
= |Pr[1← Gb=0

A ]− Pr[1← Gb=1
A ]|/2

≤ |Pr[1← Gb=0
A ]− Pr[1← Gb=0

B ]|/2 + |Pr[1← Gb=0
B ]− Pr[1← Gb=1

B ]|/2
+ |Pr[1← Gb=1

B ]− Pr[1← Gb=1
A ]|/2

≤ 24qD ·
√
γ + 8(qH + 1) ·

√
δ + 64qH · δ + 2(qH + qG + 1) ·

√
AdvOW-CPA

A1,PKE + AdvSDS-IND
A2,S,PKE.

Remark 5. Note that our WPR-qCCA security reduction of PKE scheme PKE⊥m = KEM⊥m + DEM
does not require any security assumptions about DEM scheme DEM. Intuitively speaking, the reason
is that the computation of c1 shown in Fig. 10 is independent of m∗, hence we can design adversary
A2 using the adversary B of Lemma 8 and directly reduce the WPR-qCCA security to the underlying
strongly disjoint-simulatable security of PKE.

Corollary 3. Suppose PKE = (Gen,Enc,Dec) is OW-CPA-secure and SDS-IND-secure, then PKE⊥m is
ANO-qCCA-secure in the QROM.

This follows from Theorem 5, which states that the WPR-qCCA security of a PKE schemes implies
its ANO-qCCA security. Similar with the proof of Theorem 8, we can also prove the WPR-qCCA
security of PKE scheme PKE⊥, PKE/⊥

m and PKE
/⊥ in the QROM, the corresponding theorem is given

in Appendix H.5. Then by using Theorem 5 again, we obtain following corollary:

Corollary 4. Suppose PKE = (Gen,Enc,Dec) is OW-CPA-secure and SDS-IND-secure, then PKE⊥,
PKE

/⊥
m and PKE

/⊥ is ANO-qCCA-secure in the QROM.
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A Quantum Background
A quantum system (register) Q is a complex Hilbert space HQ with an inner product 〈·|·〉, notation
like ’|·〉’ or ’〈·|’ is called the Dirac notation. We denote HQ = C[X ] if Q is defined over a finite set X ,
the orthonormal basis of C[X ] is {|x〉}x∈X , where the basis state |x〉 is labeled by the element x of X .
We refer to {|x〉}x∈X as the computational basis. The state |ψ〉 of quantum system Q is a unit vector,
and we also write this state as |ψ〉Q.

A qubit in superposition is a linear combination vector |b〉 = α|0〉+β|1〉 of two computational basis
states |0〉 and |1〉 with α, β ∈ C2 and |α|2+|β|2= 1, α, β are the probability amplitudes of |b〉. Given
quantum systems Q1 and Q2, we call tensor product Q1 ⊗ Q2 is the composite quantum system and
the product state is |ψ1〉 ⊗ |ψ2〉 ∈ Q1 ⊗ Q2 where |ψ1〉 ∈ Q1, |ψ2〉 ∈ Q2. An n-qubit system is Q⊗n
where Q is single qubit system. We call state |ψ〉 ∈ Q1 ⊗Q2 a product state if |ψ〉 can be rewrite as
|ψ〉 = |ψ1〉 ⊗ |ψ2〉 and |ψ1〉 ∈ Q1, |ψ2〉 ∈ Q2, if |ψ〉 is not a product state, we say that the systems Q0

and Q1 are entangled, otherwise un-entangled. The norm of a state |ψ〉 is defined as ‖|ψ〉‖ :=
√
〈ψ|ψ〉,

where 〈ψ|ψ〉 is the inner product of |ψ〉.
The evolution of a closed quantum system is described by a unitary operation. That is the state

|ψ〉 of the system at time t1 is related to the state |ψ′〉 of system at time t2 by a unitary operation
U which depends only on the times t1 and t2, that |ψ′〉 = U|ψ〉. In our paper, we also write UQ

to emphasize that the unitary operation U acts on quantum system (register) Q. For any unitary
operation U acts on quantum system, we have U ◦ U† = I, where U† is the Hermitian transpose of
U and I is the identity operator over the quantum system. The norm of an operator U is defined as
‖U‖ := max∥|Φ⟩∥=1 ‖U|Φ〉‖.

Then we introduce a special operation called projector, for state |ψ〉 of an n-qubit register, a
projector M|y⟩⟨y| applies the projection |y〉〈y| map to the state |ψ〉 to get the new state |y〉〈y|ψ〉.
M|y⟩⟨y| can also be generalized to a new projector My∈S which applies the projection

∑
y∈S |y〉〈y|. We

stress that any projector operator M is Hermitian (i.e., we have M† = M) and idempotent (i.e., we
have M2 = M).

State |ψ〉 can be measured with respect to a basis, for example suppose |ψ〉 =
∑

x αx|x〉 with
computational basis {|x〉}, if we measure |ψ〉 in computational basis, the measurement outputs the value
x with probability |〈x|ψ〉|2 = |αx|2. Note that state |ψ〉 collapse to state |x〉 after the measurement,
so the state will stay |x〉 and the subsequent measurements will always output x. Measurements in
other basis are defined analogously. In this paper, we will generally only consider measurements in the
computational basis. A general projective measurement M is defined by a set of projection operators
M1, . . . ,Mn where Mi are mutually orthogonal and

∑n
i=1 Mi = I. Any general projective measurement

can be implemented by composing a unitary operation followed by a measurement in the computational
basis.

A quantum oracle algorithm AO(z) is an algorithm A(z) that is given quantum oracle access to
oracle O. In this paper, we default that oracle O can be implemented by a unitary operation UO that
operate on the correspond input/output register. The algorithm A(z) is allowed to performs parallel
queries to O with input/output register Ii/Oi for i = 1, . . . , w, suppose A(z) can perform parallel
queries at most d times, then we call w (resp. d) the query width (resp. query depth) and the total
query times of A(z) is q := w · d. Moreover, once parallel query to O with input/output register Ii/Oi

for i = 1, . . . , w can be implemented by unitary operation (UO)
⊗w

There is a well-known fact that we can construct a unitary variant AO
U(z) for any quantum oracle

algorithm AO(z) with some constant factor computational overhead and these two algorithms have
same query width and query depth [AHU19], AO

U(z) also called a unitary quantum oracle algorithm.
As shown in the Definition 8 of [DHK+22], the detailed execution of a unitary quantum oracle algo-
rithm can be described as follows:

Unitary quantum oracle algorithm BO: Suppose B’s query depth is d and query width is p, then
B’s execution can be described as

Ud ◦ (UO)
⊗p ◦Ud−1 ◦ (UO)

⊗p ◦ . . . ◦U1 ◦ (UO)
⊗p|ψ〉.

Here U1, . . . ,Ud are the fixed unitary operations applied between queries, |ψ〉 is the initial pure state.
B perform a projective measurement on its quantum register after applying Ud and output the measure
outcome. For multiple oracles case, as explained in the Remark 8 of [DHK+22], if B have quantum
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access to all oracles, then the execution of B can be described analogously, .

Moreover, in this paper, we sometimes use a special symbol ⊥ to expand a finite set {0, 1}n, thus
default ⊥ /∈ {0, 1}n and then consider a new finite set {0, 1}n∪⊥. Roughly speaking, the reason is that,
when we define a special unitary operation, we need ⊥ to denote ”not defined (yet)” or ”computation
failure”.

As for the detailed representation of {0, 1}n ∪ ⊥, we use the extension method introduced in
[CFHL21]. That is to say, we use a classical encoding function enc that enc(⊥) = 1||0n ∈ {0, 1}n+1

and enc(x) = 0||x ∈ {0, 1}n+1 for any x ∈ {0, 1}n, then the set {0, 1}n ∪ ⊥ can be embedded into the
set {0, 1}n+1. Under this representation, the binary operation x ⊕ y for x, y ∈ {0, 1}n ∪ ⊥ that used
in this paper actually means enc(x) ⊕ enc(y), where operation ⊕ denotes bitwise addition modulo 2,
a group operation on {0, 1}n+1. Overall, with this representation, the quantum register defined over
set {0, 1}n ∪ ⊥ is implemented by a quantum register defined over set {0, 1}n+1.

B QROM Lemmas
Lemma 9 (Simulate the QROM [Zha12]). Let O be a random oracle, and H be a function uniformly
chosen from the set of 2q-wise independent functions. For any algorithm A that has quantum access
to its oracle and makes at most q queries, we have Pr[1← AH(z)] = Pr[1← AO(z)] for any input z.

Semi-classical oracle. For subset S ⊆ {0, 1}m, Let fS be the function that fS(x) = 1 if x ∈ S, and
fS(x) = 0 otherwise. The semi-classical oracle OSC

S performs the following operation on input state∑
x∈X ,z∈{0,1}∗ αx,z|x, z〉:

1. Initialize a single qubit L with |0〉L, transform state
∑

x∈X ,z∈{0,1}∗ αx,z|x, z〉|0〉L into state∑
x∈X ,z∈{0,1}∗ αx,z|x, z〉|fS(x)〉L.

2. Measure L and output the measurement outcome.

In the execution of an quantum algorithm that has oracle access to OSC
S , Denote Find as the event

that OSC
S ever outputs 1.

Lemma 10 (Semi-classical O2H [AHU19]). Let H,G : {0, 1}m → {0, 1}n be random functions such
that H(x) = G(x) for any x /∈ S, where S ⊆ {0, 1}m. Let z be a random bitstring, suppose that
H,G, S, z may have arbitrary joint distribution D. Let H\S be an oracle that first queries OSC

S and
then queries H.

Let A be an oracle algorithm (not necessarily unitary) with query depth d. Define

Pleft := Pr[1← AH(z) : (H,G, S, z)← D],
Pright := Pr[1← AH\S(z) : (H,G, S, z)← D],
P ′right := Pr[1← AG(z) : (H,G, S, z)← D],

Pfind := Pr[Find occurs in AH\S(z) : (H,G, S, z)← D].

Then
|Pleft − Pright| ≤

√
(d+ 1) · Pfind,

∣∣Pleft − P ′right∣∣ ≤ 2
√

(d+ 1) · Pfind.

Lemma 11 (Search in the semi-classical oracle [AHU19]). Let A be a quantum oracle algorithm making
at most d queries to the semi-classical oracle with domain {0, 1}m. Let S ⊆ {0, 1}m and z ∈ {0, 1}∗,
suppose that S, z may have arbitrary joint distribution D. Let B be an algorithm that on input z chooses
i

$← {1, . . . , d}, runs AOSC
∅ (z) until (just before) the i-th query, then measures all query input registers

in the computational basis and outputs the set T of the measurement outcomes. Then

Pr[Find occurs in AO
SC
S (z) : (S, z)← D] ≤ 4d · Pr[S ∩ T 6= ∅ ∧ T ← B(z) : (S, z)← D].
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C Proof of Lemma 2
Proof of Lemma 2. By Eq. (13), we have

‖[Extf ,StdDecompx]‖ =

∥∥∥∥∥
[∑
t∈Y
|t〉〈t|T ⊗M

Rf
t

DqP,StdDecompx

]∥∥∥∥∥
=

∥∥∥∥∥∑
t∈Y
|t〉〈t|T ⊗

[
M

Rf
t

DqP,StdDecompx

]∥∥∥∥∥
(a)

≤ max
t∈Y

∥∥∥[MRf
t

DqP,StdDecompx

]∥∥∥ ,
where (a) uses the following corollary:

Corollary 5 ([DFMS22], Corollary 2.2). If A =
∑

x |x〉〈x| ⊗Ax, i.e., A is a controlled operator, then
‖A‖ ≤ maxx ‖Ax‖.

By the result of Appendix C.1,∥∥∥[MRf
t

DqP,StdDecompx

]∥∥∥ ≤ 16 ·
√

ΓRf
t
/2n.

Then
‖[Extf ,StdDecompx]‖ ≤ max

t∈Y

∥∥∥[MRf
t

DqP,StdDecompx

]∥∥∥ ≤ 16 ·
√

max
t∈Y

ΓRf
t
/2n.

By the definition of CStO in Definition 2, we have

‖[CStO,Σ⊥]‖ =

∥∥∥∥∥∥
 ∑
x∈{0,1}m

|x〉〈x|X ⊗ StdDecompx ◦ CNOTx
YDq
◦ StdDecompx,Σ

⊥

∥∥∥∥∥∥
(b)

≤ max
x∈{0,1}m

‖[StdDecompx ◦ CNOTx
YDq
◦ StdDecompx,Σ

⊥]‖

(c)

≤ 2 · max
x∈{0,1}m

‖[StdDecompx,Σ
⊥]‖.

Here (b) uses Corollary 5 again, (c) uses the fact that CNOTx
YDq

is naturally commute with Σ⊥ for any
x ∈ {0, 1}m.

By the result of Appendix C.2,∥∥[StdDecompx,Σ
⊥]∥∥ ≤ 4 ·

√
|Γx|/2n,

where set Γx := {y ∈ {0, 1}n|f(x, y) = t}, then by Eq. (11)

‖[CStO,Σ⊥]‖ ≤ 8 max
x∈{0,1}m

√
|Γx|/2n = 8 ·

√
ΓRf

t
/2n.

C.1 Bound on
∥∥∥[MRf

t
DqP

, StdDecompx

]∥∥∥
For fixed function f , t ∈ Y and x ∈ {0, 1}m, define set Γx := {y ∈ {0, 1}n|f(x, y) = t}. As defined
in Section 2.4 and Section 2.5, M

Rf
t

DqP acts on registers DqP and StdDecompx acts on register Dq.
Moreover, for a computational basis state |D, p〉 on registers DqP, where D ∈ Dq and p ∈ {0, 1}m+1,
it is straightforward to check that

M
Rf

t

DqP|D, p〉 =

{
|D, p⊕ z〉 if (z,D(z)) ∈ Rf

t ∧ ∄z′ < z s.t. (z′, D(z′)) ∈ Rf
t ,

|D, p⊕⊥〉 otherwise.
(55)
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For any state |Φ〉 on registers DqP with norm 1, we can denote

|Φ〉 =
∑

D∈Dq,p∈{0,1}m+1

αD,p|D, p〉,

where
∑

D∈Dq,p∈{0,1}m+1 |αD,p|2 = 1. Next, by using x, we can separate state |Φ〉 into eight mutual
orthogonal parts |Φ1〉 to |Φ8〉 that

|Φ〉 =
8∑

i=1

|Φi〉, ‖|Φ〉‖2 =

8∑
i=1

‖|Φi〉‖2. (56)

Here |Φ1〉 to |Φ8〉 are the following states:

|Φ1〉 =
∑

D∈Dq,p∈{0,1}m+1

D(x)=⊥,∄z s.t. (z,D(z))∈Rf
t

βD,p|D, p〉,

|Φ2〉 =
∑

D∈Dq,p∈{0,1}m+1

D(x)=⊥,∃zD<x s.t. (zD,D(zD))∈Rf
t

βD,p|D, p〉,

|Φ3〉 =
∑

D∈Dq,p∈{0,1}m+1

D(x)=⊥,∃zD>x s.t. (zD,D(zD))∈Rf
t

∄z′<zD s.t. (z′,D(z′))∈Rf
t

βD,p|D, p〉,

|Φ4〉 =
∑

D∈Dq,p∈{0,1}m+1,n(D)<q
r∈{0,1}n,r ̸=0n

D(x)=⊥,∄z ̸=x s.t. (z,D(z))∈Rf
t

βD,p,r|D ∪ (x, r̂), p〉,

|Φ5〉 =
∑

D∈Dq,p∈{0,1}m+1,n(D)<q
r=0n

D(x)=⊥,∄z ̸=x s.t. (z,D(z))∈Rf
t

βD,p,r|D ∪ (x, r̂), p〉,

|Φ6〉 =
∑

D∈Dq,p∈{0,1}m+1,n(D)<q
r∈{0,1}n

D(x)=⊥,∃zD<x s.t. (zD,D(zD))∈Rf
t

βD,p,r|D ∪ (x, r̂), p〉,

|Φ7〉 =
∑

D∈Dq,p∈{0,1}m+1,n(D)<q
r∈{0,1}n,r ̸=0n

D(x)=⊥,∃zD>x s.t. (zD,D(zD))∈Rf
t

∄z′<zD,z′ ̸=x s.t. (z′,D(z′))∈Rf
t

βD,p,r|D ∪ (x, r̂), p〉,

|Φ8〉 =
∑

D∈Dq,p∈{0,1}m+1,n(D)<q
r=0n

D(x)=⊥,∃zD>x s.t. (zD,D(zD))∈Rf
t

∄z′<zD,z′ ̸=x s.t. (z′,D(z′))∈Rf
t

βD,p,r|D ∪ (x, r̂), p〉.

Let |Ψi〉 :=
[
M

Rf
t

DqP,StdDecompx

]
|Φi〉 for i = 1, . . . , 8, by Eq. (55) and the definition of StdDecompx
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defined in Section 2.4, we compute:

|Ψ1〉 =
1√
2n

∑
y∈Γx

∑
D∈Dq,p∈{0,1}m+1

D(x)=⊥,∄z s.t. (z,D(z))∈Rf
t

βD,p (|D ∪ (x, y), p⊕ x〉 − |D ∪ (x, y), p⊕⊥〉) ,

|Ψ2〉 = 0,

|Ψ3〉 =
∑
y∈Γx

∑
D∈Dq,p∈{0,1}m+1

D(x)=⊥,∃zD>x s.t. (zD,D(zD))∈Rf
t

∄z′<zD s.t. (z′,D(z′))∈Rf
t

βD,p√
2n

(|D ∪ (x, y), p⊕ x〉 − |D ∪ (x, y), p⊕ zD〉) ,

|Ψ4〉 =
∑
y∈Γx

∑
D∈Dq,p∈{0,1}m+1,n(D)<q

r∈{0,1}n,r ̸=0n

D(x)=⊥,∄z ̸=x s.t. (z,D(z))∈Rf
t

(−1)y·r

2n
βD,p,r

(
|D ∪ (x, 0̂n), p⊕ x〉 − |D, p⊕ x〉
+|D, p⊕⊥〉 − |D ∪ (x, 0̂n), p⊕⊥〉

)
,

|Ψ5〉 =
∑
y∈Γx

∑
D∈Dq,p∈{0,1}m+1,n(D)<q

r=0n

D(x)=⊥,∄z ̸=x s.t. (z,D(z))∈Rf
t

βD,p,r√
2n
· StdDecompx

(
|D ∪ (x, y), p⊕⊥〉
−|D ∪ (x, y), p⊕ x〉

)
,

|Ψ6〉 = 0,

|Ψ7〉 =
∑
y∈Γx

∑
D∈Dq,p∈{0,1}m+1,n(D)<q

r∈{0,1}n,r ̸=0n

D(x)=⊥,∃zD>x s.t. (zD,D(zD))∈Rf
t

∄z′<zD,z′ ̸=x s.t. (z′,D(z′))∈Rf
t

(−1)y·r

2n
βD,p,r

(
|D ∪ (x, 0̂n), p⊕ x〉 − |D, p⊕ x〉
+|D, p⊕ zD〉 − |D ∪ (x, 0̂n), p⊕ zD〉

)
,

|Ψ8〉 =
∑
y∈Γx

∑
D∈Dq,p∈{0,1}m+1,n(D)<q

r=0n

D(x)=⊥,∃zD>x s.t. (zD,D(zD))∈Rf
t

∄z′<zD,z′ ̸=x s.t. (z′,D(z′))∈Rf
t

βD,p,r√
2n
· StdDecompx

(
|D ∪ (x, y), p⊕ zD〉
−|D ∪ (x, y), p⊕ x〉

)
.

For state |Ψ1〉, we compute

‖|Ψ1〉‖2 =

∥∥∥∥∥∥∥∥∥
1√
2n

∑
y∈Γx

∑
D∈Dq,p∈{0,1}m+1

D(x)=⊥,∄z s.t. (z,D(z))∈Rf
t

βD,p (|D ∪ (x, y), p⊕ x〉 − |D ∪ (x, y), p⊕⊥〉)

∥∥∥∥∥∥∥∥∥
2

(a)

≤ 2

∥∥∥∥∥∥∥∥∥
1√
2n

∑
y∈Γx

∑
D∈Dq,p∈{0,1}m+1

D(x)=⊥,∄z s.t. (z,D(z))∈Rf
t

βD,p|D ∪ (x, y), p⊕ x〉

∥∥∥∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥∥∥∥
1√
2n

∑
y∈Γx

∑
D∈Dq,p∈{0,1}m+1

D(x)=⊥,∄z s.t. (z,D(z))∈Rf
t

βD,p|D ∪ (x, y), p⊕⊥〉

∥∥∥∥∥∥∥∥∥
2

=
2

2n

∑
y∈Γx

∑
D∈Dq,p∈{0,1}m+1

D(x)=⊥,∄z s.t. (z,D(z))∈Rf
t

|βD,p|2 +
2

2n

∑
y∈Γx

∑
D∈Dq,p∈{0,1}m+1

D(x)=⊥,∄z s.t. (z,D(z))∈Rf
t

|βD,p|2

=
4|Γx|
2n

∑
D∈Dq,p∈{0,1}m+1

D(x)=⊥,∄z s.t. (z,D(z))∈Rf
t

|βD,p|2 =
4|Γx|
2n
‖|Φ1〉‖2.

(57)
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Here (a) uses the following corollary.
Corollary 6. For any state |ψ1〉 to |ψq〉, we have ‖

∑q
i=1 |ψi〉‖2 ≤ q ·

∑q
i=1 ‖|ψi〉‖2.

Proof of Corollary 6. The proof is simple:∥∥∥∥∥
q∑

i=1

|ψi〉

∥∥∥∥∥
2

(a)

≤

(
q∑

i=1

‖|ψi〉‖

)2
(b)

≤ q ·
q∑

i=1

‖|ψi〉‖2.

Here (a) uses the triangle inequality, and (b) uses the AM-QM (or Jensen’s) inequality.

Similar with the computation of ‖|Ψ1〉‖2, we also have

‖|Ψ3〉‖2 ≤
4|Γx|
2n
‖|Φ3〉‖2, ‖|Ψ5〉‖2 ≤

4|Γx|
2n
‖|Φ5〉‖2, ‖|Ψ8〉‖2 ≤

4|Γx|
2n
‖|Φ8〉‖2. (58)

For state |Ψ4〉, we compute

‖|Ψ4〉‖2 =

∥∥∥∥∥∥∥∥∥∥∥∥
∑
y∈Γx

∑
D∈Dq,p∈{0,1}m+1,n(D)<q

r∈{0,1}n,r ̸=0n

D(x)=⊥,∄z ̸=x s.t. (z,D(z))∈Rf
t

(−1)y·r

2n
βD,p,r

(
|D ∪ (x, 0̂n), p⊕ x〉 − |D, p⊕ x〉
+|D, p⊕⊥〉 − |D ∪ (x, 0̂n), p⊕⊥〉

)
∥∥∥∥∥∥∥∥∥∥∥∥

2

(b)

≤ 4

∥∥∥∥∥∥∥∥∥∥∥∥
∑
y∈Γx

∑
D∈Dq,p∈{0,1}m+1,n(D)<q

r∈{0,1}n,r ̸=0n

D(x)=⊥,∄z ̸=x s.t. (z,D(z))∈Rf
t

(−1)y·r

2n
βD,p,r|D ∪ (x, 0̂n), p⊕ x〉

∥∥∥∥∥∥∥∥∥∥∥∥

2

+ 4

∥∥∥∥∥∥∥∥∥∥∥∥
∑
y∈Γx

∑
D∈Dq,p∈{0,1}m+1,n(D)<q

r∈{0,1}n,r ̸=0n

D(x)=⊥,∄z ̸=x s.t. (z,D(z))∈Rf
t

(−1)y·r

2n
βD,p,r|D, p⊕ x〉

∥∥∥∥∥∥∥∥∥∥∥∥

2

+ 4

∥∥∥∥∥∥∥∥∥∥∥∥
∑
y∈Γx

∑
D∈Dq,p∈{0,1}m+1,n(D)<q

r∈{0,1}n,r ̸=0n

D(x)=⊥,∄z ̸=x s.t. (z,D(z))∈Rf
t

(−1)y·r

2n
βD,p,r|D, p⊕⊥〉

∥∥∥∥∥∥∥∥∥∥∥∥

2

+ 4

∥∥∥∥∥∥∥∥∥∥∥∥
∑
y∈Γx

∑
D∈Dq,p∈{0,1}m+1,n(D)<q

r∈{0,1}n,r ̸=0n

D(x)=⊥,∄z ̸=x s.t. (z,D(z))∈Rf
t

(−1)y·r

2n
βD,p,r|D ∪ (x, 0̂n), p⊕⊥〉

∥∥∥∥∥∥∥∥∥∥∥∥

2

=
16

2n

∑
D∈Dq,p∈{0,1}m+1,n(D)<q

D(x)=⊥,∄z ̸=x s.t. (z,D(z))∈Rf
t

∣∣∣∣∣∣
∑

y∈Γx,r∈{0,1}n,r ̸=0n

(−1)y·r√
2n

βD,p,r

∣∣∣∣∣∣
2

(c)

≤ 16|Γx|
2n

∑
D∈Dq,p∈{0,1}m∪⊥,n(D)<q

D(x)=⊥,∄z ̸=x s.t. (z,D(z))∈Rf
t

∑
y∈Γx

∣∣∣∣∣∣
∑

r∈{0,1}n,r ̸=0n

(−1)y·r√
2n

βD,p,r

∣∣∣∣∣∣
2

.

(59)
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Here (b) uses Corollary 6 again, and (c) uses the Cauchy-Schwarz inequality.
Indeed, we can compute

‖|Φ4〉‖2 =

∥∥∥∥∥∥∥∥∥∥∥∥
∑

D∈Dq,p∈{0,1}m+1,n(D)<q
r∈{0,1}n,r ̸=0n

D(x)=⊥,∄z ̸=x s.t. (z,D(z))∈Rf
t

βD,p,r|D ∪ (x, r̂), p〉

∥∥∥∥∥∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥∥∥∥∥∥
∑

D∈Dq,p∈{0,1}m+1,n(D)<q
r∈{0,1}n,r ̸=0n

D(x)=⊥,∄z ̸=x s.t. (z,D(z))∈Rf
t

∑
y∈{0,1}n

βD,p,r
(−1)y·r√

2n
|D ∪ (x, y), p〉

∥∥∥∥∥∥∥∥∥∥∥∥

2

=
∑

D∈Dq,p∈{0,1}m+1,n(D)<q

D(x)=⊥,∄z ̸=x s.t. (z,D(z))∈Rf
t

∑
y∈{0,1}n

∣∣∣∣∣∣
∑

r∈{0,1}n,r ̸=0n

βD,p,r
(−1)y·r√

2n

∣∣∣∣∣∣
2

≥
∑

D∈Dq,p∈{0,1}m+1,n(D)<q

D(x)=⊥,∄z ̸=x s.t. (z,D(z))∈Rf
t

∑
y∈Γx

∣∣∣∣∣∣
∑

r∈{0,1}n,r ̸=0n

(−1)y·r√
2n

βD,p,r

∣∣∣∣∣∣
2

.

Combine above inequality with Eq. (59), we get

‖|Ψ4〉‖2 ≤
16|Γx|
2n
‖|Φ4〉‖2. (60)

Similar with the computation of ‖|Ψ4〉‖2, we also have

‖|Ψ7〉‖2 ≤
16|Γx|
2n
‖|Φ7〉‖2. (61)

Combining Eq. (57), (58), (60) and (61), we have∥∥∥[MRf
t

DqP,StdDecompx

]∥∥∥ = max
|Φ⟩,∥|Φ⟩∥=1

∥∥∥[MRf
t

DqP,StdDecompx

]
|Φ〉
∥∥∥

= max
|Φ⟩,∥|Φ⟩∥=1

∥∥∥∥∥[MRf
t

DqP,StdDecompx

] 8∑
i=1

|Φi〉

∥∥∥∥∥
(d)

≤ 4 ·
2
√
|Γx|√
2n

+ 2 ·
4
√
|Γx|√
2n

= 16

√
|Γx|
2n

(e)

≤ 16 ·

√
ΓRf

t

2n
.

Here (d) uses the triangle inequality and Eq. (56), (e) uses the fact that ΓRf
t
= max

x∈{0,1}m
|Γx|.

C.2 Bound on
∥∥[StdDecompx,Σ

⊥]∥∥
For fixed function f , t ∈ Y and x ∈ {0, 1}m, define set Γx := {y ∈ {0, 1}n|f(x, y) = t}. For any
state |Φ〉 =

∑
D∈Dq

αD|D〉 on register Dq with norm 1 (
∑

D∈Dq
|αD|2 = 1), we separate |Φ〉 into four

mutual orthogonal parts that

|Φ〉 =
4∑

i=1

|Φi〉, ‖|Φ〉‖2 =

4∑
i=1

‖|Φi〉‖2. (62)
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Here |Φ1〉 to |Φ4〉 are the following states:

|Φ1〉 =
∑

D∈Dq,∃z ̸=x s.t. (z,D(z))∈Rf
t

βD|D〉,

|Φ2〉 =
∑

D∈Dq,D(x)=⊥
∄z s.t. (z,D(z))∈Rf

t

βD|D〉,

|Φ3〉 =
∑

D∈Dq,n(D)<q,r∈{0,1}n,r ̸=0n

D(x)=⊥,∄z ̸=x s.t. (z,D(z))∈Rf
t

βD,r|D ∪ (x, r̂)〉,

|Φ4〉 =
∑

D∈Dq,n(D)<q,r=0n

D(x)=⊥,∄z ̸=x s.t. (z,D(z))∈Rf
t

βD,r|D ∪ (x, r̂)〉.

Let |Ψi〉 :=
[
StdDecompx,Σ

⊥] |Φi〉 for i = 1, . . . , 4, by the definition of StdDecompx and Σ⊥ defined
in Section 2.4 and Section 2.5, respectively, we compute:

|Ψ1〉 = 0,

|Ψ2〉 =
1√
2n

∑
y∈Γx

∑
D∈Dq,D(x)=⊥

∄z s.t. (z,D(z))∈Rf
t

βD|D ∪ (x, y)〉,

|Ψ3〉 =
1√
2n

∑
y∈Γx

∑
D∈Dq,n(D)<q,r∈{0,1}n,r ̸=0n

D(x)=⊥,∄z ̸=x s.t. (z,D(z))∈Rf
t

(−1)y·r√
2n

βD,r(|D ∪ (x, 0̂n)〉 − |D〉),

|Ψ4〉 =
1√
2n

∑
y∈Γx

∑
D∈Dq,n(D)<q,r=0n

D(x)=⊥,∄z ̸=x s.t. (z,D(z))∈Rf
t

βD,r|D ∪ (x, y)〉.

For state |Ψ2〉, we compute

‖|Ψ2〉‖2 =

∥∥∥∥∥∥∥∥∥
1√
2n

∑
y∈Γx

∑
D∈Dq,D(x)=⊥

∄z s.t. (z,D(z))∈Rf
t

βD|D ∪ (x, y)〉

∥∥∥∥∥∥∥∥∥
2

=
1

2n

∑
D∈Dq,D(x)=⊥

∄z s.t. (z,D(z))∈Rf
t

∑
y∈Γx

|βD|2

=
|Γx|
2n

∑
D∈Dq,D(x)=⊥

∄z s.t. (z,D(z))∈Rf
t

|βD|2 =
|Γx|
2n
‖|Φ2〉‖2.

(63)

Similar with the computation of ‖|Ψ2〉‖2, we also have

‖|Ψ4〉‖2 ≤
|Γx|
2n
‖|Φ4〉‖2. (64)
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For state |Ψ3〉, we compute

‖|Ψ3〉‖2 =

∥∥∥∥∥∥∥∥∥
1√
2n

∑
y∈Γx

∑
D∈Dq,n(D)<q,r∈{0,1}n,r ̸=0n

D(x)=⊥,∄z ̸=x s.t. (z,D(z))∈Rf
t

(−1)y·r√
2n

βD,r(|D ∪ (x, 0̂n)〉 − |D〉)

∥∥∥∥∥∥∥∥∥
2

(a)

≤ 2

∥∥∥∥∥∥∥∥∥
1√
2n

∑
y∈Γx

∑
D∈Dq,n(D)<q,r∈{0,1}n,r ̸=0n

D(x)=⊥,∄z ̸=x s.t. (z,D(z))∈Rf
t

(−1)y·r√
2n

βD,r|D ∪ (x, 0̂n)〉

∥∥∥∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥∥∥∥
1√
2n

∑
y∈Γx

∑
D∈Dq,n(D)<q,r∈{0,1}n,r ̸=0n

D(x)=⊥,∄z ̸=x s.t. (z,D(z))∈Rf
t

(−1)y·r√
2n

βD,r|D〉

∥∥∥∥∥∥∥∥∥
2

=
4

2n

∑
D∈Dq,n(D)<q

D(x)=⊥,∄z ̸=x s.t. (z,D(z))∈Rf
t

∣∣∣∣∣∣
∑

y∈Γx,r∈{0,1}n,r ̸=0n

(−1)y·r√
2n

βD,r

∣∣∣∣∣∣
2

(b)

≤ 4|Γx|
2n

∑
D∈Dq,n(D)<q

D(x)=⊥,∄z ̸=x s.t. (z,D(z))∈Rf
t

∑
y∈Γx

∣∣∣∣∣∣
∑

r∈{0,1}n,r ̸=0n

(−1)y·r√
2n

βD,r

∣∣∣∣∣∣
2

.

(65)

Here (a) uses Corollary 6, (b) uses the Cauchy-Schwarz inequality. In addition, we have

‖|Φ3〉‖2 =

∥∥∥∥∥∥∥∥∥
∑

D∈Dq,n(D)<q,r∈{0,1}n,r ̸=0n

D(x)=⊥,∄z ̸=x s.t. (z,D(z))∈Rf
t

βD,r|D ∪ (x, r̂)〉

∥∥∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥∥
∑

D∈Dq,n(D)<q,r∈{0,1}n,r ̸=0n

D(x)=⊥,∄z ̸=x s.t. (z,D(z))∈Rf
t

∑
y∈{0,1}n

βD,r
(−1)y·r√

2n
|D ∪ (x, y)〉

∥∥∥∥∥∥∥∥∥
2

=
∑

D∈Dq,n(D)<q

D(x)=⊥,∄z ̸=x s.t. (z,D(z))∈Rf
t

∑
y∈{0,1}n

∣∣∣∣∣∣
∑

r∈{0,1}n,r ̸=0n

βD,p,r
(−1)y·r√

2n

∣∣∣∣∣∣
2

≥
∑

D∈Dq,n(D)<q

D(x)=⊥,∄z ̸=x s.t. (z,D(z))∈Rf
t

∑
y∈Γx

∣∣∣∣∣∣
∑

r∈{0,1}n,r ̸=0n

(−1)y·r√
2n

βD,p,r

∣∣∣∣∣∣
2

.

Combine above inequality with Eq. (65), we get

‖|Ψ3〉‖2 ≤
4|Γx|
2n
‖|Φ3〉‖2. (66)
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Combining Eq. (63), (64) and (66), we have∥∥[StdDecompx,Σ
⊥]∥∥ = max

|Φ⟩,∥|Φ⟩∥=1

∥∥[StdDecompx,Σ
⊥] |Φ〉∥∥

= max
|Φ⟩,∥|Φ⟩∥=1

∥∥∥∥∥[StdDecompx,Σ
⊥] 4∑

i=1

|Φ〉

∥∥∥∥∥
(c)

≤
√
|Γx|
2n

+

√
|Γx|
2n

+ 2 ·
√
|Γx|
2n

= 4 ·
√
|Γx|
2n

.

Here (c) uses the triangle inequality and Eq. (62).

D Proof of Theorem 3
Proof of Theorem 3. Without loss of generality, we can assume that A is a unitary quantum oracle
algorithm: If A is not a unitary quantum oracle algorithm, we can efficiently construct a unitary
variant of A by the well-known fact mentioned in Appendix A. Then, we suppose that S and z are
fixed. Denote Q as the quantum register of A, let L be a “query log” register consisting of q1 qubits.
Define

PS,z
left := Pr

[
1← AH,oReadf (z) : (S, z)

]
,

PS,z
right := Pr[1← AH\S,oReadf (z) : (S, z)],

PS,z
find := Pr[Find occurs in AH\S,oReadf (z) : (S, z)].

Then
Pleft = E

(S,z)←D
PS,z
left , Pright = E

(S,z)←D
PS,z
right, Pfind = E

(S,z)←D
PS,z
find.

Define a quantum algorithm B1(S, z) executed on quantum registers Q, Dq and L as follows:

1. Initialize the register L with state |0q1〉.

2. B1(S, z) implements the compressed standard oracle with database register Dq, the initial state
on Dq is |D⊥〉.

3. B1(S, z) performs all operations that AH,oReadf (z) does. Here B1(S, z) can implement queries to
H and oReadf by unitary operation CStO and Readf , respectively.

4. Measure register L to get outcome 0q1 , then measure register Q to get the output of AH,oReadf (z)
and output it.

Obviously register L has no effect on the execution of AH,oReadf (z), as it is always |0q1〉, hence we get

Pr[1← B1(S, z) : (S, z)] = Pr[1← AH,oReadf (z) : (S, z)] = PS,z
left .

Next we define a new quantum algorithm B2(S, z) executed on registers Q, Dq and L as follows:

1. Initialize the register L with state |0q1〉.

2. B2(S, z) implements the compressed standard oracle with database register Dq, the initial state
on Dq is |D⊥〉.

3. B2(S, z) performs all operations that AH,oReadf (z) does. Here B2(S, z) can implement queries to
H and oReadf by operation CStO and Readf , respectively.

4. For all 1 ≤ i ≤ q1, just after AH,oReadf (z) performs its i-th oracle query to H, B2(S, z) applies
the unitary operation US to registers Dq and L. Here US is defined as23:

US |D〉 |l1, l2, . . . , lq1〉 :=

{
|D〉 |l1, . . . , lq1〉 (D /∈ S)
|D〉 |l1, . . . , li ⊕ 1, . . . , lq1〉 (D ∈ S) .

23Note that the unitary operation US should be related to the query number i, however, we omit it for simplify.
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5. Measure register L to get outcome l, then measure register Q to get the output of AH,oReadf (z)
and output it.

It is straightforward to check that
Pr[1← B2(S, z) : (S, z)] = Pr[1← AH\S,oReadf (z) : (S, z)] = PS,z

right,

Pr[l 6= 0q1 occurs in B2(S, z) : (S, z)] = Pr[Find occurs in AH\S,oReadf (z) : (S, z)] = PS,z
find.

Since A is a unitary quantum oracle algorithm, the final state of B1(S, z) (resp. B2(S, z)) before
measure can be written as

|Ψ1〉|0q1〉 :=
q1+q2∏
i=1

(U i
2 ◦ Readyi

f ◦ U
i
1 ◦ CStOxi)|ψ〉|D⊥〉|0q1〉 =

q1∏
i=1

(U i
3 ◦ CStO)|ψ〉|D⊥〉|0q1〉

(resp. |Ψ2〉 :=
q1+q2∏
i=1

(U i
2 ◦ Readyi

f ◦ U
i
1 ◦ U

xi

S ◦ CStOxi)|ψ〉|D⊥〉|0q1〉 =
q1∏
i=1

(U i
3 ◦ US ◦ CStO)|ψ〉|D⊥〉|0q1〉).

(67)
Here xi, yi ∈ {0, 1} and xi + yi = 1 (1 ≤ i ≤ q1 + q2), |ψ〉|D⊥〉|0q1〉 is the initial state of algorithm
B1(S, z) and B2(S, z) on registers QDqL. U1

1 , . . . , U
q1+q2
1 and U1

2 , . . . , U
q1+q2
2 are the unitary operation

act on register Q between oracle queries, U1
3 , . . . , U

q1
3 are the unitary operation that alternatingly

applies a unitary operation on registers Q and applies Readf .
By the definition of unitary operation US , the state |Ψ2〉 can be rewritten as

|Ψ2〉 =
∑

l1,...,lq1∈{0,1}q1

q1∏
i=1

(U i
3 ◦ χli ◦ CStO)|ψ〉|D⊥〉|l1, . . . , lq1〉,

where χ1 := JS , χ0 := I− JS . For a fixed q1 bits string l1, . . . , lq1 , define state

|Φ〉l1,...,lq1 :=

q1∏
i=1

(U i
3 ◦ χli ◦ CStO)|ψ〉|D⊥〉,

we then have
|Ψ2〉 =

∑
l1,...,lq1∈{0,1}q1

|Φ〉l1,...,lq1 |l1, . . . , lq1〉

and

PS,z
find =

l1,...,lq1 ̸=0q1∑
l1,...,lq1∈{0,1}q1

∥∥|Φ〉l1,...,lq1∥∥2 = 1− ‖|Φ〉0q1 ‖2 = 1−

∥∥∥∥∥
q1∏
i=1

(U i
3 ◦ χ0 ◦ CStO)|ψ〉|D⊥〉

∥∥∥∥∥
2

. (68)

Define values a1, . . . , aq1 and b1, . . . , bq1 as:

aj :=

∥∥∥∥∥
j∏

i=1

(U i
3 ◦ χ0 ◦ CStO)|ψ〉|D⊥〉

∥∥∥∥∥
2

(j = 1, . . . , q1),

b1 :=
∥∥U1

3 ◦ χ1 ◦ CStO|ψ〉|D⊥〉
∥∥2 , bj :=

∥∥∥∥∥U j
3 ◦ χ1 ◦ CStO ◦

j−1∏
i=1

(U i
3 ◦ χ0 ◦ CStO)|ψ〉|D⊥〉

∥∥∥∥∥
2

(j = 2, . . . , q1).

For k = 2, . . . , q1, we then have

1− ak = 1−

∥∥∥∥∥
k∏

i=1

(U i
3 ◦ χ0 ◦ CStO)|ψ〉|D⊥〉

∥∥∥∥∥
2

= 1−

∥∥∥∥∥Uk
3 ◦ χ0 ◦ CStO ◦

k−1∏
i=1

(U i
3 ◦ χ0 ◦ CStO)|ψ〉|D⊥〉

∥∥∥∥∥
2

(a)
= 1−

∥∥∥∥∥Uk
3 ◦ I ◦ CStO ◦

k−1∏
i=1

(U i
3 ◦ χ0 ◦ CStO)|ψ〉|D⊥〉

∥∥∥∥∥
2

+

∥∥∥∥∥Uk
3 ◦ χ1 ◦ CStO ◦

k−1∏
i=1

(U i
3 ◦ χ0 ◦ CStO)|ψ〉|D⊥〉

∥∥∥∥∥
2

= 1− ak−1 + bk

47



Here (a) uses the fact that ‖|ϕ1〉 + |ϕ2〉‖2 = ‖|ϕ1〉‖2 + ‖|ϕ2〉‖2 if |ϕ1〉 and |ϕ2〉 are orthogonal. Note
that 1− a1 = b1 by the definition of a1 and b1, then by Eq. (68), it is easily to obtain that

PS,z
find = 1− aq1 =

q1∑
j=1

bj .

Define states |A1〉, . . . , |Aq1〉 and |B1〉, . . . , |Bq1〉 as:

|Aj〉 :=
q1∏

i=j+1

(U i
3 ◦ CStO) ◦

j∏
i=1

(U i
3 ◦ χ0 ◦ CStO)|ψ〉|D⊥〉 (j = 1, . . . , q1 − 1),

|Aq1〉 :=
q1∏
i=1

(U i
3 ◦ χ0 ◦ CStO)|ψ〉|D⊥〉 = |Φ〉0q1 ,

|B1〉 :=
q1∏
i=2

(U i
3 ◦ CStO) ◦ U1

3 ◦ χ1 ◦ CStO|ψ〉|D⊥〉,

|Bj〉 :=
q1∏

i=j+1

(U i
3 ◦ CStO) ◦ U j

3 ◦ χ1 ◦ CStO ◦
j−1∏
i=1

(U i
3 ◦ χ0 ◦ CStO)|ψ〉|D⊥〉 (j = 2, . . . , q1 − 1),

|Bq1〉 := Uq1
3 ◦ χ1 ◦ CStO ◦

q1−1∏
i=1

(U i
3 ◦ χ0 ◦ CStO)|ψ〉|D⊥〉.

For k = 1, . . . , q1 − 2, we then have

|Ak〉 =
q1∏

i=k+1

(U i
3 ◦ CStO) ◦

k∏
i=1

(U i
3 ◦ χ0 ◦ CStO)|ψ〉|D⊥〉

=

q1∏
i=k+2

(U i
3 ◦ CStO) ◦ Uk+1

3 ◦ CStO ◦
k∏

i=1

(U i
3 ◦ χ0 ◦ CStO)|ψ〉|D⊥〉

=

q1∏
i=k+2

(U i
3 ◦ CStO) ◦ Uk+1

3 ◦ χ0 ◦ CStO ◦
k∏

i=1

(U i
3 ◦ χ0 ◦ CStO)|ψ〉|D⊥〉

+

q1∏
i=k+2

(U i
3 ◦ CStO) ◦ Uk+1

3 ◦ χ1 ◦ CStO ◦
k∏

i=1

(U i
3 ◦ χ0 ◦ CStO)|ψ〉|D⊥〉

= |Ak+1〉+ |Bk+1〉.

Note that |Aq1−1〉 = |Aq1〉+ |Bq1〉 by the definition of |Aq1−1〉, |Aq1〉 and |Bq1〉, |Ψ1〉 = |A1〉+ |B1〉 by
Eq. (67) and the definition of |A1〉 and |B1〉, then it is easily to obtain that

|Ψ1〉 =
q1∑
j=1

|Bj〉+ |Aq1〉 =
q1∑
j=1

|Bj〉+ |Φ〉0q1 .

Thus

‖|Ψ1〉|0q1〉 − |Ψ2〉‖2 =

∥∥∥∥∥∥
q1∑
j=1

|Bj〉|0q1〉+ |Φ〉0q1 |0q1〉 −
∑

l1,...,lq1∈{0,1}q1
|Φ〉l1,...,lq1 |l1, . . . , lq1〉

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
q1∑
j=1

|Bj〉|0q1〉 −
l1,...,lq1 ̸=0q1∑

l1,...,lq1∈{0,1}q1
|Φ〉l1,...,lq1 |l1, . . . , lq1〉

∥∥∥∥∥∥
2

(b)
=

∥∥∥∥∥∥
q1∑
j=1

|Bj〉

∥∥∥∥∥∥
2

+ PS,z
find

(c)

≤ q1 ·
q1∑
j=1

‖|Bj〉‖2 + PS,z
find

= q1 ·
q1∑
j=1

bj + PS,z
find = (q1 + 1)PS,z

find.
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Here (b) uses the fact that ‖|ϕ1〉+ |ϕ2〉‖2 = ‖|ϕ1〉‖2 + ‖|ϕ2〉‖2 if |ϕ1〉 and |ϕ2〉 are orthogonal, (c) uses
the Corollary 6.

By [AHU19] Lemma 3 and 4,∣∣∣PS,z
left − P

S,z
right

∣∣∣ = |Pr[1← B1(S, z) : (S, z)]− Pr[1← B2(S, z) : (S, z)]|

≤ ‖|Ψ1〉|0q1〉 − |Ψ2〉‖ ≤
√

(q1 + 1)PS,z
find

and ∣∣∣∣√PS,z
left −

√
PS,z
right

∣∣∣∣ = ∣∣∣√Pr[1← B1(S, z) : (S, z)]−
√
Pr[1← B2(S, z) : (S, z)]

∣∣∣
≤ ‖|Ψ1〉|0q1〉 − |Ψ2〉‖ ≤

√
(q1 + 1)PS,z

find

Note that we only consider a fixed (S, z) in above proof, for random distribution D of (S, z), the
final state of algorithm B1 (resp. B2) before measure is a mixed state

ρ1 = E
(S,z)←D

[|ΨSz
1 〉|0q1〉〈ΨSz

1 |〈0q1 |] (resp. ρ2 = E
(S,z)←D

[|ΨSz
2 〉〈ΨSz

2 |]).

Here |ΨSz
1 〉|0q1〉 is the state |Ψ1〉|0q1〉 from Eq. (67) for specific values of S, z, and analogously for

|ΨSz
2 〉. Then by monotonicity and joint concavity of fidelity (exactly as in [AHU19] Lemma 6 and 9),

we have
|Pleft − Pright| ≤ B(ρ1, ρ2) ≤

√
(q1 + 1)Pfind

and ∣∣∣√Pleft −√Pright∣∣∣ ≤ B(ρ1, ρ2) ≤
√
(q1 + 1)Pfind

Here B(ρ1, ρ2) is the Bures distance [NC16] between the mixed state ρ1 and ρ2.
For the value Pfind, we compute

Pfind = E
(S,z)←D

PS,z
find = E

(S,z)←D

q1∑
j=1

bj

= E
(S,z)←D

 q1∑
j=2

∥∥∥∥∥U j
3 ◦ χ1 ◦ CStO ◦

j−1∏
i=1

(U i
3 ◦ χ0 ◦ CStO)|ψ〉|D⊥〉

∥∥∥∥∥
2

+
∥∥U1

3 ◦ χ1 ◦ CStO|ψ〉|D⊥〉
∥∥2

= E
(S,z)←D

 q1∑
j=2

∥∥∥∥∥χ1 ◦ CStO ◦
j−1∏
i=1

(U i
3 ◦ χ0 ◦ CStO)|ψ〉|D⊥〉

∥∥∥∥∥
2

+
∥∥χ1 ◦ CStO|ψ〉|D⊥〉

∥∥2
(c)
= E

(S,z)←D

 q1∑
j=2

∥∥∥∥∥χ1 ◦ CStO ◦
j−1∏
i=1

(χ0 ◦ U i
3 ◦ CStO)|ψ〉|D⊥〉

∥∥∥∥∥
2

+
∥∥χ1 ◦ CStO ◦ χ0|ψ〉|D⊥〉

∥∥2
≤ E

(S,z)←D

 q1∑
j=2

‖χ1 ◦ CStO ◦ χ0‖2 + ‖χ1 ◦ CStO ◦ χ0‖2
 = q1 · E

(S,z)←D
‖χ1 ◦ CStO ◦ χ0‖2

= q1 · E
(S,z)←D

‖JS ◦ CStO ◦ (I− JS)‖2
(d)
= q1 · E

(S,z)←D
‖[JS ,CStO]‖2 .

Here (c) uses the fact that D⊥ /∈ S and U1
3 , . . . , U

q1
3 are naturally commute with χ0

24. (d) uses the
fact that

JS ◦ (I− JS)|ϕ〉 = (I− JS) ◦ JS |ϕ〉 = 0

for any state |ϕ〉.
24Note that U1

3 , . . . , U
q1
3 are the unitary operation that alternatingly applies a unitary operation on registers Q and

applies database read operation Readf , which are both commute with χ0.
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E The Quantum Circuit Implementation of Utest and Ucomp

By the Definition 4, ota1(sk, ·), ota2(pk, ·), ota3(pk, ·) and ota4(pk, ·) are deterministic algorithm that
efficiently computed. Thus, the unitary operation Uota1 , Uota2 , Uota3 and Uota4 defined as follows can
be efficiently implemented with quantum circuit by the basic theory of quantum computation.

Ufota |α, y1〉 := |α, y1 ⊕ fota(α)〉, Uota1 |α, y1〉 := |α, y1 ⊕ ota1(sk, α)〉,
Uota2 |y1, y2, y3〉 := |y1, y2, y3 ⊕ ota2(pk, y1, y2)〉,
Uota3 |α, y2, y3〉 := |y1, y2, y3 ⊕ ota3(pk, α, y2)〉,
Uota4 |α, y1, y2, y3〉 := |α, y1, y2, y3 ⊕ ota4(pk, α, y1, y2)〉.

Then by using unitary operation Uota1 and Uota2 above, Utest defined in Eq. (30) with initial state
|α〉|0m〉 on registers XotaY can be implemented by the following procedure:

• Initialize register R1, R2, R3 and R4 to 0, where R4 is a 1 qubit register.

• Apply Uota1 to registers XotaR1, where R1 is the output register. Then apply the following two
conditional operations with controlling register R1:

– If the value on register R1 is ⊥, apply U⊥ to registers Y, where U⊥|0m〉 = |⊥〉 and U⊥|⊥〉 =
|0m〉.

– If the value on register R1 is not ⊥:
∗ Query random oracle O1 by registers R1R2, where R2 is the output register.
∗ Apply Uota2 to registers R1R2R3, where R3 is the output register.
∗ Apply U1 to registers XotaR3R4, where U1|α, α′, b〉 = |α, α′, b⊕1〉 if α = α′, U1|α, α′, b〉 =
|α, α′, b〉 if α 6= α′. Then apply the following two conditional operations with controlling
register R4:
· If the value on register R4 is 1, apply CNOT to registers R1Y.
· If the value on register R4 is 0, apply U⊥ to registers Y, where U⊥|0m〉 = |⊥〉 and

U⊥|⊥〉 = |0m〉.
∗ Apply U1 to registers XotaR3R4 again, where R4 is the output register.
∗ Apply Uota2 to registers R1R2R3 again, where R3 is the output register.
∗ Query random oracle O1 by registers R1R2 again, where R2 is the output register.

• Apply Uota1 to registers XotaR1 again, where R1 is the output register. Now the registers R1 to
R4 are guaranteed to contain 0, so they can be discarded.

By using unitary operation Uota3 and Uota4 above, Ucomp defined in Eq. (31) with initial state |α〉|y〉|β〉
on registers XotaYotaY can be implemented by the following procedure:

• Initialize register R5 and R6 to 0.

• Apply the following two conditional operations with controlling register Y:

– If the value on register Y is ⊥, apply Ufota to registers XotaYota, where Yota is the output
register.

– If the value on register Y is not ⊥:
∗ Apply Uota3 to registers XotaYR5, where R5 is the output register.
∗ Query random oracle O0 by registers R5R6, where R6 is the output register.
∗ Apply Uota4 to registers XotaYotaYR6, where Yota is the output register.
∗ Query random oracle O0 by registers R5R6 again, where R6 is the output register.
∗ Apply Uota3 to registers XotaYR5 again, where R5 is the output register.

• Now the register R5 and R6 is guaranteed to contain 0, so it can be discarded.

We note that the quantum circuit implementation of Utest and Ucomp need to query random oracle
O1 and random oracle O0 two times, respectively. Moreover, the quantum circuit implementation of
Ucomp does not need the secret key sk.
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F Missing Proofs of Section 4
Here we give the detailed proof of some lemmas introduced in Section 4.

F.1 Proof of Lemma 4
Proof. In this proof we first consider a fixed (pk,sk) sampled from KGen. For the adversary B in game
Gq

1 and game Gq
2, the random oracles O0 and O1, secret oracle Oota in game Gq

1 and game Gq
2 both are

quantum accessed. In addition, the process that the challenger C get OHG.A and then return OHG.B
can also be viewed as that the adversary queries a ”classical challenge oracle” with input OHG.A and
then get an output OHG.B. Indeed, the ”classical challenge oracle” can be easily simulated on quantum
superposition since this oracle is implemented by O0 and O1 that are quantum simulated. Hence as
explained in Appendix A, the game Gq

1 and game Gq
2 can be rewritten as a unitary quantum oracle

algorithm and its execution before finally binary measurement can be described as:

Gq
1 : |ψ1〉|0m

′
〉Y := Uqota ·U

1,∗
ota ·Uqota−1 ·U

1,∗
ota · · ·UOHG.B · · ·U2 ·U1

ota ·U1 ·U1
ota|ψ〉|0m

′
〉Y,

Gq
2 : |ψ2〉|0m

′
〉Y := Uqota ·U

2,∗
ota ·Uqota−1 ·U

2,∗
ota · · ·UOHG.B · · ·U2 ·U2

ota ·U1 ·U2
ota|ψ〉|0m

′
〉Y,

Here |ψ1〉|0m
′〉Y and |ψ2〉|0m

′〉Y are final states of game Gq
1 and game Gq

2, respectively, |ψ〉|0m′〉Y is the
initial state of these two games. Register Y is the internal register used by U1

ota, U1,∗
ota , U2

ota and U1,∗
ota ,

it always in state |0m′〉 before and after once application of these unitary operations. U1, . . . ,Uqota are
the unitary operations applied between the queries to secret oracle Oota. UOHG.B is the unitary that
simulates the ”classical challenge oracle”, and the U1

ota (resp, U2
ota) is replaced to U1,∗

ota (resp, U2,∗
ota) after

the application of UOHG.B.
For any state |ϕ〉|0m′〉Y on the whole quantum register of game Gq

1 and game Gq
2 before the

application of U1
ota, U1,∗

ota , U2
ota and U1,∗

ota as

|ϕ〉|0m
′
〉Y :=

∑
z∈{0,1}∗,D∈Dq1

,x∈X ,y∈{0,1}l+1

αz,D,x,y|z,D, x, y〉ZDq1
XotaYota |0m

′
〉Y,

where Xota/Yota is the input/output register of secret oracle Oota, Dq1 is the database register and the
other registers are abbreviated into register Z, by the analysis of F.1.1, we have

max
{
‖(U1

ota −U2
ota)|ϕ〉|0m

′
〉Y‖, ‖(U1,∗

ota −U2,∗
ota)|ϕ〉|0m

′
〉Y‖
}
≤ 8 ·

√√√√
max

α∈X ,β∈{0,1}m′

∣∣∣ota.subx,y′

pk

∣∣∣
2n′ .

By the hybrid argument, the final state |ψ1〉|0m
′〉Y and |ψ2〉|0m

′〉Y satisfy

‖|ψ1〉|0m
′
〉Y − |ψ2〉|0m

′
〉Y‖ ≤ 8qota ·

√√√√
max

α∈X ,β∈{0,1}m′

∣∣∣ota.subx,y′

pk

∣∣∣
2n′ .

Then by [AHU19] Lemma 3 and 4,

|Pr[1← Gq
1 : (pk, sk)]− Pr[1← Gq

2 : (pk, sk)]| ≤ 8qota ·

√√√√
max

α∈X ,β∈{0,1}m′

∣∣∣ota.subx,y′

pk

∣∣∣
2n′ .

Averaging over (pk, sk)← KGen(1λ) and using the Jensen’s inequality, we finally obtain

|Pr[1← Gq
1]− Pr[1← Gq

2]| ≤ 8qota ·

√√√√ E
(pk,sk)←KGen(1λ)

max
α∈X ,β∈{0,1}m′

∣∣∣ota.subx,y′

pk

∣∣∣
2n′

(a)
= 8qota ·

√
ota.max.

Here (a) uses Eq. (15).

51



F.1.1 Bound on ‖(U1
ota −U2

ota)|ϕ〉|0m
′〉Y‖ and ‖(U1,∗

ota −U2,∗
ota)|ϕ〉|0m

′〉Y‖

For the sake of convenience, we abbreviate |z,D, x, y〉ZDq1
XotaYota |0m

′〉Y into |z,D, x, y, 0m′〉 in the fol-
lowing. Now we separate |ϕ〉|0m′〉Y into four mutual orthogonal parts |ϕ1〉 to |ϕ4〉 that |ϕ〉|0m′〉Y =∑4

i=1 |ϕi〉, where |ϕ1〉 to |ϕ4〉 are the following states:

|ϕ1〉 =
∑

z∈{0,1}∗,D∈Dq1

x∈X ,y∈{0,1}l+1,ota1(sk,x)=⊥

αz,D,x,y|z,D, x, y, 0m
′
〉,

|ϕ2〉 =
∑

z∈{0,1}∗,D∈Dq1
,x∈X ,y∈{0,1}l+1

y′:=ota1(sk,x)̸=⊥,D(y′)=⊥

αz,D,x,y|z,D, x, y, 0m
′
〉,

|ϕ3〉 =
∑

r∈{0,1}n,r ̸=0n

z∈{0,1}∗,D∈Dq1
,x∈X ,y∈{0,1}l+1

y′:=ota1(sk,x)̸=⊥,D(y′)=⊥,n(D)<q1

αz,D,x,y,r|z,D ∪ (y′, r̂), x, y, 0m
′
〉,

|ϕ4〉 =
∑
r=0n

z∈{0,1}∗,D∈Dq1 ,x∈X ,y∈{0,1}l+1

y′:=ota1(sk,x)̸=⊥,D(y′)=⊥,n(D)<q1

αz,D,x,y,r|z,D ∪ (y′, r̂), x, y, 0m
′
〉.

Here we default the database D in each basis state of |ϕ2〉 also satisfies n(D) < q1, which is unprob-
lematic since the query times of random oracle O1 in game Gq

1 and Gq
2 both is at most q1 times.

Denote ∆ := U1
ota−U2

ota, by the definition of U1
ota and U2

ota and the quantum circuit implementation
of Utest and Ucomp given in Appendix E, we compute25:
∆|ϕ1〉 = 0,

∆|ϕ2〉 =
∑

z′∈ota.subx,y′
pk

z∈{0,1}∗,D∈Dq1
,x∈X ,y∈{0,1}l+1

y′:=ota1(sk,x)̸=⊥,D(y′)=⊥

αz,D,x,y√
2n′

· StdDecompx

(
|z,D ∪ (y′, z′), x, y ⊕ ota4(pk, x, y

′, O0(y
′′)), 0m

′〉
−|z,D ∪ (y′, z′), x, y ⊕⊥, 0m′〉

)
,

∆|ϕ3〉 =
∑

r∈{0,1}n,r ̸=0n,z′∈ota.subx,y′
pk

z∈{0,1}∗,D∈Dq1 ,x∈X ,y∈{0,1}l+1

y′:=ota1(sk,x) ̸=⊥,D(y′)=⊥,n(D)<q1

(−1)z′·rαz,D,x,y,r

2n′


|z,D, x, y ⊕ ota3(pk, x, y

′, O0(y
′)), 0m

′〉
−|z,D ∪ (y′, 0̂n), x, y ⊕ ota4(pk, x, y

′, O0(y
′′)), 0m

′〉
−|z,D, x, y ⊕⊥, 0m′〉
+|z,D ∪ (y′, 0̂n), x, y ⊕⊥, 0m′〉

 .

(69)
Here y′′ := ota3(pk, x, y

′).
As for the ∆|ϕ4〉, we find that the state with the form of |z,D ∪ (y′, 0̂n), x, y, 0m′〉 is illegal [Zha19]

and it can not appear just before the application of U1
ota and U1,∗

ota in game Gq
1
26. Hence we add a

complement of the operation of U1
ota as

U1
ota|z,D ∪ (y′, 0̂n), x, y, 0m

′
〉 := |z,D ∪ (y′, 0̂n), x, y ⊕⊥, 0m

′
〉,

which is easily to implement since the state |z,D ∪ (y′, 0̂n), x, y, 0m
′〉 must be orthogonal with |ϕ1〉,

|ϕ2〉 and |ϕ3〉. With this complement, we have

∆|ϕ4〉 =
∑

r=0n,z′∈ota.subx,y′
pk

z∈{0,1}∗,D∈Dq1
,x∈X ,y∈{0,1}l+1

y′:=ota1(sk,x) ̸=⊥,D(y′)=⊥,n(D)<q1

αz,D,x,y,r√
2n′

(
|z,D ∪ (y′, z′), x, y ⊕⊥, 0m′〉
−|z,D ∪ (y′, z′), x, y ⊕ ota4(pk, x, y

′, O0(y
′′)), 0m

′〉

)
.

(70)
25Since the quantum circuit implementation of Utest and Ucomp given in Appendix E is not very simple, the detailed

computational process of ∆|ϕ1⟩ to ∆|ϕ4⟩ are complicated and we omit it. Nevertheless, we stress that, following the
quantum circuit implementation of Utest and Ucomp, one can get ∆|ϕ1⟩ to ∆|ϕ4⟩ shown in Eq. (69) and Eq. (70) by
directly compute.
26However, the state with the form of |z,D ∪ (y′, 0̂n), x, y, 0m

′ ⟩ can appear in game Gq
2 since the extraction-interface

eCO.Ef1 is applied.
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Here y′′ := ota3(pk, x, y
′).

Then we can compute

‖∆|ϕ2〉‖2

=

∥∥∥∥∥∥∥∥∥∥∥∥∥
∑

z′∈ota.subx,y′
pk

z∈{0,1}∗,D∈Dq1
,x∈X ,y∈{0,1}l+1

y′:=ota1(sk,x) ̸=⊥,D(y′)=⊥

αz,D,x,y√
2n′

· StdDecompx

(
|z,D ∪ (y′, z′), x, y ⊕ ota3(pk, x, y

′, O0(y
′)), 0m

′〉
−|z,D ∪ (y′, z′), x, y ⊕⊥, 0m′〉

)
∥∥∥∥∥∥∥∥∥∥∥∥∥

2

(a)
=

∥∥∥∥∥∥∥∥∥∥∥∥∥
∑

z′∈ota.subx,y′
pk

z∈{0,1}∗,D∈Dq1
,x∈X ,y∈{0,1}l+1

y′:=ota1(sk,x)̸=⊥,D(y′)=⊥

αz,D,x,y√
2n′

(
|z,D ∪ (y′, z′), x, y ⊕ ota3(pk, x, y

′, O0(y
′)), 0m

′〉
−|z,D ∪ (y′, z′), x, y ⊕⊥, 0m′〉

)
∥∥∥∥∥∥∥∥∥∥∥∥∥

2

(b)

≤ 2 ·

∥∥∥∥∥∥∥∥∥∥∥∥∥
∑

z′∈ota.subx,y′
pk

z∈{0,1}∗,D∈Dq1
,x∈X ,y∈{0,1}l+1

y′:=ota1(sk,x) ̸=⊥,D(y′)=⊥

αz,D,x,y√
2n′

|z,D ∪ (y′, z′), x, y ⊕ ota3(pk, x, y
′, O0(y

′)), 0m
′
〉)

∥∥∥∥∥∥∥∥∥∥∥∥∥

2

+ 2 ·

∥∥∥∥∥∥∥∥∥∥∥∥∥
∑

z′∈ota.subx,y′
pk

z∈{0,1}∗,D∈Dq1 ,x∈X ,y∈{0,1}l+1

y′:=ota1(sk,x) ̸=⊥,D(y′)=⊥

αz,D,x,y√
2n′

|z,D ∪ (y′, z′), x, y ⊕⊥, 0m
′
〉

∥∥∥∥∥∥∥∥∥∥∥∥∥

2

= 4 ·
∑

z′∈ota.subx,y′
pk

z∈{0,1}∗,D∈Dq1
,x∈X ,y∈{0,1}l+1

y′:=ota1(sk,x)̸=⊥,D(y′)=⊥

∣∣∣∣αz,D,x,y√
2n′

∣∣∣∣2

≤ 4 · max
x∈X ,y′∈{0,1}m′

∣∣∣ota.subx,y′

pk

∣∣∣
2n′ ·

∑
z∈{0,1}∗,D∈Dq1 ,x∈X ,y∈{0,1}l+1

y′:=ota1(sk,x) ̸=⊥,D(y′)=⊥

|αz,D,x,y|2

= 4 · max
x∈X ,y′∈{0,1}m′

∣∣∣ota.subx,y′

pk

∣∣∣
2n′ · ‖|ϕ2〉‖2.

(71)
Here (a) uses the fact that StdDecompx is a unitary operation, (b) uses Corollary 6. Similar with the
computation of ‖∆|ϕ2〉‖2, we also have

‖∆|ϕ4〉‖2 ≤ 4 · max
x∈X ,y′∈{0,1}m′

∣∣∣ota.subx,y′

pk

∣∣∣
2n′ · ‖|ϕ4〉‖2. (72)
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For the ∆|ϕ3〉, we can compute

‖∆|ϕ3〉‖2

=

∥∥∥∥∥∥∥∥∥∥∥∥∥
∑

r∈{0,1}n,r ̸=0n,z′∈ota.subx,y′
pk

z∈{0,1}∗,D∈Dq1
,x∈X ,y∈{0,1}l+1

y′:=ota1(sk,x)̸=⊥,D(y′)=⊥,n(D)<q1

(−1)z′·rαz,D,x,y,r

2n′


|z,D, x, y ⊕ ota3(pk, x, y

′, O0(y
′)), 0m

′〉
−|z,D ∪ (y′, 0̂n), x, y ⊕ ota3(pk, x, y

′, O0(y
′)), 0m

′〉
−|z,D, x, y ⊕⊥, 0m′〉
+|z,D ∪ (y′, 0̂n), x, y ⊕⊥, 0m′〉



∥∥∥∥∥∥∥∥∥∥∥∥∥

2

(c)

≤ 4 ·

∥∥∥∥∥∥∥∥∥∥∥∥∥
∑

r∈{0,1}n,r ̸=0n,z′∈ota.subx,y′
pk

z∈{0,1}∗,D∈Dq1 ,x∈X ,y∈{0,1}l+1

y′:=ota1(sk,x)̸=⊥,D(y′)=⊥,n(D)<q1

(−1)z′·rαz,D,x,y,r

2n′ |z,D, x, y ⊕ ota3(pk, x, y
′, O0(y

′)), 0m
′
〉

∥∥∥∥∥∥∥∥∥∥∥∥∥

2

+ 4 ·

∥∥∥∥∥∥∥∥∥∥∥∥∥
∑

r∈{0,1}n,r ̸=0n,z′∈ota.subx,y′
pk

z∈{0,1}∗,D∈Dq1 ,x∈X ,y∈{0,1}l+1

y′:=ota1(sk,x)̸=⊥,D(y′)=⊥,n(D)<q1

(−1)z′·rαz,D,x,y,r

2n′ |z,D ∪ (y′, 0̂n), x, y ⊕ ota3(pk, x, y
′, O0(y

′)), 0m
′
〉

∥∥∥∥∥∥∥∥∥∥∥∥∥

2

+ 4 ·

∥∥∥∥∥∥∥∥∥∥∥∥∥
∑

r∈{0,1}n,r ̸=0n,z′∈ota.subx,y′
pk

z∈{0,1}∗,D∈Dq1
,x∈X ,y∈{0,1}l+1

y′:=ota1(sk,x)̸=⊥,D(y′)=⊥,n(D)<q1

(−1)z′·rαz,D,x,y,r

2n′ |z,D, x, y ⊕⊥, 0m
′
〉

∥∥∥∥∥∥∥∥∥∥∥∥∥

2

+ 4 ·

∥∥∥∥∥∥∥∥∥∥∥∥∥
∑

r∈{0,1}n,r ̸=0n,z′∈ota.subx,y′
pk

z∈{0,1}∗,D∈Dq1
,x∈X ,y∈{0,1}l+1

y′:=ota1(sk,x)̸=⊥,D(y′)=⊥,n(D)<q1

(−1)z′·rαz,D,x,y,r

2n′ |z,D ∪ (y′, 0̂n), x, y ⊕⊥, 0m
′
〉

∥∥∥∥∥∥∥∥∥∥∥∥∥

2

= 16 ·
∑

z∈{0,1}∗,D∈Dq1
,x∈X ,y∈{0,1}l+1

y′:=ota1(sk,x)̸=⊥,D(y′)=⊥,n(D)<q1

∣∣∣∣∣∣∣
∑

r∈{0,1}n,r ̸=0n,z′∈ota.subx,y′
pk

(−1)z′·rαz,D,x,y,r

2n′

∣∣∣∣∣∣∣
2

(d)

≤ 16 ·
∑

z∈{0,1}∗,D∈Dq1
,x∈X ,y∈{0,1}l+1

y′:=ota1(sk,x)̸=⊥,D(y′)=⊥,n(D)<q1

∑
z′∈ota.subx,y′

pk

∣∣∣ota.subx,y′

pk

∣∣∣
2n′

∣∣∣∣∣∣
∑

r∈{0,1}n,r ̸=0n

(−1)z′·rαz,D,x,y,r√
2n′

∣∣∣∣∣∣
2

≤ 16 · max
x∈X ,y′∈{0,1}m′

∣∣∣ota.subx,y′

pk

∣∣∣
2n′

∑
z∈{0,1}∗,D∈Dq1

,x∈X ,y∈{0,1}l+1

y′:=ota1(sk,x) ̸=⊥,D(y′)=⊥,n(D)<q1

∑
z′∈ota.subx,y′

pk

∣∣∣∣∣∣
∑

r∈{0,1}n,r ̸=0n

(−1)z′·rαz,D,x,y,r√
2n′

∣∣∣∣∣∣
2

.

(73)
Here (c) uses Corollary 6 again, (d) uses the Cauchy-Schwarz inequality.
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In addition, we have

‖|ϕ3〉‖2 =

∥∥∥∥∥∥∥∥∥∥∥∥
∑

r∈{0,1}n,r ̸=0n

z∈{0,1}∗,D∈Dq1 ,x∈X ,y∈{0,1}l+1

y′:=ota1(sk,x)̸=⊥,D(y′)=⊥,n(D)<q1

αz,D,x,y,r|z,D ∪ (y′, r̂), x, y, 0m
′
〉

∥∥∥∥∥∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥∥∥∥∥∥
∑

r∈{0,1}n,r ̸=0n

z∈{0,1}∗,D∈Dq1 ,x∈X ,y∈{0,1}l+1

y′:=ota1(sk,x)̸=⊥,D(y′)=⊥,n(D)<q1

∑
z′∈{0,1}n

(−1)z′·rαz,D,x,y,r√
2n′

|z,D ∪ (y′, z′), x, y, 0m
′
〉

∥∥∥∥∥∥∥∥∥∥∥∥

2

=
∑

z∈{0,1}∗,D∈Dq1
,x∈X ,y∈{0,1}l+1

y′:=ota1(sk,x) ̸=⊥,D(y′)=⊥,n(D)<q1

∑
z′∈{0,1}n

∣∣∣∣∣∣
∑

r∈{0,1}n,r ̸=0n

(−1)z′·rαz,D,x,y,r√
2n′

∣∣∣∣∣∣
2

≥
∑

z∈{0,1}∗,D∈Dq1
,x∈X ,y∈{0,1}l+1

y′:=ota1(sk,x) ̸=⊥,D(y′)=⊥,n(D)<q1

∑
z′∈ota.subx,y′

pk

∣∣∣∣∣∣
∑

r∈{0,1}n,r ̸=0n

(−1)z′·rαz,D,x,y,r√
2n′

∣∣∣∣∣∣
2

.

Combining above inequality with Eq. (73), we get

‖∆|ϕ3〉‖2 ≤ 16 · max
x∈X ,y′∈{0,1}m′

∣∣∣ota.subx,y′

pk

∣∣∣
2n′ · ‖|ϕ3〉‖2. (74)

Combining Eq. (71), (72) and (74), we obtain

‖(U1
ota −U2

ota)|ϕ〉|0m
′
〉Y‖

(e)

≤ 2

√√√√
max

x∈X ,y′∈{0,1}m′

∣∣∣ota.subx,y′

pk

∣∣∣
2n′ (‖|ϕ2〉‖+ ‖|ϕ4〉‖) + 4

√√√√
max

x∈X ,y′∈{0,1}m′

∣∣∣ota.subx,y′

pk

∣∣∣
2n′ ‖|ϕ3〉‖

(f)

≤ 8

√√√√
max

x∈X ,y′∈{0,1}m′

∣∣∣ota.subx,y′

pk

∣∣∣
2n′ ‖|ϕ〉|0m

′
〉Y〉‖ = 8

√√√√
max

x∈X ,y′∈{0,1}m′

∣∣∣ota.subx,y′

pk

∣∣∣
2n′ .

(75)

Here (e) uses the fact that |ϕ〉|0m′〉Y =
∑4

i=1 |ϕi〉, (f) uses the fact that |ϕ〉|0m′〉Y =
∑4

i=1 |ϕi〉 and
|ϕ1〉 to |ϕ4〉 are mutual orthogonal.

As for ‖(U1,∗
ota − U2,∗

ota)|ϕ〉|0m
′〉Y‖, note that U1,∗

ota := U⊥ ◦ Phide + U1
ota ◦ (I − Phide) and U2,∗

ota :=
U⊥ ◦ Phide +U2

ota ◦ (I− Phide), thus

‖(U1,∗
ota −U2,∗

ota)|ϕ〉|0m
′
〉Y‖ = ‖(U1

ota −U2
ota) ◦ (I− Phide)|ϕ〉|0m

′
〉Y‖

(g)

≤ 8

√√√√
max

x∈X ,y′∈{0,1}m′

∣∣∣ota.subx,y′

pk

∣∣∣
2n′ ‖(I− Phide)|ϕ〉|0m

′
〉Y〉‖

≤ 8

√√√√
max

x∈X ,y′∈{0,1}m′

∣∣∣ota.subx,y′

pk

∣∣∣
2n′ .

Here (g) uses the fact that

‖(U1
ota −U2

ota)|ϕ〉|0m〉Y‖ ≤ 8

√√√√
max

x∈X ,y′∈{0,1}m′

∣∣∣ota.subx,y′

pk

∣∣∣
2n′ ‖|ϕ〉|0m

′
〉Y〉‖,

which is implied by the (e) and (f) of Eq. (75).
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F.2 Proof of Lemma 5
Proof. Based on game Gq

2 and game Gq
3, we introduce two new games as follows:

Game Gq
2a: This game is identical with game Gq

2 except that the compressed semi-classical oracle
OCSC

S is queried just after each invoking of the RO-interface eCO.RO.

Game Gq
3a: This game is identical with game Gq

3 except that the compressed semi-classical oracle
OCSC

S is queried just after each invoking of the RO-interface eCO.RO.

In game Gq
2, the random oracle O1 is simulated by invoking the RO-interface eCO.RO directly,

and the simulation of secret oracle Oota uses the extraction-interface eCO.Ef1 . Hence, we can rewrite
game Gq

2 as a quantum oracle algorithm BO1,eCO.Ef1 with input (pk, sk) ← KGen that makes at most
q1 times queries to random oracle O1. Then

Pr[1← Gq
2] = Pr[1← BO1,eCO.Ef1 (pk, sk) : (S, pk, sk)← D],

Pr[1← Gq
2a] = Pr[1← BO1\S,eCO.Ef1 (pk, sk) : (S, pk, sk)← D],

Pr[1← Gq
3] = Pr[1← BO1,eCO.Ef2 (pk, sk) : (S, pk, sk)← D],

Pr[1← Gq
3a] = Pr[1← BO1\S,eCO.Ef2 (pk, sk) : (S, pk, sk)← D].

Here D is a joint distribution that (pk, sk)← KGen, set S ⊆ Dq1 defined in Eq. (34) is determined by
(pk, sk) since ota1(sk, ·) and ota2(pk, ·) are deterministic algorithms.

As explained in Section 2.5, the extraction-interface eCO.Ef for any function f is processed by a
database read operation Extf . Thus, by using Theorem 3, we have

|Pr[1← Gq
2]− Pr[1← Gq

2a]| ≤
√
q1(q1 + 1) · E

(S,pk,sk)←D
‖[JS ,CStO]‖2, (76)

and
|Pr[1← Gq

3]− Pr[1← Gq
3a]| ≤

√
q1(q1 + 1) · E

(S,pk,sk)←D
‖[JS ,CStO]‖2. (77)

Note that eCO.Ef1 and eCO.Ef2 proceed identically for any input state |α, 0m′
, D〉 if D /∈ S, hence

algorithm BO1\S,eCO.Ef1 (pk, sk) and BO1\S,eCO.Ef2 (pk, sk) proceed identically if the compressed semi-
classical oracle OCSC

S never returns 1. This implies that for

Pr[Find occurs in BO1\S,eCO.Ef1 (pk, sk) : (S, pk, sk)← D]
= Pr[Find occurs in BO1\S,eCO.Ef2 (pk, sk) : (S, pk, sk)← D],

|Pr[1← Gq
2a]− Pr[1← Gq

3a]| ≤ Pr[Find occurs in BO1\S,eCO.Ef2 (pk, sk) : (S, pk, sk)← D]
(a)

≤ q1 · E
(S,pk,sk)←D

‖[JS ,CStO]‖2
(78)

Here (a) uses Theorem 3. Then by combining Eq. (76), (77) and (78), we obtain

|Pr[1← Gq
2]− Pr[1← Gq

3]| ≤
√
q1(q1 + 1) · E

(S,pk,sk)←D
‖[JS ,CStO]‖2 + q1 · E

(S,pk,sk)←D
‖[JS ,CStO]‖2 .

(79)
Define function g : {0, 1}m′ × {0, 1}n′ → {0, 1} as

g(x, y) =

{
1 if ota2(pk, x, y) = z ∧ ota1(sk, z) 6= x

0 otherwise.

For function g, the corresponding relation Rg
1 and parameter ΓRg

1
defined in Eq. (11) is

Rg
1 := {(x, y) ∈ {0, 1}m

′
× {0, 1}n

′
: g(x, y) = 1},
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ΓRg
1
:= max

x∈{0,1}m′
|{y ∈ {0, 1}n

′
: ota2(pk, x, y) = z ∧ ota1(sk, z) 6= x}|

(b)

≤ max
x∈{0,1}m′

∣∣∣∣ ∪z∈Set.x
ota.subz,x

pk

∣∣∣∣ .
(80)

Here (b) is hold since one can easily check that if y ∈ {y ∈ {0, 1}n′
: ota2(pk, x, y) = z∧ota1(sk, z) 6= x}

then y must belong to ∪
z∈Set.x

ota.subz,x
pk by the definition of Set.x and ota.subz,x

pk defined in Definition 4.
For the relation Rg

1, define following projectors act on database register Dq1 :

Σx :=
∑

D s.t. (x,D(x))∈Rg
1

x′<x,(x′,D(x′))/∈Rg
1

|D〉〈D| (x ∈ {0, 1}m
′
), Σ⊥ := I−

∑
x∈{0,1}m′

Σx.

By the definition of set S ⊆ Dq1 defined in (34), it is obvious that JS =
∑

x∈{0,1}m′ Σx, and then
Σ⊥ = I− JS . Hence we have

‖[JS ,CStO]‖ (c)
= ‖[I− JS ,CStO]‖ =

∥∥[Σ⊥,CStO
]∥∥ (d)

≤ 8 ·
√
ΓRg

1
/2n. (81)

Here (c) uses the basic property of the commutator, (d) uses the Lemma 2.
Combining Eq. (79), (80) and (81), we finally obtain

|Pr[1← Gq
2]− Pr[1← Gq

3]| ≤ 8 ·

√
q1(q1 + 1) · E

(S,pk,sk)←D

1

2n′ max
x∈{0,1}m′

∣∣∣∣ ∪z∈Set.x
ota.subz,x

pk

∣∣∣∣
+ 64q1 · E

(S,pk,sk)←D

1

2n′ max
x∈{0,1}m′

∣∣∣∣ ∪z∈Set.x
ota.subz,x

pk

∣∣∣∣
(e)
= 8 ·

√
q1(q1 + 1) · ota.union + 64q1 · ota.union

Here (e) uses Eq. (15).

G Cryptographic Primitives
Definition 6 (Public key encryption). A public key encryption (PKE) scheme consist of a finite
message space M and three polynomial algorithm (Gen,Enc,Dec) according to security parameter λ.

1. Gen: a probabilistic algorithm with input 1λ and output a public/secret key pair (pk, sk).

2. Enc: a probabilistic algorithm with input a message m ∈ M and output a ciphertext c ∈ C(C is
the ciphertext space). it choose r ← R(R is the randomness space), computes c := Encpk(m, r)
and output ciphertext c. If Enc do not use randomness to compute c, Enc is a deterministic
algorithm and output c := Encpk(m).

3. Dec: a deterministic algorithm with input a ciphertext c ∈ C and secret key sk, computes
m := Decsk(c) and output m or a rejection symbol ⊥ /∈M.

Definition 7 (Correctness [HHK17]). A PKE scheme PKE = (Gen,Enc,Dec) is δ-correct if

E
[
max
m∈M

Pr[Dec(sk, c) 6= m : c← Enc(pk,m)]

]
≤ δ,

where the expectation is taken over (pk, sk)← Gen. We call a pair (m, c) is ”error” pair if Dec(sk,Enc(pk,m)) 6=
m. Denote

δ(pk, sk) = maxm∈M Pr[Dec(sk, c) 6= m : c← Enc(pk,m)],

then E[δ(pk, sk)] ≤ δ.
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Definition 8 (weakly γ-spread [DFMS22]). A PKE scheme PKE = (Gen,Enc,Dec) is weakly γ-spread
if

− log E
(sk,pk)←Gen

[
max

m∈M,c∈C
Pr[c = Encpk(m)]

]
≥ γ,

where the probability is over the randomness of the encryption.

Definition 9 (Security notions for PKE). Let PKE = (Gen,Enc,Dec) be a PKE scheme. For any ad-
versary A and GOAL-ATK ∈ {IND-qCCA,WPR-qCCA,ANO-qCCA,SDS-IND}, we define its GOAL-ATK
advantage against PKE as follows:

AdvGOAL-ATK
A,(S),PKE(1

λ) :=

∣∣∣∣Pr[1← GameGOAL-ATK
A,(S),PKE(1

λ)]− 1

2

∣∣∣∣ ,
where GameGOAL-ATK

A,PKE (1λ) is a game described in Fig. 11.
For any adversary A, we define its OW-CPA advantage against PKE as follows:

AdvOW-CPA
A,PKE (1λ) := Pr[1← GameOW-CPA

A,PKE (1λ)],

where GameOW-CPA
A,PKE (1λ) is a game described in Fig. 11. For

GOAL-ATK ∈ {IND-qCCA,WPR-qCCA,ANO-qCCA,SDS-IND,OW-CPA},

we say that PKE is GOAL-ATK-secure if AdvGOAL-ATK
A,(S),PKE(1

λ) is negligible for any QPT adversary A.

Definition 10 (Key-encapsulation mechanism). A key-encapsulation mechanism (KEM) consists of
three algorithms Gen, Enca and Deca. The key generation algorithm Gen outputs a key pair (pk, sk).
The encapsulation algorithm Enca, on input pk, outputs a tuple (K, c) where c is said to be an
encapsulation of the key K which is contained in key space K. The deterministic decapsulation
algorithm Deca, on input sk and an encapsulation c, outputs either a key K := Deca(sk, c) ∈ K or a
special symbol ⊥ /∈ K to indicate that c is not a valid encapsulation.

Definition 11 (Security notions for KEM). Let KEM = (Gen,Enca,Deca) be a KEM scheme. For
any adversary A and GOAL-ATK ∈ {IND-qCCA,SPR-qCCA,ANO-qCCA}, we define its GOAL-ATK
advantage against KEM as follows:

AdvGOAL-ATK
A,(S),KEM(1

λ) :=

∣∣∣∣Pr[1← GameGOAL-ATK
A,(S),KEM(1

λ)]− 1

2

∣∣∣∣ ,
where GameGOAL-ATK

A,KEM (1λ) is a game described in Fig. 11. For GOAL-ATK ∈ {IND-qCCA,SPR-qCCA,ANO-qCCA},
we say that KEM is GOAL-ATK-secure if AdvGOAL-ATK

A,(S),KEM(1
λ) is negligible for any QPT adversary A.

Definition 12 (Data-encapsulation mechanism). A data-encapsulation mechanism (DEM) consist of
a finite message space M and two polynomial algorithm E,D according to security parameter λ.

1. E: a encapsulation algorithm with input a message m ∈ M and key k ← K(K is the key space),
computes c := E(k,m) and output ciphertext c.

2. D: a decapsulation algorithm with input a ciphertext c and key k, computes m := D(k, c) and
output m or a rejection symbol ⊥ /∈M.

Definition 13 (OT secure DEM). A DEM scheme DEM = (E,D) is OT secure if for any quantum
polynomial adversary A, the probability of A wins in game GameOT

A,DEM(1
λ) is 1/2 + negl, where negl

is negligible.
GameOT

A,DEM(1
λ):

1. Query: The adversary A choose two message m0,m1 of same length on it’s input 1λ, then send
m0,m1 to challenger. The challenger choose b $←− {0, 1} and respond with c = E(k,mb)

2. Guess: A produce a guess b′, if b′ = b, A wins.
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Game GameOW-CPA
A,PKE (1λ)

1, (pk, sk)← Gen(1λ)
2, m∗ ←M

c∗ := Enc(pk,m∗)

3, m′ ← A(pk, c∗)
4, Return boole[m∗ = m′]

oDec(c)

1, Return Dec(sk, c)

oDeca(c)

1, If c = a, return ⊥
Else return Dec(sk, c)

Game GameIND-qCCA
A,PKE (1λ)

1, (pk, sk)← Gen(1λ)
2, (m0,m1)← AoDec(pk, c∗)

3, b $←− {0, 1}
c∗ := Enc(pk,mb)

4, b′ ← AoDecc∗ (pk, c∗)

5, Return boole[b = b′]

Game GameANO-qCCA
A,PKE (1λ)

1, (pk0, sk0)← Gen(1λ)
(pk1, sk1)← Gen(1λ)

2, m∗ ← AoDec′(·,·)(pk0, pk1)

3, b $←− {0, 1}
c∗ := Enc(pkb,m

∗)

4, b′ ← AoDec′c∗ (·,·)(pk0, pk1, c
∗)

5, Return boole[b = b′]

oDec′(b, ·)
1, Return Dec(skb, c)

oDec′a(b, ·)
1, If c = a, return ⊥

Else return Dec(skb, c)

Game GameWPR-qCCA
A,S,PKE (1λ)

1, (pk, sk)← Gen(1λ)
2, m∗ ← AoDec(pk)

3, b $←− {0, 1}
c∗0 := Enc(pk,m∗)

c∗1 ← S(1λ,m∗)

4, b′ ← AoDecc∗
b (pk, c∗b)

5, Return boole[b = b′]

Game GameSDS-IND
A,S,PKE(1

λ)

1, (pk, sk)← Gen(1λ)
2, m∗ ←M, b $←− {0, 1}

c∗0 := Enc(pk,m∗)

c∗1 ← S(1λ)
3, b′ ← A(pk, c∗b)
4, Return boole[b = b′]

Game GameIND-qCCA
A,KEM (1λ)

1, (pk, sk)← Gen(1λ)
2, b $←− {0, 1}

(c∗,K∗
0 ) := Enca(pk)

K∗
1

$←− K
3, b′ ← AoDecac∗ (pk, c∗,K∗

b )

4, Return boole[b = b′]

Game GameSPR-qCCA
A,S,KEM (1λ)

1, (pk, sk)← Gen(1λ)
2, b $←− {0, 1}

(c∗0,K
∗
0 ) := Enca(pk)

(c∗1,K
∗
1 )← S(1λ)×K

3, b′ ← AoDecac∗
b (pk, c∗b ,K

∗
b )

4, Return boole[b = b′]

Game GameANO-qCCA
A,KEM (1λ)

1, (pk0, sk0)← Gen(1λ)
(pk1, sk1)← Gen(1λ)

2, b $←− {0, 1}
(c∗,K∗) := Enca(pkb)

3, b′ ← AoDeca′c∗ (·,·)(pk0, pk1, c
∗)

4, Return boole[b = b′]

oDecaa(c)

1, If c = a, return ⊥
Else return Deca(c)

oDeca′a(b, ·)
1, If c = a, return ⊥

Else return Deca(skb, c)

Figure 11: Games for PKE and KEM schemes. In game GameGOAL-qCCA
A,(S),PKE (1λ) and GameGOAL-qCCA

A,(S),KEM (1λ)

the adversary A can query its oracles in superposition.
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H Missing proofs of Section 5
H.1 Proof of Theorem 5
Proof. Denote Π = (Gen,Enc,Dec). Let us define four games as shown in Fig. 12, according to the
definition of ANO-qCCA security given in Appendix G, it is obvious that

|Pr[1← G1]− Pr[1← G2]| = 2 · AdvANO-qCCA
A,Π , Pr[1← G3] = Pr[1← G4]. (82)

Game G1

1: (pk0, sk0)← Gen
(pk1, sk1)← Gen

2: m∗ ← ADec(·,·)(pk0, pk1)

3: b = 0

c∗0 := Enc(pk0,m∗)

4: b′ ← ADecc∗0
(·,·)

(pk0, pk1, c
∗
0)

5: Return b′

Game G2

1: (pk0, sk0)← Gen
(pk1, sk1)← Gen

2: m∗ ← ADec(·,·)(pk0, pk1)

3: b = 1

c∗1 := Enc(pk1,m∗)

4: b′ ← ADecc∗1
(·,·)

(pk0, pk1, c
∗
1)

5: Return b′

Game G3

1: (pk0, sk0)← Gen
(pk1, sk1)← Gen

2: m∗ ← ADec(·,·)(pk0, pk1)

3: b = 0

c∗0 := S(1λ,m∗)

4: b′ ← ADecc∗0
(·,·)

(pk0, pk1, c
∗
0)

5: Return b′

Game G4

1: (pk0, sk0)← Gen
(pk1, sk1)← Gen

2: m∗ ← ADec(·,·)(pk0, pk1)

3: b = 1

c∗1 := S(1λ,m∗)

4: b′ ← ADecc∗1
(·,·)

(pk0, pk1, c
∗
1)

5: Return b′

Figure 12: Game G1 to G4. Here Dec(·, ·) return Dec(skb, c) for input (b, c), Deca(·, ·) is identical with
Dec(·, ·) except that Deca output ⊥ for input (0, a) and (1, a). The adversary in these four games both
can query its oracles in superposition.

Then we define an adversary B1 against the WPR-qCCA security of PKE as follows:

1. After get the pk from the challenger, sample a new (pk′, sk′) pair by using Gen, then runs
adversary A(pk, pk′) to get m∗ and send it to the challenger. The decryption oracle query∑

t∈{0,1},c∈C,y∈{0,1}∗ |t, c, y〉 performed by A is answered as:

• For each basis state |t, c, y〉, query decryption oracle Dec(sk, ·) if t = 0. Else, compute and
return |t, c, y ⊕ Dec(sk′, c)〉. Here decryption oracle Dec(sk, ·) is the oracle B can access in
the WPR-qCCA game.

2. After get the c∗b from the challenger, runs A(pk, pk′, c∗b) to get output b′ and send b′ to the
challenger. The decryption oracle query

∑
t∈{0,1},c∈C,y∈{0,1}∗ |t, c, y〉 performed by A is answered

as:

• For each basis state |t, c, y〉, if c = c∗b , return |t, c, y ⊕ ⊥〉. Else if t = 0, query decryption
oracle Dec(sk, ·). Else, compute and return |t, c, y ⊕ Dec(sk′, c).

We also define an adversary B2, which is identical with B1 except that the decryption oracle query∑
t∈{0,1},c∈C,y∈{0,1}∗ |t, c, y〉 performed by A is instead answered as:

• c∗b has not yet been obtained: For each basis state |t, c, y〉, query decryption oracle Dec(sk, ·) if
t = 1. Otherwise, compute and return |t, c, y ⊕ Dec(sk′, c)〉.

• c∗b has been obtained: For each basis state |t, c, y〉, if c = c∗b , return |t, c, y ⊕ ⊥〉. Else if t = 1,
query decryption oracle Dec(sk, ·). Else, compute and return |t, c, y ⊕ Dec(sk′, c).

One can easily check that

|Pr[1← G1]− Pr[1← G4]| = 2 · AdvWPR-qCCA
B1,S,Π , Pr[1← G2]− Pr[1← G3] = 2 · AdvWPR-qCCA

B2,S,Π . (83)

Combing Eq. (82) and (83), we have

AdvANO-qCCA
Π,A = |Pr[1← G1]− Pr[1← G2]|/2

≤ |Pr[1← G1]− Pr[1← G4]|/2 + |Pr[1← G2]− Pr[1← G3]|/2

= AdvWPR-qCCA
B1,S,Π + AdvWPR-qCCA

B2,S,Π

(a)

≤ 2 · AdvWPR-qCCA
B,S,Π .

Here (a) is obtained by folding B1 and B2 into one single adversary B.
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H.2 The IND-qCCA security of KEM⊥, KEM/⊥
m and KEM/⊥ in the QROM

Theorem 9. Suppose PKE = (Gen,Enc,Dec) is δ-correct and weakly γ-spread. Let A be an IND-qCCA
adversary against KEM⊥ in the QROM, making at most qH , qG and qD queries to random oracle H,
G and decapsulation oracle, respectively. Then there exist an OW-CPA adversary A1 against the PKE
such that

AdvIND-qCCA
A,KEM⊥ ≤ 40qD ·

√
γ + 8(qH + 1) ·

√
δ + 64qH · δ + 4(qH + qG + 1) ·

√
AdvOW-CPA

A1,PKE .

The running time of A1 can be bounded as Time[A1] ≤ Time[A] +O(qH · qC · Time[Enc] + q2H).

Proof. Compared with KEM⊥m, the only difference in KEM⊥ is that the key K in KEM⊥ is derived from
message m and ciphertext c, not just from the message m like KEM⊥m. Therefore, the decapsulation
algorithm Deca⊥(sk, ·) of KEM⊥ can also be written as an oracle-testing algorithm like the decapsu-
lation algorithm Deca⊥m(sk, ·) of KEM⊥m, and thus the proof of Theorem 6 is also valid for Theorem 9,
as long as we correspondingly modify the definition of algorithm dec1(pk, ·) and challenger Cdec in the
proof of Theorem 6.

Indeed, the IND-qCCA security reductions of KEM/⊥
m and KEM

/⊥ in the QROM are similar to that of
KEM⊥m and KEM⊥, respectively. It should be noted that the reductions of KEM/⊥

m and KEM
/⊥ need to

first transform the pseudorandom functions used in the decapsulation algorithm into uniform random
functions. The security loss generated after above transition can be bounded by using the Lemma 2
in [JZC+18]. Here, we directly give the theorem states that KEM

/⊥
m and KEM

/⊥ are IND-qCCA security
in the QROM and omit the proofs.

Theorem 10. Let PKE = (Gen,Enc,Dec) be a randomized PKE that is δ-correct and weakly γ-spread.
Let A be an IND-qCCA adversary (in the QROM) against KEM

/⊥
m, making at most qH , qG and qD

queries to random oracle H, G and decapsulation oracle, respectively. Then there exist an adversary
A′ against the security of PRF with at most qD (quantum) queries and an OW-CPA adversary A1

against the PKE such that

AdvIND-qCCA
A,KEM/⊥

m

≤ AdvPRFA′ + 40qD ·
√
γ + 8(qH + 1) ·

√
δ + 64qH · δ

+ 4(qH + qG + 1) ·
√

AdvOW-CPA
A1,PKE .

Then the running time of A′ and A1 can be bounded as

Time[A′] ≈ Time[A], Time[A1] ≤ Time[A] +O(qH · qC · Time[Enc] + q2H).

Theorem 11. Let PKE = (Gen,Enc,Dec) be a randomized PKE that is δ-correct and weakly γ-spread.
Let A be an IND-qCCA adversary (in the QROM) against KEM

/⊥, making at most qH , qG and qD
queries to random oracle H, G and decapsulation oracle, respectively. Then there exist an OW-CPA
adversary A1 against the PKE such that

AdvIND-qCCA
A,KEM/⊥

m

≤ 2qH ·
1√
2u

+ 40qD ·
√
γ + 8(qH + 1) ·

√
δ + 64qH · δ

+ 4(qH + qG + 1) ·
√

AdvOW-CPA
A1,PKE .

Then the running time of A1 can be bounded as

Time[A1] ≤ Time[A] +O(qH · qC · Time[Enc] + q2H).

H.3 Proof of Lemma 7
Proof. Our proof idea is simple, first rewrite game Gb=0

A and game Gb=1
A as an oracle-hiding game in

the QROM, then apply the Theorem 4 to obtain the adversary B and adversary A1.
Based on the (pk, sk) generated by the Gen, define four deterministic algorithms dec1(sk, ·) to

dec4(pk, ·) as follows (Here we omit the input space for simplify.):
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Game Gb=0
A

1: (pk, sk)← Gen, b = 0

2: m∗ $←− {0, 1}u

c∗0 := Enc(pk,m∗,H(m∗))

K∗
0 := G(m∗)

3: b′ ← AH,G,O
c∗0
dec (pk, c∗0,K

∗
0 )

4: Return b′

O
c∗0
dec(c)

1: If c = c∗0, return ⊥
Else return Deca⊥m(c)

O
c∗1
dec(c)

1: If c = c∗1, return ⊥
Else return Deca⊥m(c)

Game Gb=1
A

1: (pk, sk)← Gen, b = 1

2: m∗ $←− {0, 1}u

c∗1 := S(1λ)
K∗

1
$←− {0, 1}k

3: b′ ← AH,G,O
c∗1
dec (pk, c∗1,K

∗
1 )

4: Return b′

Figure 13: Game Gb=0
A and game Gb=1

A . Here adversary A can query its oracles in superposition.

• dec1(sk, ·): For input x, return ⊥ if Dec(sk, x) = ⊥. Otherwise, return Dec(sk, x).

• dec2(pk, ·): For input (x, y), return Enc(pk, x, y).

• dec3(pk, ·): For input (x, y), return y.

• dec4(pk, ·): For input (x, y, z), return z.

Define fdec be a function that fdec(x) = ⊥ for any x, then the decapsulation algorithm Deca⊥m shown
in Fig. 5 can be rewritten as the following oracle algorithm decG,H(sk, ·):

1. For the input c, compute β := dec1(sk, c). If β := ⊥, return fdec(c).

2. Else comute dec2(pk, β,H(β)). If dec2(pk, β,H(β)) 6= c, return fdec(c).

• Else compute γ := dec3(pk, c, β), return dec4(pk, c, β,G(β)).

According to the definition of the oracle-testing algorithm in Definition 4, it is obvious that oracle
algorithm decG,H(sk, ·) is an oracle-testing algorithm. In Table 4, we provide a detailed correspondence
between the basic components (e.g. the internal algorithms) of oracle algorithm decG,H(sk, ·) and
oracle-testing algorithm otaO0,O1(sk, ·) introduced in Definition 4.

Table 4: The correspondence between the basic components of otaO0,O1(sk, ·) and decG,H(sk, ·).

Key generator Random oracle function Internal algorithms
otaO0,O1(sk, ·) (pk, sk)← KGen O0/O1 fota ota1(sk, ·)/ota2(pk, ·)/ota3(pk, ·)/ota4(pk, ·)
decG,H(sk, ·) (pk, sk)← Gen G/H fdec dec1(sk, ·)/dec2(pk, ·)/dec3(pk, ·)/dec4(pk, ·)

The corresponding parameters dec.time, dec.max and dec.union of oracle-testing algorithm decG,H(sk, ·)
defined in Eq. (15) can be written as:

dec.time = Time[dec2] + Time[dec3] + Time[dec4] ≈ Time[Enc],

dec.max =
1

2v
E

(pk,sk)←Gen
max

c∈C,m∈M
|{r ∈ {0, 1}v : Enc(pk,m, r) = c}| ,

dec.union =
1

2v
E

(pk,sk)←Gen
max
m∈M

∣∣∣∣ ∪
c∈{c∈C:Dec(sk,c) ̸=m}

{r ∈ {0, 1}v : Enc(pk,m, r) = c}
∣∣∣∣ .

(84)

Since the PKE scheme PKE is δ-correct and weakly γ-spread, one can obtain the following inequal-
ity immediately by combing Eq. (84) with the definition of δ-correct and weakly γ-spread given in
Appendix G.

dec.max ≤ γ, dec.union ≤ δ. (85)

Based on the oracle-testing algorithm decG,H(sk, ·), we define an oracle-hiding game OHGG,H,Odec

Adec,Cdec
in the QROM as shown in Fig. 14, where Adec and Cdec satisfies following properties:

• Without any computations, Adec directly generates OHG.A as ⊥.
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• cha1(pk, ·) and cha2(pk, ·) performed by Cdec return ∅ for any input, where ∅ satisfies x||∅ := x
for any x.

• cha3(pk, ·) performed by Cdec generates OHG.B as Enc(pk,m∗, y1).

• Adec then runs A in game Gb=0
A

27, return the output b′ of A as OHG.C.

• The algorithm verify(pk, sk, ·) performed by Cdec directly return b′.

Game OHGG,H,Odec

Adec,Cdec
1, (pk, sk)← Gen
2, ⊥ ← Adec(pk)

3, Cdec perform following operation
m∗

$←− {0, 1}u, r $←− {0, 1}u, s = 0

∅← cha1(pk,⊥,m∗, r)
y0 = G(m∗)

∅← cha2(pk,⊥, y0,m∗, r)
y1 = H(m∗)

Enc(pk,m∗, y1)← cha3(pk,⊥, y0, y1,m∗, r)
4, b′ ← AH,G,Odec(pk,Enc(pk,m∗, y1))

5, b′ ← verify(pk, sk,⊥,m∗, r, s, b′)
Cdec output b′ as game’s output

G(x)

1, O $←− F∗,k, return O(x)

H(x)

1, O′ $←− Fu,v, return O′(x)

Odec(c)

1, If Enc(pk,m∗, y1) is defined
and c = Enc(pk,m∗, y1)

return ⊥
Else return decG,H(sk, c)

Figure 14: The oracle-hiding game OHGG,H,Odec

Adec,Cdec in the QROM.

It is easy to see that
Pr[1← Gb=0

A ] = AdvOHG
Adec,Cdec(1

λ). (86)
Then by using Theorem 4 and Eq. (84) and (85), there exists adversaries A1

dec and A2
dec do not query

the oracle it can access that satisfy∣∣∣AdvOHG
Adec,Cdec(1

λ)− AdvOHG
A1

dec,Cdec
(1λ)

∣∣∣ ≤ 40qD ·
√
γ + 8(qH + qG + 1) ·

√
δ + 64qH · δ + 4(qH + qG + 1) ·

√
AdvOHG

A2
dec,C

find
dec
(1λ),

(87)
and

Time[A1
dec] ≈ Time[A2

dec] ≤ Time[Adec] +O(qH · qD · Time[Enc] + q2H). (88)
Here Cfind

dec is the same as Cdec except that the algorithm verify used by Cfind
dec output boole[m∗ = OHG.C].

For the AdvOHG
A1

dec,Cdec
(1λ), since A1

dec only invokes adversary Adec in a black-box manner, it is obvious
that there exists an adversary B does not query the oracle it can access satisfy

Pr[1← Gb=0
B ] = AdvOHG

A1
dec,Cdec

(1λ), Time[B] = Time[A1
dec]. (89)

As for the AdvOHG
A2

dec,C
find
dec
(1λ), since the adversary A2

dec do not query any oracle it can access, the value y1
used by challenger Cfind

dec is uniformly random in the views of A2
dec in oracle-hiding game OHGG,H,Odec

A2
dec,Cdec

.
Hence, it is easy to see that there exist an OW-CPA adversaries A1 against the underlying PKE scheme
PKE such that

AdvOHG
A2

dec,C
find
dec
(1λ) = AdvOW-CPA

A1,PKE , Time[A1] = Time[A2
dec]. (90)

Combining Eq. (86) to (90), we finally obtain the upper bound claimed for |Pr[1← Gb=0
A ]−Pr[1←

Gb=0
B ]| shown in Lemma 7. The upper bound of |Pr[1 ← Gb=1

A ] − Pr[1 ← Gb=1
B ]| shown in Lemma 7

27When the random oracle H, G and decapsulation oracle O
c∗0
dec is queried by A, Adec answers it by querying random

oracle H, G and secret oracle Odec, respectively. Note that the first check performed by Odec is exactly the check that
c = Enc(pk,m∗, y1) by the definition of dec2, hence Adec perfectly simulate A’s view in game Gb=0

A .

63



can be obtained by the similar way with |Pr[1 ← Gb=0
A ]− Pr[1 ← Gb=0

B ]|, and we omit it. Note that
compared to |Pr[1 ← Gb=0

A ] − Pr[1 ← Gb=0
B ]|, the upper bound of |Pr[1 ← Gb=1

A ] − Pr[1 ← Gb=1
B ]|

shown in Lemma 7 does not have the term ”4(qH + qG + 1) ·
√
AdvOW-CPA

A1,PKE ”. Roughly speaking, the
reason is that the operation in line 2 of game Gb=1

A shown in Fig. 13 is already irreverent with the
random oracle, hence, the game Gq

4 to game Gq
5 in the proof of Theorem 4 that are used to reprogram

the challenger’s random oracle query into fresh random value is redundant. This means that the upper
bounds given by Eq. (32) and (38) to (40) of the proof of Theorem 4 can be removed from the final
upper bound, and thus we obtain the bound we claim in Lemma 7 for |Pr[1← Gb=1

A ]−Pr[1← Gb=1
B ]|.

H.4 SPR-qCCA security of KEM⊥, KEM/⊥
m and KEM/⊥ in the QROM

Theorem 12. Suppose PKE = (Gen,Enc,Dec) is δ-correct, weakly γ-spread and SDS-IND-secure w.r.t.
QPT simulator S. Let A be a SPR-qCCA adversary against KEM⊥ in the QROM, making at most qH ,
qG and qD queries to random oracle H, G and decapsulation oracle, respectively. Then there exist an
OW-CPA adversary A1 against the PKE and a SDS-IND adversary A2 against the PKE such that

AdvSPR-qCCA
A,S,KEM⊥ ≤ 24qD ·

√
γ + 8(qH + 1) ·

√
δ + 64qH · δ + 2(qH + qG + 1) ·

√
AdvOW-CPA

A1,PKE + AdvSDS-IND
A2,S,PKE.

The running time of adversary A1 and A2 can be bounded as

Time[A1] ≈ Time[A2] ≤ Time[A] +O(qH · qD · Time[Enc] + q2H).

Proof. The proof of this theorem is similar to Theorem 7 and we omit it.

Theorem 13. Suppose PKE = (Gen,Enc,Dec) is δ-correct, weakly γ-spread and SDS-IND-secure w.r.t.
QPT simulator S. Let A be a SPR-qCCA adversary against KEM/⊥

m in the QROM, making at most qH ,
qG and qD queries to random oracle H, G and decapsulation oracle, respectively. Then there exist an
adversary A′ against the security of PRF with at most qD queries, an OW-CPA adversary A1 against
the PKE and a SDS-IND adversary A2 against the PKE such that

AdvSPR-qCCA
A,S,KEM/⊥

m

≤ AdvPRFA′ +24qD ·
√
γ+8(qH+1)·

√
δ+64qH ·δ+2(qH+qG+1)·

√
AdvOW-CPA

A1,PKE +AdvSDS-IND
A2,S,PKE.

The running time of adversary A′, A1 and A2 can be bounded as

Time[A′] ≈ Time[A], Time[A1] ≈ Time[A2] ≤ Time[A] +O(qH · qD · Time[Enc] + q2H).

Proof. As shown in Fig. 5, compared with KEM⊥m, the KEM
/⊥
m’s decapsulation algorithm returns

f(s, c) instead when c is an invalid encapsulation, where f is a pseudorandom function and s ∈ Kprf

is randomly selected and part of the secret key.
Define a new game G, which is identical with the SPR-qCCA game of KEM/⊥

m except that R(c) is
returned instead of f(k, c) for an invalid encapsulation c, where R is an uniformly random function.
Then via a straightforward reduction, there exists an adversary A′ against the security of PRF with
at most qD queries such that∣∣∣AdvSPR-qCCA

A,S,KEM/⊥
m

− Pr[1← G]
∣∣∣ ≤ AdvPRFA′ , Time[A′] ≈ Time[A].

Then similar with the proof of Theorem 7, we have

Pr[1← G] ≤ 24qD ·
√
γ + 8(qH + 1) ·

√
δ + 64qH · δ + 2(qH + qG + 1) ·

√
AdvOW-CPA

A1,PKE + AdvSDS-IND
A2,S,PKE.

Combing above two equations we obtain our result.

Theorem 14. Suppose PKE = (Gen,Enc,Dec) is δ-correct, weakly γ-spread and SDS-IND-secure w.r.t.
QPT simulator S. Let A be a SPR-qCCA adversary against KEM/⊥ in the QROM, making at most qH ,
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qG and qD queries to random oracle H, G and decapsulation oracle, respectively. Then there exist an
OW-CPA adversary A1 against the PKE and a SDS-IND adversary A2 against the PKE such that

AdvSPR-qCCA
A,S,KEM/⊥ ≤ 2qH ·

1√
2u

+24qD ·
√
γ+8(qH+1)·

√
δ+64qH ·δ+2(qH+qG+1)·

√
AdvOW-CPA

A1,PKE +AdvSDS-IND
A2,S,PKE.

The running time of adversary A1 and A2 can be bounded as

Time[A1] ≈ Time[A2] ≤ Time[A] +O(qH · qD · Time[Enc] + q2H).

Proof. This proof is similar with the proof of Theorem 13 except that we need to replace the G(s, c)
used by Decaps

/⊥ into R(c), where R is an uniformly random function. By using the Lemma 2 of
[JZC+18], the addition security loss is 2qH · 1√

2u
.

H.5 WPR-qCCA security of PKE⊥, PKE/⊥
m and PKE/⊥ in the QROM

Indeed, the WPR-qCCA security reductions of PKE⊥, PKE/⊥
m and PKE

/⊥ in the QROM are similar to
that of PKE⊥m. However, similar to Theorem 13 and Theorem 14 in Appendix H.4, the reductions of
PKE

/⊥
m and PKE

/⊥ need to first transform the pseudorandom functions used in the decryption algorithm
into uniform random functions. Here, we directly give the theorems state that PKE⊥, PKE/⊥

m and PKE
/⊥

are WPR-qCCA security in the QROM and omit the proofs.

Theorem 15. Suppose PKE = (Gen,Enc,Dec) is δ-correct, weakly γ-spread and SDS-IND-secure w.r.t.
QPT simulator S. Let A be a WPR-qCCA adversary against PKE⊥ in the QROM, making at most
qH , qG and qD queries to random oracle H, G and decapsulation oracle, respectively. Then there exist
a QPT simulator S ′ of PKE⊥, an OW-CPA adversary A1 against the PKE and a SDS-IND adversary
A2 against the PKE such that

AdvWPR-qCCA
A,S′,PKE⊥ ≤ 24qD ·

√
γ + 8(qH + 1) ·

√
δ + 64qH · δ + 2(qH + qG + 1) ·

√
AdvOW-CPA

A1,PKE + AdvSDS-IND
A2,S,PKE.

The running time of adversary A1 and A2 can be bounded as

Time[A1] ≈ Time[A2] ≤ Time[A] +O(qH · qD · Time[Enc] + q2H).

Theorem 16. Suppose PKE = (Gen,Enc,Dec) is δ-correct, weakly γ-spread and SDS-IND-secure w.r.t.
QPT simulator S. Let A be a WPR-qCCA adversary against PKE

/⊥
m in the QROM, making at most

qH , qG and qD queries to random oracle H, G and decapsulation oracle, respectively. Then there exist
a QPT simulator S ′ of PKE/⊥

m, an adversary A′ against the security of PRF with at most qD queries,
an OW-CPA adversary A1 against the PKE and a SDS-IND adversary A2 against the PKE such that

AdvWPR-qCCA
A,S′,PKE/⊥

m

≤ AdvPRFA′ +24qD ·
√
γ+8(qH+1)·

√
δ+64qH ·δ+2(qH+qG+1)·

√
AdvOW-CPA

A1,PKE +AdvSDS-IND
A2,S,PKE.

The running time of adversary A′, A1 and A2 can be bounded as

Time[A′] ≈ Time[A], Time[A1] ≈ Time[A2] ≤ Time[A] +O(qH · qD · Time[Enc] + q2H).

Theorem 17. Suppose PKE = (Gen,Enc,Dec) is δ-correct, weakly γ-spread and SDS-IND-secure w.r.t.
QPT simulator S. Let A be a WPR-qCCA adversary against PKE

/⊥ in the QROM, making at most
qH , qG and qD queries to random oracle H, G and decapsulation oracle, respectively. Then there exist
a QPT simulator S ′ of PKE/⊥, an OW-CPA adversary A1 against the PKE and a SDS-IND adversary
A2 against the PKE such that

AdvWPR-qCCA
A,S′,PKE/⊥ ≤ 2qH ·

1√
2u

+24qD·
√
γ+8(qH+1)·

√
δ+64qH ·δ+2(qH+qG+1)·

√
AdvOW-CPA

A1,PKE +AdvSDS-IND
A2,S,PKE.

The running time of adversary A1 and A2 can be bounded as

Time[A1] ≈ Time[A2] ≤ Time[A] +O(qH · qD · Time[Enc] + q2H).
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