On the Fujisaki-Okamoto transform: from Classical CCA
Security to Quantum CCA Security

Jiangxia Ge @ 2 Tianshu Shan @ 12 and Rui Xue @ 12
M M

IState Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, China
2School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049,
China
{gejiangxia, shantianshu, xuerui}Qiie.ac.cn

May 30, 2023

Abstract

The Fujisaki-Okamoto (FO) transformation (CRYPTO 1999 and Journal of Cryptology 2013)
and its KEM variants (TCC 2017) are used to construct IND-CCA-secure PKE or KEM schemes
in the random oracle model (ROM).

In the post-quantum setting, the ROM is extended to the quantum random oracle model
(QROM), and the IND-CCA security of FO transformation and its KEM variants in the QROM has
been extensively analyzed. Grubbs et al. (EUROCRYPTO 2021) and Xagawa (EUROCRYPTO
2022) then focused on security properties other than IND-CCA security, such as the anonymity
aganist chosen-ciphertext attacks (ANO-CCA) of FO transformation in the QROM.

Beyond the post-quantum setting, Boneh and Zhandry (CRYPTO 2013) considered quantum
adversaries that can perform the quantum chosen-ciphertext attacks (qCCA). However, to the
best of our knowledge, there are few results on the IND-qCCA or ANO-qCCA security of FO
transformation and its KEM variants in the QROM.

In this paper, we define a class of security games called the oracle-hiding game, and provide
a lifting theorem for it. This theorem lifts the security reduction of oracle-hiding games in the
ROM to that in the QROM. With this theorem, we prove the IND-qCCA and ANO-qCCA security
of transformation FOJ‘, FO*, FO# and FOZ, which are KEM variants of FO, in the QROM.

Moreover, we prove the ANO-qCCA security of the hybrid PKE schemes built via the KEM-
DEM paradigm, where the underlying KEM schemes are obtained by FO*L7 FO+, FOfn and FO,.
Notably, for those hybrid PKE schemes, our security reduction shows that their anonymity is
independent of the security of their underlying DEM schemes. Hence, our result simplifies the
anonymity analysis of the hybrid PKE schemes that obtained from the FO transformation.

Keywords: quantum chosen-ciphertext attacks, quantum random oracle model, anonymity,
Fujisaki-Okamoto transformation

1 Introduction

1.1 Background

Shor’s breakthrough result [Sho99] shows that quantum polynomial-time (QPT) adversary can break
cryptosystems based on the factoring problem and the discrete logarithm problem. This motivates
researchers to generate post-quantum cryptography and design quantum-resistant cryptosystems. In
the post-quantum setting, the adversaries are capable of quantum computing, in contrast to the clas-
sical computing power held by the cryptosystem users. Moreover, as introduced in [BDFT11], it is
reasonable to assume that the quantum adversary can query random oracles in superposition, and the
random oracle model (ROM) should be extended to the quantum random oracle model (QROM) for
post-quantum consideration.

https://orcid.org/0000-0002-1671-7933
https://orcid.org/0000-0002-1918-7464
https://orcid.org/0000-0001-6024-3635

The well-known Fujisaki-Okamoto (FO) transform [FFO13] is a transformation that combines a
public-key encryption (PKE) scheme and a symmetric-key encryption (SKE) scheme to obtain a hybrid
PKE scheme that is secure against the indistinguishability under chosen-ciphertext attacks (IND-CCA)
in the ROM. Dent [Den03] then introduced a variant of FO, whose resulting scheme is an IND-CCA
secure key encapsulation mechanism (KEM). On the other hand, IND-CCA secure PKE schemes can
be built via the KEM-DEM! paradigm with high efficiency and versatility [CS03]. Since then, it has
been paid more attention to the constructions of the IND-CCA-secure KEM.

In what follows, we also denote by KEM+DEM the PKE scheme built via the KEM-DEM paradigm
with KEM scheme KEM and DEM scheme DEM. Moreover, the scheme is denoted as T+DEM if the
underlying KEM scheme is obtained by transformation 7.

Modular treatment of FO transformation for KEM variants: Following [Den03], Hofheinz
et al. [HHK17] provided a modular toolkit of transformations including T, ut, U, Un{, U QU%

m?
and QU7 By combining T with ut, ut, U;fw Uz, QU,}LL and QU, it is obtained the KEM variants
of FO transformation FOJ‘, FO*, FO;L17 FOf;L, QFO;L1 and QFO#, respectively. Here, L (resp. /)
indicates that the transformation is explicit (resp. implicit) rejection type? and Q means that the
transformation requires an additional ”key-confirmation” hash. In what follows, those KEM variants
of FO transformation are referred as FO-like transformations.

FO-like transformations are widely used in the submissions to NIST post-quantum cryptography
(PQC) standardization process [NIS17] starting from 2016. Among 39 Round-1 KEM submissions to
the standardization process, there are 25 submissions following the FO-like transformations to achieve
the IND-CCA security in the ROM or QROM. In July 2022, NIST announced the first group of winners
[N1S22], and CRYSTALS-Kyber, as the only selected KEM scheme for standardization, uses a variant

of FO-like transformation FO‘/‘.

Different security guarantees of FO-like transformations under chosen-ciphertext attacks:
The classical IND-CCA reductions of FO-like transformations in the ROM were provided in [HHK17].
In the post-quantum setting, it has been heavily analysed the IND-CCA security of FO-like transfor-
mations in the QROM (e.g., [HHK17, XY19, JZC*18, JZM19, BHH 19, HKSU20, KSS*20, DFMS22,
HHM22]).

In addition to the standard IND-CCA security, researchers have also been studying the important
and useful security properties of FO-like transformations under chosen-ciphertext attacks in the post-
quantum setting as follows.

e Anonymity: This property in the public-key setting was first introduced by Bellare et al. [BBDP01].
Roughly speaking, a PKE scheme is anonymous if its ciphertexts leak little information of the
receiver.

Grubbs et al. [GMP22] were the first to study anonymity in PKE/KEM for post-quantum
considerations. They defined the anonymity against chosen-ciphertext attacks (ANO-CCA) and
provided the ANO-CCA security reductions of HFO*' (a variant of QFO;) and FO* in the QROM.
Moreover, they proved the ANO-CCA security of PKE scheme HFO' +DEM and FO*+DEM in
the QROM.

Building on the result of [GMP22], Xagawa [Xag22] investigated the anonymity of NIST PQC

Round 3 KEM schemes. The core concept of this work is a new security notion called strong
pseudorandomness against chosen-ciphertext attacks (SPR-CCA).

o Robustness: This property was first introduced in [ABN10], and it means that the receiver can
recognize whether a ciphertext is intended for themselves and is difficult to be deceived.

In the post-quantum setting, Grubbs et al. [GMP22] defined the weak robustness under chosen-
ciphertext attacks (WROB-CCA) and strong robustness under chosen-ciphertext attacks (SROB-

CCA). They also proved the WROB-CCA and SROB-CCA security of PKE scheme FO*+DEM in
the QROM.

IDEM is an abbreviation for data encapsulation mechanism. Indeed, a DEM scheme is a SKE scheme, and we will
use the terms DEM and SKE interchangeably throughout this paper.

2The decapsulation algorithm of an implicit (resp. explicit) rejection type transformation returns a pseudorandom
value (resp. an abort symbol L) when the ciphertext fails to be decrypted.

o Key dependent message (KDM) security: The KDM security was first introduced in [BRS02].
Intuitively speaking, a KDM-secure PKE scheme remains secure even if the adversary can obtain
the encryption results of the secret key.

Kitagawa and Nishimaki [KN22] initialized the study of the KDM security of PKE in the post
quantum setting. They proved the key dependent message against chosen-ciphertext attacks
(KDM-CCA) security of PKE scheme U:-keveonf L DEM in the QROM, where U3 ®v<onf is a variant
of QUZ.

The extension to the post-quantum security arguments: It was further assumed that quan-
tum adversary has quantum access to secretive primitives. Especially for PKE, Boneh and Zhandry
[BZ13] defined a new security notion named indistinguishability against quantum chosen-ciphertext
attacks (IND-qCCA), in which the quantum adversary is able to query the decryption oracle in super-
position. They also presented the first IND-qCCA-secure PKE scheme by the transformation defined
in [BCHKOT].

Following [BZ13], Xagawa and Yamakawa [XY19] introduced the IND-qCCA security for KEM
scheme, where the adversary can make quantum queries to the decapsulation oracle. They also provided
the IND-qCCA security reductions of transformation SXY (UZ) and HU (an adapted version of QU;,E)
in the QROM. Later, Liu and Wang [LW21] gave a tighter IND-qCCA security reduction of SXY from
the standard security in the QROM.

Apart from the standard security, anonymity, robustness and key dependent message security,
these security properties under chosen-ciphertext attacks can be extended into ones under quantum
chosen-ciphertext attacks (e.g. ANO-qCCA, WROB-qCCA, SROB-qCCA, KDM-qCCA).

To the best of our knowledge, for GOAL € {ANO,WROB,SROB,KDM}, the GOAL-qCCA security
of any PKE scheme KEM+DEM in the QROM, whose underlying KEM scheme KEM is obtained by
FO-like transformations, have not yet been studied. A natural question arises.

Can we prove security properties, such as anonymity, of those PKE schemes KEM+DEM even under
quantum chosen-ciphertext attacks?

Lift classical CCA reductions to qCCA reductions: In his seminal paper [Zhal9], Zhandry proposed
the compressed oracle technique, which can be used to perfectly simulate quantum random oracles
and "record” quantum queries on the database register without detecting. This technique can be
considered the quantum counterpart of on-the-fly simulation, and thus makes it possible to mimic
the classical security reduction in the ROM when proving security under quantum chosen ciphertext
attacks (qCCA). With this technique, Zhandry proved the IND-qCCA security of the FO transformation
in the QROM.

Based on the same technique, Don et al. [DFMS22] took the extracting action on the database
register as a whole part, and provided the generic extractability result (i.e. the extractable RO-
simulator and Theorem 4.3 of [DFMS22]), which can be applied to bound the loss caused by the
simulation of the decryption oracle in the QROM reductions. Moreover, it was proved that FO#T is
IND-CCA-secure in the QROM.

In contrast to [DFMS22], Shan et al. [SGX23] investigated a more specific setting. Their study
focused on PKE schemes that contain re-encryption computation in the decryption algorithms. In their
paper, plaintext extractor is developed to simulate quantum decryption oracle for this type of schemes,
and an upper bound of this simulation in the QROM reductions is also presented. Furthermore, several
transformations, including FO and REACT, were proved to be IND-qCCA-secure in the QROM, with
concrete security bounds.

The IND-qCCA and IND-CCA reductions in the aforementioned works can be regarded as the quan-
tum counterparts of the classical IND-CCA reductions of schemes, respectively. We adopt this view to
prove the IND-qCCA security of FO-like transformations, and furthermore, to explore the GOAL-qCCA
reductions of them for GOAL € {ANO, WROB, SROB, KDM}. This promotes the following question.

Is there a lifting theorem that straightforwardly extends the classical CCA reduction of FO-like
transformations to the gCCA ones?

1.2 Our Contribution

A lifting theorem for oracle-hiding games: To answer the second question, a lifting theorem
is proposed in this paper. This theorem is established on one type of games called the oracle-hiding
games, as shown in Definition 1.

Definition 1 (Oracle-hiding Game, informal). For random oracle H, G and a secret oracle Ogp, we
call the game between adversary A and challenger C, as shown in Fig. 1, the oracle-hiding game.

Oracle-hiding game OHGi
1, (pk, sk) < KGen
2, OHG.A « AH:G:Osk (k)

3, C perform following operation

m* & Ri, r & Ro Osi (@)

mo < chay(pk, OHG.A, m*,r) 1, If OHG.B is defined and

Yo = G(m*||mo) a = otag(pk, m*|[my, H(m"||m1))
my < chax(pk, OHG.A, ys, m*, 1) return |

g1 = H(m*||m1) Else return ota™ % (sk, a)

OHG.B « chas(pk, OHG.A, yo, y1, m*,)
4, OHG.C + AH:G.0sk (pk, OHG.B)
5, t < verify(pk, sk, OHG.A, m*,r, s, OHG.C)
C output t € {0,1} as game’s output

Figure 1: The oracle-hiding game OHGi. Here cha;j to chag and verify are deterministic algorithms used
by challenger C. ota'“ is an oracle-testing algorithm and ota, is an internal deterministic algorithm
of otaf"€.

We say that oracle-hiding game OHGi is in the ROM if A has only classical access to oracle H, G
and Ok, and oracle-hiding game OHGa is in the QROM if A can query oracle H, G and Og in
superposition.

In fact, the IND-CCA (resp. IND-qCCA) game of any FO-like transformation in the ROM (resp.
QROM) can be rewritten as an oracle-hiding game in the ROM (resp. QROM), as long as we clearly
specify the basic elements shown in Fig. 1 (such as the randomness space R1, Ro and algorithms cha;
to chaz). We emphasize that the oracle-testing algorithm ota?*“ appearing in Fig. 1 is actually an
abstraction of the decapsulation algorithm of FO-like transformations, and thus the secret oracle O
is actually an abstraction of the decapsulation oracle of FO-like transformations.

With the extractable RO-simulator defined in [DFMS22], we then provide a lifting theorem for the
oracle-hiding games, extending the ROM reductions to the QROM ones, as presented in Theorem 1.

Theorem 1 (Lifting Theorem of Oracle-hiding Game, informal®). Let ¢ be the parameter induced by
H, G and Og. Denote by q be the total query times to oracle H, G and Ogy. Let C be a challenger
of the oracle-hiding game.

Given any adversary A and oracle-hiding game OHGi in the ROM, there exist adversary A; and
As, invoking A once in a black-box manner* and making no queries to oracle H, G and Oy, such that

| Pr[l « OHGY] — Pr[1 « OHGS]| < O(q) - Pr[l « OHGS,] + O(q) - &. (1)
Here C' is identical with C except that it finally generates t € {0,1} by a new algorithm verify’'.

3The lifting theorem is formally described in Section 4.1, and is divided into two parts, Lemma 3 and Theorem 4, for
clarity.
4We stress that the rewinding procedure is not performed.

Then for any quantum adversary B and oracle-hiding game OHG% in the QROM, by mimicking the
construction of Ay and Ag, we can directly construct quantum adversary By and B, that invokes B in
a black-box manner without any queries to oracle H, G and Ogy, satisfy

| Pr[l - OHGg] — Pr[l <~ OHGg]| < O(q) - \/Pr[l +~ OHGg | + O(q) - V= (2)

Here, we take FO-like transformation FO; for instance to illustrate (in a high level) how Theorem
1 lifts the classical IND-CCA reduction of FO#I in the ROM to the IND-qCCA reduction in the QROM.
Let game Ga meﬁ"%ng be the IND-CCA game of FO- with classical adversary A in the ROM, then

m

we can rewrite this game as an oracle-hiding game OHGi‘~FO by designing appropriate classical adversary

A and challenger Cgo. Hence
Pr (1 Game'{ 25| = Pr |1+ OHGS?|. (3)
By Eq. (1), there exists adversary A; and Ay without any oracle queries satisfy

[Pr[1 OHGEe | — Pr [1 + OHG]

< 0(q) - Pr [1 “ OHG‘;};] +O(q) . (4)

Then, we observe that for any adversary 4 without any oracle queries, the oracle-hiding game OHG%
and oracle-hiding game OHGi must satisfy

1 /
Pr [1 « OHG;"(O] =5 Pr [1 “ OHGSJ = AdvQUBSER. (5)

Here Adv%%’,%EA is the A’s OW-CPA advantage against the underlying PKE scheme PKE. Thus combing

Eq. (3) to Eq. (5), we actually obtain the IND-CCA security reduction of FOZ; in the ROM.

Based on the challenger Cgo, the IND-qCCA game Game'l';"ﬁngA of FOfn with quantum adversary

B in the QROM can be rewritten as an oracle-hiding game OHG%FO by designing appropriate quantum
adversary B. Hence

Pr |1« Gamep 25| = Pr |1« OHGZe| . (6)

Now we can use Theorem 1 to directly obtain B; and B, without any oracle queries satisfy

‘Pr [1 “ OHGf;O} —Pr [1 “ OHGgFf] < 0(q) - \/Pr [1 “ OHGgJ +0(q) - Ve (7)
By using Eq. (5), we get
Pr |14 OHGE?| = % Pr |14 OHGE | = AdvQeef. (8)

Combining Eq. (6) to Eq. (8), we actually obtain the IND-qCCA security reduction of FO# in the
QROM. That is to say, by using Theorem 1, we directly lift the classical IND-CCA reduction of FO;
in the ROM to the IND-qCCA reduction in the QROM with a square-root advantage loss.

Additionally, Theorem 1 might be of independent interest due to the abstraction of the oracle-
hiding game.

Standard indistinguishability and anonymity of FO-like transformations: With the lifting
theorem of oracle-hiding game, we provide the IND-qCCA reductions of FO-like transformation FOL,
FO*, FO;{‘L and FO7 in the QROM. The concrete security bounds of these transformations are as
shown in Table 1.

Additionally, the lifting theorem also helps to prove the ANO-qCCA security of FO-like transforma-
tion FO*L, FOt, FOi and FO; in the QROM. Furthermore, we also prove the ANO-qCCA security of
PKE scheme FOL—l-DEM, FO+DEM, FOX +DEM and FO,J;L+DEM in the QROM, respectively. These

m
results partly answers the first question in the affirmative.

Table 1: The concrete security bounds for several transformations in the QROM. Here ¢ is adversary’s
total query times to the oracles. eg (resp. €s) is the success probability of an adversary against the OW-
CPA (SDS-IND) security of the underlying PKE scheme. ey is the success probability of an adversary
against the WANO-CPA security of the underlying PKE scheme. Disj is the statistical disjointness
parameter of the underlying PKE scheme.

Transformation Security Correctness Requirement Security bound (=)

FO;. [DFMS22] IND-CCA é-correct weakly v-spread O(q?) /7 + O(¢*)V + O(q)\/eo
FO#, FO* [Xag22]® ANO-CCA §-correct — O(¢*)V' + O(q)\/éo + €s + Disj

Fot [GMP22] ANO-CCA d-correct — O(P)Vé+O(q)/eo +ew + ...

FOT,FO;: Our work IND-qCCA é-correct weakly v-spread 0(q)\/7 + O(q)Vd + O(q)\/eo
FO*L, FO;f1 Our work IND-qCCA é-correct weakly v-spread ~ O(q)/7 + O(q)Vs + O(q)/eo
FOT,FO;, Our work ANO-qCCA é-correct weakly v-spread es + 0(q)\/7 + O(q)V3 + O(q)\/éo
FOL,FOL Our work ANO-qCCA d-correct weakly v-spread es + O(q)/7 + O(q)Vd + O(q)/eo

FO' + DEM

FO;- 4+ DEM ANO-qCCA §-correct weakly y-spread es + O(q)/7 + O(¢)Vs + O(q)\/eo
Our work

FO* + DEM

FO# + DEM ANO-qCCA j-correct weakly y-spread es + O(q)/7 + O(q)Vs + O(q)y/€o
Our work

* The ANO-CCA security of FO;',LL and FOZ has not been directly proven in [Xag22]. However, we can obtain the bound
we presented here by combining Theorem 4.1 and Theorem D.1 of [Xag22].

** The ANO-CCA security reduction of FOZ in [GMP22] also needs the SCFR-CPA security of PKE scheme PKE;.

As shown in Table 1, our IND-qCCA security bound of FOi‘n is tighter than the IND-CCA security
bound of FOF; in [DFMS22]°.

In terms of the anonymity, our work has two requirements for the underlying PKE. One of the
requirements is that the underlying PKE scheme should be OW-CPA-secure and SDS-IND-secure, which
is also required in [Xag22]. The other requirement is that the PKE scheme should be weakly ~-spread,
which has been analyzed in [HHM22] for several KEM submissions to the NIST PQC competition.

For FO-like transformation FO*L, our ANO-qCCA security bound is more concise than that in
[GMP22], and has no additional security requirements for the underlying PKE except the SDS-IND

security. Moreover, Our ANO-qCCA security bound of FO;{; and FO* is nearly identical to the ANO-
CCA security bound presented in [Xag22], with the only difference being the substitution of the term
Disj with O(q)/7.

Perhaps surprisingly, it can be further noticed that our ANO-qCCA security bounds of PKE scheme
FO’ZL—&-DEI\/I7 FO+DEM, FO;E—I—DEI\/I and FOTL,L—I—DEI\/I are irrelevant to the security of the underlying
DEM scheme. Specifically, the only security requirement of the ANO-qCCA security for those hybrid
PKE schemes is that the underlying PKE scheme, is SDS-IND-secure and OW-CPA-secure. This find-
ing may simplify the anonymity analysis of hybrid PKE scheme built via KEM-DEM paradigm with
underlying KEM obtained from the NIST KEM submissions.

A new variant of O2H: Czajkowski et al. [CMSZ19] proposed the One-way to Hiding (O2H) Lemma
for compressed oracles, that is a combination of the semi-classical O2H Theorem [AHU19] and the
compressed oracle technique [Zhal9]. We generalize this lemma to the compressed semi-classical O2H
theorem, as shown in Theorem 2, by allowing quantum oracle algorithm A to make both compressed
oracle queries and database read queries.

In our paper, the compressed semi-classical O2H theorem is only applied to prove the lifting theorem
Theorem 1, but we emphasize that this theorem also might be of independent interest.

Theorem 2 (Compressed Semi-classical O2H, informal). Let H be the compressed oracle, S be a
subset of the database and z be a random string. Let H\S be an oracle that first queries H and then

5An IND-qCCA/ANO-qCCA secure scheme is also IND-CCA/ANO-CCA secure, due to the security definitions.

queries Ogsc‘ Let A be a quantum oracle algorithm that has quantum access to both H and database
read oracle oRead. Suppose A queries H (resp. oRead) at most q1 (resp. q2) times. Define

Bty := Pr [1 « AHoRead (Z)] ’
Pright = PI‘[l — AH\S,ORead(Z)]’

Pana := Pr[Find occurs in AH\S-oRead ()]

Here Find is the event that OgSC ever returns 1, then

|-Pleft - Pright| S V (Ch +]-) . Pﬁnd7 ‘\/-Pleft - \/Pright

< V(g1 +1) - Pana.

1.3 Techniques Overview

Our security reduction rely on Theorem 1, the lifting theorem for oracle-hiding games. We prove the
IND-qCCA security of FO-like transformations by rewriting their IND-qCCA game in the QROM as the
oracle-hiding game, computing ¢ for the oracle-hiding game, and apply Eq. (2) of Theorem 1 to derive
their IND-qCCA security bounds.

However, in the ANO-qCCA game, the challenger needs to generate two public/secret key pair,
(pko, sko) and (pki,ski), the challenge query are encrypted by pko and pki, respectively, and the
adversary has quantum access to two decryption oracles: one decrypting with skg and the other with
sky. This makes it difficult to rewrite the ANO-qCCA game FO-like transformations as the oracle-hiding
game. Therefore, on the ANO-qCCA security, a more subtle argument is needed.

We resolve this obstacle in terms of the pseudorandomness of PKE/KEM defined in [Xag22].
Taking PKE for instance, this property states that a ciphertext is indistinguishable from a random
string chosen by a simulator that takes the security parameter as input.

A strong pseudorandomness was proposed in [Xag22], and it was proved that the strong pseudo-
randomness implies the anonymity. Nevertheless, the strong pseudorandomness seems to be slightly
stronger than our requirement, and a weaker property, named weak pseudorandomness, is defined in
this paper and is proved to imply the anonymity. In the security game of weak pseudorandomness
(WPR-qCCA game defined in Appendix G), only one public/secret key pair is used, we can then rewrite
the game as the oracle-hiding game, and apply Theorem 1 to prove the weak pseudorandomness, and,
consequently, the anonymity.

In this way, the ANO-qCCA security of FO*+DEM, FO*+DEM, FOX +DEM and FO+DEM can
be irrelevant to the security of the underlying DEM scheme and Disj used in [Xag22].

Proof sketch of Theorem 1: Note that Theorem 1 actually consists of two results: Eq. (1) for any
oracle-hiding game in the ROM; Eq. (2) for any oracle-hiding game in the QROM.

o In the Section 4.2.1 of our paper, Eq. (1) is proved through a game sequence G§ to G§, where
Pr(l + G§] = Pr[1 < OHGS], Pr[l « Gg = Pr [1 + OHGS, |,
3 ’
3 |Pr(l « G§] - Pr[1+ G{,]| < O(q) - Pr [1 “ OHGjZ} +0(q) -e.
i=0

o In the Section 4.2.2 of our paper, Eq. (2) is proved through a game sequence Gg to Gg, where

Pr[l « G3] = Pr [1 “ OHGg] , Pr[l+ G =Pr [1 “ OHGgl] ,

5
S OPrl« G = Pr 1+ Gi,]| < O(q)- \/Pr [1 — OHGg;} +0(q) - Ve

i=0

Roughly speaking, the purpose of both game sequences G§ to G§ and Gg to Gg is to design an
adversary, i.e., A; in G§ and By in Gg, that invokes the adversary of the first game and does not
query any oracle.

To achieve it, the main problem is to simulate classical and quantum accessed random oracle H,
G, as well as the secret oracle Ogj,. Here, we provide a high-level explanation of how we simulate these
oracles.

e For random oracle H and G, we simulate it on-the-fly by list £ and £, respectively. Now
there exists a query transcript £5 of random oracle H.

e For the quantum random oracle H, we simulate it by using the RO-interface eCO.RO of the
extractable RO-simulator S(:= {eCO.RO,eCO.E}). As for G, we simulate it with a 2¢-wise
independent hash function.

e For the classical accessed secret oracle O, we simulate it by a classical plaintext-extractor
without using the secret key sk. For the secret oracle query, Ogp replies it by reading and
extracting from the query transcript £g.

e For the quantum accessed secret oracle Oy, we simulate it by a quantum plaintext-extractor
without using the secret key sk. The extractor is constructed with the extraction-interface
eCO.E of the extractable RO-simulator.

Indeed, in our detailed proof of the lifting theorem Theorem 1, it can be observed that the quan-
tum plaintext-extractor, constructed by using the extraction-interface eCO.E, can be regarded as the
quantum counterpart of the classical plaintext-extractor. Moreover, it can be noticed that an one-
to-one correspondence exists between the operations of A; and B, and those of Ay and Bs. This
correspondence enables us to construct By and Bs directly by mimicking the construction of A; and

As.

1.4 Related Works

[XY19] and [LW21] have argued the IND-qCCA security of FO-like transformations. However, their
work mainly focused on FO-like transformations with implicit rejection type. As for explicit rejection
type, only transformation HU, an adapted version of QU;%, has been analysed in [XY19].

To the post-quantum security of FO-like transformations with explicit rejection type, there have
been only [DFMS22] and [HHM22] providing the IND-CCA security reduction of FO, as far as we
know. Moreover, Hovelmanns et al. also showed that the IND-CCA security of FO:. implies the
IND-CCA security of all remaining FO-like transformations [HHM?22].

It should be noted that the IND-CCA security reductions of FO:; given in [DFMS22] and [HHM22]
seem not to hold for the IND-qCCA security, where the adversary is allowed to query the decapsulation
oracle in superposition. There are two reasons as follows.

1. Both [DFMS22] and [HHM22] use property 4.a and 4.b of Theorem 4.3 in [DFMS22] to prove
the IND-CCA security, but these properties only hold for classical queries.

2. In the IND-CCA security reductions of [DFMS22] and [HHM22], a list is maintained to record
the adversary’s classical decapsulation queries. However, if the decapsulation oracle is quantum-
accessible, this record procedure becomes infeasible due to the quantum no-cloning principle.

The post-quantum anonymity of FO-like transformation was first studied by Grubbs et al. [GMP22].
Theorem 7 of [GMP22] implies that the ANO-CCA security of PKE scheme FO*+DEM is guaranteed by
the ANO-CCA security of KEM obtained by FO*L, the INT-CTXT security of DEM, and other security
requirements. Xagawa [Xag22] then proved that the ANO-CCA security of the hybrid PKE scheme
FOX+DEM in the QROM can be implied by the SPR-OTCCA security of DEM, the SPR-CCA and
SSMT-CCA security of KEM scheme obtained by FO*.

However, both in [GMP22] and [Xag22], the ANO-CCA security of hybrid PKE scheme FO*+DEM
depends on the security requirement of the underlying DEM.

As the last point, there have been several works on the lifting theorem from ROM proofs to QROM
proofs [BDFT11, CMS19, KS20, CFHL21, YZ21].

2 Preliminaries

2.1 Notations

The security parameter is denoted by A. We denote by boole[A] a bit that is 1 if the predicate A keeps
true and otherwise 0. For a finite set S, we denote the sampling of a uniformly random element x as

z S, and the cardinality of S as |S|. « < D represents that the z is chosen subject to distribution D.
Pr[A: B] is the probability that the predicate A keeps true where all variables in A are conditioned
according to predicate B. Let y + A(x) represent the output of algorithm A on input z, y + G
represent that the game G finally outputs y. Denote by F,, , the set of all functions with domain
{0,1}™ and codomain {0,1}". For a function or an algorithm f, denote by Time[f] the worst case of
the running time of f(z) for all input z.

2.2 Quantum Computation

We refer to [NC16] for detailed basics of quantum computation and quantum information, and we only
introduce some important quantum notions used in this paper in Appendix A.

2.3 The Quantum Random Oracle Model

The random oracle model (ROM) is an ideal model in which a uniformly random function H :
{0,1}" — {0,1}" is selected and all parties have access to a random oracle Op, where O out-
put H(x) on input z. We can simulate the random oracle Oy efficiently for the classical query by
on-the-fly technique. When a random oracle scheme is implemented, we select a concrete hash function
as an instantiation of the random oracle. In the quantum setting, a quantum adversary can evaluate a
hash function in superposition. To capture this issue, the quantum random oracle model (QROM) is
considered and the adversary has access to the quantum random oracle Oy in this model [BDFT11].
The quantum random oracle Oy can be viewed as a unitary operation that maps |z, y) to |z, y® H (z)),
where z € {0,1}™ and y € {0,1}". We will introduce several useful lemmas regarding the QROM in
Appendix B.

2.4 The Compressed Standard Oracle

The compressed oracle technique is introduced by Zhandry in [Zhal9], by using this technique, one
can perfectly simulate the quantum accessible random oracle and record some information about the
adversary’s quantum query. In this subsection, we only introduce the database model and a specific
version of the compressed oracle named compressed standard oracle. Moreover, we fix the query bound
to the compressed standard oracle to be constant ¢ since all results are about the adversary with fixed
query times.

Definition of the database. Let L ¢ {0,1}™. A database D is a ¢ pairs collection of pair (x,y) €
{0,1}™ x {0,1}™ and (L,0") as:

D= ((xlayl)a (anyQ)v sy (xiayi)7 (J-a On)a ceey (J—a On)) 9

where i < g, z1,22,...,2; # Land z1 < z9 < -+ < x4, all (L,0™) pairs are at the end of the collection.
Let D, be the set of all these databases. For a z € {0,1}"™, we will write D(z) = y if y exists such that
(z,y) € D, and D(x) = L otherwise. Let n(D) be the number of pairs (z,y) € D that x # L. For a
pair (z,y) € {0,1}™ x {0,1}" and a database D € D, with n(D) < ¢ and D(z) = L, write D U (z, y)
to be the new database obtained by first deleting a (L,0™) pair, then inserting (x,y) appropriately
into D and maintain the ordering of the z values.

A quantum register D, defined over set D, is a complex Hilbert space with orthonormal basis
{ID)}pep,, where the basis state |D) is labeled by the elements of D,. As mentioned in Appendix
A, this basis is the computational basis. We also refer to D, as the database register. For a database
D e Dy, n(D) < g and D(x) = L, define a superposition state on the database register D, as

1 T
= > D7Dy,
ye{0, 1}

|DU (z,7)) =

where z € {0,1}™ and r € {0, 1}".
For a = € {0,1}™, Zhandry defined the local decompression procedure StdDecomp, acts on the
database register D, as follows:

« For D € D, if D(z) = L and n(D) < ¢, StdDecomp,|D) = |D U (z,0")).
« For D' € D, if D'(x) = L and n(D') < g, StdDecomp, | D’ U (z,0")) = |D’). For r # 0",
StdDecomp,,|D’' U (x, 7)) = | D’ U (z,7)).

o For D € D, such that D(z) = L and n(D) = g, StdDecomp,|D) = |D).

It is obvious that StdDecomp, is a unitary operation and StdDecomp, o StdDecomp, = I for any
x € {0,1}™, where I is the identity operator.

Definition 2 (Compressed Standard Oracle). Let X (resp. Y) be the quantum register defined over
{0,1}™ (resp. {0,1}"). Let the initial state on database register D, be |D1), where D+ € Dy, is the
database only contains q pairs (L,0™). A query to the compressed standard oracle with input/output
register X/Y is implemented by acting the following unitary operation CStO on registers XYD,.

CStO = Z |z)(z|x ® StdDecomp,, o CNOTyp, o StdDecomp,,. (9)
ze{0,1}m

Here CNOTYp maps |y, D) (y € {0,1}", D € D,) to [y®D(x), D) if D(x) # L, to |y, D) if D(z) = L.

Zhandry proved that the compressed standard oracle is perfectly indistinguishable from the quan-
tum random oracle.

Lemma 1 ([Zhal9]). For any adversary makes at most q times quantum queries, compressed stan-
dard oracle defined in Definition 2 and quantum random oracle H : {0,1}™ — {0,1}™ are perfectly
indistinguishable.

Let X (resp. Y) be a quantum register defined over a finite set X (resp.). For any function f
with domain X x D, and codomain Y, define unitary operation Read; acts on registers XD,Y as

Ready|z, D,y) = |z, D,y + f(x, D)). (10)

Here + : Y x Y — Y is some group operation on). Note that Read; does not change the database
in the computational basis state, it only compute f(z, D) and return it in register Y, therefore we call
Read; a database read operation.

For an adversary A with access to the compressed standard oracle, we say A can make database
read queries if it can query oracle oRead ; with input/output register X/Y for a fixed function f, where
oracle oReady is implemented by acting the database read operation Read; defined in Eq. (10) on
registers XYD,.

2.5 The Extractable RO-Simulator

In [DFMS22], Don et al. generalized the compressed standard oracle and defined the extractable RO-
simulator. Roughly speaking, this simulator simulates the quantum random oracle H by using the
compressed standard oracle, and has an extraction-interface that can output a z satisfy f(z, H(x)) =t
for an input ¢. In the following, we introduce the extractable RO-simulator and prove a lemma that
will be used in the next section. We stress that, identical with Section 2.4, the database register used
here is also D,. Therefore, different with the inefficient version defined in [DFMS22], the extractable
RO-simulator described here is an efficient version and it at most simulates g times queries to the
quantum random oracle H.

Let f be an arbitrary but fixed function with domain {0,1}" x {0,1}" and codomain). For a
fixed t €), define relation R € {0,1}™ x {0,1}" and corresponding parameter I gt as follows:

Rl = (@) € 0.7 x 0.1 f (@) =1}, Tpyi= max [y e {0.1)"[f@y) =t} ()

6The CNOTQ?Dq acts trivially on the state |y, D) that satisfies D(z) = L is additionally defined in [DFMS22], which
is also equivalent to the additional notation that 7y @ L = y” defined in [Zhal9].

10

For the relation R{ , define following projectors act on database register D:

= > ID)(D| (z €{0,1}™), T£t:=I- Y ¥ (12)
Ds.t. (z,D(z))eR] z€{0,1}m
@' <wz,(z',D(z'))¢R]

Then we define a measurement M on database register D, to be the set of projectors {3%} c0,13muL -
Indeed, the measurement M# will return the smallest = such that (z,D(z)) € R{. If such z does

» s
not exist, MPA! will return L. Similar with [DFMS22], we also consider the purified measurement Mg;P

corresponding to MFE! given by a unitary operation acts on registers D,P as

Rtf T
MDqP|D,p>: E Y¥|D)|p @ x).
ze{0,1}mUL

Here P is a quantum register defined over {0,1}™"'7 D € D, and p € {0, 1}

Definition 3 (The (efficient version of the) extractable RO-simulator). The extractable RO-simulator
S(f) with internal database register Dy is a black-box oracle with two interfaces, the RO-interface
eCO.RO and the extraction-interface eCO.Ey. S(f) prepares its database register D, to be in state
|DL) at everything begins, where D+ € Dy is the database only contains q pairs (L,0"). Then, the
RO-interface eCO.RO and the extraction-interface eCO.Ey act as

o Let X (resp. Y) be the quantum register defined over {0,1}™ (resp. {0,1}™), let T be the quantum
register defined over).

o eCO.RO: Upon a quantum RO-query, with query registers XY, S(f) applies CStO defined in
Definition 2 to registers XYDy.

o eCO.E¢: Upon a quantum extraction-query, with query registers TP, S(f) applies

R{
Ext; = > [6)(tlr ® Mpp (13)
tey

to registers TD4P.
Moreover, by the Theorem 4.3 of [DFMS22], the total runtime of S(f) is bounded as®

Ts = O(qro - q& - Time[f] + qh0).
where gro (< q) and gg are the number of queries to eCO.RO and eCO.Ej, respectively.

The eCO.RO (resp. eCO.Ef) can also be classically queried, in this case, the query registers XY
(resp. TP) are measured after applying the unitary operation CStO (resp. Exty). The eCO.RO can also
be queried in parallel, and k-parallel queries to eCO.RO can be processed by sequentially implementing
CStO k times [CFHL21].

In addition, for any computational basis state |t, D, p) on registers TD,P, it is straightforward to
check that

Ext¢|t, D,p) = |t,D,p ® ¢(t, D)).

Here function g : ¥ x D, — {0,1}™"! on input (¢, D) output the smallest value z that satisfies

(z,D(x)) € R{ , if such x does not exist, function g output L. Therefore, by the definition of database
read operation given in Section 2.4, Ext; can also be viewed as a database read operation.

Next we introduce a lemma about the extractable RO-simulator S(f), the detailed proof is shown
in Appendix C.

Lemma 2. Let StdDecomp, be the unitary operation introduced in Section 2.4, let T ¢, ¥+ and Exty
be as in Eq. (11), (12) and (13), respectively. Then

"Here we embed the set {0,1}™ U L into the set {0,1}™%! as explained in Appendix A.
8 Although [DFMS22] defined an inefficient version of the extractable RO-simulator, the total runtime of the efficient
version is given instead in the Theorem 4.3 of [DFMS22].

11

n €L n
[|[Exty, StdDecomp,]|| < 16 - /I{}Ea)%(FRtf/Q , ||[CStO, X+ < 8- ‘/FR{/Q .

Here [A, B] :== AB — BA is the commutator of two operations A, B act on a quantum register.

Remark 1. Note that the definition of Exty and ¥t are based on the efficient representation of the
compressed oracle (i.e. the compressed standard oracle). But we stress that Lemma 2 can still be easily
proved by using the Lemma 3.3 and Lemma 3.4 of [DFMS22], even these two lemmas are stated by
using the inefficient representation of the compressed oracle. The reason is that the two representations
are isometrically equivalent as discussed in the Sect. B of [DFMS22]. However, for convenience and
completeness, we directly prove Lemma 2 in Appendix C by using the representation of the compressed
standard oracle.

2.6 Compressed Semi-Classical One Way to Hidding

In this section, we generalize the O2H variant Theorem 10 in [CMSZ19] by allowing that the algo-
rithm A with access to the compresses standard oracle can also make database read queries. This new
theorem may can be applied to more scenes in the QROM.

Compressed semi-classical oracle. Let D, be the database set defined in Section 2.4, let .S be a sub-
set of D,. Define function fg such that fs(D) =1if D € S and fg(D) = 0 otherwise. The compressed
semi-classical oracle Ogsc performs the following operation on input state ZzE{O,l}*,Dqu a;.plz, D):

1. Initialize a single qubit L with |0)z, transform state }__c g 13- DeD, a. plz, D)|0), into state
Zze{o,l}*,Dqu az,plz, D)|fs(D))L-
2. Measure L and output the measurement outcome.

Denote Find as the event that Ogs ¢ ever returns 1. Compared with the semi-classical oracle Ogc,
compressed semi-classical oracle Ogso performs the projective measurement on the database register.

Remark 2. The definition of OgSC is based on the definition of Algorithm 4 (Measurement of a
relation R) in [CMSZ19]. For computational basis state |z, D), the Algorithm 4 needs to compute
the number of non-padding pairs (i.e. n(D) in our paper) of the database D in a register and finally
uncompute it, since in [CMSZ19], it is only reasonable to check if the non-padding pairs are in the
relation R. We stress that O5°C does not need to compute n(D), because we do not care about the
internal pairs of D and only care about if D belong to the subset S.

Theorem 3 (Compressed semi-classical O2H with database read queries). Let H : {0,1}™ — {0,1}"
be a quantum random oracle that is implemented by the compressed standard oracle. Let f be a function
with domain X x D, and codomain YV, D, be the database register defined over Dy. Let S be a subset
of Dy that D+ ¢ S and z be a random string, where D+ is the database only contain q pairs (L,0"),
S and z may have arbitrary joint distribution D. Let H\S be an oracle that first queries H and then
queries Ogsc'

Let A be a quantum oracle algorithm (not necessarily unitary) that is given access to H and oReady,
and we suppose A queries H (resp. oReads) at most q1 < q° (resp. ga) times. Here oracle oReady is
implemented by the database read operation Ready defined in Eq. (10). Define

Piege 1= Pr [1 = AR ()1 (8, 2) + D],
Prigny = Pr[l = AT\IRR1(2) 1 (5, 2) « D,
Pana := Pr[Find occurs in AT\SoRedr (5) 1 (S 2) « D).

Then

|Piete — Prignt| < v/ (q1 + 1) - Pana, ‘\/Pleft — V/Prignt| < V(@1 + 1) - Ppina.

Let Js :=) peg |D)(D| be the projector acts on the database register Dy, let CStO be as in Eq. (9),
we then have

2
Pina <qi- E [[[Jg,CStO]||".
(S,2)«D
9This limitation on ¢ is because that the database register D4 can only be used to perfectly simulate ¢ times quantum
random oracle queries at most.

12

The detailed proof of Theorem 3 is similar to the proof of the semi-classical O2H theorem [AHU19]
and we present it in Appendix D.

3 The Oracle-Hiding Game

In this section, we define a type of games called oracle-hiding games, which involves a classical chal-
lenger and an efficient adversary. The definitions introduced as follows are the foundation of the lifting
theorem, provided in the next section.

Definition 4 (Oracle-Testing Algorithm). Let key generator KGen be a polynomial time algorithm,

which on input 1, outputs a public/secret key pair (pk,sk). Let Og & Fmnn)m) and Oq & Fmt (2, ()
be random oracles, where m(\), n(A), m’(X\) and n’(\) are functions of . The oracle-testing algorithm
ota®»O1 (12 sk, -) is an algorithm that has access to random oracle Oy and Oy, takes as input a o € X
and is executed as follows.

1. Compute 3 := otai(1*,sk,) € {0,1}™ N U L. If B = L, return foa(a) € {0, 1}V,
2. Else, compute otas(1*, pk, 3, 01(3)) € X. Ifotas(1*,pk, 3,01(B)) # a, return foa (o) € {0,113,
(a) Else, compute y := otaz(1*, pk, a, B) € {0, 1}V return otay(1*, pk, a, 5, 0o (7)) € {0, 1}V,
Here ota;(1*,sk, -), otas(1*, pk, -), otaz(1*, pk,-) and otas(1*,pk,-) are deterministic polynomial time

algorithms, fora is a fized function, I(\) is a function of A.
Define a subset of {0,1}"' N to be

ota.subgf = {r € {0,117V : otay(1*, pk, B, 7) = a}. (14)
Define parameter ota.time, ota.max and ota.union to be:
ota.time := Time[otas] + Time[otaz] + Time[otay],

ota.max := ——-—= E max
AL ()(pk,sk)<—KGen(1*) aEP\QBE{OJ}m/(M

ota.sub®?|
P (15)

ota.union := ——

- max U otasub®”
2" (A) (pk,sk) —KGen(1%) Bef{0,1}m’ (M) Pk

a€Set.3 ’

where Set.3 := {a € X : ota; (1}, sk, o) # B}.

Definition 5 (Oracle-Hiding Game in the ROM/QROM). For a classical challenger C(1*) and an
efficient adversary A(1"), we call game OHGZ‘&?;:CO("I‘QA), as shown in Fig. 2, an oracle-hiding game if
the following conditions are satisfied:

o A(1*) has access to random oracle Oy, random oracle Oy and secret oracle Oota, where Oga uses
the oracle-testing algorithm ota®0-91(1* sk, -) to reply its queries.

o C(1%) uses random coins m*, r and s, where s is sampled from {0, 1} subject to some distribution.
e C(1*) does not query Oga and queries Oy (resp. O1) only by m*||mq (resp. m*||my).

« chay (1%, pk,-), chas(1*, pk, -), chaz(1*, pk, -) and verify(1*, pk, sk, -) used by C(1*) are deterministic
algorithms.

e It can be checked efficiently whether a = otas(1*, pk, m*||m1, O1(m*||my)), by using OHG.B and
pk. This check takes very little running time and can be ignored.
We say that game OHGZ‘Ei?)l”CO(°1‘}) is in the ROM if A(lA) has only classical access to Oy, O1 and Ogs.

If A(1*) has quantum oracle access to Oy, O and Oga, game OHGi((”lg)l’CO("ltj) is in the QROM. Then
define

Adv%‘:'c(;(lk) :=Pr |1« OHGZ‘Ei?)l»é?(o{;)

13

O[aolaoota
Game OHGAED),C(D)
1, (pk,sk) < KGen(lA)
2, OHG.A <+ A90:01:0u (12 pk)

3, C(1*) perform following operation

1,0 & Fm(2\),n(x), return O(x)

m* & Ry, r &Ry, s €{0,1}) 01 ()
ms < chay (1, pk, OHG.A, m*, 7) 1, O & Fm/(3),n'(n), return O'(x)
Ys = Os m* ms

(m*||m) Ouea(@)

my_s < chag(1*, pk, OHG.A, y,, m*, 1)
Y1-s = O1_s(m*||mi_,)
OHG.B « chas(1*, pk, OHG.A, ys,y1_s, m*,7)
4, OHG.C < A%0:01:0e2 (12 pk, OHG.B)
5, t + verify(1*, pk, sk, OHG.A, m*, 7, s, OHG.C)
C(1*") output t € {0,1} as game’s output

1, If OHG.B is defined and
a = otag(1*, pk, m*[[my, Oy (m*|jm.1))
return |
Else return ota®-%1(1*, sk, a)

GO0,01,00t
A(12),C(1r)
or equal to m(\) and m/()\) for any parameter A.

Figure 2: The detailed process of game OH We default that the length of m* is less than

In oracle-hiding game OHGi‘Ei?;fa‘i), by using Og(m*||me) and Oq (m*||m1), the challenger com-

putes the adversary’s input OHG.B. The secret oracle Og, is implemented by using the oracle-testing
algorithm, and it outputs L for a = otas(1*, pk, m*||my, O1(m*||my)) after OHG.B is defined.

Therefore, even though the adversary has access to secret oracle Ogta, it cannot obtain the output
otas (1%, pk, a,, m*||m1, Op(7))'° by querying Oota on . This means that, in game OHGif(”l?)l”g("lti), the
random coin m* is hidden in adversary’s input by using the random oracle Oy and random oracle Oy,
the value m*||m; is hidden by using Oot,.

4 Lifting Theorem for Oracle-Hiding Game

In this section, we give a lifting theorem for the oracle-hiding game from ROM to QROM.

4.1 Statement of Lifting Theorem
First, we introduce a lemma of the oracle-hiding game in the ROM, and its detailed proof is given in
the next section.

Lemma 3. For any oracle-hiding game OHGZ?’K)1 ’é)("ltj) in the ROM, suppose that the query times of

0o, 01 and O are qo, q1 and qora, respectively. Then there exist adversary Ay (1) and A3(1V), which
make no queries to oracles they have access to and invoke adversary A(1*) once in a black-box manner
(without rewinding), such that

Adva':'cc(lk) — Adv%"GC(l’\) < Gota - Ota.max + g1 - ota.union + (go + ¢1) - Adv%"%ﬁnd(l)‘), (16)

where challenger Cring(1*) is identical with C(1%), except that it finally outputs t = boole[OHG.C = m*]
as game’s output. Moreover, the running time of Ay (1) and that of As(1*) can be bounded by
Time[A; (11)] & Time[Az(1*)] < Time[A(1*)] + (g0 + q1) - O(X) + ota - Ota.time.

Remark 3. The detailed construction of adversary A;(1*) and Ax(1*) is complicated, and thus we
omit them in Lemma 3. They are clearly described in the proof of Lemma 3 in the next section.

10Here v = otaz(1*, pk, a, m*||m1).

14

Then we present our lifting theorem for oracle-hiding game as follows.

Theorem 4 (Lifting Theorem for Oracle-Hiding Game). For any oracle-hiding game OHGOOl?)1 Co(‘fi)

in the QROM, suppose that the query times of Oy, 01 and O are qo,q1 and qota, respectively.

By mimicking the construction of adversary A;(1*) and As(1*) in Lemma 3, we can directly
construct adversary By (1) and Bo(1), which make no query to the oracle they have access to and
invoke adversary B once in a black-box manner (without rewinding) such that

AdeHG(1% — AdVOHG(1| < 40gota - Vota.max + 8(g; + 1) - Vota.union + 64q; - ota.union
(17)
OHG
+4(go+q¢1 +1) - AdVB%Cﬁnd(l)\)'

where challenger Cing(1*) is identical with C(1%), except that it finally outputs t = boole[OHG.C = m*]
as game’s output. Moreover, the running time of B1(1}) and that of Bo(1*) can be bounded by

Time[B; (1*)] ~ Time[B2(1*)] < Time[B(1*)] + O((qo + 1) * Gota - ota.time + (qo + q1)?).

Remark 4. Similar with the Lemma 3, we omit the detailed construction of adversary By and By in
Theorem 4 since they are complicated. In the proof of Theorem 4 in the next section, we will clearly
give the detailed construction of adversary By and By and show that how to mimic the construction of
adversary Ay (resp. As) to get the construction of adversary By (resp. Bs).

Indeed, Theorem 4 shows that the adversary By and By satisfying Eq. (17) can be obtained by
mimicking the construction of A; and As satisfying Eq. (16), respectively. It is also noted that the
upper bound shown in Eq. (17) is almost identical with Eq. (16), except for a square-root advantage
loss. In other words, Theorem 4 shows that the result on the oracle-hiding game in the ROM can be
lifted to the QROM with a square-root advantage loss.

4.2 Proof of Lifting Theorem

In this section, we give the detailed proof of Lemma 3 and Theorem 4. For notational clarity, we
sometimes omit the security parameter A in the following text.

4.2.1 Proof of Lemma 3

Proof. The basic idea of this proof is to gradually change the simulation of random oracle Ogy, random
oracle O and secret oracle Ou, by a sequence of games. The overview of all games is given in Fig. 3.
Game G§: This game is identical with the oracle-hiding game OHGOO1 X, g&‘i) in the ROM except that

the random oracle Oy and O; is simulated on-the-fly by using the query/ reply record list £y and £,
respectively.

Notice that the line 4 and line 5 of secret oracle Og, in game G§ tests whether O;(3) belongs
to ota.subg‘k’ﬁ to determine whether otas(pk, 8, 01(8)) equals a. This is unproblematic since they are

equivalent by the definition of the subset ota.subffk’ﬁ defined in Eq. (14). Then, we have
Pr[l « G§] = AdvQE (17). (18)

Game G¢: In this game, the simulation of secret oracle Oua on query « is changed that it adds a new
rule:
For the query «, if 8 := otaj(sk,) # L and £1(8) = L, return fora ().
Here £, is the list just before the simulation of oracle Ou, on query a.
For any fixed (pk, sk) that is generated by KGen, suppose the adversary’s i-th query to secret oracle
Oota is a; (i =1,...,qota), define event DIFF? (resp. DIFF}) as

In game G§ (resp. game GY), «; satisfies 5; := otay(sk, ;) # L, £1(8;) = L and
01(8:) € ota.sub;’t’ﬁi.

15

Here £ is the list just before the i-th Ou, query. By simulation, it is easily to check that the secret
oracle Oga in game G§ and game G§ will output same value for the i-th query «; if event DIFFEJ
and DIFF} do not occur. Thus, game G§ and game G$ proceed identically if event V%3 DIFF? and
vt DIFF; do not occur. This implies that
Pr [V DIFF}] = Pr [V DIFF}]
Pr[l + G : (pk,sk) A =(V%= DIFFY)] = Pr[l < G$: (pk,sk) A =(V%&43 DIFF})].

Here 1 < G§ : (pk,sk) denote the event that game G§ finally return 1 for the fixed (pk,sk). Then by
the difference lemma of [Sho04],

| Pr[l « G§ : (pk,sk)] — Pr[l < G : (pk,sk)]| < Pr [V DIFF;] . (19)
GAMES G§ G§
1, (pk,sk) « KGen //G§-GS
2, OHG.A ¢ A%0:01:0% (pk) //G§-Gg Oi(z)
OHG.A « A, (pk) //Ggs L o Fonn, return O’ (z) //G§,GS
3, C perform following operation 2,13y S';' (z,y) /E L1, return y //Gi-G3
m* ﬁ Riir ﬁ R, s € {0,1} //Ge-GS 3, Else y < {0,1}", £, := £ U (x,y), //G$-G§
ms < chay (pk, OHG.A, m*, 7) //Ge-gg retwmy
ys = Og(m*||my) //G§-G$,GS Oota(@)
P /)G 1, If OHG.B i}\s defined and //G§-GS.G§
mi_s < chaz(pk, OHG.A, ys, m*, 1) //G&-GS o = otay(1%, pl, m?[[ma, Oy (m”fm1))
return L
Yims = Ors (m7[ma—s) /1G5-G2.G3 2, Else if otaj(sk,a) = L, return fora() //G§-GS,G§
Yios =T //G§ 3 Blse if B := otay(sk,) # L and //GS
OHG.B « chas(pk, OHG.A, y,,y1_o,m*,7) //G§-G§ €1(8) = L, return fuu(a)
4, OHG.C ¢~ A%91.92 (pk, OHG.B) //G§-G§ 4, Else if B = ota(sk, o) # L and //G§-GS,GS
OHG.C «+ A;(pk, OHG.B) //G§ 01(B) ¢ ota.sub‘;‘k’ﬁ, return fu, ()
5, t < verify(pk, sk, OHG.A, m*,r, s, OHG.C) //G§-G4 5, Else if 3 := ota;(sk,a) # L and //G§-GS,.G§
C output ¢ € {0,1} as game’s output 0:1(B) ota.sub‘:i;‘B,
Oo(z) compute v := otaz(pk, a, 8)
LT(E Fnn, return O(zx) //G§.G§ return otay(pk, @, , Oo (7))
2, If Jy s.t. (z,y) € Lo, return y //GS-Gg Oota(a)
3, Else y K3 (0,1}7, €0 := S0 U (2,1), //GS-GS 1, Return Search(£4, a) //G5-G§
return y

Figure 3: Summary of games for the proof of Lemma 3. The query/reply record list £y (resp. £1)
used to simulated random oracle Oy (resp. O;) is a set of pair (z,y) € {0,1}™ x {0,1}" (resp.
(z,y) € {0,1}™ x {0,1}""). Initially, list £y and £, are empty set. We say £ (x) = L if there does
not exist y s.t. (r,y) € £1, we also denote y as £1(z) if a pair (z,y) € £.

Note that £1(8;) = L indicates 3; has never been queried to random oracle O; by the adversary,
and hence O;(8;) must be uniformly random in {0,1}™ by the basic rules of the on-the-fly simulation.
Then we have

Qota Qota
Pr [V DIFF}] < "Pr[DIFF;] <> Pr[0:(8;) € ota.subly " : £1(8;) = L]
i=1 i=1 (20)
1 o8
< Qota * max - ota.subpk’ .
acx,pe{0,1}m 2"

Combining Eq. (19) with Eq. (20) and then averaging over (pk,sk) < KGen, we finally obtain

1
Pr[l + Gg| — Pr[l + GY]| < gota E —
| r[0] r[1]| = (ota (pkosk)_KGen 27 anglg[}éJ}M/

o,
ota.suby
(a)
= (ota - Ota.max.

16

Here (a) uses Eq. (15).

Game G$§: In this game, the secret oracle Oy, is simulated by using the operation Search, which is
operated on input (£1, @) as follows:

1. If OHG.B is defined and a = otas(pk, m*||m1, O1(m*||m1)), return L.

2. Else do: Find the smallest § such that £,(8) # L and £,(8) € ota.sub‘;‘f. If such S exists,
compute v := otaz(pk, a, 3) and return otas(pk, o, 5, Op(7)), else return fora ().

Notice that by Definition 5, whether a = otaa(pk, m*||mq, O1(m*||m1)) can be determined by using
OHG.B and only pk, thus the simulation of secret oracle Ou, in game G§ makes no use of the secret
key sk any more.

In the following analysis, we consider a fixed (pk,sk) that is generated by KGen. In game GY, the
simulation of secret oracle Og, still uses secret key sk since it needs to compute otag (sk, «) for query
a, and we also observe that Og, does not directly return fora(a) for query a only when £4(8) # L and
£1(B) € ota.sub‘pll(”g, where 8 := ota;(sk,) # L. This means that the value ota; (sk, &) must be already
recorded in the list £; if Oy, does not directly return L for query «. Based on this observation,
in game G§, we use operation Search to extract ota(sk,«) from the list £; and to avoid computing
otai (sk, a) like game G§ when we simulate secret oracle Ou, 0n query .

In order to bound the difference between the probability that game G{ and game G§ output 1, we
need to analyze under what conditions the output of the secret oracle Oy, in game G§ and game G§
are different. Indeed, the secret oracle Ou, in game G§ and game G§ only have different output on
query « if a and the list £, just before this query are following cases:

1. otaj(sk,a) = L, and there exists a 8 s.t. £1(8) # L and £,(8) € ota.sub;’k’ﬁ.
2. B :=otai(sk,a) # L, £,(8) = L, and there exists a 8’ s.t. £,(8") # L and £1(8') € ota.subszﬁl.

3. p=otai(sk,a) # L, £(8) # L, £,(8) ¢ ota.sub‘;‘f, and there exists a 8 s.t. £1(8') # L and
£1(8) € ota.subsliﬁl.

4. B = otai(sk,a) # L, £1(8) # L, £.(B) € ota.subgk’ﬁ, and there exists a ' s.t. 8 < 8,
£1(8) # L and £1(8') € ota.subgk’ﬁl.

We note that the list £; in above four cases both satisfy the property that there exist a and 3’ s.t.
B’ # otay(sk,a), £1(8") # L and £4(F') € ota.subS‘k’ﬁ/, we will call list £1 a bad list if it satisfies this
property in the following. Then we can conclude that the secret oracle Out, in game G§ and game G§
will output the same value on any query « if the list £; just before this query is not a bad list.

Let BAD; (resp. BAD3) be the event that in once query of secret oracle Og, in game G§ (resp.
game G$), the list £; just before this query is a bad list. Hence, if event BAD; and BADs do not
occur, game G§ and game G§ proceed identically. This implies that

Pr[BAD,] = Pr [BAD],
Pr[l < G§ : (pk,sk) A =BAD;] = Pr[l + G35 : (pk,sk) A =BADs].
Then by the difference lemma of [Sho04],
| Pr[l + GY : (pk,sk)] — Pr[l + G$: (pk,sk)]| < Pr[BAD;]. (22)

In game G¢ and game G, we note that the simulation of secret oracle Oqa does not change the
list £; and only the simulation of random oracle O; will update the list £,. Let BAD' be the event
that in game G§, just after once simulation of random oracle O;, the list £; becomes a bad list. Let
BAD! (1 < i < ¢1) be the event that in game GS, £; is not a bad list during the first i — 1 times
simulation of random oracle O1, but becomes a bad list just after the i-th simulation'!. Then

Pr[BAD,] < Pr[BAD'] = i Pr[BAD/]. (23)

HSince the initial list £1 is an empty set and obvious not a bad list, BAD] actually the event that in game Gz, just
after the 1-th simulation of random oracle Oq, the list £1 becomes a bad list.

17

Notice that a non-bad list £; satisfies that there is no « and ' s.t. 3’ # ota;(sk,a), £1(8’) # L and

£1(8) € ota.subg“;ﬁ ". Hence once event BAD), occurs, suppose the i-th query of random oracle O is
B, then we can conclude that a pair (8, £1(8")) must be added after the i-th simulation of random
oracle O; and this pair satisfies that there exists a a s.t. 8’ # otai(sk, @), £1(8') # L and £1(8) €

ota.sub;;ﬂ/. In other word, the (8, £1(8')) newly added must satisfies £1(8') € SU 5 ota.subgk’ﬁ ,
a€eSet. 3/

where set Set.8’ := {« € X : ota1(sk,) # '}. For the newly added (5, £1(8')), £1(8’) is uniformly
random in {0,1}"™ by the basic rules of the on-the-fly simulation, then we have

1 ,
Pr[BAD]] < — max U ota.subal;’ﬁ (24)
2n ,8/6{0,1}"1/ a€Set. 3/ P
Combining Eq. (22), (23), (24) and then averaging over (pk,sk) - KGen, we finally obtain
Pr[l « GS] — Pr[l «+ GE]| < ¢1 - — U ota.sub®?
‘ Y[1] I"[2“ = (pk,sk)«—KGen 2" B’Ergff}m/ aESet. 3’ HPpk (25)

@ q1 - ota.union.
Here (b) uses Eq. (15).

Game G§: This game is the same game as game G§, except that we replace the value of yo (resp. y1)

used to generate OHG.B with 7 (resp. r1) uniformly sampled from {0,1}" (resp. {0,1}").

After OHG.B is defined in game G§, the list £; can be written as £; := £] U {(m*||m1,y1)} since
the challenger queried random oracle Oy on input m*||m;. Note that the operation Search will directly
return L after OHG.B is defined if the input o = otaz(pk, m*||m1, O1(m*||m1)), by the construction
of Search, this makes the output of Search on any input (£, a) cannot be otay(pk, a, m*||m1, Oo (7)),
where v = otag(pk, &, m*||m1). Thus we can conclude that after OHG.B is defined in game G$, the
adversary cannot get the information about (m*||my,y1) by making queries to the secret oracle Opgta.

Hence, if the random oracle Oy and O; in game G§ is never queried by the adversary with input
form of m*||* , the Og(m*||mg) and O1(m*||m) used by the challenger to generate OHG.B is uniformly
random in adversary’s view. Let QUERYy (resp. QUERY3) be an event as:

In game G$§ (resp. game G§), the random oracle Oy and O is ever queried by the adversary with
input form of m*||x,

now we can conclude that game G§ and game G§ proceed identically if event QUERY5 and QUERY;
do not occur. This implies that
Pr [QUERY,] = Pr [QUERY3],
Pr[l < G5 A “QUERY3] = Pr[l1 <~ G§ A =“QUERYj].

Then by the difference lemma of [Sho04],
|Pr[1 + G§] — Pr[1 + G§]| < Pr[QUERY;]. (26)
Game G§: This game is the same game as game G§, except that the following changes:

e The adversary is changed to a new adversary Aj, it does not query any oracles and invokes
adversary A once in a black-box manner (without rewinding) as follows:

1. After get the public key pk, invoke adversary A to get OHG.A and send it to the challenger.
After get the OHG.B computed by the challenger, invoke adversary A to get OHG.C and
send it to the challenger. The oracle queries performed by A is answer as:

(a) When the random oracle Og (resp. O;) is queried by A, A; answer it on-the-fly by
using the query/reply list £y (resp. £1).

(b) When the secret oracle Og, is queried by A, A; answer it by the operation Search as
the game G§.

18

e The random oracle Oy, random oracle O; and secret oracle Ou, in game G§ is simulated the
same as game G§'?, and the value of y, (resp. y1_s) used to generate OHG.B in game G§ is
replaced with Og(m*||ms) (resp. O1_s(m*||mi—s)).

Compared with game G§, the change in game G is only conceptual. Thus, let QUERY, be the
event that the adversary A; in game G§ ever answered a query to the random oracle Oy or O7 with
the input form of m*||x, we have

Pr[QUERY;] = Pr[QUERY,], Pr[l + G§] = Pr[l « GSJ. (27)

Moreover, we observe that game G§ is identical with game G§ except that the adversary is replaced

to Aj, then game GY is the oracle-hiding game OHGOO ?i)og(‘"’l ») and

Pr[l + G§] = AdvQ'%(1%). (28)

GOO ,01,00ta

As for the probability that event QUERY, occurs, we consider oracle-hiding game OH A (17),C(1%)

with a new challenger Csnq and a new adversary As as follows:

o The challenger Cing is identical with C except that Ceng finally output ¢ = boole[OHG.C = m*] as
game’s output.

e The adversary As is identical with A;, except that A, picks 4 & {1,...,90 + q1} at everything
begins and record the i-th random oracle query m’||* it needs to answer, where m’ have the same
length as m*. Then Ay output OHG.C = m/.

One can check that if QUERY, occurs, the oracle-hiding game OHGOO’%;O&‘;A) will output 1 with

probability 1/(go + ¢1), hence we obtain
Pr[QUERY,] < (g0 + 1) - AdvOl'%, (17). (29)

Tracing through the above game sequence from game G§ to G§, combining Eq. (18), (21), (25),
(26), (27), (28) and (29), we finally obtain

AdeHG(1Y) — AdeHG 2(1M)| < Gota - 0ta.max + ¢y - ota.union + (go + q1) -Adva';"Gcﬂnd(lk).

As for the running time of A; and As, by their construction, we know that they invoke adversary A
only once and simulate random oracle Oy (resp. O1) on-the-fly qo (resp. ¢1) times, simulate secret
oracle Ou, by operation Search go, times, hence we have

Time[A; (1*)] ~ Time[A2(1?)] < Time[A(1M)] + (g0 + q1) - O(A) + gota - Ota.time.

The definition of ota.time is given in Definition 4. O

4.2.2 Proof of Theorem 4

Before we prove Theorem 4, we first show that how to simulate quantum accessible secret oracle Ogt,
for an oracle-hiding game in the QROM. The notation and simulation method introduced here will be
used in the proof of Theorem 4.

Since secret oracle Oy, is mainly processed by the oracle-testing algorithm ota®0:91 (sk, -) (Definition
4), we first consider how to evaluate ota®>©1(sk, -) in superposition. Let Xoa be the adversary’s input
register of secret oracle Og, defined over X, let Y be a quantum register defined over {0, 1}"‘/‘*‘113.
Define unitary operation Uies; acts on registers XqiaY as

la)|B) if B := otay(sk,a) # L Aotaz(pk, 3,01(8)) = «

30
|a)|L) otherwise. (30)

Utest |} |0™) := {

12T avoid confusion, we stress that this Op, O1 and Oota are oracles queried in game G¢, they are independent with
the oracle Og, O1 and Ogta appeared in the description of adversary A;.

I3Here we embed the set {0, 1}’"/ U L into the set {0, 1}’"/+1 as explained in Appendix A.

19

Intuitively, Uit can implement all the test performed by ota®>©1(sk, -) in superposition, hence what
we need to do next is to compute the output of ota®>:©1(sk,-) by using the 3 computed by Uses. Let
Yota be the adversary’s output register of secret oracle Oy, defined over {0, 1}/ define unitary
operation Ucomp acts on registers XotaYoraY as

|a)|y & otas(pk, o, B, Oo(7)))[B) if B # L

)]y @ fora())|8) ifg= 1. (31)

Ucomp|a)[y)[5) = {

Here « := otag(pk, o, 8). The detailed quantum circuit implementation of Usest and Ucomp is given in
Appendix E, which twice queries to random oracle O; and random oracle Oy is needed, respectively.
Then, the quantum accessible secret oracle Oy, can be simulated as follows:

e If the OHG.B is not defined, unitary operation
Ugta = UIest o Ucomp 0 Utest
is applied to registers XotaYota Y-

o If the OHG.B is defined, unitary operation

Us := UL 0 Phige + Uota © (I — Phide)

is applied to registers Xota Yota Y-

Here the register Y is initialized with state |0™) for everything begins, Ppige := |y)(y|, where y =
otas(pk, m*||my, O1(m*||m1)), is a projector acts on register Xora, U, is a unitary operation acts on
register Yo, that maps |y) to |y @ L). By the construction of Ug,, we observe that the register Y
always in state |0™) before and after once simulation of secret oracle Oeta.

Proof. Similar to the proof of Lemma 3, the basic idea of this proof is to gradually change the simula-
tion of random oracle Oy, random oracle O; and secret oracle O, by a sequence of games. Note that
Op, O1 and Og, can be quantum accessed if the oracle-hiding game in the QROM, hence we actually
consider the quantum simulation of Oy, O1 and Ogy, in this proof, which is different with the proof of
Lemma 3. The overview of all games is given in Fig. 4.

Game G¢§: This game is identical with the oracle-hiding game OHGg&’%l ’CO(T;) in the QROM except
that following changes:
e The random oracle Oy and O; is simulated by the unitary operation Uy and Ug/, respectively.

e The secret oracle Ogt, is simulated by Uy, and Ul defined above before and after OHG.B is

ota
defined, respectively.

Obviously,
Pr[l < G = Advg't*(1%). (32)
Game G{: Compare with game Gg, there are only two changes as:

o The random oracle Oy is simulated by unitary operation U, where f : {0,1}" — {0,1}" is a
2qo-wise independent function.

o Let D,, be the database register defined over set Dy, (Section 2.4). Let S(f1) be the extractable
RO-simulator defined in Section 2.5 with internal database register D,,, where function f; :
{0,1}™ x {0,1}" = XU Lis

z if otag(pk,z,y) = z A otai(sk, z) =z
L otherwise.

fl(%y)z{

The random oracle O; in game G{ is simulated by invoking the RO-interface eCO.RO of S(f1).

M Here we embed the set {0,1}} U L into the set {0,1}!*! as explained in Appendix A.

20

Since the extraction-interface eCO.Ey, of S(f1) is never used and the random oracle Oy and O; are
queried at most go and ¢; times, respectively, above simulations are perfect by Lemma 9 and Lemma
1. Hence

Pr[l + G§] = Pr[l + GY]. (33)

In game Gi‘, we stress that the secret oracle Oy, is simulated by
UL, :=Ul, 0 Ucomp © Utest and ULt := UL 0 Phige + UL, o (I — Phige)

before and after OHG.B is defined, respectively. Here Utest (resp. ﬁcomp) have the identical implemen-
tation with Utest (resp. Ucomp) €xcept that the internal twice queries to random oracle Oy (resp. Oy)
is simulated by Uy (resp. eCO.RO).

GAMES G3-G2

1, (pk,sk) < KGen //Gg-Gg

2, OHG.A « BO0:01:0m (pk) /163G 0, (e B)
OHG.A « By (pk) //Gé mB is not defined, return

3,C pe;‘form f0$110wing operation Uoalar, B) = Uzest 0 Ucomp © Usest |1,) /)G, Gd
m* &Ry, (= f s €40, 1)} ;;GG Ulialet,) = Ul © Ucomp © Urestler, 5) //GE
mg < chay (pk, OHG.A, m*,r Go-G32 2 q
b= 0.t IS ey ,ifig ooy
P //Gg Uzta|) ; f2 comp fa 2

aala, B) = eCO. EszUcompoeCO Ello, 8) /]G4

- £ chas(pk, OHGA, g, m", 1) [1GFGS U3, [a,8) = eCOEy, o Uuamp 0 €COEfa) //G3
Yi-s = O1—s(m*[[ma—s) //Gg-G3.Gg Else return
Yios =T //G3 Ul 5) = (U © P + Vs © (1~ Prg))l0s5) //G3, G
OHG.B « chas(pk, OHG.A, yy, y1_s,m*,7) //GI-GZ Ugialer, B) = (UL 0 Prige + Uy, © (I — Phige))v, B) //GY

4 OHG.C = B9 5% (pk, OHG.B) /1GEGS U%ilaf) = (Uy o Pyae + Uy o (T~ Pl) //G3
OHG.C = Ba (pk, OHGB) //Gs UZ;\a B) = (Ui o Prige + Uy o (1= Pre))lo B) //GY

5, t + verify(pk, sk, OHG.A, m*, r, s, OHG.C) //Ga-Gg ,B) = (UL o Phige + Uk o (I - Ppige))|cx,) //G3
C output t as game’s output Ugt:\a 8) = (UL 0 Phige + Ugta o (I = Phige))la, B) //Gg

M;ﬂ) S(f) = {eCO.RO,eCO Ey, /eCO.Ey, /eCO.E} }

1, 0 ¢ Finn, return //Gg, G§ 1, eCO.RO: apply unitary operation CStO
Uolz,y) := |z,y ® O(z)) 2, eCO.Ey,: apply unitary operation Exty,

2, Return Uylz,y) := |2,y © f(x)) //G1-Gg eCO.Ey,: apply unitary operation Exty,

O1(|z,9)) eCO.E},: apply unitary operation

Lo & Fmt e, return //Gg. Gg StdDecomp,,,+ |y, © Exty, o StdDecomp,,,+ |,
Uorlz,y) := |,y & O'(2))

2, Query eCO.RO by |z,y) //G1-G3

Figure 4: Summary of games for the proof of Theorem 4. Note that the oracle Oy, O; and Og, in
these games can be quantum accessed, for brevity, we just write the input state of Oy and Oy both as
|z, y) and the input state of Oea as |, y).

Game Gg: This game is the same as game G7, except that the performing of Utest OI registers XotaY
is replaced by invoking the extraction-interface eCO.Ef, on registers Xo, Y in the simulation of secret
oracle Ogt,.

By the Definition 3, a query to eCO.E;, with registers XotaY is processed by applying unitary
operation

Exty, := Y |a){alx,,
acX
to registers XotaYDq1 15 Note that (Ext f1) = Exty, , thus the secret oracle O, in game Gg is simulated

by U2, == Exty, o Ucomp o Exty, and Uota := U] 0 Phige + U2, o (I — Ppige) before and after OHG.B is
defined, respectively.

ota

I5Note that the codomain of function f; is the union of X and L. However, we ignore the extraction with input L in
Exty, , which is different with its definition as shown in Definition 3. That is to say, we restrict the adversary B from
querying secret oracle by L in our proof. Indeed, this is reasonable since L just an abort symbol and L ¢ X.

21

For a computational basis state |, Oml, D) on registers Xota YDy, , we have
Extf1|a,07”/,D) = |a, B8, D),

where 3 is the smallest value that satisfies (3, D(3)) € RJ:, by the definition of relation R/' in Eq.
(11), this means that ota;(sk,) = 8, D(8) # L and otaz(pk, 8, D(5)) = a. If such 8 does not exist,
we have Extf1|a,0””/,D> = |a, L, D).

Intuitively, since otas(pk, 8, D(8)) = « is equivalent with D(8) € ota.subg‘f7 the check in the
simulation of secret oracle Og, in game G§ in the proof of Lemma 3 is quantum implemented by
eCO.Ey, except that the classical list is replaced with the database. Thus, the simulation of secret
oracle Og, in game Gg can be viewed as a quantum counterpart of the simulation of secret oracle Oota
in game GY in the proof of Lemma 3.

Different with the proof of Lemma 3, which uses some classical events to analysis the difference
between the simulation of secret oracle Oua of game G§ and game G§, we actually use some special
projectors to analysis the difference between Ul,, and UZ2,,. Roughly speaking, we divide the internal
state of game GJ and game G3 into some different parts by the projector and then consider the
difference for each of these parts after once application of U}, and UZ%,. We next introduce the
following lemma, that is detailed proved in Appendix F.1.

Lemma 4. |[Pr[l + G}] — Pr[l + GJ]| < 8¢ota - vota.max.

Game Gg: This game is the same as game G3, except that the extraction-interface eCO.Ey, is replaced
into eCO.Ey,, where function fp : {0,1}™ x {0,1}" — X is fo(x,y) = otaz(pk, z, y).
Similar to eCO.Ef,, a query to eCO.E;, with registers XqY is processed by applying unitary
operation)
2
Exts, == Y |a){alx,, ® Mp=y
acX

to registers Xota YDy, . Then the secret oracle O, in game Gg is simulated by Ugta = Exty, o INJcomp o

Exts, and U2 .= U, oPhige + U3,, © (I — Phige) before and after OHG.B is defined, respectively.

For a computational basis state |a, Om/,D) on registers Xot, YD, , we have

Exty,|a, 0™, D) = |a, 8, D),
where 3 is the smallest value that satisfies (3, D(3)) € Rz, if such 8 does not exist, we have
Extfz\a,Oml,D> = |a, L, D). By the definition of relation R/? defined in Eq. (11), if 3 # L, it
satisfies D(B) # L and otas(pk, 8, D(8)) = a.

Intuitively, the simulation of secret oracle Og, in game Gg first extract the smallest 3 satisfies
otas(pk, 8, D(58)) = « (or D(B) € ota.sub;’k’ﬁ) from the database by using eCO.Ey,, and then compute
the output of O, by using this 8. Hence the simulation of secret oracle Ou, in game G3 can be
viewed as a quantum counterpart of the operation Search used in game G§ of the proof of Lemma 3.

In order to bound the difference between the probability that game G3 and game Gj outputs 1,
we need to analyze under what types of database D, Exty, and Exty, will have different output on
input state |a, Oml,D>. Fortunately, by the almost identical'® analysis from game G$ to game G in
the proof of Lemma 3, Exty, and Exty, only have different output on input state |a, Om/,D) ifDes,

where
S:={D €Dy, : Ja, B s.t. B’ # otai(sk,a) A otaz(pk, 3, D(8')) = a}. (34)

Thus, we can conclude that eCO.Ef, and eCO.Ey, proceed identically for any input state |a, o', D) if
D¢s.

Obvious we have D+ ¢ S, then by using the compressed semi-classical O2H with database read
queries Theorem 3, we can prove the following lemma, the detailed proof is shown in Appendix F.2.

Lemma 5. [Pr[l + GJ] — Pr[l +~ G3]| <8-+/qi(q1 + 1) - ota.union + 64¢; - ota.union.

16Indeed, the only difference is that the list £1 needs to replaced into the database D.

22

Game Gjg: This game is the same as game Gj, except that the extraction-interface eCO.Ey, is im-
plemented by unitary operation StdDecomp,,,«|,,,, ©Exty, oStdDecomp,,,.|,,,, after the OHG.B is defined.

*|lm
In what follows, we abbreviate StdDecomp,,,«|,,,, into Sy, for convenience. Define
A _
Uota = Sm*l\ml o Eth2 o Sm*HTm o Ucomp o Sm*\lml o EX'Cf2 o SM*Hm1'

Then, in game G, the secret oracle O, is simulated by U3, and Uss := U 0 Ppige + Uz, 0 (I— Phige)
before and after OHG.B is defined, respectively.

For fixed (pk,sk), the parameter I' ., related to function fo defined in Eq. (11) is
t
Lpri= max [y € {0,1}"|otaz(pk,z,y) = t}| = max /|ota.sub§{f .
t ze{0,1}m z€{0,1}™

Then by using Lemma 2, we have

Bxtr S ||| < 16 T /2" <16- ota.sub%’|. 35
Ity Sl < 16- \frngTpa 27 < 16 [o orasub| (35)

Notice that S,,«||m, © Sp+|jm, = I, thus we can conclude that S« ||, © Exty, 0 Sy« ||, is indistin-
guishable with Exty, except the error shown in (35). Then by a similar proof with Lemma 4, we have

Pr[l « GI] - Pr[1 + GYJ]| < 32 . E max ota.sub™’
‘ [3] [4“ = 9ot \/(pk,sk)eKGen(l*)mG{0,1}7"',t6X| pk (36)

(2 32¢ota - VOta.max.
Here (a) uses Eq. (15).

Game Gy,: Let Xo/Y(and X;/Y; be the adversary’s input/output register of random oracle Oy and
01, respectively. Initialize register Z to 0. Define H as a constant zero function. This game is the same
as game GY, except that H is queried on input/output register Xo/Z (resp. Xi/Z) just before every
time the simulation of random oracle Oy (resp. O;) on input/output register Xo/Yo (resp. X1/Y1).

Compared with game G§, the change in game G, is only conceptual, thus
Pr[l + GJ] = Pr[l + G, (37)

Game G, : Define set S,,- := {z € {0,1}" : z = m*||*}. This game is the same as game G, except
that the semi-classical oracle Ogg* is queried on input/output register Xq (resp. X;) just before the
queries of H on input/output register Xo/Z (resp. X1/Z).

Indeed, we can rewrite game Gj, as a quantum oracle algorithm B with input z € {0,1}*,
then game G, can be rewritten as BH\Sm* with input z € {0,1}* correspondingly. By using the
semi-classical O2H Lemma 10, we have

[Pr[1 ¢ GZ] — Prll G]| < /(g0 + an + 1) - Pr[Find}, . (38)

where Find}, denotes the event that the semi-classical oracle O3, in game Gg, ever outputs 1.

If Findj, does not occur, the input state of Oy on registers Xo/Yy after the query of @gg* can be
written as - o . |z, y). Thus, Op is not queried with input « € Sy« by the adversary A in game
G4,- That is to say, the Og(m*||mg) used by the challenger to generate OHG.B is uniformly random
in adversary’s view.

As for the O1(m*||m4), if Find], does not occur, after OHG.B is defined, the corresponding state
on the database register D,, can be abbreviated as'”

S S DU llma, 01 (m* [[ma))).
DeDy, ,n(D)<q1

17"Here we omit the coefficient and other registers that may entangled with Dy -

23

Note that the extraction-interface eCO.Ey, in game G§, is processed by Sy« [jm, 0 Exts, 0 Sy« (|, after
OHG.B is defined. By the property that S,,«|j;,, © Sy« jm, = I and Exty, does not change the database
in the computational basis, we can conclude that the internal state on database register D,, always in
the form of ZDqulln(Dqu Si#|jma [D U (m*||my, O1(m*||my))) before and after once application of
Sim(jmy © Extf, 0 Sype(jm, - This means that, if Findj, does not occur in game G§,, the simulation of
random oracle O; at point m*||m; is not disturbed by the invoking of the extraction-interface eCO.Ey,
and the adversary only query O; with input state }° . |z). Hence the O;(m*[|[m;) used by the
challenger to generate OHG.B is also uniformly random in adversary’s view.
In addition, we can prove the following lemma:

Lemma 6. For the state Sy,«||m,|o, D U (m*||my, O1(m*||m1)),0™) on registers XowDg, Y, if o #
otaz (pk, m*[|my, O1(m*||m1)), suppose unitary operation Sy, «||m, © Exts, 0 Sp«|jm, acts on

Sm*Hml |O‘7 DU (m* | ‘mla Ol(m* ‘ |m1))7 0m'>
will return B to register Y and)
EthzlavaOm > = ‘0‘7 D, ﬁ/>
Then we have 8 = 3.

Proof. Since Sy« jm, © Extf, 0 Sppe[jm, acts on state Sy« |jm, [, D U (m*[|my, O1(m*||my)), 0™') return
B to register Y and S, |1, © Sy [jm, = I, we have

Spne(fmy © EXtfy 0 Spneffmr © Sne(fm [, D U (m*[|m1, O1(m*|Jmy1)), 0™)
= Sye(jmy © Extp, |, DU (m*[|my, O (m*[|m1)), 0™)
= S (jmy |, DU (m*[|ma, O1(m*||ma)), B),

where f is the smallest value that satisfies otas(pk, 3, D(8)) = a. Notice that in above state, a #
otag(pk, m*||m1, O1(m*||m1)), hence the 8 in above formula can not be m*||m.

This means that, even if database D U (m*||my, O1(m*||m1)) contains more information than D,
the return of Exty, on input state o, D U (m*||my, O1(m*||my)),0™) is irrelevant to those additional
information if o # otas(pk, m*||m1, O1(m*||m1)). Thus, Exty, returns the same value on state |a, D U
(m*||my, 01 (m*||my1)),0™') and |a, D,0™), i.e., B = 3. O

The above lemma implies that in game Gg,,, if the challenger does not query RO-interface eCO.RO
by m*||m1 to get O1(m*||m;) and uniformly random choose O;(m*||m;) from {0,1}" instead, the
operation S« ;,, © Exty, 0 Sy, used by the extraction-interface eCO.Ey, after OHG.B is defined,
can be reduced to operation Exty, directly.

According to above analysis, we can conclude that game Gg; and following game Gg, are in-
distinguishable if the event Find4, and Findj], do not occur, where Find}, denotes the event that the
semi-classical oracle OSS in game GY, ever outputs 1.

Game Gg,: This game is the same as game Gg,,, except that the following two changes:

o The yo = Op(m*||mp) and y; = O1(m*||m1) used to generate OHG.B is replaced with r¢ and 7y
uniformly sampled from {0,1}"™ and {0, 1}"/, respectively.

o The unitary operation implements the extraction-interface eCO.Ey, is changed back to Exty,.

This implies that
Pr[Find},] = Pr[Find{_],
Pr[l + G& A —Find%] = Pr[l + G A —~Find?,)].
Then by the difference lemma of [Sho04],
| Pr[l <+ G,] — Pr[l < GZ.]| < Pr[Find{_]. (39)

Game Gg: This game is the same as game Gg. except that the H and semi-classical oracle (’)gg are
no longer queried.

24

Similar with the analysis between game Gg, and game Gy, , we have

[Pr[1 ¢ G — Prl1 - G| < \/(qo + 1) - Pr[Find, . (40)

Game Gg: This game is the same game as game Gg, except that the following changes:

e The adversary is changed to a new adversary Bi, it does not query any oracles and invokes
adversary B once in a black-box manner (without rewinding) as follows:

1. After get the public key pk, adversary B; chooses a 2¢gg-wise independent function f and im-
plements the extractable RO-simulator S(f2) = {eCO.RO,eCO.E,} with internal database
register Dy, .

2. Adversary B; invokes adversary B to get OHG.A and send it to the challenger. After get
the value OHG.B computed by the challenger, invoke adversary B to get OHG.C and send
it to the challenger. The oracle query performed by B is answer as:

(a) When the random oracle Oy is queried by B, B; answer it by using the unitary operation
Us i lz,y) = |z, y & ().

(b) When the random oracle O; is queried by B, B; answer it by using the RO-interface
eCO.RO.

(c) When the secret oracle Og, is queried by B, By answer it by using the U2, := Exty, o
ﬁcomp o Exty, and Ui’;: := U] 0Ppige + U3, o (I — Phige) before and after OHG.B being
defined, respectively.

o The random oracle Oy and Oy, secret oracle Og, in game Gg is simulated the same as game
Gg'®, and the value of yo (resp. yi) used to generate OHG.B in game Gg is replaced with
Oo(m*|lmo) (vesp. O1(m*[[m1)).

Compared with game Gjg, the change in game Gg is only conceptual, thus
Pr[l + Gg] = Pr[l + G{]. (41)

Moreover, we observe that game Gg is identical with game Gg except that the adversary is replaced
to B1, then
Pr[l « Gg] = Advgl e (1%). (42)

GOO;Olyoota

As for the probability that event Find4, occurs, we consider oracle-hiding game OH Ba(1%),Coy (1%

in the QROM with a new challenger Cs,g and a new adversary By as follows:

o The challenger Cing is identical with C except that Ceng finally output ¢ = boole[OHG.C = m*] as
game’s output.

e The adversary B, is identical with B;, except that Bs picks ¢ & {1,...,q90 + 1} at everything
begins and then measures the query input registers (just before) the i-th random oracle query
in the computational basis to get measurement outcome m/||*, where m’ has the same length as
m*. Then By output OHG.C = m/.

Then by using Lemma 11, we have
Pr [Find],] < 4(go + q1) - Advl's (1%). (43)

Tracing through the above game sequence from game Gg to game Gg, combining Eq. (32), (33)
and (36-43), Lemma 4 and Lemma 5, we finally obtain

Advgt}G(l)‘) - Advgig(lA) < 40¢ota - Vota.max + 8(q1 + 1) - Vota.union + 64¢; - ota.union

+4(go +q1 + 1) - \/AdVETE (12).

18To avoid confusion, we stress that this Og, O1 and Ogta are oracles queried in game Gg, they are independent with
the oracle Op, O1 and Ogta appeared in the description of adversary Bj.

25

As for the running time of By and Bs, by their construction, we know that they invoke adversary B only
once and simulate random oracle Oy by a 2qo-wise independent function gy times, simulate the random
oracle O; and secret oracle Ooa by the extractable RO-simulator S(f2) = {€CO.RO,eCO.Ey,}. The
RO-interface eCO.RO and extraction-interface eCO.Ey, is invoked ¢o+¢1 and 2¢ot,) times, respectively.
Hence by the Definition 3, we have

Time[B; (1")] =~ Time[B2(1*)] < Time[B(1*)] + O((qo + 1) * Gota - ota.time + (go + q1)?).

The definition of ota.time is given in Definition 4. O

4.2.3 The Construction of Adversary A;, Ay, B; and By

Compared with construction of adversary A; in the proof of Lemma 3, the construction of adversary
B given in the proof of Theorem 4 only change the simulation of the oracles, we also give an overview
in Table 2.

Table 2: The overview of adversary A; and Bj.

Adversary Main procedure Random oracle Oy Random oracle O Secret oracle Ogta
Ay invokes A on-the-fly on-the-fly Search
B invokes B 2qo-wise function f eCO.RO eCO.Ef, © Ucomp © €CO.Ey,

In fact, By can also simulate the random oracle Oy by the RO interface eCO.RO of a new extractable
RO-simulator, but this will require more quantum resources. Overall, we observe that the operations of
adversary Ay and By are one-to-one corresponding. Their operations both are invoking the underlying
adversary and simulating oracles for the underlying adversary. Although the simulation methods of
A; and Bj are different, the simulation methods used by B; can all be regarded as the quantum
counterpart of A;. This is why we wrote in Theorem 4 that we can directly construct B; by mimicking
the construction of Aj;.

As for the adversary A in the proof of Lemma 3 and the adversary Bs in the proof of Theorem 4,
their operations are also one-to-one corresponding;:

¢ Construction of Ay: Run Aj, picks i & {1,...,90+ q1} and record the i-th random oracle query
m/||x. Then output OHG.C = m/.

o Construction of By: Run By, picks i & {1,...,90+¢1} and measure the i-th random oracle query
to get measurement outcome m/||*. Then output OHG.C = m/.

As Bj needs to handle quantum queries, Bs changed the "record query” used by As to "measure query”.
Obviously, similar to A; and By, we can directly construct By by mimicking the construction of As.

5 Applications of Theorem 4

In this section, we apply our lifting theorem Theorem 4 to prove the IND-qCCA and ANO-qCCA security
of the FO-like transformation in the QROM. The formal definition of cryptographic primitives and
security notions used in this section are shown in Appendix G, along with the definition of correctness
and spreadness of PKE schemes. Similar with Section 4.2, we sometimes omit the security parameter
A for notational clarity. Moreover, we only consider QPT adversary in this section.

To a a PKE scheme PKE = (Gen, Enc,Dec) with message space {0,1}" and randomness space
{0,1}?, and random oracles H : {0,1}* — {0,1}", G : {0,1}* — {0,1}* and a pseudorandom function
(PRF) f with key space KCP"/ we associate

KEM}, = FO:. [PKE, H,G] = (Gen, Encaps,),, Decaps;-),
KEM* = FO*[PKE, H, G] = (Gen, Encaps, Decaps™),

KEM;{; = FO#[PKE,H, G] = (Gen;fl, Encaps, Decaps;ﬁ),
KEM* = FO*L[PKE,H, G| = (Gen’/‘, Encaps, Decapsi).

Their constituting algorithms are shown in Fig. 5.

26

@ Gen;fl Encaps (pk) | Encaps,,, (pk)

1: (pk, sk) < Gen 1m & {0, 1}

2 5 & {0,1}4] s & xeprs 2: ¢ := Enc (pk,m; H(m))

3: sk := sk||s 3: K :=G(m,c) | K :=G(m)

4: Return (pk, sk) 4: return (K, c)

Decaps™ (sk, ¢) | Decaps;: (sk, c) Decaps* (sk’ = skl|s,c) Decaps;fl (sk’ = sk||s, c)

1: m' := Dec (sk,c) 1: m’ := Dec (sk, c)

2: If ¢ # Enc (pk,m/; H(m')) or m’ = L 2: If ¢ # Enc (pk,m'; H(m/)) or m’ = L
return L return K := G(s,¢)

3: else return K := G(m/,c) | K := G(m') 3: else return K := G(WM

Figure 5: KEM scheme KEM; = (Gen, Encaps,,,, Decaps#l), KEM* = (Gen, Encaps, DecapsL), KEM;Ln =
Gen* Encaps, Decaps*l) and KEM* = (Genl, Encaps, Decapsl).

To a DEM scheme DEM=(E,D) with key space {0, 1}*, we associate
PKE;> = KEM;; + DEM = (Gen, Enc,,, Dec;,),
PKE' = KEM* + DEM = (Gen, Enc, Dec™),
PKEZ: = KEM% + DEM = (Gen’, Enc, Dec’),
PKEX = KEM* + DEM = (Gen’, Enc, Dec?).

Their constituting algorithms are shown in Fig. 6. Here "A+B” refer to a PKE scheme built via the
KEM-DEM paradigm with KEM scheme A and DEM scheme B.

Enc (pk,m) |Enc,, (pk,m)

Gen” | Geny, EPNTRIT
; ipgs{];) I_}“ Znﬁ ot 2: ¢, := Enc(pk,d; H(9))

’ ’ 3: K :=G(,c1) | K :=G(9)
3: sk’ := skl|s 4 ¢y = E(K,m)
4: Return (pk, sk) 5: return (c1, c2)
Dec™ (sk, c1,c2) | Decy, (sk, c1,c2) Dec’ (sk’ = sk||s, c1,c2) Dec;ﬁ (sk’ = sk||s, c1,c2)
1: ¢’ := Dec (sk,c1) 1: &' := Dec (sk,c1)
2: If ¢; # Enc(pk,8’; H(8')) or &' = L 2: If ¢1 # Enc(pk,8'; H(§')) or & = L

return | compute K := G(s,c1) | K := f(s,c1)

3: else compute K := G(§,¢1) | K := G(5) return m’ := D(K, c3)
return m’ := D(K, cp) 3: else compute K := G(d,¢) | K := G(&)

return m’ := D(K ¢)

Figure 6: PKE scheme PKETJ,‘1 = (Gen,Encm,Decf;l), PKE+ = (Gen,Enc,DecJ‘), PKE;L1 =
(Genl, Enc, Decfn) and PKEL = (Gen*L, Enc, Decl).

Before we giving the ANO-qCCA security reduction, we introduce a theorem indicates that weak

pseudorandomness of PKE immediately implies anonymity of PKE. The detailed proof of this theorem
is similar to the proof of Theorem 2.5 in [Xag22] and we present it in Appendix H.1.

27

Theorem 5. Denote Il as a PKE scheme, S as a QPT simulator of the WPR-qCCA game of 11, then
for any adversary A against the ANO-qCCA game of 11, there exists adversary B such that

ANO-qCCA WPR-qCCA
AdvAH <2- Ade,&H

and Time[B] ~ Time[A].

5.1 The IND-qCCA security of KEM::, KEM*, KEM% and KEM* in the QROM

Here we only provide the IND-qCCA security reduction of KEM; in the QROM, the reduction of
KEMJ‘7 KEM;{‘L and KEM* can be obtained in a similar way and they are presented in Appendix H.2.

Theorem 6. Suppose PKE = (Gen, Enc, Dec) is §-correct and weakly v-spread. Let A be an IND-qCCA
adversary against KEM; in the QROM, making at most qg, qc and qp queries to random oracle H,
G and the decryption oracle, respectively. Then there exists an OW-CPA adversary A against PKE
such that

AdVY RN < 400D - 7+ 8(am +1) - V6 + 64q - 6+ dlan + qa + 1) -\ AdVIEEE.
The running time of adversary Ay can be bounded by
Time[A;] < Time[A] + O(qn - gc - Time[Enc] + ¢%).

Proof. The IND-qCCA game G 4 of KEan with adversary A in the QROM is shown in Fig. 7. Then

we have

. 1
Adv'}’ig&? = |Pr[l « G4] - 2‘ . (44)

Game G4
1, (pk, sk) < Gen
2,b <& {0,1}, m* & {0,1}* Deca(c)
c¢* = Enc(pk,m*, H(m*)) 1,If ¢ =c*, return L
K¢ =G(m*), K &10,1}* Else return Deca: (sk, c)
3, b« ALGDeca(pl oK)
4, Return boole[b = V']

Figure 7: Game G 4 with adversary A in the QROM. Here {0, 1}* is the key space of KEMf;17 A can
query random oracle H, G and the decapsulation oracle Deca in superposition.

Define fgec be a function that fgec(z) = L for any z. We first rewrite the decapsulation algorithm
Deca- (sk, -) shown in Fig. 5 as a new oracle algorithm dec® (sk,-) as follows.

1. For input ¢, compute m := Dec(sk,c). If m = L, return fgec(c).
2. Else, compute Enc(pk, m, H(m)). If Enc(pk, m, H(m)) # ¢, return fgec(c).
(a) Else, compute m’' := dec; (pk, ¢, m) and return decs(pk, ¢, m, G(m’)).

o decy(pk,-) is a deterministic algorithm that returns y for input (z,y).
o decy(pk,-) is a deterministic algorithm that returns x for input (x,y, 2).

Indeed, oracle algorithm dec®H (sk,-) can be regarded as an oracle-testing algorithm. More detailed,
in Table 3, we provide the correspondence between the basic components, e.g. the internal algorithms,
of oracle algorithm dec®* (sk,-) and oracle-testing algorithm ota®0:91(sk, -) introduced in Definition
4.

28

Table 3: The correspondence between the basic components of algorithm dec (sk,-) and oracle-
testing algorithm ota®>:©1(sk, -).

Key generator Random oracle function Internal algorithms
ota?-91(sk,-) (pk,sk) + KGen 00/0 fora otaj(sk,-)/otas(pk,-)/otaz(pk, -) /otas(pk, -)
dec?Y(sk,-) (pk,sk) < Gen G/H faee Dec(sk,-)/Enc(pk,-)/deci(pk,-)/deca(pk, -)

As for the corresponding parameter dec.time, dec.max and dec.union defined in Eq. (15), by the
d-correctness and weakly v-spreadness of PKE and their definitions in Appendix G, the following
inequalities are obtained:

dec.time ~ Time[Enc], dec.max < =y, dec.union < 4. (45)

G7H1Odec

Based on the oracle-testing algorithm decG’H(sk7 -), we design an oracle-hiding game OHG Ao Com

in the QROM as shown in Fig. 8, where Agec and Cyec satisfy the following properties:
« Without any computations, Age. generates OHG.A as L directly.

e cha;(pk,-) and chas(pk,), performed by Cgec, both return & for any input, where & satisfies
z||@ := x for any x.

o chas(pk,), performed by Cgec, generates OHG.B as (Enc(pk, m*,y1),yo) (resp. (Enc(pk,m*,y1), K))
for input (OHG.A, yo,y1,m*, (b, K)) if b=10 (resp. b=1).

o Agec just runs A of game G 4'°, and returns the output ¢’ of A as OHG.C.

o The algorithm verify(pk, sk,-), performed by Cgec, returns ¢ = boole[p = OHG.C] for input
(OHG.A,m*, (b, K), s, OHG.C) directly.

Oracle-hiding game OHG /O
17 (pka Sk) — Gen
27 (OHGA = J_) <— AGVH,Odec<pk>

dec

3, Cdec perform following operation G(z)
m* & M, (b, K) & {0,1} xK,s=0 1,0 & Fi i, return O(z)
@ « cha (pk, OHG.A, m*, (b, K))
. H(x)
Yo = G(m”) 1, O & Funw, return O'(zx)
& + chas(pk, OHG.A, yo,m*, (b, K)) '
Y1 = H(m*) Odec(c)
OHG.B chas(pk, OHG.A, yo, y1,m", (b, K)) 1, If OHG.B is defined and
(OHG.B = (Enc(pk, m*, y1), yo) if b =0) c = Enc(pk, m*, H(m*))
(OHG.B = (Enc(pk, m*,y1), K) if b= 1) return L
4, (OHG.C = V') AT 0% (pk OHG.B) Else return dec® ¥ (sk, ¢)

5, t < verify(pk, sk, OHG.A,m*, (b, K), s, OHG.C)
(t = booole[b = OHG.C])
Cdec output t € {0,1} as game’s output

Figure 8: The oracle-hiding game OHGi;Z’COd < in the QROM.

19When the random oracle H, G and the decapsulation oracle Deca is queried by A, Agec answers it by querying H, G
and secret oracle Ogec, respectively. Note that the test performed by Ogec is exactly the check that ¢ = ¢*. Hence Agec
simulates A’s view in the game G 4 perfectly.

29

Obviously, the running time of Agec and that of A are almost the same. And it is concluded that
the final output of game G4 and oracle-hiding game OHGG H, cod ‘< must be the same. Because these
two games actually perform the same computations, even though their symbolic representations are

different. Hence, we have
Time[Adec] ~ Time[A], Pr[l + G.u] = Adv3 ¢, (1*%). (46)

By the properties of Agec given above, we know the query numbers of random oracle H, G and
secret oracle Ogec in the oracle-hiding game OHGi;S’g “ is qm, q¢ and gp, respectively. Then by
using Theorem 4 and Eq. (45), there exist adversary Aéec and Agec, making no queries to any oracle,

satisfying that

Advaiicdec(M — AdVOHchec(lA) < 40gp - /7 +8(qm + 1) - V5 + 64qp -0

dec

(47)
+4(gm + g6 +1) - /AdVIEC o (12),
and
Time[Age.] ~ Time[AZ..] < Time[Agec] + O(am - gc - Time[Enc] + gf;), (48)

where challenger C‘('”d is identical with Cgec, except that algorithm verify used by Cf'"d outputs t =
boole[OHG.C = mé For the input (OHG.A, m*, (b, K), s, OHG.C).

Regardmg Adv e, (1) and AdVOHGcﬂnd(].), it is noted that A}, and AZ%.. makes no queries to
any oracle. Therefore the value yg and Y1 ,ec which are shown in Fig. 8 and generated by Challenger
Cyec and CfMd are uniformly random in the view of A}, and A% in oracle-hiding game OHG 1 Oec

dec Cdec
dec’
and OHGG H Cof,iff, respectively. Hence, it can be concluded that the bit b chosen by challenger Cyec in
dec7 dec
oracle-hiding game OHGG . é) ‘< i3 independent from A} ’s view. Then we have
dec’
AdyCHE A 1
dv dec»Cdec(l) = 9° (49)

Moreover, it is concluded that there exists adversary A; against the OW-CPA security of the underlying
PKE such that
/—\deHGCf.nd(A = Adv%\{ﬁfé‘, Time[A;] ~ Time[A2_]. (50)

dec’ ™ dec

Combining Eq. (44) and Eq. (46) to (50), we finally obtain

AdV TR < 40gp - /7 + 8(qu + 1) - VO + 6dqu - 0 + 4lqu + g + 1) - AV SE,

and
Time[A;] < Time[A] + O(qx - qc - Time[Enc] + ¢%).

O

5.2 The ANO-qCCA security of KEM:, KEM*, KEM* and KEM* in the QROM
We first prove the SPR-qCCA security of KEM scheme KEMf;1 in the QROM.

Theorem 7. Suppose PKE = (Gen, Enc, Dec) is d-correct, weakly y-spread and SDS-IND-secure w.r.t.
QPT simulator S. Let A be a SPR-qCCA adversary against KEI\/I,ln in the QROM, making at most qy,
gc and qp queries to random oracle H, G and decapsulation oracle, respectively?®. Then there exist
an OW-CPA adversary Ay against the PKE and a SDS-IND adversary As against the PKE such that

Adv j’g ?fgifl < 24qp 7+ 8(qm + 1) - V3 + 64qp - 6 + 2(qm + qc + 1) - /AR SKE + AdVE I Re.

The running time of adversary Ay and Ag can be bounded as

20Following [JZC118, GMP22], we make the convention that gy and gg counts the total number of times H and G is
queried in the SPR-qCCA game, respectively.

30

Time[A;] ~ Time[Az] < Time[A] + O(qx - gp - Time[Enc] + ¢%).

Proof. Based on the SPR-qCCA game of KEM;., with adversary .A and simulator S, define game G
and game Gi’fl as shown in Fig. 9, then we have

|Pr[l « G%% — Pr[l « G Y| =2- Advi’ig'jémt. (51)
b=0 . b=1
Game G} 0§2c ©) Game GY;
1: (pk,sk) < Gen, b=0 e 1: (pk,sk) < Gen, b=1

1: If ¢ = ¢{j, return L s
2: m* + {0,1}*

ct =81

2 m* <& {0, 1}

Else return Deca: (c)
¢y = Enc(pk, m*, H(m"))

* * Of (C) * $ k
K} == G(m*) eicf . K} +{0,1}
3 b AHGOL (pp o5 K7y UL 1c ek ret‘gn i 30 b« AHGOW (pk, | K?})
4: Return v/ Else return Decay, (c) 4: Return b’

Figure 9: Game GZ‘:O and game Gf’fl. Here adversary A can query its oracles in superposition.

By using lifting theorem Theorem 4, we can prove following lemma, its detailed proof is shown in
Appendix H.3

Lemma 7. There exists adversary B and Ay without query any oracles it can access such that

| Pl + G0 = Pr[l + G| < 40gp /7 +8(qr +1) - V6 +64qp - 5 +4(qr + g6 +1) -/ AdvQ mice
and
| Pr[l « GY' = Pr[l « G < 8qp - 7+ 8(gm + 1) - V5 + 64gp - .
The running time of adversary B and Ay can be bounded as
Time[B] ~ Time[A;] < Time[A] + O((q¢ + qu) - gp - Time[Enc] + (g¢ + qr)?).

Notice that the adversary B in Lemma 7 does not query any oracles it can access, hence in game
G%:O and game G%zl, the K and K} both are uniformly random in adversary B’s view. It is
easy to obtain that there exist an adversary As against the SDS-IND security of PKE that satisfying
Time[Az] & Time[B] and

|Pr[l + G = Pr[l « G| = 2- AdvoD e (52)
Thus by using the upper bound given in Lemma 7, we have

Adv S e = | Prll e GIT%] — Pr[l « GUr'|/2

< |Pr[l «+ G50 — Pr[1 «+ GY7%]|/2 + | Pr[l + G47°] — Pr[1 «+ G%71]|/2
+ | Pr[1 + GY¥7'] — Pr[1 « GY%1)|/2
< 24qp /7 + 8(qu + 1) - VO + 64qrr - 0+ 2(qm + g + 1) -/ AdVIVSEE + AdvETINxe.
O

Corollary 1. Suppose PKE = (Gen, Enc, Dec) is OW-CPA-secure and SDS-IND-secure, then KEI\/I,J;1 is
ANO-qCCA-secure in the QROM.

This follows from the Theorem 2.5 of [Xag22], which indicates that the SPR-qCCA security of KEM
schemes implies its ANO-qCCA security?'. Similar with the proof of Theorem 7, we can also prove the

SPR-qCCA security of KEM scheme KEM™, KEM# and KEM* in the QROM. We give these proofs in
Appendix H.4. Then by using the Theorem 2.5 of [Xag22] again, we obtain following corollary:
Corollary 2. Suppose PKE = (Gen, Enc, Dec) is OW-CPA-secure and SDS-IND-secure, then KEM*,
KEM;& and KEM* s ANO-qCCA-secure in the QROM.

21Note that the Theorem 2.5 of [Xag22] actually states that the SPR-CCA security of KEM schemes implies its ANO-
CCA security. Although their proof is not specific to the "qCCA” case, it can be easily modified to accommodate it.

31

5.3 The ANO-qCCA security of PKE:-, PKE', PKEL and PKE* in the QROM
We first prove the WPR-qCCA security of KEM scheme KEan in the QROM.

Theorem 8. Suppose PKE = (Gen, Enc, Dec) is d-correct, weakly y-spread and SDS-IND-secure w.r.t.
QPT simulator S. Let A be a WPR-qCCA adversary against PKE#L in the QROM, making at most qp,
ge and qgp queries to random oracle H, G and decapsulation oracle, respectively?®. Then there exist
a QPT simulator S’ of PKE,ln, an OW-CPA adversary Ay against the PKE and a SDS-IND adversary
As against the PKE such that

AV el < 24ap - 7+ 8(qrr + 1) - V6 + 6dqr - 6+ 2(qm + a6 + 1) - \/ AdVRRRE + AdVID S PRe-

The running time of adversary Ay and Ag can be bounded as
Time[A;] ~ Time[Az] < Time[A] + O(qx - ¢p - Time[Enc] + ¢%).

Proof. Based on the WPR-qCCA game of PKETJ;L with adversary A and simulator &', define game G4°
and game GY ! as shown in Fig. 10, then we have

|Pr[1 « G%° — Pr[1l « G| =2- Advﬁgﬁzgﬁ;. (53)

As shown in Fig. 10, 8’ generates ciphertext (c;, ¢2) by first runs S to get ciphertext ¢;, then randomly
choose K € {0,1}* and compute ¢y := E(K, m*). Hence S’ also a QPT simulator.

Game G50 0°_(c) Game GY!
- dec -
1: (pk,sk) < Gen, b=0
2 m* — AHGOke (pk)
.oCx $ u . 1(1A * .
3: 6%« {0,1} Else return Decl (c) 3: §'(1*, m*) perform:
c1 := Enc(pk, 6*, H(6*)) o1 e+ S(17)
K = G(5") Ouec(©) K & {01}k
E(K, m*), ¢t = () 1: If ¢ is defined and E(K,m*), ¢t = ()
cg 1= ,m*), ¢ = (c1,¢ cg 1= ,m*), ¢f = (c1,¢
/2 H,G,08 0* v ¢=cj, return L /2 H,G,0} 1* v
4: O A7C % (pk,) 4: b« AT C Y (pk, cf)
5: Return ¥/ 5: Return ¥/

1: If ¢j is defined and 1: (pk, sk) < Gen, b=1

R H,G,04,.
c=c, return L 2om” A = (pk)

Else return Dec: (c)

Figure 10: Game Gi’fo and game Gi’fl. Here adversary A can query its oracles in superposition.
By using lifting theorem Theorem 4, we can prove following lemma, its detailed proof is similar
with Lemma 7 and we omit it.

Lemma 8. There exists adversary B and Ay without query any oracles it can access such that

| Pr[l « G5 = Prl « G5]| < 40gp - /7 +8(qar +1) - V3 +64qp - 5 +4(qm +qc +1) -/ AdvQV Sk
and
|Pr[1 < G5l = Pr[l < G%7Y)| < 8qp - 7+ 8(qm + 1) - V& + 64qu - 6.
The running time of adversary B and Ay can be bounded as
Time[B] ~ Time[A;] < Time[A] + O((¢c + qu) - ¢p - Time[Enc] + (¢c + qu)?).

Notice that the adversary B in Lemma 8 does not query any oracles it can access, hence in game
GY%70, the H(0*) and G(6*) used to generate ¢ both are uniformly random in adversary B’s view.
This means that the ¢, game G%:O and G%:l have the same distribution in adversary B’s view. Then
we define an adversary As against the SDS-IND security of PKE with simulator S as follows:

22Following [JZCT 18, GMP22], we make the convention that gz and gg counts the total number of times H and G is
queried in the SPR-qCCA game, respectively.

32

1. As gets pk and a ciphertext ¢ from the challenger, where ¢ is generated by either the encryption
algorithm Enc or simulator S(1*).

2. Aj runs B(pk) to get m*.

3. Ay computes ¢ := E(K, m*), where K & {0,1}*, then runs B(pk, (¢,c’)) to get b’ and output it.

Obviously, Ay perfectly simulate game G%:O (resp. game G%:l) if ¢ is generate by the encryption
algorithm Enc (resp. simulator S(1*)). Hence we have Time[As] ~ Time[B] and

| Pr[l « G5 - Pr[l « G| = 2- Advo 2 bRe. (54)
Thus by using the upper bound given in Lemma 8, we have

Advy e e = | Pr[l = GUZ%) = Prll « GIT)| /2
< |Pr[l + G50 — Pr[l «~ G%7%|/2 + | Pr[l < G5 — Pr[l «+ G%71]|/2

+|Pr[l + G§'] — Pr[1 « GY%1)|/2

< 24qp - 7+ 8(qi + 1) - Vo + 64q1r -5+ 2(qur + g6 + 1) - /AR + AdvIRSID .
O

Remark 5. Note that our WPR-qCCA security reduction of PKE scheme PKE;, = KEM;. + DEM
does not require any security assumptions about DEM scheme DEM. Intuitively speaking, the reason
is that the computation of ¢c; shown in Fig. 10 is independent of m*, hence we can design adversary
As using the adversary B of Lemma 8 and directly reduce the WPR-qCCA security to the underlying
strongly disjoint-simulatable security of PKE.

Corollary 3. Suppose PKE = (Gen, Enc, Dec) is OW-CPA-secure and SDS-IND-secure, then PKES, is
ANO-qCCA-secure in the QROM.

This follows from Theorem 5, which states that the WPR-qCCA security of a PKE schemes implies
its ANO-qCCA security. Similar with the proof of Theorem 8, we can also prove the WPR-qCCA
security of PKE scheme PKEJ‘7 PKE;fl and PKE* in the QROM, the corresponding theorem is given
in Appendix H.5. Then by using Theorem 5 again, we obtain following corollary:

Corollary 4. Suppose PKE = (Gen, Enc, Dec) is OW-CPA-secure and SDS-IND-secure, then PKE®,
PKEL and PKE is ANO-qCCA-secure in the QROM.

References

[ABN10] Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryption. In Theory of
Cryptography: 7Tth Theory of Cryptography Conference, TCC 2010, Zurich, Switzerland,
February 9-11, 2010. Proceedings 7, pages 480-497. Springer, 2010.

[AHU19] Andris Ambainis, Mike Hamburg, and Dominique Unruh. Quantum security proofs us-
ing semi-classical oracles. In Annual International Cryptology Conference, pages 269—295.
Springer, 2019.

[BBDPO01] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in
public-key encryption. In Advances in Cryptology - ASIACRYPT 2001, 7th International
Conference on the Theory and Application of Cryptology and Information Security, Gold
Coast, Australia, December 9-13, 2001, Proceedings, volume 2248, pages 566-582. Springer,
2001.

[BCHKO07] Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security
from identity-based encryption. SIAM J. Comput., 36(5):1301-1328, 2007.

[BDF*11] Dan Boneh, Ozgiir Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark
Zhandry. Random oracles in a quantum world. In International conference on the theory
and application of cryptology and information security, pages 41-69. Springer, 2011.

33

[BHH*19]

[BRS02]

[BZ13]

[CFHL21]

[CMS19]

[CMSZ19]

[CS03]

[Den03]

[DFMS22]

[DHK*22]

[FO13]

[GMP22]

[HHK17]

[HHM22

Nina Bindel, Mike Hamburg, Kathrin Hévelmanns, Andreas Hiilsing, and Edoardo Per-
sichetti. Tighter proofs of CCA security in the quantum random oracle model. In Theory
of Cryptography Conference, pages 61-90. Springer, 2019.

John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme security in
the presence of key-dependent messages. In Selected Areas in Cryptography, 9th Annual
International Workshop, SAC 2002, St. John’s, Newfoundland, Canada, August 15-16,
2002. Revised Papers, volume 2595, pages 62-75. Springer, 2002.

Dan Boneh and Mark Zhandry. Secure signatures and chosen ciphertext security in a
quantum computing world. In Annual cryptology conference, pages 361-379. Springer,
2013.

Kai-Min Chung, Serge Fehr, Yu-Hsuan Huang, and Tai-Ning Liao. On the compressed-
oracle technique, and post-quantum security of proofs of sequential work. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, pages
598-629. Springer, 2021.

Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. Succinct arguments in the
quantum random oracle model. In Theory of Cryptography - 17th International Conference,
TCC 2019, Nuremberg, Germany, December 1-5, 2019, Proceedings, Part II, volume 11892
of Lecture Notes in Computer Science, pages 1-29. Springer, 2019.

Jan Czajkowski, Christian Majenz, Christian Schaffner, and Sebastian Zur. Quantum lazy
sampling and game-playing proofs for quantum indifferentiability. TACR Cryptol. ePrint
Arch., page 428, 2019.

Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput., 33(1):167—
226, 2003.

Alexander W. Dent. A designer’s guide to kems. In IMA International Conference on
Cryptography and Coding, pages 133—151. Springer, 2003.

Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Online-extractability in
the quantum random-oracle model. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 677-706. Springer, 2022.

Julien Duman, Dominik Hartmann, Eike Kiltz, Sabrina Kunzweiler, Jonas Lehmann, and
Doreen Riepel. Group action key encapsulation and non-interactive key exchange in the
QROM. IACR Cryptol. ePrint Arch., page 1230, 2022.

Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. J. Cryptol., 26(1):80-101, 2013.

Paul Grubbs, Varun Maram, and Kenneth G. Paterson. Anonymous, robust post-quantum
public key encryption. In Advances in Cryptology - EUROCRYPT 2022 - j1st Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Trondheim, Norway, May 30 - June 8, 2022, Proceedings, Part III, volume 13277, pages
402-432. Springer, 2022.

Dennis Hofheinz, Kathrin Hévelmanns, and Eike Kiltz. A modular analysis of the fujisaki-
okamoto transformation. In Theory of Cryptography Conference, pages 341-371. Springer,
2017.

Kathrin Hévelmanns, Andreas Hiilsing, and Christian Majenz. Failing gracefully: Decryp-
tion failures and the fujisaki-okamoto transform. In Advances in Cryptology - ASTACRYPT
2022 - 28th International Conference on the Theory and Application of Cryptology and In-
formation Security, Taipei, Taiwan, December 5-9, 2022, Proceedings, Part IV, volume
13794 of Lecture Notes in Computer Science, pages 414-443. Springer, 2022.

34

[HKSU20] Kathrin Hovelmanns, Eike Kiltz, Sven Schége, and Dominique Unruh. Generic authenti-

[JZC*18]

[JZM19)]

[KN22]

[KS20]

[KSS+20]

[LW21]

[NC16]

[NIS17]

[NTS22]

[SGX23]

[Sho99]

[Sho04]

[Xag22]

cated key exchange in the quantum random oracle model. In Aggelos Kiayias, Markulf
Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, Public-Key Cryptography - PKC
2020 - 28rd IACR International Conference on Practice and Theory of Public-Key Cryp-
tography, Edinburgh, UK, May 4-7, 2020, Proceedings, Part II, volume 12111 of Lecture
Notes in Computer Science, pages 389-422. Springer, 2020.

Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and Zhi Ma. Ind-cca-secure
key encapsulation mechanism in the quantum random oracle model, revisited. In Annual
International Cryptology Conference, pages 96—125. Springer, 2018.

Haodong Jiang, Zhenfeng Zhang, and Zhi Ma. Tighter security proofs for generic key en-
capsulation mechanism in the quantum random oracle model. In International Conference
on Post-Quantum Cryptography, pages 227-248. Springer, 2019.

Fuyuki Kitagawa and Ryo Nishimaki. KDM security for the fujisaki-okamoto transforma-
tions in the QROM. In Public-Key Cryptography - PKC 2022 - 25th IACR International
Conference on Practice and Theory of Public-Key Cryptography, Virtual Event, March
8-11, 2022, Proceedings, Part II, volume 13178, pages 286—-315. Springer, 2022.

Juliane Kramer and Patrick Struck. Encryption schemes using random oracles: From
classical to post-quantum security. In Post-Quantum Cryptography - 11th International
Conference, PQCrypto 2020, Paris, France, April 15-17, 2020, Proceedings, volume 12100
of Lecture Notes in Computer Science, pages 539-558. Springer, 2020.

Veronika Kuchta, Amin Sakzad, Damien Stehlé, Ron Steinfeld, and Shifeng Sun. Measure-
rewind-measure: Tighter quantum random oracle model proofs for one-way to hiding and
CCA security. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 703—728. Springer, 2020.

Xu Liu and Minggiang Wang. Qcca-secure generic key encapsulation mechanism with
tighter security in the quantum random oracle model. In TACR International Conference
on Public-Key Cryptography, pages 3—26. Springer, 2021.

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information
(10th Anniversary edition). Cambridge University Press, 2016.

NIST. National institute for standards and technology. post quantum crypto project.
https://csrc.nist.gov/projects/post-quantum-cryptography, 2017.

NIST. National institute for standards and technology. post quantum crypto project.
selected algorithms. https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022, 2022.

Tianshu Shan, Jiangxia Ge, and Rui Xue. Qcca-secure generic transformations in the
quantum random oracle model. In Public-Key Cryptography - PKC 2023 - 26th IACR
International Conference on Practice and Theory of Public-Key Cryptography, Atlanta, GA,
USA, May 7-10, 2023, Proceedings, Part I, volume 13940 of Lecture Notes in Computer
Science, pages 36—64. Springer, 2023.

Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer. SIAM Rev., 41(2):303-332, 1999.

Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. TACR
Cryptol. ePrint Arch., page 332, 2004.

Keita Xagawa. Anonymity of NIST PQC round 3 kems. In Advances in Cryptology -
EUROCRYPT 2022 - J1st Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Trondheim, Norway, May 30 - June 3, 2022, Proceedings,
Part III, volume 13277, pages 551-581. Springer, 2022.

35

https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

[XY19]

[YZ21]

[Zhal2]

[Zha19)]

Keita Xagawa and Takashi Yamakawa. (tightly) gcca-secure key-encapsulation mechanism
in the quantum random oracle model. In International Conference on Post-Quantum
Cryptography, pages 249-268. Springer, 2019.

Takashi Yamakawa and Mark Zhandry. Classical vs quantum random oracles. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
pages 568-597. Springer, 2021.

Mark Zhandry. Secure identity-based encryption in the quantum random oracle model. In
Annual International Cryptology Conference, pages 758-775. Springer, 2012.

Mark Zhandry. How to record quantum queries, and applications to quantum indifferen-
tiability. In Annual International Cryptology Conference, pages 239-268. Springer, 2019.

36

A Quantum Background

A quantum system (register)) is a complex Hilbert space H¢g with an inner product (|-), notation
like ’|-)” or ’(:|’ is called the Dirac notation. We denote Hqg = C[X] if @ is defined over a finite set X/,
the orthonormal basis of C[X] is {|z)}.cx, where the basis state |z) is labeled by the element z of X.
We refer to {|z)}.cx as the computational basis. The state |¢)) of quantum system @ is a unit vector,
and we also write this state as) q.

A qubit in superposition is a linear combination vector |b) = «|0) + |1) of two computational basis
states |0) and |1) with a, 3 € C? and |a|?+|8|?= 1, a, § are the probability amplitudes of |b). Given
quantum systems @)1 and @2, we call tensor product Q1 ® Q2 is the composite quantum system and
the product state is [11) @ [12) € Q1 ® Q2 where |11) € Q1, |1)2) € Q2. An n-qubit system is Q®"
where @ is single qubit system. We call state |¢)) € Q1 ® Q2 a product state if |¢)) can be rewrite as
[) = |¢1) ® |t2) and |11) € Q1, |th2) € Q2, if |h) is not a product state, we say that the systems Qg
and @ are entangled, otherwise un-entangled. The norm of a state |¢) is defined as |||¢)|| := +/(P]¥),
where (1]1) is the inner product of |).

The evolution of a closed quantum system is described by a unitary operation. That is the state
[t)) of the system at time ¢; is related to the state |¢)’) of system at time ¢2 by a unitary operation
U which depends only on the times ¢; and t3, that |[¢') = Uly). In our paper, we also write Ug
to emphasize that the unitary operation U acts on quantum system (register) . For any unitary
operation U acts on quantum system, we have U o Uf = I, where UT is the Hermitian transpose of
U and T is the identity operator over the quantum system. The norm of an operator U is defined as
U] == maxa)=1 [[U|®)]-

Then we introduce a special operation called projector, for state |1)) of an n-qubit register, a
projector M}y, applies the projection |y)(y| map to the state [¢)) to get the new state |y)(y|v).
M,y (y| can also be generalized to a new projector Myes which applies the projection ZyES ly) (y|. We
stress that any projector operator M is Hermitian (i.e., we have M = M) and idempotent (i.e., we
have M? = M).

State 1) can be measured with respect to a basis, for example suppose [¢)) = > a,|x) with
computational basis {|z)}, if we measure |1)) in computational basis, the measurement outputs the value
« with probability |(z|¢)|> = |as|*. Note that state 1) collapse to state |z) after the measurement,
so the state will stay |z) and the subsequent measurements will always output x. Measurements in
other basis are defined analogously. In this paper, we will generally only consider measurements in the
computational basis. A general projective measurement M is defined by a set of projection operators
M;, ..., M,, where M; are mutually orthogonal and Y | M; = I. Any general projective measurement
can be implemented by composing a unitary operation followed by a measurement in the computational
basis.

A quantum oracle algorithm A9 (2) is an algorithm .A(z) that is given quantum oracle access to
oracle O. In this paper, we default that oracle O can be implemented by a unitary operation Up that
operate on the correspond input/output register. The algorithm A(z) is allowed to performs parallel
queries to O with input/output register I;/O; for i = 1,...,w, suppose A(z) can perform parallel
queries at most d times, then we call w (resp. d) the query width (resp. query depth) and the total
query times of A(z) is ¢ := w-d. Moreover, once parallel query to O with input/output register I;/0;
for i = 1,...,w can be implemented by unitary operation (Ug)®¥

There is a well-known fact that we can construct a unitary variant A9 (z) for any quantum oracle
algorithm A (z) with some constant factor computational overhead and these two algorithms have
same query width and query depth [AHU19], A9 () also called a unitary quantum oracle algorithm.
As shown in the Definition 8 of [DHK™22], the detailed execution of a unitary quantum oracle algo-
rithm can be described as follows:

Unitary quantum oracle algorithm B°: Suppose B’s query depth is d and query width is p, then
B’s execution can be described as

Ugo(Up)®P oUg_10(Up)®0...0U; 0 (Upg)®P|y).

Here Uy, ..., Uy are the fixed unitary operations applied between queries, |¢) is the initial pure state.
B perform a projective measurement on its quantum register after applying U, and output the measure
outcome. For multiple oracles case, as explained in the Remark 8 of [DHK™22], if B have quantum

37

access to all oracles, then the execution of B can be described analogously, .

Moreover, in this paper, we sometimes use a special symbol L to expand a finite set {0,1}", thus
default L ¢ {0,1}" and then consider a new finite set {0, 1}"U_L. Roughly speaking, the reason is that,
when we define a special unitary operation, we need L to denote "not defined (yet)” or “computation
failure”.

As for the detailed representation of {0,1}"™ U L, we use the extension method introduced in
[CFHL21]. That is to say, we use a classical encoding function enc that enc(L) = 1]|0" € {0,1}"*!
and enc(z) = 0|z € {0,1}""! for any = € {0,1}", then the set {0,1}" U L can be embedded into the
set {0,1}""1. Under this representation, the binary operation x @ y for x,y € {0,1}" U L that used
in this paper actually means enc(z) @ enc(y), where operation @ denotes bitwise addition modulo 2,
a group operation on {0, 1}"*1. Overall, with this representation, the quantum register defined over
set {0,1}" U L is implemented by a quantum register defined over set {0, 1}"+1.

B QROM Lemmas

Lemma 9 (Simulate the QROM [Zhal2]). Let O be a random oracle, and H be a function uniformly
chosen from the set of 2q-wise independent functions. For any algorithm A that has quantum access
to its oracle and makes at most q queries, we have Pr[1 < A" (2)] = Pr[l + A9 (2)] for any input z.

Semi-classical oracle. For subset S C {0,1}"™, Let fs be the function that fs(z) =1 if 2 € S, and
fs(z) = 0 otherwise. The semi-classical oracle O3 performs the following operation on input state

ZIEX,zE{O,l}* g,z |z, 2):

1. Initialize a single qubit L with |0)r, transform state > cx e 13- @a,z[2,2)[0)r into state
Z:L’GX,ZE{O,I}* Qg 2|z, 2)| fs(2)) L.

2. Measure L and output the measurement outcome.

In the execution of an quantum algorithm that has oracle access to O2¢, Denote Find as the event
that 02 ever outputs 1.

Lemma 10 (Semi-classical O2H [AHU19]). Let H,G : {0,1}" — {0,1}" be random functions such
that H(x) = G(x) for any x ¢ S, where S C {0,1}™. Let z be a random bitstring, suppose that
H,G, S,z may have arbitrary joint distribution D. Let H\S be an oracle that first queries Ogc and
then queries H.

Let A be an oracle algorithm (not necessarily unitary) with query depth d. Define

Pieg, := Pr[1l « A% (2): (H,G, S, z) «+ D],
Piigni == Pr[1 « A#\S(2) 1 (H,G, 8, 2) < D,
Pl ==Pr[l « A%(2): (H,G,S,z) + D],

[

Pqng := Pr[Find occurs in AH\S(z) : (H,G, S,z) «+ DJ.

Then
|Pleft_Pright| S (d+ 1)'Pﬁnda ‘—Pleft_Pr/ight| §2\/ (d+1)Pﬁnd

Lemma 11 (Search in the semi-classical oracle [AHU19]). Let A be a quantum oracle algorithm making
at most d queries to the semi-classical oracle with domain {0,1}™. Let S C {0,1}™ and z € {0,1}*,
suppose that S, z may have arbitrary joint distribution D. Let B be an algorithm that on input z chooses

i & {1,...,d}, runs A95° (2) until (just before) the i-th query, then measures all query input registers
in the computational basis and outputs the set T' of the measurement outcomes. Then

Pr[Find occurs in AOgc(z) :(8,2) D) <4d-Pr[SNT £ S AT «+ B(z) : (S,2) < DJ.

38

C Proof of Lemma 2

Proof of Lemma 2. By Eq. (13), we have

|| [Ext s, StdDecomp,]|| = ‘

s
[Z t){tlr ® MID%;P, Sthecompz]
tey

f
Z t)(tlr ® [MS‘;P, StheCOmpm}
tey

v ME? StdD
< s [Mo, SeaDecom.|

)

where (a) uses the following corollary:

Corollary 5 ([DFMS22|, Corollary 2.2). If A=) |x)(x| ® A®, i.e., A is a controlled operator, then
[A[] < max, [[A”]].

By the result of Appendix C.1,

H [Mgfp , StdDecom px}

| <16\ /T2
<16- T /2.
<16 oTy/

Then ;
Ext s, StdDecomp,, ||| < max M , StdDecomp
f = ey D4P z

By the definition of CStO in Definition 2, we have

|[CStO, 24| = > |z){z|x ® StdDecomp, o CNOTYp, o StdDecomp,, £*
z€{0,1}m
®) . N
< max [|[StdDecomp, o CNOTY o StdDecomp,,>~]||
z€{0,1}™ a
©

< 2. max |/[StdDecomp,,]|
z€{0,1}™

Here (b) uses Corollary 5 again, (c¢) uses the fact that CNOT\I(DQ is naturally commute with ¥+ for any

x e {0,1}™.
By the result of Appendix C.2,

| [StdDecomp,, 54| < 4- /T4 |/2m,

where set T'y := {y € {0,1}"|f(z,y) = t}, then by Eq. (11)

[[CStO, 4| < sme%aﬁm\/mu% =8 /Tps/2m.

f
C.1 Bound on H [MSﬁP,Sthecompx}

For fixed function f, t € Y and z € {0 1}™, define set T, := {y € {0,1}"|f(x,y) = t}. As defined
in Section 2.4 and Section 2.5, ME tP acts on registers DyP and StdDecomp, acts on register D,.

Moreover, for a computational basis state |D,p) on registers D,P, where D € D, and p € {0, 1}’""’1
it is straightforward to check that

; f ’ ’ ’ f
ME 1D >:{ ID,p®z) if (2,D(2)) € R A3/ < zs.t. (2/,D(2')) € R, (55)

|D,p® L) otherwise.

39

For any state |®) on registers D,P with norm 1, we can denote

‘(I)> = Z O‘D7;D|D7p>a

DeD,,pe{0,1}m+1

where > pep Leqo1pme lap p* = 1. Next, by using z, we can separate state |®) into eight mutual
orthogonal parts |®1) to |®g) that

8 8

@)= 120, 12 = ll12:)]* (56)

i=1 i=1

Here |®1) to |®s) are the following states:

|(D1> — Z BD,p|Dap>a
DeD,,pe{0,1}"
D(w)=132 st. (2,D(2))€R]
|By) = Z Bpp|D,p),

DeD,,pe{0,1}mF?
D(z)=1,3zp<z s.t. (2p,D(zp))eR]

|(I)3> = Z 6D,p|D7p>a
DeD,,pef{0,1}m T
D(z)=L1,3zp>z s.t. (2p,D(zp))ER]
P2’ <zp s.t. (z',D(z'))ERtf
|¢)4> = Z /BD,p,TlD U (.13, ’f)7p>a

DeD,,pe{0,1} ! n(D)<q
re{0,1}",r£0"
D(z)=L,fz#x st. (2,D(2))€R]

|¢)5> = E : /8D7P»7'|D U ('rv"q)7p>’
Dquva{071}7”+17n(D)<q
/r_:O"L

D(z)=1,Pz#x s.t. (z,D(z))GR{

|<b6> = Z ﬁD,p,T‘|D U ({,C7’IA’),p>,
DeD,,pef{0,1}™ T n(D)<gq
re{0,1}"
D(z)=1,3zp<z s.t. (zD,D(zD))GR{
|<b7> = Z BD,p,’I”|D U ({E77A’),p>,

DeD,,pe{0,1}™ T n(D)<q
re{0,1}"™,r£0™
D(z)=1,3zp>z s.t. (zD,D(zD))GR{
A2 <z2p,2’ #x s.t. (z’,D(z’))ER{

|<b8> = Z 6D,p,T|D U (lE,f'),p>
DEDqﬁpG{O,l}m+1,n(D)<q
—o"
D(z):L,HzD>wrs.t. (2p,D(zp))eR]
P2’ <zp,2'#z s.b. (2/,D(2'))eR]

s
Let |¥,;) := MS’;P, Sthecompx} |®;) fori=1,...,8, by Eq. (55) and the definition of StdDecomp,,

40

defined in Section 2.4, we compute:

1

W) = T > > Bpp (DU (2,y),p@) — DU (2,y),p® 1)),
yely DeD,,pe{0,1}m+!
D(z)=1,3z s.t. (2,D(z))eR]
|\112> =0,
B,
LOEDY > j;:uDu(x,y),peaxw|Du<z,y>,p@zD>>7
y€l'y DeD,,pe{0,1}™ !

D(z)=1,3zp>z s.t. (zD,D(zD))GR{
2 <z2p s.t. (z/,D(z/))GRtf

N DU (z,0"),p@x)— |[D,p® =
R S LA g
yEFz DGDq,pG{O,l}m+1,n(D)<q I))

re{0,1}" r£0"
D(z)=L,fz#ax s.t. (2,D(z))eR]

r DU (xz,y),p® L
|Ws) = E E LD%’L - StdDecomp,, (—|D(U(y)])) ®>)))
y€ls DeD,,pe{0,1}™ ! n(D)<q TYLPpwE
r=0"

D(x)=1,Pz%#x s.t. (2,D(z))eR]

|\IIG> =0,
—1)vr DU (z,0"),p®dz)—|D,p®x
=3 3 (22 Bppr < |+|D(p®zl> i I;U(x S pgzm) ,
yET, DeD, pe{0,1}™ ! n(D)<q ’ L
re{0,1}™,r£0™
D(z)=1,3zp>x s.t. (zD,D(zD))GRic
P2/ <zp,2'#x st. (2,D(z")eR]
s DU b)
Ws) = > > LD’; - StdDecomp,, < | |D(le?(y) Z;@;D>>) :
vl DeD,pe(0.}™Hn(D)<g HYLpEE
r=0"
D(z)=1,3zp>z s.t. (2p,D(zp))eR]
P2’ <zp,2'#z s.t. (2/,D(2'))eR]
For state |¥1), we compute
2
1
H|\I]1>||2: \/27 Z BD,p(|DU(CL’7y)7P@$>_|DU($>y)7P@J->)
yel, DeD,,pe{0,1}m+!
D(x)=L,3z s.t. (2,D(2))€R]
2
(a) 1
<2 => > B, DU (,9).p®)
yels DeD,,pe{0,1}m+?
D(z)=1,3z s.t. (2,D(z))eR]
2
(57)
1
T2 > > BpplDU (z,y),pe L)
yels DeD,,pe{0,1}m*?

D(z)=1,3z s.t. (2,D(z))eR{

=5 > 8o+ 3) 1Bo.P

yel, DeD,,pe{0,1}m+? yel, DeD,,pef{0,1}mF?
D(z)=1,3z s.t. (2,D(z))eR] D(x)=1,3z s.t. (2,D(z))eR]
4|1, | o 4T,
=5 > e

DED, pef0,1}7 !
D(z)=1,3z s.t. (z,D(z))GRtf

41

Here (a) uses the following corollary.

Corollary 6. For any state [1h1) to [1h,), we have | S 0_ [v)|> < q- Y7

Proof of Corollary 6. The proof is simple:

Z |[¥3)

I3 112

=1

Y0 (& ORI)
< (Dol < g > leal*
=1 =1

Here (a) uses the triangle inequality, and (b) uses the AM-QM (or Jensen’s) inequality.

Similar with the computation of ||| ¥1)]|?, we also have
Al | 4T |
1ea)]* < == @), 11@s)]1* < == 112

For state |[¥4), we compute

4T,
Ll g 2.

M s < =5

—1)yr DU (z,0"),p®dz)—|D,pdx
leal = | > > =T BD”’”"(|+|D(p€9L)>p—ID>U (.01 pegb
yel's DeDy,pe{0,1}™ T n(D)<q ’ 7 7
re{0,1}™,r#£0"
D(z)=1,P2#x s.t. (z,D(z))ER‘tf
2
(b) —1)yr R
2ily 5 DU (@.0),p 5 2)
yelz DeD,,pe{0,1}™ n(D)<gq
re{0,1}",r£0"
D(z)=1,pz#x s.t. (z,D(z))GRtf
2
(-1
+4 Z Z BDpT‘|D7pEBx>
on Py
yel's DeD,,pe{0,1}™ 1 n(D)<q
re{0,1}",r#£0"
D(z)=1,3z#z st. (2,D(z))€R]
2
(=¥
+4 Z Z Bppr|D,p® L)
on P
y€la DeDy,pe{0,1}™ ! n(D)<q
ref{0,1}™,r#£0™
D(z)=Lfz#z st. (2,D(2))€R]
2
21p) o Bl DU (0,070 1)
yel's DeD,,pe{0,1}™ ! n(D)<q
re{0,1}™,r#£0"
D(z)=1,pz#z s.t. (z,D(z))ER,{
2
- > > s
DeD, pef{0,1} 1 n(D)<q y€l,,re{0,1}",r#0
D(z)=1,pz#z s.t. (z,D(z))GR{
2
(©) 16]T,| (=D¥”
= on Z Z Z Bp.p.r

DeDg,pe{0,1}"ULl,n(D)<q y€l: |re{0,1}m, r£0n

D(z)=L,fz#x s.t. (2,D(2))eR]

42

Va2r

(58)

)

Here (b) uses Corollary 6 again, and (c) uses the Cauchy-Schwarz inequality.
Indeed, we can compute

@a)]> = > B p.r
DeD,,pe{0,1}™ 1 ,n(D)<q
re{0,1}",r#£0"
D(z)=1,Pz#x s.t. (2,D(z))eR]

DU (z,7),p)

2
— (=D D
_ 3 > Bome e DU ().0)
DeD,,pe{0,1}™ ! n(D)<q y€{0,1}"
re{0,1}",r#0"
D(z)=1,Pz#x s.t. (z,D(z))GR,{
2
(-1
- > | 2 Bowr
DeD,,pe{0,1}" T n(D)<q y€{0,1}™ |r€{0,1} r£0" 2
D(z)=1,Pz#x s.t. (2,D(2))eR]
2
(1)
D S S D
DED,,pe{0,1}™ T n(D)<q Y€z |re{0,1}m r#0"
D(z)=1,Pz#x s.t. (2,D(z))eR]
Combine above inequality with Eq. (59), we get
16T
Iea))® < == M12a)*. (60)
Similar with the computation of ||[¥4)]|?, we also have
16]1, |
e < == M2, (61)
Combining Eq. (57), (58), (60) and (61), we have
! R}
H {MD P,Sthecomp%} ‘ oy X H {MDQP,Sthecompm} |<I>>H
Rf
= MEt,, StdD [> 1o
\¢>,I|ﬂg§(n:1 [Mo.p StdDecomp, ZZ::1| >
@ |F | |F |
<4. +2-
(e) Rf
= 16\/ <1
2” -
Here (d) uses the triangle inequality and Eq. () uses the fact that I’ RI = Ig)ai(} Ty |.
r€0,1;™

C.2 Bound on || [StdDecomp,,,] H

For fixed function f, ¢t € Y and « € {0,1}™, define set T',, := {y € {0,1}"|f(x,y) = t}. For any
state |®) = > pep, ap|D) on register Dy with norm 1 (32 pcp, lap|? = 1), we separate |®) into four
mutual orthogonal parts that

4 4

@)= 120, 127 =D ll12:)]* (62)

i=1 i=1

43

Here |®4) to |®4) are the following states:

|®1) = > Bpl|D),

DeDy,3z#x s.t. (z,D(Z))ER{

|©2) = > Bo|D),
DeD,,D(x)=L
3z s.t. (2,D(z))eR!

|©3) = > B, DU (z,7)),

DeD,,n(D)<q,re{0,1}" r£0"
D(z)=1,Pz#x s.t. (z,D(z))GRtf

|By) = > Bpr|DU (x,7)).
DeDy,n(D)<q,r=0"
D(z)=1,Pz#x s.t. (z,D(z))ER{

Let |¥;) := [StdDecomp,, X+ |®;) for i = 1,...,4, by the definition of StdDecomp,, and £+ defined
in Section 2.4 and Section 2.5, respectively, we compute:

0,
1
Vo) = 7= > > Bp|D U (z,y)),
yel'y DeDy,D(xz)=1
3z s.t. (2,D(z))eR]

W) =) D (DU (&, 0v) — D)),

V2" y€l'y DeDy,n(D)<q,re{0,1}" r£0" V2"
D(z)=1,f2#x s.t. (z,D(z))ER{
1
|le4> = \/27 Z Z 5D7T|D U (1’,y)>
yel'y DeDy,n(D)<q,r=0m

D(x)=LBz#z st. (2,D(2))€R]

For state |¥s), we compute

2

NP =—=3 Y BelDU@w)

van yel, DeD,,D(z)=L
Pz s.t. (z,D(z))ERtf

D DR DA (63)

DeD,.D(z)=L yel,
#z s.t. (2,D(2))eR]

T, I,
s g2 Kl

on on
DeDy,D(z)=1
Pz s.t. (2,D(2))eR]

Similar with the computation of |||¥2)||?, we also have

Lol

g < 52

[[[®4)11%. (64)

44

For state |¥3), we compute

2

1 (—1)v)
%)]2 = || —=) ~—Bp-(|D U (x,0) - D))
2 y€ly DeD,,n(D)<q,re{0,1}",r£0" 2

D(z)=1,Pz#x s.t. (z,D(z))ER,ic
2

@ || 1 (—1)ur i
< 2 Z — BD,T'D U (xaon»
2n yel'y DeDgy,n(D)<q,re{0,1}" r£0" 2n

D(z)=L1,Pz#x s.t. (z,D(z))ERtf
2

1 —1)r
2| o) L alD)
y€lz DeDy,n(D)<q,re{0,1}",r#£0"

D(z)=1,pz#x s.t. (z,D(z))ERtf

! (=17
- 27"I Z Z \/27 6D,r
DeDy,n(D)<q y€El,,r€{0,1}n,r#£0"
D(z)=L1,Pz#x s.t. (2,D(z))€R]

(0) 4|1, | (—1)v
e :
- 9n Z Z Z \/271 BD,T
DeDy,n(D)<q yeT, |ref{0,1}n,r#£0n
D(z)=1,Pz#x s.t. (2,D(z))eR]

(65)

Here (a) uses Corollary 6, (b) uses the Cauchy-Schwarz inequality. In addition, we have

2

l1@3)1* = > Bp.r|DU (2,7))

DED, n(D)<qref0,1}" r#0"
D(z)=1,pz#x s.t. (z,D(z))ER,{

-) S 0, S DUy

DeDy,n(D)<q,re{0,1}",r#0" ye{0,1}" V2
D(z)=1,Pz#x s.t. (2,D(z))eR]

-) O
= o =
DeDg,n(D)<q ye{0,1}" |re{0,1}»,r#0" 2
D(z)=1,Bz+#x s.t. (2,D(z))eR!

> Yoy B

n pr
DeD,,n(D)<q yel, [re{0,1}n,r#0n 2
D(z)=1,h2#x s.t. (z,D(z))GR{

v

Combine above inequality with Eq. (65), we get

4Ty

hea)l* < == ll@s)]. (66)

45

Combining Eq. (63), (64) and (66), we have

_ L
|| [StdDecomp,,, 5+ || = T || [StdDecomp,,, £+] @) ||
1
_ L
= oy maX [StdDecomp,,, ¥] ;)
© el I ICal _ . [ILs]

Here (c) uses the triangle inequality and Eq. (62).

D Proof of Theorem 3

Proof of Theorem 3. Without loss of generality, we can assume that A is a unitary quantum oracle
algorithm: If A is not a unitary quantum oracle algorithm, we can efficiently construct a unitary
variant of A by the well-known fact mentioned in Appendix A. Then, we suppose that S and z are
fixed. Denote @ as the quantum register of A, let L be a “query log” register consisting of ¢; qubits.
Define s,

Pl :=Pr [1 — AHoReads (5. (g, z)]

P 1= Prll e AR (2) 1 (5, 2)],
Pffnfi := Pr[Find occurs in Af\SoReadr (2. (g 2)].

Then

S,z S,z S,z
Pes= E B, Pign= E Plo., Pina= E P2
€ (5,2)<D left » = 118 (8,2)<D right?’ n (5,2)<D find

Define a quantum algorithm B; (.5, z) executed on quantum registers @, D, and L as follows:

1. Initialize the register L with state |09*).

2. B1(S, z) implements the compressed standard oracle with database register D, the initial state
on D, is |D1).

3. Bi(S, z) performs all operations that A-°Reads () does. Here B;(S, z) can implement queries to
H and oRead; by unitary operation CStO and Read, respectively.

4. Measure register L to get outcome 0%, then measure register Q to get the output of AH-oReads (2)
and output it.

Obviously register L has no effect on the execution of AM°Reads () a5 it is always [09), hence we get

Pr[l Bi(S, 2) : (S, 2)] = Pr[l « AToRdsr ()2 (S 2)] = PS;7.

left
Next we define a new quantum algorithm B (S, z) executed on registers @, D, and L as follows:
1. Initialize the register L with state |09').

2. Bs(S, z) implements the compressed standard oracle with database register D, the initial state
on D, is |[D1).

3. By(S, 2) performs all operations that A:°Re2ds () does. Here By (S, z) can implement queries to
H and oRead; by operation CStO and Ready, respectively.

4. For all 1 < i < qq, just after Af°Reads (2) performs its i-th oracle query to H, Bo(S, z) applies

the unitary operation Ug to registers D, and L. Here Ug is defined as??

D) |1, - lgy) (D¢S)
D) |ly,... . Li@1,... l,) (DES).

23Note that the unitary operation Ug should be related to the query number i, however, we omit it for simplify.

US |D> |ll,12,...,lq1> = {

46

5. Measure register L to get outcome I, then measure register @ to get the output of A-°oReads ()
and output it.

It is straightforward to check that
Prl < By(S, 2) : (S, 2)] = Pr[l « AfT\SoReads (). (5 2)] = P52

right?
Pr[l # 07 occurs in By(S, 2) : (S, 2)] = Pr[Find occurs in AH\5oReads (). (G)] = P{i’é.

Since A is a unitary quantum oracle algorithm, the final state of B1(S,2) (resp. Ba(S, z)) before
measure can be written as

q1+q2 q1
|T;)|0%) = H (U3 o ReadY o U} o CStO™)|¢))| D)[0%) = H (Ui o CStO)|y)|DL)[09)
i=1 i=1
ate: ' oo
(resp. |Wq) 1= H (U3 oRead} o Ui 0 Ug' o CStO™)[yp)| D) [0%) = H (Ui 0 Ug o CStO)[eh)| D*)[09)).
i=1 i=1

(67)
Here x;,y; € {0,1} and @, +y; = 1 (1 < i < q1 + q2), [¥)|D1)|0%) is the initial state of algorithm
By (S, z) and By(S, z) on registers QD L. UL, ...,.UP % and Uj, ..., U+ are the unitary operation
act on register () between oracle queries, Us,...,UJ" are the unitary operation that alternatingly
applies a unitary operation on registers () and applies Read;.
By the definition of unitary operation Ug, the state |¥5) can be rewritten as

q1
W)= > JIWiex o CSON)DHh, - L),
l1,0.,lqy €{0,1}91 i=1
where x1 :=Jg, xo0 :=I—Jg. For a fixed ¢; bits string l1,...,l,,, define state

q1

)iy, = [[(U3 0 X1, © CStO)[3h)| DF),
=1

we then have

|\112> = Z ‘q)>l17~--,lq1|llv--~7lq1>

I1,lg €{0,1}01

and
I1,...,lq, A0 @ 2
z 2 7
Poa= > @ I =1 l[®oa|® =1~ | [[(U4 0 x0 0 CStO)[v0)| D) (68)
l1,..,lq €{0,1}01 i=1
Define values aq,...,aq, and bq,..., by, as:
. 2
J .
aj = || [[(U3 0 x0 0 CSO)&) D) (G =1,),
=1
2 ; = ’
by == ||U3 o x1 0 CStO[Y)|DH)||”, b; == ||U] 0 x10CStO 0 H(Ug o x0 0 CStO)[L)| DI (1=2,...,q1).
=1
For k =2,...,q1, we then have
koo 2 k=1 2
1—ap =1— |[J(U§0x00CStO)|¢)|DH)|| =1~ ||Uf 0 x00CStO o [[(U5 0 x0 0 CStO)[v))|D*)
=1 i=1
: B=1 2
W1 Uk oTeCStOo [T (U4 o0 xo 0 CStO)[4)[DY)
=1
k=1 2
+ ||U§ o x1 0CStO o [(U4 © xo © CStO)[4)| DF)
1=1
=1—ap_1+0b

47

Here (a) uses the fact that [|[¢1) + [¢2)]|> = [[|¢1)]|* + [[[¢2)[|* if |¢1) and |¢2) are orthogonal.
that 1 — a; = by by the definition of a; and by, then by Eq. (68), it is easily to obtain that

q1
S,z o]
Pli=1-aq = g b;.
Jj=1

Define states |A1),...,|A4q,) and |B1),...,|Bg,) as:

g1 J

|A;) = H (Ui oCStO) o | [(Us 0 x0 0 CSLO) YD) (j=1,...,q1 — 1),
i=j+1 i=1
q1)
|40} = [[(U5 0 x0 0 CStO)[4))|D*) = |)oar,
i=1
g1)
|B1) == [[(U4 0 CStO) o U3 0 x1 0 CStO|v))|D*),
i=2
q1 Jj—1

B;) ==][(U30CSt0) o U] ox10CStOo J[(UioxooCStO)¢)| D) (j=2,...

i=j+1 i=1
q1—1

Bg,) = U o x10CSt0o [(Uj 0 xo 0 CStO)[¢)| D).
=1

For k=1,...,¢1 — 2, we then have

q1 k

[Ar) =] (U30CStO) o [](U5 0 xo o CStO)[3h)[D)
i=k+1 =1
q1 k
= J] (io0Cst0)o U+t o CSt0 o [(Ui 0 xo 0 CStO)[4)| D)
i=k+2 =1
q1 k

i=k+2 i=1
q1 k

[[U40CSt0) o U™ 0 x0 0 CStO o [[(U 0 x0 © CStO)|v)| D)

yd1 — 1)7

+ JI (U30CSt0) o U 0 x1 0 CStO o [(U4 0 xo0 © CStO))| D)

i=k+2 i=1
|Agy1) + [Brs1)-

Note that |A4,—1) = |Aq,) + | By,) by the definition of |A,, _1), |44,) and |Bg,), |[¥1) =

Eq. (67) and the definition of |A;) and |By), then it is easily to obtain that

q1 q1
=Y IBj) +14g,) =D |B;) + [®)ou
j=1 j=1

Thus

q1

N2)[0%) — [Wo)|* = || > [B;)|0%) + |@)om 07) — > [Ptrtgy [

j=1 liyeelg, €{0,1}01

U yeenslgy #091

q1
= Z|Bj>|0ql>_ Z ‘(I)>l17 |llv" Q1>
j=1

I1,lg €{0,1} 01

2
q1

q1
(d) Sz() S,z
= ZlBj> + Phina <4 ZHlB >|| + Ping
: =

q1
S, S,
=q Y b+ Poi= (o +1)P5y.
j=1

48

Note

|A1) + |B1) by

Here (b) uses the fact that |||¢1) + [@2)]|% = |||01)]|% + |l|¢2)|? if |¢1) and |p2) are orthogonal, (c) uses
the Corollary 6.

By [AHU19] Lemma 3 and 4,
= |Pr[l < B1(S, 2) : (S, 2)] — Pr[l < Ba(S, 2) : (S, 2)]]

S,z S,z
‘]Dleft - Pright

< w0y — [Wo)|| < 4/ (a1 + 1) P

and

/ pS,z / S,z
’ f)left - Pright

- ‘\/Pr[l “ B1(S,2) : (S, 2)] — /Pl « Ba(S.2) : (S,2)]

< 12)107) = [T < /(@ +)P
Note that we only consider a fixed (S, z) in above proof, for random distribution D of (5, z), the
final state of algorithm By (resp. Bz) before measure is a mixed state

[EP)0T N W0] (resp. p2 = _E [05%)(T57]).

P (S,2)«D

- (S,2)«<D

Here |¥7?)|0%) is the state |¥;)|0%) from Eq. (67) for specific values of S, z, and analogously for
|¥5#). Then by monotonicity and joint concavity of fidelity (exactly as in [AHU19] Lemma 6 and 9),

we have
| Piett — Pright| < B(p1,p2) < /(a1 + 1) Pand

‘ V Plcft -V Pright

Here B(p1, p2) is the Bures distance [NC16] between the mixed state p; and ps.
For the value Pjnq, we compute

and

< B(p1,p2) < vV (q1 + 1)Ppna

Pina= E PJ7= EDij

(S,2)«D (S,z)« =
@ j-1 2
. i 2
= (S’Zn;:w ; Ul ox10CSt0o E(U3 o xo © CStO)[¥)| D) || +||U3 o x1 0 CStO)| DL
@ -1 2 ,
= E X1 0 CStO o [[(Ui o x0 0 CStO)[¢)| DH)|| + [|x1 © CStO[y)| DY)
(S,2)«D — =1
“ @ -1 4 2)
= E X10CSt0 o [(xo 0 Uj 0 CStO)[¢)[DH)|| + [[x1 © CStO o xo|1)| D) ||
(S,2)<D = bl

q1

< E [3xi0Cstoo ol +[x10CSt00 xol? | = a1 - I 0 CStO o xo?

E
(S,2)«D (S,2)«D

Jj=2

(d) 2
=q- E [[Js0oCSt0o(I-Js)|> = qi- E ||[Js,CStO]|>.
0 (B WsoCsi00d-Jo) @ E s 50
Here (c) uses the fact that D ¢ S and Uj,...,U{" are naturally commute with yo?*. (d) uses the
fact that

Jso(I—=1Js)l¢) = (I —Js)oJs[¢) =0
for any state |¢). O

24Note that U31, e Ugl are the unitary operation that alternatingly applies a unitary operation on registers @ and
applies database read operation Ready, which are both commute with xo.

49

E The Quantum Circuit Implementation of Uiyt and Ucomp

By the Definition 4, otaj(sk, -), otas(pk,-), otaz(pk,-) and otas(pk,-) are deterministic algorithm that
efficiently computed. Thus, the unitary operation Usta,, Ustay; Uotay and Ucta, defined as follows can
be efficiently implemented with quantum circuit by the basic theory of quantum computation.

Ut,ulosyn) == |, y1 @ fora(@)), Uota, |, 1) := |, y1 @ otay (sk, a)),
Uotas Y1, Y2, ¥3) = |y1,Y2, y3 @ otaz(pk, y1,%2)),

Ustas |, Y2, y3) 1= |y1, Y2, y3 @ otaz(pk, a, y2)),

Uotay o, 1,92, Y3) := |, y1, Y2, ys @ otas(pk, a, y1,y2))-

Then by using unitary operation Uy, and Uga, above, Ut defined in Eq. (30) with initial state
|a)|0™) on registers XotaY can be implemented by the following procedure:

o Initialize register Ry, Ro, R3 and R4 to 0, where Ry is a 1 qubit register.

e Apply Uga, to registers XotaR1, where R; is the output register. Then apply the following two
conditional operations with controlling register R:

— If the value on register Ry is L, apply U~ to registers Y, where U~|0™) = | L) and UL| L) =
077).
— If the value on register Ry is not L:

* Query random oracle O; by registers Ry1Ry, where Ry is the output register.

* Apply U, to registers R1R2R3, where Rs is the output register.

* Apply Uj to registers XotaR3R4, where Uy |a, o/, b) = |a, o/, bD1) if @ = &/, Uy|a, o/, b) =
|, o, b) if @ # . Then apply the following two conditional operations with controlling
register Ry:

If the value on register Ry is 1, apply CNOT to registers R;Y.

If the value on register Ry is 0, apply U~ to registers Y, where UL|0™) = | L) and

UL|L) =]0m).

Apply Uy to registers Xo:aR3R4 again, where Ry is the output register.

*

*

Apply Uota, to registers RiR2R3 again, where Rj3 is the output register.

*

Query random oracle O by registers RiRo again, where R is the output register.

e Apply Usa, to registers XotaR1 again, where Ry is the output register. Now the registers Ry to
R4 are guaranteed to contain 0, so they can be discarded.

By using unitary operation Ugta, and Ugta, above, Ucomp defined in Eq. (31) with initial state |a)|y)|53)
on registers Xota Yota Y can be implemented by the following procedure:

o Initialize register R5 and Rg to 0.
e Apply the following two conditional operations with controlling register Y:

— If the value on register Y is L, apply Us . to registers XotaYota, where Yo, is the output

register.

ota

— If the value on register Y is not L:
* Apply Uota, to registers Xq1a YR5, where Ry is the output register.
* Query random oracle Oy by registers R;Rg, where Rg is the output register.
* Apply Uota, to registers XotaYotaYRs, where Yoa is the output register.
* Query random oracle Oy by registers R;Rg again, where Rg is the output register.
* Apply Uota, to registers Xqoa YR5 again, where Ry is the output register.

o Now the register R5 and Rg is guaranteed to contain 0, so it can be discarded.

We note that the quantum circuit implementation of Uiest and Ucomp need to query random oracle
01 and random oracle Oy two times, respectively. Moreover, the quantum circuit implementation of
Ucomp does not need the secret key sk.

50

F Missing Proofs of Section 4

Here we give the detailed proof of some lemmas introduced in Section 4.

F.1 Proof of Lemma 4

Proof. In this proof we first consider a fixed (pk,sk) sampled from KGen. For the adversary B in game
G{ and game G3, the random oracles Oy and Oy, secret oracle Og, in game G and game G both are
quantum accessed. In addition, the process that the challenger C get OHG.A and then return OHG.B
can also be viewed as that the adversary queries a "classical challenge oracle” with input OHG.A and
then get an output OHG.B. Indeed, the "classical challenge oracle” can be easily simulated on quantum
superposition since this oracle is implemented by Og and O; that are quantum simulated. Hence as
explained in Appendix A, the game G{ and game G3 can be rewritten as a unitary quantum oracle
algorithm and its execution before finally binary measurement can be described as:

GE:)07y = Uy, - USS - Ugpoot - UNS - Uomg.s -+ Us - Ul - Uy - Ul [1]07)y,
G+)07y i= Uy, - USRS - Ugp ot - URS - Uong.a - Us - Uy - Uy - U2 []07)y,

Here [161)]0™)y and [1)2)|0"™)y are final states of game G& and game G, respectively, [1))]0™)y is the
initial state of these two games. Register Y is the internal register used by Ul,,, Ucl,{:, U2, and Ui{:,
it always in state \Oml> before and after once application of these unitary operations. Uy,..., U, are
the unitary operations applied between the queries to secret oracle Oga. Uopg.g is the unitary that
simulates the "classical challenge oracle”, and the UL (resp, UZ,,) is replaced to Ugs (resp, UZL) after
the application of Upngs-

For any state |$)|0™)y on the whole quantum register of game G$ and game G before the

o 1, 1
application of UL, Ugs, U2 and Uy, as

! ’
[)|0™)y = > 2, D,a,y|2 Dy, Y) 7D, XeYe 0™)Y
2€{0,1}*,D€Dg, ,z€X,y€{0,1}+1

where Xota/Yota is the input/output register of secret oracle Oga, D, is the database register and the
other registers are abbreviated into register Z, by the analysis of F.1.1, we have

z,y’
‘ota.subpk ‘

max { | (U, = UZa)[9)10™ v I, (U = UZ) @) 0™ Il } <8+ max L
acXx,Be{0,1}m 2

By the hybrid argument, the final state |11)|0™)y and [¢2)]|0™)y satisfy

z,y’
‘ota.subpk

I 0™)y = [2) 07)y]| < 8gora - | max
aeX,fe{0,1}™

Then by [AHU19] Lemma 3 and 4,

z,y’
}ota.subpk

| Pr[l + G3: (pk,sk)] — Pr[l < G3 : (pk,sk)]| < 8¢ota - max ;
acx, pef{0,1}m A

Averaging over (pk,sk) <— KGen(1*) and using the Jensen’s inequality, we finally obtain

’ota.sub;’f’/
[Prlt = GY) = Prl = Gall < 8o\ (o Beents) e B 27
(2 8ota - vota.max.
Here (a) uses Eq. (15). O

51

F.1.1 Bound on (U, — Ug)[6)|0™)v[| and ||(Ugis — Ugia)|#)[0™)|

ota
. . ’ . o
For the sake of convenience, we abbreviate |2, D, ¥, ¥)zD, X,.Ye.|0™)y into |z, D, z,y,0™) in the fol-

lowing. Now we separate |¢)|0™)y into four mutual orthogonal parts [¢1) to |¢4) that |¢)]0™)y =
2?21 |p:), where |¢1) to |p4) are the following states:

|¢1> = Z asz7m7y|Z7D7x’y’Om/>7

2€{0,1}*,DeDy,
xeX,yE{O,l}Hl,otal(sk,z):L

’
m
|¢2> = § aZ,D,$7y|ZaDaxay7O >7
z€{0,1}*,DEDg, z€X,ye{0,1}' 1
y':=otas (sk,z)#L,D(y")=L

’
|¢3> = Z o‘z,D,w,y,r|ZvDU(y/af’)vxvyaom >a
re{0,1}",r#0™
2€{0,1}*,DED,, ,z€X,ye{0,1}' T
y':=otaj (sk,z)#L,D(y)=L,n(D)<q1

[64) = > =Dyl DU (Y1), 2,9,0™).
="
ze{O,l}*,DeDqu ,w€X,ye{0,1}1 !
y':=ota1 (sk,z)#L,D(y")=L,n(D)<q
Here we default the database D in each basis state of |¢2) also satisfies n(D) < g1, which is unprob-
lematic since the query times of random oracle O; in game G{ and Gg both is at most ¢; times.

Denote A := UL, —UZ,, by the definition of U}, and U2, and the quantum circuit implementation
of Utest and Ucomp given in Appendix E, we compute?®:
A|¢)1> = 07
D ’o t k / 7 m’
A|¢2> — Z Az D,z,y ~SthecompI |27 U(yaz;)levy@o a4(p ,/l',y 700(y)),O > ,
’ 277,/ 7|Z7Du(y’z)7x7y®l30m>
z’Gota.sub:k’y
2€{0,1}*,D€D,, ,x€X,ye{0,1}} 1!
y':=ota; (sk,z)#L,D(y")=L
|Zv Dv T,y D Ota3(pka xz, y/a OO(y/))’ Om/>

—1)"a, p —lz, DU (y,0n), 2,y @ otas(pk, 2,3/, Oo(y")), 0™

Algs) = 3 (=17 "Dy | (y',0) Y (pk,z, 9", Oo(y")), 0™)
AL —|z,D,z,y ® L,0™)

TE{O,I}"7r7é0">z'€ota.sub;‘y,
2€{0,1}*,DEDy, ,x€X,ye{0,1}' 1!
y’:=otai (sk,z)#L,D(y")=L,n(D)<q1

+|z, DU (y',07), 2,y & L,0™)

(69)
Here y" := otaz(pk, z,y").

As for the A|¢y,), we find that the state with the form of [z, DU (y/,0"), z,, Om/> is illegal [Zhal9]

and it can not appear just before the application of Ul and U},{Z in game G$?°. Hence we add a

complement of the operation of Ul as

Ulal2, DU (', 0n), 2,y,0™) == |2, DU (y/,07), 2,y & L,0™),

which is easily to implement since the state |z, D U (y/,0"), z, y,Om'> must be orthogonal with |¢1),
|p2) and |¢3). With this complement, we have

A|¢ > = Z Xz, D,x,y,r |Z,DU(y/,Z/)7£L',y€9J_,Om/>
! ’ 2" f\Z,DU(y’,z’),x,y@ota4(pk,x,y’,OO(y”)),Om,> .
r:O",z’Gota.sub:k’y
2€{0,1}*,DeD,, ,zeX ye{0,1}'F
y/i=otay (sk,2) # L, D(y') = L,n(D)<a:

(70)

25Gince the quantum circuit implementation of Utest and Ucomp given in Appendix E is not very simple, the detailed
computational process of A|p1) to A|ps) are complicated and we omit it. Nevertheless, we stress that, following the
quantum circuit implementation of Utest and Ucomp, one can get A|p1) to Algpsa) shown in Eq. (69) and Eq. (70) by
directly compute.

26However, the state with the form of |z, D U (y,0"), z, y, Om/> can appear in game Gg since the extraction-interface
eCO.Ey, is applied.

52

Here 3" := otas(pk, z,y').
Then we can compute

[N

Vv

_|ZaD U (y/7z/)a'ray &) J_7Om,>

z’Eota.sub:k’y,
2€{0,1}*,DeD,, ,z€X,ye{0,1}'
y’:=otay (sk,z)#L,D(y")=L

2
’o / ’ /
(i) 2 : O‘Z,D,I,y |ZaDU(y 7Z)a$,y@0ta3(Pk7$7y 700(y))5Om >
—_ - — !
’ AL _|Z’DU(yl7z/)7x7y@J—70m>
z'EotaASub;’y
2€{0,1}*,DEDy, ,x€X,ye{0,1}' 1!
y':=ota; (sk,z)#L,D(y’)=L
2
(2) 2 azaDax7y D Il k / O / m’
= «° E i |Z7 U(yvz)vxay@0t33(p y L, Y, O(y)),0 >)
o V2
z’Gota.sub:k’y
2€{0,1}",DEDy, ,zeX,ye{0,1}'
y’:=otay (sk,z)#L,D(y’)=L
2
9 ®z,D,z,y D I m’
+2- E WLZ’ U, 2),z,yeL,0m)
z/Eota.sub:Qy/
z€{0,1}*,DEDy, ,xz€X,ye{0,1}' 1!
y’:=ota; (sk,x)#L,D(y")=1
2
o 4 E Oészvm»y
’ 2”’
z'Eota‘sub;’y
2€{0,1}*,DEDy, ,x€X,ye{0,1}' 1!
y’:=otai (sk,z)#L,D(y')=L
’
ota.sub®?
pk 2
<4- max - E 2,00,y
ceX ' e{0,1}m 2 .
z€{0,1}*,DED,, ,z€X,ye{0,1}'+
y’:=ota; (sk,x)#L,D(y")=L
’
ota.sub®?
pk 2
=4 max o —— - l[¢2)]".
zeX,y'€{0,1}m 2
(71)

Here (a) uses the fact that StdDecomp,, is a unitary operation, (b) uses Corollary 6. Similar with the
computation of ||Algs)||?, we also have

!
‘ota.su bY ’

lAlog)? <4 max D m g (72)

z€X,y €{0,1}™'

53

z xr 7D /7 /7) Y) /7 !) m
_ 3 0Dy _Sthecomng(2, DUy, "), 2,y & otay(pk, 7,3/, 0o (y)). 0

y

For the A|¢s), we can compute

1A]3)]1?

|z, D, x,y @ otas(pk, , 7', Oo(y/)), 0™)
_ Z (71)5.7«&271}@7%7’ —|z,DU (y’,OA"),x,g;69otag(pk7x,y’,Oo(y’)),Om/)
i —lz,D,z,y ® L,0™)
+|z, DU (y,0n), z,y & L,0™)

rE{O,l}",r;éO",Z/Eota.sub:k’y/
2€{0,1}",DED,, ,weX,ye{0,1}} "
y'i=ota1 (sk,z)#L,D(y")=L,n(D)<q:

2
(¢) —1)7r ’
<4 > s ;IZ’D’x’y’le,D,%y69otas(pk,x,y’,Oo(y’))vom)
TG{O,l}“’,r#O",z’Eota.subsk’yl
2€{0,1}*,DeDy, ,weX,ye{0,1}' T}
y’:=ota; (sk,z)#L,D(y")=1L,n(D)<q1
(_1)z/'raz,D,x’y,r I ' Ny am’
+4- Z on’ ‘ZvDU(y70n)»xvy€90ta3(pk7m7y700(y))70 >

re{0,1}",r£0" ,z'€ota.sub:k’y/
2€{0,1}*,DEDy, ,x€X,ye{0,1}' 1!
y':=otai (sk,z)#L,D(y")=L,n(D)<q1

+4.) (—1)* "oz Dy

o %D, z,y® L,0™)

r€{0,1}nm;éO",z'Gota‘sub;”k'y/
2€{0,1}",D€D,, ,z€X,ye{0,1}
y’i=otay (sk,z)#L,D(y")=L,n(D)<q1

2
(=1 Dy P m’
+4- g S 2|z, DU (y',0"),x,y & L,0™)
z,y’
r€~{0,1}"‘,r;:£0",z’Eota.subpl< Y
2€{0,1}*,D€D,, ,z€X,ye{0,1}} !
y’:=otay (sk,z)#L,D(y")=L,n(D)<q1
2
’
. 5 > (17 "z s
2€{0,1}",DEDy; z€X,ye{0,1}'" |re{0,1}n r£0m 2’ cota.sub’y ¥’
y’:=otai (sk,z)#L,D(y")=L,n(D)<q1
’ 2
ota.sub®? ‘.
216 3) ‘ P 3 (=1* "z peyr
> on’ on’
2€{0,1}*,DED,, ,xz€X,ye{0,1}' 1! Z’EOta.sub:’k‘y' re{0,1}7,r#£0"

y’:=otai (sk,z)#L,D(y")=L,n(D)<q1

’
@,y
‘ota.subpk ‘

. [(71)2,AT0427D,1,3/,7"
=16 xeX,;Pea{)({),l}m/ 27’ Z Z Z NoTd

2€{0,1}*,DED,, ,xz€X,ye{0,1}' 1! Z/eota_sub:kvy’ re{0,1}m,r#0"
y'i=ota (sk,z)#L,D(y’)=1L,n(D)<q1

(73)
Here (c) uses Corollary 6 again, (d) uses the Cauchy-Schwarz inequality.

54

In addition, we have

!
lléa)l|* = > azD,zyrlz DU (Y, 7),2,y,0m)
re{0,1}",r#£0"
z€{0,1}*,DEDg, z€X,ye{0,1}' 1
y':=otay (sk,z)#L,D(y")=1,n(D)<q1

2
-1 ZI.TO‘Z,D,L ,T m’
- > I
re{0,1}"™,r#£0™ z’e{0,1}™
z€{0,1}*,DED,, x€X ye{0,1}' 1
y':=otay (sk,x)#L,D(y")=L,n(D)<q
2
-)3 S|y e
z€{0,1}*,DED,, weX ye{0,1}' 1 2'€{0,1}" |re{0,1}™,r0" 2n
y':=otay (sk,x)#L,D(y")=L,n(D)<q
2
> > > |y O
B 1+1 n n 2”’
ze{o 1}*,D€Dy, ,2€X,ye{0,1}' ! rcota. sub?; y' |re{0,1}m,r#0
y’:=otay (sk,z)#L,D(y")=1,n(D)<q1
Combining above inequality with Eq. (73), we get
, ‘ota subpy v ,
[Al¢3)]" <16+ max 0 - [|s) | (74)
zeX Yy’ €{0,1}m’ AL
Combining Eq. (71), (72) and (74), we obtain
[(Ugea = Uzea)[9)10™)y |
() ‘ota subp,” ‘)ota subx
<2 max ,7(”\@252)” + o)) + max 7|H¢3>||
zeX y e{0,1}m n zeX,y' e{0,1}m (75)
) ‘ota sub” ‘ ‘ota.subzf/‘
<38 max 7|||¢>\0m> =38 max
w€X,y e{0,1}m sexyefopn’ 2"

Here (e) uses the fact that [¢)|0™)y = 32 |¢:), (f) uses the fact that |¢)[0™)y = S, |¢;) and
|d1) to |da) are mutual orthogonal.

As for |[(UL: — UZH)[#)[0™)y ||, note that ULY := UL o Phge + UL, o (I — Ppige) and UZF :=
U, o Phige + U2, o (I — Phige), thus

1(Ugiz = UZDION0™ Wyl = (UL — UZ,) o (T = Prige)[#)|0™)y ||
(9) ‘ota.sub;y, ‘ ,
<38 max (I — Phide)|#)[0™)v)||
TE€X y'€{0,1}m 2

z,y’
‘ota.subpk

<8 max —
z€X,y' €{0,1}™ 2

Here (g) uses the fact that

‘ota su bx

1(Usta — Usea) [9)[0™)v || < 8 max ‘III¢>0’” Ml
weX,y’e{O,l}m

which is implied by the (e) and (f) of Eq. (75).

55

F.2 Proof of Lemma 5

Proof. Based on game G3 and game G3, we introduce two new games as follows:

Game G3,: This game is identical with game G3 except that the compressed semi-classical oracle
(’)gSC is queried just after each invoking of the RO-interface eCO.RO.

Game Gg,: This game is identical with game Gg except that the compressed semi-classical oracle
Ogso is queried just after each invoking of the RO-interface eCO.RO.

In game Gg3, the random oracle O is simulated by invoking the RO-interface eCO.RO directly,
and the simulation of secret oracle Ou, uses the extraction-interface eCO.Ef, . Hence, we can rewrite
game G3 as a quantum oracle algorithm BO1eCO-Es with input (pk,sk) < KGen that makes at most
¢1 times queries to random oracle O;. Then

Pr[l + G| = Pr[l < BO*OEn (pk sk) : (S, pk,sk) « D,
Pr[l « G3,] = Pr[l « BO\9COEn (pk sk) : (S, pk,sk) « D],
Pr[l + GJ] = Pr[l < BO*OEr (pk sk) : (S, pk,sk) « D,

[)

Pr[l « G&,] = Pr[l « BO1\9COEn (pk sk) : (S, pk,sk) < D).

Here D is a joint distribution that (pk,sk) <— KGen, set S C D,, defined in Eq. (34) is determined by
(pk, sk) since otay(sk, -) and otas(pk,) are deterministic algorithms.

As explained in Section 2.5, the extraction-interface eCO.E; for any function f is processed by a
database read operation Ext;. Thus, by using Theorem 3, we have

Pill - G- Pl GRII< fala+ 1) B [l3s CSO)I, (76)
(S,pk,sk)«D
and
IPr[l « GY] — Pr[l « G4 < \/ql(ql +1). E |[Js,CStO]|> (77)
(S,pk,sk)«D

Note that eCO.Ey, and eCO.Ey, proceed identically for any input state |a, o, D) if D ¢ S, hence
algorithm BO1\$¢COEs (pk, sk) and BO1\$¢COEn (pk,sk) proceed identically if the compressed semi-
classical oracle Ogsc never returns 1. This implies that for

Pr[Find occurs in BO\5¢COEr (pk sk) : (S, pk,sk) « D]
= Pr[Find occurs in BO1\5:eCOEy, (pk,sk) : (S, pk,sk) « D],

| Pr[l + G,] — Pr[l « GZ]| < Pr[Find occurs in B9\5OEr2 (pk sk) : (S, pk, sk) « D]

(a)) (78)
<q- B |[Js,CStO]|
(S,pk,sk)«D
Here (a) uses Theorem 3. Then by combining Eq. (76), (77) and (78), we obtain
Pr[l + Gg] - Pr[l + GgJ| <). E +q- E 2.
Pt G- < GRS fal) B s GO e B 9s.CO))
(79)

Define function g : {0,1}™ x {0,1}" — {0,1} as

1 if otag(pk, z,y) = z A otai(sk, z) # «
g(x,y) — 2(.) 1() 7&
0 otherwise.

For function g, the corresponding relation R} and parameter I’ ry defined in Eq. (11) is

RY = {(z,y) € {0,1}™ x {0,1}" : g(x,y) = 1},

56

/ (b)
I'rs:= max [|{y € {0,1}" :otaz(pk,z,y) = z Aotai(sk,z) #z}| < max
! ze{0,1}m’ ze{0,1}m’

Z,T
U ota.sub;

zE€Set.x
(80)
Here (b) is hold since one can easily check that if y € {y € {0,1}"™ : otaz(pk,z,y) = zAotay(sk, z) # x}

then y must belong to gJ ota.suby;” by the definition of Set.z and ota.sub;” defined in Definition 4.
zEedet.x

For the relation RY, define following projectors act on database register D, :

I > ID)(D| (x € {0,1}™), St=1- > 3.
D s.t. (x,D(z))ER? ze{0,1}m'
a:/<a:,(z',D(x'))¢R‘f

By the definition of set S C Dy, defined in (34), it is obvious that Jg = 3, ¢ 1ym 2%, and then
¥+ =1—Jg. Hence we have

¢ (d)
195, CStO]|| < [T — J5, CStO]| = || [£*, CStO]|| < 8- | /Ty /27, (81)

Here (c) uses the basic property of the commutator, (d) uses the Lemma 2.
Combining Eq. (79), (80) and (81), we finally obtain

1
— 1mnax
(S,pk,sk)«D o ze{0,1}m’

1
E — max
(S,pk,sk)«D 2™ zefo,1}m’

U ota.sub’”
zESet.x P

|PI‘[1 — Gg] 7Pr[1 — Gg” <8- \/ql(ql + 1) .

+ 64Q1 .

U ota.sub’”
z€Set.x p

© 8- \/ql(ql + 1) - ota.union 4 64¢; - ota.union

Here (e) uses Eq. (15). O

G Cryptographic Primitives

Definition 6 (Public key encryption). A public key encryption (PKE) scheme consist of a finite
message space M and three polynomial algorithm (Gen, Enc, Dec) according to security parameter \.

1. Gen: a probabilistic algorithm with input 1* and output a public/secret key pair (pk, sk).

2. Enc: a probabilistic algorithm with input a message m € M and output a ciphertext ¢ € C(C is
the ciphertext space). it choose r < R(R is the randomness space), computes ¢ := Encpr(m, 1)
and output ciphertext c. If Enc do not use randomness to compute ¢, Enc is a deterministic
algorithm and output ¢ := Encyp(m).

3. Dec: a deterministic algorithm with input a ciphertext ¢ € C and secret key sk, computes
m := Decg(c) and output m or a rejection symbol L ¢ M.

Definition 7 (Correctness [HHK17]). A PKE scheme PKE = (Gen, Enc, Dec) is d-correct if

E | max Pr[Dec(sk,c¢) # m : ¢ + Enc(pk,m)]| <4,

meM

where the expectation is taken over (pk, sk) < Gen. We call a pair (m, ¢) is "error” pair if Dec(sk, Enc(pk, m)) #
m. Denote

d(pk, sk) = max,,cam Pr[Dec(sk, ¢) # m : ¢ + Enc(pk,m)],
then E[0(pk, sk)] < 4.

57

Definition 8 (weakly y-spread [DFMS22]). A PKE scheme PKE = (Gen, Enc, Dec) is weakly y-spread
if

—1 E Prlc=E >
Og(sk,pk)HGen |:m€H/%/Eli,}§€C I‘[C nCpk(m)]:| =

where the probability is over the randomness of the encryption.

Definition 9 (Security notions for PKE). Let PKE = (Gen, Enc, Dec) be a PKE scheme. For any ad-
versary A and GOAL-ATK € {IND-qCCA, WPR-qCCA, ANO-qCCA,SDS-IND}, we define its GOAL-ATK
advantage against PKE as follows:

AdvCOALATK (13) .

1
OAL-
A,(8),PKE (s pke (1)

PI'[]. — GameA7(8)7PKE — 5

?

where Gamej(’),ﬁ\}'{éATK(lk) is a game described in Fig. 11.

For any adversary A, we define its OW-CPA advantage against PKE as follows:
AV (11) := Pr(l « GameQ'Lie™ (12)],

where Gamea\,’\é]gEPA(lA) is a game described in Fig. 11. For

GOAL-ATK € {IND-qCCA, WPR-qCCA, ANO-qCCA, SDS-IND, OW-CPA},
we say that PKE is GOAL-ATK-secure if Advi?&%:é&é(l)‘) is negligible for any QPT adversary A.

Definition 10 (Key-encapsulation mechanism). A key-encapsulation mechanism (KEM) consists of
three algorithms Gen, Enca and Deca. The key generation algorithm Gen outputs a key pair (pk, sk).
The encapsulation algorithm Enca, on input pk, outputs a tuple (K,c) where ¢ is said to be an
encapsulation of the key K which is contained in key space K. The deterministic decapsulation
algorithm Deca, on input sk and an encapsulation c, outputs either a key K := Deca(sk,c) € K or a
special symbol L ¢ K to indicate that c is not a valid encapsulation.

Definition 11 (Security notions for KEM). Let KEM = (Gen, Enca, Deca) be a KEM scheme. For
any adversary A and GOAL-ATK € {IND-qCCA,SPR-qCCA,ANO-qCCA}, we define its GOAL-ATK
advantage against KEM as follows:

1
AVSOATAE (1) = [Pr{1 GameSOATRE (1)) — 1.
where GameSogm | (1*) is a game described in Fig. 11. For GOAL-ATK € {IND-qgCCA, SPR-qCCA, ANO-qCCA},
we say that KEM is GOAL-ATK-secure if Advj?&L):ﬁEﬁ(l)‘) is negligible for any QPT adversary A.

Definition 12 (Data-encapsulation mechanism). A data-encapsulation mechanism (DEM) consist of
a finite message space M and two polynomial algorithm E, D according to security parameter .

1. E: a encapsulation algorithm with input a message m € M and key k + IC(K is the key space),
computes ¢ := E(k,m) and output ciphertezt c.

2. D: a decapsulation algorithm with input a ciphertext ¢ and key k, computes m := D(k,c) and
output m or a rejection symbol L ¢ M.

Definition 13 (OT secure DEM). A DEM scheme DEM = (E, D) is OT secure if for any quantum
polynomial adversary A, the probability of A wins in game Game%TDEM(lk) is 1/2 + negl, where negl
1s negligible.

GameS\,TDEM(l’\):

1. Query: The adversary A choose two message mg, m1 of same length on it’s input 1, then send

mg, my to challenger. The challenger choose b & {0,1} and respond with ¢ = E(k, my)

2. Guess: A produce a guess V', if b/ = b, A wins.

58

Game Gamea\f\,é‘,SEA(l’\) oDec(c) oDec,(c)
1, (pk, sk) < Gen(1*) 1, Return Dec(sk, c) 1, If ¢ = a, return L
2, m* +— M Else return Dec(sk,)
c* = Enc(pk, m™*)
3, m' < A(pk,c*)
4, Return boole[m* = m/]
Game Gamel 24e (1) Game Gamel{d™"(1") oDec'(b, -
1, (pk, sk) < Gen(1%) 1, (pko, sko) < Gen(1*) 1, Return Dec(sky, ¢)
2, (m;,ml) +— A°Pee(pk, c*) (pk1, sk1) <—, Gen(1%) oDec’. (b, -)
3, b+ {0,1} 2, m* = AP (pho, phy) 1, If ¢ = a, return L
c* := Enc(pk, ms) 3, b & {01} Else return Dec(sky, ¢)
4, b« A°Pecer (pk, c¥) c* := Enc(pky, m*)
5, Return boole[b = V'] 4,0+ A°Pecc () (pko, pky, ¢*)
5, Return boole[b = V']
Game Gameﬁ/?;‘,(cé AN Game Gameﬂ?;';',\',?E(l’\) Game Game'ﬁ"?{g,\cﬂu(l’\)
1, (pk, sk) < Gen(1*) 1, (pk, sk) < Gen(1*) 1, (pk, sk) < Gen(1%)
2, m* « A°Pe(pk) 2, m* + M, b< {0,1} 2,b < {0,1}
3,08 {0,1} ¢y := Enc(pk, m*) (¢*, K§) := Enca(pk)
¢ := Enc(pk, m") ¢t S(1Y) Ki &K
¢t S(1M, m*) 3, 0 < Alpk,c}) 3, 1 < AP (pk, c*, K})
4,0 AP (pk, c}) 4, Return boole[b = V'] 4, Return boole[b = V']
5, Return boole[b = V']
Game Gameiﬁg:?é(,:\,?(lk) Game Gameﬁ'?',?é,‘f,,CCA(l)‘) oDeca, (c)
1, (ph, k) < Gen(1%) 1, (pho, sho) < Gen(1%) L If o= a, return L
2,b & {0,1} (Pk1, sk1) < Gen(1) Else return Deca(c)
(ci, K¢) := Enca(pk) 2,b< (0,1} oDecal.(b.-)
(i, Ki) « SN x K (c*, K*) ::/Enca(pk’b) mretum N
3, b AoDecacg (pk, i, Ky) 3,0« AODECQC*(.7.)(pkO’pk1’C*) Else return Deca(sky, ¢)
4, Return boole[b = V'] 4, Return boole[b = V']

Figure 11: Games for PKE and KEM schemes. In game Gameioéls_‘?,cKcEA(lA) and Gameio(f‘gL)'?(cEC,\ﬁ‘ (1Y)

the adversary A can query its oracles in superposition.

59

H Missing proofs of Section 5

H.1 Proof of Theorem 5

Proof. Denote II = (Gen, Enc, Dec). Let us define four games as shown in Fig. 12, according to the
definition of ANO-qCCA security given in Appendix G, it is obvious that

Pr[1 + G1] — Pr[l < Go]| = 2 AdV) YA, Pr[l « Gs] = Pr[l + Gy. (82)

Game Gq Game Go Game Gg Game Gy
1: (pko, sko) < Gen 1: (pko, sko) < Gen 1: (pko, sko) < Gen 1: (pko, sko) < Gen

(pk1, sky1) < Gen (pky, sk1) < Gen (pk1, sky1) < Gen (pk1, sky1) < Gen
2: m* AP<C) (pko, pky) 2: m* APC) (pko, pky) 2: m* « APC) (pky, pky) 2: m* « AP<C) (pky, pky)
3:b6=0 3b=1 3:0=0 3:b=1

¢}y := Enc(pko, m*) ¢t = Enc(pki, m*) ¢ = S(1*,m*) ¢ = S(1*, m*)
4: b — AP0 (pho, phy, cf) 4: b AP O (pk, pley,et) 4 b AP) (phg, pha,) 4: b AP O (pko, phy,)
5: Return ¥/ 5: Return b’ 5: Return b’ 5: Return b’

Figure 12: Game Gy to G4. Here Dec(, -) return Dec(sks, ¢) for input (b, ¢), Dec,(+, -) is identical with
Dec(-, -) except that Dec, output L for input (0,a) and (1,a). The adversary in these four games both
can query its oracles in superposition.

Then we define an adversary B; against the WPR-qCCA security of PKE as follows:

1. After get the pk from the challenger, sample a new (pk’,sk’) pair by using Gen, then runs
adversary A(pk,pk’) to get m* and send it to the challenger. The decryption oracle query
ZtE{O 1},ceCyef0,1}+ |t, c,y) performed by A is answered as:

« For each basis state ¢, ¢, y), query decryption oracle Dec(sk,) if t = 0. Else, compute and
return |¢, ¢,y @ Dec(sk’, ¢)). Here decryption oracle Dec(sk,-) is the oracle B can access in
the WPR-qCCA game.

2. After get the ¢} from the challenger, runs A(pk,pk’,ci) to get output b’ and send b’ to the
challenger. The decryption oracle query >, {0,1},ceC,yef0,1}+ 11 Cs y) performed by A is answered
as:

o For each basis state |t,c,y), if ¢ = ¢, return |t,c,y @ L). Else if t = 0, query decryption
oracle Dec(sk, -). Else, compute and return |¢, ¢,y ¢ Dec(sk’, ¢).

We also define an adversary By, which is identical with B; except that the decryption oracle query
t,c,y) performed by A is instead answered as:

Zte{o,l},cec,ye{o,l}*

 ¢; has not yet been obtained: For each basis state |t,c,y), query decryption oracle Dec(sk, -) if
t = 1. Otherwise, compute and return |t, ¢, y & Dec(sk’, ¢)).

 ¢; has been obtained: For each basis state |t,c,y), if ¢ = ¢}, return |t,c,y @ 1). Else if t = 1,
query decryption oracle Dec(sk, -). Else, compute and return |¢, ¢,y @ Dec(sk’, c).

One can easily check that
Pr[l = G1] — Pr[l Gy]| =2 Advy 5554, Pr[l < Go] — Pr[l « G3] =2 Adv)y sy - (83)
Combing Eq. (82) and (83), we have
AdVT 9N = |Pr[l « Gi] — Pr[l + Ga|/2
<|Pr[l <= G1] — Pr[l - G4]|/2 + |Pr[l + G2] — Pr[l < G3]|/2

(a)
- WPR-qCCA WPR-qCCA WPR-qCCA
=Advg s TAdvg, s < 2-Advg gy

Here (a) is obtained by folding B; and Bs into one single adversary B. O

60

H.2 The IND-qCCA security of KEM*, KEMZ and KEM* in the QROM

Theorem 9. Suppose PKE = (Gen, Enc, Dec) is d-correct and weakly v-spread. Let A be an IND-qCCA
adversary against KEM* in the QROM, making at most qi, qc and qp queries to random oracle H,
G and decapsulation oracle, respectively. Then there exist an OW-CPA adversary Ay against the PKE
such that

AdV Ren S < 40gp - 7+ 8(qm +1) - V3 + 64qm - 5+ 4(qm + g6 + 1) - \/m_
The running time of Ay can be bounded as Time[A;] < Time[A] + O(qu - q¢ - Time[Enc] + ¢%).

Proof. Compared with KEI\/I#17 the only difference in KEM™ is that the key K in KEM™' is derived from
message m and ciphertext ¢, not just from the message m like KEan. Therefore, the decapsulation
algorithm Decal(sk:7 -) of KEM™ can also be written as an oracle-testing algorithm like the decapsu-
lation algorithm Decay- (sk,-) of KEM, and thus the proof of Theorem 6 is also valid for Theorem 9,
as long as we correspondingly modify the definition of algorithm dec; (pk, -) and challenger Cyec in the
proof of Theorem 6. O

Indeed, the IND-qCCA security reductions of KEM# and KEM? in the QROM are similar to that of

KEI\/ITJ;l and KEM™, respectively. It should be noted that the reductions of KEI\/I;f; and KEM* need to
first transform the pseudorandom functions used in the decapsulation algorithm into uniform random
functions. The security loss generated after above transition can be bounded by using the Lemma 2

in [JZCT18]. Here, we directly give the theorem states that KEM;%I and KEM* are IND-qCCA security
in the QROM and omit the proofs.

Theorem 10. Let PKE = (Gen, Enc, Dec) be a randomized PKE that is d-correct and weakly ~y-spread.
Let A be an IND-qCCA adversary (in the QROM) against KEMZ making at most qy, qa and qp

m?
queries to random oracle H, G and decapsulation oracle, respectively. Then there exist an adversary
A’ against the security of PRF with at most qp (quantum) queries and an OW-CPA adversary A;
against the PKE such that

Adv™NP-9CCA < AQVPRE 4 40gp - A + 8(qu + 1) - V6 + 64qy - 6

A, KEME
+4(qu +9c +1) -/ AdvQVRRE -

Then the running time of A" and Ay can be bounded as
Time[A'] ~ Time[A], Time[A4;] < Time[A] + O(qx - gc - Time[Enc] + ¢F;).

Theorem 11. Let PKE = (Gen, Enc, Dec) be a randomized PKE that is 6-correct and weakly vy-spread.

Let A be an IND-qCCA adversary (in the QROM) against KEI\/I*L, making at most qg, qc and qp
queries to random oracle H, G and decapsulation oracle, respectively. Then there exist an OW-CPA
adversary Ay against the PKE such that

g 1
Adv' IR < 2y, - e T 4040 Y+ 8(am + 1) Vo +64q1 -0

+4(qr +qc + 1) -/ AdVOVSEE

Then the running time of Ay can be bounded as

Time[A;] < Time[A] + O(gg - g - Time[Enc] + ¢F).

H.3 Proof of Lemma 7

Proof. Our proof idea is simple, first rewrite game G0 and game GY! as an oracle-hiding game in
the QROM, then apply the Theorem 4 to obtain the adversary B and adversary Aj.

Based on the (pk,sk) generated by the Gen, define four deterministic algorithms dec;(sk,-) to
decy(pk, -) as follows (Here we omit the input space for simplify.):

61

Game G 0c (0) Game Gt

dec K o
1: (pk,;k) +— Gen, b=0 1 If ¢ = ¢, return | 1: (pk, ;k) — Gen,b=1
2 m* & {0,1}¢ 2 m* & {0,1}¢

Else return Deca’ (c)
¢y = Enc(pk, m*, H(m*)) ci = 8(1%)

i
Ki = G(m*) Ode?cf(c) Ki & {0,1}F
ox 1: — % | o*
3: ¥ AHGOL (pk, ez, K7) Elc ‘1, ret‘[‘;“ T B AFGOL (pk cf, K7)
4: Return b/ se return Deca,, (c) 4: Return b/

Figure 13: Game sz4=0 and game Gf’fl. Here adversary A can query its oracles in superposition.

For input z, return L if Dec(sk,z) = L. Otherwise, return Dec(sk, x).

.):

o decy(pk,-): For input (z,y), return Enc(pk, z,y).
-): For input (z,y), return y.
.):

e decy For input (z,y, 2), return z.

Define fgec be a function that fgec(z) = L for any z, then the decapsulation algorithm Decafn shown
in Fig. 5 can be rewritten as the following oracle algorithm decG’H(sk, R

1. For the input ¢, compute 3 := decy(sk,c). If 8 := L, return fgec(c).
2. Else comute deca(pk, 8, H(B)). If deco(pk, B, H(B)) # ¢, return fyec(c).
« Else compute v := decs(pk, ¢, #), return decy(pk, ¢, 5, G(3)).

According to the definition of the oracle-testing algorithm in Definition 4, it is obvious that oracle
algorithm decH (sk,-) is an oracle-testing algorithm. In Table 4, we provide a detailed correspondence
between the basic components (e.g. the internal algorithms) of oracle algorithm decH (sk,-) and
oracle-testing algorithm ota®0:91(sk; -) introduced in Definition 4.

Table 4: The correspondence between the basic components of ota®-91 (sk, -) and dec® (sk, -).

Key generator Random oracle function Internal algorithms
ota®0:91(sk,-) (pk,sk) «+ KGen 00/04 fota otay (sk, -)/otaz(pk, -) /otag(pk, -) /otas(pk, -)
dec®(sk,-) (pk,sk) < Gen G/H fagec decy(sk,-)/deco(pk,-)/decs(pk,-)/decs(pk,)

The corresponding parameters dec.time, dec.max and dec.union of oracle-testing algorithm dec®H (sk,-)
defined in Eq. (15) can be written as:

dec.time = Time[decs] + Time[decs] + Time[decs] ~ Time[Enc]|,

1
decmax=— E max |{r € {0,1}" : Enc(pk,m,7) = c}|,

27 (pk,sk)<Gen c€C,me (84)

1
decunion=— E U € {0,117 : Enc(pk,m,r) = c}|.
ec.umon 27 (pk,sk)<Gen 71516%\}51 CG{CGC:Dec(sk,c);ém}{r { } nC(p m T) C}
Since the PKE scheme PKE is §-correct and weakly y-spread, one can obtain the following inequal-
ity immediately by combing Eq. (84) with the definition of d-correct and weakly ~-spread given in
Appendix G.
dec.max < =, dec.union < 4. (85)

Based on the oracle-testing algorithm decG’H(sk, -), we define an oracle-hiding game OHGJCZ;L‘:LCI’gj oo

in the QROM as shown in Fig. 14, where Agec and Cyec satisfies following properties:

e Without any computations, Agec directly generates OHG.A as L.

62

o chaj(pk,-) and chas(pk,) performed by Cgec return @ for any input, where & satisfies z||& := =
for any x.

o chas(pk,) performed by Cgec generates OHG.B as Enc(pk, m*,y1).
o Agec then runs A in game G% %7, return the output b’ of A as OHG.C.

e The algorithm verify(pk, sk, -) performed by Cgec directly return ¥'.

Game OHGG ™ O
1, (pk, sk) < Gen
2, 1« Adec(pk)

3, Cyec perform following operation

Q

(z

1,0 & Fi i, return O(z)

m* & {0,1}%, r < {0,1}%, s =0 H(z)
@ <« chai(pk, L,m*,r) 1, 0 & Fuv, return O'(z)
=G(m*
gj<— ch(a ()k L, yog,m*,r) O ()
2APR, Yo, 1 1, If Enc(pk,m*,y;) is defined
yr = H(m")

and ¢ = Enc(pk,m*, y1)
Enc<pk7 m*7 yl) — Cha3(pka Jﬂ Yo, Y1, m*? T)

4,0 4= AT G Osee (pk, Enc(pk, m*, y1))
5, 0 « verify(pk, sk, L,m*,r, s,b)

return L

Else return dec® (sk, ¢)

Cyec Output o’ as game’s output

Figure 14: The oracle-hiding game OHGi;f’COd * in the QROM.

It is easy to see that
Pr(l < G5 = Advy['S,, (1Y). (86)

Then by using Theorem 4 and Eq. (84) and (85), there exists adversaries A}, and A%, do not query
the oracle it can access that satisfy

AV o, (1Y) — AdVSC e, (1M)] < 400 - /3 + 8(am + a6 + 1) - VB + 64as -5+ 4lgir + g + 1) - \/AdVIES s (11),
(87)

and
Time[Aje] =~ Time[A3.] < Time[Adec] + O(qm - qp - Time[Enc] + ¢%). (88)

Here Cfi"d is the same as Cgec except that the algorithm verify used by Cind output boole[m* = OHG.C].

dec dec
For the Adva?f,cdec(l)\)7 since Al__ only invokes adversary Agec in a black-box manner, it is obvious

that there exists an adversary BB does not query the oracle it can access satisfy

Pr(l « GE] = AdvQic, (1Y), Time[B] = Time[Aj]. (89)

As for the Advi?jcgigg (1%), since the adversary A2__ do not query any oracle it can access, the value y;

used by challenger Cfrd is uniformly random in the views of A% in oracle-hiding game OHG ™ 0%,
3 Cotc

Hence, it is easy to see that there exist an OW-CPA adversaries A; against the underlying PKE scheme
PKE such that

Adngjcggg(ﬂ) = AdvQ' skt Time[A;] = Time[A3.]. (90)

Combining Eq. (86) to (90), we finally obtain the upper bound claimed for | Pr[1 - G% % —Pr[1 «+

GY%7°]| shown in Lemma 7. The upper bound of | Pr[l < GY1] — Pr[l < G%71]| shown in Lemma 7

2T"When the random oracle H, G and decapsulation oracle Oggc is queried by A, Agec answers it by querying random
oracle H, G and secret oracle Ogec, respectively. Note that the first check performed by Ogec is exactly the check that
¢ = Enc(pk, m*,y1) by the definition of deca, hence Agec perfectly simulate A’s view in game Gljfo.

63

can be obtained by the similar way with | Pr[1 + G % — Pr[l + G%7]|, and we omit it. Note that
compared to |Pr[l < GY%%] — Pr[l < G%™]|, the upper bound of |Pr[l + GY1] — Pr[l + G%1]]

shown in Lemma 7 does not have the term "4(qy + g5 + 1) - \/Adva\f/",ac,fEA ”. Roughly speaking, the

reason is that the operation in line 2 of game Gf’fl shown in Fig. 13 is already irreverent with the
random oracle, hence, the game G3 to game G¢ in the proof of Theorem 4 that are used to reprogram
the challenger’s random oracle query into fresh random value is redundant. This means that the upper
bounds given by Eq. (32) and (38) to (40) of the proof of Theorem 4 can be removed from the final
upper bound, and thus we obtain the bound we claim in Lemma 7 for | Pr[1 - G%'] —Pr[1 + G|

O

H.4 SPR-qCCA security of KEM*, KEM* and KEM* in the QROM

Theorem 12. Suppose PKE = (Gen, Enc, Dec) is d-correct, weakly vy-spread and SDS-IND-secure w.r.t.
QPT simulator S. Let A be a SPR-qCCA adversary against KEM* in the QROM, making at most qy,
qc and qp queries to random oracle H, G and decapsulation oracle, respectively. Then there exist an
OW-CPA adversary A; against the PKE and a SDS-IND adversary As against the PKE such that

AdVS S e < 24qp -/ + 8(qm +1) - VO + 64q - 5+ 2(qm + e + 1) - \/ANVGREE + AdvID S e

The running time of adversary Ay and Ay can be bounded as
Time[A;] ~ Time[Az] < Time[A] + O(qn - ¢p - Time[Enc] + ¢%).
Proof. The proof of this theorem is similar to Theorem 7 and we omit it. O

Theorem 13. Suppose PKE = (Gen, Enc, Dec) is §-correct, weakly v-spread and SDS-IND-secure w.r.t.

QPT simulator S. Let A be a SPR-qCCA adversary against KEM#L in the QROM, making at most qy,
qc and qp queries to random oracle H, G and decapsulation oracle, respectively. Then there exist an
adversary A’ against the security of PRF with at most qp queries, an OW-CPA adversary Ai against
the PKE and a SDS-IND adversary As against the PKE such that

AV S e, < ADVEST 42400 /748 (0 +1)VE+64g1-54+2(qm+a6+ 1)\ AdVEVEE + AdvE P

The running time of adversary A', A1 and Az can be bounded as
Time[A'] &~ Time[A], Time[A;] ~ Time[Ay] < Time[A] + O(gn - qp - Time[Enc] + ¢%).
Proof. As shown in Fig. 5, compared with KEM,L,L7 the KEM#’S decapsulation algorithm returns

f(s,c) instead when c is an invalid encapsulation, where f is a pseudorandom function and s € P/
is randomly selected and part of the secret key.

Define a new game G, which is identical with the SPR-qCCA game of KEM# except that R(c) is
returned instead of f(k,c) for an invalid encapsulation ¢, where R is an uniformly random function.
Then via a straightforward reduction, there exists an adversary A’ against the security of PRF with
at most gp queries such that

Advipg‘lcECN?L — Pr[l + G]| < AdviF, Time[A'] = Time[A].

Then similar with the proof of Theorem 7, we have

Pr(l + G] < 24qp - /7 +8(qrr +1) - Vo + 64gs - 6 + 2(qmr + g + 1) - \/ AV + Advi s -
Combing above two equations we obtain our result. O

Theorem 14. Suppose PKE = (Gen, Enc, Dec) is d-correct, weakly v-spread and SDS-IND-secure w.r.t.
QPT simulator S. Let A be a SPR-qCCA adversary against KEM™ in the QROM, making at most qg,

64

qc and qp queries to random oracle H, G and decapsulation oracle, respectively. Then there exist an
OW-CPA adversary A; against the PKE and a SDS-IND adversary Ag against the PKE such that

1
SPR-qCCA OW-C SDS-
AdV S s < 2qH-ﬁ+24qp-\ﬁ-‘rS(qH'f'l)~\/5+64qH~5+2(QH+qG+1)~ Adv OV SeE HAAVE e

The running time of adversary Ay and Ay can be bounded as
Time[A;] &~ Time[As] < Time[A] + O(qx - qp - Time[Enc] + ¢%).

Proof. This proof is similar with the proof of Theorem 13 except that we need to replace the G(s,c)

used by Decaps*[into R(c), where R is an uniformly random function. By using the Lemma 2 of

[JZC*18], the addition security loss is 2¢g - \/% O

H.5 WPR-qCCA security of PKE*, PKE- and PKE in the QROM

Indeed, the WPR-qCCA security reductions of PKE™, PKE;% and PKE* in the QROM are similar to
that of PKE,J;L. However, similar to Theorem 13 and Theorem 14 in Appendix H.4, the reductions of

PKE;{‘L and PKE* need to first transform the pseudorandom functions used in the decryption algorithm

into uniform random functions. Here, we directly give the theorems state that PKE*, PKE;i and PKE*
are WPR-qCCA security in the QROM and omit the proofs.

Theorem 15. Suppose PKE = (Gen, Enc, Dec) is §-correct, weakly v-spread and SDS-IND-secure w.r.t.
QPT simulator S. Let A be a WPR-qCCA adversary against PKEL in the QROM, making at most
qH, 9c and qp queries to random oracle H, G and decapsulation oracle, respectively. Then there exist
a QPT simulator 8' of PKEL, an OW-CPA adversary A; against the PKE and a SDS-IND adversary
Ao against the PKE such that

AV et < 249D - /7 +8(qu + 1) - VO + 64qm - 6+ 2(qu + g + 1) - \J AV SGE + AV S Pke-

The running time of adversary Ay and Ag can be bounded as
Time[A;] ~ Time[Az] < Time[A] + O(qx - ¢p - Time[Enc] + ¢%).

Theorem 16. Suppose PKE = (Gen, Enc, Dec) is d-correct, weakly vy-spread and SDS-IND-secure w.r.t.

QPT simulator §. Let A be a WPR-qCCA adversary against PKE# in the QROM, making at most
qH, 9c and qp queries to random oracle H, G and decapsulation oracle, respectively. Then there exist

a QPT simulator S8’ of PKEL, an adversary A’ against the security of PRF with at most qp queries,

m?’

an OW-CPA adversary Ay against the PKE and a SDS-IND adversary As against the PKE such that

AV PRI < AAVESF 4240 /A +8(gm+1)- V4644 -0+ 2(qu +aa+1) -/ AdvS BicE +AdVID S Bre

The running time of adversary A', A1 and As can be bounded as
Time[A'] ~ Time[A], Time[A;] &~ Time[As] < Time[A] + O(gn - qp - Time[Enc] + ¢%).

Theorem 17. Suppose PKE = (Gen, Enc, Dec) is d-correct, weakly vy-spread and SDS-IND-secure w.r.t.

QPT simulator §. Let A be a WPR-qCCA adversary against PKEL in the QROM, making at most
qH, ¢ and qp queries to random oracle H, G and decapsulation oracle, respectively. Then there exist

a QPT simulator S’ of PKE’L, an OW-CPA adversary Ay against the PKE and a SDS-IND adversary
Ay against the PKE such that

AdyWPR-aCCA

1 3 !
e e < 2qH~ﬁ+24qD~\ﬁ+8(QH+1)~\[5+64qH~5+2(QH+qG+1)~ Adv O S HAAVL B

The running time of adversary Ay and Ag can be bounded as

Time[A;] &~ Time[As] < Time[A] + O(qg - qp - Time[Enc] + ¢%).

65

	Introduction
	Background
	Our Contribution
	Techniques Overview
	Related Works

	Preliminaries
	Notations
	Quantum Computation
	The Quantum Random Oracle Model
	The Compressed Standard Oracle
	The Extractable RO-Simulator
	Compressed Semi-Classical One Way to Hidding

	The Oracle-Hiding Game
	Lifting Theorem for Oracle-Hiding Game
	Statement of Lifting Theorem
	Proof of Lifting Theorem
	Proof of Lemma 3
	Proof of Theorem 4
	The Construction of Adversary A1, A2, B1 and B2

	Applications of Theorem 4
	The IND-qCCA security of KEMm, KEM, KEMm/4—0-00-to4 toto4/4—0-00-to4 toto4/4—0-00-to4 toto4/4—0-00-to4 toto4 and KEM/4—0-00-to4 toto4/4—0-00-to4 toto4/4—0-00-to4 toto4/4—0-00-to4 toto4 in the QROM
	The ANO-qCCA security of KEMm, KEM, KEMm/4—0-00-to4 toto4/4—0-00-to4 toto4/4—0-00-to4 toto4/4—0-00-to4 toto4 and KEM/4—0-00-to4 toto4/4—0-00-to4 toto4/4—0-00-to4 toto4/4—0-00-to4 toto4 in the QROM
	The ANO-qCCA security of PKEm, PKE, PKEm/4—0-00-to4 toto4/4—0-00-to4 toto4/4—0-00-to4 toto4/4—0-00-to4 toto4 and PKE/4—0-00-to4 toto4/4—0-00-to4 toto4/4—0-00-to4 toto4/4—0-00-to4 toto4 in the QROM

	Quantum Background
	QROM Lemmas
	Proof of Lemma 2
	Bound on [MDqPRtf,StdDecompx]
	Bound on [StdDecompx,]

	Proof of Theorem 3
	The Quantum Circuit Implementation of Utest and Ucomp
	Missing Proofs of Section 4
	Proof of Lemma 4
	Bound on (Uota1-Uota2)|0mY and (Uota1,*-Uota2,*)|0mY

	Proof of Lemma 5

	Cryptographic Primitives
	Missing proofs of Section 5
	Proof of Theorem 5
	The IND-qCCA security of KEM, KEMm/4—0-00-to4 toto4/4—0-00-to4 toto4/4—0-00-to4 toto4/4—0-00-to4 toto4 and KEM/4—0-00-to4 toto4/4—0-00-to4 toto4/4—0-00-to4 toto4/4—0-00-to4 toto4 in the QROM
	Proof of Lemma 7
	SPR-qCCA security of KEM, KEMm/4—0-00-to4 toto4/4—0-00-to4 toto4/4—0-00-to4 toto4/4—0-00-to4 toto4 and KEM/4—0-00-to4 toto4/4—0-00-to4 toto4/4—0-00-to4 toto4/4—0-00-to4 toto4 in the QROM
	WPR-qCCA security of PKE, PKEm/4—0-00-to4 toto4/4—0-00-to4 toto4/4—0-00-to4 toto4/4—0-00-to4 toto4 and PKE/4—0-00-to4 toto4/4—0-00-to4 toto4/4—0-00-to4 toto4/4—0-00-to4 toto4 in the QROM

