
Classical and Quantum Meet-in-the-Middle
Nostradamus Attacks on AES-like Hashing

Zhiyu Zhang1,3, Siwei Sun2,4 �, Caibing Wang1,3 and Lei Hu1,3

1 State Key Laboratory of Information Security, Institute of Information Engineering, Chinese
Academy of Sciences, Beijing, China. {zhangzhiyu,wangcaibing,hulei}@iie.ac.cn

2 School of Cryptology, University of Chinese Academy of Sciences, Beijing, China.
siweisun.isaac@gmail.com

3 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China.
4 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China.

Abstract. At EUROCRYPT 2006, Kelsey and Kohno proposed the so-called chosen
target forced-prefix (CTFP) preimage attack, where for any challenge prefix P , the
attacker can generate a suffix S such that H(P ∥S) = y for some hash value y
published in advance by the attacker. Consequently, the attacker can pretend to
predict some event represented by P she did not know before, and thus this type of
attack is also known as the Nostradamus attack. At ASIACRYPT 2022, Benedikt et
al. convert Kelsey et al.’s attack to a quantum one, reducing the time complexity
from O(

√
n · 22n/3) to O( 3√n · 23n/7). CTFP preimage attack is less investigated

in the literature than (second-)preimage and collision attacks and lacks dedicated
methods. In this paper, we propose the first dedicated Nostradamus attack based on
the meet-in-the-middle (MITM) attack, and the MITM Nostradamus attack could
be up to quadratically accelerated in the quantum setting. According to the recent
works on MITM preimage attacks on AES-like hashing, we build an automatic tool to
search for optimal MITM Nostradamus attacks and model the tradeoff between the
offline and online phases. We apply our method to AES-MMO and Whirlpool, and
obtain the first dedicated attack on round-reduced version of these hash functions.
Our method and automatic tool are applicable to other AES-like hashings.
Keywords: Meet-in-the-middle Attack · Chosen Target Forced-Prefix Preimage
Attack · Hash Funtion · Quantum Attack

1 Introduction
A cryptographic hash function is a primitive that maps a binary string of arbitrary length
into a short fixed-length digest, and is widely used in digital signatures, verification of data
integrity, and other cryptographic protocols. For a secure hash function, it has several
basic security requirements: collision resistance, preimage resistance, and second-preimage
resistance. At EUROCRYPT 2006, Kelsey and Kohno [KK06] introduced a new kind of
security property of hash function which is associated with the so-called chosen target
forced-prefix (CTFP) preimage attack or the Nostradamus attack. In the Nostradamus
attack, we assume that the attacker knows the length of the prefix P . The attacker first
chooses a hash value y, after which the challenger gives a prefix P . For any given P , the
attacker can generate a suffix S such that H(P∥S) = y. This scenario can be seen as a
hash-function-based commitment scheme: The attacker uses the hash value y to commit a
prediction of some event P in the future, and the attacker forges a message P∥S to make
the hash value H(P∥S) equal to y.

mailto:{zhangzhiyu, wangcaibing, hulei}@iie.ac.cn
mailto:siweisun.isaac@gmail.com


Zhiyu Zhang, Siwei Sun �, Caibing Wang and Lei Hu 1

Kelsey and Kohno [KK06] proposed the herding attack, which was the first Nostradamus
attack. The herding attack is a generic attack on any iterated hash function. For an
n-bit output hash function, the attack can find a CTFP preimage with a short suffix in
approximately O(22n/3) evaluations of the compression function. It is shown that finding
a CTFP preimage is harder than finding a collision but is easier than finding a preimage
of a cryptographic hash function based on Merkle-Damgård construction.

At ASIACRYPT 2022, Benedikt et al. [BFH22] investigated the security against
Nostradamus attacks for quantum attackers and proposed generic quantum Nostradamus
attacks on iterated hash functions, which is a herding attack in the quantum setting. They
use quantum algorithms to speed up both the offline and online phases of the herding
attack, when the quantum random access memory (QRAM) is available.

Meet-in-the-middle Nostradamus attack. Unlike the collision attack and (second)
preimage attack, the resistance against the Nostradamus attack is rarely analyzed on
round-reduced hash functions. Inspired by recent work of meet-in-the-middle preimage
attacks on AES-like hashing [BDG+21, DHS+21, BGST22, SS22], we propose a meet-
in-the-middle herding attack on iterated hash functions, which is the first dedicated
Nostradamus attack that utilizes the details of the compression function. Under our
framework, we can evaluate the security against the Nostradamus attack on round-reduced
primitives. Following Schrottenloher and Stevens’ work [SS22], we also convert our attack
into the quantum setting, finding that our attack can be up to quadratically accelerated
and attack more rounds.

Related works. In 2011, the MITM technique was introduced by Sasaki [Sas11] for the
first time to perform preimage attacks on AES-like hashing. At EUROCRYPT 2021,
MILP-based automatic tools were applied to MITM preimage attack [BDG+21], which
improved several previous results. At CRYPTO 2021, MILP-based MITM automatic tools
were applied not only to preimage attacks but also collision attacks on hash functions
and key-recovery attacks on block ciphers [DHS+21]. At CRYPTO 2022, Schrottenlo-
her and Stevens [SS22] proposed a simpler MITM modeling for permutations and the
construction of MITM preimage attacks in both the classic and quantum settings. Ded-
icated quantum attacks on round-reduced hash functions exploiting the details of the
underlying round functions have been popular in recent years, including quantum re-
bound attacks [HS20, DSS+20, DZS+21, DGLP22], and quantum collision attacks on
SHA2 [HS21] and SHA3 [GLST22].

Kelsey and Kohno [KK06] showed that for Merkle-Damgård-based hash functions,
the Nostradamus attack is easier than the preimage attack but harder than the collision
attack. However, compared to the MITM preimage attack on AES-like hashing, our MITM
Nostradamus attack reaches fewer rounds. The reason is that the complexity of generic
herding attack is lower than the one of preimage attack. Since the dedicated herding
attack should be faster than the generic attack, the MITM configurations of the herding
attack is more strict than the preimage attack and the dedicated herding attack reaches
fewer rounds. Any valid configuration of a MITM herding attack can be converted to a
valid MITM preimage attack, while the converse does not work. We refer to Subsection 3.1
for more details.

Our contributions. In this paper, we propose the framework of the meet-in-the-middle
Nostradamus attack in both the classic and quantum settings. Based on previous works on
automatic tools for MITM attack [BDG+21, DHS+21, BGST22, SS22], we introduce an
MILP model to search for the optimal MITM Nostradamus attack on round-reduced hash
functions. To our knowledge, this is the first dedicated Nostradamus attack that utilizes
the details of the compression function. In addition, if the parameters are chosen properly,



2 Meet-in-the-Middle Nostradamus Attacks

our attack can be quadratically accelerated in the quantum setting which is better than
the generic herding attack. Though our quantum attack need QRAM as well, it uses less
QRAM than the generic attack. Furthermore, we apply our method to AES-like hash
functions AES-MMO. We find a 6-round classic MITM Nostradamus attack and a 7-round
quantum MITM Nostradamus attack on AES-MMO.

Organization. Section 2 briefly introduces the generic Nostradamus attack and the MITM
preimage attack on AES-like hashing. The framework of our MITM Nostradamus attack
and its MILP model are described in Section 3. We apply our method to AES-MMO in
Section 5. Finally, we conclude our work in Section 6.

Table 1: Results of Nostradamus attacks.

Target Rounds Time C-Mem QRAM Setting Ref.

AES-MMO

6/10 282.7 248 - Classic Subsection 5.1
7/10 256 - 28 Quantum Subsection 5.2
7/10 254.1 - 214 Quantum Subsection 5.3
any 288.8 242.6 - Classic [KK06, BSU12]
any 257.2 - 218.3 Quantum [BFH22]

Whirlpool
4/10 2320 2192 - Classic Subsection B.1
6/10 2216.7 - 264 Quantum Subsection B.2
any 2351.8 2170.6 - Classic [KK06, BSU12]
any 2226.3 - 273.1 Quantum [BFH22]

2 Preliminary
2.1 Hash functions
The hash functions discussed in this paper are iterated hash functions, especially Merkle-
Damgård-based hash function. For an n-bit hash function H : F∗

2 → Fn
2 , it is based on

Merkle-Damgård construction with a compression function CF : FB
2 × Fn

2 → Fn
2 , where

B is the size of the message blocks and n is the size of the hash value and intermediate
hash states. The hash algorithm usually pads the message with a string associated with
the input length |M |, such that the length of M∥pad(|M |) is a multiple of B bits. For
example, for SHA2 pad(|M |) = 10d∥⟨|M |⟩, where ⟨|M |⟩ is a fixed-length binary encoding
of the integer |M |. For an iterated hash function with public initialization vector IV , the
hash value of a padded message M∥pad(|M |) = m1m2 · · · ml is defined as:

H(M) = yl, where yi = CF (mi, yi−1) for i = 1, 2, · · · , l and y0 = IV .

For hash functions, three security notions are classically considered to be important:

1. Collision resistance. Given a hash function H, it is computationally infeasible to
find two distinct messages M1 and M2 such that H(M1) = H(M2);

2. Preimage resistance. Given a hash value y, it is computationally infeasible to find
a message M such that H(M) = y;

3. Second-preimage resistance. Given a message M1, it is computationally infeasible
to find another message M2 such that H(M1) = H(M2).

Given a hash value y, if a message M satisfies H ′(M) = y (H ′ is a hash function that uses
compression function of H and a different initialization vector IV ′), then M is called a
pseudo-preimage of y. If a message M satisfies H(M) = y′, where t (t < n) bits of y′ are
equal to y’s bits, then M is called a t−bit partial preimage of y.



Zhiyu Zhang, Siwei Sun �, Caibing Wang and Lei Hu 3

AES-like hashing is a kind of hash function that plugs an AES-like block cipher into
one of the twelve secure PGV modes [PGV94] to build the compression function, and then
iterate it with the Merkle-Damgård paradigm [Mer90, Dam90]. The AES-like block cipher
is a kind of iterated block cipher using AES-like round functions. The state of an AES-like
block cipher is a Nrow · Ncolumn matrix of w−bit cells. The round function consists of the
following four operations:

• SubByte Each cell is substituted according to an S-box S : Fw
2 → Fw

2 ;

• ShiftRow Each row is shifted cyclically with different offsets;

• MixColumn Each column is multiplied by an Nrow · Ncolumn MDS matrix;

• AddRoundKey The state is XORed with a round key and a round constant. Some
unkeyed designs only use a round-dependent round constants.

E

ss

mi hi

hi−1

(a) MMO construction

Round function f

AK SB

S

x
x
x
x

SR

C ←M× C

x
x

x
x

MC

wi−1 xi yi zi wi

(b) AES-like round function

Figure 1: AES-like hashing

In this work, we focus on MITM Nostradamus attack on AES-like hashing, espe-
cially AES-MMO, a hash function that plugs AES block cipher into the Matyas-Meyer-
Oseas (MMO) mode (Figure 1a). Furthermore, AES-MMO is standardized in Zigbee [SM06]
and is widely considered for practical use.

2.2 Nostradamus Attack

Attacker y Attacker P Attacker S, s.t. H(P∥S) = y

Figure 2: The procedure of the Nostradamus attack

The Nostradamus attack was introduced by Kelsey and Kohno in EUROCRYPT
2006 [KK06], which is a chosen target forced prefix (CTFP) attack. They proposed the
herding attack, which is a Nostradamus attack on iterated hash functions. As shown in
Figure 2, the attacker first performs some precomputation and chooses a target hash value
y. Then the challenger selects a prefix P and supplies it to the attacker. The attacker then
outputs a string S such that H(P∥S) = y. Kelsey and Kohno proposed a CTFP attack
with total time complexity O(

√
n · 22n/3) and memory complexity O(

√
n · 2n/3), which is

called the herding attack. The attack can be divided into the following two phases:

1. Offline phase: In the offline phase, the attacker builds a diamond structure,
which is a hash tree with 2k leaves, and Figure 3 shows a diamond structure
with k = 3. Node yi,j is an intermediate state of the iterated hash function, and
edge (yi,j , mi,j , yi−1,⌈j/2⌉) represents a transition from an intermediate state to
another state with the application of the underlying compression function, that



4 Meet-in-the-Middle Nostradamus Attacks

is, yi−1,⌈j/2⌉ = CF (mi,j , yi,j). The attacker first arbitrarily chooses 2k leaves and
uses a collision-finding algorithm to construct the father nodes, building the tree
level by level. The attacker can build the diamond structure in O(

√
k · 2(n+k)/2)

time [BSU12].

2. Online phase: In the online phase, the attacker is presented with a prefix P .
We denote H∗(P ) as the hash state after processing the prefix P . The attacker
searches for a linking message mlink such that H∗(P∥mlink) is a leaf of the diamond
structure. In other words, it tries to find a linking message mlink that satisfies
CF (mlink, H∗(P )) ∈ L, where L is the set of leaves of the diamond structure
constructed in the offline phase. Thus, by connecting the path from the leaf to the
root mpath, the attacker can find a suffix S = mlink∥mpath such that H(P∥S) = y.
As the diamond structure has 2k leaves, the attacker can find a linking message
mlink in O(2n−k) time.

H∗(P )

y3,1

y3,2

y3,3

y3,4

y3,5

y3,6

y3,7

y3,8

y2,1

y2,2

y2,3

y2,4

y1,1

y1,2

y0,1 y

m3,1

m3,2

m3,3

m3,4

m3,5

m3,6

m3,7

m3,8

m2,1

m2,3

m2,2

m2,4

m1,1

m1,2

padmlink

1

Figure 3: An example of diamond structure with height 3.

Choosing k = n
3 then yields an overall effort of O(

√
n · 22n/3) for both phases together.

EK

IV

P EK

H∗(P )

mlink EK

y3,4

m3,4 EK

y2,2

m2,2 · · · y

Figure 4: An example of computation path in the herding attack.

We focus on AES-like hashing, especially AES-MMO in this paper. Thus, we take
AES-MMO as an example. Figure 4 shows a computation path of a Nostradamus attack
on AES-MMO, where EK represents AES-128. The diamond structure is built with height
k = 3, and the set of leaves is L = {y3,1, y3,2, . . . , y3,8}. In the offline phase, the attacker
generates the diamond structure in Figure 3 and publishes y. The challenger then gives
a prefix P (the red part of Figure 4). The attacker searches for a linking message mlink
that links H∗(P ) to a leaf of the diamond structure (the green part of Figure 4). By
combining the linking message mlink and the path in the diamond structure (the black part
of Figure 4), the attacker can derive a CTFP preimage of AES-MMO from the computation
path Figure 4.

Quantum Nostradamus attack. At ASIACRYPT 2022, Benedikt et al. [BFH22] proposed
a generic quantum herding attack on iterated hash functions. They follow the framework
of [KK06] and use quantum algorithms to accelerate both offline and online phases. In



Zhiyu Zhang, Siwei Sun �, Caibing Wang and Lei Hu 5

the offline phase, they perform a Grover-based method to generate a diamond structure
with 2k leaves under O( 3

√
k · 2(n+2k)/3) evaluations of the compression function. In the

online phase, they use the Grover algorithm directly to find a linking message mlink in
O(2(n−k)/2) time. In particular, for k = n

7 , the total time complexity is O( 3
√

n · 23n/7) and
the quantum memory complexity is O(2n/7). We refer to [BFH22] for more details.

2.3 A Brief Description of the Meet-in-the-Middle (pseudo-)Preimage
Attack

Key schedule
Encryption

SENC

MatchE+ E−

STarget

SKSA

Figure 5: A high-level overview of the MITM (pseudo-)Preimage attacks [DHS+21]

A brief overview The general idea of an MITM attack is to split the cipher (or compression
function) state into two independent chunks, which can be computed independently from
each other. Thus, the brute force search of the whole cipher could be separated into
two small independent searches, and each search generate a list of candidates of partial
solution. A pair combined from the two independent lists forms a candidate solution, and
we perform an extra computation of the cipher to check if it is a real solution. The MITM
attack converts the computation of a large set to two small sets, so it could reduce the
time complexity with external memory. To clarify the attack framework, we introduce
some terms to describe the two chunks. The cells in the cipher state are called neutral cells
if and only if the cells affect only one chunk. In an MITM attack, an intermediate state
(called the initial state) is often divided into two chunks: one is computed forward (called
the forward chunk), and the other is computed backward (called the backward chunk).
Each chunk is computed from the initial state to another intermediate state (called the
matching point).

The framework of the Meet-in-the-Middle (pseudo-)preimage attack At CRYPTO
2021, Dong et al. [DHS+21] described the MITM attacks in a unified way as MITM attacks
on the so-called closed computation path. We follow their framework and combine them
with several techniques of Bao et al. [BGST22]. In previous work [BDG+21, DHS+21],
the computation path is divided into two parts: one part is computed forward, and
another one is computed backward. Thus, two parts were named forward chunk and
backward chunk. However, we can compute blue cells or red cells in both directions. Bao
et al. introduced the bi-direction attribute-propagation and cancellation (BiDir) technique
in [BGST22], modeled the propagation in both directions, which enlarged the search space
of the MILP model. We discard the name of the forward/backward chunk and use the
blue/red chunk instead. In the blue/red chunk, we compute only the value of the blue/red
cells. Furthermore, if a cell is constant in both blue and red chunk, we denote it as gray
cell. A high-level overview of MITM attacks is shown in Figure 5. We follow the notation
of MITM attack in [DHS+21] and [HDS+22]:

• SENC: initial state in the encryption computation path (containing n w-bit cells);



6 Meet-in-the-Middle Nostradamus Attacks

• SKSA: initial state in the key schedule computation path (containing n̄ w bit cells);

• STarget: initial state of the target (contains n w-bit cells);

• E+/E−: ending state of the forward/backward direction;

• BENC/BTarget/BKSA: subset of N = {0, 1, · · · , n − 1}/N = {0, 1, · · · , n̄ − 1}, index of
blue cells in SENC/STarget/SKSA;

• RENC/RTarget/RKSA: subset of N /N , index of red cells in SENC/STarget/SKSA;

• GENC/GTarget/GKSA: subset of N /N , index of gray cells in SENC/STarget/SKSA;

• M+/M−: subset of N , index of cells that can be computed in E+/E−;

• λB: λB =| BENC | + | BTarget | + | BKSA |, the initial degrees of freedom for the blue
cells;

• λR: λR =| RENC | + | RTarget | + | RKSA |, the initial degrees of freedom for the red
cells;

• DoM: the degrees of matching;

• S[BG]: blue and gray cells in the initial state, all other blue cells can be derived from
them, in detail S[BG] is

(SENC[GENC], STarget[GTarget], SKSA[GKSA], SENC[BENC], STarget[BTarget], SKSA[BKSA]).

S[G], S[B], S[R], and S[RG] follow similar definitions;

• fB
i : a function that maps S[BG] to a word;

• fR
i : a function that maps S[RG] to a word;

• fB: fB = (fB
1 , · · · , fB

lB ), lB constraints on the neutral blue cells in the initial state;

• fR: fR = (fR
1 , · · · , fR

lR), lR constraints on the neutral red cells in the initial state;

• DoFB: DoFB = λB − lB, the degrees of freedom for the blue cells in the initial state;

• DoFR: DoFR = λR − lR, the degrees of freedom for the red cells in the initial state;

• dB/dR/dM: dB = w · DoFB, dR = w · DoFR nd dM = w · DoM, the degrees of
freedom in bits.

For (pseudo-)preimage attacks, the target state STarget is a constant value, but
in multi-target (pseudo-)preimage attacks, it plays a same role as SENC. The cells of
(SENC, SKSA, STarget) are divided into different subsets with different meanings, such that
BENC ∩ RENC = ∅, BKSA ∩ RKSA = ∅, BTarget ∩ RTarget = ∅, GENC = N − BENC ∪ RENC,
GKSA = N − BKSA ∪ RKSA and GTarget = N − BTarget ∪ RTarget. As the notation introduced
before, a coloring system is introduced to visualize these subsets and the attack. The cells
S[B] are visualized by cells, the cells S[R] are visualized by cells. The blue and red cells
divide the computation path into two parts that can be computed independently, that is, we
can compute the value of any blue/red cells in the computation path from the initial state
S[BG]/S[RG] independently. The initial degrees of freedom for the blue and red chunks
are defined as λB =| BENC | + | BKSA | + | BTarget | and λR =| RENC | + | RKSA | + | RTarget |
respectively, which is the number of blue and red cells in the initial states. Moreover,
S[G] are visualized as gray cells. In addition, the cells of the ending states that can be
computed in the forward and backward directions are denoted by E+[M+] and E−[M−]
respectively. The degrees of matching are denoted by DoM and DoM = m if E+[M+] and
E−[M−] form an m-cell filter.



Zhiyu Zhang, Siwei Sun �, Caibing Wang and Lei Hu 7

To compute blue cells independently, we need to introduce a sequence of lB constraints
fB = (fB

1 , · · · , fB
lB ) whose values can be computed with the knowledge of gray and blue

cells in the initial states S[BG], where

fB
i : Fw·(|GENC|+|GKSA|+|GTarget|+|BENC|+|BKSA|+|BTarget|)

2 → Fw
2

is a function mapping S[BG] to a w-bit word. For red cells, there are lR constraints
fR = (fR

1 , · · · , fR
lR). fB and fR ensure that the blue and red cells in initial states can be

computed independently to the ending state both forward and backward. In other words,
under the constraints fB and fR, changing the value of blue cells does not affect the red
cells and vice versa. The degrees of freedom for blue and red chunk computations are
denoted by DoFB = λB − lB and DoFR = λR − lR.

Procedure of the attack framework. The procedure and complexities of the MITM
pseudo-preimage attack depend on the configurations of chunk separation, neutral bytes,
and matching. With determined configurations, an attack can be mounted as follows.

1. Assign arbitrary compatible values to S[G];

2. For given values of S[G], we solve the constraints fB and fR thus obtaining possible
values of the neutral bytes S[B] and S[R]. Suppose that there are 2dB values for
S[B], and 2dR for S[R];

3. For all 2dB values of S[B], compute from the initial structure to the matching point
to get a table LB, whose indices are the values for matching, and the elements are
the values of S[B];

4. For all 2dR values of S[R], compute from the initial structure to the matching point
to get a table LR, whose indices are the values for matching, and the elements are
the values of S[R];

5. Check whether there is a partial match on indices between LB and LR.

6. In case of partial-matching exists in the above step, for the surviving pairs, check
for a full-state match. If none of them is fully matched, repeat the procedure by
changing the values of fixed bytes until a full match is found.

Attack complexity. Denote the size of the internal state and output by n. In step 3, to
get the table LB, we perform 2dB computations of the blue chunk, while we perform 2dR

computations of the red chunk in step 4. In step 5, the partial match between LB and LR

requires 2max (dB,dR) memory access which is usually ignored. 2dB+dR−dM values of the
initial state pass the partial match, and we check all values if there is a full match. From
step 2 to 5, we check 2dB+dR values of the initial state. Thus, 2n−(dB+dR) repetitions are
required to get a full match. The time complexity of the attack is:

2n−(dB+dR) ·
(

2max(dB,dR) + 2(dB+dR−dM)
)

≃ 2n−min(dB,dR,dM).
(1)

2.4 Meet-in-the-middle Attack in the Quantum Setting
At Crypto 2022, Schrottenloher and Stevens [SS22] proposed a method that converts a
classical MITM attack to a quantum MITM attack. They found that a classic MITM
attack can be quadratically accelerated in the quantum setting when the parameters of the
attack are chosen properly. Though the notations used in [SS22] is different from the one
in this paper, we can derive a similar formula. In this subsection, we follow the quantum



8 Meet-in-the-Middle Nostradamus Attacks

MITM attack proposed by Schrottenloher and Stevens [SS22], and give the details of the
quantum MITM attack using our notations.

We use the standard quantum circuit model in this paper, and we refer to [NC02] for
further details. When we estimate the time complexity of an attack on a cryptographic
primitive, we assume the unit of time to be the time of running the primitive once. When
we estimate the memory complexity, we assume the unit to be the memory of storing a
state of the primitive.

In our quantum MITM attack, we use quantum amplitude amplification [BHMT02] to
speed up the attack.

Theorem 1 (Quadratic speedup [BHMT02], Theorem 2). Let A be any quantum algorithm
that uses no measurements, and let f : Z → {0, 1} be any Boolean function that tests if an
output of A is “good”. Let O0 be the operator that changes the sign of the amplitude if and
only if the state is zero state |0⟩, and Of be a quantum oracle for f : Of |x⟩ = (−1)f(x) |x⟩.
Let a be the initial success probability of A. Suppose a ≤ 0, and set m = ⌊ π

4θa
⌋, where θa

is defined so that sin2(θa) = a and 0 ≤ θa ≤ π/2. Then if we compute (AO0A†Of )mA |0⟩
and measure the system, the outcome is good with probability at least max(1 − a, a).

Brassard et al. gave two methods that make the algorithm succeed with probability
1 when a is known. One of their methods only needs to apply two more A and O
operations [BHMT02].

Theorem 2 (Quadratic speedup with known a [BHMT02], Theorem 4). In the same
set of Theorem 1 and a is known, there exists a quantum algorithm running in less than

π
4

√
a

+ 1 iterations that obtains a good result with probability 1.

Quantum Memory In classic attacks, the attackers could store and access data in the
random access memory (RAM). In the quantum setting, a quantum random access memory
(QRAM) is needed. The QRAM used in this paper is quantum random-access quantum
memory (QRAQM). For a list of qubit registers L = {x0, · · · , x2n−1}, where xi is a registers
with n qubits, the QRAM for L is modeled as an unitary transformation UL

QRAM such that

UL
QRAM

∑
i

ai |i⟩ ⊗ |y⟩

 =
∑

i

ai |i⟩ ⊗ |y ⊕ xi⟩ .

In this paper, we assume the QRAM operation can be efficiently implemented. Currently,
it is unknown how a large QRAM can be built. Therefore, a quantum attack with less
QRAM is more significant.

Quantum meet-in-the-middle attack Assume we have a configuration of a classical
MITM attack (DoFB, DoFR, DoM) on an n-bit hash function. Let us assume for now
that S[G] = C is chosen from a set of size 2g = 2n−dB−dR . Without loss of generality,
we assume that the table LB is not larger than LR, i.e. DoFB ≤ DoFR. Our goal is to
determine if there is a value of S[GBR] that causes a full-state match. Let Uinner be the
unitary operator that computes this:

Uinner |C⟩|b⟩ = |C⟩|b ⊕ f(C)⟩, where f(C) =
{

1 if a full match occurs
0 otherwise .

Uinner tests 2dB+dR values of S[GBR] if there is a full match. Thus, the success
probability of Uinner is 2dB+dR−n.

Since we assume a single solution exactly, we do an Exact Amplitude Amplification
(Theorem 2) on C to find the choice of guesses that yields it.



Zhiyu Zhang, Siwei Sun �, Caibing Wang and Lei Hu 9

Lemma 1. Assume that there exists an implementation of Uinner with time complexity T.
Then there is a quantum MITM attack of complexity: ( π

4 · 2g/2 + 1) × T .
Proof. Because the success probability of Uinner is 2dB+dR−n, we apply Theorem 2 then
we could find a good solution with π

4
√

2dB+dR−n
+ 1 = π

4 · 2g/2 + 1 evaluations of Uinner .

We now consider the time complexity of Uinner.
Lemma 2. Let S[G] = C be a good guess. Let T ′ be the time required to compute the
encryption once, so the time of computing an element in LB or LR is less than T ′. Then
there is an implementation of Uinner with the time complexity at most:

2T ′ · (2dB + (π

4
√

2dR + 1)(π
√

2dB−dM + 6)). (2)

Proof. We use the following implementation:
1. We compute LB and store its elements in QRAM. We index them by the partial

match value, and then order them in a radix tree. Each subtree has 2dB−dM elements.

2. We do quantum search in LR: we use an Exact Amplitude Amplification, as the size
of LR is exactly known in advance, and we assume a single solution at most. After
the search, we test the state, which gives the result of Uinner.

Thus the time complexity of the above procedure is :

2(2dB × T ′ + ( π
4

√
2dR + 1) × (2( π

4

√
2dB−dM + 1) × 2T ′ + 2T ′))

= 2T ′(2dB + ( π
4

√
2dR + 1)(π

√
2dB−dM + 6)).

Theorem 3. The time complexity of the full quantum MITM attack is

2T ′(π

4 × 2g/2 + 1)(2dB + (π

4
√

2dR + 1)(π
√

2dB−dM + 6)).

If we remove the constant factor, we obtain the simplified formula for the quantum
time complexity 2tq , where

tq = n − dB − dR

2 + max
(

min (dB, dR) ,
1
2 max(dB, dR, dB + dR − dM)

)
= 1

2

(
n − min

(
|dB − dR| , dB, dR, dM

))
.

Thus, the MITM attack could be quadratically accelerated in the quantum setting if and
only if ∣∣∣DoFB − DoFR

∣∣∣ ≥ min
(

DoFB, DoFB, DoM
)

.

3 Meet-in-the-Middle Nostradamus Attack
3.1 The Framework of the Meet-in-the-Middle Nostradamus Attack
In the generic herding attack, the attacker builds a diamond structure first. After given a
prefix P , the attacker searches for a linking message that links the prefix to one of the
leaves of the diamond structure. The procedure of finding a linking message is searching
for a message mlink that satisfies CF (mlink, H∗(P )) ∈ L (L is the set of leaves), which
can be seen as a multi-target preimage attack on the compression function CF .

In this section, we propose the meet-in-the-middle Nostradamus attack, using a multi-
target preimage attack to speed up the online phase of the herding attack. Similarly to
the generic attack, the meet-in-the-middle Nostradamus attack can be divided into the
following two phases:



10 Meet-in-the-Middle Nostradamus Attacks

1. Offline phase: Before the attacker builds a diamond structure, it searches a
configuration of multi-target MITM preimage attack on the hash function. The
attacker generates 2k targets following the neutral bytes in STarget. The value
of the leaves are constant on bytes STarget[GTarget], and take all value on bytes
STarget[BTarget] and STarget[RTarget]. The attacker could build a diamond structure
using the same method as the generic herding attack, and the time complexity of
this phase is 2(n+k)/2. The set of leaves is L and |L| = 2k.

2. Online phase: In the online phase, the attacker receives a prefix P . Then the
attacker mounts a meet-in-the-middle attack on the compression function CF to find
a linking message mlink that satisfies CF (mlink, H∗(P )) ∈ L. The time complexity
of this phase is 2n−min(dB,dR,dM). This phase is the same as a multi-target MITM
preimage attack on the compression function CF with 2k targets.

H∗(P )

EK

y3,1

y3,2

y3,3

y3,4

y3,5

y3,6

y3,7

y3,8

y2,1

y2,2

y2,3

y2,4

y1,1

y1,2

y0,1 y

m3,1

m3,2

m3,3

m3,4

m3,5

m3,6

m3,7

m3,8

m2,1

m2,3

m2,2

m2,4

m1,1

m1,2

pad

mlink

Multi-target MITM Preimage attack
1

Figure 6: An example of meet-in-the-middle Nostradamus attack.

We take AES-MMO as an example (Figure 6). The attacker is given a prefix P and
then mounts a meet-in-the-middle attack on EK to find a linking message mlink that
satisfies CF (mlink, H∗(P )) ∈ L.

Attack complexity. The time complexity of this attack is

max
(

2n−min(dB,dR,dM),
√

k · 2(n+k)/2
)

,

and the memory complexity is max
(
2k, min(2dB , 2dR)

)
. To perform a faster attack than

the generic attack, we need (we omit the factor
√

k here.)

k < n
3 and min (dB, dR, dM) > n

3 .

We can see that, in classic attacks, once our MITM attack is faster than the generic attack,
it uses more memory. The reason is that the memory used in the MITM procedure is
2min(dB,dR), which is larger than the size of the diamond structure 2n/3. Compared to (multi-
target) preimage attack, which only needs min (dB, dR, dM) > 0, MITM Nostradamus
attack cannot attack as many rounds as MITM preimage attack.

Remark. We should note that our MITM attack only improves the online phase of the
generic herding attack, and the offline phase of our attack is the same as the generic



Zhiyu Zhang, Siwei Sun �, Caibing Wang and Lei Hu 11

method. Several novel dedicated collision attack were proposed in recent years, especially
the rebound attack [HS20, DSS+20, DZS+21, DGLP22]. We have considered improving
the offline phase using dedicated collision attack, but the presented collision attacks are
mostly based on differential attack whose input pairs should fit a specific differential.
When building the diamond structure, only the nodes in the first level of the tree can be
freely chosen. Thus, the dedicated collision attacks only could be applied to construct the
first level of the diamond structure. When searching for collisions in the offline phase, the
chain values of two compression functions are different, which could not be controlled by
the attacker. This attack scenario is different from the recently proposed attack, which
focused on semi-free-start or free-start collision attack. We think it is an interesting work
to search for collisions of a compression function with a set of forced chain values.

3.2 Quantum Meet-in-the-Middle Nostradamus Attack
We can use the method in Subsection 2.4 to convert our classic MITM Nostradamus attack
to a quantum one. In the quantum setting, the time complexity of our MITM Nostradamus
attack is

max(2
1
2

(
n−min(|dB−dR|,dB,dR,dM)

)
, 3
√

k · 2(n+2k)/3).

We can see that, in the quantum setting, to perform a faster attack than the generic attack,
we need (we omit the factor 3

√
k here.)

k ≤ n
7 , min

(
|dB − dR| , dB, dR, dM

)
≥ n

7 .

The limitation of the quantum MITM Nostradamus attack is looser than the classical
one. Thus, we could attack more rounds in the quantum setting than in the classical
setting. Schrottenloher and Stevens applied their method to the MITM preimage attack,
and showed that the quantum attack cannot attack more rounds than classical attack.
However, our MITM Nostradamus attack could attack more rounds in the quantum
setting.

4 The MILP Model for the MITM Nostradamus Attacks
At EUROCRYPT 2021, MILP-based automatic tools were applied to MITM preimage
attack [BDG+21] for the first time. A series of following works [DHS+21, HDS+22,
BGST22] improved several previous results.

Based on their model of the MITM preimage attack, we add some extra constraints to
model the MITM Nostradamus attack. Firstly, in the MITM Nostradamus attack, the
degree of freedom in SKSA is 0, because the attacker cannot control the value of H∗(P ) or
H∗(P∥mlink1) at low cost. It means that we cannot utilize the degree of freedom in SKSA;
on the other hand, our MILP model could be simpler because we treat the key state as
constants.

Basic Notations. We use two binary variables (x, y) to encode the attribute of an
individual state cell. x = 1 if and only if the value of this cell can be known when
computing blue cells; y = 1 if and only if the value of this cell can be known when
computing red cells. Thus, there are four kinds of cell in total:

Gray, (xi, yi) = (1, 1). A cell is gray if and only if its value is a predefined constant,
and thus is known in the computations of both blue and red cells.

Blue, (xi, yi) = (1, 0). A cell is blue if and only if its value is dependent on the value
of gray cells and blue neutral cells. It is known in the computations of blue cells, but
it is unknown in the computations of red cells.



12 Meet-in-the-Middle Nostradamus Attacks

Red, (xi, yi) = (0, 1). A cell is red if and only if its value is dependent on gray cells
and red neutral cells. It is known in the computations of red cells, but unknown in
the computations of blue cells.

White, (xi, yi) = (0, 0). A cell is white if and only if its value depends on both blue
and red neutral cells. It is unknown in the computations of both blue and red cells.

Since the degree of freedom in SKSA is 0 and we treat the key state as constants, the
initial states are (SENC, STarget). We introduce two variables αi and βi for each cell in the
initial states:

αi =
{

1, if (xi, yi) = (1, 0),
0, if (xi, yi) ̸= (1, 0). βi =

{
1, if (xi, yi) = (0, 1),
0, if (xi, yi) ̸= (0, 1).

We compute the initial degrees of freedom for blue and red cells by λB =
∑

i αENC
i +∑

i αTarget
i and λR =

∑
i βENC

i +
∑

i βTarget
i . For the ending state, as we focus on AES-like

hashing, the matching happens at the MixColumn, and thus E+ and E− are the input
and output states of a MixColumn operation. We introduce a variable mi for the i-th
column in E+ and E− to indicate the degrees of matching. The total degree of matching
of E+ and E− is the sum of each column DoM =

∑
i mi.

Rules for Propagation. The initial degrees of freedom are consumed to ensure the validity
of the independent computation of the blue and red cells. In our MITM Nostradamus
attack, only the MixColumn operation and the XOR operation of the input, the output
and the target consume degrees of freedom. We use MC-RULE and XOR-RULE with the BiDir
technique introduced in [BGST22] to model attribute propagation and the consumption
of degrees of freedom. Without loss of generality, we assume that the degrees of freedom
consumed are lB for blue cells and lR for red cells. Thus, we can compute the remaining
degrees of freedom for the computation of blue and red cells by DoFB = λB − lB and
DoFR = λR − lR.

The concrete XOR-RULE is as follows:

• A white cell XORed with a cell of any attribute results in a white cell: ( ⊕ ) → ;
• A gray cell XORed with a cell of any attribute results in the cell of the same attribute:

( ⊕ ) → ;
• A couple of blue and red cells results in a cell deteriorated to white: ( ⊕ ) → ;
• A couple of blue cells can keep the attributes without consuming or evolve to gray

by consuming a degree of freedom of Blue: ( ⊕ ) → or ( ⊕ ) −1×−−−−→ ;
• A couple of red cells can keep the attributes without consuming or evolve to gray by

consuming a degree of freedom of Red: ( ⊕ ) → or ( ⊕ ) −1×−−−−→ ;

The concrete MC-RULE is as follows:

• Any white cell in an input column results in all cells in the output column deteriorated
to white: MC(i × , j × ) → (Nrow × ), where i ≥ 1 and i + j = Nrow ;

• The gray attribute inherits to the output without consuming degrees of freedom only
if all cells in the input column are gray: MC(Nrow × ) → (Nrow × );

• If no white cell in an input column, a column of i blue, j red, and k gray cells
propagate to a column of i′ blue, j′ red, k′ gray, and l′ white cells by consuming
j′ + k′ degree of freedom from blue, and i′ + k′ from red:

MC(i × , j × , k × ) −(j′+k′)× , if i̸=0−−−−−−−−−−−−→
−(i′+k′)× , if j ̸=0

(i′ × , j′ × , k′ × , l′ × ),



Zhiyu Zhang, Siwei Sun �, Caibing Wang and Lei Hu 13

where i + j + k = i′ + j′ + k′ + l′ = Nrow , and{
j′ + k′ < i ≤ Nrow if i ̸= 0
j′ + k′ = Nrow otherwise

,

{
i′ + k′ < j ≤ Nrow if j ̸= 0
i′ + k′ = Nrow otherwise

.

Rules for Match. According to the property of the MDS matrix, if the number of input
and output cells we know is greater than Nrow , we can filter the pair that does not
satisfy the relationship of the MDS matrix, where Nrow is the number of state rows. The
technique is known as partial matching. The degree of matching for the i-th column mi

can be determined as follows: suppose that the number of cells whose value we know in
E+ and E− is mk

i , then we have

mi = max(0, mk
i − Nrow ).

For more details on the MILP model, we refer to Appendix A and [BGST22].

Rules for Herding Attack and the Objective Function. The total time complexity of the
MITM Nostradamus attack is the sum of the time complexities of the offline and online
phases. The online phase is our MITM procedure, and we generate the targets used in the
MITM procedure in the offline phase. To optimize the total time complexity of the MITM
Nostradamus attack and search for a valid attack, we need to consider the offline phase.

We introduce a variable k which denotes the height of the diamond structure built in
the offline phase. Because the number of targets used in the online phase is at most 2k,
the initial degrees of freedom in STarget are bounded by k:

w ·
∑

i α
Target
i + w ·

∑
i β

Target
i ≤ k.

According to Subsection 3.1, the time complexity of the MITM Nostradamus attack is

max
(

2n−w·min(DoFB, DoFR,DoM), 2(n+k)/2
)

.

We want to minimize the time complexity of the MITM Nostradamus attack, so we
introduce two variables Omitm and Ototal that satisfy:

Omitm ≤ DoFB,

Omitm ≤ DoFR,
Omitm ≤ DoM,

{
Ototal ≥ n+k

2 ,
Ototal ≥ n − w · Omitm.

For quantum MITM Nostradamus attack, the time complexity is

max(2
1
2

(
n−min(|dB−dR|,dB,dR,dM)

)
, 3
√

k · 2(n+2k)/3)

Thus, we set
Omitm ≤ DoFB

2 ,

Omitm ≤ DoFR

2 ,

Omitm ≤ max(DoFB−DoFR,DoFR−DoFB)
2 ,

Omitm ≤ DoM
2 ,

{
Ototal ≥ n+2·k

3 ,
Ototal ≥ n

2 − w · Omitm,

in the quantum setting.
The total time complexity of the MITM Nostradamus attack is 2Ototal , thus our objective

function is to minimize the value of Ototal.



14 Meet-in-the-Middle Nostradamus Attacks

Remark. Guess-and-determine technique is also considered in our model; however, the
optimal attacks on AES-MMO we searched do not guess any byte. Thus, we do not
introduce the guess-and-determine technique in the above model. This fact is similar to
the preimage attack and collision attack on AES in [BGST22], which also did not guess
any bytes. There are several other techniques in [BGST22] such as superposition states,
separate attribute-propagation, and multiple ways of AddRoundKey. Our model does
not consider these techniques because these methods utilize the degree of freedom in key
schedule, which are constants in our model. The source code of our model is available at
https://github.com/zzy32677/Nostradamus_MILP.

5 Application to AES-MMO
We apply our method to AES hashing modes. With our tool, we mount a classical
Nostradamus attack on 6-round AES-MMO and a quantum Nostradamus attack on
7-round AES-MMO.

5.1 MITM Nostradamus Attack on 6-round AES-MMO
MITM Nostradamus attack on 6-round AES-MMO in classic setting. The configuration
of the MITM attack on 6-round AES-MMO is shown in Figure 7. The initial state is
S(X1) and the matching point is between Y3 and Z3.

1. To compute blue and red bytes independently, neutral bytes in one chunk should
not affect bytes in another chunk. In other words, the initial neutral bytes must
have a constant impact on bytes marked by C and C to guarantee the independence
of MixColumn computations. Therefore, we derive 4 constraints on blue neutral
bytes and 4 constraints on red neutral bytes, which are two systems of equation
(Equation 3 and Equation 4). Thus, the degree of freedom in the blue neutral bytes
is 4 and the degree of freedom in the red neutral bytes is 4. By taking the degree of
freedom in the target state, the degree of freedom of blue cells and red cells in the
starting state (SENC, STarget) are 6 and 6.

2. We fix the value of C1 . . . C8 in the following steps. First, we randomly choose the
value of C1 . . . C8, then solve Equation 3 and Equation 4 and store the solutions
of (SENC[B], STarget[B]) and (SENC[R], STarget[R]) in two tables TB and TR. The
constraints on the initial neutral bytes are linear, so we can get TB and TR efficiently.


2 · S(X1)[10] ⊕ S(X1)[0] = C1

2 · S(X1)[3] ⊕ S(X1)[9] = C2

2 · S(X1)[8] ⊕ S(X1)[2] = C3

2 · S(X1)[1] ⊕ S(X1)[11] = C4

(3)


2 · S(X1)[5] ⊕ S(X1)[15] = C5

2 · S(X1)[14] ⊕ S(X1)[4] = C6

2 · S(X1)[7] ⊕ S(X1)[13] = C7

2 · S(X1)[12] ⊕ S(X1)[6] = C8

(4)

3. For each value in TB, we compute both forward and backward with the knowledge of
C1 . . . C8 to the matching point Y3 and Z3. For the first column of Y3 and Z3, we

https://github.com/zzy32677/Nostradamus_MILP


Zhiyu Zhang, Siwei Sun �, Caibing Wang and Lei Hu 15

have two linear equations:

Y3[2] = 0xe ∗ Z3[2] + 0xb ∗ Z3[3] + 0xd ∗ Z3[0] + 0x9 ∗ Z3[1],
Y3[3] = 0xe ∗ Z3[3] + 0xb ∗ Z3[0] + 0xd ∗ Z3[1] + 0x9 ∗ Z3[2].

(5)

We move the terms with the same color to the same side:

Y3[2] + 0xb ∗ Z3[3] + 0x9 ∗ Z3[1] = 0xe ∗ Z3[2] + 0xd ∗ Z3[0],
0xe ∗ Z3[3] + 0xd ∗ Z3[1] = Y3[3] + 0xb ∗ Z3[0] + 0x9 ∗ Z3[2].

(6)

We denote (Y3[2] + 0xb ∗ Z3[3] + 0x9 ∗ Z3[1], 0xe ∗ Z3[3] + 0xd ∗ Z3[1]) by C0
red and

denote (0xe ∗ Z3[2] + 0xd ∗ Z3[0], Y3[3] + 0xb ∗ Z3[0] + 9 ∗ Z3[2]) by C0
blue. For the

other three columns, we can compute Ci
red and Ci

blue (i = 1, 2, 3) similarly. Then we
let

Cred = (C0
red, C1

red, C2
red, C3

red),
Cblue = (C0

blue, C1
blue, C2

blue, C3
blue).

(7)

For the blue cells in Y3 and Z3, we compute the value of Cblue, and then store
S(X1)[0, 1, 2, 3, 8, 9, 10, 11] in L[Cblue].

4. For each value in TR, we compute both forward and backward with the knowledge
of C1 . . . C8 to the matching point Y3 and Z3. For the red cells in Y3 and Z3, we
compute the value of Cred. For each value in L[Cred], we can combine the knowledge
of S(X1), compute forward and backward to the matching point, and test the full
match in the 128-bit state. If there is not a full match, we go back to step 2 and
choose new C1 . . . C8.

Complexity. The size of TB is 2(8−4+2)×8 = 248 and the size of TR is 2(8−4+2)×8 = 248.
In step 4, it is expected to find 2(6+6−8)×8 = 232 matches on 8 bytes(64 bits). To find a
full match on 128-bit state, it is expected to repeat the step 2 to 4 about 2128−64−32 = 232

times. Thus, the time complexity of the MITM attack is 248 × 232 = 280. The memory
complexity is 248. The number of targets used in the MITM procedure is 232, so the time
complexity of the offline phase is

√
32 · 2(128+32)/2 = 282.5, thus the total time complexity

is 282.7.

5.2 Quantum MITM Nostradamus Attack on 7-round AES-MMO

MITM Nostradamus attack on 7-round AES-MMO in quantum setting The config-
uration of the MITM attack on 7-round AES-MMO is shown in Figure 8. The initial
state is X4 for blue cells and S(x4) for red cells. The matching point is between Y1 and
Z1. We derive 3 constraints on blue neutral bytes and 8 constraints on red neutral bytes
(Equation 8 and Equation 9), so the degree of freedom in blue neutral bytes is 1 and the
degree of freedom in red neutral bytes is 4. By taking the degree of freedom in the target
state, the degrees of freedom of blue and red cells in the starting state (SENC, STarget) are 2
and 4. 

2 · X4[0] ⊕ 3 · X4[1] ⊕ X4[2] ⊕ X4[3] = C1

2 · X4[1] ⊕ 3 · X4[2] ⊕ X4[3] ⊕ X4[0] = C2

2 · X4[3] ⊕ 3 · X4[0] ⊕ X4[1] ⊕ X4[2] = C3

(8)



16 Meet-in-the-Middle Nostradamus Attacks

C1

C2

C3

C4C5

C6

C7

C8

SB SR MC

X0 S(X0) Y0 Z0

SB SR MC

X1 S(X1) Y1 Z1

SB SR MC

X2 S(X2) Y2 Z2

SB SR MC

X3 S(X3) Y3 Z3

SB SR MC

X4 S(X4) Y4 Z4

X5 S(X5) Z5 Tag

SB SR

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

constant value
known in blue chunk
known in red chunk
unkown value

SENC

Match

STarget

1

Figure 7: An MITM Nostradamus attack on 6-round AES-MMO



3 · S(X4)[5] ⊕ S(X4)[10] ⊕ S(X4)[15] = C4

2 · S(X4)[10] ⊕ 3 · S(X4)[15] ⊕ S(X4)[5] = C5

2 · S(X4)[9] ⊕ 3 · S(X4)[14] ⊕ S(X4)[4] = C6

3 · S(X4)[4] ⊕ S(X4)[9] ⊕ S(X4)[14] = C7

2 · S(X4)[8] ⊕ 3 · S(X4)[13] ⊕ S(X4)[7] = C8

3 · S(X4)[7] ⊕ S(X4)[8] ⊕ S(X4)[13] = C9

3 · S(X4)[6] ⊕ S(X4)[11] ⊕ S(X4)[12] = C10

2 · S(X4)[11] ⊕ 3 · S(X4)[12] ⊕ S(X4)[6] = C11

(9)

In Figure 8, the matching point is between Y1 and Z1. For the first column of Y1 and
Z1, we have two linear equations:

Y1[0] = 0xe ∗ Z3[0] + 0xb ∗ Z3[1] + 0xd ∗ Z3[2] + 0x9 ∗ Z3[3],
Y1[2] = 0xe ∗ Z3[2] + 0xb ∗ Z3[3] + 0xd ∗ Z3[0] + 0x9 ∗ Z3[1].

(10)

We eliminate the terms of white cells and move the terms with the same color to the same
side:

0xe ∗ Y1[0] + 0xd ∗ Y1[2] = 0x5 ∗ Z1[0] + 0x7 ∗ Z1[1] + 0x7 ∗ Z1[3]. (11)



Zhiyu Zhang, Siwei Sun �, Caibing Wang and Lei Hu 17

We denote (0x5∗Z1[0]+0x7∗Z1[1]+0x7∗Z1[3]) by C0
red and denote (0xe∗Y1[0]+0xd∗Y1[2])

by C0
blue. Applying similiar methods to the other three columns, we can get the values of

Cred and Cblue. The rest of the 7-round MITM attack is the same as the 6-round attack.

Complexity. Following the similar procedure in Subsection 5.1, we could mount an MITM
attack in the classical setting with time complexity 2112 and memory complexity 216, but we
cannot convert the MITM attack to a Nostradamus attack due to the high time complexity.
However, using the quantum MITM technique introduced in Subsection 2.4, we can mount
a quantum MITM attack with time complexity 256 and memory complexity 216, which can
be converted to a quantum Nostradamus attack. The number of targets used in the MITM
procedure is 28, so the time complexity of the offline phase is 3

√
8 · 2(128+2×8)/3 = 250.

Thus, the total complexity of the quantum Nostradamus attack is 256, and the memory
complexity is 216.

c4

c5

c6

c7

c8

c9

c10

c11

c1

c2

c3

SB SR MC

X0 S(X0) Y0 Z0

SB SR MC

X1 S(X1) Y1 Z1

SB SR MC

X2 S(X2) Y2 Z2

SB SR MC

X3 S(X3) Y3 Z3

SB SR MC

X4 S(X4) Y4 Z4

SB SR MC

X5 S(X5) Y5 Z5

X6 S(X6) Z6 Tag

SB SR

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

constant value
known in blue chunk
known in red chunk
unkown value

SENC

Match

STarget

1

Figure 8: A quantum MITM Nostradamus attack on 7-round AES-MMO



18 Meet-in-the-Middle Nostradamus Attacks

5.3 Improving the Attack on 7-round AES-MMO
In Subsection 5.2, we mount a quantum MITM Nostradamus attack on 7-round AES-
MMO with time complexity 256 based on a multi-target MITM preimage attack with time
complexity 2112. We should note that the time complexity of the best classical multi-target
MITM preimage attack on 7-round AES-MMO searched by our model is 2104. For example,
assume we have 216 targets instead of 28 in Figure 8, then we have

DoFB = 3, DoFR = 4, and DoM = 4.

The time complexity of that attack is 2128−8×min(3,4,4) = 2104. However, due to DoFR −
DoFB = 1 < DoFB and Theorem 3, this attack cannot be quadratically accelerated and its
quantum time complexity is 260, which is slower than the generic quantum Nostradamus
attack.

Our quantum MITM attack includes two parts: the outer loop (Lemma 1) and the
inner search (Lemma 2). The outer loop is quadratically accelerated by QAA directly,
while the inner search could be quadratically accelerated if and only if

max
(

DoFB − DoFR, DoFR − DoFB
)

≤ min
(

DoFB, DoFR, DoM
)

.

Thus if we carefully choose the parameters of the inner search, the time complexity could
be improved. Firstly, we convert the MITM preimage attack in Figure 8 to a partial
preimage attack in Figure 9. We search for partial preimages of a 64-bit target (yellow
cells in Figure 9). For randomly chosen c1 . . . c11, we could build TB and TR with 28 and
232 evaluations. The number of partial matched pairs is 232+8−32 = 28. For a partial
matched pair, we compute Z1 with the full knowledge of X4 and check whether the blue
cells in Y1 are compatible with Z1. Once there is no contradiction between Y1 and Z1, the
partial matched pair leads to a partial preimage. The success probability of the above
step is 2−32 (the probability that four white cells in Z1 is compatible with blue and red
cells). Thus in the classical setting, the time complexity of this partial preimage attack
is 232

28 × 2max(32,8,8) = 256. This MITM attack could be quadratically accelerated in the
quantum setting, and its time complexity is 228.

We use Upartial to denote the above partial preimage attack. We run QAA on Upartial
to search for a full preimage of the leaves in a diamond structure. Assume the diamond
structure has 2k leaves, the quantum algorithm will output a preimage with ( π

4 ·2(64−k)/2+1)
evaluations of Upartial. The total time complexity to find a preimage of 2k targets is
232−k/2+28 = 260−k/2. We choose k = 14, then the time complexity of the offline phase
is 2 3√14·(128+2×14)/3 = 253.3 and the time complexity of the online phase is 253. The total
complexity of the quantum MITM Nostradamus attack is 254.1, and memory complexity is
214.

6 Conclusion and Future Work
In this paper, we propose the MITM Nostradamus attack based on the framework of
herding attack and MITM preimage attack, which is the first dedicated Nostradamus
attack utilizing the details of the compression function. Our framework can be used in
both classical and quantum settings. To search for an optimal MITM Nostradamus attack,
we study the MILP-based MITM automatic method and model the trade-off between
the offline and online phases. As applications of our attack, we mount a classical MITM
Nostradamus attack on 6-round AES-MMO and a quantum MITM Nostradamus attack on
7-round AES-MMO. In addition, our method and automatic tool are applicable to other
AES-like hashings, e.g., Skinny-Hash [BJK+20] and Grøstl [GKM+09].



Zhiyu Zhang, Siwei Sun �, Caibing Wang and Lei Hu 19

c4

c5

c6

c7

c8

c9

c10

c11

c1

c2

c3

SB SR MC

X0 S(X0) Y0 Z0

SB SR MC

X1 S(X1) Y1 Z1

SB SR MC

X2 S(X2) Y2 Z2

SB SR MC

X3 S(X3) Y3 Z3

SB SR MC

X4 S(X4) Y4 Z4

SB SR MC

X5 S(X5) Y5 Z5

X6 S(X6) Z6 Tag

SB SR

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

constant value
known in blue chunk
known in red chunk
unkown value
partial preimage

SENC

Match

STarget

1

Figure 9: A partial target preimage attack on on 7-round AES-MMO

In this work, we only use a dedicated method in the online phase of the herding attack.
As dedicated quantum and classical collision attacks on AES-like hashing have been pro-
posed in recent years, it is interesting to study how to combine dedicated collision attacks
with the herding attack, accelerate the offline phase or reduce the memory complexity.
Furthermore, as Benedikt et al. [BFH22] mentioned in their conclusion, several techniques
that reduce the quantum memory may be applicable to the herding attack. If the quantum
memory-less herding attack is realized, our framework can be adjusted to search for a
quantum memory-less MITM Nostradamus attack.

Acknowledgment. We thank the reviewers and our shepherd Akinori Hosoyamada for
their valuable comments and suggestions. This research is supported by the Natural Science
Foundation of China (Grants No.62202460, 62032014, 62172410), the National Key Research
and Development Program of China (Grants No.2018YFA0704704, 2022YFB2701900), and
the Fundamental Research Funds for the Central Universities.



20 Meet-in-the-Middle Nostradamus Attacks

References
[BDG+21] Zhenzhen Bao, Xiaoyang Dong, Jian Guo, Zheng Li, Danping Shi, Siwei Sun,

and Xiaoyun Wang. Automatic search of meet-in-the-middle preimage attacks
on AES-like hashing. In Anne Canteaut and François-Xavier Standaert, editors,
EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages 771–804. Springer,
Heidelberg, October 2021.

[BFH22] Barbara Jiabao Benedikt, Marc Fischlin, and Moritz Huppert. Nos-
tradamus goes quantum. In Shweta Agrawal and Dongdai Lin, editors, ASI-
ACRYPT 2022, Part III, volume 13793 of LNCS, pages 583–613. Springer,
Heidelberg, December 2022.

[BGST22] Zhenzhen Bao, Jian Guo, Danping Shi, and Yi Tu. Superposition meet-in-
the-middle attacks: Updates on fundamental security of AES-like hashing.
In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part I,
volume 13507 of LNCS, pages 64–93. Springer, Heidelberg, August 2022.

[BHMT02] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum
amplitude amplification and estimation. Contemporary Mathematics, 305:53–
74, 2002.

[BJK+20] Christof Beierle, Jeremy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. SKINNY-
AEAD and SKINNY-hash. IACR Trans. Symm. Cryptol., 2020(S1):88–131,
2020.

[BR+00] PSLM Barreto, Vincent Rijmen, et al. The whirlpool hashing function. In
First open NESSIE Workshop, Leuven, Belgium, volume 13, page 14. Citeseer,
2000.

[BSU12] Simon R. Blackburn, Douglas R. Stinson, and Jalaj Upadhyay. On the com-
plexity of the herding attack and some related attacks on hash functions. Des.
Codes Cryptogr., 64(1-2):171–193, 2012.

[Dam90] Ivan Damgård. A design principle for hash functions. In Gilles Brassard,
editor, CRYPTO’89, volume 435 of LNCS, pages 416–427. Springer, Heidelberg,
August 1990.

[DGLP22] Xiaoyang Dong, Jian Guo, Shun Li, and Phuong Pham. Triangulating rebound
attack on AES-like hashing. In Yevgeniy Dodis and Thomas Shrimpton,
editors, CRYPTO 2022, Part I, volume 13507 of LNCS, pages 94–124. Springer,
Heidelberg, August 2022.

[DHS+21] Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, and Lei Hu.
Meet-in-the-middle attacks revisited: Key-recovery, collision, and preimage
attacks. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part III,
volume 12827 of LNCS, pages 278–308, Virtual Event, August 2021. Springer,
Heidelberg.

[DSS+20] Xiaoyang Dong, Siwei Sun, Danping Shi, Fei Gao, Xiaoyun Wang, and Lei
Hu. Quantum collision attacks on AES-like hashing with low quantum ran-
dom access memories. In Shiho Moriai and Huaxiong Wang, editors, ASI-
ACRYPT 2020, Part II, volume 12492 of LNCS, pages 727–757. Springer,
Heidelberg, December 2020.



Zhiyu Zhang, Siwei Sun �, Caibing Wang and Lei Hu 21

[DZS+21] Xiaoyang Dong, Zhiyu Zhang, Siwei Sun, Congming Wei, Xiaoyun Wang, and
Lei Hu. Automatic classical and quantum rebound attacks on AES-like hashing
by exploiting related-key differentials. In Mehdi Tibouchi and Huaxiong Wang,
editors, ASIACRYPT 2021, Part I, volume 13090 of LNCS, pages 241–271.
Springer, Heidelberg, December 2021.

[GKM+09] Praveen Gauravaram, Lars R Knudsen, Krystian Matusiewicz, Florian Mendel,
Christian Rechberger, Martin Schläffer, and Søren S Thomsen. Grøstl-a sha-3
candidate. In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2009.

[GLST22] Jian Guo, Guozhen Liu, Ling Song, and Yi Tu. Exploring SAT for cryptanalysis:
(quantum) collision attacks against 6-round SHA-3. Cryptology ePrint Archive,
Report 2022/184, 2022. https://eprint.iacr.org/2022/184.

[HDS+22] Jialiang Hua, Xiaoyang Dong, Siwei Sun, Zhiyu Zhang, Lei Hu, and Xiaoyun
Wang. Improved MITM cryptanalysis on Streebog. IACR Trans. Symm.
Cryptol., 2022(2):63–91, 2022.

[HS20] Akinori Hosoyamada and Yu Sasaki. Finding hash collisions with quantum
computers by using differential trails with smaller probability than birthday
bound. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part II, volume 12106 of LNCS, pages 249–279. Springer, Heidelberg, May
2020.

[HS21] Akinori Hosoyamada and Yu Sasaki. Quantum collision attacks on re-
duced SHA-256 and SHA-512. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part I, volume 12825 of LNCS, pages 616–646, Virtual Event,
August 2021. Springer, Heidelberg.

[KK06] John Kelsey and Tadayoshi Kohno. Herding hash functions and the Nos-
tradamus attack. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004
of LNCS, pages 183–200. Springer, Heidelberg, May / June 2006.

[Mer90] Ralph C. Merkle. One way hash functions and DES. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 428–446. Springer, Heidelberg,
August 1990.

[NC02] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum
information, 2002.

[PGV94] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash functions based
on block ciphers: A synthetic approach. In Douglas R. Stinson, editor,
CRYPTO’93, volume 773 of LNCS, pages 368–378. Springer, Heidelberg,
August 1994.

[Sas11] Yu Sasaki. Meet-in-the-middle preimage attacks on AES hashing modes and
an application to Whirlpool. In Antoine Joux, editor, FSE 2011, volume 6733
of LNCS, pages 378–396. Springer, Heidelberg, February 2011.

[SHW+14] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song. Au-
tomatic security evaluation and (related-key) differential characteristic search:
Application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented
block ciphers. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014,
Part I, volume 8873 of LNCS, pages 158–178. Springer, Heidelberg, December
2014.

https://eprint.iacr.org/2022/184


22 Meet-in-the-Middle Nostradamus Attacks

[SM06] Stanislav Safaric and Kresimir Malaric. Zigbee wireless standard. In Proceedings
ELMAR 2006, pages 259–262. IEEE, 2006.

[SS22] André Schrottenloher and Marc Stevens. Simplified MITM modeling for
permutations: New (quantum) attacks. In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part III, volume 13509 of LNCS, pages
717–747. Springer, Heidelberg, August 2022.



Zhiyu Zhang, Siwei Sun �, Caibing Wang and Lei Hu 23

A Details of the MILP model

A.1 Inequalities for Propagation and Match Rules
Inequalities for MC-RULE Inequalities 12, 13, 14 are inequalities for MC-RULE, which are
the same as the inequalities in [BGST22]. Several auxiliary variables are introduced in
these inequalities. (xI

i , xO
i ) and (yI

i , yO
i ) encode the attribute of the i-th input and output

cell of the MixColumn operation. ωI
i = 1 if and only if the i-th input cell is white and

ω⃗ = 1 if and only if there is at least one cell in the input column. x⃗ = 1 if and only if
any cell in the input column is not red or white. y⃗ = 1 if and only if any cell in the input
column is not blue or white. cx⃗ and cy⃗ are the number of degrees of freedom of the blue
and red cells consumed in this MixColumn operation.

ω⃗ = Nrow −1max
i=0

(
ωI

i

)
Nrow −1∑

i=0
xI

i − Nrow · x⃗ ≥ 0,

Nrow −1∑
i=0

xI
i − x⃗ ≤ Nrow − 1.

Nrow −1∑
i=0

yI
i − Nrow · y⃗ ≥ 0,

Nrow −1∑
i=0

yI
i − y⃗ ≤ Nrow − 1.

(12)



Nrow −1∑
i=0

xO
i + Nrow · ω⃗ ≤ Nrow

Nrow −1∑
i=0

(
xI

i + xO
i

)
− 2 · Nrow · x⃗ ≥ 0,

Nrow −1∑
i=0

(
xI

i + xO
i

)
− Brn · x⃗ ≤ (2 · Nrow − Brn)

Nrow −1∑
i=0

yO
i + Nrow · ω⃗ ≤ Nrow

Ni=0
row −1∑
i=0

(
yI

i + yO
i

)
− 2 · Nrow · y⃗ ≥ 0

Nrow −1∑
i=0

(
yI

i + yO
i

)
− Brn · y⃗ ≤ (2 · Nrow − Brn)

(13)



Nrow −1∑
i=0

yO
i − Nrow · y⃗ − cx⃗ = 0

Nrow −1∑
i=0

xO
i − Nrow · x⃗ − cy⃗ = 0

(14)



24 Meet-in-the-Middle Nostradamus Attacks

Inequalities for XOR-RULE Our XOR-RULE is the same as [BGST22]. Though they did
not give the inequalities in their paper, we use Sun et al.’s method [SHW+14] to generate
inequalities of XOR-RULE. (x1, y1) and (x2, y2) encode the attribute of the two input cells
of the XOR operation. (x3, y3) encode the attribute of the output cell. cx and cy are the
number of degrees of freedom of the blue and red cells consumed in this XOR operation.
All the variables above are binary variables.

−y1 − y2 + 2 · y3 − 3 · cx − cy + 1 ≥ 0
−x1 − x2 + 2 · x3 − cx − 3 · cy + 1 ≥ 0

y1 + y2 − 2 · y3 + 2 · cx ≥ 0
x1 + x2 − 2 · x3 + 2 · cy ≥ 0
2 · x1 + 2 · y1 − x3 − y3 ≥ 0

(15)

Constraints for MATCH-RULE We introduce two auxiliary variables kI
i and kO

i such that

kI
i =

{
1, if (xI

i , yI
i ) ̸= (0, 0),

0, if (xI
i , yI

i ) = (0, 0). kO
i =

{
1, if (xO

i , yO
i ) ̸= (0, 0),

0, if (xO
i , yO

i ) = (0, 0). (16)

Thus ki = 1 if and only if ki is known. Then the constraints on the degree of match is

mi = max(0,

Nrow −1∑
i=0

(kI
i + kO

i ) − Nrow ). (17)

A.2 MILP Models for MITM Nostradamus Attack based on Partial
Preimage Attack

In Subsection 5.3, we show that the MITM Nostradamus attack based on partial preimage
attack can achieve lower complexities than the multi-target attack. In this subsection,
we give the MILP models for the MITM Nostradamus attack based on partial preimage
attack.

The rules for propagation and match is the same as the rules in Section 4, we only
modify the objective function in this subsection. Assume the number of targets used in
the online phase is 2k, and the initial degrees of freedom in STarget are bounded by k1:

w ·
∑

i αTarget
i + w ·

∑
i βTarget

i ≤ k1.

Let k2 = k − k1, and t be the length of the partial preimage. If we could find a partial
preimage in time T , then we can find a preimage of a leaf in the diamond structure in time
2n−t−k2 × T in the classical setting or 2

n−t−k2
2 × T in the quantum setting.

We want to minimize the time complexity of the MITM Nostradamus attack, so we
introduce three variables Omitm, Opartial and Ototal. In classical setting, the variables
satisfy:

Omitm ≤ DoFB,

Omitm ≤ DoFR,
Omitm ≤ DoM,

Opartial = t−w ·Omitm,

{
Ototal ≥ n+k

2 ,
Ototal ≥ n − t − k2 + Opartial.

In quantum setting, we set
Omitm ≤ DoFB

2 ,

Omitm ≤ DoFR

2 ,

Omitm ≤ max(DoFB−DoFR,DoFR−DoFB)
2 ,

Omitm ≤ DoM
2 ,

Opartial = t/2 − w · Omitm,



Zhiyu Zhang, Siwei Sun �, Caibing Wang and Lei Hu 25

{
Ototal ≥ n+2·k

3 ,

Ototal ≥ n−t−k2
2 + Opartial,

The total time complexity of the MITM Nostradamus attack is 2Ototal , thus our objective
function is to minimize the value of Ototal.

B Application to Whirlpool
Whirlpool is an AES-like hash function with 512-bit output, which was designed by
Barreto and Rijmen [BR+00]. The state of Whirlpool consists 64 8-bit cells, which can
be seen as an 8 × 8 matrix. The round function of Whirlpool is shown in Figure 10.

SB

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

SC MR

Figure 10: The round function of Whirlpool

We apply our method to Whirlpool in this section. With our tool, we mount a
classical Nostradamus attack on 4-round Whirlpool and a quantum Nostradamus attack
on 6-round Whirlpool.

B.1 MITM Nostradamus Attack on 4-round Whirlpool
MITM Nostradamus attack on 4-round Whirlpool in classic setting. The configuration
of the MITM attack on 4-round Whirlpool is shown in Figure 11. The initial state is
X2 and the matching point is between Y0 and Z0.

1. We derive 24 constraints on red neutral bytes which is a system of equations created
from the MR operation and 24 constants C1, · · · , C24. Thus, the degree of freedom
in the blue neutral bytes is 16 and the degree of freedom in the red neutral bytes is
24. By taking the degree of freedom in the target state, the degree of freedom of
blue cells and red cells in the starting state (SENC, STarget) are 24 and 24.

2. We fix the value of C1 . . . C24 in the following steps. First, we randomly choose the
value of C1 . . . C24, then solve the equations. The solutions of (SENC[B], STarget[B])
and (SENC[R], STarget[R]) are stored in two tables TB and TR. The constraints on
the initial neutral bytes are linear constraints, so we can get TB and TR efficiently.

3. For each value vB in TB, we compute both forward and backward to the matching
point Y3 and Z3. Utilizing the MR operation, we could get several equations like
Equation 6, and two variables Cred and Cblue. We compute the values of Cred of
each column and store vB in L[Cblue].

4. For each value vR in TR, we compute both forward and backward with the knowledge
of C1 . . . C24 to the matching point Y0 and Z0. For the red cells in Y0 and Z0, we
compute the values of Cred of each column. For each value in L[Cred], we can combine
every vB in L[Cred] with vR, then compute forward and backward to the matching
point, and test the full match in the 512-bit state. If there is not a full match, we go
back to step 2 and choose new C1 . . . C24.



26 Meet-in-the-Middle Nostradamus Attacks

SB SC MR

X0 S(X0) Y0 Z0

SB SC MR

X1 S(X1) Y1 Z1

SB SC MR

X2 S(X2) Y2 Z2

SB SC MR

X3 S(X3) Y3 Z3

c1 c2 c3

c4 c5 c6

c7 c8 c9

c10 c11 c12

c13 c14 c15

c16 c17 c18

c19 c20 c21

c22 c24c23

0
1
2
3
4
5
6
7

8
9
10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63

constant value
known in blue chunk
known in red chunk
unkown value

SENC

Match

STarget

1

Figure 11: An MITM Nostradamus attack on 4-round Whirlpool

Complexity. The size of TB is 2(16+8)×8 = 2192 and the size of TR is 2(48−24)×8 = 2192. In
step 4, it is expected to find 2(24+24−24)×8 = 2192 matches on 24 bytes (192 bits). To find
a full match on 512-bit state, it is expected to repeat step 2 to 4 about 2512−192−192 = 2128

times. Thus, the time complexity of the MITM attack is 2128 × 2192 = 2320. The memory
complexity is 2192. The number of targets used in the MITM procedure is 264, so the time
complexity of the offline phase is

√
64 · 2(128+64)/2 = 2102, thus the total time complexity

is 2320.



Zhiyu Zhang, Siwei Sun �, Caibing Wang and Lei Hu 27

B.2 Quantum MITM Nostradamus Attack on 6-round Whirlpool
MITM Nostradamus attack on 6-round Whirlpool in quantum setting. We follow
the idea of Subsection 5.3 to mount a quantum MITM Nostradamus attack on 6-round
Whirlpool based on a partial target preimage attack. The configuration of the MITM
attack on 6-round Whirlpool is shown in Figure 12. This attack searches a preimage of
a 48-bit preimage. The initial state is X3 and the matching point is between Y5 and Z5.
We derive 8 constraints on blue neutral bytes and 16 constraints on red neutral bytes, so
the degree of freedom in blue neutral bytes is 2 and the degree of freedom in red neutral
bytes is 4. The degree of match is 2.

The sizes of TB and TR are 216 and 232. The matching ability is dM = 16, so the
number of partial matched pairs is 216+32−16 = 232. For a partial matched pair, it leads to
a partial preimage with probability 2−32. Thus, the time complexity of partical preimage
attack is 232

232 ×2max(32,16,16) = 232. Because of |dB −dR| = 16, the partical preimage attack
could be quadratically accelerated in quantum setting. Then we use QAA to search for a
full preimage.

Complexity. We choose k = 64. The complexity of the quantum multi-target preimage
attack is 2(512−64−48)/2 × 232/2 = 2216 and the time complexity of the offline phase is
2 3√64·2(128+2×64)/3 = 2215.3. The total complexity of the quantum MITM Nostradamus
attack is 2216.7, and the memory complexity is 264.



28 Meet-in-the-Middle Nostradamus Attacks

SB SC MR

X0 S(X0) Y0 Z0

SB SC MR

X1 S(X1) Y1 Z1

SB SC MR

X2 S(X2) Y2 Z2

SB SC MR

X3 S(X3) Y3 Z3

SB SC MR

X4 S(X4) Y4 Z4

SB SC MR

X5 S(X5) Y5 Z5

0
1
2
3
4
5
6
7

8
9
10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63

constant value
known in blue chunk
known in red chunk
unkown value
partial preimage

SENC

Match

STarget

1

Figure 12: A partial target preimage attack on 6-round Whirlpool


	Introduction
	Preliminary
	Hash functions
	Nostradamus Attack
	A Brief Description of the Meet-in-the-Middle (pseudo-)Preimage Attack
	Meet-in-the-middle Attack in the Quantum Setting

	Meet-in-the-Middle Nostradamus Attack
	The Framework of the Meet-in-the-Middle Nostradamus Attack
	Quantum Meet-in-the-Middle Nostradamus Attack

	The MILP Model for the MITM Nostradamus Attacks
	Application to AES-MMO
	MITM Nostradamus Attack on 6-round AES-MMO
	Quantum MITM Nostradamus Attack on 7-round AES-MMO
	Improving the Attack on 7-round AES-MMO

	Conclusion and Future Work
	Details of the MILP model
	Inequalities for Propagation and Match Rules
	MILP Models for MITM Nostradamus Attack based on Partial Preimage Attack

	Application to Whirlpool
	MITM Nostradamus Attack on 4-round Whirlpool
	Quantum MITM Nostradamus Attack on 6-round Whirlpool


