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Abstract

Recently, there have been several proposals for secure computation with fair output delivery
that require the use of a bulletin board abstraction (in addition to a trusted execution environ-
ment (TEE)). These proposals require all protocol participants to have read/write access to the
bulletin board. These works envision the use of (public or permissioned) blockchains to imple-
ment the bulletin board abstractions. With the advent of consortium blockchains which place
restrictions on who can read/write contents on the blockchain, it is not clear how to extend prior
proposals to a setting where (1) not all parties have read/write access on a single consortium
blockchain, and (2) not all parties prefer to post on a public blockchain.

In this paper, we address the above by showing the first protocols for fair secure computation
in the multi-blockchain setting. More concretely, in a n-party setting where at most t < n parties
are corrupt, our protocol for fair secure computation works as long as (1) t parties have access
to a TEE (e.g., Intel SGX), and (2) each of the above t parties are on some blockchain with each
of the other parties. Furthermore, only these t parties need write access on the blockchains.

In an optimistic setting where parties behave honestly, our protocol runs completely off-
chain.1
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1 Introduction

Secure multiparty computation (MPC) allows a set of mutually distrusting parties to perform a
joint computation on their inputs that reveals only the final output and nothing else. Showing
feasibility [Yao86, GMW87, BGW88, CCD88, RB89] of this seemingly impossible task has been a
major achievement for modern cryptography. Today, secure computation is widely believed to be
practical, and is seen as an important technology that is likely to enable, among other things, new
business applications resulting from secure data sharing [MZ17].

While secure computation indeed provides the best possible notion of privacy, correctness, and
security, it cannot provide fairness in settings where a majority of the participants are corrupt
[Cle86]. For instance, in a two-party setting, a malicious party can abort a secure computation
protocol after getting its output, leaving the other (honest) party no recourse to getting its output.
Addressing this deficiency of secure computation is critical, as it is not appealing for, say a business
entity to engage in a secure computation protocol with its partners/competitors where it may not
learn the final outcome (while they might).

In the light of Cleve’s impossibility result [Cle86], several lines of research have investigated
the possibility of achieving fairness via non-standard security notions.2 Partial fairness [GK10,
BLOO11] provides a relaxed notion of fairness in secure computation where fairness may be
breached with some parameterizable (inverse polynomial) probability. Gradual release mecha-
nisms [Pin03, GMPY11] and “∆-fairness” [PST17] study models where the honest party can re-
cover the final output using additional computational resources. Secure computation with penal-
ties [ADMM14,ADMM16,BK14,KMB15] study models where the honest party may be monetarily
compensated (via cryptocurrencies) in the event that fairness is breached.

Other lines of work have investigated augmenting the computation model to overcome the
problem of fairness. Examples include optimistic fair exchange [ASW97,ASW00,KL12] where the
goal is to minimize the use of a trusted third party to restore fairness. More recently, [CGJ+17]
showed that the use of a blockchain modeled as a bulletin board can help in achieving fair secure
computation. More concretely, they rely on the interpretation that blockchain can provide a proof of
publication [KGM19] for the content posted on it. Then assuming either the existence of a witness
encryption scheme or the existence of a trusted execution environment (TEE), along with a (public
or permissioned) blockchain where every party has read/write access on the blockchain. Following
their work, [SGK19] show how to minimize the use of TEE. Specifically, they show that only t
parties need to possess a TEE in an n-party setting where at most t < n parties are corrupt. In
particular, in a 2-party setting, only 1 processor needs to possess a TEE. Recently, [KRS20] proposed
a two-party primitive “synchronizable exchange” that is complete for n-party fair computation.

Multiblockchain settings. Our work follows the line of research in [CGJ+17,PS19,SGK19] and
shows constructions of fair protocols using TEEs and blockchains in new settings. Concretely, we
investigate settings where not all parties have read/write access on a single common blockchain.
Such a setting might seem unnatural given the existence of public blockchains such as Bitcoin
[Nak08], where there is no restriction on who can read/write. However, we envision business
settings, where for compliance, legal, or regulatory reasons, businesses may prefer not to use a
public blockchain. Such a scenario may not be far fetched as we already see consortium blockchains
gaining rapid popularity and adoption [AAB+19,Mor16,RAA+19]. Going forward, it seems likely

2 [GHKL11, GK09, Ash14, ABMO15] show restricted classes of functions for which the standard notion of fair
secure computation is possible.
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that such consortiums will co-exist with one another, and will likely have overlapping members. This
is precisely the type of setting that we target in this work. Extending the results of [CGJ+17,SGK19]
to this new setting turns out to be quite non-trivial. Specifically, these works rely on a blockchain
to provide a proof of publication that will be accepted by a TEE and its host.3 Unfortunately,
dealing with proofs of publication from different blockchains is a problem. We elaborate below.

Can we use proofs of publication across blockchains? Since membership in a consortium may cost
significant fees, it is expected that members of a consortium C1 may be restricted from performing
read/write operations on the blockchain of consortium C2 if they are not members of C2. Without
any visibility into the blockchain of C2, members of C1 may not trust C2 to carry out a reliable
blockchain read/write. While members within C2 may trust that their blockchain B2 is maintained
properly, there is no reason for P1, a member of C1 but not C2 to trust that this is the case.

More concretely, let us focus on the circumstances under which P1 ∈ C1 \C2 may accept a proof
of publication on B2. A proof of publication in a permissioned blockchain with m participants
would likely be t + 1 signatures from participating parties, where t < m/3 (or t < m/2) may
be the threshold for a distributed consensus protocol (e.g., Paxos) that is used to maintain the
permissioned blockchain. This means that for P1 to trust a proof of publication must essentially
trust that there are at most t colluding parties in C2. Since P1 has no control over membership
constraints in C2, it may not find such a trust assumption reasonable. Similar issues apply also
to other consensus methods (e.g., proof of work, proof of stake) since these typically rely on some
form of threshold assumption on the consortium. A more serious problem is that P1 may not be
able to obtain a (valid) proof of publication on B2 which is otherwise accessible to every member
of C2. Next, we provide a high level overview of the protocols in [CGJ+17,SGK19], and show how
the above issues translate into concrete problems in the construction of fair protocols.

Fairness in a single blockchain setting. Consider a setting with parties P1, P2, P3 each possessing
a TEE and each having access to a single blockchain B. Let us refer to Tj as the TEE hosted
by Pj . We assume that each Pi has a secure channel established with Tj (i.e., Pj cannot read
those messages). In the first step, each Ti sends their host input to Tj , following which Tj can
compute the function output on the provided inputs. However, Tj cannot yet release the outputs
to its host Pj as there may be some Tj that has not received all the inputs. To ensure that all
TEEs received the inputs, the protocol in [CGJ+17] asks each Tj to (1) post a token (of a specific
form) on the blockchain indicating that all inputs were received, and (2) receiving from its host
Pj all 3 tokens from T1, T2, T3 with their respective proofs of publication on B, and (3) only then,
release the function output to Pj . To see why the above protocol is fair, note that if some Tj
released the function output to Pj , then all 3 tokens must have been recorded on B. This is
because, by assumption, the proof of publication πv of posting a value v is unforgeable. That is,
it is (computationally) infeasible for a party to compute πv without posting v on the blockchain.
This in turn implies that every Ti obtained inputs from all participants. Furthermore, since all 3
tokens are recorded on B, these are available to Ti (through Pi), following which Ti will release the
final output to Pi.

Problems in extending to a multiblockchain setting. For concreteness, suppose there are three
consortiums C{1,2}, C{2,3}, C{1,3} such that Pi, Pj ∈ C{i,j} but Pk 6∈ C{i,j} for k 6∈ {i, j}. Suppose
C{i,j} maintain blockchain B{i,j}. It follows from the discussion above that Pk for k 6∈ {i, j} may

3Consortium blockchains may rely on TEEs to enable, among other things, private computations [SGK19,
RAA+19].
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not share the trust assumptions on C{i,j} as Pi and Pj , and consequently may not trust proofs
of publication on B{i,j}. Alternatively, Pk may not have (read) access to proofs on B{i,j}, and
consequently will not get the output. Therefore, a protocol which relies on read/write on a single
blockchain, say B{i,j} will not work. Given this, one may be tempted to use proofs from multiple
blockchains. For instance, one may design a protocol where Tk relies on proofs from both B{i,k}
and B{j,k} to release the output. With this strategy, the difficulty comes in ensuring that tokens
are recorded on all three blockchains (so that each TEE can make progress) or none. To see why,
consider the following sequence of events. Suppose Pk is honest and as above, Tk records its token
on B{i,k} and B{j,k}. Now if Pi and Pj behave honestly like Pk above, then all three parties will have
access to all 3 tokens. However, if Pi does not record its token on B{i,k}, but records it on B{i,j}.
Recall that Pk does not have visibility into B{i,j} which is the only blockchain that has Pi’s token
recorded on it. Now if Pj records its token on B{i,j} and B{j,k}, then note that Pj has access to all
3 tokens while Pk does not. Thus, loosely speaking, the problem reduces to a simultaneous writing
of the tokens on 3 blockchains, and is somewhat similar to the original problem of fair exchange
that we started with. Perhaps surprisingly, we show that designing fair protocols is indeed possible
in the multiblockchain setting described above. In fact, our protocols work in the above setting
when only two out of the 3 parties have a TEE (but every pair has a common blockchain).

Our results. We design protocols for fair secure computation in the multiblockchain setting. More
concretely, in a n-party setting where at most t < n parties are corrupt, our protocol for fair secure
computation works as long as (1) t parties have access to a TEE, and (2) each of the above t
parties are on some blockchain with each of the other parties. Furthermore, only these t parties
need write access to the blockchains.4 Our protocols use the blockchain only when participants
behave maliciously, i.e., in an optimistic setting our protocol can be entirely run off-chain.

Remark. To better understand our result, consider a setting with 3 permissioned consortiums
C1, C2, C3. Suppose consortium Ci has mi members and members of Ci assume a corruption
threshold ti < mi/10 within Ci. Now suppose there is a centralized adversary A that controls and
co-ordinates all the corrupt parties across consortiums. Further, assume A corrupts a subset Ai
in Ci with |Ai| = ti. In such a setting, we have | ∪i Ai| < | ∪i Ci|/3, in which case one may use
any standard honest majority MPC protocol involving members of all consortiums C1, C2, C3 to
obtain a fair protocol.5 We emphasize that our protocol works in the above setting even when A
may corrupt more than ti within some consortium, or even when A corrupts all members within a
given consortium (in which case an honest majority may not exist in the union of all consortiums).

Our method. Technically, we rely on the recently proposed “synchronizable fair exchange” FSyX

abstraction [KRS20]. FSyX is a 2-party primitive, and is shown in [KRS20] to be complete for
secure multiparty computation with fairness where all parties are pairwise connected by independent
instances of FSyX. More concretely, in a setting as discussed above with 3 parties P1, P2, P3, if for
all i, j, parties Pi and Pj are connected to an instance of FSyX, then the result of [KRS20] yields a
3-party fair secure computation protocol. Given the above, it is natural to try and apply [KRS20]
to our multiblockchain setting to solve the fair computation problem. Unfortunately, [KRS20] do

4Note that the parameters t, n above are independent of the size of the consortiums, i.e., the number of participants
in the consensus protocols for maintaining the blockchain.

5As an aside, it is worthwhile to note that designing fair protocols in a single permissioned blockchain setting with a
threshold assumption on the number of corrupt parties is somewhat trivial since the threshold constraints for consensus
(typically, ti < mi/3) admit completely fair MPC protocols. We emphasize that the works [CGJ+17, SGK19] yield
fair protocols even with a public blockchain.
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not provide an implementation of FSyX. One of the main contributions of our work is to provide
the first concrete implementation of FSyX. Our implementation of FSyX between a pair of parties
Pi, Pj , perhaps unsurprisingly requires both parties (1) to each possess a TEE, and (2) to share a
common blockhain. Given this, and applying the protocol of [KRS20], we obtain a protocol for fair
secure computation in the 3-party multiblockchain setting discussed above. Similarly, we can solve
n-party fair secure computation in the multiblockchain setting as long as each pair of parties share
a common blockchain.6 Note that the above idea does not extend to settings where only t < n
parties possess a TEE. This is because now there may be pairs of parties where one party does not
possess a TEE, and thus this pair may not be able to implement an instance of FSyX between them.
To derive results in this setting, we work with a restricted variant of FSyX which we can implement
when only one of the two parties possesses a TEE. Note that even with this variant, there may be
pairs of parties where neither possesses a TEE, and thus may not be able to implement an instance
of FSyX between them. In this setting, we design new fair multiparty protocols in a FSyX-hybrid
model where not all pairs of parties are connected by an FSyX instance.

Interpretation of our abstraction. As an analogy, consider a 3-party implementation of information-
theoretic (unfair) secure computation in the OT-hybrid model [IPS08,Kil88]. Note that each of the
3 OT instances may be implemented under different cryptographic assumptions. For concreteness,
suppose the OT instance (1) between P1, P2 is implemented under DDH, (2) between P2, P3 is
implemented under RSA, and (3) between P1, P3 is implemented under LWE. Furthermore assume
that none of the parties believe that all of DDH, RSA, LWE assumptions hold. That is, P1 may
believe that RSA is broken, P2 may believe that LWE is broken, and P3 may believe that DDH is
broken. Still the information-theoretic MPC guarantees that security and privacy is guaranteed, say
for honest P1, even when RSA is indeed broken. That is, as long as the honest party’s assumption is
correct, its inputs remain private, and the MPC guarantees hold for that party. However, suppose
DDH is broken, then honest P1’s inputs may leak to the adversary (controlling P2). Likewise, in
our multiblockchain setting, we abstract away the consortiums (and their blockchains), and instead
replace these with pairwise FSyX instances. Suppose in our 3 party setting, if (honest) P1 believes
that P2, P3 blockchain B{2,3} is completely compromised, then P1’s guarantees still hold if indeed
B{2,3}’s security is breached. However, if B{1,3} or B{1,2} is breached, then P1’s guarantees with
respect to fairness do not hold (but the TEE/unfair MPC guarantees that P1’s inputs remain
private).

2 Overview

To understand our contributions, we first describe the synchronizable exchange primitive FSyX

from [KRS20]. Then, we describe our variant, and its implementation, and finally our new proto-
cols. Finally, we discuss modifications to our protocol that allow preprocessing, and in particular
minimize the use of blockchain.

6To clarify, our protocols apply to a n-party setting (1) with
(
n
2

)
distinct blockchains, or (2) where all n parties

have access to one common blockchain (a la [CGJ+17,SGK19]), or (3) a setting with 1 ≤ b ≤
(
n
2

)
blockchains where

each pair of parties both have read/write access on one of the b blockchains.
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2.1 Implementing Synchronizable Exchange

Synchronizable exchange FSyX [KRS20] is a two-party symmetric primitive which is reactive
and works in two phases called load and trigger. In the load phase, parties submit their private
inputs x1, x2 along with public inputs (f1, f2, φ1, φ2). Here f1, f2 are 2-output functions, and φ1, φ2
are boolean predicates. Upon receiving these inputs, FSyX computes f1(x1, x2) and delivers the
respective outputs to both parties. Next, in the trigger phase, which can be initiated at any later
time after the load phase, party Pi can send a “witness” wi to FSyX following which FSyX checks if
φi(wi) = 1. If that is indeed the case, then FSyX computes f2(x1, x2, wi) and delivers the respective
outputs along with wi to both parties in a fair manner. Next, we describe our variant.

Synchronizable exchange with one-sided trigger. Here, we restrict FSyX by giving only one
designated party, say Pi, the ability to trigger FSyX. This is done easily by setting φj ≡ 0, thereby
ensuring that Pj can never trigger FSyX. Note that Pi will still need to provide a valid witness that
satisfies φi. Next, we show how to implement this variant when only Pi possesses a TEE.

Implementing FSyX with one-sided trigger. We now sketch the FSyX implementation with
parties Pi and Pj both of which have access to a blockchain B, but only Pi possesses a TEE.
First, Pi and Pj supply their inputs to Ti. At this point Ti computes y1 = f1(x1, x2), and outputs
e1 = Enc(pkj , y1) where pkj is the public key of Pj . Following this, Pi posts e1 on the blockchain,
and obtain the corresponding proof of publication π1. Then Pi feeds π1 to Ti which then releases
the output y1 to Pi. Note that Pj can recover y1 by reading B and decrypting e1 with its secret
key skj . For the trigger phase, suppose Pi has a valid witness wi. Then Pi feeds wi to Ti, which
verifies if φi(wi) = 1, and if so computes y2 = f2(x1, x2, wi), and outputs e2 = Enc(pkj , wi‖y2) to
Pi. As before, Pi posts e2 on B, gets the proof of publication π2, then feeds π2 to Ti which outputs
y2 to Pi. Pj reads e2 from B, and decrypts it to get wi and y2.

It is easy to see that the trigger phase can be initiated only by Pi (hence “one-sided trigger”)
since only Ti can compute f2(x1, x2, wi). Next, note that the outputs of both f1 and f2 are delivered
to both parties in a fair manner. In particular, note that P1 cannot obtain the output of f1 (resp.
f2) without posting e1 (resp. e2) on the blockchain. This is because Ti reveals y1 = f1(x1, x2)
(resp. y2 = f2(x1, x2, wi)) only after obtain π1 (resp. π2) from the blockchain. This in turn ensures
that e1 (resp. e2) was posted on the blockchain and hence available for Pj to decrypt and obtain
y1 (resp. y2). Note that Pi can prevent the evaluation of f1 (or f2), but as we described above, if
Pi indeed gets the outputs of f1 (or f2), then Pj will get the output as well. Also, note that load
phase may be completed, but (a corrupt) Pi may not trigger even if instructed by the higher level
protocol. On the other hand, note that an honest Pi’s trigger will always result in Pi learning the
output, and in particular, there is no way a corrupt Pj can prevent Pi from learning the output
of f1 or f2. Next, we sketch how to extend these ideas to implement FSyX where either party can
trigger.

Implementing FSyX. Now, we assume that both parties Pi, Pj possess a TEE Ti, Tj respectively.
Further, assume that Ti and Tj share a symmetric key ek. As before, the protocol begins by letting
Pi and Pj supply their inputs to Ti and Tj . (We omit details on standard techniques that ensure
that parties submit the same inputs to both TEEs.) Then, we let Ti and Tj each post a token on
the blockchain indicating that they received the inputs. The TEEs do not proceed with the load
phase unless they receive two proofs of publication of both tokens from the blockchain. Given these
proofs, both Ti and Tj locally output (respectively to Pi and Pj) the value f1(x1, x2), and terminate
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the load phase. Next, we describe the trigger phase when Pi wishes to trigger (the case when Pj
wishes to trigger is analogous). First, Pi provides a witness wi to Ti, following which Ti checks if
φi(wi) = 1, then outputs e = Enc(ek, wi‖f2(x1, x2, wi)) to Pi. Pi then posts e on the blockchain to
obtain a proof of publication π, which it then sends to Ti. Upon receiving the proof π, Ti outputs
f2(x1, x2, wi) to Pi, and terminates the trigger phase. Upon seeing the token e on the blockchain,
Pj sends e, π to Tj , which then first checks if π is a valid proof of publication, then decrypts e using
ek to obtain wi, f2(x1, x2, wi), and then checks if φi(wi) = 1, and if so finally outputs f2(x1, x2, wi)
to Pj .

As before, the outputs of f1 and f2 are delivered to both parties in a fair manner. More con-
cretely, Pi cannot obtain the output of f1 unless tokens from both Ti, Tj indicating that they received
the inputs are recorded on the blockchain. When these tokens are recorded on the blockchain, there
is no way for Pi to prevent Pj from reading these tokens and submitting the tokens along with
proofs to Tj which results in Pj obtaining the output of f1. Now, suppose Pi obtains the output
of f2, say by providing the trigger witness wi. Then we argue that Pi has no way of preventing
Pj from learning the output of f2. To see why, note that Pi needs to provide proof π that e was
posted on the blockchain. Since it is infeasible for Pi to obtain this proof without posting e on
the blockchain, it follows that e can be read by Pj , following which Pj can feed e to Tj and obtain
the final output. It should also be clear from the description above that the triggering party will
always obtain the output if it behaves honestly. That is, if Pi initiates the trigger phase, then there
is no way for a corrupt Pj to prevent Pi from learning the output of f2.

Formal implementation. In the main body of the paper, we provide a formal description of the
protocols above. Our implementation of FSyX (and its variant with one-sided trigger) will be de-
scribed in the (Gatt,FBB,Gacrs)-hybrid model, where (1) Gatt is a global ideal functionality described
in [PST17] that captures attested executions, and (2) FBB is the ideal blockchain functionality as
described in several prior works, and in particular provides an interface for obtaining proofs of
publication as in [CGJ+17], and (3) Gacrs is the global ideal functionality for augmented common
reference string as described and used in [PST17].

2.2 Fair Protocols in the Multiblockchain Setting

In this section, we provide a sketch of our new protocols for achieving fairness in the multiblockchain
setting. Recall that in a n-party setting where at most t < n parties are corrupt, we assume that (1)
at least t parties have access to a TEE, and (2) each of the above t parties are on some blockchain
with each of the other parties. To construct fair protocols in this setting, we first make the following
transformation: for every pair of parties Pi, Pj , we add an FSyX instance between them if and only if
(1) at least one of Pi, Pj possesses a TEE, and (2) if Pi and Pj are on some common blockchain. An
FSyX instance between Pi and Pj is one-sided iff exactly only of Pi, Pj possesses a TEE. With the
above transformation we have abstracted away both TEEs and blockchains, and are in a setting
with n parties some of which are connected by FSyX instances. For the sake of simplicity, we
represent this setting with an “FSyX-digraph” G, where the vertices represent the n parties, and
edges represent FSyX instances. More concretely, if t parties possess a TEE, then G consists of
O(nt) edges. Specifically, there is a directed edge between i and j in G if (1) Pi possesses a TEE,
and (2) if Pi and Pj share a common blockchain.

Note that the prior work of [KRS20] showed fair protocols when the “FSyX-digraph” is complete,
i.e., with 2

(
n
2

)
edges. Now, we describe a fair protocol when G is of the form above, and in particular
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when G is not a complete digraph. As in prior work [GIM+10,CGJ+17,SGK19,KRS20], we reduce
fair secure computation to fair reconstruction of a secret sharing scheme. Specifically, we let the
parties run an (unfair) MPC protocol for a function f that computes the function output y, then
computes secret shares of the function output {yi}i∈[n], and then computes commitments on these
secret shares. Denote these commitments by c = (c1, . . . , cn). The MPC protocol outputs to party
Pi the values yi, c. Note that if some honest party does not obtain its output from the (unfair)
MPC protocol, then all parties terminate (and no one gets the final output y). Now to get a fair
evaluation of f , we only need to ensure that either all parties learn all the commitment openings
or none of them learns all the openings.

Next, we describe how we use the FSyX instances to achieve fair reconstruction of y. Without
loss of generality assume that P1, . . . , Pt possess a TEE and Pt+1, . . . , Pn do not. Therefore, when
i ≤ t, we have that (i, j) ∈ G for all j ∈ [n] (and these are the only edges in G). Consider the FSyX

instance associated with (i, j) ∈ G with i ≤ t and i < j. We will set up this instance such that (1)
it can be triggered only in round j+1, and (2) the predicate φi associated with this instance checks
for valid openings of c1, . . . , cj−1, and (3) upon trigger, the value yj is released to both parties.

To reconstruct y, in round j + 1 for 2 ≤ j ≤ n, each party i with i ≤ t and i < j, triggers
(if possible) the FSyX instance associated with (i, j) ∈ G. Finally, in round n + 2, if any honest
party obtained all the openings, i.e., the values y1, . . . , yn, then they broadcast all these openings
to all parties. This completes the overview of the protocol. Next, we sketch why the above steps
suffice. Suppose the adversary learns y at the end of the protocol, then we need to show that all
honest parties learn y too. Let Pj be honest such that for k < j, party Pk is corrupt. To learn y,
the adversary must learn yj by triggering an FSyX instance associated with j. This consequently
means that Pj would learn all values y1, . . . , yj . If j ≤ t, then for all k > j, in round k + 1, party
Pj can trigger the (j, k) FSyX instance using the witnesses y1, . . . , yk−1 to learn yk. Then, in round
n+ 2, party Pj would broadcast all openings to all honest parties, and therefore all honest parties
would obtain the final output. If j > t, then Pn must be honest since there are at most t corrupt
parties. To obtain yn (and consequently the final output y), the adversary needs some corrupt Pi
with i ≤ t to trigger the FSyX instance associated with (i, n) ∈ G. If Pi triggers this FSyX instance,
then honest Pn would learn the openings y1, . . . , yn−1, and therefore would know all openings, and
it would broadcast these openings in round n+ 2, leading to all honest parties obtaining the final
output.

3 Preliminaries

3.1 Notation and definitions

For n ∈ N, let [n] = {1, 2, . . . , n}. Let λ ∈ N denote the security parameter. Symbols in with an
arrow over them such as −→a denote vectors. By ai we denote the i-th element of the vector −→a . For
a vector −→a of length n ∈ N and an index set I ⊆ [n], we denote by −→a |I the vector consisting of
(ordered) elements from the set {ai}i∈I . By poly(·), we denote any function which is bounded by
a polynomial in its argument. An algorithm T is said to be PPT if it is modeled as a probabilistic
Turing machine that runs in time polynomial in λ. Informally, we say that a function is negligible,

denoted by negl, if it vanishes faster than the inverse of any polynomial. If S is a set, then x
$← S

indicates the process of selecting x uniformly at random over S (which in particular assumes that

S can be sampled efficiently). Similarly, x
$← A(·) denotes the random variable that is the output

7



of a randomized algorithm A. Let X ,Y be two probability distributions over some set S. Their
statistical distance is

SD (X ,Y)
def
= max

T⊆S
{|Pr[X ∈ T ]− Pr[Y ∈ T ]|}

We say that X and Y are ε-close if SD (X ,Y) ≤ ε and this is denoted by X ≈ε Y. We say that
X and Y are identical if SD (X ,Y) = 0 and this is denoted by X ≡ Y.

3.2 Secure Computation

We recall most of the definitions regarding secure computation from [GHKL11] and [CL17]. We
present them here for the sake of completeness and self-containedness. Consider the scenario of n
parties P1, . . . , Pn with private inputs x1, . . . , xn ∈ X 7. We denote −→x = (x1, . . . , xn) ∈ X n.

3.2.1 Functionalities

A functionality f is a randomized process that maps n-tuples of inputs to n-tuples of outputs, that
is, f : X n → Yn8. We write f = (f1, . . . , fn) if we wish to emphasize the n outputs of f , but stress
that if f1, . . . , fn are randomized, then the outputs of f1, . . . , fn are correlated random variables.

3.2.2 Adversaries

We consider security against static t-threshold adversaries, that is, adversaries that corrupt a set
of at most t parties, where 0 ≤ t < n9. We assume the adversary to be malicious. That is, the
corrupted parties may deviate arbitrarily from an assigned protocol.

3.2.3 Model

We assume the parties are connected via a fully connected point-to-point network; we refer to this
model as the point-to-point model. We sometimes assume that the parties are given access to a
physical broadcast channel (defined in Section 3.7)10 in addition to the point-to-point network; we
refer to this model as the broadcast model. The communication lines between parties are assumed
to be ideally authenticated and private (and thus an adversary cannot read or modify messages
sent between two honest parties). Furthermore, the delivery of messages between honest parties
is guaranteed. We sometimes assume the parties are connected via a fully pairwise connected
network of oblivious transfer channels (defined in Section 3.6)11 in addition to a fully connected
point-to-point network; we refer to this model as the OT-network model. We sometimes assume that
the parties are given access to a physical broadcast channel in addition to the complete pairwise
oblivious transfer network and a fully connected point-to-point network; we refer to this model as
the OT-broadcast model12.

7Here we have assumed that the domains of the inputs of all parties is X for simplicity of notation. This can be
easily adapted to consider setting where the domains are different.

8Here we have assumed that the domains of the outputs of all parties is Y for simplicity of notation. This can be
easily adapted to consider setting where the domains are different.

9Note that when t = n, there is nothing to prove.
10This can also be viewed as working in the Fbc-hybrid model. See Section 3.3.
11This can also be viewed as working in the FOT-hybrid model. See Section 3.3.
12This can also be viewed as working in the (Fbc,FOT)-hybrid model. See Section 3.3.
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3.2.4 Protocol

An n-party protocol for computing a functionality f is a protocol running in polynomial time and
satisfying the following functional requirement: if for every i ∈ [n], party Pi begins with private
input xi ∈ X , then the joint distribution of the outputs of the parties is statistically close to
(f1(−→x ), . . . , fn(−→x )). We assume that the protocol is executed in a synchronous network, that
is, the execution proceeds in rounds: each round consists of a send phase (where parties send
their message for this round) followed by a receive phase (where they receive messages from other
parties). The adversary, being malicious, is also rushing which means that it can see the messages
the honest parties send in a round, before determining the messages that the corrupted parties
send in that round.

3.2.5 Security with Guaranteed Output Delivery

The security of a protocol is analyzed by comparing what an adversary can do in a real protocol
execution to what it can do in an ideal scenario that is secure by definition. This is formalized
by considering an ideal computation involving an incorruptible trusted party to whom the parties
send their inputs. The trusted party computes the functionality on the inputs and returns to each
party its respective output. Loosely speaking, a protocol is secure if any adversary interacting in
the real protocol (where no trusted party exists) can do no more harm than if it were involved in
the above-described ideal computation.

Execution in the ideal model. The parties are P1, . . . , Pn, and there is an adversary A who
has corrupted at most t parties, where 0 ≤ t < n. Denote by I ⊆ [n] the set of indices of the parties
corrupted by A. An ideal execution for the computation of f proceeds as follows:

• Inputs: P1, . . . , Pn hold their private inputs x1, . . . , xn ∈ X ; the adversary A receives an
auxiliary input z.

• Send inputs to trusted party: The honest parties send their inputs to the trusted party.
The corrupted parties controlled by A may send any values of their choice. Denote the inputs
sent to the trusted party by x′1, . . . , x

′
n.

• Trusted party sends outputs: If x′i 6∈ X for any i ∈ [n], the trusted party sets x′i to
some default input in X . Then, the trusted party chooses r uniformly at random and sends
f i(x′1, . . . , x

′
n; r) to party Pi for every i ∈ [n].

• Outputs: The honest parties output whatever was sent by the trusted party. The cor-
rupted parties output nothing and A outputs an arbitrary (probabilistic polynomial-time
computable) function of its view.

We let Idealg.d.f,I,S(z)(
−→x , λ) be the random variable consisting of the output of the adversary

and the output of the honest parties following an execution in the ideal model described above.

Execution in the real model. We next consider the real model in which an n-party protocol
π is executed by P1, . . . , Pn (and there is no trusted party). In this case, the adversary A gets the
inputs of the corrupted party and sends all messages on behalf of these parties, using an arbitrary
polynomial-time strategy. The honest parties follow the instructions of π.
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Let f be as above and let π be an n-party protocol computing f . Let A be a non-uniform
probabilistic polynomial-time machine with auxiliary input z. We let Realπ,I,A(z)(x1, . . . , xn, λ)
be the random variable consisting of the view of the adversary and the output of the honest parties
following an execution of π where Pi begins by holding xi for every i ∈ [n].

Security as emulation of an ideal execution in the real model. Having defined the ideal
and real models, we can now define security of a protocol. Loosely speaking, the definition asserts
that a secure protocol (in the real model) emulates the ideal model (in which a trusted party exists).
This is formulated as follows.

Definition 1. Protocol π is said to securely compute f with guaranteed output delivery if for every
non-uniform probabilistic polynomial-time adversary A in the real model, there exists a non-uniform
probabilistic polynomial-time adversary S in the ideal model such that for every I ⊆ [n] with |I| ≤ t,{

Idealg.d.f,I,S(z)(
−→x , λ)

}
−→x ∈Xn,z∈{0,1}∗

≡
{
Realπ,I,A(z)(

−→x , λ)
}
−→x ∈Xn,z∈{0,1}∗

We will sometimes relax security to statistical or computational definitions. A protocol is statis-
tically secure if the random variables Idealg.d.f,I,S(z)(

−→x , λ) and Realπ,I,A(z)(
−→x , λ) are statistically

close, and computationally secure if they are computationally indistinguishable.

3.2.6 Security with Fairness

In this definition, the execution of the protocol can terminate in two possible ways: the first is when
all parties receive their prescribed output (as in the case of guaranteed output delivery) and the
second is when all parties (including the corrupted parties) abort without receiving output. The
only change from the definition in Section 3.2.5 is with regard to the ideal model for computing f ,
which is now defined as follows:

Execution in the ideal model. The parties are P1, . . . , Pn, and there is an adversary A who
has corrupted at most t parties, where 0 ≤ t < n. Denote by I ⊆ [n] the set of indices of the parties
corrupted by A. An ideal execution for the computation of f proceeds as follows:

• Inputs: P1, . . . , Pn hold their private inputs x1, . . . , xn ∈ X ; the adversary A receives an
auxiliary input z.

• Send inputs to trusted party: The honest parties send their inputs to the trusted party.
The corrupted parties controlled by A may send any values of their choice. In addition, there
exists a special abort input. Denote the inputs sent to the trusted party by x′1, . . . , x

′
n.

• Trusted party sends outputs: If x′i 6∈ X for any i ∈ [n], the trusted party sets x′i to some
default input in X . If there exists an i ∈ [n] such that x′i = abort, the trusted party sends
⊥ to all the parties. Otherwise, the trusted party chooses r uniformly at random, computes
zi = f i(x′1, . . . , x

′
n; r) for every i ∈ [n] and sends zi to Pi for every i ∈ [n].

• Outputs: The honest parties output whatever was sent by the trusted party. The cor-
rupted parties output nothing and A outputs an arbitrary (probabilistic polynomial-time
computable) function of its view.
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We let Idealfairf,I,S(z)(
−→x , λ) be the random variable consisting of the output of the adversary

and the output of the honest parties following an execution in the ideal model described above.

Definition 2. Protocol π is said to securely compute f with fairness if for every non-uniform
probabilistic polynomial-time adversary A in the real model, there exists a non-uniform probabilistic
polynomial-time adversary S in the ideal model such that for every I ⊆ [n] with |I| ≤ t,{

Idealfairf,I,S(z)(
−→x , λ)

}
−→x ∈Xn,z∈{0,1}∗

≡
{
Realπ,I,A(z)(

−→x , λ)
}
−→x ∈Xn,z∈{0,1}∗

We will sometimes relax security to statistical or computational definitions. A protocol is statis-
tically secure if the random variables Idealfairf,I,S(z)(

−→x , λ) and Realπ,I,A(z)(
−→x , λ) are statistically

close, and computationally secure if they are computationally indistinguishable.

3.2.7 Security with Fairness and Identifiable Abort

This definition is identical to the one for fairness, except that if the adversary aborts the computa-
tion, all honest parties learn the identity of one of the corrupted parties. The only change from the
definition in Section 3.2.5 is with regard to the ideal model for computing f , which is now defined
as follows:

Execution in the ideal model. The parties are P1, . . . , Pn, and there is an adversary A who
has corrupted at most t parties, where 0 ≤ t < n. Denote by I ⊆ [n] the set of indices of the parties
corrupted by A. An ideal execution for the computation of f proceeds as follows:

• Inputs: P1, . . . , Pn hold their private inputs x1, . . . , xn ∈ X ; the adversary A receives an
auxiliary input z.

• Send inputs to trusted party: The honest parties send their inputs to the trusted party.
The corrupted parties controlled by A may send any values of their choice. In addition, there
exists a special abort input. In case the adversary instructs Pi to send abort, it chooses an
index of a corrupted party i∗ ∈ I and sets x′i = (abort, i∗). Denote the inputs sent to the
trusted party by x′1, . . . , x

′
n.

• Trusted party sends outputs: If x′i 6∈ X for any i ∈ [n], the trusted party sets x′i to some
default input in X . If there exists an i ∈ [n] such that x′i = (abort, i∗) and i∗ ∈ I, the trusted
party sends (⊥, i∗) to all the parties. Otherwise, the trusted party chooses r uniformly at
random, computes zi = f i(x′1, . . . , x

′
n; r) for every i ∈ [n] and sends zi to Pi for every i ∈ [n].

• Outputs: The honest parties output whatever was sent by the trusted party. The cor-
rupted parties output nothing and A outputs an arbitrary (probabilistic polynomial-time
computable) function of its view.

We let Idealid-fairf,I,S(z)(
−→x , λ) be the random variable consisting of the output of the adversary

and the output of the honest parties following an execution in the ideal model described above.

Definition 3. Protocol π is said to securely compute f with fairness and identifiable abort if for
every non-uniform probabilistic polynomial-time adversary A in the real model, there exists a non-
uniform probabilistic polynomial-time adversary S in the ideal model such that for every I ⊆ [n]
with |I| ≤ t,{

Idealid-fairf,I,S(z)(
−→x , λ)

}
−→x ∈Xn,z∈{0,1}∗

≡
{
Realπ,I,A(z)(

−→x , λ)
}
−→x ∈Xn,z∈{0,1}∗
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We will sometimes relax security to statistical or computational definitions. A protocol is statis-
tically secure if the random variables Idealid-fairf,I,S(z)(

−→x , λ) and Realπ,I,A(z)(
−→x , λ) are statistically

close, and computationally secure if they are computationally indistinguishable.

3.2.8 Security with Abort

This definition is the standard one for secure computation [Gol04] in that it allows early abort ; that
is, the adversary may receive its own output even though the honest party does not. However, if one
honest party receives output, then so do all honest parties. Thus, this is the notion of unanimous
abort. The only change from the definition in Section 3.2.5 is with regard to the ideal model for
computing f , which is now defined as follows:

Execution in the ideal model. The parties are P1, . . . , Pn, and there is an adversary A who
has corrupted at most t parties, where 0 ≤ t < n. Denote by I ⊆ [n] the set of indices of the parties
corrupted by A. An ideal execution for the computation of f proceeds as follows:

• Inputs: P1, . . . , Pn hold their private inputs x1, . . . , xn ∈ X ; the adversary A receives an
auxiliary input z.

• Send inputs to trusted party: The honest parties send their inputs to the trusted party.
The corrupted parties controlled by A may send any values of their choice. In addition, there
exists a special abort input. Denote the inputs sent to the trusted party by x′1, . . . , x

′
n.

• Trusted party sends outputs to the adversary: If x′i 6∈ X for any i ∈ [n], the trusted
party sets x′i to some default input in X . If there exists an i ∈ [n] such that x′i = abort, the
trusted party sends ⊥ to all the parties. Otherwise, the trusted party chooses r uniformly at
random, computes zi = f i(x′1, . . . , x

′
n; r) for every i ∈ [n] and sends zi to Pi for every i ∈ I

(that is, to the adversary A).

• Trusted party sends outputs to the honest parties: After receiving its output (as
described above), the adversary either sends abort or continue to the trusted party. In the
former case the trusted party sends ⊥ to the honest parties, and in the latter case the trusted
party send zj to Pj for every j ∈ [n] \ I.

• Outputs: The honest parties output whatever was sent by the trusted party. The cor-
rupted parties output nothing and A outputs an arbitrary (probabilistic polynomial-time
computable) function of its view.

We let Idealabortf,I,S(z)(
−→x , λ) be the random variable consisting of the output of the adversary

and the output of the honest parties following an execution in the ideal model described above.

Definition 4. Protocol π is said to securely compute f with abort if for every non-uniform prob-
abilistic polynomial-time adversary A in the real model, there exists a non-uniform probabilistic
polynomial-time adversary S in the ideal model such that for every I ⊆ [n] with |I| ≤ t,{

Idealabortf,I,S(z)(
−→x , λ)

}
−→x ∈Xn,z∈{0,1}∗

≡
{
Realπ,I,A(z)(

−→x , λ)
}
−→x ∈Xn,z∈{0,1}∗

We will sometimes relax security to statistical or computational definitions. A protocol is statis-
tically secure if the random variables Idealabortf,I,S(z)(

−→x , λ) and Realπ,I,A(z)(
−→x , λ) are statistically

close, and computationally secure if they are computationally indistinguishable.
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3.2.9 Security with Identifiable Abort

This definition is identical to the one for abort, except that if the adversary aborts the computation,
all honest parties learn the identity of one of the corrupted parties. The only change from the
definition in Section 3.2.5 is with regard to the ideal model for computing f , which is now defined
as follows:

Execution in the ideal model. The parties are P1, . . . , Pn, and there is an adversary A who
has corrupted at most t parties, where 0 ≤ t < n. Denote by I ⊆ [n] the set of indices of the parties
corrupted by A. An ideal execution for the computation of f proceeds as follows:

• Inputs: P1, . . . , Pn hold their private inputs x1, . . . , xn ∈ X ; the adversary A receives an
auxiliary input z.

• Send inputs to trusted party: The honest parties send their inputs to the trusted party.
The corrupted parties controlled by A may send any values of their choice. In addition, there
exists a special abort input. In case the adversary instructs Pi to send abort, it chooses an
index of a corrupted party i∗ ∈ I and sets x′i = (abort, i∗). Denote the inputs sent to the
trusted party by x′1, . . . , x

′
n.

• Trusted party sends outputs to the adversary: If x′i 6∈ X for any i ∈ [n], the trusted
party sets x′i to some default input in X . If there exists an i ∈ [n] such that x′i = (abort, i∗)
and i∗ ∈ I, the trusted party sends (⊥, i∗) to all the parties. Otherwise, the trusted party
chooses r uniformly at random, computes zi = f i(x′1, . . . , x

′
n; r) for every i ∈ [n] and sends zi

to Pi for every i ∈ I (that is, to the adversary A).

• Trusted party sends outputs to the honest parties: After receiving its output (as
described above), the adversary either sends (abort, i∗) where i∗ ∈ I, or continue to the
trusted party. In the former case the trusted party sends (⊥, i∗) to the honest parties, and in
the latter case the trusted party send zj to Pj for every j ∈ [n] \ I.

• Outputs: The honest parties output whatever was sent by the trusted party. The cor-
rupted parties output nothing and A outputs an arbitrary (probabilistic polynomial-time
computable) function of its view.

We let Idealid-abortf,I,S(z)(
−→x , λ) be the random variable consisting of the output of the adversary

and the output of the honest parties following an execution in the ideal model described above.

Definition 5. Protocol π is said to securely compute f with identifiable abort if for every non-
uniform probabilistic polynomial-time adversary A in the real model, there exists a non-uniform
probabilistic polynomial-time adversary S in the ideal model such that for every I ⊆ [n] with |I| ≤ t,{

Idealid-abortf,I,S(z)(
−→x , λ)

}
−→x ∈Xn,z∈{0,1}∗

≡
{
Realπ,I,A(z)(

−→x , λ)
}
−→x ∈Xn,z∈{0,1}∗

We will sometimes relax security to statistical or computational definitions. A protocol is statis-
tically secure if the random variables Idealid-abortf,I,S(z)(

−→x , λ) and Realπ,I,A(z)(
−→x , λ) are statistically

close, and computationally secure if they are computationally indistinguishable.
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3.3 The Hybrid Model

We recall the definition of the hybrid model from [GHKL11] and [CL17]. The hybrid model com-
bines both the real and ideal worlds. Specifically, an execution of a protocol π in the G-hybrid
model, for some functionality G, involves parties sending normal messages to each other (as in the
real model) and, in addition, having access to a trusted party computing G. The parties commu-
nicate with this trusted party in exactly the same way as in the ideal models described above; the
question of which ideal model is taken (that with or without abort) must be specified. In this
paper, we always consider a hybrid model where the functionality G is computed according to the
ideal model with abort. In all our protocols in the G-hybrid model there will only be sequential calls
to G, that is, there is at most a single call to G per round, and no other messages are sent during
any round in which G is called. This is especially important for reactive functionalities, where the
calls to f are carried out in phases, and a new invocation of f cannot take place before all the
phases of the previous invocation complete.

Let type ∈ {g.d., fair, id-fair, abort, id-abort}. Let G be a functionality and let π be an n-party
protocol for computing some functionality f , where π includes real messages between the parties
as well as calls to G. Let A be a non-uniform probabilistic polynomial-time machine with auxiliary
input z. A corrupts at most t parties, where 0 ≤ t < n. Denote by I ⊆ [n] the set of indices of the
parties corrupted by A. Let HybridG,typeπ,I,A(z)(

−→x , λ) be the random variable consisting of the view of
the adversary and the output of the honest parties, following an execution of π with ideal calls to
a trusted party computing G according to the ideal model “type” where Pi begins by holding xi for
every i ∈ [n]. Security in the model “type” can be defined via natural modifications of Definitions
1, 2, 3, 4 and 5. We call this the (G, type)-hybrid model.

The hybrid model gives a powerful tool for proving the security of protocols. Specifically, we
may design a real-world protocol for securely computing some functionality f by first constructing
a protocol for computing f in the G-hybrid model. Letting π denote the protocol thus constructed
(in the G-hybrid model), we denote by πρ the real-world protocol in which calls to G are replaced
by sequential execution of a real-world protocol ρ that computes G in the ideal model “type”.
“Sequential” here implies that only one execution of ρ is carried out at any time, and no other
π-protocol messages are sent during the execution of ρ. The results of [Can00] then imply that if π
securely computes f in the (G, type)-hybrid model, and ρ securely computes G, then the composed
protocol πρ securely computes f (in the real world). For completeness, we state this result formally
as we will use it in this work.

Lemma 1. Let type1, type2 ∈ {g.d., fair, id-fair, abort, id-abort}. Let G be an n-party functionality.
Let ρ be a protocol that securely computes G with type1, and let π be a protocol that securely computes
f with type2 in the (G, type1)-hybrid model. Then protocol πρ securely computes f with type2 in the
real model.

Sometimes, while working in a hybrid model, say the (G, type)-hybrid model, we will suppress
type and simply state that we are working in the G-hybrid model. This is because type is implied
by the context, G. For instance, unless specified otherwise:

• When G = Fbc
13, type = g.d..

• When G = FOT
14, type = abort.

13See Section 3.7.
14See Section 3.6.
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• When G = F2PC
15, type = abort.

• When G = FMPC
16, type = abort.

• When G = FSyX
17, type = g.d..

When working in a hybrid model that uses multiple ideal functionalities, G1, . . . ,Gk with asso-
ciated types type1, . . . , typek for some k ∈ N, we call it the (G1, type1, . . . ,Gk, typek)-hybrid model.
Furthermore, we will suppress typej when typej is implied by the context, Gj for j ∈ [k].

3.4 Fairness versus Guaranteed Output Delivery

We recall here some of the results from [CL17].

Lemma 2. [CL17] Consider n parties P1, . . . , Pn in a model without a broadcast channel. Then,
there exists a functionality f : X n → Yn such that f cannot be securely computed with guaranteed
output delivery in the presence of t-threshold adversaries for n/3 ≤ t < n.

Lemma 3. [CL17] Consider n parties P1, . . . , Pn in a model with a broadcast channel. Then,
assuming the existence of one-way functions, for any functionality f : X n → Yn, if there exists a
protocol π which securely computes f with fairness, then there exists a protocol π′ which securely
computes f with guaranteed output delivery.

Lemma 4. [CL17] Consider n parties P1, . . . , Pn in a model with a broadcast channel. Then,
assuming the existence of one-way functions, for any functionality f : X n → Yn, if there exists a
protocol π which securely computes f with fairness, then there exists a protocol π′ which securely
computes f with fairness and does not make use of the broadcast channel.

3.5 Computing with an Honest Majority

We recall here some of the known results regarding feasibility of information-theoretic multiparty
computation in the presence of an honest majority.

Lemma 5. [GMW87] Consider n parties P1, . . . , Pn in the point-to-point model. Then, there
exists a protocol π which securely computes FMPC with guaranteed output delivery in the presence
of t-threshold adversaries for any 0 ≤ t < n/3.

Lemma 6. [FGMvR02] Consider n parties P1, . . . , Pn in the point-to-point model. Then, there
exists a protocol π which securely computes FMPC with fairness in the presence of t-threshold ad-
versaries for any 0 ≤ t < n/2.

Lemma 7. [GMW87, RB89] Consider n parties P1, . . . , Pn in the broadcast model. Then, there
exists a protocol π which securely computes FMPC with guaranteed output delivery in the presence
of t-threshold adversaries for any 0 ≤ t < n/2.
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Preliminaries: x0, x1 ∈ {0, 1}m; b ∈ {0, 1}. The functionality proceeds as follows:

• Upon receiving inputs (x0, x1) from the sender P1 and b from the receiver P2, send ⊥ to P1 and
xb to P2.

Figure 1: The ideal functionality FOT.

Preliminaries: x1, . . . , xn ∈ {0, 1}∗; f1, . . . , fn is an n-input, n-output functionalities. The functionality
proceeds as follows:

• Upon receiving inputs (xi, fi) from Pi for all i ∈ [n], check if f = fi for all i ∈ [n]. If not, abort.
Else, send f i(x1, . . . , xn) to Pi for all i ∈ [n].

Figure 2: The ideal functionality FMPC.

3.6 Oblivious Transfer

In this work, oblivious transfer, or OT, refers to 1-out-of-2 oblivious transfer defined as in Figure 1.
We note that in the definition of FOT, one party, namely P1, is seen as the sender, while the other,
namely P2, is seen as the receiver. However, from [WW06], OT is symmetric, which implies that
the roles of the sender and the receiver can be reversed. Thus, if two parties P1 and P2 have access
to the ideal functionality FOT, they can perform 1-out-of-2 oblivious transfer with either party as
a sender and the other as the receiver. It is known that OT is complete for secure multiparty
computation with abort. We state this result formally below.

Lemma 8. [Kil88, GV87, IPS08] Consider n parties P1, . . . , Pn in the OT-network model. Then,
there exists a protocol π which securely computes FMPC with abort in the presence of t-threshold
adversaries for any 0 ≤ t < n.

3.7 Broadcast

Broadcast is defined as in Figure 3. We recall that the ideal functionality for broadcast, namely
Fbc, can be securely computed with guaranteed output delivery in the presence of t-threshold
adversaries if and only if 0 ≤ t < n/3 [PSL80,LSP82]. Furthermore, Fbc can be securely computed
with fairness in the presence of t-threshold adversaries for any 0 ≤ t < n [FGH+02]. Furthermore,

15See Section 3.14.
16See Section 3.6.
17See Section 3.14.

Preliminaries: x ∈ {0, 1}∗. The functionality proceeds as follows:

• Upon receiving the input x from the sender P1, send x to all parties P1, . . . , Pn.

Figure 3: The ideal functionality Fbc.
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these results hold irrespective of the model we are working in so long as we do not have explicit
access to Fbc.

3.8 Authentication Scheme with Public Verification

Definition 6. An authentication scheme for message space Mλ is a triple of PPT algorithms
T = (Gen,Tag,Verify) such that for all λ ∈ N and all messages m ∈Mλ,

Pr

[
sk

$← T .Gen(1λ)
σ = T .Tag(m; sk)

: T .Verify(σ,m) = 1

]
= 1

An authentication scheme for message space Mλ is existentially unforgeable if for any PPT adver-
sary A, the following probability is negligible in λ:

Pr



sk
$← T .Gen(1λ)
Q = ∅

mi
$← A(1λ,Q)

σi = T .Tag(mi; sk)
Q = Q∪ {(mi, σi)}


i

(m,σ)
$← A(1λ,Q)

: T .Verify(σ,m) = 1 ∧ (m,σ) 6∈ Q


We remark that both the Tag and Verify algorithms are deterministic.

3.9 Honest-Binding Commitment Schemes

We recall the notion of honest-binding commitments from [GKKZ11]. Commitment schemes are
a standard cryptographic tool. Roughly, a commitment scheme allows a sender S to generate a
commitment c to a message m in such a way that (1) the sender can later open the commitment to
the original value m (correctness); (2) the sender cannot generate a commitment that can be opened
to two different values (binding); and (3) the commitment reveals nothing about the sender’s value
m until it is opened (hiding). For our application, we need a variant of standard commitments that
guarantees binding when the sender is honest but ensures that binding can be violated if the sender
is dishonest. (In the latter case, we need some additional properties as well; these will become clear
in what follows.) Looking ahead, we will use such commitment schemes to enable a simulator in
security proofs to generate a commitment dishonestly. This will give the simulator the flexibility
to break binding and open the commitment to any desired message (if needed), while also being
able to ensure binding (when desired) by claiming that it generated the commitment honestly.

We consider only non-interactive commitment schemes. For simplicity, we define our schemes
in such a way that the decommitment information consists of the sender’s random coins ω that it
used when generating the commitment.

Definition 7. A (non-interactive) commitment scheme for message space Mλ is a pair of PPT
algorithms (Com,Open) such that for all λ ∈ N, all messages m ∈ Mλ, and all random coins ω it
holds that

Open(Com(1λ,m;ω), ω,m) = 1

A commitment scheme for message space Mλ is honest-binding if it satisfies the following:
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Binding (for an honest sender). For all PPT algorithms A (that maintain state throughout
their execution), the following probability is negligible in λ:

Pr

 m
$← A(1k);ω

$← {0, 1}∗
c = Com(1λ,m;ω)

(m′, ω′)
$← A(c, ω)

: Open(c,m′, ω′) = 1 ∧ m 6= m′


Equivocation. There is a pair of algorithms

(
C̃om, Õpen

)
such that for all PPT algorithms A

(that maintain state throughout their execution), the following quantity is negligible in λ:∣∣∣∣∣∣ Pr
[
m

$← A(1λ);ω
$← {0, 1}∗; c = Com(1λ,m;ω) : A(1λ, c, ω) = 1

]
−Pr

[
(c, state)

$← C̃om(1λ),m
$← A(1λ);ω

$← Õpen(state,m) : A(1λ, c, ω) = 1
]
∣∣∣∣∣∣

Equivocation implies the standard hiding property, namely, that for all PPT algorithms A (that
maintain state throughout their execution) the quantity is negligible in λ:∣∣∣ Pr

[
(m0,m1)

$← A(1λ); b
$← {0, 1}; c $← Com(1λ,mb) : A(c) = b

] ∣∣∣
We also observe that if (c, ω) are generated by

(
C̃om, Õpen

)
for some message m as in the definition

above, then binding still holds: namely, no PPT adversary given (m, c, ω) can find (m′, ω′) with
m′ 6= m such that Open(c,m′, ω′) = 1.

We will sometimes use the notation (c, ω)
$← Com(m) to mean c = Com(1λ,m;ω), suppressing λ

when it is clear from the context and having the committing algorithm Com return the commitment
and the decommitment information or opening. [GKKZ11] provides constructions of honest-binding
commitments for bits assuming the existence of one-way functions.

3.10 Digital Signatures

Definition 8. A (digital) signature scheme for message space Mλ is triple of PPT algorithms
V = (Gen,Sign,Verify) such that for all λ ∈ N and all messages m ∈Mλ,

Pr

[
(vk, sk)

$← V.Gen(1λ)

σ
$← V.Sign(m; sk)

: V.Verify(σ,m; vk) = 1

]
= 1

A signature scheme for message space Mλ is existentially unforgeable if for any PPT adversary A,
the following probability is negligible in λ:

Pr


(vk, sk)

$← V.Gen(1λ)
Q = ∅

mi
$← A(1λ,Q)

σi
$← V.Sign(mi; sk)

Q = Q∪ {(mi, σi)}


i

: V.Verify(σ,m; vk) = 1 ∧ (m,σ) 6∈ Q


[Rom90] provides constructions of existentially unforgeable signatures assuming the existence

of one-way functions.
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3.11 Authenticated Encryption

Formally, an authenticated encryption scheme E is a symmetric key encryption scheme that consists
of the following three PPT algorithms:

• E .Gen(1λ): Given the security parameter, λ, the key generation algorithm outputs a secret

key. This is denoted by: sk
$← E .Gen(1λ). This implicitly defines a message space Mλ.

• E .Enc(m; sk): Given the secret key sk and a message m ∈ Mλ, the encryption algorithm

returns a ciphertext ct
$← E .Enc(m; sk).

• E .Dec(ct; sk): Given the secret key sk and a ciphertext ct, the decryption algorithm returns a

message m
$← E .Dec(ct; sk), where m ∈Mλ ∪ {⊥}.

We make the standard correctness requirement; namely, for any sk output by E .Gen and any
m ∈Mλ, we have E .Dec(E .Enc(m; sk); sk) = m. We now give the formal definition of security.

Definition 9. Let E be an authenticated encryption scheme. We say that E is semantically secure
if the advantage of any PPT algorithm A in the game below is negligible in λ:

1. The key generation algorithm E .Gen(1λ) is run to get sk. The algorithm A is given 1λ as
input.

2. A outputs a challenge message pair (m0,m1) ∈M2
λ.

3. A bit b is chosen at random and a ciphertext ct
$← E .Enc(mb; sk) is computed. A receives ct.

4. A outputs a bit b′ ∈ {0, 1}.
The advantage of A is defined as 2 ·

∣∣Pr[b = b′]− 1
2

∣∣.
For authenticated encryption schemes, we are also considered with the notion of integrity of

ciphertexts. Informally, this means that an adversary, given access to any polynomial number of
ciphertexts, cannot come up with a different (unseen) valid ciphertext (one that decrypts to a
non-⊥ value in Mλ). We define this formally below.

Definition 10. Let E be an authenticated encryption scheme. We say that E is INT-CTXT-secure
if the advantage of any PPT algorithm A in the game below is negligible in λ:

1. The key generation algorithm E .Gen(1λ) is run to get sk and S = ∅ is initialized. The
algorithm A is given 1λ as input.

2. A may request (repeatedly) for the encryptions of messages of its choice. If A supplies a

message m ∈ Mλ, a ciphertext ct
$← E .Enc(m; sk) is computed, S = S ∪ {ct} is updated and

A receives ct.

3. A outputs a challenge ciphertext ct∗. The output of the decryption m∗
$← E .Dec(ct∗; sk) is

computed. If m∗ 6= ⊥, the value res = 1 is output. Otherwise, the value res = 0 is output.

The advantage of A is defined as Pr[res = 1].

For correctness and ease of exposition, as in [PST17], we will leverage Diffie-Hellman for key-
exchange and an authenticated encryption scheme. It is not hard to modify our protocols for
any secure key-exchange protocol. Since the existence of secure key exchange protocols imply the
existence of authenticated encryption, it would suffice to assume secure key-exchange.
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3.12 Receiver Non-Committing Encryption

We recall the notion of receiver non-committing encryption from [CHK05]. On a high level, a
receiver non-committing encryption scheme is one in which a simulator can generate a single “fake
ciphertext” and later “open” this ciphertext (by showing an appropriate secret key) as any given
message. These “fake ciphertexts” should be indistinguishable from real ciphertexts, even when an
adversary is given access to a decryption oracle before the fake ciphertext is known.

Formally, a receiver non-committing encryption scheme E consists of the following five PPT
algorithms:

• E .Gen(1λ): Given the security parameter, λ, the key generation algorithm outputs a key-pair

and some auxiliary information. This is denoted by: (pk, sk, z)
$← E .Gen(1λ). The public key

pk defines a message space Mλ.

• E .Enc(m; pk): Given the public key pk and a message m ∈ Mλ, the encryption algorithm

returns a ciphertext ct
$← E .Enc(m; pk).

• E .Dec(ct; sk): Given the secret key sk and a ciphertext ct, the decryption algorithm returns a

message m
$← E .Dec(ct; sk), where m ∈Mλ ∪ {⊥}.

• E .Ẽnc(pk, sk, z): Given the triple (pk, sk, z) output by E .Gen, the fake encryption algorithm

outputs a “fake ciphertext” c̃t
$← E .Ẽnc(pk, sk, z).

• E .D̃ec(pk, sk, z, c̃t,m): Given the triple (pk, sk, z) output by E .Gen, a “fake ciphertext” c̃t

output by E .Ẽnc and a message m ∈ Mλ, the “fake decryption” algorithm outputs a “fake

secret key” s̃k
$← E .D̃ec(pk, sk, z, c̃t,m). (Intuitively, s̃k is a valid-looking secret key for which

c̃t decrypts to m.)

We make the standard correctness requirement; namely, for any (pk, sk, z) output by E .Gen
and any m ∈ Mλ, we have E .Dec(E .Enc(m; pk); sk) = m. Our definition of security requires,
informally, that for any message m an adversary cannot distinguish whether it has been given a
“real” encryption of m along with a “real” secret key, or a “fake” ciphertext along with a “fake”
secret key under which the ciphertext decrypts to m. This should hold even when the adversary
has non-adaptive access to a decryption oracle. We now give the formal definition.

Definition 11. Let E be a receiver non-committing encryption scheme. We say that E is secure if
the advantage of any PPT algorithm A in the game below is negligible in λ:

1. The key generation algorithm E .Gen(1λ) is run to get (pk, sk, z).

2. The algorithm A is given 1λ and pk as input, and is also given access to a decryption oracle
E .Dec(·; sk). It then outputs a challenge message m ∈Mλ.

3. A bit b is chosen at random. If b = 1 then a ciphertext ct
$← E .Enc(m; pk) is computed, and A

receives (ct, sk). Otherwise, a “fake” ciphertext c̃t
$← E .Ẽnc(pk, sk, z) and a “fake” secret key

s̃k
$← E .D̃ec(pk, sk, z, c̃t,m) are computed, and A receives (c̃t, s̃k). (After this point, A can no

longer query its decryption oracle.) A outputs a bit b ∈ {0, 1}.

The advantage of A is defined as 2 ·
∣∣Pr[b = b′]− 1

2

∣∣.
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3.13 Non-interactive Non-Committing Encryption

We recall the notion of non-interactive non-committing encryption from [Nie02]. We do so in
two ways. The first way of looking at non-interactive non-committing encryption is that it is the
same as receiver non-committing encryption, except that it can equivocate multiple ciphertexts as
opposed to one. On a high level, a non-interactive non-committing encryption scheme is one in
which a simulator can generate multiple “fake ciphertexts” and later “open” them (by showing an
appropriate secret key) as any given message vector. We first note that the receiver non-committing
encryption scheme of [CHK05] can be extended, as noted by them, to support equivocation of
any bounded number of ciphertexts. However, the size of the key of the scheme would grow
linearly with the number of outstanding ciphertexts. Such schemes can be constructed based on
standard assumptions such as the quadratic residuosity assumption. If no bound on the number of
outstanding texts is known apriori, then as noted in [Nie02], constructing such schemes is impossible
in the standard model. The other way of looking at non-interactive non-committing encryption is
that it is a realization of the ideal functionality for public key encryption, namely, FPKE. We refer
the reader to [CKN03,CHK05] for further details.

For the sake of completeness and ease of later presentation, we recall the non-interactive non-
committing encryption scheme of [Nie02] in the random-oracle model. Let F = (K, F ) be a col-
lection of trapdoor permutations, where K denotes an index set and F = {fk}k∈K is a set of
permutations with efficiently samplable domains. For every k ∈ K, we denote by tk the trapdoor
associated with k which enables inversion of fk. We assume the existence of a generation algorithm
G which on input the security parameter λ outputs a key-trapdoor pair (k, tk) uniformly at random.
Let H : {0, 1}∗ → {0, 1}`(λ) be a random oracle (instantiated by an appropriate hash function).
The non-interactive non-committing encryption scheme E consists of the following algorithms:

• E .Gen(1λ): Given the security parameter, λ, the key generation algorithm obtains (k, tk) by
executing G with the security parameter λ as input. It then outputs the public and private
keys pk = (k, fk, H) and sk = tk. The message space is defined to be Mλ = {0, 1}`(λ).

• E .Enc(m; pk): Given the public key pk and a message m ∈ Mλ, the encryption algorithm
samples x from the domain of fk and returns a ciphertext ct = (fk(x), H(x)⊕m).

• E .Dec(ct; sk): Given the secret key sk and a ciphertext ct = (ct1, ct2), the decryption algorithm
computes x by inverting ct1 using tk and returns the message m = H(x)⊕ ct2.

We refer the reader to [Nie02] for a complete proof that the scheme defined above is a non-
interactive non-committing encryption scheme. The sketch the proof here. The scheme is clearly
non-interactive. We now need to design a simulator S which can generate multiple “fake cipher-
texts” and later “open” them to an arbitrary sequence of messages. Note that this is easy to
do. To generate n “fake ciphertexts”, S samples x1, . . . , xn independently at random from the

domain of fk. It then samples y1, . . . , yn
$← {0, 1}`(λ). The m ciphertexts are defined to be

{cti}i∈[n] where cti = (fk(xi), yi). Then, in order to open the n ciphertexts to a message vector
−→m = (m1, . . . ,mn) ∈Mn

λ, S would program the random oracle H such that H(xi) = mi⊕ yi. Note
that this ensures that the “fake ciphertexts” do in fact “open” to the message vector −→m. We also
stress, as this will be required for us later, that the simulator need not know n in advance, that is,
it can produce any (polynomially bounded) number of “fake ciphertexts” and later “open” them as
required. This is also precisely the difference from receiver non-committing encryption as described
earlier which necessitates the use of random oracles as noted in [Nie02].
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Preliminaries: x1, x2 ∈ {0, 1}∗; f1, f2 are 2-input, 2-output functions; φ1, φ2 are boolean predi-
cates. The functionality proceeds as follows:

• Input phase. Upon receiving inputs (x1, f = (f1, f2, φ1, φ2)) from P1 and (x2, f
′) from

P2, check if f = f ′. If not, abort. Else, compute f1(x1, x2). If f1(x1, x2) = ⊥a, abort.
Else, send f1(x1, x2) to both parties, and go to next phase.

• Trigger phase. Upon receiving input w from party Pi, check if φi(w) = 1. If yes, then
send (w, f2(x1, x2, w)) to both P1 and P2.

aWe crucially require that ⊥ is a special symbol different from the empty string. We use ⊥ as a means of
signalling that the input phase of FSyX did not complete successfully. We will however allow parties to attempt
to invoke the input phase of the functionality at a later time. However, as we proceed, we will also have our
functionality be clock-aware and thus only accept invocations to the input phase until a certain point in time.
After the input phase times out, the functionality is rendered completely unusable. Similarly, if the input phase
has been completed successfully, a clock-oblivious version of the functionality can be triggered at any point in
time as long as a valid witness is provided, no matter the number of failed attempts. The clock-aware version of
the functionality, however, will only accept invocations of the trigger phase until a certain point in time. After
the trigger phase times out, the functionality is rendered completely unusable.

Figure 4: The ideal functionality FSyX.

3.14 Synchronizable Exchange

Synchronizable exchange is defined as in Figure 4. In order to guarantee termiantion, we will
need our ideal functionality to be “clock-aware”. In this work, we stick to the formalism outlined
in [PST17]. We recall that in this model, we assume that every party and every invocation of the
ideal functionality FSyX has access to a variable r that reflects the current round number. More
generally, every function and predicate that is part of the specification of FSyX may also take r as
an input. Finally, the functionality may also time out after a pre-programmed amount of time.
We describe this clock-aware functionality in Figure 5. It is known that FSyX is complete for fair
secure multiparty computation. We state this result formally below.

Lemma 9. [KRS20] Consider n parties P1, . . . , Pn in the point-to-point model. Then, assuming
the existence of one-way functions, there exists a protocol π which securely computes FMPC with
fairness in the presence of t-threshold adversaries for any 0 ≤ t < n in the FSyX-hybrid model.

Lemma 10. [KRS20] Consider n parties P1, . . . , Pn in the point-to-point model. Then, assuming
the existence of one-way permutations, there exists a protocol π in the programmable random oracle
model which securely preprocesses for and computes an arbitrary (polynomial) number of instances
of FMPC with fairness in the presence of t-threshold adversaries for any 0 ≤ t < n in the FSyX-hybrid
model.

3.15 Attested Execution Secure Processors

In this section, we recall the Gatt abstraction from [PST17] capturing the essence of SGX-like
secure processors that provide anonymous attestation (see Figure 6). We review the abstraction
and explain some technicalities in the modeling.
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Preliminaries: x1, x2 ∈ {0, 1}∗; f1, f2 are 2-output functions; φ1, φ2 are boolean predicates;
r denotes the current round number; INPUT TIMEOUT < TRIGGER TIMEOUT are round
numbers representing time outs. The functionality proceeds as follows:

• Load phase. If r > INPUT TIMEOUT, abort. Otherwise, upon receiving inputs of the
form (x1, f = (f1, f2, φ1, φ2)) from P1 and (x2, f

′) from P2, check if f = f ′. If not, abort.
Else, compute f1(x1, x2, r). If f1(x1, x2, r) = ⊥, abort. Else, send f i1(x1, x2, r) to Pi for
i ∈ {1, 2}, and go to next phase.

• Trigger phase. If r > TRIGGER TIMEOUT, abort. Otherwise, upon receiving input w
from party Pi, check if φi(w, r) = 1. If yes, then send (w, f j2 (x1, x2, w, r)) to both parties
Pj for j ∈ {1, 2}.

Figure 5: The clock-aware ideal functionality FSyX.

Gatt[V, reg]

// initialization:
On initialize: (vkatt, skatt) := V.Gen(1λ), T = ∅

// public query interface:
On receive* getpk() from some P : send vkatt to P

Enclave operations

// local interface – install an enclave:
On receive* install(idx, prog) from some P ∈ reg:
if P is honest, assert idx = sid

generate nonce eid ∈ {0, 1}λ, store T [eid, P ] :=
(

idx, prog,
−→
0
)

, send eid to P

// local interface – resume an enclave:
On receive* resume(eid, inp) from some P ∈ reg:
let (idx, prog,mem) := T [eid, P ], abort if not found
let (outp,mem) := prog(inp,mem), update T [eid, P ] := (idx, prog,mem)
let σ := V.Sign (idx, eid, prog, outp; skatt), and send (outp, σ) to P

Figure 6: The ideal functionality Gatt – a global functionality modeling an SGX-like secure
processor. Blue (and starred*) activation points denote reentrant activation points. Green ac-
tivation points are executed at most once. The enclave program prog may be probabilistic and
this is important for privacy-preserving applications. Enclave program outputs are included in an
anonymous attestation σ. For honest parties, the functionality verifies that installed enclaves are
parametrized by the session ID, sid of the current protocol instance.
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1. Registry. First, Gatt is parametrized with a static registry reg this is meant to capture all
platforms that are equipped with an attested execution processor.

2. Stateful enclave operations. A platform P that is in the registry reg may invoke enclave
operations, including:

• install: installing a new enclave with a program prog, henceforth referred to as the
enclave program. Upon installation, Gatt simply generates a fresh enclave identifier eid
and returns the eid. This enclave identifier may now be used to uniquely identify the
enclave instance.

• resume: resuming the execution of an existing enclave with inputs inp. Upon a resume
call, Gatt execute the prog over the inputs inp, an outputs an output outp. Gatt would
then sign the prog together with outp as well as additional metadata, and return both
outp and the resulting attestation. Each installed enclave can be resumed multiple times,
and we stress that the enclave operations store state across multiple resume invocations.

3. Anonymous attestation. Anonymous attestation allows a user to verify that the attes-
tation is produced by some attested execution processor, without identifying which one. To
capture such anonymous attestation, the Gatt functionality has a manufacturer public key and
secret key pair denoted by (mpk,msk), and is parametrized by a signature scheme V. When
an enclave resume operation is invoked, Gatt signs any output to be attested with msk using
the signature scheme V. Gatt provides the manufacturer public key mpk to any party upon
query, using which, any party can verify an anonymous attestation signed by Gatt.

The enclave program prog and all inputs inp are observable by the platform P that owns the
secure processor, since P must be an intermediary in all interactions with its local secure processor.

3.16 Witness Indistinguishable Proof Systems

Definition 12. A non-interactive witness indistinguishable proof system, henceforth denoted by
NIWI, for an NP language L consists of the following algorithms:

• crs
$← Gen(1λ): The generation algorithm takes as input18 the security parameter λ and

generates a common reference string crs.

• π $← Prove(crs, stmt, w): The proof generation algorithm takes as input the common reference
string crs, a statement stmt and a witness w such that (stmt, w) ∈ RL, and produces a proof
π.

• b $← Verify(crs, stmt, π): The proof verification algorithm takes as input the common reference
string crs, a statement stmt and a proof π, and outputs 0 or 1, denoting accept or reject.

Perfect Completeness. A non-interactive proof system is said to be perfectly complete, if an
honest prover with a valid witness can always convince an honest verifier. Formally, for any
(stmt, w) ∈ RL, we have that

Pr[crs
$← Gen(1λ), π

$← Prove(crs, stmt, w) : Verify(crs, stmt, π) = 1] = 1
18We assume that a description of the language L is also provided implicitly as an input.
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Gacrs

On initialize: (pkE,acrs, skE,acrs)
$← E .Gen(1λ), (vkV,acrs, skV,acrs)

$← V.Gen(1λ), crs
$← NIWI.Gen(1λ)

On receive* “crs” from P : return Gacrs.mpk := (pkE,acrs, vkV,acrs, crs)

On receive* “idk” from P : assert P is corrupt, and then return V.Sign(P ; skV,acrs)

Figure 7: The ideal functionality Gacrs – a global augmented common reference string.
Generates a public encryption key pair, a signing key pair, and a common reference string for the
witness indistinguishable proof system. Upon query from a (corrupt) party, returns a signature on
the party’s identifier henceforth called the identity key.

Computational Soundness. A non-interactive proof system is said to be computationally sound
if for all PPT adversaries A, the following probability is negligible in λ:

Pr[crs
$← Gen(1λ), (stmt, π)

$← A(crs) : Verify(crs, stmt, π) = 1 ∧ stmt 6∈ L]

Witness Indistinguishability. A non-interactive proof system is said to be witness indistin-
guishable if for all PPT adversaries A, the following quantity is negligible in λ:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

 crs
$← Gen(1λ),

(stmt, w0, w1)
$← A(crs)

π
$← Prove(crs, stmt, w0)

:
(stmt, w0) ∈ RL ∧ (stmt, w1) ∈ RL

∧ A(π) = 1


−Pr

 crs
$← Gen(1λ),

(stmt, w0, w1)
$← A(crs)

π
$← Prove(crs, stmt, w1)

:
(stmt, w0) ∈ RL ∧ (stmt, w1) ∈ RL

∧ A(π) = 1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
3.17 Augmented Global CRS

The augmented global CRS functionality denoted by Gacrs is described in Figure 7. We recall the
need for this functionality in the context of [PST17]. Gacrs was first proposed by [CDPW07]. Gacrs
provides a common reference string that is honestly generated. Honest parties never have to query
Gacrs for any additional information. On the other hand, Gacrs leaves a backdoor for the adversary,
such that the adversary can obtain identity keys pertaining to their party identifiers. In practice,
the Gacrs functionality can be implemented by having a trusted third party (which may be the
trusted hardware manufacturer) that generates the reference string and hands out the appropriate
secret keys as in [CDPW07].

3.18 Bulletin Board

We borrow the bulletin board abstraction of a shared ledger, defined in [CGJ+17] and [SGK19].
The bulletin board models a public ledger that lets parties publish arbitrary strings. On publishing
the string on the bulletin board, the party receives a proof to establish that the string was indeed
published. We model these proofs via authentication tags that can be publicly verified and the
string subsequently publicly accessible. The bulletin board also guarantees that strings that were
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FBB

// initialization:

On initialize: skBB
$← T .Gen(1λ), t = 0, Ledger = ∅

// public query interface:
On receive* getCurrentCounter() from P : send t to P

// posting to the bulletin board:
On receive* post(x) from P :
update t = t+ 1
let σ = T .Tag(t‖x; skBB)
update Ledger = Ledger ∪ {(t, x, σ)}
send (t, σ) to P

// reading from the bulletin board:

On receive* getContent(T ) from P :

assert T ≤ t
compute (x, σ) such that (T, x, σ) ∈ Ledger

send (x, σ) to P

Figure 8: The ideal functionality FBB – a public shared ledger. Generates a key for authenti-
cation, a counter and a set (for elements published on the ledger, along with their timestamps and
tags). Upon query, it returns the current counter, which is the number of items published on the
ledger; or the content published at a given time. It also allows parties to post items to the ledger –
the functionality computes a tag on it, appends the item along with its tag and timestamp to the
ledger set and returns the tag and timestamp.

successfully published will never be modified or deleted. For security, we require that the authen-
tication tags follow the standard notion of unforgeability described in Section 3.8. In addition, the
bulletin board implements a counter. Each time a string is published on the bulletin board, the
counter is incremented and the authentication tag is produced on the string-counter pair. While
the counter value of the bulletin board is assumed to be publicly accessible, we model is as an
explicit query. We model the bulletin board as an ideal functionality FBB as described in Figure 8.
The bulletin board abstraction can be instantiated using fork-less blockchains, such as permissioned
blockchains and potentially even by blockchains based on proof-of-stake [AAB+19,ABB+18].

4 Synchronizable Exchange in the (Gatt,FBB)-Hybrid Model

In this section, we show how the ideal functionality for synchronizable exchange FSyX can be
realized in the (Gatt,FBB)-hybrid model. The idea for the construction is the following. Each party
loads their inputs to FSyX into their own instances of a secure attested execution processor. The
processors then exchange the inputs that have loaded into them. In more detail, the processors
generate authenticated encryptions of the inputs which the parties exchange and feed into their
respective processors. Once the exchange is complete, one of the processors (arbitrary) generates
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an authenticated encryption of the output of the load phase of FSyX. The party that obtains this
ciphertext then publishes it using the ideal functionality FBB and obtains a proof that it did so.
Note that this proof also tracks the time at which the ciphertext was published. At this point, if
both parties behaved honestly, they are both in a position to obtain the output of the load phase.
The party that obtained a proof from FBB feeds the proof into its processor which then ensures
that the ciphertext was posted correctly and within the input timeout and then releases the output
of the load phase in the clear. The other party obtains the ciphertext from the ideal functionality
FBB and feeds it into its processor which then decrypts it and releases the output of the load phase
in the clear, provided the ciphertext was valid and was posted within the input timeout.

When a party wishes to trigger FSyX, it feeds the triggering witness into its processor which then
checks that the witness is valid and that the trigger timeout has not elapsed. If so, the processor
generates an authenticated encryption of the output of the trigger phase of FSyX. The party then
publishes the ciphertext using the ideal functionality FBB and obtains a proof that it did so. The
party then feeds the proof into its processor which then ensures that the ciphertext was posted
correctly and within the trigger timeout and then releases the output of the trigger phase in the
clear. The other party obtains the ciphertext from the ideal functionality FBB and feeds it into its
processor which then decrypts it and releases the output of the trigger phase in the clear, provided
the ciphertext was valid and was posted within the trigger timeout.

We formalize this construction in Figures 9, 10, 11 and 12.

Theorem 1. Assuming that DDH holds in the relevant group, E is perfectly correct, and satisfies
semantic security and INT-CTXT security, and that T and V are existentially unforgeable, it holds
that the protocol described in Figures 9, 10, 11 and 12 securely realizes FSyX with guaranteed output
delivery.

Proof. We now prove the above theorem. When both parties are honest, it is not difficult to
construct a simulation. We focus on the more interesting case when one party is corrupt. First, we
consider the case when P1 is honest and P2 is corrupt.

We can now construct a simulator S as described below.

• Unless otherwise noted later, S passes through messages between P2 and Gatt.

• S calls eid1 := Gatt.install(sid, progSyX,1[P1]), and (gy1 , σ1) := Gatt.resume(eid1, (“keyex”)) and
sends (eid1, g

y1 , σ1) to P2. S waits to receive the first message (eid2, g
y2 , σ2) from P2 – if this

tuple was not the answer to a previous Gatt query, jump to the exception handler denoted
except. At this point, eid2 is called the challenge eid.

• S checks that V.Verify(σ2, (sid, eid2, progSyX,2[P2], g
y2); vkatt) succeeds. If not, jump to the

exception handler denoted except.

• S calls (ct1, ) := Gatt.resume(eid1, (“send”, gy2 ,~0)) and sends ct1 to P2.

• The first time P2 calls Gatt.resume(eid2, (“loadstart”, inp2, ct1)) for some input inp2 where eid2
is the challenge eid, and ct1 is what S has sent, the simulator S extracts and saves inp2.

• S waits to receive the message ct2 from P2. If (ct2, ) is the not the result of the first
Gatt.resume(eid2, (“send”, gy1)) call where eid2 is the challenge eid, and gy1 was what S pre-
viously sent to P2, or if no such call has taken place, then jump to the exception handler
denoted except.
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progSyX,1[P1]

On input (“keyex”): y1
$← Zp, return gy1

On input (“send”, gy2 , inp1): assert “keyex” has been called, sk := (gy2)y1 , ct := E .Enc(inp1; sk), return ct

On input (“loadstart”, ct2):
assert “send” has been called, assert ct2 not seen
inp2 := E .Dec(ct2; sk), assert that decryption succeeds
parse inp1 := (sid, INPUT TIMEOUT,TRIGGER TIMEOUT, x1, f)
parse inp2 := (sid′, INPUT TIMEOUT′,TRIGGER TIMEOUT′, x2, f

′)
assert that: sid = sid′, f = f ′, INPUT TIMEOUT = INPUT TIMEOUT′, and

TRIGGER TIMEOUT = TRIGGER TIMEOUT′

assert r ≤ INPUT TIMEOUT, parse f = (f1, f2, φ1, φ2)
z11 = f11 (x1, x2, r), z

2
1 = f21 (x1, x2, r), ctload := E .Enc(z21 ; sk), return (ctload, “ok”)

On input (“loadfinish”, σ3, tload, σ4, v):
if v 6= ⊥, return (v, “ok”)
assert “loadstart” has been called and returned (·, “ok”)
assert V.Verify(σ3, (sid, eid1, progSyX,1[P1], (ctload, “ok”)); vkatt)
assert T .Verify(σ4, tload‖“load”‖sid‖ctload‖σ3)
assert tload ≤ INPUT TIMEOUT, set i1 := 0, i2 := 0, return (z11 , “ok”)

On input* (“triggerstart”, w1):
assert “loadfinish” has been called and returned (·, “ok”)
assert i1 = 0 or “triggerfinish” has been called and returned (·, i1 − 1, “ok”)

and “triggerstart” has never previously returned (·, i1, “ok”)
assert φ1(w1) = 1 and that r ≤ TRIGGER TIMEOUT
i1 := i1 + 1, z2,i1 := f2(x1, x2, w1, r), cttrigger1,i1 := E .Enc(z2,i1 ; sk)
return (cttrigger1,i1 , i1, “ok”)

On input* (“triggerfinish”, σ5,i1 , ttrigger1,i1 , σ6,i1):
assert “triggerstart” has been called and returned (·, i1, “ok”)
assert “triggerfinish” has never previously returned (·, i1, “ok”)
assert V.Verify(σ5,i1 , (sid, eid1, progSyX,1[P1], (cttrigger1,i1 , i1, “ok”)); vkatt)
assert T .Verify(σ6,i1 , ttrigger1,i1‖“trigger1”‖sid‖i1‖cttrigger1,i1‖σ5,i1)
assert ttrigger1,i1 ≤ TRIGGER TIMEOUT, return (z2,i1 , i1, “ok”)

On input* (“triggerbyother”, cttrigger2,i2+1, σ7,i2+1, ttrigger2,i2+1, σ8,i2+1, v):
if v 6= ⊥, i2 := i2 + 1, return (v, i2, “ok”)
assert “loadfinish” has been called and returned (·, “ok”)
assert i2 = 0 or “triggerbyother” has been called and returned (·, i2 − 1, “ok”)

and “triggerbyother” has never previously returned (·, i2, “ok”)
assert V.Verify(σ7,i2+1, (sid, eid2, progSyX,2[P2], (cttrigger2,i2+1, i2 + 1, “ok”)); vkatt), and

T .Verify(σ8,i2+1, ttrigger2,i2+1‖“trigger2”‖sid‖(i2 + 1)‖cttrigger2,i2+1‖σ7,i2+1)
assert ttrigger2,i2+1 ≤ TRIGGER TIMEOUT

z3,i2+1 := E .Dec(cttrigger2,i2+1; sk), assert that decryption succeeds, i2 := i2+1, return (z3,i2 , i2, “ok”)

Figure 9: Program installed in the secure hardware of Party P1.
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progSyX,2[P2]

On input (“keyex”): y2
$← Zp, return gy2

On input (“loadstart”, inp2, ct1):
assert “keyex” has been called, assert ct1 not seen
inp1 := E .Dec(ct1; sk), assert that decryption succeeds
parse inp1 := (sid, INPUT TIMEOUT,TRIGGER TIMEOUT, x1, f)
parse inp2 := (sid′, INPUT TIMEOUT′,TRIGGER TIMEOUT′, x2, f

′)
assert that: sid = sid′, f = f ′, INPUT TIMEOUT = INPUT TIMEOUT′, and

TRIGGER TIMEOUT = TRIGGER TIMEOUT′

assert r ≤ INPUT TIMEOUT, parse f = (f1, f2, φ1, φ2), return “ok”

On input (“send”, gy1):
assert “loadtstart” has been called and returned “ok”, sk := (gy1)y2 , ct := E .Enc(inp2; sk), return ct

On input (“loadfinish”, ctload, σ3, tload, σ4, v):
if v 6= ⊥, return (v, “ok”)
assert “loadstart” has been called and returned “ok”, assert ctload not seen
assert V.Verify(σ3, (sid, eid1, progSyX,1[P1], (ctload, “ok”)); vkatt)
assert T .Verify(σ4, tload‖“load”‖sid‖ctload‖σ3)
assert tload ≤ INPUT TIMEOUT
z21 := E .Dec(ctload; sk), assert that decryption succeeds, set i1 := 0, i2 := 0, return (z21 , “ok”)

On input* (“triggerstart”, w2):
assert “loadfinish” has been called and returned (·, “ok”)
assert i2 = 0 or “triggerfinish” has been called and returned (·, i2 − 1, “ok”)

and “triggerstart” has never previously returned (·, i2, “ok”)
assert φ2(w2) = 1 and that r ≤ TRIGGER TIMEOUT
i2 := i2 + 1, z3,i2 := f2(x1, x2, w2, r), cttrigger2,i2 := E .Enc(z3,i2 ; sk), return (cttrigger2,i2 , i2, “ok”)

On input* (“triggerfinish”, σ7,i2 , ttrigger2,i2 , σ8,i2):
assert “triggerstart” has been called and returned (·, i2, “ok”)
assert “triggerfinish” has never previously returned (·, i2, “ok”)
assert V.Verify(σ7,i2 , (sid, eid2, progSyX,2[P2], (cttrigger2,i2 , i2, “ok”)); vkatt)
assert T .Verify(σ8,i2 , ttrigger2,i2‖“trigger2”‖sid‖i2‖cttrigger2,i2‖σ7,i2)
assert ttrigger2,i2 ≤ TRIGGER TIMEOUT, return (z3,i2 , i2, “ok”)

On input* (“triggerbyother”, cttrigger1,i1+1, σ5,i1+1, ttrigger1,i1+1, σ6,i1+1, v):
if v 6= ⊥, i1 := i1 + 1, return (v, i1, “ok”)
assert “loadfinish” has been called and returned (·, “ok”)
assert i1 = 0 or “triggerbyother” has been called and returned (·, i1 − 1, “ok”)

and “triggerbyother” has never previously returned (·, i1, “ok”)
assert V.Verify(σ5,i1+1, (sid, eid1, progSyX,1[P1], (cttrigger1,i1+1, i1 + 1, “ok”)); vkatt), and

T .Verify(σ6,i1+1, ttrigger1,i1+1‖“trigger1”‖sid‖(i1 + 1)‖cttrigger1,i1+1‖σ5,i1+1)
assert ttrigger1,i1+1 ≤ TRIGGER TIMEOUT

z2,i1+1 := E .Dec(cttrigger1,i1+1; sk), assert that decryption succeeds, i1 := i1+1, return (z2,i1 , i1, “ok”)

Figure 10: Program installed in the secure hardware of Party P2.
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ProtSyX,1[sid, P1]

inp1 := (sid, INPUT TIMEOUT,TRIGGER TIMEOUT, x1, f = (f1, f2, φ1, φ2))

Initialization

eid1 := Gatt.install(sid, progSyX,1[P1])
henceforth denote Gatt.resume(·) := Gatt.resume(eid1, ·)
(gy1 , σ1) := Gatt.resume(“keyex”)
send (eid1, g

y1 , σ1) to P2, await (eid2, g
y2 , σ2)

assert V.Verify(σ2, (sid, eid2, progSyX,2[P2], gy2); vkatt)

Load Phase

(ct1, ) := Gatt.resume(“send”, gy2 , inp1), send ct1 to P2, await ct2
(ctload, “ok”, σ3) := Gatt.resume(“loadstart”, ct2)
(tload, σ4) := FBB.post(“load”‖sid‖ctload‖σ3)
(z11 , “ok”, ) := Gatt.resume(“loadfinish”, σ3, tload, σ4,⊥), set i1 := 0, i2 := 0

Trigger Phase

Triggers by P1
i1 := i1 + 1
(cttrigger1,i1 , i1, “ok”, σ5,i1) := Gatt.resume(“triggerstart”, w1)
(ttrigger1,i1 , σ6,i1) := FBB.post(“trigger1”‖sid‖i1‖cttrigger1,i1‖σ5,i1)
(z2,i1 , i1, “ok”, ) := Gatt.resume(“triggerfinish”, σ5,i1 , ttrigger1,i1 , σ6,i1)


Triggers by P2

obtain a ttrigger2,i2+1 ≤ TRIGGER TIMEOUT such that
(“trigger2”‖sid‖(i2 + 1)‖cttrigger2,i2+1‖σ7,i2+1, σ8,i2+1) := FBB.getContent(ttrigger2,i2+1)

(z3,i2+1, i2 + 1, “ok”, ) := Gatt.resume(“triggerbyother”, cttrigger2,i2+1, σ7,i2+1, ttrigger2,i2+1, σ8,i2+1)
i2 := i2 + 1


Figure 11: Protocol executed by Party P1 in realizing FSyX.
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ProtSyX,2[sid, P2]

inp2 := (sid, INPUT TIMEOUT,TRIGGER TIMEOUT, x2, f = (f1, f2, φ1, φ2))

Initialization

eid2 := Gatt.install(sid, progSyX,2[P2])
henceforth denote Gatt.resume(·) := Gatt.resume(eid2, ·)
(gy2 , σ2) := Gatt.resume(“keyex”)
send (eid2, g

y2 , σ2) to P1, await (eid1, g
y1 , σ1)

assert V.Verify(σ1, (sid, eid1, progSyX,1[P1], gy1); vkatt)

Load Phase

Await ct1
(“ok”, ) := Gatt.resume(“loadstart”, inp2, ct1)
(ct2, ) := Gatt.resume(“send”, gy1), send ct2 to P1

obtain a tload ≤ INPUT TIMEOUT such that
(“load”‖sid‖ctload‖σ3, σ4) := FBB.getContent(tload)

(z21 , “ok”, ) := Gatt.resume(“loadfinish”, ctload, σ3, tload, σ4,⊥), set i1 := 0, i2 := 0

Trigger Phase

Triggers by P2
i2 := i2 + 1
(cttrigger2,i2 , i2, “ok”, σ7,i2) := Gatt.resume(“triggerstart”, w2)
(ttrigger2,i2 , σ8,i2) := FBB.post(“trigger2”‖sid‖i2‖cttrigger2,i2‖σ7,i2)
(z3,i2 , i2, “ok”, ) := Gatt.resume(“triggerfinish”, σ7,i2 , ttrigger2,i2 , σ8,i2)


Triggers by P1

obtain a ttrigger1,i1+1 ≤ TRIGGER TIMEOUT such that
(“trigger1”‖sid‖(i1 + 1)‖cttrigger1,i1+1‖σ5,i1+1, σ6,i1+1) := FBB.getContent(ttrigger1,i2+1)

(z2,i1+1, i1 + 1, “ok”, ) := Gatt.resume(“triggerbyother”, cttrigger1,i1+1, σ5,i1+1, ttrigger1,i1+1, σ6,i1+1)
i1 := i1 + 1


Figure 12: Protocol executed by Party P2 in realizing FSyX.

31



• At this point, the load phase of FSyX has been completed. S sends inp2
19 to the trusted party

computing FSyX with guaranteed output delivery. It receives the corrupt party’s output for
the load phase, namely, z21 .

• S calls (ctload, “ok”, σ3) := Gatt.resume(eid1, (“loadstart”, ct2)) and. S then calls (tload, σ4) :=
FBB.post(“load”‖sid‖ctload‖σ3).

• When S receives Gatt.resume(eid2, (“loadfinish”, ctload, σ3, tload, σ4, v)) from P2, if v 6= ⊥, pass
through the call. Else, when S first receives such a call with v = ⊥, S calls (z21 , “ok”, σsim,1) :=
Gatt.resume(eid1, (“loadfinish”, σ3, tload, σ4, z

2
1)) and returns (z21 , “ok”, σsim,1).

Hybrid 0. Identical to the simulation, except that every occurrence of the challenge sk = gy1y2

is replaced with a random key.

Claim 1. Assume that DDH holds, then Hybrid 0 is computationally indistinguishable from the
simulation.

Proof. Straightforward reduction to DDH security.

Hybrid 1. Identical to Hybrid 0, except that every time the exception handler is triggered in the
simulation, if the real-world P1 would not have had an assertion failure or awaited a message that
did not arrive at the end of a round, abort the simulation.

Claim 2. Assume that T and V are existentially unforgeable and that E has INT-CTXT security,
then Hybrid 1 aborts with negligible probability.

Proof. If the exception handler is triggered in the simulation, and the real-world P1 did not have a
signature verification failure or a ct-related failure (that is, either ct was seen before or decryption of
ct did not succeed or yield the expected result), then one can easily leverage P2 to build a reduction
that either breaks the unforgeability of T , V or the INT-CTXT security of E .

Hybrid 2. Identical to Hybrid 1, except that encryption of the~0 vector is replaced with encryption
of the honest client’s true input.

Claim 3. Assume that E is semantically secure, then Hybrid 2 is computationally indistinguishable
from Hybrid 1.

Proof. Straightforward reduction to the semantic security of E .

19We note that the format of inp2 := (sid′, INPUT TIMEOUT′,TRIGGER TIMEOUT′, x2, f
′) is different from the

input format that the ideal functionality FSyX described in Figure 5 expects to receive. In particular, the differ-
ences are that there is a new variable representing the session identifier sid and that the round numbers corre-
sponding to the time outs INPUT TIMEOUT′,TRIGGER TIMEOUT′ are not pre-programmed but are part of the
input to the functionality itself. These syntactical differences are merely to make the functionality presented
in Figure 5 more readable and do not have any impact on the correctness of the definition or realization. In
other words, the ideal functionality defined in Figure 5 can be readily modified to expect inputs of the form
inp2 := (sid′, INPUT TIMEOUT′,TRIGGER TIMEOUT′, x2, f

′). We omit the details for simplicity here.
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Hybrid 3. Identical to Hybrid 2, except that the challenge sk is now replaced with the true gy1y2

again.

Claim 4. Assume that DDH holds, then Hybrid 3 is computationally indistinguishable from Hybrid
2.

Proof. By straightforward reduction to DDH security.

Claim 5. Conditioned on simulation not aborting, Hybrid 3 is identically distributed as the real
execution.

Proof. Straightforward to observe.

Combining the above Theorem 1 and Lemma 9, we obtain the following theorem.

Theorem 2. Consider n parties P1, . . . , Pn in the point-to-point model. Then, assuming the ex-
istence of one-way functions and key-exchange, there exists a protocol π which securely computes
FMPC with fairness in the presence of t-threshold adversaries for any 0 ≤ t < n in the (Gatt,FBB)-
hybrid model.

5 Synchronizable Exchange with One-Sided Triggers

In this work, we consider the primitive of synchronizable exchange where only one of the parties
may trigger the ideal functionality in the trigger phase. In other words, we inspect the power of
the primitive where either φ1 ≡ 0 or φ2 ≡ 0 (as defined in Figures 4 and 5). The motivation for
this is the following. As noted in Section 4, it is possible to realize synchronizable exchange in the
(Gatt,FBB)-hybrid model. Furthermore, only a party that wishes to trigger the ideal functionality
in the trigger phase needs to possess an instance of secure hardware. Since, we would view such
secure hardware as a resource whose requirement we would like to minimize, we in turn model the
ability to trigger the ideal functionality in the trigger phase as a resource whose requirement we
would like to minimize. If neither of the parties may trigger the functionality in the trigger phase,
that is, if φ1 = φ2 ≡ 0, then, the functionality is equivalent to the ideal functionality F2PC (FMPC

for n = 2 parties; refer Figure 2). However, it is unclear what the power of the primitive is when
either φ1 ≡ 0 or φ2 ≡ 0 but not both.

In the context of a multiparty network, this allows to interpret things in another way. It is
easy to see that parties may use a single instance of secure hardware and yet interact with multiple
instances of the ideal functionality FSyX and trigger all of them in their respective trigger phases.
Thus, the only parties that need to possess instances of secure hardware are those that wish to
trigger some instance of the ideal functionality FSyX. We can thus model the ability to trigger an
instance of the ideal functionality FSyX in its trigger phase as a resource whose requirement we
would like to minimize. This would in turn minimize the number of parties that would need to
possess an instance of secure hardware while realizing our protocols in the (Gatt,FBB)-hybrid model.
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5.1 Synchronizable Exchange with One-Sided Triggers in the (Gatt,Gacrs,FBB)-
Hybrid Model

We show how the ideal functionality for synchronizable exchange FSyX with one-sided trigger can
be realized in the (Gatt,Gacrs,FBB)-hybrid model. The idea for the construction is the following.
The party not possessing the secure attestation processor loads its input into the secure attestation
processor of the other party. In more detail, the processor generate a key to which the other
party uses to encrypt its input, along with a key for an authenticated encryption scheme that the
two would now share. The processor waits to receive an authenticated encryption of the message
“continue” from the the other party which is meant to indicate that the right ciphertext has been
fed into the processor, that is, the processor now correctly possesses the other party’s input. Now,
as in Section 4, the processor generates an authenticated encryption of the output of the load phase
of FSyX. The party that obtains this ciphertext then publishes it using the ideal functionality FBB

and obtains a proof that it did so. Note that this proof also tracks the time at which the ciphertext
was published. At this point, if both parties behaved honestly, they are both in a position to obtain
the output of the load phase. The party that obtained a proof from FBB feeds the proof into its
processor which then ensures that the ciphertext was posted correctly and within the input timeout
and then releases the output of the load phase in the clear. The other party obtains the ciphertext
from the ideal functionality FBB and decrypts to obtain the output of the load phase.

When the party with the processor wishes to trigger FSyX, it feeds the triggering witness into its
processor which then checks that the witness is valid and that the trigger timeout has not elapsed.
If so, the processor generates an authenticated encryption of the output of the trigger phase of
FSyX. The party then publishes the ciphertext using the ideal functionality FBB and obtains a
proof that it did so. The party then feeds the proof into its processor which then ensures that the
ciphertext was posted correctly and within the trigger timeout and then releases the output of the
trigger phase in the clear. The other party obtains the ciphertext from the ideal functionality FBB

and decrypts to obtain the output of the trigger phase.
We formalize this construction in Figures 13, 14 and 15.

Theorem 3. Assuming that DDH holds in the relevant group, E1 is perfect correct, and satisfies
semantic security, E2 is perfectly correct, and satisfies semantic security and INT-CTXT security,
the proof system satisfies computational soundness and witness indistinguishability, and that T and
V are existentially unforgeable, it holds that the protocol described in Figures 13, 14 and 15 securely
realizes FSyX with one-sided trigger with guaranteed output delivery.

6 Fair Secure Computation using t instances of secure hardware

In this section, we show how the ideal functionality for secure computation FMPC can be realized
in the (Gatt,FBB)-hybrid model where only t of the parties have access to an instance of secure
hardware. We do so by designing a protocol that realizes FMPC in the FSyX-hybrid model where
only t of the parties can trigger an instance of the ideal functionality FSyX. In order to gain some
intuition, we present the warm-up case of three parties.

6.1 The case n = 3

We consider the case where n = 3 and t = 2 (t < 2 is an honest majority). Let P1, P2, and P3 be
the three parties with inputs x1, x2 and x3 respectively. For i, j ∈ {1, 2, 3} with i < j, we have that
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progone-sided-SyX,1[Gacrs.mpk, P1]

On input (“init”): (pk, sk)
$← E1.Gen(1λ), return pk

On input (“extract”, idk):
if check(Gacrs.mpk, P2, idk) = 1, v := sk, else v := ⊥, return v

On input (“loadstart”, ct2): (inp2, k) := E1.Dec(ct2; sk), return ct2

On input (“loadcontinue”, ctcontinue, inp1):
assert “loadstart” has been called
assert E2.Dec(ctcontinue; k) = “continue”, assert that decryption succeeds
parse inp1 := (sid, INPUT TIMEOUT,TRIGGER TIMEOUT, x1, f)
parse inp2 := (sid′, INPUT TIMEOUT′,TRIGGER TIMEOUT′, x2, f

′)
assert that:

sid = sid′, f = f ′

INPUT TIMEOUT = INPUT TIMEOUT′

TRIGGER TIMEOUT = TRIGGER TIMEOUT′

assert r ≤ INPUT TIMEOUT, parse f = (f1, f2, φ1, φ2)
z1 = f1(x1, x2, r), ctload := E2.Enc(z1; k), return (ctload, “ok”)

On input (“loadfinish”, σ3, tload, σ4):
assert “loadcontinue” has been called and returned (·, “ok”)
assert V.Verify(σ3, (sid, eid1, progone-sided-SyX,1[P1], (ctload, “ok”)); vkatt)
assert T .Verify(σ4, tload‖“load”‖sid‖ctload‖σ3)
assert tload ≤ INPUT TIMEOUT, set i1 := 0, return (z1, “ok”)

On input* (“triggerstart”, w1):
assert “loadfinish” has been called and returned (·, “ok”)
assert i1 = 0 or “triggerfinish” has been called and returned (·, i1 − 1, “ok”)

and “triggerstart” has never previously returned (·, i1, “ok”)
assert φ1(w1) = 1 and that r ≤ TRIGGER TIMEOUT
i1 := i1 + 1, z2,i1 := f2(x1, x2, w1, r), cttrigger1,i1 := E2.Enc(z2,i1 ; k)
return (cttrigger1,i1 , i1, “ok”)

On input* (“triggerfinish”, σ5,i1 , ttrigger1,i1 , σ6,i1):
assert “triggerstart” has been called and returned (·, i1, “ok”)
assert “triggerfinish” has never previously returned (·, i1, “ok”)
assert V.Verify(σ5,i1 , (sid, eid1, progSyX,1[P1], (cttrigger1,i1 , i1, “ok”)); vkatt)
assert T .Verify(σ6,i1 , ttrigger1,i1‖“trigger1”‖sid‖i1‖cttrigger1,i1‖σ5,i1)

assert ttrigger1,i1 ≤ TRIGGER TIMEOUT, return (z2,i1 , i1, “ok”)

Figure 13: Program installed in the secure hardware of Party P1.
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Protone-sided-SyX,1[sid,Gacrs.mpk, P1]

inp1 := (sid, INPUT TIMEOUT,TRIGGER TIMEOUT, x1, f = (f1, f2, φ1, φ2))

Initialization

eid1 := Gatt.install(sid, progone-sided-SyX,1[P1])
henceforth denote Gatt.resume(·) := Gatt.resume(eid1, ·)
(pk, σ1) := Gatt.resume(“init”)
send (eid1, ψ(P2, pk, σ1)) to P2

Load Phase

await ct2 from P2

(ct′2, σ2) := Gatt.resume(“loadstart”, ct2)
send ψ(P2, ct

′
2, σ2) to P2, await ctcontinue from P2

(ctload, “ok”, σ3) := Gatt.resume(“loadcontinue”, ctcontinue, inp1)
(tload, σ4) := FBB.post(“load”‖sid‖ctload‖σ3)
(z1, “ok”, ) := Gatt.resume(“loadfinish”, σ3, tload, σ4), set i1 := 0

Trigger Phase

Triggers by P1
i1 := i1 + 1
(cttrigger1,i1 , i1, “ok”, σ5,i1) := Gatt.resume(“triggerstart”, w1)
(ttrigger1,i1 , σ6,i1) := FBB.post(“trigger1”‖sid‖i1‖cttrigger1,i1‖σ5,i1)
(z2,i1 , i1, “ok”, ) := Gatt.resume(“triggerfinish”, σ5,i1 , ttrigger1,i1 , σ6,i1)


Figure 14: Protocol executed by Party P1 in realizing FSyX with One-Sided Trigger.
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Protone-sided-SyX,2[sid, P2]

inp2 := (sid, INPUT TIMEOUT,TRIGGER TIMEOUT, x2, f = (f1, f2, φ1, φ2))

Load Phase

await (eid1, ψ) from P1

// Henceforth for ψ̃ := (msg, C, π), let Ver(ψ̃) :=
Ver(crs, (sid, eid1, C,mpk,Gacrs.mpk, P2,msg), π)

assert Ver(ψ), parse ψ := (pk, , )

k
$← {0, 1}λ, ct2 = E1.Enc((inp2, k); pk), send ct2 to P1

await ψ from P1, assert Ver(ψ), parse ψ := (ct′2, , )
assert ct2 = ct′2

ctcontinue
$← E2.Enc(“continue”), send ctcontinue to P1

obtain a tload ≤ INPUT TIMEOUT such that
(“load”‖sid‖ctload‖σ3, σ4) := FBB.getContent(tload)

assert V.Verify(σ3, (sid, eid1, progone-sided-SyX,1[P1], (ctload, “ok”)); vkatt)
assert T .Verify(σ4, tload‖“load”‖sid‖ctload‖σ3)
assert tload ≤ INPUT TIMEOUT
z1 := E2.Dec(ctload; k), assert that decryption succeeds, set i1 := 0

Trigger Phase

Triggers by P1

obtain a ttrigger1,i1+1 ≤ TRIGGER TIMEOUT such that
(“trigger1”‖sid‖(i1 + 1)‖cttrigger1,i1+1‖σ5,i1+1, σ6,i1+1) :=

FBB.getContent(ttrigger1,i2+1)
assert V.Verify(σ5,i1+1, (sid, eid1, progone-sided-SyX,1[P1],

(cttrigger1,i1+1, i1 + 1, “ok”)); vkatt)
assert T .Verify(σ6,i1+1, ttrigger1,i1+1‖“trigger1”‖sid‖(i1 + 1)‖

cttrigger1,i1+1‖σ5,i1+1)
assert ttrigger1,i1+1 ≤ TRIGGER TIMEOUT
z2,i1+1 := E2.Dec(cttrigger1,i1+1; k), assert that decryption succeeds
i1 := i1 + 1


Figure 15: Protocol executed by Party P2 in realizing FSyX with One-Sided Trigger.
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parties Pi and Pj have access to the ideal functionality FSyX. In particular, let F i,jSyX represent the
instantiation of the FSyX functionality used by parties Pi, Pj . Furthermore, only parties P1 and P2

may trigger the instances of FSyX that they have access to. We wish to perform fair secure function
evaluation of some 3-input 3-output functionality F .

Reduction to single output functionalities. Let (y1, y2, y3)
$← F (x1, x2, x3) be the output of

the function evaluation. We define a new four input single output functionality F ′ such that

F ′(x1, x2, x3, z) = F 1(x1, x2, x3)‖F 2(x1, x2, x3)‖F 3(x1, x2, x3)⊕ z = y1‖y2‖y3 ⊕ z

where z = z1‖z2‖z3 and |yi| = |zi| for all i ∈ [3]. The idea is that the party Pi will obtain
z′ = F ′(x1, x2, x3, z) and zi. Viewing z′ = z′1‖z′2‖z′3 where |z′i| = |zi|20 for all i ∈ [3], party Pi
reconstructs its output as

yi = zi ⊕ z′i
Now, we may assume that the input of party Pi is (xi, zi) (or we can generate random zis as part
of the computation) which determines z. It thus suffices to consider fair secure function evaluation
of single output functionalities.

Reduction to fair reconstruction. We will use ideas similar to [GIM+10,KVV16] where instead
of focusing on fair secure evaluation of an arbitrary function, we only focus on fair reconstruction of
an additive secret sharing scheme. The main idea is to let the three parties run a secure computation
protocol that computes the output of the secure function evaluation on the parties’ inputs, and
then additively secret shares the output. Given this step, fair secure computation then reduces to
fair reconstruction of the underlying additive secret sharing scheme.

The underlying additive secret sharing scheme. We use an additive secret sharing of the
output y. Let the shares be yi for i ∈ [3]. That is, it holds that

y =
⊕
i∈[3]

yi

We would like party Pi to reconstruct y by obtaining all shares yi for each i ∈ [3]. Initially, each
party Pi is given yi. Therefore, each party Pi only needs to obtain yj and yk for j, k 6= i.

Fair reconstruction via FSyX. We assume that the secure function evaluation also provides
commitments to all the shares of the output. That is, Pi receives (yi,

−→c ) for each i ∈ [3], where
Com is a commitment scheme and

−→c = {Com(y1),Com(y2),Com(y3)}

Furthermore, we assume that each party Pi picks its own verification key vki and signing key ski
with respect to a signature scheme with a signing algorithm Sign and a verification algorithm Verify,
for each i ∈ [3]. All parties then broadcast their verification keys to all parties. Let

−→
vk = {vk1, vk2, vk3}

20We may assume without loss of generality that the lengths of the outputs of each party are known beforehand.
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Each pair of parties Pi and Pj then initializes F i,jSyX with inputs

xi =
(−→
vk, ski, yi,

−→c
)

and
xj =

(−→
vk, skj , yj ,

−→c
)

The function f1 checks if both parties provided the same value for
−→
vk,−→c and checks the yi and yj

are valid openings to the corresponding commitments. It also checks that the signing keys provided
by the parties are consistent with the corresponding verification keys (more precisely, we will ask
for randomness provided to the key generation algorithm of the signature scheme). If all checks
pass, then F i,jSyX computes

σi,j = Sign((i, j); ski)‖Sign((i, j); skj)

This completes the description of f1.

Synchronization step. The output of f1 for each of the F i,jSyX will provide a way to synchronize

all FSyX instances. By synchronization, we mean that an F i,jSyX instance cannot be triggered unless
every other instance has already completed its input phase successfully. We will have the instance
F i,jSyX to simply output both yi and yj to both parties if triggered successfully – this defines f2. The
real ingenuity of the protocol lies in the design of the predicates φ. The protocol proceeds in two
rounds:

• Round 1 : The channel F1,2
SyX accepts a trigger (−→σ , y1) from P1. If P1 provides this trigger,

then both P1 and P2 receive (−→σ , y1, y2).

• Round 2 : The channel F1,3
SyX accepts a trigger (−→σ , y1, y2) from P1, and the channel F2,3

SyX

accepts a trigger (−→σ , y1, y2) from P2. If P1 provides the trigger, then both P1 and P3 receive
(−→σ , y1, y2, y3), and if P2 provides the trigger, then both P2 and P3 receive (−→σ , y1, y2, y3).

Protocol intuition. We briefly discuss certain malicious behaviors and how we handle them.
From the description above, it is clear that parties have no information about the output until one
of the FSyX instances is triggered. Furthermore, note that this implies that the corrupt parties must
successfully complete the input phases of the instances of FSyX that it shares with all of the honest
parties in order to obtain the witness that can be used to trigger the FSyX instances. Following the
input phases of all of the FSyX instances, we ask each party to broadcast the receipt σi,j obtained

from F i,jSyX. Now suppose parties Pi and Pj are both dishonest, and suppose they do not broadcast
σi,j . Note also that since Pi and Pj collude, they do not need the help of FSyX to compute σi,j .
Since honest Pk does not know the synchronizing witness −→σ , it will not be able to trigger any of
the FSyX instances. However, note that for the adversary to learn the output of the computation,

the corrupt party Pi (without loss of generality) will need to trigger F i,kSyX to obtain Pk’s share of

the key. However, once Pi triggers F i,kSyX, it follows that Pk would obtain the synchronizing witness
−→σ along with some shares of the output. If k = 1 or k = 2, then Pk obtains (−→σ , y1, y2) at the end
of round 1 and can successfully trigger F1,3

SyX or F2,3
SyX in round 2 to obtain the final share y3 of the

output. If k = 3, then P3 obtains (−→σ , y1, y2, y3) at the end of round 2, thus obtaining all shares of
the output. In this way, all live (parties that remain online) parties obtain the output at the end
of the protocol even if one of the parties do.
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6.2 Extending to arbitrary n

Let P1, . . . , Pn be the n parties with inputs x1, . . . , xn respectively. For i, j ∈ [n] with i < j,
we have that parties Pi and Pj have access to the ideal functionality FSyX. In particular, let

F i,jSyX represent the instantiation of the FSyX functionality used by parties Pi, Pj . Furthermore,
only parties P1, . . . , Pt may trigger the instances of FSyX that they have access to. Most of the
discussion in the three-party case extends naturally to the n-party setting. The portion that differs
is essentially the synchronization step.

Synchronization step. The output of f1 for each of the F i,jSyX will provide a way to synchronize

all FSyX instances. By synchronization, we mean that an F i,jSyX instance cannot be triggered unless
every other instance has already completed its input phase successfully. We will have the instance
F i,jSyX to simply output both yi and yj to both parties if triggered successfully – this defines f2. The
real ingenuity of the protocol lies in the design of the predicates φ. We attempt to generalize the
three-party protocol as follows. The protocol proceeds in n− 1 rounds. For each r ∈ [n− 1]:

• Round r: For every i ∈ [min{t, r}], the channel F i,r+1
SyX accepts a trigger (−→σ , y1, . . . , yr) from

Pi. If P1 provides this trigger, then both Pi and Pr+1 receive (−→σ , y1, . . . , yr+1).

Consider, however, the case of n = 4 and t = 2. Since P3 does not have the ability to trigger
an instance of FSyX, it cannot obtain y4. We thus add the following step, round n, of the protocol:

• Round n: For every i ∈ [n], if Pi has received all shares y1, . . . , yn, it broadcasts the shares.

Protocol intuition. From the description above, it is clear that parties have no information
about the output until one of the FSyX instances is triggered. Furthermore, note that this implies
that the corrupt parties must successfully complete the input phases of the instances of FSyX that
it shares with all of the honest parties in order to obtain the witness that can be used to trigger
the FSyX instances. Following the input phases of all of the FSyX instances, we ask each party to

broadcast the receipt σi,j obtained from F i,jSyX. Suppose the adversary obtains the output at the
end of the computation. This implies that there exists a party Pi for some i ∈ [n] that receives all
shares y1, . . . , yn at the end of the protocol. Let Pj be an honest party, for j ∈ [n]. We wish to
argue that Pj must have also received all shares of the output at the end of the protocol. Firstly,
if Pi were honest, then Pi would broadcast its output and hence Pj would obtain it as well. We
now turn our attention to the case that Pi is corrupt. We now wish to argue the existence of an
honest party Pk for some k ∈ [n] that also obtains all the shares of the output at the end of the
protocol. Notice that as before this implies that Pj must have also received all shares of the output
at the end of the protocol. Consider party Pj . Suppose that in round j − 1, no party triggered
an instance of FSyX that involved Pj . We claim that this cannot be possible, as this would imply
that no party other than Pj learns yj at the end of the protocol. We argue this as follows. Rounds
1 through j − 2 do not involve yj at all and hence no party other than Pj learns yj at the end of
round j − 2. Suppose that in round j − 1, no party triggered an instance of FSyX that involved
Pj . Then, no party other than Pj learns yj at the end of round j − 1. Furthermore, party Pj does
not learn y1, . . . , yj−1 at the end of round j − 1. In round j, no party, including Pj has a witness
that it can use to trigger any instance of FSyX. It is thus easy to see that in all rounds r ≥ j, no
party has a witness that it can use to trigger any instance of FSyX. This in particular implies that
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no party other than Pj learns yj at the end of the protocol. Since Pi learns yj at the end of the
protocol, it must be the case that there exists a party P` for some ` ∈ [min{t, j− 1}] that triggered

the channel F `,jSyX that involved Pj . Then, at the end of round j−1, party Pj learns (−→σ , y1, . . . , yj).
If j ≤ t, then it is easy to see that Pj will be able to learn all the shares of the output at the end

of the protocol as it will be able to successfully trigger the channel F j,mSyX in round m− 1 for every
j + 1 ≤ m ≤ n. In this case, k = j and we are done. Notice that this means that if there exists an
honest party Pj with j ≤ t, then Pj (and hence, all honest parties) receive the output at the end of
the protocol. Suppose j > t, and in particular, P1, . . . , Pt are corrupt. In this case, we let k = n.
Suppose that in round n−1, no corrupt party triggered an instance of FSyX that involved Pn. This,
by the definition, means that no party triggered an instance of FSyX that involved Pn. We claim
that this cannot be possible, as this would imply that no party other than Pn learns yn at the end
of the protocol. We argue this as follows. Rounds 1 through n − 2 do not involve yn at all and
hence no party other than Pn learns yn at the end of round n − 2. Suppose that in round n − 1,
no party triggered an instance of FSyX that involved Pn. Then, no party other than Pn learns yn
at the end of round n− 1. Furthermore, party Pn does not learn y1, . . . , yn−1 at the end of round
n− 1. In round n, no party, including Pn has obtained all shares of the output and hence no party
broadcasts anything. This in particular implies that no party other than Pn learns yn at the end
of the protocol. Since Pi learns yn at the end of the protocol, it must be the case that there exists
a (corrupt) party P` for some ` ∈ [t] that triggered the channel F `,nSyX that involved Pn. Then, at

the end of round n−1, party Pn learns (−→σ , y1, . . . , yn). Since Pn has obtained all shares at the end
of round n− 1, it broadcasts them in round n and thus every honest party learns all shares of the
output at the end of the protocol. This completes the argument.

6.3 Protocol

We now present the protocol for fair secure computation in the (Fbc,FMPC,FSyX)-hybrid model.

Preliminaries. F is the n-input n-output functionality to be computed; xi is the input of
party Pi for i ∈ [n]; Fa,bSyX represents the instantiation of the FSyX functionality used by parties
Pa, Pb with time out round numbers INPUT TIMEOUT = 0 and TRIGGER TIMEOUT = n − 1

for a < b, where a, b ∈ [n];
(
Com,Open, C̃om, Õpen

)
is an honest-binding commitment scheme;

V = (Gen, Sign,Verify) is a signature scheme; r denotes the current round number.

Protocol. The protocol ΠFMPC proceeds as follows:

• Define F ′ to the be the following n-input n-output functionality: On input −→x = (x1, . . . , xn):

– Let (y1, . . . , yn) = F (x1, . . . , xn) and let

y = y1‖ . . . ‖yn

Sample random strings αi
$← {0, 1}∗ such that |αi| = |yi| for each i ∈ [n]. Let

α = α1‖ . . . ‖αn

Let z = y ⊕ α.
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– Sample a random additive n-out-of-n secret sharing z1, . . . , zn of z such that

z =
⊕
i∈[n]

zi

– Compute commitments along with their openings (czi , ω
z
i )

$← Com(zi) to each of the
shares zi for each i ∈ [n]. Let

−→
cz = (cz1, . . . , c

z
n)

– Party Pi receives output
(
αi,
−→
cz , ωzi , zi

)
for each i ∈ [n].

• The parties invoke the ideal functionality FMPC with inputs ((x1, F
′), . . . , (xn, F

′)). If the
ideal functionality returns ⊥ to party Pi, then Pi aborts for any i ∈ [n]21. Otherwise, party

Pi receives output
(
αi,
−→
cz , ωzi , zi

)
for each i ∈ [n].

• Each party Pi, for each i ∈ [n], picks a random βi ∈ {0, 1}∗ and uses this randomness to
pick a signing and verification key pair (ski, vki) = V.Gen(1λ;βi). It then invokes the ideal
functionality Fbc and broadcasts vki to all other parties. If it does not receive vkj for all
j 6= i, it aborts. Otherwise, it obtains

−→
vk = (vk1, . . . , vkn)

• For each a, b ∈ [n] with a < b, define the following functions.

– Let fa,b1 be the function that takes as input (γ, γ′) and parses

γ =
(−→
vk, sk, β,

−→
cz , ωz, z

)
and

γ′ =
(−→
vk′, sk′, β′,

−→
cz ′, ωz ′, z′

)
It checks that:

∗
−→
vk =

−→
vk′,
−→
cz =

−→
cz ′

∗ (sk, vka) = V.Gen(1λ;β), (sk′, vkb) = V.Gen(1λ;β′)

∗ Open(cza, ω
z, z) = Open(czb , ω

z ′, z′) = 1

If all of these checks pass, then fa,b1 outputs

σa,b = (V.Sign((a, b); ska),V.Sign((a, b); skb))

and otherwise it outputs ⊥.

21In the FOT-hybrid model, let πF ′ denote the protocol for the functionality F ′ defined in Lemma 8. The parties
execute πF ′ . If the execution of πF ′ aborts, we are assuming that all (honest) parties are aware of the round when
the execution of πF ′ aborts, that is, when the adversary has decided to abort the execution of πF ′ . Since we are
working in the FMPC-hybrid model, we know that in the ideal model, this is the case when the honest parties receive
⊥ as their output. If we assume that in the case when the the adversary decides to let the honest parties obtain
their outputs, no honest party ever receives ⊥, this could be used to identify the scenario when the adversary has
decided to abort the execution of πF ′ . Thus, we could, in principle, replace this instruction with: If party Pi receives
⊥ as it’s output, it aborts. Furthermore, since we are considering the case of unanimous abort, if the adversary has
decided to abort the execution of πF ′ , all honest parties abort the protocol.
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– Let φa,b1 be the function that takes as input a witness w, which is of the form
(−→σ ,−→z ,−→ωz).

∗ If a > t or b 6= r + 1, it outputs 0.

∗ If a ≤ t and b = r + 1, it checks that:

· For all a, b ∈ [n] with a < b,

V.Verify (σa,b,1, (a, b); vka) = 1

and
V.Verify (σa,b,2, (a, b); vkb) = 1

· |−→z | =
∣∣∣−→ωz∣∣∣ = r

· Open
(
czj , ω

z
j , zj

)
= 1 for every j ∈ [r].

– Let φa,b2 be the function that takes as input a witness w, which is of the form
(−→σ ,−→z ,−→ωz).

∗ If b > t or a 6= r + 1, it outputs 0.

∗ If b ≤ t and a = r + 1, it checks that:

· For all a, b ∈ [n] with a < b,

V.Verify (σa,b,1, (a, b); vka) = 1

and
V.Verify (σa,b,2, (a, b); vkb) = 1

· |−→z | =
∣∣∣−→ωz∣∣∣ = r

· Open
(
czj , ω

z
j , zj

)
= 1 for every j ∈ [r].

– Let fa,b2 be the function that takes as input (γ, γ′) where γ, γ′ are as above, and outputs
(ωz, z, ωz ′, z′).

• Set r = 022. Each party Pa for each a ∈ [n] will now run the input phase to set up each
instance of FSyX that it is involved in. For each pair of parties Pa, Pb with a 6= b for a, b ∈ [n],
let a′ = min(a, b) and b′ = max(a, b). For each such pair of parties Pa, Pb, party Pa runs the

input phase of Fa
′,b′

SyX , providing inputs (xa, f), where

xa =
(−→
vk, ska, βa,

−→
cz , ωza, za

)
and

f =
(
fa
′,b′

1 , fa
′,b′

2 , φa
′,b′

1 , φa
′,b′

2

)
• If r > n, abort. Otherwise, while r ≤ n,

22This does not entail actually setting r = 0, but rather viewing the current round as round zero and henceforth
referencing rounds with respect to it, that is, viewing r as the round number relative to the round number when this
statement was executed.
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– If a party Pa for a ∈ [n] receives σa′,b′ from each Fa
′,b′

SyX it is involved in, indicating that
the input phase of all such FSyX functionalities were completed successfully, and r = 0,
it invokes the ideal functionality Fbc and broadcasts

−→σa =
{
σa′,b′

}
a′=a ∨ b′=a

to all the parties. Otherwise, it invokes the ideal functionality Fbc when r = 1 and
broadcasts abort to all the parties and aborts.

– For i ∈ [min{t, r}] and r < n, by the end of round r − 1, if Pi has received a witness w,

which is of the form
(−→σ ,−→z ,−→ωz) such that

∗ For all a, b ∈ [n] with a < b,

V.Verify (σa,b,1, (a, b); vka) = 1

and
V.Verify (σa,b,2, (a, b); vkb) = 1

∗ |−→z | =
∣∣∣−→ωz∣∣∣ = r

∗ Open
(
czj , ω

z
j , zj

)
= 1 for every j ∈ [r].

then, Pi uses w to invoke the trigger phase of the channel F i,r+1
SyX .

– For i ∈ [n], if at the end of round r = n− 1, party Pi has obtained values
(−→z ,−→ωz) such

that

∗ |−→z | =
∣∣∣−→ωz∣∣∣ = n

∗ Open
(
czj , ω

z
j , zj

)
= 1 for every j ∈ [n].

then, Pi invokes the ideal functionality Fbc in round r + 1 = n and broadcasts
(−→z ,−→ωz)

to all the parties.

– For i ∈ [n], if at the end of round r = n, party Pi has obtained values
(−→z ,−→ωz) such that

∗ |−→z | =
∣∣∣−→ωz∣∣∣ = n

∗ Open
(
czj , ω

z
j , zj

)
= 1 for every j ∈ [n].

then, Pi uses the shares z1, . . . , zn to reconstruct z, parses z as z1‖ . . . ‖zn where |zi| = |yi|
for all i ∈ [n] and computes yi = zi ⊕ αi to obtain the output of the computation.

Remark. It is possible to replace the O(n2) signatures with n other commitments to n other
independent random proof values that can be used to prove that all the instances of FSyX completed
their input phases successfully.
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6.4 Correctness

We sketch the proof of correctness of the above protocol. The correctness of the computation
of the functionality F ′ follows by definition from the correctness of the ideal functionality FMPC.
Furthermore, we have that at the end of the invocation of the ideal functionality FMPC, either all
honest parties unanimously abort or all honest parties unanimously continue. Thus, assuming that

FMPC did not abort, every party receives the output of F ′. For every i ∈ [n], let
−→
vki denote the

set of verification keys that were obtained by party Pi. Note that, by the correctness of the ideal
functionality Fbc, −→

vk =
−→
vki

for all i ∈ [n]. If
−→
vk does not contain vkj for every i ∈ [n], which would happen in the case that

some corrupt parties do not broadcast their verification keys, all honest parties unanimously abort.
Otherwise, all honest parties unanimously continue. Assuming the honest parties have not aborted,
we note that if the corrupt parties do not provide valid inputs to the input phase of even one of the
instances of FSyX that they are involved in along with an honest party, say Pi for some i ∈ [n], by
the correctness of the ideal functionality FSyX and the binding property for the honestly generated
commitments, that particular instance of FSyX will not complete its input phase successfully. In this
case Pi will force all honest parties to unanimously abort, since no party (not even the corrupt ones)
can obtain their output. We thus consider the case where all instances of FSyX have completed their
input phases successfully. Let i ∈ [n] be the smallest value such that Pi is honest. Suppose i ≤ t.
If a corrupt party triggers any instance of FSyX involving Pi with a valid witness in round i − 1,
then the honest party obtains a valid witness to trigger all the instances of FSyX that it is involved
in in rounds i through n− 1. In this case, all honest parties obtain the output of the computation
at the end of round n. Suppose i > t. In this case, i = t + 1 and P1, . . . , Pt are corrupt. Suppose
that in round n− 1, no corrupt party triggered an instance of FSyX that involved Pn. This, by the
definition, means that no party triggered an instance of FSyX that involved Pn. This would imply
that no party other than Pn learns yn at the end of the protocol. We argue this as follows. Rounds
1 through n− 2 do not involve yn at all and hence no party other than Pn learns yn at the end of
round n − 2. Suppose that in round n − 1, no party triggered an instance of FSyX that involved
Pn. Then, no party other than Pn learns yn at the end of round n− 1. Furthermore, party Pn does
not learn y1, . . . , yn−1 at the end of round n− 1. In round n, no party, including Pn has obtained
all shares of the output and hence no party broadcasts anything. This in particular implies that
no party other than Pn learns yn at the end of the protocol. That is, the adversary does not learn
the output of the computation at the end of the protocol, and neither do any of the honest parties.
If a corrupt party triggers any instance of FSyX involving Pn with a valid witness in round n − 1,
then Pn obtains all shares of the output which it broadcasts to all parties in round n. In this case,
all honest parties obtain the output of the computation at the end of round n. This completes the
proof of correctness.

6.5 Security

We now prove the following lemma.

Lemma 11. If
(
Com,Open, C̃om, Õpen

)
is an honest-binding commitment scheme and V is a signa-

ture scheme, then the protocol ΠFMPC securely computes FMPC with fairness in the (Fbc,FMPC,FSyX)-
hybrid model.
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Proof. Let A be an adversary attaching the execution of the protocol described in Section 6.3 in
the (Fbc,FMPC,FSyX)-hybrid model. We construct an ideal-model adversary S in the ideal model
of type fair. Let F be the n-input n-output functionality to be computed. Let I be the set of
corrupted parties. If I is empty, then there is nothing to simulate. S begins by simulating the first
step of the protocol, namely, the invocation of the ideal functionality FMPC. Here, S behaves as the
ideal functionality FMPC. Recall that the type of FMPC is abort. S obtains the inputs {(xi, fi)}i∈I
of the corrupted parties from A. If (xi, fi) = abort for any i ∈ I, S forwards {(xi, fi)}i∈I to
the trusted party computing FMPC with fairness, receives ⊥ as the output of all parties, which it
forwards A. Suppose (xi, fi) 6= abort for all i ∈ I. If there exists a j ∈ I such that fj 6= F ′

as defined in protocol ΠFMPC, S forwards {(xi, fi)}i∈I to the trusted party computing FMPC with
fairness, which aborts, and then aborts itself. If there exists a j ∈ I such that (xj , fj) is not of the
specified format, S replaces (xj , fj) with a default value. Going forward, we assume that for all
i ∈ I, (xi, fi) is well-formed and that fi = F ′ as defined in ΠFMPC.
S now needs to simulate the outputs received by the corrupted parties from the ideal function-

ality FMPC. For each i ∈ [n], S samples a random string αi
$← {0, 1}∗ of length equal to the length

of the ith output of F . Let
α = α1‖ . . . ‖αn

Let h ∈ [n] denote the maximum value such that Ph is honest. We note that if I = [t], then

h = n. For each i ∈ [n] \ {h}, S samples a random string zi
$← {0, 1}∗ of length equal to the sum

of the lengths of all the outputs of F . It then computes commitments along with their openings

(czi , ω
z
i )

$← Com(zi) to each of the shares zi for each i ∈ I. For i = h, it samples a equivocable

commitment (czi , statei)
$← C̃om(1λ). Let

−→
cz = (cz1, . . . , c

z
n)

Thus, the simulator constructs the output
(
αi,
−→
cz , ωzi , zi

)
for each i ∈ I and forwards it to A. If

A then sends abort, S forwards {(xi, fi)}i∈I to the trusted party computing FMPC with fairness,
with (xj , fj) replaced with abort for some j ∈ I, receives ⊥ as the output of all parties, which it
forwards A. Otherwise, A responds with continue. At this point, S has completed simulating the
invocation of the ideal functionality FMPC.

For each i ∈ [n] \ I, S picks a random βi ∈ {0, 1}∗ and uses this randomness to pick a signing
and verification key pair (ski, vki) = V.Gen(1λ;βi). Now, S must simulate the invocations of the
ideal functionality Fbc by the corrupt parties. Here, S behaves as the ideal functionality Fbc. Recall
that the type of Fbc is g.d.. For all i ∈ [n]\I, S “broadcasts” vki to all the corrupt parties. For any
i ∈ I, if A instructs Pi to invoke Fbc with input vki, S “broadcasts” vki to all the corrupt parties
and stores vki. At the end of this round, if A did not instruct some corrupt party to invoke Fbc,
S forwards {(xi, fi)}i∈I to the trusted party computing FMPC with fairness, with (xj , fj) replaced
with abort for some j ∈ I, receives ⊥ as the output of all parties, and aborts itself. Otherwise, S
successfully constructs −→

vk = (vk1, . . . , vkn)

At this point, S has completed simulating the invocations of the ideal functionality Fbc used to
broadcast the verification keys of all the parties.
S maintains a virtual round counter and initializes it to zero. Now, S has to simulate the

invocations of the inputs phases of the instances of the ideal functionality FSyX that involve corrupt
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parties. Here, S behaves as the ideal functionality FSyX. Recall that the type of FSyX is g.d.. For
any a, b ∈ [n] with a < b and a ∈ I and b ∈ [n] \ I, if A instructs Pa to invoke the input phase of

Fa,bSyX with inputs

γ =
(−→
vk′, ska, βa,

−→
cz ′, ωz, z

)
S computes fa,b1 (γ, γ′) as defined in ΠFMPC, where

γ′ =
(−→
vk, skb, βb,

−→
cz , ωzb , zb

)
Note that since b ∈ [n] \ I, S does in fact have skb, βb. The only values it does not have are ωzh, zh.

In the execution of fa,b1 , ωzb , zb are needed to check that

Open(czb , ω
z
b , zb) = 1

Note that since Pb is an honest party, it would always supply inputs such that this check passes.
Furthermore, the outcome of this check does not depend on any input that the adversary sends.
Thus, in simulating the computation of fa,b1 , S performs all the checks that fa,b1 , except this one.
If all the checks pass, S computes

σa,b = (V.Sign((a, b); ska),V.Sign((a, b); skb))

and forwards σa,b to the adversary. S also stores ska, βa. If any of the checks do not pass, S simply

aborts simulating the input phase of this particular instance Fa,bSyX. S behaves symmetrically if for
any a, b ∈ [n] with a < b and b ∈ I and a ∈ [n] \ I, if A instructs Pb to invoke the input phase of

Fa,bSyX. The final case to consider is if for any a, b ∈ [n] with a < b and a, b ∈ I, if A instructs Pa, Pb

to invoke the input phase of Fa,bSyX with inputs

γ =
(−→
vk′, ska, βa,

−→
cz ′, ωz, z

)
and

γ′ =
(−→
vk′′, skb, βb,

−→
cz ′′, ωz ′, z′

)
S computes fa,b1 (γ, γ′) as defined in ΠFMPC. If all the checks pass, S computes

σa,b = (V.Sign((a, b); ska),V.Sign((a, b); skb))

and forwards σa,b to the adversary. S also stores ska, βa, skb, βb. If any of the checks do not pass,

S simply aborts simulating the input phase of this particular instance Fa,bSyX. At the end of this
round, let LoadFailed denote the set of all i such that Pi is an honest party and A did not instruct
some corrupt party to invoke the input phase of an instance of FSyX that it was involved in with
Pi. If LoadFailed is not empty, for each i ∈ LoadFailed, S must simulate the invocations of the ideal
functionality Fbc by party Pi to broadcast abort. For each i ∈ LoadFailed, S “broadcasts” abort to
all the corrupt parties. S then forwards {(xi, fi)}i∈I to the trusted party computing FMPC with
fairness, with (xj , fj) replaced with abort for some j ∈ I, receives ⊥ as the output of all parties,
and aborts itself. Otherwise, S successfully constructs

−→
sk = (sk1, . . . , skn)
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and −→
β = (β1, . . . , βn)

S computes
σa,b = (V.Sign((a, b); ska),V.Sign((a, b); skb))

for every a < b ∈ [n] and defines
−→σ = {σa,b}a<b,a,b∈[n]

Now, S must simulate the invocations of the ideal functionality Fbc by the corrupt parties. For all
a ∈ [n] \ I, S “broadcasts”

−→σi =
{
σa′,b′

}
a′=i ∨ b′=i

to all the corrupt parties. For any i ∈ I, ifA instructs Pi to invoke Fbc with input−→σi , S “broadcasts”
−→σi to all the corrupt parties.

Once round 0 is completed, S has completed simulating the invocations of the input phase of
all the instances of the ideal functionality FSyX and the ideal functionality Fbc. What remains is to
determine whether the adversary wishes to obtain its output and to simulate the invocations of the
trigger phases of the instances of the ideal functionality FSyX that the adversary instructs corrupt
parties to trigger. We consider two cases. First, we make the following definition: a witness w is
valid for round r if

w =
(−→σ ,−→z ,−→ωz)

such that

• For all a, b ∈ [n] with a < b,

V.Verify (σa,b,1, (a, b); vka) = 1

and
V.Verify (σa,b,2, (a, b); vkb) = 1

• |−→z | =
∣∣∣−→ωz∣∣∣ = r

• Open
(
czj , ω

z
j , zj

)
= 1 for every j ∈ [r].

Case A. I 6= [t]. S determines the smallest value i ∈ [t] such that i 6∈ I. Since I 6= [t], i is well-
defined. We first discuss how S simulates certain invocations of the trigger phases of the instances
of the ideal functionality FSyX that the adversary instructs corrupt parties to trigger.

• Suppose the adversary instructs a corrupt party, say Pj for j ∈ I ∩ [t], to trigger an instance
of FSyX involving another corrupt party, say Pk for k ∈ I, with a valid witness w in round
k − 1 with j < k < i. S sends (w, (ωzj , zj , ω

z
k, zk)) to parties Pj and Pk.

• Suppose the adversary instructs a corrupt party to trigger an instance of FSyX with an invalid
witness. S simply sends no response.
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Suppose the adversary does not instruct a corrupt party, say Pj for some j ∈ I ∩ [t], to trigger
an instance of FSyX involving Pi with a valid witness with j < i and the round counter exceeds i−1,
S forwards {(xi, fi)}i∈I to the trusted party computing FMPC with fairness, with (xj , fj) replaced
with abort for some j ∈ I, receives ⊥ as the output of all parties, and aborts itself. Otherwise, as
soon as the adversary instructs a corrupt party to trigger an instance of FSyX involving Pi with a
valid witness with j < i in round i − 1, S forwards {(xi, fi)}i∈I to the trusted party computing
FMPC with fairness. It receives the corrupt parties outputs, namely, {yi}i∈I . S chooses the outputs

of the honest party completely at random, that is, it samples random strings yi
$← {0, 1}∗ of length

equal to the length of the ith output of F , for i ∈ [n] \ I. S then constructs

y = y1‖ . . . ‖yn

It then defines
z = y ⊕ α

S then computes

zh = z ⊕
⊕

i∈[n]\{h}

zi

and constructs
−→z = (z1, . . . , zn)

S computes ωzh
$← Õpen(stateh, zh) and constructs

−→
ωz = (ωz1 , . . . , ω

z
n)

Note that, at this point, S has every value ever used in the protocol. S sends (w, (ωzi , zi, ω
z
j , zj))

to Pj . Going forward, S simulates invocations of the trigger phases of the instances of the ideal
functionality FSyX that involve corrupt parties as follows.

• Suppose the adversary instructs a corrupt party, say Pj for j ∈ I ∩ [t], to trigger an instance
of FSyX involving another corrupt party, say Pk for k ∈ I, with a valid witness w in round
k − 1 with j < k, S sends (w, (ωzj , zj , ω

z
k, zk)) to parties Pj and Pk.

• Suppose the adversary instructs a corrupt party, say Pj for j ∈ I ∩ [t], to trigger an instance
of FSyX involving an honest party, say Pk for k ∈ [n] \ I, with a valid witness w in round
k − 1 with j < k, S sends (w, (ωzj , zj , ω

z
k, zk)) to Pj .

• Suppose the adversary instructs a corrupt party to trigger an instance of FSyX with an invalid
witness. S simply sends no response.

• Suppose an honest party, say Pk for k ∈ [n] \ I, triggers an instance of FSyX involving a
corrupt party, say Pj for j, S sends (w, (ωzk, zk, ω

z
j , zj)) to Pj .

Case B. I = [t]. We first discuss how S simulates certain invocations of the trigger phases of the
instances of the ideal functionality FSyX that the adversary instructs corrupt parties to trigger.

• Suppose the adversary instructs a corrupt party, say Pj for j ∈ I, to trigger an instance of
FSyX involving another corrupt party, say Pk for k ∈ I, with a valid witness w in round k− 1
with j < k. S sends (w, (ωzj , zj , ω

z
k, zk)) to parties Pj and Pk.
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• Suppose the adversary instructs a corrupt party, say Pj for i ∈ I, to trigger an instance of
FSyX involving an honest party, say Pk for k ∈ [n] \ I, with a valid witness w in round k − 1
with j < k < n, S sends (w, (ωzj , zj , ω

z
k, zk)) to Pj .

• Suppose the adversary instructs a corrupt party to trigger an instance of FSyX with an invalid
witness. S simply sends no response.

Suppose the adversary does not instruct a corrupt party, say Pj for some j ∈ I, to trigger an
instance of FSyX involving Pn with a valid witness and the round counter exceeds n−1, S forwards
{(xi, fi)}i∈I to the trusted party computing FMPC with fairness, with (xj , fj) replaced with abort
for some j ∈ I, receives ⊥ as the output of all parties, and aborts itself. Otherwise, as soon as the
adversary instructs a corrupt party to trigger an instance of FSyX involving Pn with a valid witness
in round n − 1, S forwards {(xi, fi)}i∈I to the trusted party computing FMPC with fairness. It
receives the corrupt parties outputs, namely, {yi}i∈I . S chooses the outputs of the honest party

completely at random, that is, it samples random strings yi
$← {0, 1}∗ of length equal to the length

of the ith output of F , for i ∈ [n] \ I. S then constructs

y = y1‖ . . . ‖yn

It then defines
z = y ⊕ α

S then computes

zn = z ⊕
⊕

i∈[n−1]

zi

and constructs
−→z = (z1, . . . , zn)

S computes ωzn
$← Õpen(staten, zn) and constructs

−→
ωz = (ωz1 , . . . , ω

z
n)

Note that, at this point, S has every value ever used in the protocol. S sends (w, (ωzj , zj , ω
z
n, zn))

to Pj . Going forward, S simulates invocations of the trigger phases of the instances of the ideal
functionality FSyX that the adversary instructs corrupt parties to trigger as follows.

• Suppose the adversary instructs a corrupt party, say Pj for j ∈ I, to trigger an instance of
FSyX involving Pn with a valid witness w in round n− 1, S sends (w, (ωzj , zj , ω

z
n, zn)) to Pj .

• Suppose the adversary instructs a corrupt party to trigger an instance of FSyX with an invalid
witness. S simply sends no response.

Finally, S outputs whatever A outputs. It is easy to see that the view of A is indistinguishable

in the execution of the protocol ΠFMPC and the simulation with S, if
(
Com,Open, C̃om, Õpen

)
is

an honest-binding commitment scheme and V is a signature scheme. We therefore conclude that
the protocol ΠFMPC securely computes FMPC with fairness in the (Fbc,FMPC,FSyX)-hybrid model,
as required.
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Remark. In the proof of Lemma 11, we ignore some annoying technicalities. For instance, the
adversary may cause the honest parties to abort, will be unable to obtain its output but still
pointlessly interact with some of the ideal functionalities. In the proof, however, the simulator
would have aborted. We note that these details are not particularly enlightening and are of no
consequence. One can deal with these sorts of attacks by asking the simulator to wait in these
scenarios until the adversary says that it is done and then finally abort if it has to. Thus, we
assume, for the purpose of the proof, that if the adversary forces the honest parties to abort in a
situation where it will be unable to obtain its output, without loss of generality, it halts. Other
examples of such technicalities are when the adversary sends “unexpected” messages, “incomplete”
messages, etc. Note that such messages can be easily detected and ignored, and do not affect the
protocol in any way.

6.6 Getting to the FSyX-hybrid model

Combining Lemmas 1, 4, 8 and 11, we obtain the following theorem.

Theorem 4. Consider n parties P1, . . . , Pn in the point-to-point model. Then, assuming the exis-
tence of one-way functions, there exists a protocol π which securely computes FMPC with fairness
in the presence of t-threshold adversaries for any 0 ≤ t < n in the (FOT,FSyX)-hybrid model where
only parties P1, . . . , Pt can trigger their instances of FSyX.

As discussed in Section 3.14, F2PC, and hence FOT, can be realized in the FSyX-hybrid model.
We thus have the following theorem.

Theorem 5. Consider n parties P1, . . . , Pn in the point-to-point model. Then, assuming the exis-
tence of one-way functions, there exists a protocol π which securely computes FMPC with fairness
in the presence of t-threshold adversaries for any 0 ≤ t < n in the FSyX-hybrid model where only
parties P1, . . . , Pt can trigger their instances of FSyX.

It is important to note that via this transformation, we have not introduced a need for the
parties to have access to multiple instances of the ideal functionality FSyX as opposed to one. This
is because, in the protocol ΠFMPC, the ideal functionality FOT will only be used to emulate the ideal
functionality FMPC. During this stage, we do not make any use of the ideal functionality FSyX.
Once we are done with the signle invocation of FMPC, we only invoke the ideal functionality FSyX.
As a consequence, parties can reuse the same instance of FSyX to first emulate FOT and then as
a complete FSyX functionality. We note that this however does increase the number of times the
functionality is invoked.

Combining this with Theorem 3, we obtain a protocol for fair secure computation against t-
threshold adversaries when only t of the parties posses secure attestation processers and each pair
of parties where at least one of them has a secure attestation processor, share common bulletin
board.

7 Preprocessing

As described, our protocol in the FSyX-hybrid model runs in O(n) rounds. Since our FSyX imple-
mentation in the (Gatt,FBB,Gacrs)-hybrid model requires two write queries to FBB (i.e., two writes
on the blockchain), it follows that the real-world implementation of our protocol will require O(n)
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on-chain rounds. Fortunately, following ideas from [KRS20], we can preprocess our use of FSyX,
and minimize the use of blockchain. Specifically, in an optimistic setting where parties do not
deviate from the protocol instructions, our (preprocessed) protocol runs entirely off-chain. In fact,
we preprocess an FSyX instance between parties Pi and Pj such that Pi and Pj can reuse this across
many different protocols possibly involving different sets of parties.

The main idea is to let the FSyX instance between Pi and Pj give both parties shares of a
“master key” Ki,j along with commitments on both these shares in the load phase. Concretely,
FSyX provides Ki,j

i , ci,ji , c
i,j
j to Pi and Ki,j

j , ci,ji , c
i,j
j to Pj , where Ki,j

i ⊕K
i,j
j = Ki,j and ci,ji , c

i,j
j are

respectively commitments on Ki,j
i ,Ki,j

j . Note that the load phase is independent of the function
that will be computed fairly, and is also independent of the parties involved in the computation.

Next, we will show how to use this setup to emulate the trigger phase of FSyX in the “unpre-
processed” fair protocol. Recall that in the “unpreprocessed” version of our fair protocol, the FSyX

instance between (i, j) was loaded with the commitments c1, . . . , cj along with Pj ’s secret share
yj . Then to trigger the FSyX instance between (i, j), party Pi needed to provide openings to the
first j − 1 commitments c1, . . . , cj−1. In the preprocessed case, note that the FSyX instance is not
loaded with the set of commitments c1, . . . , cj . Our main strategy will be to let the triggering party
provide the set of all commitments c1, . . . , cn, along with the openings of the first j commitments
to FSyX in the trigger phase.

We will also let the triggering party provide the protocol specific identifier id along with the
start time T of the protocol. (We assume that all parties begin by first agreeing on the values
id, T for that protocol instance. In particular, honest parties would reject id values that were
used in a previous protocol.) Summarizing, to trigger FSyX, party Pi will have to provide a tuple
(id, T, (c1, . . . , cn), (w1, . . . , wj)). Upon receiving this tuple, FSyX performs the following checks: (1)
the current time must be ≤ T + j, and (2) for all 1 ≤ k ≤ j, it holds that wk is a valid opening
of ck. If all checks pass, then FSyX outputs a derived key Ki,j

id = Hash(Ki,j , id, T, c1, . . . , cn) and
outputs this to both Pi and Pj in a fair manner.

Now, to emulate the trigger phase of FSyX in the “unpreprocessed” fair protocol we will need
the unfair MPC protocol πMPC to provide an encryption of the trigger output yj under the derived

key Ki,j
id . For this to work, each party Pi will need to provide {Ki,j

i , ci,ji , c
i,j
j }j∈[n] as input to πMPC

(in addition to agreed upon values id, T , and the input to the function evaluation). As before, πMPC

computes the function output, secret shares it, and then computes commitments c1, . . . , cn on the
output shares. In addition, πMPC uses the key shares to reconstruct {Ki,j}i<j , and then derives

the protocol specific derived keys {Ki,j
id }i<j from the values id, T, c1, . . . , cn. Then, πMPC computes

the ciphertexts ei,jid = Enc(Ki,j
id , yj) and outputs these ciphertexts to the parties. This way, upon

triggering FSyX, both parties will obtain the derived key Ki,j
id , and then decrypt the ciphertext ei,jid

using Ki,j
id to learn yj (i.e., exactly as in the “unpreprocessed” protocol).

Note that the unfair MPC protocol πMPC will also check if the input key shares Ki,j
i and Ki,j

j

are consistent with the openings of the commitments ci,ji and ci,jj respectively. This is to ensure that
parties do not submit invalid key shares, as this would result in the ciphertexts being computed
using invalid derived keys. To see why this is a problem, suppose party Pj is the only honest party,

and suppose corrupt Pj+1 supplied an invalid key share K̂j,j+1
j+1 6= Kj,j+1

j+1 to πMPC. Now, in round
j, suppose corrupt Pj−1 obtained yj by triggering the (j−1, j) FSyX instance. Then in round j+ 2,
honest Pj would trigger the (j, j + 1) FSyX instance in an attempt to learn yj+1. While Pj would

indeed learn the correct instance specific derived key Kj,j+1
id by triggering FSyX, this key turns
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out to be useless for decrypting the ciphertext ej,j+1
id since this ciphertext was encrypted under an

invalid key. Therefore, this results in honest Pj not learning the final output. On the other hand,
the adversary has already learned (the only honest share) yj , and thus the final output.

As in [KRS20], additional care must be taken to ensure that all parties obtain the ciphertexts
before any party receives the set of all commitments. Otherwise, we end up in a situation where
honest parties do not have all the ciphertexts they need (to decrypt and learn the output), but
corrupt parties have the set of all commitments to start triggering some FSyX instances and to try
and learn the output. Concretely, suppose Pj is the only honest party, and suppose Pj did not

receive the ciphertext ej,j+1
id from the unfair MPC protocol. Now, corrupt P1 can trigger (1, j)

FSyX using the commitments, and (valid) openings of c1, . . . , cj−1 to obtain Pj ’s share yj . While

honest Pj can still trigger (j, j+1) FSyX instance to obtain the (correct) derived key Kj,j+1
id , it does

not have the ciphertext ej,j+1
id and thus will not be able to learn Pj+1’s share. This leaves us in a

situation where the adversary learns the output but honest Pj is unable to learn the same.
To avoid the problem, we let the unfair MPC protocol πMPC output n-out-of-n additive shares

of {ei,jid }i<j and {ci}i∈[n]. If some party did not receive its shares, then everyone terminates the

protocol. Otherwise, in the next round, parties first reconstruct the ciphertexts {ei,jid }i<j . If some
party cannot reconstruct the ciphertexts (e.g., it did not receive some of the remaining n−1 shares),
then all parties terminate the protocol. Otherwise, in the next round, parties reconstruct the set
of all commitments {ci}i∈[n]. It may be the case that some honest parties did not receive the set
of all commitments. However, this is not a problem since corrupt parties will need to trigger FSyX

to learn the output, and when they do this, FSyX would release the set of all commitments (as
part of the trigger witness) to honest parties. On the other hand, note that without the set of all
commitments no party can trigger any FSyX instance to obtain derived keys corresponding to this
protocol instance. Therefore, the attack described previously cannot be carried out in the modified
protocol.
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Case studies, comparisons, statistics, research and recommendations are provided “AS IS” and
intended for informational purposes only and should not be relied upon for operational, marketing,
legal, technical, tax, financial or other advice. Visa Inc. neither makes any warranty or represen-
tation as to the completeness or accuracy of the information within this document, nor assumes
any liability or responsibility that may result from reliance on such information. The Information
contained herein is not intended as investment or legal advice, and readers are encouraged to seek
the advice of a competent professional where such advice is required.

These materials and best practice recommendations are provided for informational purposes
only and should not be relied upon for marketing, legal, regulatory or other advice. Recommended
marketing materials should be independently evaluated in light of your specific business needs and
any applicable laws and regulations. Visa is not responsible for your use of the marketing materials,
best practice recommendations, or other information, including errors of any kind, contained in this
document.
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