
A Faster Software Implementation of SQISign

Kaizhan Lin1, Weize Wang2, Zheng XuB3, and Chang-An Zhao1,4

1 School of Mathematics, Sun Yat-sen University, Guangzhou, China
linkzh5@mail2.sysu.edu.cn

zhaochan3@mail.sysu.edu.cn
2 School of Computer Science, Fudan University, Shanghai, China

wzwang23@m.fudan.edu.cn
3 Hefei National Laboratory, University of Science and Technology of China, Hefei,

Anhui, China
xuzheng1@mail.ustc.edu.cn

4 Guangdong Key Laboratory of Information Security, Guangzhou, China

Abstract. Isogeny-based cryptography is famous for its short key size.
As one of the most compact digital signatures, SQIsign (Short Quater-
nion and Isogeny Signature) is attractive among post-quantum cryptog-
raphy, but it is inefficient compared to other post-quantum competitors
because of complicated procedures in the ideal-to-isogeny translation,
which is the efficiency bottleneck of the signing phase.

In this paper, we recall the current implementation of SQIsign and mainly
focus on how to improve the execution of the ideal-to-isogeny translation
in SQIsign. Specifically, we demonstrate how to utilize the reduced Tate
pairing to save one of the two elliptic curve discrete logarithms. In ad-
dition, the efficient implementation of the remainder discrete logarithm
computation is explored. We speed up other procedures in the ideal-to-
isogeny translation with various techniques as well. It should be noted
that our improvements also benefit the performance of key generation
and verification in SQIsign. In the instantiation with p1973, the improve-
ments lead to a speedup of 5.47%, 8.80% and 25.34% for key generation,
signature and verification, respectively.

Keywords: Isogeny-based Cryptography · SQIsign · Pairings · Discrete
Logarithms.

1 Introduction

Among post-quantum cryptography, isogeny-based cryptography is famous for
its short key size. In the last two decades, various isogeny-based key exchange
schemes were proposed, such as SIDH [26,21], CSIDH [8] and OSIDH [11,34].
These protocols also motivate cryptographers to construct digital signatures.
Currently, there are mainly three kinds of isogeny-based signatures: SIDH-based [15,10],
CSIDH-based [16,6,1], and quaternion-based [24,17,18,14].

Authors are listed in alphabetical order.

SQIsign (Short Quaternion and Isogeny Signature) was first introduced by
De Feo, Kohel, Leroux, Petit and Wesolowski [17]. Compared with other isogeny-
based signatures, the bitlength of the prime field characteristic used in SQIsign
is relatively small. Besides, the public key of SQIsign does not reveal torsion
point information (and thus it is not vulnerable to the Castryck-Decru-Maino-
Martindale-Robert attacks [7,31,38]). Furthermore, the signer needs to respond
for each challenge bit respectively in most isogeny-based signatures, but there
is no need for such a procedure in SQIsign. This makes SQIsign, as one of
the most compact signatures, highly competitive in the field of post-quantum
cryptography.

SQIsign is obtained by applying the Fiat–Shamir transform [20] to an identi-
fication protocol. The signing phase of SQIsign mainly involves two procedures:
ideal generation with the SigningKLPT algorithm and the ideal-to-isogeny trans-
lation.

The SigningKLPT algorithm, which builds upon the KLPT algorithm ini-
tially introduced by Kohel et al. [27], takes a left ideal I as input and outputs
another left ideal J of a smooth power reduced norm which is equivalent to I.
After obtaining J , the signer needs to translate it into the corresponding isogeny
ϕJ and compress it to be a part of the signature. The translation from the ideal
J to the isogeny ϕJ is the efficiency bottleneck of SQIsign, since it involves ex-
pensive procedures such as large degree isogeny computations. Recently, De Feo
et al. [18] proposed a novel approach to speed up the ideal-to-isogeny transla-
tion. Besides isogeny computations, the state-of-the-art contains torsion point
generation, discrete logarithm computations, etc.

In this paper, we explore the current SQIsign implementation and further
accelerate it by utilizing various techniques, especially the performance of the
ideal-to-isogeny translation, as we summarize in the following:

1. In [18], each step of the new algorithm for the ideal-to-isogeny translation
requires computing two elliptic curve discrete logarithms, i.e.,

θ(P) = [x1]P + [x2]Q,

θ(Q) = [x3]P + [x4]Q,

where P,Q ∈ E[2a], and the endomorphism θ has reduced norm coprime to
2. For efficiency, the previous work used an x-only arithmetic to obtain the
absolute values of x1, x2, x3 and x4, then employed the reduced trace of the
endomorphism to determine their signs. We claim that one can eliminate
the second elliptic curve discrete logarithm computation by fully exploiting
the properties of θ. Additionally, we provide a much more efficient approach
to solve the other elliptic curve discrete logarithm by utilizing pairing com-
putations and discrete logarithm computations over the finite field Fp2 . The
experimental results show that our method offers a 3.6× speedup. It should
be noted that the improvement benefits not only the signing phase but also
key generation.

2. We introduce new techniques to optimize other procedures in the ideal-to-
isogeny translation. In particular, our algorithm offers a speedup of approxi-

2

mately 2× for torsion point generation. Besides, we improve the performance
of isogeny computations in SQIsign, leading to considerable improvements.
We also demonstrate that one can accelerate the first execution of the ideal-
to-isogeny translation in the signing phase via precomputation in the key
generation phase. It may enlarge the cost of key generation, but reduces
the signing cost. This would be preferred when the signer intends to sign a
number of messages with the same secret key.

3. Based on [9], we complied and benchmarked our code. The experimental
results show that our techniques yield a significant acceleration of all the
above procedures. Besides, we not only enhance the signing phase but also
improve key generation and verification of SQIsign. The experimental results
show that the instantiation of key generation, signature and verification with
our techniques are 5.47%, 8.80% and 25.34% faster than those of the state-
of-the-art, respectively. In particular, when adapting the precomputation
technique in the key generation phase, the performance of the signing phase
can be up to 18.02% faster than that of the previous work.

Recently, Dartois et al. introduced SQIsignHD [14], a novel isogeny-based
signature inspired by SQIsign. While the signing phase of SQIsignHD is simpler
and more efficient compared to SQIsign, its verification phase is much more
expensive. Our work bridges the gap between the signing performance of SQIsign
and SQIsignHD, and achieves a faster verification of SQIsign.

The remainder of this paper is organized as follows. In Section 2 we explain
some mathematical concepts and review SQIsign, especially the ideal-to-isogeny
translation. Section 3 presents an efficient approach to compute discrete loga-
rithms in the ideal-to-isogeny translation. In Section 4 we provide other improve-
ments to speed up the performance. Finally, we report experimental results and
give a performance comparison between ours and the previous work in Section 5
and conclude in Section 6.

2 Notations and Preliminaries

In this section, we recap the required background that will be used throughout
the paper. We also provide a brief review of SQIsign and the implementation of
the ideal-to-isogeny translation.

2.1 Mathematical background

In this subsection we recall supersingular elliptic curves, isogenies and ideals in
quaternion algebras, for more in-deep details see [42,40].
Elliptic curves and isogenies Elliptic curves are nonsingular projective curves
with genus 1. We denote the infinity point of an elliptic curve E as ∞E . An
isogeny ϕ : E1 → E2 is a non-trivial morphism that sends ∞E1 to ∞E2 . If
the degree of isogeny ϕ equals the size of ker(ϕ), we call ϕ a separable isogeny.
We abbreviate a separable isogeny of degree ` as `-isogeny. For any subgroup

3

G of an elliptic curve E, we can compute an isogeny with kernel G by Vélu’s
formula [41,4]. For any isogeny ϕ from E1 to E2, there exists a unique isogeny
ϕ̂ from E2 to E1 such that ϕ̂ ◦ ϕ = ϕ ◦ ϕ̂ = [deg(ϕ)]. We call ϕ̂ the dual isogeny
of ϕ. Let ϕ1 and ϕ2 be two isogenies from E1 to E2 with degree `. We say that
ϕ1 and ϕ2 are equivalent if ker(ϕ1) = ker(ϕ2).

An endomorphism of an elliptic curve E is either the constant zero morphism
or an isogeny from E to itself. The set of endomorphisms of E defined over Fp
forms a ring under addition and composition. This ring, denoted by EndFp(E)

or End(E) for brevity, is called the endomorphism ring. Since the scalar multi-
plication [n] is an isogeny, we have Z ⊆ End(E). Moreover, if End(E) 6= Z, we
say that E has complex multiplication.

Every elliptic curve over a finite field has complex multiplication, and they
can be divided into two types by endomorphism rings. An elliptic curve E is said
to be ordinary if EndFp(E) is isomorphic to an order in a quadratic imaginary

field. Conversely, if EndFp(E) is isomorphic to a maximal order in a quaternion
algebra, then the elliptic curve E is said to be supersingular.
Orders and ideals in quaternion algebra A quaternion algebra over Q ram-
ified only at p and ∞ is of the form Bp,∞ = Q + Qi+ Qj + Qk, where i2 = −q,
j2 = −p and k = ij = −ji for some integer q. For any α = a1 +a2i+a3j+a4k ∈
Bp,∞, the canonical involution is the map sending α to ᾱ = a1−a2i−a3j−a4k.
The reduced trace and the reduced norm of α are respectively defined by

Trd(α) = α+ ᾱ = 2a1,

Nrd(α) = αᾱ = a1
2 + a2

2 + pa3
2 + pa4

2.

An order in Bp,∞ is a full-rank lattice and it is also a subring. We call an order
maximal when it is not contained in any other larger order. The endomorphism
rings of supersingular elliptic curves over Fp are isomorphic to maximal orders
in Bp,∞.

Let O be a maximal order. A full-rank lattice I ⊆ O is a left O-ideal if
OI ⊆ I, and it is a right O-ideal if IO ⊆ I. For any left ideal I of a maximal
order O in Bp,∞, define the left order and right order of I as

OL(I) = {x ∈ Bp,∞ | xI ⊆ I},
OR(I) = {x ∈ Bp,∞ | Ix ⊆ I}.

Note that OL(I) and OR(I) are also maximal orders. We say that I connects
OL(I) and OR(I), and the corresponding Eichler order of I is defined as O =
OL(I) ∩OR(I). The reduced norm of I is given by Nrd(I) = gcd({Nrd(α) | α ∈
I}). The conjugate of I, denoted by Ī, is the set of conjugates of elements of I
satisfying IĪ = Nrd(I)OL(I) and ĪI = Nrd(I)OR(I). Two left ideals I and J in
O are equivalent if there exists α ∈ B×p,∞ such that J = Iα, and we denote the
set of such classes by cl(O).
Isogeny graphs The `-isogeny graph G`(Fp) is a graph whose vertices represent
Fp-isomorphism classes [E] of supersingular elliptic curves defined over Fp. All
the elliptic curves in the Fp-isomorphism class have the same j-invariant. An

4

edge in this graph represents an equivalent class of `-isogenies. From [35], the
`-isogeny graph G`(Fp) is a Ramanujan graph.
Deuring Correspondence Suppose that E is a supersingular elliptic curve
over Fp2 , and its endomorphism ring End(E) is isomorphic to a maximal order
O of Bp,∞.

For a left integral ideal I of O with gcd(p,Nrd(I)) = 1, let E[I]={P ∈ E |
α(P) =∞E for any α ∈ I}, then the isogeny

ϕI : E → EI = E/E[I]

has ker(ϕI) = E[I] and deg(ϕI) = Nrd(I). Conversely, if ϕ : E → E′ is a
separable isogeny of degree n, then the cardinality of ker(ϕ) is n and Iϕ = {α ∈
O | α(P) =∞E for any P ∈ ker(ϕ)} is a left O-ideal of reduced norm n.

The Deuring Correspondence Theorem gives the connection between isoge-
nies and ideals:

There is a one-to-one correspondence between left O-ideals I of reduced norm
n and isogenies ϕ : E → E′ of degree n, given by I 7→ ϕI and ϕ 7→ Iϕ. If
ϕ : E → E′ and I correspond to each other, then End(E′) is isomorphic to the
right order of I in Bp,∞. Particularly, ϕ ∈ End(E) if and only if I = Oϕ is a
principal ideal. Furthermore, suppose that ϕ1 : E → E1 and ϕ2 : E → E2 are
two isogenies corresponding to the left ideals I1, I2 ⊆ O, respectively. Then E1

and E2 are in the same isomorphism class if and only if I1 and I2 are equivalent.
Here we illustrate the endomorphism ring of E0 : y3 = x3 + x, which is the

starting curve of the SQIsign implementation.
Example of endomorphism ring Let p ≡ 3 (mod 4) and E0 : y2 = x3+x be a
supersingular elliptic curve with j-invariant 1728. The endomorphism ring of E0

is isomorphic to the maximal order O0 = Z+Zi+Z i+j
2 +Z 1+k

2 where i2 = −1,
j2 = −p and ij = −ji = k. Indeed, the Frobenius map π : (x, y) → (xp, yp)
corresponds to j, while the distortion map ω : (x, y) → (−x, iy) corresponds to
i.

2.2 SQIsign

SQIsign (Short Quaternion and Isogeny Signature) was first introduced by De
Feo et al. [17] in 2020 and it is known as a compact post-quantum signature. This
signature is based on an identification protocol with Fiat-Shamir transform [20].
The main procedures of the identification protocol are as follows:

– Setup: Generate a prime p ≡ 3 (mod 4) of 2λ bits, where λ is the security
parameter. Define a supersingular elliptic curve E0 : y2 = x3 + x over Fp
with j(E) = 1728, and End(E0) ∼= O0. Choose an odd smooth number Dc

of λ bits such that Dc | p2 − 1. Besides, let D = 2e where e is larger than
the diameter of G2(Fp)5.

5 In practice, set e ≈ 3.75 log p as the SigningKLPT algorithm [17, Algorithm 5]
outputs an ideal of reduced norm ≈ p3.75.

5

– Key Generation: Choose a prime Nτ ∼ p
1
4 and randomly select a Nτ -

isogeny τ : E0 → EA. The secret key is the isogeny τ (note that the degree
of τ is also private), and the public key is the image curve EA.

– Commitment: The prover generates a random isogeny ψ1 : E0 → E1, and
sends E1 to the verifier.

– Challenge: The verifier sends a cyclic isogeny ψ2 : E1 → E2 of degree Dc

to the prover.

– Response: From the knowledge of the isogeny ψ2 ◦ ψ1 ◦ τ̂ : EA → E2, the
prover uses the SigningKLPT algorithm [17, Algorithm 5] to construct an

isogeny σ : EA → E2 of degree D such that ψ̂2 ◦ σ is cyclic. The prover then
transmits σ to the verifier.

– Verification: The verifier accepts if the isogeny σ : EA → E2 has degree D
and ψ̂2 ◦ σ is cyclic. It rejects otherwise.

E0 E1

EA E2

ψ1

τ
ψ2

σ

Fig. 1: Sketch of the identification protocol.

Since the reduced norm of Iτ is a large prime, it is expensive to compute the
corresponding isogeny τ directly by Vélu’s formula. To compute the coefficient
of EA efficiently, one can utilize the KLPT algorithm to translate Iτ to another
equivalent ideal I2 of reduced norm 2eτ , which corresponds to an isogeny from
E0 to EA of degree 2eτ . An alternative approach is to generate Iτ and I2 si-
multaneously by finding γ′ ∈ Z + Zi+ Zj + Zk with reduced norm Nτ2eτ , then
set Iτ = 〈γ′, Nτ 〉 and I2 = 〈γ′, 2eτ 〉. Compared to the former one, the latter
method is more efficient, but it makes the distribution of secret keys unclear [17,
Appendix D].

The response phase is the most complicated procedure. To avoid revealing
the secret, one should first construct a new ideal Iσ using the SigningKLPT
algorithm [17] from the knowledge of ψ2 ◦ ψ1 ◦ τ̂ , and then translate Iσ to the
corresponding isogeny σ of degree D. Compared with the generation of Iσ, the
translation from Iσ to the corresponding isogeny is much more expensive. In
the following, we review the ideal-to-isogeny translation in the current SQIsign
implementation.

2.3 Ideal-to-isogeny translation

The efficiency bottleneck of SQIsign is the translation from the ideal Iσ to the
corresponding isogeny σ. In the current implementation of SQIsign, the signer

6

needs to decompose the isogeny σ of degree 2e into a sequence of isogenies ϕi,
i = 1, 2, · · · , n of degree 2a such that

σ = ϕn ◦ · · · ◦ ϕ2 ◦ ϕ1,

where a is the integer such that 2a‖p+ 1.

Let J be an (O0,O)-ideal of reduced norm 2•. The core of the ideal-to-isogeny
translation is, given an ideal K = J + 2aO and the corresponding isogeny ϕK of
degree 2a with kernel 〈P 〉, one can find the corresponding isogeny of I = 〈α, 2a〉
by computing the kernel 〈[C]P + [D]θ(P)〉, where θ ∈ O\(Z + K + 2O) has
smooth reduced norm and satisfies that α(C + Dθ) ∈ K [18, Lemma 8]. To
achieve this, the following two algorithms are required:

SpecialEichlerNormT (O,K): Given a maximal order O and a left O-ideal K
of reduced norm `, outputs β ∈ O\(Z+K) of reduced norm dividing T 2, where
T is a parameter such that gcd(T, `) = 1 and T |p2 − 1.

IdealToIsogeny(I): Given an ideal I ⊆ O0 of reduced norm dividing T , outputs
the corresponding isogeny ϕI .

Algorithm 1 IdealToIsogenyEichler2a(O, I, J , ϕJ , P) [18, Algorithm 4]

Require: A left O-ideal I of reduced norm 2a, an (O0,O)-ideal J of reduced norm 2•

and ϕJ : E0 → E the corresponding isogeny, a generator P of E[2a] ∩ ker(ϕ̂J).
Ensure: ϕI of degree 2a.
1: K ← J + 2aO;
2: θ ← SpecialEichlerNormT (O, K + 2O);
3: Select α ∈ I such that I = O〈α, 2a〉;
4: Compute C,D such that α(C +Dθ) ∈ K and gcd(C,D, 2) = 1;
5: Take any n1 | T and n2 | T such that n1n2 = Nrd(θ). Compute H1 = O〈θ, n1〉 and
H2 = O〈θ, n2〉;

6: Li ← [J]∗Hi, φi ← [ϕJ]∗IdealToIsogeny(Li) for i ∈ {1, 2};
7: Compute Q← φ̂2 ◦ φ1(P);
8: Compute ϕI of kernel 〈[C]P + [D]Q〉;
9: return ϕI .

Algorithm 1 describes how to translate each ϕi. In the first execution to
compute ϕ1, the signer takes O = OA ∼= End(EA), I = Iσ + 2aOA, J = I2,
ϕJ = ϕI2 (as defined in Section 2.2, I2 is an (O0,OA)-ideal of reduced norm
2eτ) and the generator P of EA[2a]∩ ker(ϕ̂J) as the input. We present Figure 2
to illustrate the procedure of the ideal-to-isogeny translation.

7

E0 EA E
ϕJ

θ

ϕK ϕ1

σ

ϕ2 ··· ϕn

Fig. 2: Sketch of the ideal-to-isogeny translation. In the first execution to com-
pute ϕ1, we set J = I2, K = J + 2aOA.

The most expensive step of Algorithm 1 is to compute Q = θ(P) = φ̂2◦φ1(P).
To reduce the computational cost, one can utilize Algorithm 2 to obtain the x-
coordinate of [C]P + [D]Q from the knowledge of Trd(θ). Compared to directly
computing Q = θ(P), one isogeny construction can be saved.

Algorithm 2 EndomorphismEvaluation(φ1, φ2, C, D, t, P) [18, Algorithm 6]

Require: Two isogenies φ1, φ2 from E to E′, scalars C and D, the reduced trace
Trd(θ) where θ = φ̂2 ◦ φ1, and a point P ∈ E[2a].

Ensure: The x-coordinate of [C]P + [D]θ(P).
1: Compute Q such that 〈P,Q〉 = E[2a] and compute P +Q;
2: Compute xφ1(P), xφ1(Q), xφ2(P), xφ2(Q), xφ2(P+Q);
3: Compute s1, s2 such that xφ1(P) is equal to the x-coordinate of [s1]φ2(P) +

[s2]φ2(Q);
4: Compute s3, s4 such that xφ1(Q) is equal to the x-coordinate of [s3]φ2(P) +

[s4]φ2(Q);
5: Change the signs of (s1, s2), (s3, s4) until (s1 + s4) deg(φ2) ≡ Trd(θ) mod 2a;
6: Compute the x-coordinate of [C + s1D deg(φ2)]P + [s2D deg(φ2)]Q and set it as
xR;

7: return xR.

2.4 Reduced Tate pairing

Let E be an elliptic curve over Fp, the reduced Tate pairing is a map :

en : E(Fq)[n]× E(Fq)/nE(Fq)→ µn,

where q is the power of p and µn is the n-roots of unity in Fp. There are some
properties of the reduced Tate pairing [23, Theorems IX.7, IX.9]:

1. Assume P1, P2 ∈ E(Fq)[n], P3, P4 ∈ E(Fq)/nE(Fq). Then

en(P1 + P2, P3) = en(P1, P3)en(P2, P3),

en(P1, P3 + P4) = en(P1, P3)en(P1, P4).

8

2. Let P ∈ E(Fq)[n]. If en(P,Q) = 1 for any Q ∈ E(Fq)/nE(Fq), then P =∞E .
3. Let Q ∈ E(Fq)/nE(Fq). If en(P,Q) = 1 for any P ∈ E(Fq)[n], then Q ∈
nE(Fq).

4. Let P ∈ E(Fq)[N] and Q ∈ E(Fq), where N = nn′. Then

en ([n′]P,Q) = eN (P,Q)n
′
.

3 Efficient Elliptic Curve Discrete Logarithm
Computations

In this section, we focus on how to solve the two elliptic curve discrete logarithms
in Algorithm 2 and propose a more efficient approach to obtain s1 and s2. To
be precise,

φ1(P) = [s1]φ2(P) + [s2]φ2(Q),

φ1(Q) = [s3]φ2(P) + [s4]φ2(Q).
(1)

where φ1, φ2 are two isogenies of odd degree. For simplicity, we denote Pi = φi(P)
and Qi = φi(Q), i = 1, 2.

The authors in [18] used the Pohlig-Hellman algorithm [36] with a balanced
strategy to reduce the above two elliptic curve discrete logarithms in the group
EA[2a] into multiple elliptic curve discrete logarithms in the group EA[2]. For
efficiency, they suggested using the x-only arithmetic to recover the absolute
values of s1, s2, s3 and s4 by computing two elliptic curve discrete logarithms
in Equation (1), and then determine the signs of them with the help of Trd(θ).
However, it still incurs large computational cost. This method has to compute
the x-coordinates of Pi +Qj and P1 + P2 +Qi (i, j = 1, 2) in advance and store
all of them into a stack. During the computation, all the elements in the stack
need to be updated frequently in order to entirely utilize the x-only arithmetic.
On the other hand, as we can see in Algorithm 2, the goal of computing the
absolute values of s3 and s4 in the second elliptic curve discrete logarithm is
merely to confirm the signs of s1 and s2. It is natural to ask whether one could
compute only one elliptic curve discrete logarithm to obtain the exact values of
s1 and s2.

In the following, we propose a more efficient method to obtain the exact
values of s1 and s2. Firstly, we demonstrate how to avoid the second elliptic
curve discrete logarithm computation in Equation (1) with the knowledge of
θ. Subsequently, inspired by previous works, we take full advantage of pairing
computations to translate the first elliptic curve discrete logarithm into two
discrete logarithms in the finite field Fp2 . Finally, we show how to compute the
two discrete logarithms in Fp2 efficiently.

3.1 Saving one elliptic curve discrete logarithm computation

Thanks to [18, Lemma 8], the ideal-to-isogeny translation applies Algorithm 1
to choose an endomorphism θ ∈ O\(Z +K) for computing the kernel of ϕI . To

9

optimize the implementation, we further exploit the specific properties of θ. Now
we propose Lemma 1, a key observation that eliminates the second elliptic curve
discrete logarithm computation in Equation (1):

Lemma 1. Assume that ϕJ is a cyclic 2•-isogeny from E0 to E, and J is the
corresponding right O-ideal. Suppose that K = J + 2O. If the endomorphism
θ ∈ O\(Z + K) and P is a point of order 2a such that 〈P 〉 = E[2a] ∩ ker(ϕ̂J),
then θ([2a−1]P) 6= [2a−1]P .

Proof. Clearly, the ideal corresponding to the isogeny ϕ̂J is J . Hence, for any
δ ∈ K = J + 2O, we have

δ([2a−1]P) =∞E .

Suppose that θ([2a−1]P) = [2a−1]P . From θ([2a−1]P) − [2a−1]P = ∞E , we can
deduce θ − 1 ∈ K from the Deuring Correspondence Theorem. It implies that
θ ∈ Z +K. This contradicts the fact that θ ∈ O\(Z +K). �

Lemma 1 implies that the endomorphism θ always maps [2a−1]P to a point
which is not [2a−1]P . Since the reduced norm of θ divides T 2 and T is odd,
θ([2a−1]P) is not the point at infinity. This implies that the endomorphism θ
maps [2a−1]P to another point of order 2.

In the following, we show that s2 in Equation (1) is always odd. It confirms
that s−12 mod 2a exists, which can be employed to accelerate the performance.

Proposition 1. At Step 3 of Algorithm 2, we have s2 ≡ 1 mod 2.

Proof. From P1 = [s1]P2 + [s2]Q2, we have

[2a−1]P1 = [s1]([2a−1]P2) + [s2]([2a−1]Q2).

Suppose for contradiction that s2 is even. Since the order of [2a−1]Q2 is 2,
[s2]([2a−1]Q2) is the point at infinity. Therefore,

[2a−1]P1 = [s1]([2a−1]P2).

Applying φ̂2 to the above equation yields:

θ([2a−1]P) = [s1 deg(φ2)]([2a−1]P).

From the deduction above, we know that the point θ([2a−1]P) is of order 2.
It implies that θ([2a−1]P) = [2a−1]P , which is a contradiction with Lemma 1.
Therefore, we have s2 ≡ 1 mod 2. �

Now we demonstrate how to avoid the second elliptic curve discrete logarithm
in Equation (1). From the knowledge of Trd(θ) and Nrd(θ), one can directly
compute s3 and s4 with respect to s1 and s2. Note that

θ

(
P
Q

)
=

(
s1 deg(φ2) s2 deg(φ2)
s3 deg(φ2) s4 deg(φ2)

)(
P
Q

)
,

10

and s2, deg(φ2) are invertible in Z/2aZ. Therefore, after recovering the absolute
values of s1 and s2 in the first elliptic curve discrete logarithm computation, one
can suppose

s4 =
Trd(θ)

deg(φ2)
− s1 mod 2a, s3 =

s1s4 deg(φ2)2 −Nrd(θ)

s2 deg(φ2)2
mod 2a. (2)

Then, compute the x-coordinate of [s3]P2+[s4]Q2. If the x-coordinate of [s3]P2+
[s4]Q2 is equal to that of Q1, then the signs of s1 and s2 are correct. Otherwise,
we need to change the signs of them. The main procedure is summarized in
Algorithm 3:

Algorithm 3 EndomorphismEvaluation(ϕ1, ϕ2, C, D, t, n, P)

Require: Two isogenies φ1, φ2 from E to E′, scalars C and D, the reduced trace
Trd(θ) where θ = φ̂2 ◦ φ1, the reduced norm Nrd(θ) and a point P ∈ E[2a].

Ensure: The x-coordinate of [C]P + [D]θ(P).
1: Compute Q such that 〈P,Q〉 = E[2a] and compute P +Q;
2: Compute xφ1(P), xφ1(Q), xφ2(P), xφ2(Q), xφ2(P+Q);
3: Compute s1, s2 such that xφ1(P) is equal to the x-coordinate of [s1]φ2(P) +

[s2]φ2(Q);
4: Let s4 = Trd(θ)/ deg(φ2) − s1 mod 2a and s3 = (s1s4 deg(φ2)2 −

Nrd(θ))/
(
s2 deg(φ2)2

)
mod 2a;

5: Compute the x-coordinate of [s3]φ2(P) + [s4]φ2(Q) and set it as xt;
6: if xt 6= xφ1(Q) then
7: s1 ← −s1, s2 ← −s2;
8: end if
9: Compute the x-coordinate of [C + s1D deg(φ2)]P + [s2D deg(φ2)]Q and set it as
xR;

10: return xR.

At the beginning of this section, we reviewed the current implementation
of computing discrete logarithms on elliptic curves in SQIsign. Even though the
authors in [18] utilized the x-only arithmetic, the procedure remains expensive. A
question raised here is how to compute the first elliptic curve discrete logarithm
in Equation (1) more efficiently.

Our optimization is reminiscent of public-key compression in SIDH [3]. That
is, applying pairings (note that the pairing we use should satisfy e2a(R,R) = 1
for any R ∈ E(Fp2)[2a]) to translate the elliptic curve discrete logarithm into
two discrete logarithms in the cyclic group µ2a = {h ∈ Fp2 |h2

a

= 1}:

h0 = e2a(P2, Q2),

h1 = e2a(P2, P1) = e2a(P2, [s1]P2 + [s2]Q2) = hs20 ,

h2 = e2a(Q2, P1) = e2a(Q2, [s1]P2 + [s2]Q2) = h−s10 .

(3)

11

In Sections 3.2 and 3.3, we show how to efficiently compute the pairings
in Equation (3) and the two discrete logarithms in µ2a to recover s1 and s2,
respectively.

3.2 Pairing computations

In this subsection, we show the feasibility of adapting the reduced Tate pairing in
Equation (3) and explore how to compute h0, h1 and h2 efficiently. Furthermore,
we analyze the situation when using the Weil pairing. For simplicity, we adopt
the notation eT,n(·, ·) and eW,n(·, ·) for the reduced Tate pairing and the Weil
pairing, respectively.

Since the embedding degree is equal to 1, the property that eT,2a(R,R) = 1
does not necessarily hold for any R ∈ E(Fp2)[2a]. Hence, a natural question
to ask is whether the deduction in Equation (3) is still correct when applying
the reduced Tate pairing. Indeed, the fact eT,2a(R,R) = 1 has been applied to
public-key compression in SIDH [12]. It seems that the correctness is well known
to the experts, but we did not find a relevant proof in the literature. Therefore,
we propose Theorem 1 for illustrating the special feature of the reduced Tate
pairing in our scenario.

Theorem 1. Suppose that E is a supersingular elliptic curve over Fp2 with car-
dinality #E(Fp2) = (p + 1)2. Let E[n] ⊆ E(Fp2). Then eT,n(R,R) = 1 for any
R ∈ E(Fp2)[n].

Proof. From [43, Theorem 3.17], we have

eT,n(R,R) = eW,n(R,R′ − π(R′)),

where R′ ∈ E(Fp) such that [n]R′ = R and π is the p2-th power Frobenius map.
Since #E(Fp2) = (p+ 1)2, we have π = [−p]. Therefore,

R′ − πR′ = [p+ 1]R′ =

[
p+ 1

n

]
R.

By E[n] ⊆ E(Fp2), it follow that n|p+1 [43, Corollary 3.11]. From the bilinearity
and the alternating property of the Weil pairing, we have

eT,n(R,R) = eW,n(R,R′ − π(R′)) = eW,n(R,R)
p+1
n = 1,

which concludes the proof. �

It remains to explore how to efficiently compute the reduced Tate pairings. In
the SIDH/SIKE implementation [2], Naehrig et al. [33] used the dual isogeny to
pull back the pairing computations from the image curve to the starting curve.
However, this technique does not work here because

h0 = e2a(ϕ̂J(P), ϕ̂J(Q)) = e2a(P,Q)deg(ϕJ) = e2a(P,Q)2
a+•

= 1.

12

Similarly, we have h1 = h2 = 1. Therefore, we have to compute the three pairings
in Equation (3) on the image curve E, as done in [3,12].

The reduced Tate pairing computations involve two procedures: Miller func-
tion construction and the final exponentiation. Compared to the latter, the for-
mer consumes more computational resources because of the low embedding de-
gree. In the SIDH/SIKE implementation, the state-of-the-art improves the Miller
loop computation by the following formula with precomputation [29]:

div(f4n+1,R) = div

([
f24n,R ·

(
λ1(x− x[2·4n]R)− (y + y[2·4n]R)

)]2
λ2(x− x[2·4n]R)− (y + y[2·4n]R)

)
, (4)

where the function fN,R is rational with divisor div(fN,R) = N(R) − ([N]R) −
(N − 1)(∞E), the values λ1 and λ2 are the slopes of the lines passing through
[4n]R and [−2 · 4n]R twice, respectively. In our case, we are not able to apply
the precomputation technique since the two arguments are unknown. However,
one can still use Equation (4) instead of adapting the usual doubling step:

div(f2n+1,R) = div

(
f22n,R

λ1(x− x[2n]R)− (y − y[2n]R)

x− x[2n+1]R

)
, (5)

where λ1 is the slope of the line passing through [2n]R twice.
For efficiency, we use modified Jacobian coordinates to compute the pair-

ings. The doubling operation requires only 3M + 5S [5], where S,M are the
cost of an Fp2 field squaring and multiplication, respectively. Another advan-
tage of using modified Jacobian coordinates is that during the computation of
doubling/quadrupling of R one can also obtain λ1 and λ2 easily.

According to our estimate, each quadrupling Miller loop using Equation (4)
with modified Jacobian coordinates costs 17M + 13S. It saves 3M + 1S com-
pared to computing two doubling Miller loops using Equation (5) with modified
Jacobian coordinates.

The final exponentiation is an exponentiation to the power p2−1
2a = (p− 1) ·

p+1
2a . Raising to the power p−1 is straightforward, requiring only one application

of the Frobenius map and one inversion in Fp2 . Conversely, the exponentiation

to the power p+1
2a is a hard part. One can utilize the efficient formulas in the

cyclotomic subgroup µp+1 = {hp+1 = 1|h ∈ Fp2} [12, Section 5.1]. Another
effective method, which is proposed by Scott et al. [39], is to raise the power
with the help of Lucas sequences [37, Section 3.6.3]. In the implementation, we
employ the latter one for the hard part since it performs better.

In fact, we can further optimize the computation from the relations of h0
and h1. Adapting the reduced Tate pairings in Equation (3),

h0 = eT,2a(P2, Q2) = f2a,P2
(Q2)

p2−1
2a ,

h1 = eT,2a(P2, P1) = f2a,P2
(P1)

p2−1
2a ,

h2 = eT,2a(Q2, P1) = f2a,Q2(P1)
p2−1
2a .

(6)

13

Note that the first two pairing computations share the same first argument.
Therefore, we can merge the computations of h0 and h1 to eliminate the redun-
dant Miller function construction.

Remark 1. The techniques proposed above can not be directly applied to the
case when the order of the pairing is 2a

′
with a′ < a. This is because, given

a class in E(Fp2)/2a
′
E(Fp2), we may not find an element in E(Fp2)[2a

′
] to

be the representative of the class. Assume that 〈P,Q〉 = E(Fp2)[2a
′
]. Since

〈[2a−a′]P, [2a−a′]Q〉 ∈ [2a
′
]E(Fp2) and the second argument of the reduced Tate

pairing is a representative of the class in E(Fp2)/2a
′
E(Fp2), the order of the

reduced Tate pairing e2a′ (P,Q) is 22a
′−a in Fp2 . For instance, set a′ = a − 1.

In this situation, all the points in E(Fp2)[2] represent the same class [∞E] in
E(Fp2)/2E(Fp2). If the second argument is a point of order 2a−1, then e2a−1(P,Q)

is of order 2a−2 in Fp2 . Especially, if we consider the pairing of order 2a
′

satis-
fying 2a′ < a, the value e2a′ (P,Q) is always equal to 1. Fortunately, we always
handle the case a′ = a except for the last step of the ideal-to-isogeny translation.

An alternative approach to compute pairings in Equation (3) is to utilize the
Weil pairing [32, Proposition 8]:

eW,2a(P2, P1) =
f2a,P2(P1)

f2a,P1
(P2)

,

eW,2a(P2, Q2) =
f2a,P2(Q2)

f2a,Q2
(P2)

,

eW,2a(Q2, P1) =
f2a,Q2(P1)

f2a,P1
(Q2)

.

(7)

Clearly, we need to construct three Miller functions. For the reduced Tate
pairing computation, Miller function construction is more expensive than the
final exponentiation. Additionally, only two Miller function constructions are
needed in Equation (6), while there are three Miller functions to be constructed
in Equation (7). Consequently, the Weil pairing computation is still not as effi-
cient as the reduced Tate pairing computation. But in parallel implementation,
the Weil pairing computation becomes more competitive since it does not need
the final exponentiation and all Miller function evaluations could be executed
simultaneously. Another advantage compared to the reduced Tate pairing is that
one can apply the Weil pairing to the situation when the order of the pairing is
less than 2a.

3.3 Discrete logarithm computations in µ2a

Since the order of µ2a is smooth, one can use the Pohlig-Hellman algorithm
with an optimal strategy to translate discrete logarithms in µ2a into discrete
logarithms in µ2w , where w is a small integer. It remains to compute discrete
logarithms in µ2w efficiently.

14

The authors in [30] proposed two methods to accelerate discrete logarithm
computations. The first one is to compute a lookup table with respect to the
base h0:

T sgn1 [r][c] = (h0)(c+1)2wr+m , r = 0, 1, · · · , b a
w
c − 1, c = 0, 1, · · · , 2w−1 − 1,

(8)
where m ≡ a mod w. Since h0 is not fixed, we can not compute the lookup
table in advance. As the base power w increases, the lookup table construction
becomes more expensive, and it requires more storage at the same time, while
the discrete logarithm computations would be more efficient.

The second method proposed in [30] is to compute only the first column and
the last row of the lookup table in Equation (8):

FC =
{
T sgn1 [r][0] = (h0)2

wr+m

, i = 0, 1, · · · , b a
w
c − 1

}
,

LR =
{
T sgn1 [b a

w
c − 1][c] = (h0)(c+1)2a−w , c = 0, 1, · · · , 2w−1

}
.

(9)

The discrete logarithm computations with Equation (9) is more expensive com-
pared to that of the former method. However, the construction of Equation (9) is
more efficient than the entire lookup table construction. Furthermore, the latter
method would be preferred in storage restrained environments.

In the following, we give another effective approach to improve the perfor-
mance of discrete logarithms in µ2a .

At first glance, as h0 is not fixed, it seems that we can not use precompu-
tation in the setup phase to reduce the computational cost. However, since the
cyclotomic group µ2a in Fp2 is fixed, one can find a primitive element g of µ2a in
advance. Instead of computing the two discrete logarithms of h1, h2 to the base
h0, we compute three discrete logarithms of h0, h1, h2 to the base g:

h0 = gs
′
0 , h1 = gs

′
1 , h2 = gs

′
2 . (10)

Hence, when the storage is available, we can use the precomputation in the setup
phase to further speed up the discrete logarithm computations in Equation (10).
In this case, the lookup table with respect to g is as follows:

T sgn1 [r][c] = g(c+1)2wr+m , r = 0, 1, · · · , b a
w
c − 1, c = 0, 1, · · · , 2w−1 − 1. (11)

Note that h0 is also a primitive element in µ2a . Therefore, we can recover the
solutions by one inversion and two multiplications in Z/2aZ:

s1 = (s′0)−1s′1, s2 = (s′0)−1s′2.

Compared with the first two methods, our method offers the advantage of
precomputing the entire lookup table with respect to g in the setup phase to
enhance the performance. However, it requires one more discrete logarithm com-
putation in µ2a . We respectively estimate the computational costs by utilizing

15

Algorithm 4 PH DLP(h, g, w, T sgn1 , Str)

Require: The challenge h, a primitive element g in the multiplicative group µ2a , the
base power w, the lookup table T sgn1 in Equation (11), the optimal strategy Str.

Ensure: The array D such that h = g(D[b a
w
c−1]···D[1]D[0])

2w .
1: Initialize a Stack Stack, which contains tuples of the form (ht, et, lt), where ht ∈
µ2a , et, lt ∈ N.

2: LR← the last row of the lookup table T sgn1 ;
3: i← 0, j ← 0, k ← 0, m← 2a mod w, ht ← h, y ← 1;
4: ht ← (ht)

2m ;
5: Push the tuple (ht, j, k) into Stack;
6: while k 6= b e`

w
c − 1 do

7: while j + k 6= b e`
w
c − 1 do

8: j ← j + Str[i];

9: ht ← (ht)
2w·Str[i] ;

10: Push the tuple (ht, j + k, Str[i]) into Stack;
11: i← i+ 1;
12: end while
13: Pop the top tuple (ht, et, lt) from Stack;
14: j ← j − lt, k ← k + 1;
15: Find xt such that ht = (LR[0])xt with the help of LR;
16: D[k]← xt;
17: for each tuple (ht, et, lt) in Stack do
18: if xt 6= 0 then
19: if xt > 0 then
20: ht ← ht · T sgn1 [et][xt − 1];
21: else
22: ht ← ht · T sgn1 [et][−xt − 1];
23: end if
24: end if
25: et ← et + 1;
26: end for
27: end while
28: Pop the top tuple (ht, et, lt) from Stack;
29: Find xt such that ht = (LR[0])xt with the help of LR;
30: D[k]← xt;
31: if m 6= 0 then
32: y0 ← gD[0];
33: for i2 from 1 to b e`

w
c − 1 do

34: if D[i2] < 0 then
35: y ← y · T sgn1 [i2 − 1][−D[i2]− 1];
36: end if
37: if D[i2] > 0 then
38: y ← y · T sgn1 [i2 − 1][D[i2]− 1];
39: end if
40: end for
41: y ← y2

w−m
;

42: y ← y0 · y, y ← h · y;
43: Find xt such that y = (LR[0])xt with the help of LR;
44: D[k + 1]← xt

2w−m ;
45: end if
46: return D.

16

the three methods presented above when setting the prime p as p1973 (a = 75).
For simplicity, we only consider multiplications and squarings, and assume that
their computational costs are approximately equal. As shown in Table 1, the pre-
vious methods proposed in [30] are more efficient than our new method when the
base power is small. As the base power w increases, our new method saves more
computational resources. When the storage is limited, one can adapt Method 2
proposed in [30] since it requires the least storage for the lookup table.

Method w = 1 w = 2 w = 3 w = 4 w = 5 w = 6

Method 1 proposed in [30] 2468 1800 1339 1358 1391 1756
Method 2 proposed in [30] 2468 1869 1405 1605 1417 1746

Our method 3480 2370 1530 1365 1044 1041

Table 1: Cost estimates (in Fp multiplications) for the discrete logarithm com-
putation by different methods.

Based on [30, Algorithm 6], we present Algorithm 4 to solve discrete log-
arithms. Since the algorithm is non-recursive, it would be more attractive in
parallel environments.

4 Other Improvements

In this section, we propose other techniques to speed up the signing phase.
Some of the improvements also benefit the performance of key generation and
verification.

4.1 Torsion point generation

To accelerate torsion basis generation in compressed SIDH, Costello et al. [12]
proposed a method to find out a torsion basis of E(Fp2)[2a]. The main idea is as
follows: Firstly, precompute a list L of non-squares in Fp2 . Then, randomly select

v1 ∈ L until v31 +Av21 +v1 is a square. It confirms that (v1,
√
v31 +Av21 + v1) is a

point on E(Fp2). According to [25, Ch. 1((§4))], the order of the point is divided
by 2a, thus one can perform scalar multiplication to obtain a point P of order
2a. Similarly, one can generate a point Q of order 2a until 〈P,Q〉 = E(Fp2)[2a],
which can be checked by [2a−1]P 6= [2a−1]Q. In this subsection, we will show
how to adapt this method to benefit the implementation of SQIsign.

Note that the 2•-isogeny σ ◦ϕI2 can be composed by multiple 2-isogenies. In
addition, for any 2-isogeny φ whose kernel is 〈(xP , 0)〉 with xP 6= 0, i.e.,

φ :(x, y) 7→
(
x ·
(
xPx− 1

x− xP

)
,
√
xP · y ·

(
xPx

2 − 2x2Px+ xP
(x− xP)2

))
,

17

we have

φ((0, 0)) = (0, 0).

When the kernel is 〈(0, 0)〉, the isogeny can be defined by

φ :(x, y) 7→
(

1√
A2 − 4

· x
2 +Ax+ 1

x
,

1
4
√
A2 − 4

· y · x
2 − 1

x2

)
,

where A is the coefficient of the initial curve EA : y2 = x3 +Ax2 + x [9, Section
2.3.1]. In this case, the point (0, 0) on the image curve is in the kernel of the
dual isogeny.

To summarize, in both cases the dual of 2-isogeny has kernel 〈(0, 0)〉. Further-
more, we can deduce that a cyclic 2•-isogeny ϕ computed by the above formulas
has the property that (0, 0) ∈ ker(ϕ̂). This implies that the first step of the dual
isogeny has kernel 〈(0, 0)〉.

Note that in the first execution of the ideal-to-isogeny translation, we have
ϕJ = ϕI2 . Since ϕI2 is cyclic, we can imply that (0, 0) ∈ E[2a] ∩ ker(ϕ̂J) = 〈P 〉,
which means [2a−1]P = (0, 0).

Now we consider the second execution. If σ ◦ϕI2 is cyclic, we can imply that
the isogeny ϕJ = ϕ1 ◦ϕI2 is also cyclic. Hence, E[2a]∩ ker(ϕ̂J) = ker(ϕ̂1) = 〈P 〉
is a point of order 2a, and from the deduction above we have [2a−1]P = (0, 0).
However, if σ ◦ ϕI2 is not cyclic, then E[2a] ∩ ker(ϕ̂J) is not a cyclic group. It
follows that [2a−1]P =∞. In this situation, one can set 〈P 〉 to be the kernel of ϕ̂1

instead of E[2a]∩ker(ϕ̂J). In the meantime, set K to be the ideal corresponding
to ϕ̂1 in Algorithm 1. Since the isogeny ϕ1 is cyclic and it has degree 2a, we have
[2a−1]P = (0, 0).

Similarly, if E[2a] ∩ ker(ϕ̂J) = ker(ϕ̂i) = 〈P 〉 in the i-th ideal-to-isogeny
translation with i > 2, then from ϕi being cyclic we have [2a−1]P = (0, 0).
Otherwise we set 〈P 〉 to be the kernel of ϕ̂i and K as the ideal corresponding to
ϕ̂i in Algorithm 1.

Therefore, in each ideal-to-isogeny translation, we can always set the point
P such that [2a−1]P = (0, 0). Now we need another point Q such that 〈P,Q〉 =
E(Fp2)[2a], i.e., [2a−1]Q 6= (0, 0). Obviously, the above method presented by
Costello et al. is exactly suitable for speeding up the generation of Q. Further,
there is no need to check [2a−1]Q 6= (0, 0) when applying this method since P
and Q are always linearly independent, according to Theorem 2.

Theorem 2. Assume that EA : y2 = x3 + Ax2 + x is a supersingular elliptic
curve defined on the finite field Fp2 , where 2a‖p + 1 and EA[2a] ⊆ EA(Fp2).
Suppose that Q = (xQ, yQ) ∈ EA(Fp2) and denote ord(Q) the order of Q. If

2a‖ord(Q), then (xQ)
p2−1

2 = −1 if and only if
[
ord(Q)

2

]
Q 6= (0, 0).

Proof. Suppose that P is a point of order 2a defined on EA/Fp2 . Firstly, we prove
that P and Q are linearly independent if and only if eT,2a(P,Q) is a primitive
element of the group µ2a .

18

Let Q ∈ EA(Fp2) be a rational point such that P and Q are linearly inde-
pendent. Suppose for contradiction that eT,2a(P,Q) is not a primitive element
of the group µ2a . Then we have

eT,2([2a−1]P,Q) = eT,2a(P,Q)2
a−1

= 1,

From Theorem 1 we can deduce that

eT,2([2a−1]P, P) = eT,2a(P, P)2
a−1

= eT,2a(P, [2a−1]P) = 1. (12)

Since EA(Fp2)/2EA(Fp2) = {∞EA +2EA(Fp2), P +2EA(Fp2), Q+2EA(Fp2), P +
Q+2EA(Fp2)}, we have eT,2([2a−1]P,R) = 1 for anyR ∈ EA(Fp2)/2EA(Fp2). Ac-
cording to the non-degeneracy property of the reduced Tate pairing, [2a−1]P =
∞EA . This is a contradiction and thus eT,2a(P,Q) is a primitive element of the
group µ2a .

On the other hand, if eT,2a(P,Q) is of order 2a, then

eT,2a(P,Q)2
a−1

= eT,2a(P, [2a−1]Q) = eT,2a

(
P,

[
ord(Q)

2

]
Q

)
= −1.

It follows from Equation (12) that
[
ord(Q)

2

]
Q 6= [2a−1]P . Hence, we can deduce

that P and Q are linearly independent.

Now assume that [2a−1]P = (0, 0). If [ord(Q)
2]Q 6= (0, 0), then Q and P are

linearly independent. Therefore, eT,2a(P,Q) is a primitive element of µ2a , i.e.,

eT,2a(P,Q)2
a−1

= eT,2((0, 0), Q) = (xQ)
p2−1

2 = −1. (13)

Conversely, if (xQ)
p2−1

2 = −1, from Equation (13) we can imply that P and Q

are linearly independent. It ensures that [ord(Q)
2]Q 6= (0, 0). This completes the

proof. �

With Theorem 2, we can efficiently generate the point Q in Algorithm 5. It
should be noted that this improvement benefits all the procedures of SQIsign,
especially the verifying phase.

Algorithm 5 DeterministicSecondPoint(A)

Require: The coefficient A of the Montgomery curve EA : y2 = x3 +Ax2 + x.
Ensure: A point Q defined on EA of order 2a such that [2a−1]Q 6= (0, 0).
1: Select a non-square element xQ ∈ Fp2 such that x3Q +Ax2Q + xQ is a square;

2: Q← (xQ,
√
x3Q +Ax2Q + xQ);

3: Q← [p+1
2a

]Q;
4: return Q.

19

4.2 Image curve recovery with three points in isogeny computations

In each ideal-to-isogeny translation, we need to construct the large degree isogeny
φ2 and evaluate it at P , Q and P + Q. Invoking efficiency reasons, the compu-
tation of φ2 is composed by multiple odd degree isogeny computations. At each
odd degree isogeny computation, not only we need to evaluate it at the three
points, but the image curve should also be obtained. Fortunately, one can use
Equation (14) to recover the image curve coefficient A [13, Remark 4]:

A =
(1− xP ′xQ′ − xP ′xQ′−P ′ − xQ′xQ′−P ′)2

4xP ′xQ′xQ′−P ′
− xP ′ − xP ′ − xQ′−P ′ , (14)

where P ′ and Q′ are two points defined on the image curve. For large prime
degree isogeny computations, applying Equation (14) to obtain the image curve
coefficient is much more efficient than computing it with Vélu’s formula [41,4].
This trick not only accelerates the signing phase but also the key generation
phase. Note that this technique could also be adapted in the implementation of
other isogeny-based protocols, such as M-SIDH and MD-SIDH [22].

4.3 Precomputation for ϕ1

In the first execution of the ideal-to-isogeny translation for σ, we compute ϕ1

with OA, I2 and ϕI2 . All of these are obtained in the key generation phase, and
thus some procedures used to compute ϕ1 can be saved via precomputation in the
key generation phase. For example, the endomorphism θ ∈ OA can be computed
in advance, allowing us to evaluate Q = θ(P) before signing. Indeed, except for
C and D, all the other information does not depend on the ideal Iσ. Therefore,
one can precompute them to speed up the translation from the ideal 〈Iσ, 2a〉
to the isogeny ϕ1. As a result, we can compute ϕ1 efficiently by Algorithm 6,
which avoids large degree isogeny computations. Although the precomputation
increases the required computational resources of key generation, it reduces the
signing cost.

Algorithm 6 FirstIdealToIsogenyEichler2a(OA, I, K, P , θ, Q)

Require: A left OA-ideal I of reduced norm 2a, a left OA-ideal K = I2 + 2OA, a
generator P of E[2a] ∩ ker(ϕ̂I2), an endomorphism θ ∈ OA\(Z +K) and the point
Q = θ(P).

Ensure: ϕ1 of degree 2a.
1: Select α ∈ I such that I = OA〈α, 2a〉;
2: Compute C,D such that α(C +Dθ) ∈ K and gcd(C,D, 2) = 1;
3: Compute ϕ1 of kernel 〈[C]P + [D]Q〉;
4: return ϕ1.

20

5 Implementation Results

In this section, we present the implementation results of the procedures we have
improved in the signing phase, and report the performance of the instantiation
with p1973 using our techniques. We also give a concrete comparison between the
previous work and ours on efficiency. Based on the code1 provided in [18], we
compile and benchmark our code2 on Intel(R) Core(TM) i9-12900K 3.20 GHz
with TurboBoost and hyperthreading features disabled. Except for the improve-
ments we mentioned in this paper, we also adapt some techniques proposed in
the literature to further improve the implementation. For example, we employ
the three-point ladder algorithm [19] when computing the kernel generator of
the isogeny.

Table 2 reports the performance of our improved procedures in the signing
phase. For elliptic curve discrete logarithm computations, we apply our new
method to compute discrete logarithms in the group µ2a and set the base power
w = 5. The results show that the performance is significantly accelerated with
our techniques. It should be noted that all the procedures are executed multiple
times during the key generation and signing phase. In addition, the verification
phase frequently generate the second torsion point, thus our improved algorithms
for torsion point generation also reduce the verifying cost.

Phase Previous work [9] This work Speedup

Computations for s1 and s2 (Sec. 3) 5692 1562 72.6%
Torsion point generation (Sec. 4.1) 956 460 51.9%

Isogeny computation of ϕ2 (Sec. 4.2) 36784 32261 12.3%

Table 2: Implementation results of the improved procedures in the signing phase
of SQIsign. The results are expressed in thousands of clock cycles.

As shown in Table 3, we improve the performance of all the procedures in
SQIsign without the technique proposed in Section 4.3. When using the pre-
computation technique, the key generation phase is less efficient, but we further
improve the signing phase. In particular, the signing performance is up to 18.02%
faster than that of the previous work. This would be preferred in the case when
the signer needs to sign a number of messages using the same secret key.

6 Conclusion

In this paper, we mainly focused on the ideal-to-isogeny translation in the sign-
ing phase of SQIsign, and proposed several novel techniques to enhance the

1 https://github.com/SQISign/the-sqisign
2 https://github.com/LinKaizhan/FasterSQIsign

21

https://github.com/SQISign/the-sqisign
https://github.com/LinKaizhan/FasterSQIsign

Phase Prevoius work [9]
This work

without precomp. Speedup precomp. Speedup

Keygen 1491.4 1409.8 5.47% 1525.3 -2.27%
Sign 2371.4 2162.7 8.80% 1944.0 18.02%

Verify 36.7 27.4 25.34% 27.4 25.34%

Table 3: Implementation results of each phase in SQIsign. The results are re-
ported in millions of clock cycles. We execute 10 times and record the average
costs.

performance. For each procedure we have considered, the improvements led to a
significant speedup. The implementation results showed that we also improved
the key generation phase and the verification phase of SQIsign. As a future
work, we would like to explore how to further accelerate the implementation of
SQIsign.

Acknowledgments

We thank Jintai Ding for his valuable suggestions and proofreading an earlier
version of this work. We thank all the reviewers for their constructive comments.
This work is supported by Guangdong Major Project of Basic and Applied Basic
Research (No. 2019B030302008), the National Natural Science Foundation of
China (No. 61972428), Innovation Program for Quantum Science and Technology
(Grant No. 2021ZD0302902), NSFC(Grant No. 12371013), Anhui Initiative in
Quantum Information Technologies (Grant No. AHY150200).

References

1. Atapoor, S., Baghery, K., Cozzo, D., Pedersen, R.: CSI-SharK: CSI-FiSh
with Sharing-friendly Keys. In: Simpson, L., Rezazadeh Baee, M.A. (eds.) Infor-
mation Security and Privacy. pp. 471–502. Springer Nature Switzerland, Cham
(2023)

2. Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess, B., Hutchinson,
A., Jalali, A., Jao, D., Karabina, K., Koziel, B., LaMacchia, B., Longa, P., Naehrig,
M., Pereira, G., Renes, J., Soukharev, V., Urbanik, D.: Supersingular Isogeny Key
Encapsulation (2020), http://sike.org

3. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key Compression
for Isogeny-Based Cryptosystems. In: Proceedings of the 3rd ACM International
Workshop on ASIA Public-Key Cryptography. pp. 1–10 (2016)

4. Bernstein, D.J., de Feo, L., Leroux, A., Smith, B.: Faster computation of isoge-
nies of large prime degree. In: Galbraith, S. (ed.) ANTS-XIV - 14th Algorithmic
Number Theory Symposium. Proceedings of the Fourteenth Algorithmic Number
Theory Symposium (ANTS-XIV), vol. 4, pp. 39–55. Mathematical Sciences Pub-
lishers, Auckland, New Zealand (Jun 2020)

22

http://sike.org

5. Bernstein, D.J., Lange, T.: Explicit-formulas database, http://www.

hyperelliptic.org/EFD

6. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Advances in Cryptology–
ASIACRYPT 2019: 25th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Kobe, Japan, December 8–12, 2019,
Proceedings, Part I. pp. 227–247. Springer (2019)

7. Castryck, W., Decru, T.: An Efficient Key Recovery Attack on SIDH. In: Advances
in Cryptology–EUROCRYPT 2023: 42nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-27,
2023, Proceedings, Part V. pp. 423–447. Springer (2023)

8. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an ef-
ficient post-quantum commutative group action. In: Advances in Cryptology–
ASIACRYPT 2018: 24th International Conference on the Theory and Application
of Cryptology and Information Security, Brisbane, QLD, Australia, December 2–6,
2018, Proceedings, Part III 24. pp. 395–427. Springer (2018)

9. Chavez-Saab, J., Santos, M.C.R., Feo, L.D., Eriksen, J.K., Hess, B., Kohel, D.,
Leroux, A., Longa, P., Meyer, M., Panny, L., Patranabis, S., Petit, C., Henŕıquez,
F.R., Schaeffler, S., Wesolowski, B.: SQIsign (2023), manuscript available at http:
//sqisign.org

10. Chi-Domı́nguez, J.J.: A Note on Constructing SIDH-PoK-based Signatures af-
ter Castryck-Decru Attack. Cryptology ePrint Archive, Paper 2022/1479 (2022),
https://eprint.iacr.org/2022/1479

11. Colò, L., Kohel, D.: Orienting supersingular isogeny graphs. Journal of Mathemat-
ical Cryptology 14(1), 414–437 (2020)

12. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient
Compression of SIDH Public Keys. In: Coron, J.S., Nielsen, J.B. (eds.) Advances in
Cryptology – EUROCRYPT 2017. pp. 679–706. Springer International Publishing,
Cham (2017)

13. Costello, C., Longa, P., Naehrig, M.: Efficient Algorithms for Supersingular Isogeny
Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology –
CRYPTO 2016. pp. 572–601. Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

14. Dartois, P., Leroux, A., Robert, D., Wesolowski, B.: SQIsignHD: New Dimensions
in Cryptography. Cryptology ePrint Archive, Paper 2023/436 (2023), https://

eprint.iacr.org/2023/436, accepted by Eurocrypt 2024
15. De Feo, L., Dobson, S., Galbraith, S.D., Zobernig, L.: SIDH proof of knowledge. In:

Advances in Cryptology–ASIACRYPT 2022: 28th International Conference on the
Theory and Application of Cryptology and Information Security, Taipei, Taiwan,
December 5–9, 2022, Proceedings, Part II. pp. 310–339. Springer (2023)

16. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group
actions. In: Advances in Cryptology–EUROCRYPT 2019: 38th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19–23, 2019, Proceedings, Part III 38. pp. 759–789.
Springer (2019)

17. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: Compact
Post-quantum Signatures from Quaternions and Isogenies. In: Moriai, S., Wang,
H. (eds.) Advances in Cryptology – ASIACRYPT 2020. pp. 64–93. Springer Inter-
national Publishing, Cham (2020)

18. De Feo, L., Leroux, A., Longa, P., Wesolowski, B.: New Algorithms for the Deuring
Correspondence: Towards Practical and Secure SQISign Signatures. In: Hazay,

23

http://www.hyperelliptic.org/EFD
http://www.hyperelliptic.org/EFD
http://sqisign.org
http://sqisign.org
https://eprint.iacr.org/2022/1479
https://eprint.iacr.org/2023/436
https://eprint.iacr.org/2023/436

C., Stam, M. (eds.) Advances in Cryptology – EUROCRYPT 2023. pp. 659–690.
Springer Nature Switzerland, Cham (2023)

19. Faz-Hernández, A., López, J., Ochoa-Jiménez, E., Rodŕıguez-Henŕıquez, F.: A
Faster Software Implementation of the Supersingular Isogeny Diffie-Hellman Key
Exchange Protocol. IEEE Transactions on Computers 67(11), 1622–1636 (2018)

20. Fiat, A., Shamir, A.: How To Prove Yourself: Practical Solutions to Identifica-
tion and Signature Problems. In: Odlyzko, A.M. (ed.) Advances in Cryptology —
CRYPTO’ 86. pp. 186–194. Springer Berlin Heidelberg, Berlin, Heidelberg (1987)

21. Flynn, E.V., Ti, Y.B.: Genus Two Isogeny Cryptography. In: Ding, J., Steinwandt,
R. (eds.) Post-Quantum Cryptography. pp. 286–306. Springer International Pub-
lishing, Cham (2019)

22. Fouotsa, T.B., Moriya, T., Petit, C.: M-SIDH and MD-SIDH: Countering SIDH
Attacks by Masking Information. In: Hazay, C., Stam, M. (eds.) Advances in Cryp-
tology – EUROCRYPT 2023. pp. 282–309. Springer Nature Switzerland, Cham
(2023)

23. Galbraith, S.: Pairings, pp. 183–214. London Mathematical Society Lecture Note
Series, Cambridge University Press (2005)

24. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature
schemes based on supersingular isogeny problems. In: Advances in Cryptology–
ASIACRYPT 2017: 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part I 23. pp. 3–33. Springer (2017)

25. Husemöller, D.: Elliptic Curves. Graduate Texts in Mathematics 111, Springer New
York, 2nd ed edn. (2004)

26. Jao, D., De Feo, L.: Towards Quantum-Resistant Cryptosystems from Supersin-
gular Elliptic Curve Isogenies. In: Yang, B.Y. (ed.) Post-Quantum Cryptography.
pp. 19–34. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

27. Kohel, D., Lauter, K., Petit, C., Tignol, J.P.: On the quaternion `-isogeny path
problem. LMS Journal of Computation and Mathematics 17(A), 418–432 (2014)

28. Li, S., Ouyang, Y., Xu, Z.: Neighborhood of the supersingular elliptic curve isogeny
graph at j= 0 and 1728. Finite Fields and Their Applications 61, 101600 (2020)

29. Lin, K., Lin, J., Wang, W., Zhao, C.A.: Faster Public-Key Compression of SIDH
With Less Memory. IEEE Transactions on Computers 72(9), 2668–2676 (2023)

30. Lin, K., Wang, W., Wang, L., Zhao, C.A.: An Alternative Approach for Comput-
ing Discrete Logarithms in Compressed SIDH. Cryptology ePrint Archive, Paper
2021/1528 (2021), https://eprint.iacr.org/2021/1528

31. Maino, L., Martindale, C., Panny, L., Pope, G., Wesolowski, B.: A direct key
recovery attack on SIDH. In: Advances in Cryptology–EUROCRYPT 2023: 42nd
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part V. pp. 448–471.
Springer (2023)

32. Miller, V.S.: The Weil Pairing, and Its Efficient Calculation. Journal of Cryptology
17(4), 235–261 (Sep 2004)

33. Naehrig, M., Renes, J.: Dual Isogenies and Their Application to Public-Key Com-
pression for Isogeny-Based Cryptography. In: Galbraith, S.D., Moriai, S. (eds.)
Advances in Cryptology – ASIACRYPT 2019. pp. 243–272. Springer International
Publishing, Cham (2019)

34. Onuki, H.: On oriented supersingular elliptic curves. Finite Fields and Their Ap-
plications 69, 101777 (2021)

35. Pizer, A.K.: Ramanujan graphs and Hecke operators. Bulletin of the American
Mathematical Society 23(1), 127–137 (1990)

24

https://eprint.iacr.org/2021/1528

36. Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance (Corresp.). IEEE Transactions on Infor-
mation Theory 24(1), 106–110 (1978)

37. Richard Crandall, C.B.P.: Prime numbers: a computational perspective. Springer,
2nd ed edn. (2005)

38. Robert, D.: Breaking SIDH in polynomial time. In: Advances in Cryptology–
EUROCRYPT 2023: 42nd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Pro-
ceedings, Part V. pp. 472–503. Springer (2023)

39. Scott, M., Barreto, P.S.L.M.: Compressed Pairings. In: Franklin, M. (ed.) Advances
in Cryptology – CRYPTO 2004. pp. 140–156. Springer Berlin Heidelberg, Berlin,
Heidelberg (2004)

40. Silverman, J.H.: The Arithmetic of Elliptic Curves, 2nd Edition. Graduate Texts
in Mathematics. Springer (2009)

41. Vélu, J.: Isogénies entre courbes elliptiques. C. R. Acad. Sci., Paris, Sér. A 273,
238–241 (1971)

42. Voight, J.: Quaternion algebras. Springer Graduate Texts in Mathematics series.
(2021)

43. Washington, L.C.: Elliptic Curves: Number Theory and Cryptography, Second
Edition. Chapman and Hall/CRC (2008)

25

	A Faster Software Implementation of SQISign

