
SMAUG: Pushing Lattice-based Key
Encapsulation Mechanisms to the Limits

Jung Hee Cheon1,2, Hyeongmin Choe1, Dongyeon Hong2, and MinJune Yi1

1 Seoul National University
{jhcheon, sixtail528, yiminjune}@snu.ac.kr

2 CryptoLab Inc.
jjoker041@gmail.com

Abstract. Recently, NIST has announced Kyber, a lattice-based key en-
capsulation mechanism (KEM), as a post-quantum standard. However,
it is not the most efficient scheme among the NIST’s KEM finalists.
Saber enjoys more compact sizes and faster performance, and Mera et
al. (TCHES ’21) further pushed its efficiency, proposing a shorter KEM,
Sable. As KEM are frequently used on the Internet, such as in TLS proto-
cols, it is essential to achieve high efficiency while maintaining sufficient
security.
In this paper, we further push the efficiency limit of lattice-based KEMs
by proposing SMAUG, a new post-quantum KEM scheme whose IND-
CCA2 security is based on the combination of MLWE and MLWR prob-
lems. We adopt several recent developments in lattice-based cryptogra-
phy, targeting the smallest and the fastest KEM while maintaining high
enough security against various attacks, with a full-fledged use of sparse
secrets. Our design choices allow SMAUG to balance the decryption fail-
ure probability and ciphertext sizes without utilizing error correction
codes, whose side-channel resistance remains open.
With a constant-time C reference implementation, SMAUG achieves ci-
phertext sizes up to 12% and 9% smaller than Kyber and Saber, with
much faster running time, up to 103% and 58%, respectively. Compared
to Sable, SMAUG has the same ciphertext sizes but a larger public key,
which gives a trade-off between the public key size versus performance;
SMAUG has 39%-55% faster encapsulation and decapsulation speed in
the parameter sets having comparable security.

Keywords: Key Encapsulation Mechanism, Public Key Encryption, Post
Quantum Cryptography, Module Learning With Errors, Module Learn-
ing With Roundings.

1 Introduction

Recent advances in quantum computers raise the demand for quantum-resistant
cryptographic protocols, i.e., the Post-Quantum Cryptographic (PQC) schemes.
As a consequence, the American National Institute of Standards and Technology
(NIST) has established a standardization process focusing on Public Key En-
cryption (PKE), digital signature, and Key Encapsulation Mechanism (KEM).

In particular, KEM is one of the most widely used algorithms over the Inter-
net, such as in Transport Layer Security (TLS) protocols; however, the KEM
currently used in the protocol is considered vulnerable to quantum attacks.

Various lattice-based KEMs [5,11,16,17,22,26,48,58] have been proposed and
submitted to NIST PQC standardization to secure the Internet in the quantum
world. During the standardization process, diverse techniques improving effi-
ciency or security were introduced. In 2020, NIST selected Kyber [16], Saber [58],
and NTRU [22] as the lattice-based KEM finalists, having enough efficiency and
quantum security based on the Module Learning With Errors (MLWE), Module
Learning With Roundings (MLWR), and NTRU problems, respectively. Recently
Kyber was selected as a future standard among the candidates.

As of independent interest to NIST’s standardization, the KEM’s efficiency is
crucial since it is executed and transmitted frequently on the Internet. In partic-
ular, the TLS protocols are also necessary for embedded devices, so the efficiency
requirement has become even more pressing with the proliferation of the Inter-
net of Things (IoT). To this end, some variants of Saber focusing on efficiency,
Scabbard [52], have been recently proposed by Mera et al. Scabbard consists of
three schemes based on the Ring Learning With Roundings (RLWR) or MLWR
problems, Floreta, Espada, and Sable, each targeting HW/SW-efficient, paral-
lelizable, and shorter KEM than Saber. In particular, Sable achieves the smallest
public key and ciphertext sizes among the KEM schemes targetting the NIST’s
security level 1 and low enough Decryption Failure Probability (DFP).

1.1 Our results

In this work, we ask:

Can we further push the efficiency of the lattice-based KEMs to the limits?

Specifically, we propose a new lattice-based KEM, SMAUG, constructed based
on both MLWE and MLWR problems. By bringing the MLWE-based public key
generation and the sparse secret to Sable, SMAUG can enhance efficiency further.
We aimed to achieve the shortest ciphertext among the LWE/LWR-based KEM
schemes while maintaining the security level with even better performance.

The SMAUG. The design rationale of SMAUG aims to achieve small ciphertext
and public key with low computational cost while maintaining security against
various attacks. In more detail, we target the following practicality and security
requirements considering real applications:

Practicality

• Both the public key and ciphertext must be short to minimize communica-
tion costs. We especially focus on the ciphertext size as it is more frequently
transmitted.
• The key exchange protocol is frequently required on various personal devices,
so a KEM algorithm with low computational costs is desirable.

2

• A compact secret key is beneficial in restricted settings such as embedded
or IoT devices. Maintaining a secure zone is imperative to thwart physical
attacks on the storage storing secret keys.

Security

• The shared key should have a large enough entropy, at least ≥ 256 bits, to
prevent Grover’s search [38].

• Security should be concretely guaranteed concerning the attacks on the un-
derlying assumptions.

• The low enough DFP is essential to avoid the attacks boosting the failure
and exploiting the decryption failures [29,44].

• As KEMs are widely used in various devices and systems, countermeasures
against implementation-specific attacks should also be considered. Especially
combined with DFP, using Error Correction Codes (ECC) on the message
to reduce decryption failures should be avoided since masking ECC against
side-channel attacks remains a challenging problem.

Sizes (bytes) Security Cycle
Scheme sk pk ct Lvl. Sec. DFP KeyGen Encap Decap

SMAUG-128 176 672 672 1 120 2−120 77k 77k 92k
SMAUG-192 236 1088 1024 3 181 2−136 153k 136k 163k
SMAUG-256 218 1792 1472 5 264 2−167 266k 270k 305k

Table 1: Parameter sets of SMAUG for NIST’s security levels 1, 3, and 5. Security
(Sec.) is given in classical core-SVP hardness. One core of Intel Core i7-10700k
is used for cycle counts.

To achieve this goal, we exploit the possible combination of the known tech-
niques in lattice-based cryptography, such as underlying lattice assumptions,
ciphertext compression, Fujisaki-Okamoto (FO) transforms, and the secret and
error distribution. We refer to Appendix 2.4 for the design choices of the recent
LWE/LWR-based PKEs.

Among the possibilities on the choice of lattice assumptions, we conclude to
use LWE-based key generation and LWR-based encapsulation with sparse secrets
in module lattices. This choice allows SMAUG to enjoy the conservative secret
key security from the hardness of the un-rounded MLWE problem and explore
efficiency on encapsulation and decapsulation from the MLWR-based approach.

Sparse secret allows SMAUG to enjoy fast polynomial multiplications and
small secret keys. The sparse secret is widely used in homomorphic encryption
(HE) schemes to speed up the expensive homomorphic operations and to reduce
the noise [24, 39], whose ability is attractive for efficient KEMs. By using the
SampleInBall algorithm of Dilithium [32], we can efficiently sample the sparse
ternary secrets. Regarding security, the hardness reductions for sparse LWE and

3

LWR problems [25,26] from LWE problem exists; however, the concrete security
should be treated carefully3.

The MLWE-based public key of SMAUG uses the discrete Gaussian noise,
which is scaled and approximated. While this approximation may result in a
security loss compared to the ideal case, we can efficiently upper-bound with a
small scaling factor due to Rényi divergence. By utilizing the logic minimization
technique SMAUG uses a boolean discrete Gaussian sampler.

We take the recent approaches in FO transform for key exchange in the
Quantum Random Oracle Model (QROM) [43] and apply it to our IND-CPA
PKE, SMAUG.PKE. We use the FO transform with implicit rejection and no
ciphertext contributions (FO ̸⊥

m).

We delicately choose three parameter sets for SMAUG regarding NIST’s se-
curity levels 1, 3, and 5 (classical core-SVP hardness of 120, 180, and 260, re-
spectively) and having DFP at least smaller than Saber.

Comparison to other KEMs. We compare SMAUG with the NIST-selected
Kyber, one of the round 3 finalists Saber, and a variant Sable in Table 2.

Sizes (bytes) Security Cycle (ratio)
Schemes sk pk ct Classic. DFP KeyGen Encap Decap

NIST’s security level 1 (120)

Kyber512 [16] 1632 800 768 118 2−139 1.70 2.10 2.03
LightSaber [58] 832 672 736 118 2−120 1.21 1.58 1.44
LightSable [52] 800 608 672 114 2−139 1.10 1.48 1.39
SMAUG-128 176 672 672 120 2−120 1 1 1

NIST’s security level 3 (180)

Kyber768 [16] 2400 1184 1088 183 2−164 1.38 1.84 1.75
Saber [58] 1248 992 1088 189 2−136 1.21 1.64 1.47
Sable [52] 1152 896 1024 185 2−143 1.10 1.48 1.39
SMAUG-192 236 1088 1024 181 2−136 1 1 1

NIST’s security level 5 (260)

Kyber1024 [16] 3168 1568 1568 256 2−174 1.25 1.38 1.36
FireSaber [58] 1664 1312 1472 260 2−165 1.21 1.58 1.44
FireSable [52] 1632 1312 1376 223 2−208 1.03 1.25 1.22
SMAUG-256 218 1792 1472 264 2−167 1 1 1

Table 2: Comparison of KEM schemes with comparable efficiency and security.
Security is given in the classical core-SVP hardness with DFP. The cycle counts
are given relative to that of SMAUG’s, reported in the same machine. The C
implementations without AVX optimizations are used.

3 We used the lattice-estimator [2], from github.com/malb/lattice-estimator (com-
mit 9687562), while additionally considering other attacks targeting the sparsity.

4

github.com/malb/lattice-estimator

Compared to Kyber-512 [16], the NIST-selected standard targeting security
level 1, SMAUG-128, has 16% and 12% smaller public key and ciphertext, re-
spectively. The secret key size of SMAUG is tiny and ready to use, which enable
efficient management of secure zone in restricted IoT devices. With high enough
security and low enough DFP, SMAUG further achieves 110% and 103% speed
up in encapsulation and decapsulation.

Compared to LightSaber [58], one of the round 3 finalists with the security
level 1, SMAUG-128, has 9% smaller ciphertext and the same public key size.
Again, the secret key is significantly smaller than LightSaber, with a 58% and
44% speed up in encapsulation and decapsulation, respectively.

When compared to Sable [52], SMAUG-128 has the same ciphertext size but
a larger public key size. It can be seen as a trade-off as SMAUG achieves 48% and
39% faster encapsulation and decapsulation speed with a significantly smaller
secret key and 6 bits higher security.

In NIST’s security levels 3 and 5, SMAUG similarly outperforms Kyber and
provides a trade-off with Saber and Sable. For instance, SMAUG-128 has the
same ciphertext size as level-3 Sable, a larger public key but a smaller secret
key, and is faster than Sable. FireSable has a smaller ciphertext than SMAUG-
256; however, it has a classical core-SVP hardness way lower than 260. We refer
to Section 6.2 for detailed comparisons.

Paper organization. The rest of the paper is organized as follows. Section 2
defines the notations and summarizes the formal definitions of key encapsulation
mechanisms with the relevant works. In Section 3, we introduce the design choices
of SMAUG. In Section 4, we introduce SMAUG and its security proofs. We provide
concrete security analysis and the recommended parameter sets in Section 5.
Lastly, we give the performance result with comparisons to recent KEM schemes
and the implementation details in Section 6.

2 Preliminaries

2.1 Notation

We denote matrices with bold and upper case letters (e.g., A) and vectors with
bold type and lower case letters (e.g., b). Unless otherwise stated, the vector is
a column vector.

We define a polynomial ring R = Z[x]/(xn + 1) where n is a power of 2
integers and denote a quotient ring by Rq = Z[x]/(q, xn + 1) = Zq[x]/(x

n + 1)
for a positive integer q. For an integer η, we denote the set of polynomials of
degree less than n with coefficients in [−η, η] ∩ Z as Sη. Let S̃η be a set of
polynomials of degree less than n with coefficients in [−η, η) ∩ Z. We denote
a discrete Gaussian distribution with standard deviation σ as DZ,σ. We define
Rényi divergence of order α between to probability distributions P and Q such

that Supp(P) ⊆ Supp(Q) as Rα(P∥Q) =
(∑

x∈Supp(P)
P (x)α

Q(x)α−1

)1/(α−1)

.

5

2.2 Public key encryption and key encapsulation mechanism

We refer to Appendix A for the formalism of Public Key Encryption (PKE)
and Key Encapsulation Mechanism (KEM). The advantage functions against
IND-CPA and IND-CCA attacks are also defined in the appendix. Note that we
only focus on the adaptive IND-CCA attacks, i.e., IND-CCA2 attacks. Here, we
give the standard (quantum) security notions for PKE and KEM in the (Q)ROM.

Definition 1 ((Q)ROM security of PKE and KEM). For T, ϵ > 0, we
say that a scheme S ∈ {PKE,KEM} is (T, ϵ)-ATK secure in the (Q)ROM if for
any (quantum) adversary A with runtime ≤ T given classical access to O and
(quantum) access to a random oracle H, it holds that AdvATKS (A) < ϵ, where

O =

Enc if S = PKE and ATK ∈ {OW-CPA, IND-CPA},
Encap if S = KEM and ATK = IND-CPA,
Encap,Decap(sk, ·) if S = KEM and ATK = IND-CCA.

2.3 Fujisaki-Okamoto transform

Fujiskai and Okamoto proposed a novel generic transform [36, 37] that turns a
weakly secure PKE scheme into a strongly secure PKE scheme in the Random
Oracle Model (ROM), and various variants have been proposed to deal with
tightness, non-correct PKEs, and in the quantum setting, i.e., QROM. Here, we
recall the FO transformation for KEM as introduced by Dent [31] and revisited
by Hofheinz et al. [41], Bindel et al. [14], and Hövelmanns et al. [43].

The original FO transforms FO⊥
m constructs a KEM from a deterministic

PKE, i.e., a de-randomized version. The encapsulation randomly samples a mes-
sage m and uses the message’s hash value G(m) as randomness for encryption,
generating a ciphertext. The sharing key K = H(m) is generated by hashing
(with different hash functions) the message. In the decapsulation, it first de-
crypts the ciphertext and recovers the message, m′. If it fails to decrypt, it
outputs ⊥. If the “re-encryption” of the recovered message is not equal to the
received ciphertext, it also outputs ⊥. The sharing key can be generated by
hashing the recovered message.

In the quantum setting, however, the FO transform with “implicit rejection”
(FO ̸⊥

m) has a tighter security proof than the original version, which implicitly
outputs a pseudo-random sharing key if the re-encryption fails. We recap the
QROM proof of Bindel et al. [14] allowing the KEMs constructed over non-
perfect PKEs to have IND-CCA security.

Theorem 1 ([14], Theorem 1 & 2). Let G and H be quantum-accessible
random oracles, and the deterministic PKE is ϵ-injective. Then the advantage
of IND-CCA attacker A with at most QDec decryption queries and QG and QH

hash queries at depth at most dG and dH , respectively, is

AdvIND-CCA
KEM (A) ≤ 2

√
(dG + 2)

(
AdvIND-CPA

PKE (B1) + 8(QG + 1)/|M|
)

+AdvDF
PKE(B2) + 4

√
dHQH/|M|+ ϵ,

6

where B1 is an IND-CPA adversary on PKE and B2 is an adversary against
finding a decryption failing ciphertext, returning at most QDec ciphertexts.

2.4 Related work: LWE/LWR-based PKEs

We focus on the LWE/LWR-based IND-CPA secure PKEs, which can be turned
into IND-CCA secure KEM by applying FO transforms. The original Regev’s
public key encryption [54], followed by most recent LWE- and LWR-based PKE
constructions, bases its security on the LWE assumption. It generates an LWE
sample as a public key and returns a ciphertext of a binary message by scaling
and adding a public key multiplied by a random vector. In more detail, the
public key is (A,b = A · s + e mod q) ∈ Zk×ℓ

q × Zk
q , where s is a secret key

and e is an error term. The encryption of a binary message µ is a ciphertext
(r⊤ ·A, r⊤ ·b+⌊q/2 · µ⌉), where r is a random vector, called an ephemeral secret.
The ciphertext is then statistically uniform over the range due to the leftover
hash lemma; however, it makes the size of the matrix A too massive for even a
binary message to be used efficiently.

The approaches after that tried to gain more efficiency. Lindner and Peik-
ert [49] introduce an encryption using an LWE sample as a ciphertext, i.e.,
(r⊤ ·A+ e1, r

⊤ · b+ e2 + ⌊q/2 · µ⌉) = r⊤ · pk+ e+ (0, ⌊q/2 · µ⌉). Frodo [17], an
instantiation of [49], introduces a narrower error for more efficiency. Lizard [26]
uses LWR-based encryption, which can be viewed as an LWE sample with deter-

ministic rounding error:
(⌊

p
q · r

⊤ ·A
⌉
,
⌊
p
q · r

⊤ · b+ p
2 · µ

⌉)
= p

q · (r
⊤ ·A+e, r⊤ ·

b + q
2 · µ + e), where the coefficients of e and e are in Z ∩ (− q

2p ,
q
2p]. The scal-

ing factor reduces the ciphertext size and the running time since the encryption
process skips a complex error sampling procedure.

More efficient approaches are usually based on the assumptions over struc-
tured lattices such as NewHope [5] over RLWE, RLizard [48] over RLWR, and
Kyber [16] over MLWE assumptions. Additionally, Kyber uses a Centered Bi-
nomial Distribution (CBD) as an MLWE error instead of a complex discrete
Gaussian error, which makes the encryption much faster. Saber [30] expands the
use of LWR also to the public key generation as (A,b = ⌊p/q ·A · s⌉ mod p) ∈
Zk×ℓ
q × Zk

p over module lattices. The extensions to rings and modules provide a
wider message space, smaller sizes, and faster implementation based on the ring
structure but with larger DFPs.

3 Design choices

In this section, we explain the design choices for SMAUG.

3.1 MLWE public key and MLWR ciphertext

One of the core designs of SMAUG uses the MLWE hardness for its secret key
security and MLWR hardness for its message security. This choice is adapted

7

from Lizard and RLizard, which use LWE/LWR and RLWE/RLWR, respec-
tively. Using both LWE and LWR variant problems makes the conceptual secu-
rity distinction between the secret key and the ephemeral sharing key: a more
conservative secret key with more efficient en/decapsulations. This can be viewed
as a trade-off between “conservative” and “efficient” designs. Combined with the
sparse secret, bringing the LWE-based key generation to the LWR-based scheme
enables balancing the speed and the DFP.

Public key. Public key of SMAUG consists of a vector b over a polynomial ring
Rq and a matrix A, which can be viewed as an MLWE sample,

(A,b = −A⊤s+ e) ∈ Rk×k
q ×Rk

q ,

where s is a ternary secret polynomial with hamming weight hs, and e is an
error sampled from discrete Gaussian distribution with standard deviation σ.
Since the matrix A is sampled uniformly, it can be stored and transmitted as a
seed of an eXtendable Output Function (XOF).

Ciphertext. The ciphertext of SMAUG is a tuple of a vector c1 ∈ Rk
p and

a polynomial c2 ∈ Rp′ . The ciphertext is generated by multiplying a random
vector r to the public key; then it is scaled and rounded as,

c =

[
c1
c2

]
=

⌊
p

q
·
(

A
b⊤

)
· r
⌉
+

p

t
·
[
0
µ

]
,

Along with the public key, it can be treated as an MLWR sample added by a
scaled message as (A′, ⌊p/q ·A′ · r⌉)+(0, µ′), where A′ is a concatenated matrix
of A and b⊤.

The ciphertext can be further compressed by scaling the second component
c2 by p′/p, resulting in a shorter ciphertext but a larger error. We note that the
public key can be compressed with the same technique. However, it introduces
a more significant error, so we do not compress the public key in SMAUG.

3.2 Sparse secret

The sparse secret is widely used in homomorphic encryption to reduce the noise
propagation during the homomorphic operations [19,24,39] and to speed up the
computations. As the lattice-based KEM schemes have inherent decryption error
from LWE or LWR noise, the sparse secret can lower this decryption error and
also improves the performance of KEMs.

Concretely, the decryption error can be expressed as ⟨e, r⟩ + ⟨e1, s⟩ + e2,
where s is a secret key, r is a randomness used for encryption, e ← χk

pk is a

noise added in public key, and (e1, e2)← χk+1
ct is a noise added in ciphertext. As

the vectors r and s are binary (ternary, resp.), each coefficient of the decryption
error is an addition (signed addition, resp.) of hr variables from χpk and hs + 1

8

variables from χct. The magnitude of the decryption error depends greatly on
the Hamming weights hr and hs, and thus we can take advantage of the sparse
secrets.

Other major advantages of sparse secrets include reducing the secret key size
and enabling fast polynomial multiplication. As the coefficients of the secret key
are sparse with a fixed hamming weight, we can store only the information of
the nonzero coefficients. We can further use this structure for the polynomial
multiplications, which we will describe in Section 3.4.

On the other hand, as the sparse secret reduces the secret key entropy, the
hardness of the lattice problem may be decreased. For the security of LWE
problem using sparse secret, a series of works have been done, including [25]
for asymptotic security based on the reductions to worst-case lattice problems,
and [13, 34, 57] for concrete security. Independent of the secret distribution, the
module variant (MLWE) is regarded as hard as LWE problem with appropriate
parameters, including a smaller modulus. We also exploit the reductions from
ordinary MLWE to MLWE using sparse secret or small errors [20]. The MLWR
problem also has a simple reduction from MLWE independent of the secret
distribution, and its concrete security is heuristically discussed in [30].

Since SMAUG uses a sparse secret key s and a sparse randomness r, the secu-
rity of SMAUG is based on the hardness of MLWE and MLWR problems using
sparse secret. For the specific parameters, we exploit the lattice-estimator [2],
which covers most of the recent lattice attacks, and also consider some attacks
not included in the estimator. Using a smaller modulus, SMAUG can maintain
high security, as in Kyber or Saber.

Our hamming weight sampler, HWTh, is adapted from the SampleInBall algo-
rithm in Dilithium [32], having a secret-independent running time. It samples a
ternary polynomial vector having a hamming weight of h. A detailed algorithm
is given in Appendix B, Figure 5.

3.3 Discrete Gaussian noise

We use a discrete Gaussian noise for the public key generation, which is approx-
imated to a narrow distribution. As this approximated discrete Gaussian noise
is used only for the public key, we efficiently bound the security loss. We refer
to Appendix C for a detailed analysis.

We construct dGaussian, a constant-time approximate discrete Gaussian noise
sampler, upon a Cumulative Distribution Table (CDT) but is not used during
sampling, as it is expressed with bit operations. We first scale the discrete Gaus-
sian distribution and make a CDT approximating the discrete Gaussian distri-
bution. We choose an appropriate scaling factor based on the analysis in [17,47]
using Rényi divergence. We then deploy the Quine-McCluskey method4 and ap-
ply logic minimization technique on the CDT. As a result, even though our
dGaussian is constructed upon CDT, it is expressed with bit operations and
is constant-time. The algorithms are easily parallelizable and suitable for IoT

4 We use the python package, from https://github.com/dreylago/logicmin.

9

https://github.com/dreylago/logicmin

devices as their memory requirement is low. The algorithms can be found in
Appendix B.

3.4 Polynomial multiplication using sparsity

SMAUG uses the power-of-two moduli to ease the correct scaling and roundings.
However, this makes the polynomial multiplications hard to benefit from Number
Theoretic Transform (NTT). To address this issue, we propose a new polynomial
multiplication that takes advantage of sparsity, which we adapt from [1,48]. Our
new multiplication, given in Figure 1, is constant-time and is faster than the
previous approach. We also use a similar secret storing technique as RLizard,
where only the degrees of non-zero coefficients are stored in the secret key and
directly used in polynomial multiplications.

poly mult add(a, b, neg start): ▷ a ∈ Rq, b ∈ Sη
1: c = 0
2: for i from 0 to neg start− 1 do
3: degree = b[i]
4: for j from 0 to n− 1 do
5: c[degree+ j] = c[degree+ j] + a[j];

6: for i from neg start to len(b)− 1 do
7: degree = b[i]
8: for j from 0 to n− 1 do
9: c[degree+ j] = c[degree+ j]− a[j];

10: for j from 0 to n− 1 do
11: c[j] = c[j]− c[n+ j];

12: return c

Fig. 1: Polynomial multiplication using sparsity.

3.5 FO transform, FO ̸⊥
m

We construct SMAUG upon the FO transform with implicit rejection and without
ciphertext contribution to the sharing key generation, say FO ̸⊥

m. This choice
makes the encapsulation and decapsulation algorithm efficient since the sharing
key can be directly generated from a message. The public key is additionally
fed into the hash function with the message to avoid multi-target decryption
failure attacks. The IND-CCA security of the resulting KEM in the QROM is
well-studied in [14,41,43].

10

4 The SMAUG

4.1 Specification of SMAUG.PKE

We now describe the public key encryption scheme SMAUG.PKE in Figure 2 with
the following building blocks:

• Extendable output function XOF for generating seedA, seedsk, and seede,
• Uniform random matrix sampler expandA for deriving A from seedA,
• Discrete Gaussian sampler dGaussianσ for deriving a MLWE noise e with
standard deviation σ from seede,

• Hamming weight sampler HWTh for deriving a sparse ternary s (resp. r)
with hamming weight h = hs (resp. h = hr) from seedsk (resp. seedr).

KeyGen(1λ):

1: seed← {0, 1}256
2: (seedA, seedsk, seede)← XOF(seed)
3: A← expandA(seedA) ∈ Rk×k

q

4: s← HWThs(seedsk) ∈ Sk
η

5: e← dGaussianσ(seede) ∈ Rk

6: b = −A⊤ · s+ e ∈ Rk
q

7: return pk = (seedA,b), sk = s

Enc(pk, µ; seedr): ▷ pk = (seedA,b), µ ∈ Rt

1: A = expandA(seedA)
2: if seedr is not given then seedr ← {0, 1}256

3: r← HWThr (seedr) ∈ Sk
η

4: c1 = ⌊p/q ·A · r⌉ ∈ Rk
p

5: c2 = ⌊p′/q · ⟨b, r⟩+ p′/t · µ⌉ ∈ Rp′

6: return ct = (c1, c2)

Dec(sk, c): ▷ sk = s, c = (c1, c2)

1: µ′ = ⌊t/p · ⟨c1, s⟩+ t/p′ · c2⌉ ∈ Rt

2: return µ′

Fig. 2: Description of SMAUG.PKE

The uniform random matrix sampler, expandA, which is adapted from the
gen algorithm in Saber [58], is given in Appendix B, Figure 4.

We then prove the completeness of SMAUG.PKE.

Theorem 2 (Completeness of SMAUG.PKE). Let A, b, s, e, and r are de-
fined as in Figure 2. Let the moduli t, p, p′, and q satisfy t | p | q and t | p′ | q.
Let e1 ∈ Rk

Q and e2 ∈ RQ be the rounding errors introduced from the scal-

ings and roundings of A · r and bT · r. That is, e1 = q
p (⌊

p
q · A · r⌉ mod p) −

11

(A · r mod q) and e2 = q
p′ (⌊p

′

q · ⟨b, r⟩⌉ mod p′) − (⟨b, r⟩ mod q). Let δ =

Pr
[
∥⟨e, r⟩+ ⟨e1, s⟩+ e2∥∞ > q

2t

]
, where the probability is taken over the ran-

domness of the encryption. Then SMAUG.PKE in Figure 2 is (1 − δ)-correct.
That is, for every message µ and every key-pair (pk, sk) returned by KeyGen(1λ),
the decryption fails with a probability less than δ.

Proof. By the definition of e1 and e2, it holds that c1 = p
q · (A · r+ e1) mod p

and c2 = p′

q · (⟨b, r⟩+ e2) +
p′

t · µ mod p′, where the coefficients of e1 and e2
are in Z∩ (− q

2p ,
q
2p] and Z∩ (− q

2p′ ,
q
2p′], respectively. Thus, the decryption of the

ciphertext (c1, c2) can be written as⌊
t

p
· ⟨c1, s⟩+

t

p′
· c2

⌉
mod t =

⌊
t

q
(⟨A · r, s⟩+ ⟨e1, s⟩+ ⟨b, r⟩+ e2) + µ

⌉
mod t

=

⌊
t

q

(
⟨A⊤ · s+ b, r⟩+ ⟨e1, s⟩+ e2

)
+ µ

⌉
mod t

= µ+

⌊
t

q
(⟨e, r⟩+ ⟨e1, s⟩+ e2)

⌉
mod t.

This is equal to µ if and only if every coefficient of ⟨e, r⟩+ ⟨e1, s⟩+ e2 is in the
interval [− q

2t ,
q
2t). It concludes the proof. ⊓⊔

4.2 Specification of SMAUG.KEM

We finally introduce the key encapsulation mechanism SMAUG.KEM in Figure 3.
SMAUG.KEM is designed following the Fujisaki-Okamoto transform with implicit
rejection using the non-perfectly correct public key encryption SMAUG.PKE.
The construction of SMAUG.KEM involves the use of the following symmetric
primitives:

• Hash function H for hashing a public key,
• Hash function G for deriving a sharing key and a seed.

The Fujisaki-Okamoto transform used in Figure 3 defers from the FO ̸⊥
m trans-

form in [43] in encapsulation and decapsulation. When generating the sharing
key and randomness, SMAUG’s Encap utilizes the hashed public key, which pre-
vents certain multi-target attacks. As for Decap, if ct ̸= ct′ holds, an alternative
sharing key should be re-generated not to leak failure information against Side-
Channel Attacks (SCA). However, even when the failure information is leaked,
security can still rely on the explicit FO transform FO⊥

m, recently treated in [45]
with a competitive bound.

We also remark that the randomly chosen message µ should be hashed addi-
tionally in the environments using a non-cryptographic system Random Number
Generator (RNG). Using a True Random Number Generator (TRNG) is recom-
mended to sample the message µ in such devices.

We now show the completeness of SMAUG.KEM based on the completeness
of the underlying public key encryption scheme, SMAUG.PKE.

12

KeyGen(1λ):

1: (pk, sk′)← SMAUG.PKE.KeyGen(1λ)
2: d← {0, 1}256
3: return pk, sk = (sk′, d)

Encap(pk): ▷ pk = (seedA,b)

1: µ← {0, 1}256
2: (K, seed)← G(µ,H(pk))
3: ct← SMAUG.PKE.Enc(pk, µ; seed)
4: return ct, K

Decap(sk, ct): ▷ sk = (sk′, d)

1: µ′ = SMAUG.PKE.Dec(sk′, ct)
2: (K′, seed′)← G(µ′, H(pk))
3: ct′ = SMAUG.PKE.Enc (pk, µ′; seed′)
4: if ct ̸= ct′ then
5: (K′, ·)← G(d,H(ct))

6: return K′

Fig. 3: Description of SMAUG.KEM

Theorem 3 (Completeness of SMAUG.KEM). We borrow the notations and
assumptions from Theorem 2 and Figure 3. Then SMAUG.KEM in Figure 3 is
also (1−δ)-correct. That is, for every key-pair (pk, sk) generated by KeyGen(1λ),
the shared keys K and K ′ are identical with probability larger than 1− δ.

Proof. The shared keys K and K ′ are identical if the decryption succeeds. As-
suming the pseudorandomness of the hash function G, the probability of being
K ̸= K ′ can be bounded by the DFP of SMAUG.PKE. The completeness of
SMAUG.PKE (Theorem 2) concludes the proof. ⊓⊔

4.3 Security proof

When proving the security of the KEMs constructed using FO transform in
the (Q)ROM, on typically relies on the generic reductions from one-wayness
or IND-CPA security of the underlying PKE. In the ROM, SMAUG.KEM has a
tight reduction from the IND-CPA security of the underlying PKE, SMAUG.PKE.
However, like other lattice-based constructions, the underlying PKE has a chance
of decryption failures, which makes the generic reduction unapplicable [55] or
non-tight [14, 41, 43] in the QROM. Therefore, we prove the IND-CCA security
of SMAUG.KEM based on the non-tight QROM reduction of [14] as explained in
Section 2 by proving the IND-CPA security of SMAUG.PKE.

Theorem 4 (IND-CPA security of SMAUG.PKE). Assuming pseudoran-
domness of the underlying sampling algorithms, the IND-CPA security of SMAUG.
PKE can be tightly reduced to the decisional MLWE and MLWR problems. Specif-
ically, for any IND-CPA-adversary A of SMAUG.PKE, there exist adversaries B0,

13

B1, B2, and B3 attacking the pseudorandomness of XOF, and the pseudorandom-
ness of sampling algorithms, the hardness of MLWE, and the hardness of MLWR,
respectively, such that,

AdvIND-CPA
SMAUG.PKE(A) ≤ AdvPRXOF(B0) + AdvPRexpandA,HWT,dGaussian(B1)

+ AdvMLWE
n,q,k,k(B2) + AdvMLWR

n,p,q,k+1,k(B3).

The secret distribution terms omitted in the last two advantages (of B1 and
B2) are uniform over ternary polynomials with Hamming weights hs and hr,
respectively. The error distribution term omitted in the advantage of B2 is a
pseudorandom distribution following the corresponding CDT.

Proof. The proof proceeds by a sequence of hybrid games from G0 to G4 defined
as follows:

• G0: the genuine IND-CPA game,
• G1: identical to G0, except that the public key is changed into (A,b),
• G2: identical to G1, except that the sampling algorithms are changed into
truly random samplings,

• G3: identical to G2, except that b is randomly chosen from Rk
q ,

• G4: identical to G3, except that the ciphertext is randomly choosen from
Rk

p ×Rp′ . As a result, the public key and the ciphertexts are truly random.

We denote the advantage of the adversary on each game Gi as Advi, where
Adv0 = AdvIND-CPA

SMAUG.PKE(A) and Adv4 = 0. Then, it holds that

|Adv0 − Adv1| ≤ AdvPRXOF(B0),

for some adversary B0 against the pseudorandomness of the extendable output
function. Given that the only difference between the transcripts viewed in hybrid
games G1 and G2 is the randomness sampling, it can be concluded that

|Adv1 − Adv2| ≤ AdvPRexpandA,HWT,dGaussian(B1),

for some adversary, B1 attacking the pseudorandomness of at least one of the
samplers. The difference in the games G2 and G3 is in the way the polynomial
vector b is sampled. In G2, it is sampled as part of an MLWE sample, whereas
in G3, it is randomly selected. Thus, the difference in the advantages Adv2 and
Adv3 can be bounded by AdvMLWE

n,q,k,k(B2), where B2 is an adversary distinguishing
the MLWE samples from random. In the hybrids G3 and G4, the only difference
is in the way the ciphertexts are generated; they are either randomly chosen
from Rk

p ×Rp′ or generated to be (c1, ⌊p′/p · c2⌉), where[
c1
c2

]
=

⌊
p

q
·
(

A
b⊤

)
· r
⌉
+

p

t
·
[
0
µ

]
.

If an adversary A can distinguish the two ciphertexts, we can construct an
adversary B3 distinguishing the MLWR sample from random: for given a sample

14

(A,b) ∈ R(k+1)×k
q × Rk+1

p , B3 rewrites b as (b1, b2) ∈ Rk
p × Rp, computes

(b1, ⌊p′/p · b2⌉), and use A to decide the ciphertext type. The output of A will
be the output of B3. Therefore, we can conclude the proof by observing that

|Adv3 − Adv4| ≤ AdvMLWR
n,p,q,k+1,k(B3).

⊓⊔

The classical IND-CCA security of SMAUG.KEM is then obtained directly
from FO transforms [42] in the classical random oracle model. Theorem 1 implies
the quantum IND-CCA security of SMAUG.KEM in the quantum random oracle
model.

5 Parameter selection and concrete security

In this section, we first give a concrete security analysis of SMAUG and provide
the recommended parameter sets.

5.1 Concrete security estimation

We exploit the best-known lattice attacks to estimate the concrete security of
SMAUG.

Core-SVP methodology. Most of the known attacks are essentially finding a
nonzero short vector in Euclidean lattices, using the Block–Korkine–Zolotarev
(BKZ) lattice reduction algorithm [23, 40, 56]. BKZ has been used in various
lattice-based schemes [3, 16, 32, 35, 58]. The security of the schemes is generally
estimated as the time complexity of BKZ in core-SVP hardness introduced in [5].
It depends on the block size β of BKZ reporting the best performance. According
to Becker et al. [9] and Chailloux et al. [21], the β-BKZ algorithm takes approx-
imately 20.292β+o(β) and 20.257β+o(β) time in the classical and quantum setting,
respectively. The polynomial factors and o(β) terms in the exponent are ignored.
We use the lattice estimator [2] to estimate the concrete security of SMAUG in
core-SVP hardness.

Beyond Core-SVP methodology. In addition to lattice reduction attacks,
we also take into consideration the cost of other types of attacks, e.g., algebraic
attacks like the Arora-Ge attack or Coded-BKW attacks, and their variants. In
general, these attacks have considerably higher costs and memory requirements
compared to previously introduced attacks. We use the lattice estimator for
estimating such attacks.

We also focus on the attacks not considered in the lattice estimator, specif-
ically those that target sparse secrets, such as Meet-LWE [51] attack. This at-
tack is inspired by Odlyzko’s Meet-in-the-Middle approach and involves using
representations of ternary secrets in additive shares. We use a Python script
to estimate the cost of the Meet-LWE attack, following the original description
in [51].

15

MLWE hardness. We estimated the cost of the best-known attacks for MLWE,
including primal attack, dual attack, and their hybrid variations, in the core-
SVP hardness. We remark that any MLWEn,q,k,ℓ,η instance can be viewed as an
LWEq,nk,nℓ,η instance. Although the MLWE problem has an additional algebraic
structure compared to the LWE problem, no attacks currently take advantage
of this structure. Therefore, we assess the hardness of the MLWE problem based
on the hardness of the corresponding LWE problem. We also consider the dis-
tributions of secret and noise when estimating the concrete security of SMAUG.
We have also analyzed the costs of recent attacks that aim to target the MLWE
problem with sparse secrets. Our narrow discrete Gaussian sampler’s tail bound
is considered in estimating the security using the lattice estimator. We also pro-
vide a detailed justification for using the narrow discrete Gaussian noise in a
more conservative manner, in Appendix C.

MLWR hardness. To measure the hardness of the MLWR problem, we treat
it as an MLWE problem since no known attack utilizes the deterministic error
term in the MLWR structure. Banerjee et al. [8] provided the reduction from
the MLWE problem to the MLWR problem, which was subsequently improved
in [6,7,15]. Basically, for given an MLWR sample (A, ⌊p/q ·A · s⌉ mod p) with
uniformly chosen A ← Rk

q and s ← Rℓ
p, it can be expressed as (A, p/q · (A · s

mod q) + e mod p). The MLWR sample can be converted to an MLWE sample
over Rq by multiplying q/p as (A,b = A · s + q/p · e mod q). Assuming that
the error term in the resulting MLWE sample is a random variable, uniformly
distributed within the interval (−q/2p, q/2p], we can estimate the hardness of
the MLWR problem as the hardness of the corresponding MLWE problem.

5.2 Parameter sets

The SMAUG is parameterized by various integers such as n, k, q, p, p′, t, hs and hr,
as well as a standard deviation σ > 0 for the discrete Gaussian noise. Our main
focus when selecting these parameters is to minimize the ciphertext size while
maintaining security. We set SMAUG parameters to make SMAUG at least as safe
as Saber. We first set our ring dimension to n = 256 and plaintext modulus to
t = 2 to have a 256-bit message space (or sharing key space). Then we search for
parameters that offer the smallest ciphertext size with enough security. Starting
from parameters having a tiny ciphertext size, we increase the ciphertext size, hs,
hr, and σ and search for the parameters having enough security. Once we have
them, we compute the DFP. If it is enough low, we can choose the compression
parameter p′, but if it is not, we continue searching for appropriate parameters.
The compression factor p′ can be set to a small integer if the DFP is low enough.
Else, we can keep p′ = 256 as in the level-3 parameter, and not compress the
ciphertext.

Table 3 shows the three parameter sets of SMAUG, corresponding to NIST’s
security levels 1, 3, and 5. For security levels 3 and 5, we can not find the
parameters for q = 1024, so we use q = 2048. Especially, the standard deviation

16

σ = 1.0625 is too low for security level 3, so we move to σ = 1.453713. For the
level-5 parameters set, we use k = 5 since k = 4 is too small for enough security.

Parameters sets SMAUG-128 SMAUG-192 SMAUG-256
Security level 1 3 5

n 256 256 256
k 2 3 5

(q, p, p′, t) (1024, 256, 32, 2) (2048, 256, 256, 2) (2048, 256, 64, 2)
(hs, hr) (140, 132) (198, 151) (176, 160)

σ 1.0625 1.453713 1.0625

Classical core-SVP 120.0 181.7 264.5
Quantum core-SVP 105.6 160.9 245.2
Beyond core-SVP 144.7 202.0 274.6

DFP -119.6 -136.1 -167.2

Secret key 176 236 218
Public key 672 1088 1792
Ciphertext 672 1024 1472

Table 3: The NIST security level, selected parameters, classical and quantum
core-SVP hardness and security beyond core-SVP (see Section 5.1), DFP (in
log2), and sizes (in bytes) of SMAUG.

The core-SVP hardness is estimated5 via the lattice estimator [2] using the
cost model “ADPS16” introduced in [5] and “MATZOV” [50]. In the table, the
smaller cost is reported. We assumed that the number of 1s is equal to the
number of −1s for simplicity, which conservatively underestimates security.

The security beyond core-SVP is estimated via the lattice estimator [2] and
the Python script implementing the Meet-LWE attack cost estimation. It shows
the lowest attack costs among coded-BKW, Arora-Ge, and Meet-LWE attack
and their variants. We note that these attacks require a minimum memory size
of 2130 to 2260.

5.3 Decryption failure probability

As our primary goal is to push the efficiency of the lattice-based KEMs toward
the limit while keeping roughly the same level of security, we follow the frame-
works given in the NIST finalist Saber. In particular, we set the DFP to have
similar to or lower than that of Saber’s.

The impact of DFP on the security of KEM is still being investigated. How-
ever, we can justify our decision to follow Saber’s choice and why it is sufficient
for real-world scenarios. To do this, we make the following assumptions:

5 There are some suspicions on the unsubstantiated dual-sieve attacks assuming the
flawed heuristic [33]. However, we hereby estimate the security of SMAUG following
the methods in Kyber, Saber, and Sable for a fair comparison.

17

1. Each key pair has a limit of Qlimit = 264 decryption queries, as specified in
NIST’s proposal call.

2. There are approximately 233 people worldwide, each with hundreds of de-
vices. Each device has hundreds of usable public keys broadcasted for KEM.

3. We introduce an observable probability and assume it is far less than 2−20.
Even though the decryption failure occurs, it can only be used for an attack
when observed. Attackers can observe it through a side-channel attack, which
enables the observation of decapsulation failures in the mounted device, or
through direct communications after key derivation, allowing the detection
of decryption failures with a communication per key pair. We assume the
two cases can occur much less than 2−20, as they require physically mounted
devices or communications with shared keys.

Based on these assumptions, we can deduce that the number of observable
decryption failures can be upper bounded by 264+33+8+8 · 2−20 = 293. Based on
the best-known (multi-target) attacks for Saber [28, Figure 6 (a)], the quantum
cost for finding a single failing ciphertext of SMAUG security level 3 is much
higher than 2160, as desired6. For security level 5, we refer to Figure 7(a) in [28],
which shows that the quantum cost for finding a single failure is much higher
than 2245. Regardless of the attack cost estimated above, the scenario of checking
the failures in more than 240 different devices is already way too far from the
real-world attack scenario.

6 Implementation

In this section, we give the implementation performance for each parameter set.
We compare the sizes and the reported performance with prior works such as Ky-
ber, Saber, and Sable. The constant-time reference implementation of SMAUG,
along with the supporting scripts, can be found in our website: www.kpqc.cry
ptolab.co.kr/smaug.

6.1 Performance

We instantiate the hash functions G,H and the extendable output function XOF
with the following symmetric primitives: G is instantiated with SHAKE256, H
is instantiated with SHA3-256, and XOF is instantiated with SHAKE128.

Table 4 presents the performance results of SMAUG. For a fair comparison,
we also performed measurements on the same system with identical settings of
the reference implementation of Kyber, Saber, and Sable7.

6 Specifically, the number of observable failures must be larger than 1/β in [28] to
observe at least one failing ciphertext. That is, β should be larger than 293. The
quantum cost is given as 1/β

√
α.

7 From github.com/pq-crystals/kyber (518de24), github.com/KULeuven-COSIC/S
ABER (f7f39e4), and .github.com/josebmera/scabbard (4b2b5de), respectively.

18

www.kpqc.cryptolab.co.kr/smaug
www.kpqc.cryptolab.co.kr/smaug
github.com/pq-crystals/kyber
github.com/KULeuven-COSIC/SABER
github.com/KULeuven-COSIC/SABER
github.com/josebmera/scabbard

Cycles Cycles (ratio)
Schemes KeyGen Encap Decap KeyGen Encap Decap

Kyber512 131560 162472 18930 1.7 2.1 2.03
LightSaber 93752 122176 133764 1.21 1.58 1.44
LightSable 85274 114822 128990 1.1 1.48 1.39
SMAUG-128 77220 77370 92916 1 1 1

Kyber768 214160 251308 285378 1.38 1.84 1.75
Saber 18722 224686 239590 1.21 1.64 1.47
Sable 170400 211290 23724 1.1 1.55 1.45
SMAUG-192 154862 136616 163354 1 1 1

Kyber1024 332470 371854 415498 1.25 1.38 1.36
FireSaber 289278 347900 382326 1.08 1.29 1.25
FireSable 275156 337322 371486 1.03 1.25 1.22
SMAUG-256 266704 270123 305452 1 1 1

Table 4: Median cycle counts of 1000 executions for Kyber, Saber, Sable, and
SMAUG (and their ratios). Cycle counts are obtained on one core of an Intel
Core i7-10700k, with TurboBoost and hyperthreading disabled, using the C im-
plementations without AVX optimizations.

6.2 Comparison to prior/related work

In this section, we compare the sizes, security, and performance of SMAUG to
the recent lattice-based KEM schemes.

KEMs using unstructured lattices. Most of the recent KEM schemes are
designed over the ring lattices or module lattices. The schemes based on the
unstructured lattices have a tighter security reduction and achieve conservative
security. However, the ciphertext size is much larger and has a lower perfor-
mance than the schemes based on structured lattices. For e.g., Lizard [27] has
a 10,896-byte ciphertext, and FrodoKEM [17] has a 9,752-byte ciphertext for
the lowest level (≈ 150 classical core-SVP hardness) whereas the security level-2
RLizard [27] has a 4,144-byte ciphertext.

Ring-based KEMs. When KEMs are designed over structured lattices, there
is a higher risk of decryption failure. To ensure security against the decryption
failure attacks [29, 44], a high enough DFP is necessary. As a result, the ring-
based schemes take large parameters like RLizard or use Error Correction Codes
(ECC) to reduce the failure rate. However, employing ECC makes it vulnera-
ble to Side-Channel Attacks (SCA) as masking ECC against decryption failure
probing is yet an open problem.

Moreover, it is difficult to achieve a message space of 256 bits while keeping
a compact ciphertext size and low DFP for the underlying ring-based PKEs.
Especially for low-security levels, balancing between DFP and the message space
size is challenging. As a result, the KEMs such as Round5 [12] or Tiger [53] have

19

Sizes (bytes) Sizes (ratio) Security
Schemes sk pk ct sk pk ct Classic. DFP

Kyber512 1,632 800 768 9.4 1.2 1.1 118 -139
LightSaber 832 672 736 4.8 1 1.1 118 -120
LightSable 800 608 672 4.6 0.9 1 114 -139
SMAUG-128 176 672 672 1 1 1 120 -120

Kyber768 2,400 1,184 1,088 10.4 1.1 1.1 183 -164
Saber 1,248 992 1,088 5.4 0.9 1.1 189 -136
Sable 1,152 896 1,024 5 0.8 1 185 -143
SMAUG-192 236 1,088 1,024 1 1 1 181 -136

Kyber1024 3,168 1,568 1,568 15.2 0.9 1.1 256 -174
FireSaber 1,664 1,312 1,472 8 0.7 1 260 -165
FireSable 1,632 1,312 1,376 7.8 0.7 0.9 223 -208
SMAUG-256 218 1,792 1,472 1 1 1 264 -167

Table 5: Comparison of Kyber, Saber, Sable, and SMAUG. Sizes are given in
bytes, and the ratios are given relative to the sizes of SMAUG. Security is pro-
vided in the classical core-SVP hardness with DFP (in logarithm base two).

small message spaces, which does not provide enough entropy for the shared key
to be used in later quantum-secure protocols.

Module-based KEMs. When constructing KEMs over unstructured lattices
or ring-variants, there are certain limitations to consider. As a result, module-
based KEMs have become an attractive option for practical use due to their
scalability in security, sizes, and DFP. Module-based KEMs Kyber and Saber,
selected as a standard and a finalist by NIST, respectively, achieve ciphertext
sizes of 768 and 736 bytes for security level 1, similar to SMAUG’s.

Kyber and SMAUG. Tables 4 and 5 demonstrate that SMAUG outperforms Ky-
ber in almost every aspect, except for the DFP and public key size in level 5.
Compared to Kyber-512 [16], SMAUG-128 has a 16% and 12% smaller public
key and ciphertext, respectively. Additionally, the secret key size of SMAUG is
significantly smaller than that of Kyber. This makes it easy to manage secure
zones in restricted IoT devices, as it is tiny and ready to use. Note that most of
the KEMs can store a secret key as a seed, having 32 bytes; however, this makes
them more vulnerable to side-channel attacks.

Furthermore, SMAUG-128 achieves a 110% and 103% speed-up in encapsu-
lation and decapsulation, respectively, while maintaining high security and low
DFP. Similar results are presented for security levels 3 and 5, except that the
public key size of Kyber is shorter than SMAUG’s in level 5. We note that the
speed-ups decrease in higher security parameters.

Saber, Sable, and SMAUG. When compared to Saber, one of NIST’s round 3
finalists, SMAUG-128 has a 9% smaller ciphertext and the same public key size as
LightSaber. The secret key is significantly smaller, with a 58% and 44% speed up

20

in encapsulation and decapsulation, respectively. Compared to Sable, an efficient
variant of Saber, SMAUG-128, has the same ciphertext size but a larger public
key size. This can be seen as a trade-off between smaller public keys versus
faster running time. SMAUG-128 achieves 48% and 39% faster encapsulation
and decapsulation, a smaller secret key, and a bit higher security at the cost of
a larger public key.

This trade-off is also observed in NIST’s security levels 3 and 5. SMAUG offers
a trade-off with Saber and Sable between the public key size versus the secret
key size and running time. In NIST’s level 3, the ciphertext size of SMAUG-192 is
smaller than Saber and the same as Sable. The encapsulation and decapsulation
speed outperforms by 44% to 64% with a much smaller, ready-to-use secret key.

In security level 5, FireSable has a classical core-SVP hardness of 223, much
lower than 260. It achieves a smaller public key and ciphertext than SMAUG-
256 but still with slower speeds. SMAUG-256 has the same ciphertext size as
FireSaber, and a similar trade-off is observed.

6.3 Security against physical attacks

We justify the security of SMAUG against physical attacks based on the profiled
Differential Power Analysis (DPA). Specifically, Simple Power Analysis (SPA)
can profile the key generation and encapsulation processes since they only occur
once or without a secret key. However, multi-trace attacks are possible for decap-
sulation due to“re-encryption.” As Kyber and Saber share many design aspects
with SMAUG, we can follow recent works on masking Kyber and Saber [10, 18]
to add SCA countermeasures. Our new sampler, dGaussian, is expressed with
bit operations, so adding SCA countermeasures like boolean masking is easy.
While Krausz et al. [46] have recently proposed masking methods for the fixed
hamming weight sampler, their efficiency is lacking, so we see it as future work.
The new multiplication method may be vulnerable to memory access patterns,
but we can efficiently mask it using coefficient-wise shuffling.

Acknowledgments This work was submitted to the ‘Korean Post-Quantum
Cryptography Competition’ (www.kpqc.or.kr). Part of this work was done
while MinJune Yi was in CryptoLab Inc.

References

1. Akleylek, S., Alkım, E., Tok, Z.Y.: Sparse polynomial multiplication for lattice-
based cryptography with small complexity. The Journal of Supercomputing 72,
438–450 (2016)

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015)

3. Alkim, E., Barreto, P.S.L.M., Bindel, N., Kramer, J., Longa, P., Ricardini, J.E.:
The lattice-based digital signature scheme qtesla. Cryptology ePrint Archive, Paper
2019/085 (2019), https://eprint.iacr.org/2019/085

21

www.kpqc.or.kr
https://eprint.iacr.org/2019/085

4. Alkim, E., Bos, J., Ducas, L., Longa, P., Mironov, I., Naehrig, M., Nikolaenko, V.,
Peikert, C., Raghunathan, A., Stebila, D.: Frodokem: Algorithm specifications and
supporting documentation (2021)

5. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- A new hope. In: Holz, T., Savage, S. (eds.) USENIX Security 2016. pp. 327–343.
USENIX Association (Aug 2016)

6. Alperin-Sheriff, J., Apon, D.: Dimension-preserving reductions from lwe to lwr.
Cryptology ePrint Archive, Paper 2016/589 (2016), https://eprint.iacr.org/
2016/589

7. Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited.
In: Canetti, R., Garay, J.A. (eds.) Advances in Cryptology – CRYPTO 2013. pp.
57–74. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

8. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology – EUROCRYPT
2012. pp. 719–737. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

9. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor
searching with applications to lattice sieving, pp. 10–24. Society for Industrial and
Applied Mathematics (2016). https://doi.org/10.1137/1.9781611974331.ch2

10. Beirendonck, M.V., D’anvers, J.P., Karmakar, A., Balasch, J., Verbauwhede, I.: A
side-channel-resistant implementation of saber. J. Emerg. Technol. Comput. Syst.
17(2) (apr 2021). https://doi.org/10.1145/3429983

11. Bernstein, D.J., Chuengsatiansup, C., Lange, T., Van Vredendaal, C.: Ntru prime.
IACR Cryptol. ePrint Arch. 2016, 461 (2016)

12. Bhattacharya, S., Garcia-Morchon, O., Laarhoven, T., Rietman, R., Saarinen,
M.J.O., Tolhuizen, L., Zhang, Z.: Round5: Kem and pke based on glwr. Cryptology
ePrint Archive, Paper 2018/725 (2018), https://eprint.iacr.org/2018/725

13. Bi, L., Lu, X., Luo, J., Wang, K.: Hybrid dual and meet-LWE attack. In: Nguyen,
K., Yang, G., Guo, F., Susilo, W. (eds.) ACISP 22. LNCS, vol. 13494, pp. 168–188.
Springer, Heidelberg (Nov 2022). https://doi.org/10.1007/978-3-031-22301
-3_9

14. Bindel, N., Hamburg, M., Hövelmanns, K., Hülsing, A., Persichetti, E.: Tighter
proofs of CCA security in the quantum random oracle model. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 61–90. Springer, Hei-
delberg (Dec 2019). https://doi.org/10.1007/978-3-030-36033-7_3

15. Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hardness of
learning with rounding over small modulus. In: Kushilevitz, E., Malkin, T. (eds.)
Theory of Cryptography. pp. 209–224. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2016)

16. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehlé, D.: Crystals-kyber: a cca-secure module-lattice-
based kem. In: 2018 IEEE European Symposium on Security and Privacy (Eu-
roS&P). pp. 353–367. IEEE (2018)

17. Bos, J.W., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V., Raghu-
nathan, A., Stebila, D.: Frodo: Take off the ring! Practical, quantum-secure key
exchange from LWE. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers,
A.C., Halevi, S. (eds.) ACM CCS 2016. pp. 1006–1018. ACM Press (Oct 2016).
https://doi.org/10.1145/2976749.2978425

18. Bos, J.W., Gourjon, M., Renes, J., Schneider, T., van Vredendaal, C.: Masking
kyber: First- and higher-order implementations. IACR TCHES 2021(4), 173–214
(2021). https://doi.org/10.46586/tches.v2021.i4.173-214, https://tches.
iacr.org/index.php/TCHES/article/view/9064

22

https://eprint.iacr.org/2016/589
https://eprint.iacr.org/2016/589
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1145/3429983
https://eprint.iacr.org/2018/725
https://doi.org/10.1007/978-3-031-22301-3_9
https://doi.org/10.1007/978-3-031-22301-3_9
https://doi.org/10.1007/978-3-030-36033-7_3
https://doi.org/10.1145/2976749.2978425
https://doi.org/10.46586/tches.v2021.i4.173-214
https://tches.iacr.org/index.php/TCHES/article/view/9064
https://tches.iacr.org/index.php/TCHES/article/view/9064

19. Bossuat, J.P., Troncoso-Pastoriza, J.R., Hubaux, J.P.: Bootstrapping for approxi-
mate homomorphic encryption with negligible failure-probability by using sparse-
secret encapsulation. In: Ateniese, G., Venturi, D. (eds.) ACNS 22. LNCS, vol.
13269, pp. 521–541. Springer, Heidelberg (Jun 2022). https://doi.org/10.1007/
978-3-031-09234-3_26

20. Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W.: On the hardness of module
learning with errors with short distributions. Journal of Cryptology 36(1), 1 (Jan
2023). https://doi.org/10.1007/s00145-022-09441-3

21. Chailloux, A., Loyer, J.: Lattice sieving via quantum random walks. In: Tibouchi,
M., Wang, H. (eds.) Advances in Cryptology - ASIACRYPT. pp. 63–91 (2021)

22. Chen, C., Danba, O., Hoffstein, J., Hülsing, A., Rijneveld, J., Schanck, J.M., Saito,
T., Schwabe, P., Whyte, W., Xagawa, K., Yamakawa, T., Zhang, Z.: Ntru: Algo-
rithm specifications and supporting documentation (2020), nIST PQC Round 3
Submision

23. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (Dec 2011). https://doi.org/10.1007/978-3-642-25385-0_1

24. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018,
Part I. LNCS, vol. 10820, pp. 360–384. Springer, Heidelberg (Apr / May 2018).
https://doi.org/10.1007/978-3-319-78381-9_14

25. Cheon, J.H., Han, K., Kim, J., Lee, C., Son, Y.: A practical post-quantum public-
key cryptosystem based on spLWE. In: Hong, S., Park, J.H. (eds.) ICISC 16. LNCS,
vol. 10157, pp. 51–74. Springer, Heidelberg (Nov / Dec 2017). https://doi.org/
10.1007/978-3-319-53177-9_3

26. Cheon, J.H., Kim, D., Lee, J., Song, Y.: Lizard: Cut off the tail! A practical post-
quantum public-key encryption from LWE and LWR. In: Catalano, D., De Prisco,
R. (eds.) SCN 18. LNCS, vol. 11035, pp. 160–177. Springer, Heidelberg (Sep 2018).
https://doi.org/10.1007/978-3-319-98113-0_9

27. Cheon, J.H., Park, S., Lee, J., Kim, D., Song, Y., Hong, S., Kim, D., Kim, J., Hong,
S.M., Yun, A., et al.: Lizard public key encryption (2018), nIST PQC Round 1
Submision

28. D’Anvers, J.P., Batsleer, S.: Multitarget decryption failure attacks and their ap-
plication to saber and kyber. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.)
PKC 2022, Part I. LNCS, vol. 13177, pp. 3–33. Springer, Heidelberg (Mar 2022).
https://doi.org/10.1007/978-3-030-97121-2_1

29. D’Anvers, J.P., Guo, Q., Johansson, T., Nilsson, A., Vercauteren, F., Verbauwhede,
I.: Decryption failure attacks on ind-cca secure lattice-based schemes. In: Lin, D.,
Sako, K. (eds.) Public-Key Cryptography – PKC 2019. pp. 565–598. Springer In-
ternational Publishing, Cham (2019)

30. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber: Module-LWR
based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A.,
Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 18. LNCS, vol. 10831, pp. 282–305.
Springer, Heidelberg (May 2018). https://doi.org/10.1007/978-3-319-89339
-6_16

31. Dent, A.W.: A designer’s guide to kems. In: Cryptography and Coding: 9th IMA
International Conference, Cirencester, UK, December 16-18, 2003. Proceedings 9.
pp. 133–151. Springer (2003)

32. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,
D.: CRYSTALS-Dilithium: A lattice-based digital signature scheme. IACR TCHES

23

https://doi.org/10.1007/978-3-031-09234-3_26
https://doi.org/10.1007/978-3-031-09234-3_26
https://doi.org/10.1007/s00145-022-09441-3
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-53177-9_3
https://doi.org/10.1007/978-3-319-53177-9_3
https://doi.org/10.1007/978-3-319-98113-0_9
https://doi.org/10.1007/978-3-030-97121-2_1
https://doi.org/10.1007/978-3-319-89339-6_16
https://doi.org/10.1007/978-3-319-89339-6_16

2018(1), 238–268 (2018). https://doi.org/10.13154/tches.v2018.i1.238-268,
https://tches.iacr.org/index.php/TCHES/article/view/839

33. Ducas, L., Pulles, L.: Does the dual-sieve attack on learning with errors even work?
Cryptology ePrint Archive, Paper 2023/302 (2023), https://eprint.iacr.org/
2023/302

34. Espitau, T., Joux, A., Kharchenko, N.: On a dual/hybrid approach to small secret
LWE - A dual/enumeration technique for learning with errors and application to
security estimates of FHE schemes. In: Bhargavan, K., Oswald, E., Prabhakaran,
M. (eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp. 440–462. Springer, Heidelberg
(Dec 2020). https://doi.org/10.1007/978-3-030-65277-7_20

35. Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon: Fast-fourier lattice-based
compact signatures over ntru. Submission to the NIST’s post-quantum cryptogra-
phy standardization process 36(5) (2018)

36. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M.J. (ed.) CRYPTO’99. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (Aug 1999). https://doi.org/10.1007/3-540-48405-1_34

37. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. Journal of Cryptology 26(1), 80–101 (Jan 2013). https:

//doi.org/10.1007/s00145-011-9114-1

38. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of computing.
pp. 212–219 (1996)

39. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg
(Apr 2015). https://doi.org/10.1007/978-3-662-46800-5_25

40. Hanrot, G., Pujol, X., Stehlé, D.: Algorithms for the shortest and closest lattice
vector problems. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H.,
Xing, C. (eds.) Coding and Cryptology. pp. 159–190. Springer Berlin Heidelberg,
Berlin, Heidelberg (2011)

41. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS,
vol. 10677, pp. 341–371. Springer, Heidelberg (Nov 2017). https://doi.org/10.1
007/978-3-319-70500-2_12

42. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the fujisaki-okamoto
transformation. In: Kalai, Y., Reyzin, L. (eds.) Theory of Cryptography. pp. 341–
371. Springer International Publishing, Cham (2017)

43. Hövelmanns, K., Kiltz, E., Schäge, S., Unruh, D.: Generic authenticated key ex-
change in the quantum random oracle model. In: Kiayias, A., Kohlweiss, M.,
Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 389–422.
Springer, Heidelberg (May 2020). https://doi.org/10.1007/978-3-030-45388
-6_14

44. Howgrave-Graham, N., Nguyen, P.Q., Pointcheval, D., Proos, J., Silverman, J.H.,
Singer, A., Whyte, W.: The impact of decryption failures on the security of ntru
encryption. In: Boneh, D. (ed.) Advances in Cryptology - CRYPTO 2003. pp.
226–246. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

45. Hövelmanns, K., Hülsing, A., Majenz, C.: Failing gracefully: Decryption failures
and the fujisaki-okamoto transform. Cryptology ePrint Archive, Paper 2022/365
(2022), https://eprint.iacr.org/2022/365

24

https://doi.org/10.13154/tches.v2018.i1.238-268
https://tches.iacr.org/index.php/TCHES/article/view/839
https://eprint.iacr.org/2023/302
https://eprint.iacr.org/2023/302
https://doi.org/10.1007/978-3-030-65277-7_20
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/978-3-662-46800-5_25
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-030-45388-6_14
https://doi.org/10.1007/978-3-030-45388-6_14
https://eprint.iacr.org/2022/365

46. Krausz, M., Land, G., Richter-Brockmann, J., Güneysu, T.: A holistic approach
towards side-channel secure fixed-weight polynomial sampling. In: Public-Key
Cryptography–PKC 2023: 26th IACR International Conference on Practice and
Theory of Public-Key Cryptography, Atlanta, GA, USA, May 7–10, 2023, Pro-
ceedings, Part II. pp. 94–124. Springer (2023)

47. Langlois, A., Stehlé, D., Steinfeld, R.: GGHLite: More efficient multilinear maps
from ideal lattices. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 239–256. Springer, Heidelberg (May 2014). https://doi.org/10.1
007/978-3-642-55220-5_14

48. Lee, J., Kim, D., Lee, H., Lee, Y., Cheon, J.H.: Rlizard: Post-quantum key encap-
sulation mechanism for iot devices. IEEE Access 7, 2080–2091 (2018)

49. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (Feb 2011). https://doi.org/10.1007/978-3-642-19074-2_21

50. MATZOV: Report on the Security of LWE: Improved Dual Lattice Attack (Apr
2022). https://doi.org/10.5281/zenodo.6493704

51. May, A.: How to meet ternary LWE keys. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021, Part II. LNCS, vol. 12826, pp. 701–731. Springer, Heidelberg,
Virtual Event (Aug 2021). https://doi.org/10.1007/978-3-030-84245-1_24

52. Mera, J.M.B., Karmakar, A., Kundu, S., Verbauwhede, I.: Scabbard: a suite of
efficient learning with rounding key-encapsulation mechanisms. IACR TCHES
2021(4), 474–509 (2021). https://doi.org/10.46586/tches.v2021.i4.474-509,
https://tches.iacr.org/index.php/TCHES/article/view/9073

53. Park, S., Jung, C.G., Park, A., Choi, J., Kang, H.: Tiger: Tiny bandwidth key
encapsulation mechanism for easy migration based on rlwe(r). Cryptology ePrint
Archive, Paper 2022/1651 (2022), https://eprint.iacr.org/2022/1651

54. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC. pp. 84–93. ACM Press
(May 2005). https://doi.org/10.1145/1060590.1060603

55. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mecha-
nism in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 520–551. Springer, Heidel-
berg (Apr / May 2018). https://doi.org/10.1007/978-3-319-78372-7_17

56. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Mathematical programming 66(1), 181–199
(1994)

57. Son, Y., Cheon, J.H.: Revisiting the hybrid attack on sparse secret lwe and ap-
plication to he parameters. In: Proceedings of the 7th ACM Workshop on En-
crypted Computing & Applied Homomorphic Cryptography. p. 11–20. WAHC’19,
Association for Computing Machinery, New York, NY, USA (2019). https:

//doi.org/10.1145/3338469.3358941

58. Vercauteren, I.F., Sinha Roy, S., D’Anvers, J.P., Karmakar, A.: Saber: Mod-lwr
based kem, nIST PQC Round 3 Submision

A Missing definitions

A.1 Lattice assumptions

We recall the lattice assumptions MLWE and MLWR in the structured Euclidean
lattices, which security of SMAUG underlies.

25

https://doi.org/10.1007/978-3-642-55220-5_14
https://doi.org/10.1007/978-3-642-55220-5_14
https://doi.org/10.1007/978-3-642-19074-2_21
https://doi.org/10.5281/zenodo.6493704
https://doi.org/10.1007/978-3-030-84245-1_24
https://doi.org/10.46586/tches.v2021.i4.474-509
https://tches.iacr.org/index.php/TCHES/article/view/9073
https://eprint.iacr.org/2022/1651
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1145/3338469.3358941
https://doi.org/10.1145/3338469.3358941

Definition 2 (Decisional MLWE). For positive integers q, k, ℓ, η and the di-
mension n of R, we say that the advantage of an adversary A solving the
decision-MLWEn,q,k,ℓ,χs,χe problem is

AdvMLWE
n,q,k,ℓ,χs,χe

(A) =
∣∣Pr [b = 1 | A← Rk×ℓ

q ;b← Rk
q ; b← A(A,b)

]
−Pr

[
b = 1 | A← Rk×ℓ

q ; s← χs; e← χe; b← A(A,A · s+ e mod q)
] ∣∣

Definition 3 (Decisional MLWR). For positive integers p, q, k, ℓ, η with q ≥
p ≥ 2 and the dimension n of R, we say that the advantage of an adversary A
solving the decision-MLWRn,p,q,k,ℓ,χr problem is

AdvMLWR
n,p,q,k,ℓ,χr

(A) =
∣∣Pr [b = 1 | A← Rk×ℓ

q ;b← Rk
p; b← A(A,b)

]
− Pr

[
b = 1 | A← Rk×ℓ

q ; s← χr; b← A(A, ⌊p/q ·A · s⌉ mod p)
] ∣∣

A.2 Public key encryption and key encapsulation mechanism

Definition 4 (PKE). A public key encryption scheme is a tuple of PPT algo-
rithms PKE = (KeyGen,Enc,Dec) with the following specifications:

• KeyGen: a probabilistic algorithm that outputs a public key pk and a secret
key sk;

• Enc: a probabilistic algorithm that takes as input a public key pk and a mes-
sage µ and outputs a ciphertext ct;

• Dec: a deterministic algorithm that takes as input a secret key sk and a
ciphertext ct and outputs a message µ.

Let 0 < δ < 1. We say that it is (1− δ)-correct if for any (pk, sk) generated from
KeyGen and µ,

Pr[Dec(sk,Enc(pk, µ)) ̸= µ] ≤ δ,

where the probability is taken over the randomness of the encryption algorithm.
We call the above probability decryption failure probability (DFP). In addition,
we say that it is correct in the (Q)ROM if the probability is taken over the ran-
domness of the (quantum) random oracle, modeling the hash function.

Definition 5 (KEM). A key encapsulation mechanism scheme is a tuple of
PPT algorithms KEM = (KeyGen,Encap,Decap) with the following specifications:

• KeyGen: a probabilistic algorithm that outputs a public key pk and a secret
key sk;

• Encap: a probabilistic algorithm that takes as input a public key pk and out-
puts a sharing key K and a ciphertext ct;

• Decap: a deterministic algorithm that takes input a secret key sk and a ci-
phertext ct and outputs a sharing key K.

The correctness of KEM is defined similarly to that of PKE.

26

We give the advantage function with respect to the attacks against PKE,
namely the INDistinguishability under Chosen Plaintext Attacks (IND-CPA).

Definition 6 (IND-CPA security of PKE). For a (quantum) adversary A
against a public key encryption scheme PKE = (KeyGen,Enc, Dec), we define
the IND-CPA advantage of A = (A1,A2) as follows:

AdvIND-CPA
PKE (A) =

∣∣∣∣ Pr
(pk,sk)

[
b = b′

∣∣∣∣ (µ0, µ1, st)← A1(pk); b← {0, 1};
ct← Enc(pk, µb); b′ ← A2(pk, ct, st)

]
− 1

2

∣∣∣∣ .
The probability is taken over the randomness of A and (pk, sk)← KeyGen(1λ).

We then define two advantage functions with respect to the attacks against
KEM, namely the INDistinguishability under Chosen Plaintext Attacks (IND-CPA)
as in PKE and the INDistinguishability under (adaptively) Chosen Ciphertext
Attacks (IND-CCA).

Definition 7 (IND-CPA and IND-CCA security of KEM). For a (quan-
tum) adversary A against a key encapsulation mechanism KEM = (KeyGen,Encap,
Decap), we define the IND-CPA advantage of A as follows:

AdvIND-CPA
KEM (A) =

∣∣∣∣ Pr
(pk,sk)

[
b = b′

∣∣∣∣ b← {0, 1}; (K0, ct)← Encap(pk);
K1 ← K; b′ ← A(pk, ct,Kb)

]
− 1

2

∣∣∣∣ .
The probability is taken over the randomness of A and (pk, sk) ← KeyGen(1λ).
The IND-CCA advantage of A is defined similarly except that the adversary can
query Decap(sk, ·) oracle on any ciphertext ct′(̸= ct).

We can then define the (quantum) security of PKE and KEM.

B Missing algorihtms

Uniform random matrix sampler. The matrix sampling algorithm expandA
given in Figure 4 is adapted from the pseudorandom generator gen in Saber [30].
This pseudorandom generator samples a public matrix A from a uniformly ran-
dom distribution over Rk×k

q .

expandA(seed): ▷ seed ∈ {0, 1}256

1: buf← XOF(seed)
2: for i from 0 to k − 1 do
3: A[i] = bytes to Rq(buf+ polybytes · i) ▷ Convert to ring elements

4: return A

Fig. 4: Uniform random matrix sampler, expandA.

27

Hamming weight sampler. The hamming weight sampler, HWTh in Fig-
ure 5, is adapted from the SampleInBall algorithm in Dilithium [32], having a
secret-independent running time. It samples a ternary polynomial vector having
a hamming weight of h.

HWTh(seed): ▷ seed ∈ {0, 1}256

1: count = 0
2: buf ← XOF(seed)
3: for i from n− h to n− 1 do
4: repeat
5: degree = buf[idx] ∧ mask
6: until degree < i
7: res[i] = res[degree]
8: res[degree] = ((buf[idx] ≫ 14) ∧ 0x02)− 1

9: return convToIdx(s) ▷ Storing the indexes

Fig. 5: Hamming weight sampler, HWTh.

Discrete Gaussian sampler. We describe dGaussian with σ = 1.0625 in Fig-
ure 6 and σ = 1.453713 in Figure 7.

dGaussianσ(x):

Require: x = x0x1x2x3x4x5x6x7x8x9 ∈ {0, 1}10
1: s = s1s0 = 00 ∈ {0, 1}2
2: s0 = x0x1x2x3x4x5x7x8

3: s0 += (x0x3x4x5x6x8) + (x1x3x4x5x6x8) + (x2x3x4x5x6x8)
4: s0 += (x2x3x6x8) + (x1x3x6x8)
5: s0 += (x6x7x8) + (x5x6x8) + (x4x6x8) + (x7x8)
6: s1 = (x1x2x4x5x7x8) + (x3x4x5x7x8) + (x6x7x8)
7: s = (−1)x9 · s ▷ · is the arithmetic multiplication
8: return s

Fig. 6: Discrete Gaussian sampler with σ = 1.0625, dGaussianσ.

C Narrow discrete Gaussian noise

Our design choice for the noise distribution in MLWE follows the conventional
discrete Gaussian distribution, but with approximated CDTs following the ap-
proaches in FrodoKEM [17]. We give some theoretical results based on Rényi
divergence to justify the security of SMAUG, considering the narrow discrete

28

dGaussianσ(x):

Require: x = x0x1x2x3x4x5x6x7x8x9x10 ∈ {0, 1}11
1: s = s2s1s0 = 000 ∈ {0, 1}3
2: s0 = (x0x1x2x3x5x7x8) + (x1x2x3x5x6x7x9) + (x1x2x3x6x7x8)
3: s0 += (x1x2x3x5x8x9) + (x0x2x3x5x8x9)
4: s0 += (x4x5x6x7x9) + (x3x4x8x9) + (x5x6x7x8) + (x4x6x7x8) + (x4x5x8x9)
5: s0 += (x5x8x9) + (x6x8x9) + (x7x8x9) + (x7x8x9) + (x6x8x9)
6: s1 = (x0x1x4x5x6x7x9) + (x2x4x5x6x7x9) + (x3x4x5x6x7x9) + (x5x6x7x8x9)
7: s1 += (x1x2x3x8x9) + (x7x8x9) + (x6x8x9) + (x5x8x9) + (x4x8x9)
8: s2 = (x1x4x5x6x7x8x9) + (x2x4x5x6x7x8x9) + (x3x4x5x6x7x8x9)
9: s = (−1)x10 · s ▷ · is the arithmetic multiplication
10: return s

Fig. 7: Discrete Gaussian sampler with σ = 1.453713, dGaussianσ.

Gaussian noise. We note that the narrow Gaussian noise is already taken into
account when estimating the concrete security (given in Section 5) using the
explained estimators. The analysis given here provides a more conservative se-
curity preventing some possible future attacks that target the noise distribution.
We also note that in the core-SVP methodology, we only focus on the estimated
attack cost of the underlying MLWE and MLWR problems, not based on the
security reductions (as done in most of the NIST-submitted schemes) for a fair
comparison to Kyber or Saber.

In SMAUG, the narrow discrete Gaussian noise is used only for the public
key generation. So the difference in the noise distribution only affects the distin-
guishing advantage between the games G2 and G3 in the proof of Theorem 4.
Then the bound for the distinguishing advantage can also be expressed as(

AdvMLWE
n,q,k,k,DZ,σ

(B2) ·Rα(dGaussianσ∥DZ,σ)
nk
)1−1/α

,

assuming the pseudorandomness of dGaussianσ. This is due to Lemma 5.5 in [4].
We note that the key generation calls dGaussian only nk times and that the
public key is generated only once.

The bound for our typical parameter set for security level 1 (levels 3 and
5, resp.) increases from 2−120.0 (2−181.7 and 2−264.5, resp.) to 2−118.2 (2−176.9

and 2−260.2, resp.) with α = 200 (75 and 200, resp.). Opposed to the estimated
security based on the bound AdvMLWE

n,q,k,k,dGaussianσ (B2) given in Section 5, this new
bound provides a more conservative security preventing some possible future
attacks that target the noise distribution.

By using one more bit for dGaussian algorithm, we can decrease the advantage
to 2−119.6 (2−181.2 and 2−263.6, resp.) with α = 500. This modification will
slightly decrease only the speed of key generation by less than 1.1x.

29

	SMAUG: Pushing Lattice-based Key Encapsulation Mechanisms to the Limits

