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Abstract. Functional encryption (FE) is a primitive where the holder of a master secret key can control
which functions a user can evaluate on encrypted data. It is a powerful primitive that even implies indis-
tinguishability obfuscation (i0), given sufficiently compact ciphertexts (Ananth-Jain, CRYPTO’15 and
Bitansky-Vaikuntanathan, FOCS’15). However, despite being extensively studied, there are FE schemes,
such as function-hiding inner-product FE (Bishop-Jain-Kowalczyk, AC’15, Abdalla-Catalano-Fiore-
Gay-Ursu, CRYPTO’18) and compact quadratic FE (Baltico-Catalano-Fiore-Gay, Lin, CRYPTO’17),
that can be only realized using pairings. This raises the question if there are some mathematical barriers
that hinder us from realizing these FE schemes from other assumptions.

In this paper, we study the difficulty of constructing lattice-based compact FE. We generalize the
impossibility results of Unal (EC’20) for lattice-based function-hiding FE, and extend it to the case
of compact FE. Concretely, we prove lower bounds for lattice-based compact FE schemes which meet
some (natural) algebraic restrictions at encryption and decryption, and have ciphertexts of linear size
and secret keys of minimal degree. We see our results as important indications of why it is hard to
construct lattice-based FE schemes for new functionalities, and which mathematical barriers have to
be overcome.

1 Introduction

Functional encryption (FE) [BSW11; ONel0] is an advanced encryption primitive that allows fine-grained
access control over the encrypted data. In contrast to conventional encryption schemes, which are all-or-
nothing, in FE there is a master secret key msk that allows to generate constrained functional secret keys.
More precisely, every secret key sk is associated with a function f and, given an encryption of some message
x, the decryption with sk only reveals f(x), and nothing more about z.

Since its introduction, FE has been subject to intense study, which resulted in both FE schemes for
general functionalities [Gar+13; AR17; Che+18; AV19], thereby entailing feasibility results, and FE schemes
for limited classes of functions that are of particular interest for practical applications, e.g., (function-hiding)
inner-product FE (IPFE) [Abd+15; BJK15; ALS16; Linl7; Tom19; Agr+20] and compact FE for quadratic
functions [Bal+17; Linl7; AS17; Gay20; Tom23]. Furthermore, IPFE and quadratic FE have been extended
to multi-input [Abd+17; Abd+18; AGT21a; AGT22], (decentralized) multi-client [Cho+18; Abd+19; LT19;
ABG19; AGT21b], and identity/attribute-based [Abd+20; Cin+ 23| settings.

We also know that FE is a powerful primitive that even implies indistinguishability obfuscation (i0). In
fact, it has been shown that a succinct subexponentially secure single-key FE implies iO [AJ15; BV15; LT17;
KNT18; Agrl9; AP20; JLS21; JLS22].

Moreover, we know that FE for general functionalities with a bounded number of secret keys (that an
adversary can learn), can be achieved from minimal assumptions [AV19], such as public-key encryption
(PKE) and one-way functions (OWFs). However, if we want to achieve security for an unbounded number
of secret keys, we either need to rely on heavy-machinery, such as iO [Gar+13], or restrict ourselves to
(function-hiding) IPFE, linearly compact quadratic FE or FE for constant-degree polynomials which are
obtained by relinearization. Even so, for linearly compact quadratic FE and function-hiding FE the only
known constructions are pairing-based [BJK15; Bal+17; Linl7; Gay20].
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In a recent work, Unal [Una20] showed implausibility of constructing lattice-based function-hiding IPFE.
More precisely, he extracted the common properties (of decryption and encryption algorithms) of known
lattice-based FE schemes, and showed that under these properties an FE scheme cannot be function-hiding.
Given this result and the usefulness of compact FE for constructing advanced primitives, such as iO, we ask
the following question in this work:

What hinders us from constructing compact lattice-based FE?

1.1 Lattice-Based Functional Encryption Framework

To investigate the above question, we need to capture lattice-based FE schemes in a non-black box way.
Towards this end, we reintroduce here the framework of Unal [Una20]:

Definition 1 (Lattice-Based FE Scheme). Let FE = (Setup, KeyGen, Enc, Dec) be an FE scheme. Let
q be a prime and p < q be the modulus of the message space. We call FE lattice-based if the following
conditions are met:

1. Enc computes ciphertezts as follows: On input a master secret key msk and a message x € Z;, Enc
first samples (potentially correlated) polynomials ri,...,rm € Z¢[X1,...,Xy] of constant degree without
looking at x. It then evaluates 1, ...,ry at © and outputs the ciphertext

cty == (ri(z), ..., rm(x)) € Zy" .

Each secret key output by KeyGen is a polynomial in Zq4|Z1, ..., Zy| of constant degree.
On input a secret key sk € Zy[Z1,...,Zm] and a ciphertext ct € Z;', the decryption algorithm Dec
evaluates the polynomial sk at ct, and rounds the result to the nearest integer modulo p, i.e.,

o o

Dec(sk, ct) = [sk(ct) - p/q] € Z,.

The lattice-based FE framework makes strong restrictions on the encryption and decryption algorithms of
FE schemes. However, since compact and function-hiding FE schemes do exist assuming the security of
pairing groups [BJK15; Gay20], it is necessary to restrict the computational model of an FE scheme at some
points. We argue that the restrictions made by the framework of [Una20| are the right ones, in the sense
that they are loose enough to capture all relevant FE schemes whose security relies on the Learning With
Errors (LWE) assumption. Moreover, these restrictions are decisive enough to make impossibility results
for schemes captured by this framework provable. Let us discuss this in more detail. A closer look at the
existing lattice-based IBE/ABE/PE/FE schemes [ABB10; GVW13; Bon+14; ALS16; AR17; AP20| reveals
that the restrictions imposed in Definition 1 are quite natural and fulfilled by most® of these schemes. As
a prime example, we can present here the encryption algorithm of the IPFE scheme due to Agrwal, Libert
and Stehlé [ALS16]: The public key consists of two matrices A € Z;”X", B e ZgX". To encrypt input vectors
T € Zﬁ, ciphertexts are generated by sampling a uniformly random vector s <« Zg, two Gaussian noise
vectors eg <~ Dzm o, €1 < Dye , and computing

ct=(As+ey,Bs+er + f-x),

where f is the scaling factor (commonly |¢/K |, for some integer K). Now observe that we can rewrite this
in two parts:

- a complex offline part, where m + ¢ multivariate degree-1 polynomials
91(X), .o gm(X), hi(X), ... he(X) € Zg[ Xy, ..., X

3 An exception is the decryption algorithms of some ABE schemes [GVW13; Bon+14], that need to evaluate a
predicate of high depth at decryption. If those ABE schemes are only instantiated with constant depth predicates,
then their decryption algorithm also fits our framework. For more exceptions, see Section 6.



are sampled using only the public values (p, g, f, 4, B) (and without looking at the input z),

gi(Xla ce 7)(g) = <ai | S> + €0, 1€ [m],
hj(Xl,...,Xg) = <bj|S>+€17j+f'Xj, ]E[E],

- and a simple online part, where the previously sampled polynomials are evaluated on input x in order
to compute the ciphertext,

ct = (g1(x),..., gm(x), hi(x),..., he(x)).

This shows that the encryption algorithm of [ALS16] fits into our framework (their decryption algorithm
falls into our framework too, which is easy to verify).

For our restrictions at decryption, we point out that it was already noted by Brakerski et al. [Bra+19]
that even all lattice-based fully homomorphic encryption (FHE) schemes* decrypt by evaluating a low-degree
polynomial at the ciphertext and then rounding to the nearest result.

Moreover, we note that since the publication of [Una20| there has been no construction of function-
hiding FE from LWE (or any other lattice-based assumption). While the results of [Una20] only hold in the
aforementioned lattice-based FE framework, they (up to now) correctly predicted that constructing function-
hiding FE from LWE requires breakthrough methods. This justifies to see the framework of [Una20] as a
gauge for measuring the hardness of lattice-based FE schemes and understanding the mathematical barriers
that are needed to be overcome.

1.2 Contribution

We generalize the results of Unal [Una20] for lattice-based function-hiding FE, and extend them to the
setting of lattice-based compact FE. Our main contribution is captured with the following informal theorem.

Theorem 1 (Informal Main Theorem 5). Let g > p be s.t. q is prime, q/p € poly(\) and p is greater
than some constant.

Let FE be a lattice-based functional encryption scheme for polynomials of degree d > 1 with input space
Z,,, where each ciphertext is contained in Z;".

Assume that FE is linearly compact, i.e., m € O(n), and that each secret key output by KeyGen is a
degree-d polynomial over the ciphertexts.

If FE is correct, then it cannot be selectively IND-CPA secure.

At a high level, our proof idea consists of deriving a (special) SKE scheme from a lattice-based compact FE
scheme. By using the existence of low-degree algebraic relationships, which has been shown in [Una23], we
can use the compactness of the FE scheme to prove correctness of the aforementioned SKE scheme. This
in turn leads to a contradiction to Corollary 3 of [Una20] (cf. Theorem 2) and gives us implicitly an attack
on lattice-based compact FE scheme. As a small side result, we can apply the same techniques to (loosely)
compact FE schemes, where ciphertexts only have a constant vector dimension. We outline this result and
its proof in Appendix A.

1.3 Interpretation, Limitations and Open Problems

Parameter Restrictions. We have analogous parameter restrictions as in [Una20]. More precisely, in order
to prove Theorem 1, we require that the exterior modulus ¢ of the FE scheme is prime. Furthermore, the
fraction q/p needs to be bounded by a polynomial® in the security parameter A\, where p is the interior

4 However, it should be noted that most FHE schemes use an inverse gadget matrix at homomorphic evaluations,
which circumvents our restrictions at encryption.

® The runtime of the attack that is implicitly used by Theorem 2 lies in poly(q/p). If ¢/p is superpolynomial, then
our result still yields an adversary with equally superpolynomial time complexity.



modulus, and p needs to be greater than some constant that depends on the depth of the FE scheme. These
parameter restrictions are usual for schemes whose security is implied by standard LWE, i.e., LWE with
polynomial modulus ¢, which admits a reduction to worst-case lattice problems [Reg05].

Additionally, we require a strict notion of compactness where we demand the dimensional length of
ciphertexts to be linear in the length of messages. Furthermore, we assume decryption to be as simple as
possible, i.e., the algebraic degree of secret keys must equal the algebraic degree of the functionality supported
by the FE scheme.

To relax both requirements it would be necessary to prove some technical theorem about homogeneity
of ciphertexts (Theorem 6) for more general FE schemes. Concretely, we suspect the following:

Conjecture 1. Let FE be a lattice-based FE scheme for degree-d polynomials over n variables. Furthermore,
let FE be relazed compact, i.e., we have m € O(n%"¢) where m is the dimension of ciphertexts of FE and
e > 0 is some fixed constant. Denote by dy the decryption depth of FE.

If FE is IND-CPA secure against adversaries of complexity no("d%'dﬂ(drl)), then Theorem 6 does hold
for FE. This implies that FE cannot be IND-CPA secure against adversaries of size pOm* =2/ ¢ FE g
correct.

Interpretation and Open Problems. We view the results in this paper as a useful argument in under-
standing the difficulties of constructing lattice-based compact FE schemes. We leave it as an interesting open
problem to derive similar lower bounds for other types of FE schemes, such as noisy linear FE [AP20] or FE
for attribute-weighted sums [AGW20].

A potential approach to circumvent the lower bounds introduced here is to consider gadget matrices (as in
FHE schemes and as in the predicate encryption scheme of [GVW15]). More precisely, if during encryption
we compute a bit-decomposition, G~!(z), of an input vector z, then our techniques are not applicable
anymore, and one would need to develop more advanced techniques. However, it is still unclear if inverse
gadget sampling is helpful for constructing lattice-based FE schemes. We discuss more open questions and
ways to circumvent our results in Section 6.

Note on Algebraic LWE. A natural question to ask is whether more algebraically structured variants
of LWE, such as Ring-LWE [LPR10] or Module-LWE [LS15], can be used to overcome the lower bounds
introduced in this work. Analogous to the results of [Una20], the additional algebraic structure does not
help, as long as the requirements of Theorem 1 are met. The reason for this is that the rings and modules
considered in algebraic LWE variants are vector spaces over Z, with the natural addition whose multiplication
operation can be modeled by quadratic polynomials.

1.4 Related Work

Ananth and Vaikuntanathan [AV19] showed that FE for P/poly with a bounded number of secret keys can be
achieved from minimal assumptions, i.e., PKE in the public-key setting and OWFs in the secret-key setting.
But, the ciphertexts in their schemes are growing linearly with the number of secret keys handed out to the
adversary. This is not surprising given that a bounded public-key FE scheme with relaxed compact ciphertext
size, i.e., sublinear in the number of secret keys, implies® iO [AJ15; BV15|. Similarly, Kitagawa, Nishimaki and
Tanaka [KNT18] showed that a bounded and compact secret-key FE scheme implies i0. Moreover, Ananth,
Jain and Sahai [AJS15] showed how to transform any collusion-resistant FE into a single-key FE scheme
with compact encryption circuit. De Caro, Iovino, Jain, O’Neill, Paneth and Persiano [De +13] showed that
compact FE with simulation-based security is impossible for general functions [Agr+13; De +13|, however,
for constructing iO from compact FE selective indistinguishability security suffices.

As explained in Section 1.5, we consider encryption algorithms that can be decomposed into simple
online and complex offline parts. Such a decomposition has been previously used both for constructing

6 Technically, [AJ15; BV15] define compactness with respect to the running time of the encryption algorithm. More
precisely, the running time of the encryption algorithm must only be a polynomial in the security parameter and
input message length, and has only sublinear dependency on the function size, i.e., poly(\, |z|) - | f|*~¢ for some
constant e € (0, 1].



new FE schemes [HW14; AR17] and showing impossibility results [Una20]. However, none of these works
considered the compact FE case.

Other Models of Computation. Computational models are a popular approach in cryptography to prove
lower bounds for solving certain problems. Nonetheless, the most well-known models, such as the generic
group model [Mau05; Sho97], the algebraic group model [FKL18] and the random oracle model [BR93] only
deal with group-based resp. hash-based problems and primitives.

We are not aware of many other models besides [Una20] for lattice-based settings. Guo, Kamath, Rosen
and Sotiraki [Guo+22] studied the lattice-based non-interactive key exchange (NIKE) problem and intro-
duced a (comparatively more rigid) model where Alice and Bob always send LWE samples A - 21 + e¢; and
AT . x5 + e as their key parts, respectively. Afterwards, they may apply any key reconciliation function
to extract a common secret key. The authors could show lower bounds for the complexity and amount of
information the reconciliation function needs.

There are some similarities between the lower bounds obtained in our model and the lower bounds ob-
tained by Applebaum, Avron and Brzuska [AAB15] for arithmetic circuits. In our setting, the encryption and
decryption functionalities come close to arithmetizing circuits, i.e., their algebraic descriptions are (almost)
independent of the underlying field Z,. The lower bound for lattice-based function-hiding FE, for example,
could almost be reduced to a lower bound in [AAB15| for three-party protocols where a semi-arithmetic
Alice and a non-arithmetic Bob want to make a fully arithmetic Carol learn a function of both parties’ data
without learning any non-trivial information. However, the crux is that we allow the decryption algorithm to
perform a rounding operation from Z, to Z, at the end. Since rounding is a non-arithmetic of forbiddingly
high degree, the decryption algorithm of lattice-based FE schemes is non-arithmetic and, hence, not fully
captured by the lower bounds in [AAB15].

1.5 Technical Overview

In this subsection, we will sketch a proof for Theorem 1. Towards this end, we will first introduce the
framework of Unal [Una20] for modeling lattice-based FE schemes, which we use in this work. Next, we
will revisit a strategy for proving lower bounds for lattice-based function-hiding FE schemes and generalize
it. Finally, we will attempt to adapt the generalized strategy on relared compact lattice-based FE schemes.
Unfortunately, our first attempt will fail, however, we will be able to fix the strategy for linearly compact
lattice-based FE schemes with secret keys of minimal degree.

Our Framework. A (secret-key) functional encryption (FE) scheme consists of four algorithms: Setup, KeyGen,
Enc and Dec. On input the security parameter 1*, Setup computes a master secret key msk. On input msk
and a suitable function f: Z; — Z,, KeyGen generates a secret key sky for f. On input msk and a message
T € Z;L, Enc outputs a ciphertext ct,. Finally, on input sky and ct;, Dec outputs f(z).

In this work, we want to prove lower bounds for lattice-based FE schemes. In order to do so,we focus on
FE schemes FE = (Setup, KeyGen, Enc, Dec) that are subject to the following two restrictions:

— Enc is of constant depth, i.e., the output of Enc(msk, x) is computed in two phases: in the complex offline
phase, Enc only knows msk and computes arbitrarily complicated randomness (71, ..., 7,,). In the simple
online phase, Enc sees the message x € Z, and the randomness (ry,...,7,,) from the previous phase.
However, in this phase Enc must compute the ciphertext by an arithmetic circuit of constant depth.
Formally, we require that there exists an offline algorithm Enc.g¢ that on input msk outputs random
polynomials 71, ..., 7y, € Zy[X1,...,X,] of constant degree. Enc(msk, z) is then expected to work by first
sampling (71, ...,7m) < Encor(msk), and then outputting the ciphertext ct, = (r1(z),...,7m(x)) € Z;".
We call the maximum degree of r1,...,7,, the depth of Enc.

— Each secret key sky is a polynomial in Z,4[Y7,...,Y,,] of constant degree and Dec works in a typical
lattice-based manner: it evaluates sky on the ciphertext ct, and rounds the result to the next number
modulo p. Formally, we require

Dec(sky, cty) = [p ~skf(ctm)J .
q

ot



For simplicity, we call FE schemes that adhere to these restrictions lattice-based.

Lower Bounds for Function-Hiding FE. We explain here the strategy of [Una20] for showing implausi-
bility of lattice-based function-hiding FE schemes, before we generalize and adapt it to the case of compact
FE.

First, remember that in a function-hiding FE scheme the secret key sk hides the function f it evaluates
at decryption, i.e., given sk; and ct, an adversary learns nothing about = and f besides f(z). If we are
given a function-hiding FE scheme FE = (Setup, KeyGen, Enc, Dec) for computing linear functions over Z;,
we can construct a secret-key encryption scheme SKE' = (Setup’, Enc’, Dec’) for messages in Z, from FE
s.t. its encryption algorithm Enc’ is of constant depth and produces short ciphertexts. In fact, consider the
following setup and encryption algorithms:

Setup’: On input 1%, Setup’ samples msk <— Setup(1*). Then, it derives secret keys sky, ..., skg_1 + KeyGen(msk, 0)
for the zero function and one secret key skg +— KeyGen(msk, f) for the function f that maps a vector
x € Zy to its first coordinate x;. It returns msk’ := (msk, sky, .. .,skq).
Enc’: On input msk’ = (msk,skq,...,skg) and a message z1 € Z,, Enc’ computes the ciphertext ct <
Enc(msk, (x1,0,...,0)) and then applies the polynomials sk, ...,skg_1 on it and outputs

ct’ = (sky(ct), ..., skq_1(ct)) € ZZ~".

Since FE is a lattice-based FE scheme in the sense of our framework, its encryption algorithm Enc is of-
fline/online of constant depth. It follows that Enc’ is of constant depth as well, since Enc’ first runs Enc

and then again evaluates () — 1 fixed polynomials sky,...,skg_1 € Z4[Y1,...,Y,,] of constant degree on the
output of Enc. Therefore, the depth of the online phase of Enc’ is bounded by the depth of Enc times the
maximum degree of sk, ..., skq.
Additionally, each ciphertext output by Enc’ is short, i.e.,
q
llet'l] o < '

To see this, note that the decryption algorithm of FE is given by Dec(sk,ct) = [sk(ct)-p/q]. Now for
i € [Q—1], we know that Dec(sk;, ct) must be zero, because sk; is a secret key for the zero function. It follows
that sk;(ct) - p/q must be rounded to zero in Z,, which implies that the absolute value of sk;(ct) cannot be
larger than ¢/p.

Ideally, it should be infeasible to extract the message x; out of ct’. However, since FE is function-
hiding and lattice-based, decryption with non-trivial success probability is possible. In fact, the distributions
KeyGen(msk, 0) and KeyGen(msk, f) must look indistinguishable for a PPT adversary. If @ is large enough,
one can show that the polynomial skg must lie in the span of the polynomials sky, ..., skg_1 with probability
1 —o0(1), i.e., for Q € poly()) large enough, we have that

Pr skg € span;, {ski,...,skg_ }>1701.
ski,...,skg_ 14— KeyGen(msk,0) Q P Zq{ b 2re 1} - ( )
sk <—KeyGen(msk, f)

This phenomenon gives rise to the following decryption algorithm Dec’ for SKE':

Dec’: On input msk’ = (msk,sky,...,skg) and a ciphertext ct’ = (c1,...,co-1) € Z?il, Dec’ checks if skg €
spang, {ski,...,skg—1}. If so, Dec’ computes scalars o, . . ., ag_1 8.t. skg = a1 -sky +...+ag_1-skg_1,
otherwise Dec’ aborts. Dec’ can now reconstruct skg(ct) by computing

sko(ct) = (a1 - sk +... + ag—1 - skg_1)(ct)
=qy -sky(ct) +...+ ag-1 - SkQ_l(Ct)
=+ ... Fago1-CQ-1-

Given skg(ct), Dec’ can now output

Dec(skg, ct) = [skg(ct) - p/q| € Z,, .



Assuming that FE is correct, the probability of Dec’ to return the correct message is at least 1 — o(1).
In summary, by assuming a lattice-based correct function-hiding FE scheme FE, we can construct an
SKE scheme SKE" = (Setup’, Enc’, Dec’) with the following properties:

— Enc’ encrypts messages in Z, and is of constant depth.

Each ciphertext output by Enc’ is short, i.e., lies in [—q/p, q¢/p]9~".

The probability of Dec’ decrypting correctly is at least 1 — o(1).

— Additionally, if FE is selectively IND-CPA secure, it can be shown—by a direct reduction—that SKE’ is
selectively IND-CPA secure, too.

The key observation of [Una20] is that such a secret-key encryption scheme cannot exist, if ¢/p € poly(\).
In fact, the following result has been proven:

Theorem 2 ([Una20] (Informal Corollary 3)). Let SKE be a secret-key encryption scheme of depth
d € O(1) (with prime modulus q). Let B € poly(\) s.t. ¢/B is larger than some constant and assume that
each ciphertext of SKE lies in [—B, B]97L. Let {0,...,2d} be the message space of SKE.

SKE is selectively IND-CPA secure iff the statistical distance of the distributions (msk, Enc(msk,x)) and
(msk, Enc(msk, y)) is negligible for each pair of messages x,y € {0,...,2d}.

This yields a contradiction to the scheme SKE’ we constructed, because Dec’ cannot have a high decryption
advantage when ciphertexts ct/, - Enc’(msk, ) and ct], + Enc’(msk,y) are statistically close to each other.

It follows that one of the premises must have been wrong. Hence, if FE is lattice-based, correct and
function-hiding, it cannot be selectively IND-CPA secure.

Generalization. In the following, we generalize the previous strategy to show lower bounds for arbi-
trary lattice-based FE schemes. We follow the idea to construct a special secret-key encryption scheme
SKE” = (Setup”,Enc”, Dec”) from a given lattice-based FE scheme FE = (Setup, KeyGen, Enc, Dec). Since
FE is lattice-based and correct, SKE” will have an encryption algorithm of constant depth and short ci-
phertexts. Furthermore, if FE is selectively IND-CPA secure, then SKE” is as well (by a direct reduction).
By Theorem 2, it follows that Dec” can have no meaningful success at decrypting ciphertexts of SKE”. A
contradiction to the security of FE now follows if we can show that Dec” must have a non-trivial success
probability at decryption.
Concretely, SKE” is given by the following algorithms:

Setup”: Let F denote the space of functions supported by FE. On input 1*, Setup” chooses @ functions fi, ..., fo
from F. Additionally, it chooses an index i, € [Q] and a degree-1 function v;, : Z, — Z; s.t. we have for
each z; € Zy,

filvi,(z1)) =0 for all i # i, but fi. (v (z1)) = z1.

Then, Setup” samples msk < Setup(1*) and sk; + KeyGen(msk, f;) for i € [Q], and outputs

msk” := (msk, skq, ..., skq, Vi, , ix).
Enc”: Given msk” and ;1 € Z,, Enc” computes ct «— Enc(msk, v;, (z1)). It applies the polynomials sky, . .., sk;, _1,
0,ski,+1,-..,5kg at ct and returns
ct” = (sky(ct),...,ski, —1(ct),0,sk; 1(ct), ..., skq(ct)) € ZE.
Dec”: On input msk” and ct” = (cy,...,cq), Dec” computes the set

S = {sk, () | w € Z7" Vi # iy: ski(w) =c;}. (1)
It chooses a uniformly random element sk;, (w) < S and outputs

[ski, (w) - p/q] = Dec(sk;,,w) € Z, .



Note that SKE” generalizes the ideas of SKE' and does not fully specify Setup”. In fact, the choice of the
functions fi,. .., fo in Setup” will depend on the concrete FE scheme. Similarly to SKE', SKE” is of constant
depth if FE is lattice-based. Moreover, it has short ciphertexts if FE is lattice-based and correct, and SKE”
is selectively IND-CPA secure if FE is so. We show these properties in detail in the proof of Lemma 2.

Because of Theorem 2, we know that SKE” cannot be correct if FE is lattice-based, correct and selectively
IND-CPA secure. However, in the case of a function-hiding FE scheme, it can be shown that Dec” has a
high probability to correctly decrypt ciphertexts. The idea in this text is to prove that Dec” also has a high
success probability at decryption in the case of compact FE schemes. However, as it turns out, grasping and
using the compactness property of a lattice-based FE scheme is more complex than using the function-hiding
property and requires a more algebraic approach.

Compact Case. In the following, we outline our strategy for the case of (relaxed) compact FE and sketch
a proof attempt to show why Dec”’—intuitively—has a non-trivial advantage at decrypting compact cipher-
texts. However, as we explain later, this proof attempt has some gaps. In this work, we fill these gaps in the
case of linear compactness and minimal decryption depth.

First, we give an informal definition of compactness (resp. succinctness):

Definition 2. Let FE = (Setup, KeyGen, Enc,Dec) be an FE scheme with ciphertexts in Z;' and message
space ZZ for polynomials of degree d. We call FE relaxed compact if there is a constant e > 0 s.t.

m € O(n?=°).

In other words, we demand that ciphertexts are by a polynomial amount smaller than encrypting the re-
linearization %% of a message = € Z, and using an IPFE scheme. In the literature, there are different
definitions of compactness and succinctness (cf. [BV15; AJ15; KNT18; AV19]). We note that Definition 2 is
comparatively weaker and is implicitly fulfilled by the notions of the aforementioned works.

Now, let FE = (Setup, KeyGen, Enc, Dec) be a compact lattice-based FE scheme that supports the evalu-
ation of quadratic polynomials, i.e., the function space of FE is given by

F={f€LpXs,....X;] | deg f <2},

while its message space is Zg. Compactness now states that we have m € O(n?~¢) for a constant e > 0.
This implies that the number of coordinates of a ciphertext of FE is significantly smaller than the number
of secret keys for linearly independent functions of F. Our idea is to combine this together with a result of
[Una23] to achieve a non-trivial success probability at decryption.

First, we will specify how Setup” chooses the functions fi,..., fo € F, the index i, € [Q] and the function
Vi, Lp — Z;. Setup” enumerates all pairs (a,b) with 1 < a < b < n and indexes them by

(ailvbil)a ) (aigvbiQ),

for Q := (Z) = "2;”. For i € [Q), it sets f; to be the monomial of the a;-th and b;-th variable, i.e.,

fi(le Ce 7Xn> = Xai . Xbi e F.
It draws i, < [@] uniformly at random and sets v;, to be the affine linear map
|2 Zp — ZZ
T2 €q,, +e€p,,,

where e,, and e, denote the a; -th and b; -th unit vectors. More precisely, the vector v; (x) has the value
x at position a,_, 1 at position b;, and 0 at every other position. It now follows for all ¢ € [Q] and = € Zj,

x, if i =i,

filvi.(2)) = {0 if i i,.



To prove that Dec” has non-trivial advantage at decryption when receiving msk” and a ciphertext ct”, we
need to show that the set S computed by Dec” in Equation (1) is small. Let ct” := (sky(ct), ..., sk;, _1(ct),0,
ski, +1(ct), ..., skg(ct)) for some ct < Enc(msk”,v;, (z)). Then, S must contain the correct value sk;, (ct) be-
sides other values sk;, (w). Algebraically, showing that S is small boils down to the problem of polynomial pre-
diction: we do not know ct, but we know its evaluations sk;(ct) for many polynomials sky, ..., sk;, —1,5K;, +1,-- -,
skg € Z4[Y1,. .., Y] of constant degree. Therefore, we can substantially bound the number of possible values
of sk;, (ct). We illustrate this idea with a toy example:

Ezample 1. In our toy example, we assume that ciphertexts of FE have two coordinates ct = (cq, ¢z). Fur-
thermore, assume that i, = 3 and that the first three secret keys are given by

ski(Y1,Y2) = Y1 + Yo, sko(Yy,V2) = Y2, sks(Y1,Ya) =Y € Z,[V1, Yal.

Now, when we are given a ciphertext ct”” of SKE”, the values a := sky(ct) = ¢; + co and b := ska(ct) = ¢3 are

fixed. In this situation, can we limit the number of possible values of sks(ct)?
The answer turns out to be yes. Indeed, set h(T1, T, T3) := (T1 — T3)? — Ty = T2 — 2T, T3 — Ty + T4 and
note that we have

h(Skl(Yla}/2)7Sk2(Y17Y2)7Sk3(}/1a)/2)) =0. (2)
Now, if we plug in the values a,b € Z,, we get the univariate degree-2 polynomial
h(Skl(Ct), SkQ(Ct), Tg) = h(a, b, Tg) = T32 —2a-T3 + a® —b.

Because of Equation (2), we know that h(skj(ct), ske(ct), T3) must vanish at sks(ct). In fact, skz(ct) is a root
of h(a,b,T5) and S is contained in the set of points where h(a,b,T3) vanishes. Since h(a,b,T3) is of degree
2, there are at most 2 possible values for sks(ct). Hence, the probability of Dec” to draw the correct value
sks(ct) from S and decrypting correctly is at least 1/2, which is noticeably larger than 1/p.

In general, the polynomials sk, . .., skg are of some constant degree, let’s say d € O(1), and their number
Q = (3) € 2(n?) is substantially larger than the number of coordinates m € O(n*~¢) of a ciphertext ct of

FE. It has been shown in [Una23| that in such cases there exists a polynomial h of sublinear degree that
algebraically relates the polynomials sk, ..., ske:

Theorem 3 (Adapted from [Una23]). Let Q € 2(n%) and m € O(n%=°) for a constant e > 0. Let
91,590 € Zy|Y1, ..., Y] be of degree d € O(1).
Then, there exists a polynomial h € Zy[T1, ..., Tg| with the following properties:

Ty, ..., To) #0,
hgr(Yi, .o, Yon), oo 9@(Y1, -, Yin)) =0,
degh € O(m!'~ @@ D) = O(nb—" 7).

Given this polynomial h, we can show that each element of the set S computed by Dec” in Equation (1)
must be a root of the polynomial

h(ski(ct),...,ski, —1(ct), Ti, ski 1(ct), ... skq(ct)) € Zg[T,]. (3)

Hence, the size of S is bounded by degh € O(n?>~¢~¢/(4=1)), Therefore, the success probability of Dec” to
decrypt correctly is at least n¢te/(@=1D=2 which is significantly larger than the trivial success probability
1/p, if p € w(n?=e—¢/(@=1),

The above reasoning illustrates how we can use the compactness of FE to construct a correct and secure
SKE scheme SKE” with special properties to ultimately derive a contradiction to Theorem 2 and an attack
on the security of FE. However, there is one gap that needs to be adressed: what happens if the univariate
polynomial in Equation (3) is zero? In this case, the size of S does not need to be bounded by degh and S



could contain each element of Z,. Now, what happens if the polynomial in Equation (3) is zero for almost
all ciphertexts generated by ct «+— Enc(msk, v;, ())? In this case, we cannot guarantee a non-trivial success
probability for Dec”. Subsequently, SKE” is not sufficiently correct, and we fail to reach a contradiction with
Theorem 2.

In an attempt to fix this problem, one can consider the coefficients of the polynomial in Equation (3).
Each coefficient is computed by a polynomial in the variables T1,...,7;, —1, T3, +1,. .., Ty of lower degree.
Concretely, we have

degh
h(Tla"'aTm) = Z hj(Tla"'aTi**l»zji*%*la"'aTm) 'Tij*v
§=0
for fitting polynomials ho, ..., haegn € Zg[Th, ..., Ti.—1,Ti 41, ..., Tim] of sublinear degree. We can assume

that the highest degree coefficient hqeg s is non-zero. If the polynomial in Equation (3) is almost always zero
for ct < Enc(msk, v;, (2)), it follows that hqegn will almost always vanish on ct, and we could replace h with
its coefficient hqeg - If haegn, does always vanish on skq(ct), ..., sk;, _1(ct), sk;, +1(ct),...,skg(ct), but does
not become zero when we plug in sk (ct), ..., sk;, _1(ct), sk;, 41(ct), ..., skg_1(ct), we could use it to bound
the number of possible values of skg(ct) while fixing the values of skq(ct),...,skg_1(ct). However, skg(ct)
will not be of great help to us if ct encrypts v;, (z), since we have Dec(skg,ct) = fo(vi, (z)) = 0. In fact,
we need that hgegn behaves well for the different distribution Enc(msk,vg(x)) of ciphertexts. This yields a
problem: it may happen that hqegn(ski(ct), ..., sk;, —i(ct),sk;, +1(ct),...,sko_1(ct)) is always zero when we
sample ct < Enc(msk, v;, (z)), but does not become zero when ct encrypts a useful message and is sampled
from Enc(msk, vg(x)).

Linear Compactness and Secret Keys of Minimal Degree. To solve the above problem, we need that
some kind of homogeneity among the ciphertexts of FE for different messages does hold. In particular, we
need that whenever a polynomial g vanishes with overwhelming probability on the distribution Enc(msk, x),
for some x € ZZ7 then for each y € ZZ, g vanishes with overwhelming probability on the distribution
Enc(msk, y). However, we can show this kind of homogeneity only in cases where g has a constant degree.
Now, the algebraic relationship h is of degree O(ng_e_e/ (d=1)) according to Theorem 3, where e > 0
describes the compactness of ciphertexts and d the degree of secret keys. If our ciphertexts are linearly
compact, i.e., m € O(n), then e equals 1. Furthermore, if our secret keys are of minimal degree d = 2, then
h is of constant degree O(n?~¢~¢/(@=1)) = O(n®) = O(1), and we can guarantee some kind of homogeneity
among the ciphertexts for h. Now, the insecurity of FE follows. In Section 4, we will generalize this result for
FE schemes for polynomials of degree d > 1 with linear compactness m € O(n) and secret keys of degree d.

2 Preliminaries

Notation.. In this text, we always denote the security parameter by A € N = {1,2,...}, by which each
scheme and adversary is parametrized. For n € N; set [n] = {1,2,...,n}. Define

poly(\) :={f: N— N | 3d e N: f(A\) e O(\")},

negl(\) := {g: N =R |VdeN: limsupe(\) -\ = o.} :
A—00
In this text, we will work with two moduli p, g > 2 s.t. ¢ is always prime and we always have 2p < ¢q. We will
identify the finite field with the corresponding sets of integers centered around zero, Z, = {%"'H R ‘7;—1}7
and embed Z,, into Z, as the non-negative numbers Z, = {0,...,p — 1} C Z,.
For two distributions A, B with the same support S, we define their statistical distance by

1
A(A,B) := B Z aErA[a =s]— bEl;B[b = 9]
ses

We will denote by V., resp. Jo, the quantifiers for almost all and for infinitely many.
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Lemma 1 (Simplified from [Una23]). Let k be a field. Let d > 1 be a constant and let Q € 2(m%).
There is a constant degree bound D € O(1) s.t. for each list of polynomials f1,...,fo € k[Y1,...,Yn] of
degree d there is one polynomial h € k[T1,...,Tg] s.t.

h #0, degh < D, and h(f1(Y),..., fo(Y)) =0.

2.1 Functional Encryption

Definition 3. Let X = (X)) be a family of sets. We call X a message space or value space if there is
an s € poly(A) s.t. each xx € X has a binary representation of size #xx < s(A). A subspace XCXisa
family of sets X = (fA))\ s.t. Xy C X, for all X. X is called poly-size if we have # X € poly(\) and there
is a poly-time algorithm that on input 1* can enumerate X y.

If X = (X)) is a message space and Y = (V) is a value space, we call F = (Fy)a a function space
if each f\ € Fy is a function of type fr: Xx — YV and if there is an s € poly(\) s.t. each fx € Fx has a
binary representation of size #fx < s(\). In this case, we will write F: X — Y.

Definition 4 (Functional Encryption). A (secret-key) functional encryption (FE) scheme for the
function space F: X — Y is a tuple of four algorithms FE = (Setup, KeyGen, Enc, Dec) that are described as
follows:

Setup: On input a (unary encoded) security parameter 1*, it outputs a master secret key msk.

KeyGen: On input a master secret key msk and a description of a function f in the function space F of FE,
it outpuls a secret key sky for f € F.

Enc: On input a master secret key msk and a message x € Xy, it outputs a ciphertext ct, of .

Dec: On input a secret key sky and a ciphertest ct,, it outputs a value y € V.

We call FE correct, if there is an € € negl(\) s.t. we have for all (fa)x € F and (zx)xn € X that
Pr[Dec(sky,ct,) # fa(zn)] < e(N), where we sample msk < Setup(1*), sky <+ KeyGen(msk, 1) and ct, <+
Enc(msk, x,).

Definition 5 (Selective IND-CPA Security). Let FE = (Setup, KeyGen, Enc,Dec) be an FE scheme
for a functionality F: X — Y. We define the selective IND-CPA security game of FE as an experiment

ExpiF"g:;pa(/\,f) between an adversary A and a challenger C that proceeds in the following steps:

,—‘ Experiment Expggj’a()\, F) I

1. A computes two lists of candidate messages (x2,...,2%), (z1,...,2k) € XY and o lst of functions
(f1,..., fq) € ]—"?, and submits all three lists to the challenger C.

2. C draws a random bit b < {0,1}, computes msk < Setup(1*) and

ct; + Enc(msk, :Cf) fori=1,...,N,
sk; « KeyGen(msk, f;) forj=1,...,Q.

C sends the lists (ct1,...,ctn) and (ski,...,skq) to A.
3. A outputs a guess bit b'.
4. Ifb="b" and for each i € [N] and j € [Q)]

then the experiment outputs 1, else 0.

For a fized algorithm A and an FE scheme FE, the advantage of A is defined” by
AQVEE D™ (A F) =2+ Pr [Bxpfe (0, F) = 1] — 1.

" Note that we allow the advantage of A to be negative. This may seem strange, however, this notion of advantage
is linear, i.e., we may condition and partition A’s advantage on different events.
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We call FE selectively IND-CPA secure if any PPT adversary A has negligible advantage in the above
game.

2.2 Lattice-Based Encryption Algorithms

In the following, we will recapitulate the definition of offfine/online encryption of constant depth that has
been introduced in [Una20]. This notion allows the master secret key to have a computationally unbounded
influence on the computed ciphertext as long as the message only influences the ciphertext polynomially:

Definition 6. Let FE = (Setup, KeyGen, Enc, Dec) be an FE scheme with message space X = Z,. Further-
more, let ¢ = q(\) be a prime s.t. each ciphertext output by Enc is a vector in Z;".

Let d € N be a constant. We say that Enc is of depth d if there is an off-line algorithm Enceg that on
input msk outputs m polynomials r1,...,7m € Zg[X1,...,Xy] of degree < d s.t. the following distributions
are identical for each msk < Setup(1*) and = € Zy:

{(r1(z),...,rm()) | (r1,...,7m) < Encor(msk)} and {ct | ct + Enc(msk,x)}.

Note that we do not impose any bounds on the computational complexity of Ences.

In other words, an encryption algorithm of constant depth works in two phases. In an offline phase, it first
sees the secret key, but does not get to know the message that is to be encrypted. It can then use any
amount of time to compute polynomially bounded randomness for the second step. In the online phase, the
algorithm gets the randommness from the first phase and sees the message. It must now compute each entry
of the ciphertext vector in an arithmetically very simple way, i.e., by applying constant degree polynomials
over the randomness from the offline phase and the coordinates of the message vector.

Since we want to build upon the results of [UnaZO], we also need to introduce the notion of encryption
of polynomial width.

Definition 7. Let Enc be an encryption algorithm that outputs vectors in Z;". We say that Enc is of width
B = B()\) < q/2 if there is an € € negl(A\) s.t. we have for each (zx)x € X

Pr et > B] < =(),
msk+<—Setup(1*)
ct«Enc(msk,z )

where ||ct|| is defined as the largest absolute value among entries of ct € {_q;217 e q;21}m =17y

When we speak of lattice-based FE schemes, we will make the same restrictions on FE schemes that have
been made in [Una20|:

Definition 8 (Lattice-Based FE Scheme). Let FE = (Setup, KeyGen, Enc, Dec) be an FE scheme. Let
q be a prime and n,m € poly(\). Let di,ds € N be constants. We call FE lattice-based if the following
conditions are met:

1. The message space of FE is X = Z;’,

2. Each ciphertext of FE is an element of Z," for prime q.

3. Enc is of depth d;.

4. FEach secret key output by KeyGen is a polynomial in Zy[Zn, ..., Zy] of total degree < dg, i.e., each secret
key can be written as a linear combination of monomials containing at most ds (not necessarily different)
Z-variables.

5. We have p < q and the decryption algorithm Dec works as follows:

Dec(sk, ct) = [sk(ct) -p/q] € Z,.
We call di the encryption depth and ds the decryption depth of FE.

Definition 9. We call FE = (Setup, KeyGen, Enc, Dec) (linearly) compact if the dimension of ciphertexts
is linear in the message length, i.e., m € O(n).

12



2.3 Secret-Key Encryption

We will define here secret-key encryption schemes as a special case of functional encryption schemes where
the function spaces only contain the identity function.

Definition 10 (Secret-Key Encryption). A secret-key encryption (SKE) scheme is an FE scheme
SKE = (Setup, KeyGen, Enc, Dec) for a function space F, where each Fy only contains the identity function
id: X)\ — X)\.

For an SKE scheme SKE = (Setup, KeyGen, Enc, Dec), we will always assume that the master secret key
msk and the derived key skiq of the identity are identical and that KeyGen(msk,id) will always output msk.
Subsequently, we will omit the algorithm KeyGen from the list of algorithms, i.e., SKE = (Setup, Enc, Dec).

For convenience, we also introduce the notion of partial secret-key encryption schemes. A partial SKE is
essentially a normal SKE without a decryption algorithm.

Definition 11 (Partial Secret-Key Encryption). A partial secret-key encryption scheme SKE =
(Setup, Enc, ) is a pair of algorithms Setup and Enc with a fitting message space X that adheres to the
syntax in Definition 4.

A fitting decryption algorithm for (Setup,Enc, ) is an algorithm Dec s.t. the tuple (Setup, Enc, Dec) is
an SKE in the sense of Definition 10.

Note that the notion of selective IND-CPA security in the sense of Definition 5 is well-defined for partial
SKEs. Additionally, the notions of bounded encryption depth and width in the sense of Definitions 6 and 7
are well-defined for partial SKEs.

3 General Approach

We present here a general approach for showing lower bounds of lattice-based FE schemes in the sense
of Definition 8. This approach generalizes the strategy of Unal [Una20] for function-hiding FE schemes and
will be applied by us again on compact FE schemes. The key element for showing IND-CPA insecurity
in [Una20] was the following theorem.

Theorem 4 ([Una20]). Let q be a prime, d be a constant and B € poly(\). Let M = M()\) € N be such
that M > 2d and c- M - B < q for some constant® ¢ € N that depends on d.

Let SKE = (Setup, Enc, ) be a partial SKE scheme with message space X := {0,..., M} s.t. Enc is of
depth d and width B. Then, the following are equivalent:

1. SKE is selectively IND-CPA secure against PPT adversaries.

2. SKE is selectively IND-CPA secure against unbounded adversaries (that get to know the secret key of
SKE).

3. For each polynomial v € poly()\) there is an e € negl(\) s.t. for msk < Setup(1?), it holds that

1
Pr |Va,y € Xy: A(Enc(msk, ), Enc(msk, y)) < =) >1—e(A).
4. There is an € € negl(X\) s.t. we have A(Cy, Cy) < e(A) for all x,y € X, where C, is the distribution that
computes msk < Setup(1*), ct,, < Enc(msk,zy) and outputs (msk, ct,).

In [Una20], only the equivalence of the first and third statement has been shown. However, it is easy to see
that the second and fourth statement are equivalent to the third statement.

Given a lattice-based FE scheme FE of encryption depth d; € O(1) and decryption depth dy € O(1), we
want to use Theorem 4 to deduce lower bounds for FE. Towards this end, we construct a partial SKE for
integer messages from FE as follows:

8 More precisely, we have that ¢ = 2(d 4 1)?(d!)3d? as shown in [Una20].
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Definition 12. Let FE = (Setup, KeyGen, Enc, Dec) be an FE scheme with functionality F: Z, — Z,. Let
M < p. We construct a partial SKE scheme SKE' = (Setup’,Enc’, ) with message space X' :={0,..., M}
with the following algorithms:

Setupp,.: There is a preceding setup algorithm that on input 1* chooses functions f1, ..., fo € F. Then, it chooses
an indez iy € [Q] and a degree-1 map

v: Ly — Ly,
s.t. we have for all x € Zy,

Vi # i fi(v(z)) =0,
fi.(v(z)) = .

It outputs (f1,-.., fo,V,ix).

Setup’ : On input 1*, Setup’ runs (f1,..., fQ,V,ix) < Setupp,(11).
Then, Setup’ computes msk <+ Setup(1*) and sk; <+ KeyGen(msk, f;) for i € [Q], and outputs the new
master secret key

msk’ := (msk, sk, . ..,skg, v, ix).

Enc’: On input msk’ := (msk,ski,...,skg, v, i.) and a message x € {0,..., M}, Enc’ runs ct, < Enc(msk,v(x))

and outputs the new ciphertext

/

cty := (ski(cty), ..., sks,—1(cty), 0,sk;, +1(cty), ..., sko(cty)).

We demand that Setupp,, can be computed by a PPT algorithm.

We now have the following result:

Lemma 2. In the scheme SKE' = (Setup’,Enc’, ) from Definition 12, Enc’ is of depth d; - da, if FE is
lattice-based with encryption depth di and decryption depth ds.

If FE is correct and lattice-based, then Enc’ is of width [q/p]|, and if FE is selectively IND-CPA secure,
then SKE’ is selectively IND-CPA secure.

Proof. 1. Let FE be lattice-based with encryption depth d; and decryption depth ds. Then, there is an

algorithm Ence that on input msk outputs m polynomials r1,...,7, € Zg[X1,...,X,] of degree < d;
s.t. Enc(msk, z) is equally distributed as (r1(z),...,rm(z)) for each x € Z,,.

We now define Encof’ as follows. On input msk’ := (msk,sky,...,skg, v, i), Encof’ first computes
(riy...,rm) < Encog(msk) and then returns the polynomials

Vi # i 7i(X) i=ski(r1(v(X)),...,rm(v(X))) € Z,[X],
r (X):=0
The degree of each sk;(r1 (¥(X)),...,rm(¥(X))) is bounded by d; - dy - 1, since each sk; is a polynomial
in Zg[Z1,...,Zy)] of degree < dy and v is an affine linear function, i.e., a degree-1 polynomial.
Moreover, for each z € {0,..., M} and msk’, the output of Enc'(msk’,z) is identically distributed as
(r1(@),...,rg(w)) for (r},...,75) < Encof’ (msk’).
2. Let FE be correct, i.e., there is an € € negl(\) s.t. for each (ga)x € F and (zx)x € X we have

Pr [Dec(sk,ct) = ga(zn)] > 1 —e(N).
msk+<—Setup(1*)
sk<—KeyGen(msk,gx)
ct<—Enc(msk,z )

Since FE is lattice-based, Dec works as Dec(sk, ct) = [sk(ct) - p/q].
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Assume, for the sake of contradiction, that Enc’ is not of width ¢/p. This implies that there is one A € N
and an 2’ € {0,...,M(N\)} s.t.

q

A)-e(N) < Pr ct'|| . > ]

Q( ) ( ) msk’ < Setup’ (1) |:|| HOO p
ct’«—Enc’(msk’,z")

= Pr [Hi # iy |ski(ct)] > q}
(F1,-eerfQ@syin ) Setupp (1) p
msk<—Setup(1*)
Vi: sk;<—KeyGen(msk, f;)
ct«Enc(msk,v(z"))
= Pr [Fi # i.: Dec(sky,ct) # 0= f;(v(z")].
(f1500,F Qw5 ) = Setupp (1)
msk<—Setup(1*)
Vi: sk;<KeyGen(msk, f;)
ct+Enc(msk,v(z"))

In particular, for this A € N, there exists a tuple (f1,..., fg,V, i) s.t.

Q) -e(N) < Pr [Fi # i : Dec(sks,ct) # fi(v(x'))]
msk+«Setup(1*)
Vi: sk;<KeyGen(msk,f;)
ct«Enc(msk,v(z"))

< Pr [Dec(sk;, ct) # fi(v(z))].
it msk+<—Setup(1*)
* sk, «—KeyGen(msk, f;)
ct<Enc(msk,v(z"))

Hence, there is one i € [Q)] s.t. Pr[Dec(sk;, ct) # fi(v(z'))] > e. This contradicts the correctness of FE.

Hence, our assumption must be wrong and Enc’ must be of width ¢/p.

. Let FE be selectively IND-CPA secure. We reduce the selective IND-CPA security of SKE' to the selective

IND-CPA security of FE by constructing a reduction that transforms a PPT adversary A’ against the

selective IND-CPA security of SKE to a PPT adversary A against the selective IND-CPA security of FE.

If A is an adversary against the selective IND-CPA security of SKE' and C’ is a challenger for the

selective IND-CPA security of FE, then A proceeds as follows:

(a) On input 1*, A computes (fi,. .., fo,V,is) < Setupp,(17).

(b) A runs A’(1}) to receive two lists (2}°,...,24°), (z}',...,2y") € {0,..., M}N of candidate mes-
sages.

(c) For each i € [N], € {0,1}, A sets 2 := v(z}’) € Zy".

(d) Asubmits the message lists (29, ...,2%), (z1,..., 2} ) and the function list (f1,..., fi.—1, fi.41s-- - fQ)
to C'. It receives secret keys sky, ..., sk, —1,8Ki, 1, . ., Skg for the functions f1,..., fi.—1, fi.+1,-- -, fo
and ciphertexts cty, ..., cty for %, ... ,ac’]’\, with an unknown b.

(e) For each i € [N], A computes

Ctg = (Skl(Cti), . 7ski*,1(cti), 0, Ski*+1(CtZ‘) e ,SkQ(CQ)),

and sends the list (ct,...,cthy) to A"
(f) A’ responds with a guess ¥’ € {0,1}. A forwards V' to C'. _
The view of A’ in the interaction with A is identical to its view in Expg‘lgg,pa. Furthermore, A wins exactly
iff A" wins. This is, because we have for all j € [N] and i # i,

Fi(29) = @) = 0= fiw(ah) = filz)).

In other words, A does not submit any combination of function and message pairs that would help it to
win trivially. Hence, A is a valid adversary in the selective IND-CPA security game of FE. In conclusion,
the advantage of A in the selective IND-CPA security game of FE is equal to the advantage of A’ in the
selective IND-CPA security game of SKE'.

Hence, the claims of the lemma are proven. O
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Corollary 1. Let FE be a lattice-based, correct and selectively IND-CPA secure FE scheme of constant
encryption depth dy € O(1) and decryption depth dy € O(1) s.t. the message space of FE is Z; and each
ciphertext of FE is a vector in Z;” for g > p > 2, where q is prime.

Let M € poly()\) and assume that we have q/p € poly(\), M > 2d; - dy and c- M4 % < p for some
constant ¢ that depends on dy - ds.

Let SKE' = (Setup’,Enc’, ) be the partial SKE scheme from Definition 12 that is constructed from FE
with message space {0,..., M}.

Then, there is no (computationally unbounded) algorithm Dec’ s.t. the scheme (Setup’, Enc’,Dec’) has a
non-negligible advantage at correctly decrypting ciphertexts, i.e., there is an € € negl(\) s.t. we have for each
Dec’,

Pr r=y] <

z+{0,...,M}, [ y < M+1
msk’ < Setup’ (1),
ct’<Enc’ (msk’,x),
y<—Dec’ (msk’,ct’)

+e(N).

Proof. Set X' :={0,..., M}. Because of Lemma 2, we can apply Theorem 4 on SKE'. Therefore, there is an
€ € negl(\) s.t. the distributions

(msk’,ct’)) with msk’ < Setup’(1%), ct,, + Enc’(msk’, z),

for all z € X, have negligible distance £(\) to each other. It follows that the distributions Dec’(msk’, ct’,), for
all x € X, are in statistically negligible distance to each other. In particular, there is a negligible ¢’ € negl(\)
s.t.

A(Dec(mski, ct,), Dec(mskj, cty ) < &, (4)

for all x,y € X\, where we sample msk’, msk, < Setup'(1*), ct/, +~ Enc’(msk}, z), ct;, « Enc’(msks, y).
Assume for the sake of contradiction, that there would be an r € poly(A) s.t.

1 1

Pr Dec’(msk’, ct’) = z] > +—, 5
w4 {0,..,M}=X", [Decl )=o)z #X, (N ®)
msk’ <Setup’ (1)
ct’<Enc’ (msk’,x)

for infinitely many A € N. For those A, we have, when we sample z + X\, msk’ < Setup’(1*),ct’
Enc(msk’, x),

Pr [Dec’(msk’, ct},) € X]
- Z Pr [Dec’(msk’, ctl,) = y]

yEX!
Equation (4)

> Z (Pr [Dec’(msk’, ct;)) = y] —£'(N))

yeX]
= —# X\ () + Pr [Dec'(msk’,ct)) = z|z =y
g 2 X
yeX’
— _ (M + ]_) . EI()\) + #XI)\ . Z 252; [Dec/(msk/,ct;) — Z|Z — y] . Zf‘/’l\;& [Z — y]

yeEX]

= -(M+1)- &N+ (M+1)- P;( [Dec’(msk’, ct’,) = 2]
2 X

Equation (5)
& 1 M+1

> +W_(M"‘1)-€’(}\)_
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However, 1 4+ 1\7{1&-)1 — (M 4+ 1)&’(A\) becomes larger than 1 for €’(\) small enough. Hence, we reach a contra-

diction. O

4 Lower Bounds for Compact Functional Encryption

In this section we prove the main result of this paper. Towards this end, we introduce the space of d-
linear functions over Z,. A function f: (Z;)* — Zj, is called d-linear iff, for vectors of variables X 1) =
(X{1)7...,X,(Zl)), sy, X@ = (de),...,X,(Ld)), the expression f(X™M ... X(@) is linear in X® for each
i € [d]. Equivalently, one can require that f(X™ ... X)) is given by ¢(X® @ --- @ X(@), for a linear
function ¢, where ® denotes the Kronecker product.

In the following, we consider the functionality F: X — Y of d-linear functions, where the message space
is X = Zixn and the value space is Y = Z,,.

Theorem 5. Let d > 1 be a constant and g > p > 2 with q prime. Let Q = n, m € O(n) and let D € O(1)
be the constant from Lemma 1.
Let FE = (Setup, KeyGen, Enc, Dec) be a lattice-based FE for the functionality F s.t. we have:

1. FE is compact, i.e., the dimension m € O(n) of ciphertexts is linear.
2. The decryption depth of FE is d.
3. We have

q/p € poly(\) and ¢ (max{2d; -d+1,2D + 1})%¢ < p,
where dy denotes the encryption depth of FE and c is the constant from Theorem 4.
If FE is correct, then FE is not selectively IND-CPA secure.

Remark 1. We remark two things about the requirements of Theorem 5:

1. We do not specify if there is an arithmetic reduction modulo p when evaluating the polynomials in
F C Zy [X(l), e 7X(d)} on messages. In fact, this is irrelevant for our proof, since it will only consider

monomial functions Xi(ll) - -Xi(;i) € F. Furthermore, at most one entry of each message vector that our
adversary considers will not lie in {0, 1}. Hence, evaluations f(z) will never exceed p.

2. The space of d-linear functions is contained in the space of degree-d polynomials. Hence, any compact
FE scheme with decryption depth d for degree-d polynomials implies a compact FE scheme for d-linear
functions with the same decryption depth d.

Our proof idea for Theorem 5 is to assume that FE is secure, and then, to use Corollary 1 to deduce a
contradiction. Set M = max{2D + 1,2d; -d + 1} and let X" := {0,..., M} be the message space of a new
SKE scheme SKE’ that we will construct in the following according to Definition 12. Towards this end, we
define the following Setupp,, algorithm for the FE scheme in Theorem 5:

Setupp,.: On input 1%, Setupp,, sets Q@ = n? and fixes deterministically an enumeration o, ... ,og of [n). For
each tuple of indices a; = (@i 1,...,;q) € [n]?, it sets

fi(x® X@y.=xM ... xd
b = Xa.

Qiqd’

Additionally, it draws i, < [Q] uniformly at random and sets (cu.1,...,04q) 1= s = a;, € [n]%
Furthermore, it sets

. dxn
v: Ly — Zp
z ? (x'eoz*,uea*,za"wea*‘d)a

where e; denotes the j-th unit vector in Z; for j € [n]. It outputs f1,..., fo, v and i.. Note that we
have for all x € Z,,

Vi # i fi(v(z))

0,
fi.(v(@)) =2
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Given Setupp,., we can define the partial SKE scheme SKE' = (Setup’,Enc’, ) as in Definition 12. To
prove Theorem 5, we assume that FE is selectively IND-CPA secure. Subsequently, we construct a fitting
decryption algorithm Dec’ that has a non-negligible advantage at decrypting ciphertexts of SKE’. This in turn
yields a contradiction to Corollary 1, thereby, proving that FE cannot be secure. To construct Dec’, we first
derandomize the key generation algorithm KeyGen of FE, i.e., we can assume—without loss of generality—
that KeyGen is a deterministic algorithm. In fact, if KeyGen is probabilistic, we can distinguish two cases:
first, if one-way functions (OWFs) do not exist, then in particular IND-CPA secure SKEs cannot exist, and
hence, FE cannot be IND-CPA secure. Second, if OWFs do exist, we can construct secure pseudorandom
functions (PRFs) out of them. Using a PRF PRF, we can derandomize KeyGen as follows: we change Setup
s.t. it additionally samples a random key k for PRF and adds it to the output master secret key msk. Then,
KeyGen on input msk and f € F, does not generate new random coins, instead it evaluates PRF on &k and a
description of f and uses the output of PRF(k, f) as bits for its random tape.

To continue the proof, we will now show some necessary properties of FE:

Lemma 3. There is a constant D € O(1) s.t. for each master secret key msk’ = (msk,sky,...,skg, Vi)
output by Setup’, there exists a polynomial hye € Zg[Th, ..., Tg] with the following properties:

hmsk # 0 € Zq[Tl,...,TQ}7
hmsk(sk1, ..., skg) =0 € Zg[Y1,...,Yn],
deg hmek < D. (

—_~
0 g O
o — T

Furthermore, hme only depends on msk.

Proof. Since @ = n? and m = O(n), we have Q € £2(m?). Moreover, Theorem 5 requires each secret key sk;
to be a polynomial over Z, of degree d. Lemma 1 now implies that there is a constant D such that for each

collection of degree-d polynomials ski, ... ,skg € Z4[Y1,...,Y,,] there exists an algebraic relationship A that
fulfills the requirements in Equations (6) to (8).
Now, fix some msk. Since Setupp,. chooses the functions f1,..., fo deterministically and since we can

assume that KeyGen is derandomized, the secret keys sk <— KeyGen(msk, f1),..., skg < KeyGen(msk, fg)
only depend on msk. Since the algebraic relationship h only depends on ¢ and ski,...,skq, it follows that
each choice of msk determines a relationship hme of degree < D. O

Note that Amsk(ski(Y),. .., sk, (Y")) is the zero polynomial of Z,[Y1, ..., Y;,], which vanishes on each cipher-
text of FE. If we choose hmsk of minimal degree, we know that hmsk (T1,sk2(Y), ..., skn (Y)) € Z4[11,Y3, ..., Y,]
cannot be zero. However, it may happen that hnek (11, ska(Y), ..., sk, (Y")) vanishes on almost all ciphertexts
of FE. For our decryption algorithm Dec’, it will be important that we have for ct < Enc(msk, r),

Pr [hmsk(T1, - -, Ti, —1, 5k, (ct), sk, 41(ct), . .., skpy(ct)) = 0] € 1 — negl(A),

Pr [hmsk(le-wT;*fla T; 7Ski*+1(ct),...7skm(ct)) 7& 0] ¢ negl()\)
Because, if there is a ciphertext ct € Z;" St hmsk (T, .o, Ty, —1,5ky, (ct), ..., sky(ct)) = 0, but hpek (11, - - -, T3, ,
ski,+1(ct),...,skn(ct)) # 0, then sk;, (ct) is a root of the polynomial hpme (T4, . . ., Ti, , ski, +1(ct), . . ., skp(ct)),
which we consider as a univariate polynomial with coeflicients in Z,[T1,...,T;,—1] and unknown T;,. Since
this polynomial is non-zero, it has at most deghms < D different roots. In such cases, Dec’ can limit the

number of potential values for f; (z) to D, which gives Dec’ a non-negligible advantage at decryption. To
make these ideas concrete, let us introduce some technicalities.

Lemma 4. There exists a map Z: N — P(N) s.t.
YAeN: I(\) C[Q(N)] and #I()) = D.

Additionally, the probability when we sample msk < Setup(1*) that hmsk contains non-trivially a monomial
T;, -+ Ti,, for some D' < D withiy,...,ip € I(\) is larger than Q(\)~P.
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Proof. For each msk, hmsk must be a non-zero polynomial in Z,[T1, . .., Tg] of degree < D. Since Z,[T1, . .., Tg)
contains (QBD ) < QP monomials of degree < D, there must exist one monomial Ty T, for each A € N
s.t.

Pr [h contains T;, ~~ED,] >Q P,

msk<—Setup(1?)
Hence, we can choose Z(A) s.t. it contains i,...,ips. O

By permuting the indices 1,...,Q(X) for each A € N, we can enforce that the set Z(\) will be {1,...,D}
for each A. This is simply a relabelling of indices that does not change the algorithms Setup and Setup’, but
reduces some notations in the following.

We will call a master secret key msk good, if hmsk contains non-trivially a monomial T3, ---T; , with
i1,...,ipr € Z(A\) ={1,..., D}, and we will call msk bad, otherwise. Denote by Setupgood(lk) the distribution
of Setup(1*) conditioned on the output msk being good. For Setupgoeqs We have the following:

Theorem 6. For u,n € N, set B, := {e;-v | i€ [n],v€{0,...,u}} C Z, where e; denotes the i-th unit
vector. Consider the poly-size subspace

X =EyxFE x...xE C(Zg)d.
For \eN, z € X, andi € {1,...,D + 1}, set
pA(’L',LI}) = Pr [hmsk<Tla . ,Ti_l,Ski(Ct), . ,SkQ(Ct)) = O] .

msk<—Setupy,o4(1 )
ct«Enc(msk,z)

There is an index iy € [D] and functions € € negl(\), p ¢ negl(\),p > 0 s.t. we have for all X € N and
T € Xy,

p)\(iT,I) Z 1 75()\),
iy, ) — paliy + 1,2) > p(N).

Since the proof of Theorem 6 is very technical and requires a lot of lemmata, we defer it to Section 5.
Theorem 6 guarantees some homogeneity among ciphertexts of different messages. In particular, it states
that the polynomial Amek (71, ..., Ti; —1,5ki, (ct),. .., skg(ct)) will almost always vanish on a ciphertext ct «
Enc(msk, z), for any message x € X, while the polynomial Ame(T1, . . ., Ti;, ski;y1(ct), ..., skg(ct)) (in which
the variable T}, remains unsubstituted) will with non-negligible probability not vanish.

Proof (Theorem 5). Assume, for the sake of contradiction, that FE is selectively IND-CPA secure. If that was
the case, then SKE” would be selectively IND-CPA secure as well. We lead this assumption to a contradiction
by constructing a (computationally unbounded) decryption algorithm Dec’ for SKE’ that has a non-negligible
advantage at decrypting correctly, i.e., there is a p’'(\) ¢ negl()) s.t.

1
Pr =y >
2’ «{0,....M}, [ vl= M+1
msk’ < Setup’ (1),
ct’<Enc’ (msk’,z"),
y’ +Dec’ (msk’ ct’)

+p'(N).

This directly contradicts Corollary 1 and proves that the assumption is wrong. Hence, FE must be insecure.
First, we sketch the strategy of Dec’. Towards this end, let msk’ = (msk, ski, .. .,skg, v,4.) + Setup’(1*),

x' € X' and ct < Enc(msk,v(z')). Then, a ciphertext ct’ := (c1,...,cq) < Enc’(msk’,2’) is given by
ski(ct), if @ #£ iy,
G = e
0, if 7 =1,.

On input (msk’, ct’), Dec’ proceeds as follows:
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. Dec’ checks if msk is good. If msk is bad, Dec’ terminates by outputting a uniformly random element of
X' :=10,...,M}.

. Dec’ computes i+ € [D] from Theorem 6. If it # i, Dec’ terminates by outputting a uniformly random
element of X' :={0,..., M}.

. Dec’ computes the set

A(msk) :={w € Z" | hms (T, ..., Ty, 1,5k, (w), ..., skg(w)) = 0} .

According to Theorem 6, the original ciphertext ct of Enc(msk, v(z’)) lies in A(msk) with overwhelming
probability py(i+,z’) > 1 — e(\). However, since Dec’ does not know ct, it cannot check if ct lies in
A(msk). Hence, Dec assumes from here on that ct lies in A(msk).

. Dec’ computes the subset

B(msk) := {w € A(msk) | Amek(T1, ..., T;,,ski,+1(w), ..., skg(w)) # 0} .

Again, according to Theorem 6, ct lies with non-negligible probability 1 —py(i++1,2") > p(A) in B(msk).
Under the assumption that ct lies in A(msk), Dec’ can now check if ct lies in B(msk). If ct does not lie
in B(msk), Dec’ outputs a uniformly random element of &’ and stops.

. At this point, Dec’ knows that ct lies in B(msk) and can compute the set

S(msk,ct’) := {sk;, (w) | w € B(msk),Vi # i,: sk;(w) = sk;(ct)}.

It is clear that S(msk, ct’) must contain sk;, (ct). We will show that S(msk, ct’) contains at most deg Amsk <
D < M/2 different values. Dec’ chooses a uniformly random value sk;, (w) from S(msk, ct’) and outputs

[ski*(w) . pJ = Dec(sk;,,w) € Z, .
q

Let y' be the value output by Dec’(msk’, ct’). Since Dec’ outputs a uniformly random element of {0, ..., M}
whenever msk is bad or 7. # i;, it suffices to lower-bound the probability of Dec’ to return the correct
message 2’ in the case where msk is good and i, = i+ (both events will happen with non-negligible probability
> @Q~P~1). In this case, we have

Prly' =2'| >Prly =2’ | ct € A(msk)] - Pr[ct € A(msk)]
+Prly =12’ | ct ¢ A(msk)] - Prict ¢ A(msk)]
>Prly =2’ | ct € A(msk)] - (1 —e(N))
>Pry =2’ | ct € A(msk)] —e(N)
>Pr[y =2 |ct € B(msk)] - p()\)
+Pr[y =2’ | ct € A(msk) \ B(msk)] - (1 — p(\)) —e(X\)

> Prfy =o' ct€ Blmsk)] - p(A) + 31— - (1 = p(V) ()
> 2 g+ gy a0 e 2 AV L

This yields a contradiction with the statement of Corollary 1.

What remains is to show that the set S(msk,ct’) contains at most D < M/2 elements for ct € B(msk).

To this end, set

g(TL‘*) = hmsk(Tla - ,Ti*,ski*ﬂ(ct), S ,SkQ(Ct)).

We consider g as a univariate polynomial with coefficients in Z4[T7,...,T;,—1] and of degree < D. Since
ct € B(msk), we know that g is not the zero polynomial. On the other hand, we know that g(sk.(ct)) = 0,
since we assume ct € A(msk). In fact, each element of S(msk,ct’) is a root of g. It follows that S(msk, ct’)
has at most degg < deghmek < D < M/2 elements. Since 2’ € X" was chosen arbitrarily, the non-negligible
advantage of Dec’ at decryption follows. O
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5 Proof of Theorem 6

We first introduce the following notion:

Definition 13. For a fized master secret key msk and a subset A C [Q], denote by Tmek a2 Zy[T] — Z4[T,Y]
the ring morphism that substitutes T; by s;(Y) iff i € A, i.e.,

Tmsk, A Zq[Tl,...,TQ} — Zq[Tl,...,TQ,Yl,...,Ym]

SkZ(Y), i€ A,
T — ‘
Ti 1 ¢ A.

Lemma 5. Let D € O(1). For each A € N, let p, be a monotonically decreasing function
py:{1,...,D+1} — [0,1]

s.t. pA(1) =1 and p\ (D +1) = 0.
Then, there is an i+ € [D], an €' € negl(\) and an 1" € poly(A) s.t.

VA€ N:pi\(it) > 1 - €'(N),
L
r'(A)

Proof. Let i+ € [D] be minimal s.t. there is an " € poly(A),r’ > 0, with

JooA € N: py (i) — pi(it +1) =

1
Jo ) € N: ph (i) — ph(i+ +1) > .
oo pa(iy) —pa(iy +1) = (N
Since D is constant, such an i; must exist. Since 44 is minimal, there are negligible functions €1,...,&;, -1 €

negl(\) s.t. for ¢ < iy,
pA(D) = A+ 1) < ().
In particular, we can conclude that

1—pi(ir) = pa(1) = pa(2) + PA(2) = PA(3) + ... + PA(iy — 1) — pi(it)
e1(A) + ... +ei;—1(A) € negl(A).

IA

Note that £1(\) + ... + 5, —1(A) lies in negl()\), since 4; — 1 is constant. |
Lemma 6. Forie {1,...,D+1}, set A;(\) :={i,...,Q(\)} and

p)\(i) = Pr [Tmsk,Ai(A) (hmsk)(T, y) = 0] .
msk<—Setupg°°d(1>‘)
y<—Enc(msk,0)

There is an index iy € [D] together with functions ' € negl(A), v’ € poly(A), ' > 0 s.t. we have

VA € N:pa(iy) > 1—€'(N),
FooA € N: pa(iy) — paliy + 1) > 1/7().

Proof. Note that py(i) is monotonically decreasing. Furthermore, we have py(0) = 1, since Tmsk, 4o (Amsk) =
Tmsk,[Q] (Pmsk) = hmsk(sk1(Y), ..., skq(Y")) is the zero polynomial in Z,[T, Y].

On the other side, px (D) must be zero, since there must be a monomial Tj, ---T;,, with iy,...,ips € [D]
that occurs in hpysk, as msk is good. The monomial T3, - - - T; , also appears in Tsk, 4, (hmsk), since the variables

Ty,...,Tp will not be substituted by Tmsk, 4, Hence, Tmsk, 4, (hmsk)(y) cannot be zero for any y € Z;".

21



By Lemma 5, it now follows that there must exist an index it € [D] together with &’ € negl()\) and
r" € poly()\) s.t. we have
VA eN: p)\(iT) >1—- €/<)\),
1
(A

as we claimed. O

d.A € N: p)\(iT) —p)\(i]t + 1) >

We make use of the following lemma about learning linear spaces from [Una20]:

Lemma 7. Let k be a field and let s € N. Let C' C k® be a memoryless distribution. For each m € N, we
have

Pr C[vm € spang {v1,...,Um-1}] > 1— =

Vlyeeey Um $— m

Lemma 8. Let d,m,Q € N and let q be a prime. Let Y1,...,Yy, be m wvariables and let Ty,...,Tg be
Q additional fresh variables. Set t := (m;d) and let Y11 ... YTt be an enumeration of all monomials of
Zy|Y1, ..., Y] of degree < d. Let

Ya: Ly — L
y— (y", .. y")

be the map that assigns to each point y a vector of all products of its entries of degree < d.
We have for all £ € N,y1,...,y41 € Zy" and h € Zg[Y1,..., Y, T1,...,Tq| of degree < d the follow
implication,

Ya(yes1) € spang, {va(y1), ... a(ye)}

= h Ty, ..., Tp) =0.
and Vi€ [0]: h(y;,Th,...,Tg) =0 } (Ye+1,Th Q)

Proof. Since h € Zy[Y1,..., Y, T, ..., Tg] is of degree < d, there are polynomials ¢1,. .., ¢ € Z4[Th,...,TQ]
s.t. it can be written as

T
WY1, Yo, Ths o To) = Y eil(Th, . Tg) - Y
=1

Assume that we have 1a(ye+1) € spang {ta(y1), ..., ¥a(ye)} and h(y;, T1, ..., Tg) = 0 for each i € [¢]. Then,
there are scalars vi,...,7 € Zq s.t.
Ya(Yer1) =71 Ya(yr) + -+ 7e - alye).
In particular, we have for each multi-index I;
Yt =YL ey

We now have

h(yg+1,T1, .. .,

-

@
Il
-

T
Z Tla
. T
ei(Ty,...,Tg) - Zvjyjf :Zw(Zcle,..., )-y§i>
j=1

~

v h(ys T Tg) =Y 7;-0=0

<.
I
-

as we claimed. 0
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To prove Theorem 6, we will introduce a PPT adversary A for the IND-CPA security game of FE. A will
query multiple challenge ciphertexts, but will not ask for any secret keys.

Definition 14. Let X C X be a message subspace of polynomial size. We define the following adversary A
that plays the selective IND-CPA security game of FE = (Setup, KeyGen, Enc, Dec) with a challenger C:

1. A samples y, z + é’?)\ uniformly and independently at random.
2. A defines two lists (29)i=1,. o+1 and (x})iz1, 41 by

1. Y, ZfZG[ZIL
YU )z, difi=0 41,

3. A submits both lists to C and receives a list of ciphertexts cty,...,cty of y and ctpy1 of 362,+1 for unknown
be {0,1}.
4. Letyp: Zj" — ZZ be the map from Lemma 8. A computes
V= spang {¢p(ct1),...,¥p(cte)} C Zy.
5. IfYp(ctpq1) € V, then A outputs b = 0. Otherwise, A outputs b= 1.
For a fired A € N, a fized master secret key msk and fized messages y, z € ??A, denote by

Advian_cPa (A|msk,y, z)

the advantage of A at security level A conditioned on the event that the challenger C samples msk as master
secret key of FE and that A samples y, z as candidate message pair in step 1.

ind-cpa

We will first show that the conditioned advantage Advgg ™ (A |msk,y, z) is bounded from below.

Lemma 9. We have for all msk,y, z

ind- 1 m+ D
ind-cpa > _ .
Advig ™ (A|msk,y, z) > T ( D )

It may seem strange that we have to lower bound A’s advantage by a small negative value, however, remember
that we allowed A’s advantage to be negative in Definition 5.

m+D
Proof. 1t suffices to show that A outputs 0 with probability at least 1 — ( Zil) whenever C draws 0 as bit
b. In this case, cty,...,ctyy1 are all sampled according to the distribution Enc(msk,y). From Lemma 7, it

hence follows

m—~+D
Pr|¥p(cter1) € spang, {@/’D(Ctl),m,%ﬁp(cte)}] 21— (Ei 1).
Since A outputs 0 whenever ¥p(ctes1) liesin V = spaty, {¥p(ct1),...,¥p(cte)}, the claim follows. O

According to Lemma 4, the probability of a random master secret key msk <— Setup(1*) being good is at
least Q7. We can now further condition the advantage of A:

Lemma 10. Fiz two messages vy, z € )?A and denote by event the event that C samples a good master secret
key and that A chooses y, z in step 1. We have

AdvEE P (Aevent)  ("57) QP # X5 -1
QP # X, (rl gr.ux,

Advind=P? (A) >

23



Proof. Note that our notion of advantage allows to partition the advantage of A on different events. In
particular, we have

AdviEP? (A) = AdviE P (A | event) - Prlevent] 4+ Advie ® (A |- event) - Pr[- event]

= AdviEP (A | event) - Pr [msk is good,y’ =y, 2 = 7]
msk<Setup(1*)
21/72,4—??A

+ AdV{TE®? (A |- event) - | 1— Pr [msk is good,y’ = y,2" = 2]
msk<—Setup(1*)
Y2 X

By using that

1 1 1
Pr msk is good,y =y, 2 = 2] > —  ——  ——=
msk+«Setup(1*) [ 8 Y Y ] o QD # X\ H# X
y/,zlﬁfx

m+D
and that the advantage of A conditioned on any msk and messages y, z is always bounded by — ( Zil ), we

have

AdviEP (A) = AdviTe P (A | event) - Pr [msk is good,y’ =y, 2 = 2]
msk+—Setup(1*)
y/7Z/<—/\?A
+ AdvIiEP? (A |- event) - | 1 — Pr [msk is good,y’ = y,2" = 2]
msk+<—Setup(1*)
y/yz/%fx
~2
- 1 DY QP 4 X, —1
> AdviiP? (A | event) - — — (EDI) QT A —.
QU-#X, fTLQP.#X)
Hence, the claim of the lemma holds. a

Lemma 11. For each £ € poly()), there is an £y € negl(\) s.t. we have for each pair y,z € X

Pr|¢p(ct.) € spang_ {¢p(ct1), .. -,¢D(Cte'(x))}] >1- % — &

where msk <= Setupgooq(1%), cti, ..., cton) < Enc(msk,yx), ct. <= Enc(msk, z)) and
D ~
V= (mz; ) QP # X 1.

Proof. Instantiate A with parameter ¢’ this time. Since FE is IND-CPA secure, there is some g4 € negl())
s.t.

e (N) >Adviid ™ (A)
Lemr>na 10Advi,:"|g'Cpa (Alevent) (WBD) QP - #.fi -1

~2 ~2
QP - # X, U+l Qpogx,

By reordering the terms, we get

Q- # X, 1) (")

i ~2
AdviiEP? (A | event) < QP - # X\ ep + T
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Let

V = spang, {(bD(Ctl), L. ,¢D(Ctg/()\))}

be the space computed by A in step 4. Note that the ciphertexts cty,...,cty are distributed according to
Enc(msk, yy). For the advantage of A conditioned on event, we have

AdVIEP? (A | event) = Pr [¥p(ety) € V] - Pr [p(ct.) € V] (10)
msk<—Setupyooq(17™) msk<—Setup,ooq(17™)
cty <—Enc(msk,yx) ct, «—Enc(msk,zy)

where Setupgood(l)‘) is the distribution Setup(1*) conditioned on msk being good. Because of Lemma 7, we
have

1 m+ D)
Pr ct,)eV]|>1l— —- ,
msk<—Setupgood(1>‘) WJD( y) ] 7 +1 ( D

cty <—Enc(msk,yx)

further, we set

= Pr [¥p(ct,) € V].
msk<—Setupgood(1*)
ct,<Enc(msk,zy)

Combining this with Equation (10) yields

ind- 1 m-+ D
Advpg ? (Aevent) > 1 — e b —a

We can now take the upper bound Equation (9) for Advig “® (A |event) into account

o) .
QD.#)'(“i_EZ/_F (QD'#-);I)\;?'( 57) S1- g/_lH . (m;D) W
With regard to a, we get
D 2 (m+D
a>1-9 '#fﬁ'l( 2) o0 4@ e,
By substituting «, ¢ and
e =Q"- #??i €ur
the claim of the lemma follows. O

Lemma 12. We have the following:

1. For each ¢ € poly()), there exists functions ¢’ € poly(\), ¢ > £, and €4 € negl(\) s.t. we have for each
i€{0,...,D}, A € N and each pair x1,x5 € X,

1

palismn) = €0 - palivza) = () = 1) = 55

- 84()\).

2. Let &' € negl(\). There exists an € € negl(\), s.t. we have for each A € N: if there exists some xo € X\
with px(i,22) > 1 —&'(X\), then we have px(i,x21) > 1 —e(\) for each z1 € Xy.
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Proof. 1. Fix a master secret key msk and set for i € [Q()\)]
hi(Y1, ... Yin) = Timsk, 4, (1) (hmsk) € Zg[T][Y].

We consider h; as a polynomial with coefficients in Z,[T1, ..., Tg] and variables Y7, ...,Y,,. The degree
of h; is at most max;e 4,(x)(degsk;) - deghmsk < d - D. Let £ € poly()), £/ > £ and &, € negl(\) be the
functions from the claim of Lemma 11.

For ct,, < Enc(msk,z1), and cty,...,cty « Enc(msk, z3) we have according to Lemma 8 the following
implication of events,
wD(Ctxl) S spang, {¢D(Ct1), - ,’(/JD(C’E@/)} s hi(Ct1) =...= hi(Ctg/) =0

— hi(Ctxl) =0.
For a fixed msk, we thereby have the following inequalities:

Pr [hi(cty,) = 0] (11)

ctyy <—Enc(msk,z1)

- ¥p(cta,) € spang, {¢p(ct1),...,¥p(cte)}
T
" cty, <Enc(msk,z1) hi(ct1) = ... = hi(cty) =0
cty,...,ctyr <—Enc(msk,z2)
> Py [Un(cta,) € spang, {¥p(ctr), .., wn(cte))]
ctyq +—Enc(msk,z1) 4

cty,...,ctyr <—Enc(msk,z2)

+ Pr [hi(ctl):...:hi(ctg/):0]—1
cty,...,ctyr <—Enc(msk,x2)
> Pr [Un(cts,) € spang, {¥n(ctr), .., wn(cte))]
cty, <—Enc(msk,z) a

cty,...,ctyr <—Enc(msk,z2)

+ /0 - Pr [hi(cty,) = 0] — £'.

Ctyy <—Enc(msk,z2)

We now sample msk according to Setup(1*), and get

pao) =  Pr[hcts,) = 0]
msk<—Setup(17)
Ctey <—Enc(msk,z1)
Eq. (11)
> Py [Un(cts,) € spang, {¥n(ctr), .., wn(ctr)}]
msk<Setup(1*)

Ctyq +—Enc(msk,z1)
cty,...,ctyr <—Enc(msk,z2)

+ 0 - Pr [hi(cty,) = 0] — £'.
msk+—Setup(1*)
Ctyy <—Enc(msk,z2)
Lemma 11 1
> (1 - — Eg) +0 - Pr [hi(cty) =0] = ¢
14 msk<Setup(1*) )
Cty, <—Enc(msk,z2)

1
>0 Pr [hi(cte,) =0 — (' —=1) — = — g

msk<—Setup(1*) 14

Ctyy <—Enc(msk,z2)
1
>0 pali, ) = (0= 1) = 7 ¢

2. Assume that the claim is false. In this case, there is a negligible function ¢’ € negl(A) and a positive
function r € poly(A) s.t. we have for infinitely many A\ € N,

Ja1, 20 € Xy (i, T1) <1-— , pali,me) > 1 —€(N).

1
r(A)
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Choose ¢ € poly(A) s.t. we have £(A) > r(X) for each A € N. Let ¢ € poly(X), ¢’ > £,&, € negl(X) be the
functions from the first claim of this lemma. We now have that for infinitely many A € N, there exist
T1, Ty € X'y with

1 .
1———= >pali,xq1)

r(A)

> () pafia) = () = 1) = o5 = a(0)
20N 1=€) = (') -1) - 0 ex(l)
>1 -0 (NN - ﬁ —ex(0).
This is equivalent to the following,
11 o
W < m +ee(N) + L (N)e'(N). (12)

However, since £(A) > r()\), Equation (12) cannot hold for infinitely many A\ € N. Hence, the second
claim of this lemma must be true as well.
|

Proof (Theorem 6). Let i+ € [D] be the index from Lemma 6. Then, there exist ¢’ € negl(\) and p’ ¢
negl(\), p’ > 0 s.t. we have for each A € N,

pa(it,0) > 1=£'(N),
pa(it, 0) = pa(iy +1,0) > p'(N),

where we denote by 0 = (0,...,0) the zero-vector message in X a- According to Lemma 12, there is now an
€ € negl(\) s.t. we have for each A € N and z € X,

palis @) > 1— ().

We claim that there is some r € poly(A), r > 0, s.t. there are infinitely many A € N s.t. we have for each
e X,

palin,2) — palis + 1,2) > % (13)

Assume, for the sake of contradiction, that the claim is false. In this case, for each r € poly(A), r > 0 and
for almost all A € N there exists some z € X' s.t.

. . 1
pa(is, ) —pa(is +1,2) < ——.

r(A)
This implies the existence of a negligible function &5 € negl(\) s.t. we have for each x € X,
Pl @) = palis +1,2) < &5(A). (14)
Since py(it,x) > 1 —e(N), Equation (14) is equivalent to
palis +1,2) > 1 —e(X) — e5(N).

However, because of Lemma 12, there must be now a negligible function €2 € negl(\) s.t. we have for each
AeN,

paliy +1,0) > 1 —ez()).
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This contradicts the statement of Lemma 6. Hence, our assumption must be wrong and there must exist a
polynomial r € poly(A), r > 0, s.t. Equation (13) does hold for infinitely many A and each z € X'). Denote
the set of A’s for which Equation (13) holds by A C N. By setting

1
——, AEA,
p(A) = (V)

0, \¢ A,

the claim of Theorem 6 follows. a

6 Limits and Open Questions

In this section we describe some methods to circumvent the lattice-based FE model that is studied in this
work and pose some open questions.

Bit Decomposition. As mentioned in the introduction, if the inverse gadget matrix is used at encryption
to decompose the input message, then the encryption scheme is not offline/online of constant depth any
more.

If bit decomposition is used during decryption, then the decryption depth of the FE scheme is not constant
any more. As an example of a scheme that uses bit decomposition at decryption, we can give the predicate
encryption scheme of Gorbunov, Vaikuntanathan and Wee [GVW15]. Their scheme utilizes lattice-based
FHE schemes and can issue an unbounded number of secret keys. Additionally, the size of ciphertexts grows
logarithmically in the depth of predicates.

Double Arithmetic Reduction at Decryption. Another technique to circumvent the lattice-based FE
framework would be to apply arithmetic reduction twice at decryption. If we take a look at the quadratic
FE scheme of Agrawal and Rosen [AR17], we see that their scheme uses three prime moduli p; < ps < ¢. On
input ct, sk € Z;” , the decryptor computes the scalar product of sk and ct modulo ¢ and reduces it modulo
p2 and modulo pq, i.e., it outputs

((skT ct modgq) mod p2) mod p1,

as a value in Z,, .

While it is known that arithmetic reduction modulo one prime p < ¢ is equivalent to scaling with p~
and rounding from Z, to Z,, it is not known if the same holds in the case of double arithmetic reduction. In
particular, we don’t know if there is some value ¢ € Z, s.t. we have for each z € Zg,

1

((x mod ¢) mod p2) mod p; =0 = |c-z mod ¢q| < pi
2

In other words, it is not clear if values that reduce to zero after two arithmetic reductions always become
small when scaled with an appropriate scalar c. Hence, it may be possible to circumvent the lower bounds
of this work and [Una20| by using multiple arithmetic reductions at decryption.

Binary Messages. An important requirement for the results here and in [Una20] is that the message
modulus p of the attacked FE and SKE schemes is larger than some constant (that depends on the scheme).
Indeed, taking a look at the adversary behind Theorem 4, it is necessary that the message vectors we consider
allow for large enough arithmetic numbers in at least one of their entries.

If we have p = 2 and only consider FE schemes for binary message vectors, then the attacks here and
in [Una20] are not applicable any more. This raises the question if it is possible to circumvent the lower bounds
here and in [Una20] with simple lattice-based FE schemes that only support binary messages. Concretely,
we ask if the following, simple, binary function-hiding FE scheme can be realized by LWE (or any other
assumption):
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Question 1. Consider the message space X = {0,1} and the function space F = {fo, f1} that contains the
functions fy(x) := 0 and fi(z) = z. Note that F and X essentially compute a logical AND.

Is there a symmetric function-hiding IND-CPA secure and correct FE scheme FE = (Setup, KeyGen, Enc, Dec)
for F: X — X s.t. KeyGen and Enc output vectors in Z;* (for any dimension m € poly()\) and modulus

q € 2°°YN) and decryption works by

0, if ‘skT : ct‘ < B,
Dec(sk, ct) =

1, if ‘skT-ct‘ > B,

for some threshold B < ¢/2?

We note that since X and F only contain two elements, we basically ask here if there are keyed distributions

Emsk,05 Emsk,1, Smsk,05 Smsk,1 OVer Z;" s.t. we have for a,b € {0,1} and ct <= Emek,q, Sk = Smsk,p

‘skT -ct

islargeiff a-b=1,

and s.t. additionally a PPT adversary cannot distinguish between Emeko and Emsk,1 When given access to
Smsk,0 and cannot distinguish between Smsk,0 and Smsk,1 When given access to Emsk,o-

We think that any solution to Question 1 would be of large interest, even if the algorithms Setup, KeyGen
and Enc of the proposed function-hiding FE scheme would not be efficiently computable.

Weaker Notions of Security. We also want to point out that the results here take great advantage of
the existence of an algebraic relationship among secret keys. In fact, this algebraic relationship allows us
to substantially restrict the evaluation of a special secret key at a ciphertext, even if we only know the
evaluations of different, seemingly less useful, secret keys at the ciphertext.

As long as secret keys are constant-degree polynomials, algebraic dependencies are hard to avoid in the
unbounded collusion model. However, we can take algebraicity into account and prevent attacks like the ones
presented in this paper, by aiming for a weaker (and more algebraic) notion of selective IND-CPA security:

Definition 15. Let FE = (Setup, KeyGen, Enc, Dec) be an FE scheme for the function space F of degree-d

polynomials in Zy[X1,...,X,]. We define the algebraically selective IND-CPA security game of FE as

an experiment Exp,i'é‘jzd{pa()\,f) between an adversary A and a challenger C that proceeds in the following

steps:

ﬁ‘ Experiment ExpaFlé:iA?d'Cpa(/\, F) Wl

1. A computes two lists of candidate messages (x2,...,2%), (z1,...,zk) € XY and a lst of functions
(f1,-.-, fq) € ]-'g, and submits all three lists to the challenger C.

2. C draws a random bit b < {0,1}, computes msk < Setup(1*) and

ct; + Enc(msk, mf) fori=1,..., N,
sk; < KeyGen(msk, f;) forj=1,...,Q.

C sends the lists (ct1,...,cty) and (ski,...,skg) to A.
3. A outputs a guess bit b’.
4. Denote by R C Zp[X1,...,Xn»] the ring of all polynomials in Zp[X] that are algebraically dependent from

fi,. ., fo, de
R:={g € Zp[X] | 3h € Zp[fr,..., fQl[T] : h(T)#0,h(g) = 0}.
Ifb' = b and we have for each polynomial g € R and each i € [N]
g(a?) = g(xi)

the experiment outputs 1, else 0.
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The requirement in the last step of the security game in Definition 15 is more strict than usual, since not
only do we require that there is no queried function f;, that can distinguish a message pair, but additionally
we demand that even functions that can be algebraically derived from queried functions cannot distinguish
between the two messages of a submitted challenge pair. The idea behind this requirement is that, if a
function g can be symbolically derived from functions f1,..., fg, then maybe also a secret key sk, for g can
be derived from the secret keys sk, . ..,skg. While it is information-theoretically not possible to derive g(z?)
from fi(z?),..., fo(xb) as long as f;(z°) = f;(2!) for j € [Q], it may be possible to derive sk,(ct) from
ski(ct),...,skg(ct), since the evaluations sk;(ct) are not perfectly scaled versions of f;(x%), but instead are
perturbed by some noise that might leak sensitive information.
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A Lower Bounds for Functional Encryption with Ciphertexts of Constant
Dimensions

Using the methods of Sections 4 and 5, we show the following lower bounds for FE schemes whose ciphertexts
are vectors of constant dimension.

Theorem 7. Let ¢ > p > 2 with q prime and n,m € O(1) with
m < Q :=n?.

Let F be the space of bilinear functions over X = Z; x Z,, and let FE = (Setup, KeyGen, Enc, Dec) be a
lattice-based FE scheme for the functionality F, s.t. each ciphertext of FE is contained in Z;' and dy and dy
denote the encryption depth and decryption depth of FE, respectively. Set

M :=max(2-(m+1)-dy* + 1,2d1ds),
and assume that the following inequalities hold:
q/p € poly(N) and - M¥d <y

for some constant ¢ that depends on dyds.
If FE is correct, then FE is not selectively IND-CPA secure.

Remark 2. In Theorem 7, it does not matter if there are arithmetic reductions modulo p when evaluat-
ing bilinear functions of F C Zp[Xl(l), cey ,(L1)7X1(2), cey y(Lz)] on messages in X' = Z; x Z,. This is be-
cause we only need to consider quadratic monomials Xi(l) . XJ(»Q) € F as functions and simple vectors
z = (0,...,0,27,0,...,0,1,0,...,0) as messages, where 2’ is bounded by the constant M. Hence, evalu-
ations f(x) will always be bounded by a constant smaller than p.

In fact, the requirements of our theorem can be strongly relaxed. Instead of considering the space of
bilinear functions, we can consider any function space F: X — Z, s.t. there is a ¢ > m and functions
fi,-.., fo € F together with degree-1 polynomials v1,...,vg: Z, — X s.t. we have for all i,j € [Q] and
xze€{0,..., M},

x, ifi=y,
0, ifi=#j.
Our proof idea for Theorem 7 follows the proof of Theorem 5. More precisely, we assume that FE is secure
and use Corollary 1 to deduce a contradiction. We again assume that KeyGen is deterministic, otherwise we

can derandomize it by using a PRF. Next, we define the following Setupp,. algorithm for the FE scheme
in Theorem 7, which will be very similar to the algorithm Setupp,. of Section 4:

fi(vi(z)) = {
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Setupp,: On input 1%, Setupp,. computes a deterministic enumeration of (ay,b1),..., (ag,bg) of [n]?. For each
i € [Q], Setupp,, outputs the polynomial

FW L xW x® L x@) = x(0 . x P ez, [xD, x?)],
Then, Setupp,, draws i, < [Q] and outputs i, together with the linear function
v: Ly — L,
T2 €q,, +e€p,,

where e, ,ep, denote the a; -th and b; -th unit vectors.
Note that we have for all z € Z,,

fi.(v(z)) = =,
Vi #£ is: fi(v(z)) =0.

Given Setupp,., we can now define the partial SKE SKE' = (Setup’, Enc’, ) as in Definition 12. To prove The-
orem 7, we assume that FE is IND-CPA secure and, subsequently, construct a fitting decryption algorithm
Dec’ that has a non-negligible advantage in decrypting ciphertexts of SKE’. This in turn yields a contradic-
tion to Corollary 1, therefore, proving that FE cannot be secure. To construct Dec’, we can follow the proof
of Theorem 5, and we just need to prove the following variant of Lemma 3, which states that for each set
of secret keys ski,...,skg output by Setup’, there exists some algebraic dependency hmsx whose degree is
bounded by the constant D := (m + 1) - d5* < M/2.

Lemma 13. Let msk’ = (msk, sk, ... ,skg, v, ix) be a master secret key output by Setup’. Then, there exists
a polynomial hmsk € Zg[Th, . .., Tg] with the following properties:

hmsk # 0 € Zy[Th,. .., Tq],

hmsk(sk1, .. .,skg) =0 € Zg[Y1,...,Yn],

deghmsk < (m+1) - dy".
Proof. Note that Q > m, hence, without loss of generality, we can assume that @ = m + 1. Let A :=
{h € ZyTh,...,Tg]| | degh < (m + 1) -d5'} be the space of all polynomials in T7,...,Tq of degree < (m +
1)-d3 and let B :={g € Zy[Y1,..., Y] | degg < (m+1)-d5"™'} be space of all polynomials in Y3, ..., Y,
of degree < dy - (m+1)-dJ. )

To show the existence of an algebraic dependence hmsk of ski, ..., skg, we will follow the idea of [Una23].

It suffices to show that the linear map

»:A— B
h(Tl,...,TQ) — h(Skl,...,SkQ)

that replaces each occurrence of T; with the polynomial sk; of degree < dy has a non-trivial kernel. Indeed,
we can lower-bound the dimension of ker @ by

dimker® =dim A — dim B
_<Q+(m+1) ~d§“> B <m+(m+1).dgn+1>

Q m
(m+1+(m+1)-dy m+ (m+1) - dytt
_< m+1 >_< m )

Now, the inequality dimker ¢ > 0 is equivalent to the following chain of inequalities:

m+1+4+ (m+1)-d5 - m+da(m+1)-d3
m+1 m
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= (m+1+(m+1)dy)- (m+ (m+1)dy) - (1+ (m+1)dy")
>(mA41) - (mA+ (m+1)deTh - (14 (m+ 1)dy™)

— 1+d3) - (m+ (m+1)dy")--- (1 + (m+ 1)dy")
> (m+ (m+1)dy) - (1+ (m+1)dy™)

m+ (m+1)dy* 14 (m+1)dy !

= 1+dy > . 15

2 m+ (m+ 1)dy 1+ (m+ 1)dy (15)

Equation (15) does hold si have “HmHDET g e i s 0
quation oes no since we nave i+(m+1)d£’1 S dg 10r 7 =~ U.

We have shown that for each msk’ there exists some algebraic dependency hme among the secret keys
ski,...,skg, whose degree is bounded by a constant D (that only depends on FE). Since KeyGen is deran-
domized, hmsk only depends on msk. From this point on, we can directly follow the proof of Theorem 5
and show analogously that the extractor Dec’ of Section 4 has a non-negligible advantage at decrypting
ciphertexts of SKE'.
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