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Abstract. The applications of Hierarchical Deterministic Wallet are rapidly grow-
ing in various areas such as cryptocurrency exchanges and hardware wallets. Im-
proving privacy and security is more important than ever. In this study, we pro-
posed a protocol that fully support a two-party computation of BIP32. Our pro-
tocol, similar to the distributed key generation, can generate each party’s secret
share, the common chain-code, and the public key without revealing a seed and
any descendant private keys. We also provided a simulation-based proof of our
protocol assuming a rushing, static, and malicious adversary in the hybrid model.
Our master key generation protocol produces up to total of two bit leakages from
a honest party given the feature that the seeds will be re-selected after each ex-
ecution. The proposed hardened child key derivation protocol leads up to a one
bit leakage in the worst situation of simulation from a honest party and will be
accumulated with each execution. Fortunately, in reality, this issue can be largely
mitigated by adding some validation criteria of boolean circuits and masking the
input shares before each execution. We then implemented the proposed protocol
and ran in a single thread on a laptop which turned out with practically acceptable
execution time. Lastly, the outputs of our protocol can be easily integrated with
many threshold sign protocols.

Keywords: Secure Two-party Computation · BIP32 · Wallets.

1 Introduction

Blockchains are well-known for their role in cryptocurrency systems, where they pro-
vide a secure and decentralized record of transactions without requiring a trusted third
party. Digital signatures are used to authorize and validate transactions in which users
must protect their private keys. If a private key is lost, the user loses all assets that are
associated with it. This makes key management crucial. However, managing multiple
private keys is challenging with the growing demand of blockchains. Hierarchical De-
terministic (abbrev. HD) Wallet3 and t − n threshold signature scheme (abbrev. TSS)
are current two methods of managing private keys in blockchains. HD wallet offers
convenience, and TSS provides greater security. The goal of this paper is to employ the
advantages of these methods, as previously commented in [11, Section 6.4].

HD wallets were introduced in the blockchain world to simplify private key man-
agement. With HD wallets, users utilize deterministic algorithms described in BIP32

3https://en.bitcoin.it/wiki/Deterministic_wallet
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[32] (ref. Figures 1 and 3), a Bitcoin Improvement Proposal, to generate multiple pri-
vate keys. Ideally, they generate a set of random words called "seed" S, and then use
HMAC-SHA512("Bitcoin seed", S) to derive the master private key k. Next, users de-
rive the new private key, which is k+HMAC-SHA512(k,chaincode,keyID). By iterat-
ing this process, BIP32 provides a tree structure of private keys generating paths. BIP32
allows users to securely manage and generate a large number of addresses by securing
only one random seed.

There are some potential security issues of HD wallets. First, a compromised pri-
vate key can lead to the loss of all descendant private keys, which becomes a risk with
improper ECDSA implementations. For instance, Breitner and Heninger [4] used lattice
attacks against ECDSA signatures to demonstrate that repeated or non-uniform gener-
ation of the nonce can potentially enable an attacker to compute the long-term signing
key. Second, if given a parent public key and any non-hardened child private keys, it is
possible to easily recover the parent private key. To address this issue, Gutoski and Ste-
bila [14] proposed a new HD wallet (i.e. different from the formula defined by BIP32)
that can tolerate the leakage of up to m private keys, with a parent public key size of
O(m).

TSS enables t out of n parties to generate signatures on behalf of a group. In most
TSS implementations, each party holds the same public key and their own secret, also
known as a "share". The private key can only be compromised when all t shares are
stolen simultaneously. However, TSS also features "proactive refresh" [27], which voids
shares produced from an old epoch. TSS is secure, robust, and flexible key management
schemes that allow for signature generation without needing for private keys [22]. In
practice, users often use multiple addresses to manage their assets, causing management
burden for service providers who must manage numerous shares for different addresses.
Another popular solution is multi-signature4, in which a valid transaction requires mul-
tiple keys instead of a single signature from one key. Multi-signature also avoids the
risk of a single point of failure and is easier to implement than TSS. However, the main
drawback of multi-signature is its significantly higher cost in blockchains.

Current TSS protocols cannot fully support BIP32’s key generation protocols. To
address this, we employ garbled circuit protocols [35] that allow parties to compute a
predetermined function using their inputs while revealing only the output. To ensure se-
curity against malicious adversaries, various garbled circuits have been proposed, which
we will discuss further in subsection 2.1. For efficiency, we employ the DualEx proto-
col [15], an enhanced semi-honest protocol with dual execution against malicious ad-
versaries. It involves conducting two separate runs of a garbled-circuit protocol against
a semi-honest adversary with the parties swapping roles, followed by a secure equality
test that leaks no more than one bit against a malicious adversary. The challenge of this
paper is to design a “TSS-type BIP32 protocol”.

Das et al. [9] proposed a new and effective derivation mechanism for BIP32’s type
wallet achieving the threshold setting easily. However, their constructions are not fully
supporting the specification of hardened key derivation described in the original BIP32.
Unbound Security5, a pioneer in multi-party computation technology, has developed

4https://en.bitcoin.it/wiki/Multi-signature
5https://github.com/unboundsecurity/blockchain -crypto-mpc
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a two-party HD wallet protocol that utilizes the garbled circuit scheme. Unbound’s
idea of the master key generation protocol and child key derivations is to produce the
results through DualEx that conform to BIP32 standard. To prevent attackers from using
incorrect inputs, they added some randomized information such that many shares of a
key are outputs. Eventually, both parties receive the correct public key and validate their
own shares.

In our study, we also apply the DualEx protocol [15] to BIP32. Our protocol uses
two layers of twist masking ri and ni of i-th party to prevent cheating, with the DualEx
output s′ := secret+ ri ∗n1−i + r1−i ∗ni. Each party then announces riG and ni sequen-
tially to ensure the correctness of s′. Our protocol’s efficiencies for child key derivation
are comparable to Unbound’s, while Unbound’s master key generation is more efficient.
However, it is unclear what security model Unbound considered, whereas our protocols
were proven to be secure in the hybrid-world.

As far as we know, there have been no formal papers that study two-party BIP32.
Our contributions in this work are as follows: 1) We present a protocol that employs
two-party computation, including generating a master private key, hardened private
keys, and non-hardened private keys, that complies with all BIP32 regulations (Fig-
ures 2 and 4); 2) We provide a security proof for our protocol in the hybrid model using
simulation-based methods. We utilize the concepts of real/ideal worlds, as described in
[15], to demonstrate that the outputs of the two worlds are indistinguishable. Our master
key generation protocol allows attackers to use up to two arbitrary boolean circuit func-
tions, costing up to a two-bit leakage from the honest party in the ideal world. However,
this is not a significant security concern because the seeds are re-selected after each ex-
ecution, preventing the leakage from accumulating. In contrast, our hardened child key
derivation protocol permits attackers to use only one arbitrary circuit function, resulting
in up to a one-bit leakage from the honest party that accumulates with each execution.
Nevertheless, this issue can be mitigated considerably by adding some circuit function
validation criteria and masking the input shares before each execution. The leakage
of bits in the ideal world is the worst-case scenario, and can be prevented in the real
world, as discussed in [15]; 3) We implement the proposed protocol running in a single
thread on a laptop, without the need of downloading boolean circuits, as each execution
uses the same boolean circuits. The average time spent for the master key generation
is 7.37s, and for the hardened child key derivation it is 2.74s. The efficiency can be
achieved if network bandwidth allows. However, the number of executions required to
generate keys or shares for individual users is usually less than significant. The master
key generation and the translation of the child key only need to be performed once in
most cases. Therefore, a slightly longer execution time is acceptable and practical. More
importantly, the outputs of our protocol can be easily integrated with many sign proto-
cols [5, 7, 10–12, 21, 29, 33] to generate signatures. The complete implementations and
benchmarks will be explained in Section 5.

2 Preliminaries

Notation. The sets of natural numbers, integers are denoted by N, Z respectively. Given
a prime integer p ∈ N, we define Zp to be the quotient field of Z/pZ, and Z×p to be the
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multiplicative group of Zp. Let E be an elliptic curve over Zp, and G be a point of

order q on the curve E. The point b ·G :=

b−times︷ ︸︸ ︷
G+ · · ·+G is the scalar multiplication of E

by a non-negative integer b. In the rest of this paper, we will use the commonly used
elliptic curve defined by secp256k16 in which q is a prime. Given m, n ∈ N, we let
serm(n) serialize a m-bit unsigned integer n as a

⌈m
8

⌉
-byte sequence, most significant

byte first, parsem(n) interpret a
⌈m

8

⌉
-byte sequence n as a m-bit number, most signifi-

cant byte first, and serP(Q) serialize the coordinate pair Q = (x,y) as a byte sequence
using SEC1’s compressed form. Denote H to be a hash function and HMAC-SHA512 to
be the function specified in RFC 4231[23]. Lastly, the notation ⊕ is the XOR operation
and ∥ is the concatenation.

6https://en.bitcoin.it/wiki/Secp256k1
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Protocol 1 The Master Key Generation
Input: a positive integer n.
output: a master secret key parse256(IL) and a master chain-code IR.

1: Sample a seed S with the byte-length n.
2: Compute I := HMAC-SHA512(“Bitcoin seed”,S).
3: Split I = IL∥IR, where the byte-length of IL is equal to the byte-length of IR.
4: If parse256(IL)≥ q or parse256(IL) = 0, then restart this protocol.

Protocol 2 Child Key Derivation
Input: a parent private key kpar, a chain-code cpar, and an index j.
output: a child secret key k j with index j and the corresponding chain code c j or ⊥.

1: Compute I according to the below three cases:
• if 231 ≤ j < 232(i.e. hardened): I :=HMAC-SHA512

(
cpar,0x00∥ser256(kpar)∥ser32( j)

)
.

• if 0≤ j < 231(i.e. non-hardened): I := HMAC-SHA512
(
cpar,serP(kpar ·G)∥ser32( j)

)
.

• the others: return ⊥.
2: Split I = IL∥IR, where the byte-length of IL is equal to the byte-length of IR.
3: Compute the child key k j := parse256(IL)+ kpar mod q
4: If parse256(IL)≥ q or k j = 0, then return ⊥. Otherwise return k j and c j := IR.

2.1 Circuit Garbling

A boolean circuit f can be parameterized by (n,m, ℓ,Gates) with a chosen topological
order, where n is the number of input, m is the number of output, ℓ is the cardinality
of all wires, and Gates is the set of all gates. In our study, the Bristol fashion boolean
circuits [1] were employed, and the gates, AND, XOR, EQ, and INV, of boolean circuits
are commonly used here.

Circuit garbling [35] allows that two semi-honest parties use their own secrets to
evaluate a prior agreed boolean circuit function without leaking any information from
their inputs beyond what is revealed by the function output itself. One party represents
the garbled-circuit generator and the another party represents the garbled-circuit evalua-
tor. The generator begins the garbling process by associating both values of each binary
wire with random labels and then passes the garbled circuit to the evaluator. After re-
ceiving the garbled circuit, the evaluator then evaluates the circuit without knowing the
meaning of the input-wire labels. Evaluator will have the final output-wire labels and
be able to learn the meaning. A standard definition of garbling scheme is proposed by
Bellare et al. [3] as follows:

Definition 1. A garbling scheme consists of four algorithms [36, Section 2]:

GB: On input 1k and a boolean circuit f , outputs (F,e,d). Here F is a garbled circuit,
e is encoding information, and d is decoding information.

En: On input (e,x), where e is as above and x is an input suitable for f , outputs a
garbled input X.

Ev: On input (F,X) stated as above, outputs a garbled output Y .
De: On input (d,Y ) stated as above, outputs a plain output y.
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The algorithms have the following conditions:

Correctness: For any circuit f and input x, and sampling (F,e,d)← GB(1k, f ),
we have

De
(
d,Ev

(
F,En(e,x)

))
= f (x).

Privacy: There exists a simulator S that takes input (1k, f , f (x)) and whose output
is indistinguishable from (F,X ,d) generated the usual way.
Obliviousness: There must exist a simulator S that takes input (1k, f ) and whose
output is indistinguishable from (F,X) generated the usual way.
Authenticity: Given input (F,X) alone, no adversary should be able to produce
Ỹ ̸= Ev(F,X) such that De(d,Ỹ ) ̸=⊥, except with negligible probability.

A well-known and efficient example of Definition 1 is the half-gates construction
[3] which is compatible with free-XOR [18] and point-and-permute [24]. We adapt the
Dual-Ex protocol proposed by Huang et al. [15] to defend malicious attackers in the
garbling scheme. This protocol suggests that two parties take turns in playing the gen-
erator and evaluator to garble the same inputs and boolean circuits. Next, both parties
will verify if the results from both sides are the same through a secured validation pro-
tocol. Assuming that garbling circuit scheme is able to against semi-honest adversaries,
the protocol guaranties that the two parties leak up to 1 bit information.

The current 2-party computation protocols against malicious can be categorized
as garbled circuit paradigms, and secret sharing paradigms. Firstly, a secret sharing
paradigm (e.g. SPDZ [17]) considers an arithmetic circuit in which the number of
rounds is correlated with circuit depth. This is not practical for SHA512 due to huge
amount of complicated bit operations [2]. Next, garbled circuit paradigms against ma-
licious include DualEx protocol [15], cut-and-choose to generate garbled circuits [19],
and authenticated garbling [31, 16, 34]. During the execution of these protocols, cut-
and-choose needs to deliver n garbled circuit to reach statistical security 2−n. Authen-
ticated garbling generates certain number of authenticated shares which is associated
with the number of gates during pre-processing stage which cost higher in communica-
tion than garble against a semi-honest adversary. However, DualEx protocol [15] only
uses two garbled circuits against a semi-honest adversary to enable a nearly active se-
curity with a constant number of rounds. Therefore, considering the efficiency, we gave
priority to the DualEx protocol in our study.

2.2 Oblivious Transfer

Oblivious transfer (abbrev. OT) is a fundamental cryptographic primitive in the multi-
party computation. To be more specific, 1-n OT protocol has two characters called
sender and receiver such that the receiver asks for one of the sender’s n messages,
which satisfies two conditions: the receiver does not know the other messages except
for his select message, and the sender does not know the receiver’s choice. So far,
OT has become the most widely used building block in the two-party setting, such as
garbling scheme. However, garbling scheme requires a large number of OT protocols,
which leads to computation and efficiency burden. OT extension protocols are intro-
duced to mitigate the issue by using small number of OTs as seeds and symmetric key
encryption to compute a very large number of OTs.
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In our implementation, we employed an efficient OT extension against malicious
adversaries protocol that was proposed in Canetti et al.[6]. Their protocol is highly
efficient, and results in a 3 round extended OT that is UC secure in the observable7

random oracle model assuming computational Diffie–Hellman assumption. Addition-
ally, we also add OT index into the key generating process in the i-th base OT instance
according to Ian McQuoid et al. [25, Section 3.3] to avoid all OT instances produc-

ing identical outputs. More precisely, we replace H(rid,Br
i ) and H

(
rid,

(
Bi

T

)r )
with

H(rid,Br
i , i) and H

(
rid,

(
Bi

T

)r

, i
)

(ref. [6, Fig8]).

2.3 Two-party Computation

The major adversaries in the secure two-party computation are semi-honest and mali-
cious adversaries. Semi-honest adversaries run the protocol honestly, but try to learn as
much as possible from the outputs received from other parties. Malicious adversaries
may not follow the protocol and execute any computation for stealing and corrupting
information. In our study, we focus on static, malicious, and rushing adversaries. Static
means that the adversary is restricted to choose a set of parties to corrupt before the pro-
tocol execution starts and cannot change this set after. Rushing adversary is allowed to
observe the honest parties’ messages before modifying its own messages when protocol
proceeds in rounds. Our protocol employs symmetric messaging within the same round
of parties, without any prescribed order. As a result, the adversary always has the ability
to see the honest parties’ messages before deciding on their own message, leading us to
assume a rushing adversary.

A two-party computation can be modeled as a two variables function f , that is for
any x,y ∈ {0,1}∗, the function f (x,y) := ( f0(x,y), f1(x,y)), where f0, f1 : {0,1}∗ ×
{0,1}∗→{0,1}∗. One party with the input of the first coordinate x obtains f0(x,y) and
another party with the input of the second coordinate y obtains f1(x,y). We extended the
security definition in Huang et al. [15] to allow that adversary can learn the information
from fi(x,y) where i = 0 or 1 and k arbitrary boolean functions g1(x,y), . . . ,gk(x,y).
The same as security discussion of Huang et al., we consider k = 2 in our protocol in
which the correctness and input independence still hold. In the k-leakage model, the
adversary can learn k extra bit of information about the honest user’s input, without
being detected.

We adapted the real/ideal world definition in Huang et al. [15, Section V] and [20,
Section 6.2]. In the real model, we assume the adversary owns a secret input from one
of the parties and any auxiliary input aux, and attacks with an arbitrary polynomial-
time strategy. The honest party follows the protocol to execute. Let Π be a two-party
protocol computing f , and REALΠ,A(aux),i(x,y,n) be the output pair of the honest party
where A is the adversary from the real execution of Π.

The ideal model is permitted that the adversary may obtain k additional bit of the
information about the honest party’s input.As is customary in most two-party computa-

7Observable means that the challenger can observe the input points at which the adversary
makes queries to the random oracle.
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tion scenarios, we consider security with abort, meaning that the adversary obtains the
output while the honest party does not. Consider Pi one of the two participants P0 and
P1 is adversary. An ideal execution for the computation of f proceeds as follows:

1. Let x (resp. y) denote the input of party P0 (resp. P1). The adversary A also has an
auxiliary input denoted by aux. All parties are initialized with the same value on
their security parameter tape.

2. Both parties send inputs to the trusted third party. However, the corrupted party
controlled by A may send any value of its choice. Let the pair of inputs sent to
the trusted party be (x′,y′). Additionally, the adversary sends k arbitrary boolean
function g1, . . .gk to the trusted party8.

3. The trusted party computes f (x′,y′)= ( f0(x′,y′), f1(x′,y′)) and g1(x′,y′), . . . ,gk(x′,y′),
and sends the outputs to the adversary. At this point, the adversary Pi may tell the
trusted party to abort, in which case the honest party receives ⊥. Otherwise, the
adversary tells the trusted party to continue, in which case the honest party receives
f1−i(x′,y′).

4. The honest party outputs whatever it received from the trusted party and A outputs
an arbitrary function of its own choice.

Then, the ideal execution of f = ( f0, f1), with inputs (x,y), security parameter n, and
auxiliary input aux to A , denoted by IDEAL f ,A(aux),i(x,y,n) for i ∈ {0,1} which is the
output pair of the honest party and the adversary A from the above ideal execution.

A distribution ensemble {X(a,n)}a∈Dn,n∈N is an infinite sequence of random vari-

ables indexed by a ∈Dn and n ∈ N. We denote X
c≡ Y to be two distribution ensembles

X := {X(a,n)}a∈Dn,n∈N and Y := {Y (a,n)}a∈Dn,n∈N are computationally indistinguish-
able. We have the following definition.

Definition 2. Let k ≥ 1 be a positive integer, f be a two-party functionality, and Π be
a two-party protocol that computes f . Protocol Π is said to securely compute f with
k-bit leakage if for every non-uniform probabilistic polynomial-time adversary A for
the real model, there exists a non-uniform probabilistic polynomial-time adversary S
for the ideal model, such that for every i ∈ {0,1},{

IDEAL f ,S(aux),i(x,y,n)
}

x,y,aux,n
c≡
{

REALΠ,A(aux),i(x,y,n)
}

x,y,aux,n .

where x,y ∈ {0,1}∗ with an equal bit-length of x and y, aux ∈ {0,1}∗, and n ∈ N.

3 Our schemes

We describe the two proposed protocols, 2-party master key generation(abbrev. 2P-
MKG) and harden key derivation(abbrev. 2P-CKD), in this section. The 2P-MKG al-
lows that while both parties do not know each other’s seed si, they can receive their own
secret share xmas,i, the chain-code IR, and the corresponding public key Q such that

8In our security proof, we consider a slight modification of the ideal model described above:
namely, the adversary is allowed to adaptively choose g after learning f (x′,y′). However, this two
models are identical. More discussion can be found in [15, Remark, Section V]
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1. HMAC-SHA512(“Bitcoin seed”,s0⊕ s1) = IL∥IR;
2. xmas,0 + xmas,1 = parse256(IL) mod q;
3. parse256(IL) ∈ (0,q);
4. Q = (xmas,0 + xmas,1) ·G.

When the two parties do not know each other’s parent private share xpar,i, the 2P-CKD
allows that both parties utilize their own xpar,i, an index 231≤ j < 232 of the child private
key, chain-code cpar, and public key Kpar :=

(
xpar,0 + xpar,1

)
·G to receive the translation

IL, the new chain-code c j, and a new public key K j, which satisfy

i. HMAC-SHA512
(
cpar,value

)
= IL∥c j, where

value := 0x00∥ser256
(
xpar,0 + xpar,1 mod q

)
∥ser32( j);

ii. K j := Kpar +parse256(IL) ·G;
iii. parse256 (IL) ∈ [0,q);
iv. K j ̸= 0 ·G.

3.1 A protocol of two-party master key generation

Let k and k′ be positive integers and Z×q,k be the subset of the finite field Z×q with the bit-
length of all elements at most k. Consider the following boolean circuits with security
parameters k < 255 and k′:

fmkg : {0,1}k′ ×Z×q ×Z×q,k×{0,1}
k′ ×Z×q ×Z×q,k→{0,1}

513+k

s0,r0,n0,s1,r1,n1 7→ ser256(parse256(IL)+ r0n1+r1n0 mod q)∥IR∥ser256(n0+n1), (1)

and

faux : {0,1}k′ ×Z×q ×{0,1}k′ ×Z×q,k→{0,1}
257

s0,r0,s1,n1 7→ 1[0,q)(parse256(IL))∥ser256 (parse256(IL)+ r0n1 mod q) . (2)

Here IL∥IR = HMAC-SHA512(“Bitcoin seed”,s0 ⊕ s1), and 1[0,q)(x) is the indicator
function of the interval [0,q).

Since k and k′ are fixed in the beginning, we omit the notation k and k′ in functions
fmkg and faux for simplicity. In the 2P-MKG, neither of two parties know the digest I, so
we add the indicator function 1[0,q) and check that the master public key is non-trivial in
the step 3 of Protocol 3 to ensure the generating master private key belonging to (0,q).
Before introducing our protocol and theorem, we explain our idea briefly.

Idea. The point of 2P-MKG is to make sure that the summation of obtained secret
shares, xmas,0 and xmas,1, is equal to the master private key s := parse256 (IL) in which
the public key is s ·G, under the circumstance that neither of them know the master
private key and each other’s private share. Both parties can access faux(s0,r0,s1,n1)
through a garbled circuit to reach an agreement of the public key. During this process, a
malicious adversary might attempt to input n1 = 0 in (2) for getting the private key. This
issue is resolved by directly sending one non-zero input-wire label of n1 (ref. step 1 in
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Protocol 3). Next, both parties use DualEx protocol to verify their outputs of the garbled
circuit fmkg are the same. In the mean time, each party uses n1−i that was obtained from
the other party to check the algebraic relationship between faux and fmkg. At this stage,
it is very hard for malicious adversaries pass a series of the checking lists through non-
consistent inputs without knowing the another party’s si,ri, and ni. The role of ri is to
mask IL in fmkg from the other party, and the role of ni is to temporarily mask ri through
a linear combination within fmkg and faux. These processes can ensure the consistency
of garbled circuit inputs and the correctness of the secret shares.

Let f = (n,m, ℓ,Gates) be a boolean circuit. A participant Pi applies the algorithm
GB(1k, f ) to output (Fi,ei,di) (resp. GB(1k, f∗) to (F∗,i,e∗,i,d∗,i)), where i ∈ {0,1}. We
denote the input-wire matrix to be

XFi =

[
X0

Fi
[0] X0

Fi
[1] . . . X0

Fi
[n−1]

X1
Fi
[0] X1

Fi
[1] . . . X1

Fi
[n−1]

]
.

Here Xb
Fi
[k] is the k-th input-wire label representing the bit value b. If v ∈ {0,1}n is a

bit-string (i.e. v = v0∥v1∥ . . .∥vn−1), then we set Xv
Fi

:= (Xv1
Fi
[0], . . . ,Xvn−1

Fi
[n−1]) which

also writes this vector to be Xv
Fi

. Moreover, if v′ is a sub-string of v, which means v′ =
vt∥vt+1∥ . . .∥vt+k−1 with k the bit-Length of v′, then we set Xv′

Fi
:=(Xvt

Fi
[t], . . . ,Xvt+k−1

Fi
[t+

k−1]) = Xv′
Fi
. Set XFi(0) (resp. XFi(1) ) to be the participant P0

′s (resp. P1
′s) input-wire

matrix. Given two d1×d2 matrices A = [ai j], B = [bi j], we define

A∥B =


a11 . . . a1d2 b11 . . . b1d2
a21 . . . a2d2 b21 . . . b2d2

...
...

...
...

. . .
...

ad11 . . . ad1d2 bd11 . . . bd1d2


d1×2d2

.

Therefore, given an input x = x0∥x1 with x j being Pi
′s input, one has

En(ei,x) = Xx
Fi
= Xx0

Fi
∥Xx1

Fi
= Xx0

Fi
(0)∥Xx1

Fi
(1).

For the output-wire matrix

YFi :=
[
Y 0

Fi
[0] Y 0

Fi
[1] . . . Y 0

Fi
[m−1]

Y 1
Fi
[0] Y 1

Fi
[1] . . . Y 1

Fi
[m−1]

]
,

we define the hash matrix of YFi

HYFi :=
[

H
(
Y 0

Fi
[0]

)
H
(
Y 0

Fi
[1]

)
. . . H

(
Y 0

Fi
[m−1]

)
H
(
Y 1

Fi
[0]

)
H
(
Y 1

Fi
[1]

)
. . . H

(
Y 1

Fi
[m−1]

)] .
We consider Protocol 3 runs in a hybrid world where the parties are given access

to the trusted party computing two functionalities: oblivious transfer fOT (ref. Figure 5)
and validation testing fVT (ref. Figure 6). Then one has the following theorem:
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Fig. 5: The ideal functionality fOT
for Oblivious Transfer.

– The input of sender: (m0,m1) ∈
{0,1}k×{0,1}k.

– The input of receiver: a bit b ∈ {0,1}.
– The output of sender: ⊥.
– The output of receiver: the message mb.

Fig. 6: The ideal functionality fVT
for Validation Test.

– The input of P0: x0.
– The input of P1: x1.
– The output of P0 and P1: if x0 equals x1,

return 1; otherwise, return 0.

Fig. 7: The ideal functionality fRO for Random Oracle.

– Secure parameter: n.
– Variables: initially empty list L.
– The input: x.
– The output: Find r such that (x,r) ∈ L, then return r. If such r doesn’t exist, uniformly

sample r ∈ {0,1}n and add (x,r) to L and return r.

Theorem 1. Assume that a garbling scheme satisfies the properties: correctness, pri-
vacy, and obliviousness, a hash function H is modeled as an random oracle, and the
discrete logarithm problem is hard then πMKG is securely compute fπMKG with 2-bit leak-
age in the hybrid world described above.9 Here for input s0,s1 ∈ {0,1}k′ , the function
fπMKG = ( f0, f1) with

fi(s0,s1) :=
((

parse256
(
IL
)
+(−1)i · r

)
2

mod q, IR,parse256
(
IL
)
·G

)
∈Zq×{0,1}256×G,

for r uniformly random in Zq and HMAC-SHA512(“Bitcoin seed”,s0⊕ s1) = IL∥IR.

We remark that the most important secret seeds of both parties in our protocol will
be re-selected at each execution to assure the accumulative risk of leaking information
is up to 2 bits. The correctness of our theorem is briefly explained as follows and the
security proof given in Appendix B.1.

Correctness. According to the Protocol of πMKG, for i∈{0,1}, the plaintext (wmkg,i,waux,i)
is (parse256(IL) + ri · n1−i + r1−i · ni mod q, parse256(IL) + r1−i · ni mod q), and the

participant P ′i s xmas,i is
wmkg,i

2
−(n−ni)ri =

1
2
(parse256 (IL)− rin1−i + r1−ini) mod q.

Thus, parse256 (IL)= xmas,0+xmas,1 mod q, and Q=waux,i ·G−ni ·R1−i = parse256(IL)·
G. On the other hand, the chain-code IR has gotten in the phase 5 of Protocol 3.

9We remark that our protocol securely computes fπMKG with 2-bit leakage if the trusted enti-
ties are replaced by any secure protocols against malicious adversaries.
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Protocol 3 πMKG: 2-party master key generation

Input: two security parameters k, k′ and a seed si ∈ {0,1}k′ .
output: a share xmas,i, the corresponding public key Q, and the chain code.

1: Each participant Pi:
• randomly chooses ri ∈ Z×q and an odd integer ni ∈ [1,2k).
• performs GB in Definition 1 with fmkg and faux to obtain (Fmkg,i,emkg,i,dmkg,i), and

(Faux,i,eaux,i,daux,i).

• computes Xsi∥ser256(ri)∥serk(ni)
Fmkg,i

= En
(
emkg,i,si∥ser256(ri)∥serk(ni)

)
and Xsi∥ser256(ri)

Faux,i
=

En
(
eaux,i,(si∥ser256(ri))

)
.

• performs the OT protocol with P1−i to obtain garbled input-wire labels
Xsi∥ser256(ri)∥serk(ni)

Fmkg,1−i
(resp. Xsi∥serk(ni)

Faux,1−i
) except for X1

Fmkg,1−i
[ṅmkg,i] (resp. X1

Faux,1−i
[ṅaux,i]),

where ṅmkg,i (resp. ṅaux,i) is the index of all input-wire labels corresponding to the least
significant bit of ni. Sends X1

Fmkg,i
[ṅmkg,1−i], X1

Faux,i
[ṅaux,1−i], and the first message of OT.

2: Each participant Pi:
• After OT completed, sends the garbled message (Faux,i,X

si∥ser256(ri)
Faux,i

,daux,i), and the point
ri ·G to the participant P1−i.

3: Each participant Pi:
• interprets the coming point to be R1−i.
• uses Ev to get YFaux,1−i and then applies De to obtain the binary string vaux,i, interpret

vaux,i to be the result of the indicator function 1[0,q)(IL) and waux,i.
• denotes Q := waux,i ·G−ni ·R1−i which is the shared public key. If Q = 0 ·G, then sets

Q be an arbitrary point of G.
• if the indicator function 1[0,q)(IL) = 0, then assign (Fmkg,i,X

si∥ser256(ri)∥serk(ni)
Fmkg,i

,HYFmkg,i)

to be an arbitrary chosen message with the valid length.
• performs the validation test in Protocol 5 with P1−i to compare the shared public key Q.

4: Each participant Pi:
• sends (Fmkg,i,X

si∥ser256(ri)∥serk(ni)
Fmkg,i

,HYFmkg,i) to the participants P1−i.
5: Each participant Pi:

• uses Ev to get YFmkg,1−i and the incoming hash table HYFmkg,1−i to obtain the binary string
vmkg,i. Interpret vmkg,i to be wmkg,i, chain-code, and n.

• verifies wmkg,i = vaux,i +(n−ni) · ri mod q.

• computes xmas,i :=
wmkg,i

2
− (n−ni) · ri mod q

• computes

hmkg,i :=

H
(
Yvmkg,i

Fmkg,i
∥YFmkg,1−i

)
, if i = 0,

H
(

YFmkg,1−i∥Y
vmkg,i
Fmkg,i

)
, if i = 1.

• performs the validation test in Protocol 5 with P1−i to compare hmkg,i, and hmkg,1−i. If
they are equal, then the protocol is complete. Otherwise, abort.

3.2 A protocol of two-party child key derivation

In the child key derivation, non-hardened key generation is obvious since all inputs are
public information (ref. Protocol 2). We will then focus on the case of hardened key
in this section. Let k be a positive integer. Consider the following boolean circuit with
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security parameters k < 255:

fckd : Z×q ×Z×q ×Z×q ×Z×q,k×{0,1}
32×Z×q ×Z×q ×Z×q ×Z×q,k×{0,1}

256→{0,1}769+k

s0,r0,m0,n0, j,s1,r1,m1,n1,cpar 7→I(cpar, j,s0,s1,m0,m1)∥ser256(s0+s1+m0+m1+r0n1+r1n0 mod q)

∥ser256(n0+n1). (3)

fckd : Z×q ×Z×q ×Z×q ×Z×q,k×{0,1}
32×Z×q ×Z×q ×Z×q ×Z×q,k×{0,1}

256→{0,1}769+k

s0,r0, m0,n0, j,s1,r1,m1,n1,cpar 7→I(cpar, j,s0,s1,m0,m1)∥ser256(s0+s1+m0+m1+r0n1+r1n0 mod q)

∥ser256(n0+n1). (4)

Here I(cpar, j,s0,s1,m0,m1):=HMAC−SHA512(cpar,0x00∥ser256(s0+s1+m0+m1 mod q)∥ser32( j)). Similarly,
we also omit the notation k in fckd. Likewise, we explain the idea of our protocol and
then introduce our protocol and theorem.

Idea. The goal of our 2P-CKD is establishing the offset IL from both correct parent
private shares under the condition that neither of them know each other’s parent private
share and child secret key even though they know the digest of HMAC-SHA512. The
main concept is to directly utilize the DualEX protocol to obtain IL such that both
parties receive the same output. It can also confirm that the input of garbled circuit is
the expected parent private share through the algebraic relationship between the parent
public key and (s0 + s1 +m0 +m1 + r0n1 + r1n0) ·G. Here si +mi mod q is the parent
secret share where mi is to cover up the share against selective failure attack10. This
is because even if the attacker guesses the value of some bit values of si and mi when
executing OT, it is still difficult to know the bit value corresponding to si +mi, because
si+mi and si may differ by q. The role of ri is to mask secret share from the other party,
and the role of ni is to mask ri through a linear combination within fckd.

Theorem 2. Assume that a garbling scheme satisfies the properties: correctness, pri-
vacy, and obliviousness, a hash function H is modeled as an random oracle, and the
discrete logarithm problem is hard then πCKD is securely compute fπCKD with 1-bit leak-
age in the hybrid world described as in the Theorem 1. Here for input shares xpar,i ∈ Zq
respectively and the parent public key

Kpar =
(
xpar,0 + xpar,1

)
·G = Kpar,0 = Kpar,1,

the function11 fπCKD(xpar,0,Kpar,0,xpar,1,Kpar,1) :=
(I, I) , if Kpar,0 = Kpar,1 and(xpar,0 + xpar,1) ·G = Kpar,1;
the adversary gets I, the honest party gets⊥ if Kpar,0 = Kpar,1and(xpar,0 + xpar,1) ·G ̸= Kpar,1;
(⊥,⊥) , otherwise.

and I = HMAC-SHA512
(
cpar,0x00∥ser256

(
xpar,0 + xpar,1 modq

)
∥ser32( j)

)
.

10A malicious party attempts to learn the inputs of honest party through either putting bad
entries into a garbled truth table, or by providing bad input-wire labels in the OT for some values.

11With the output I, the parties can easily compute (IL,c j,K j) the output of πMKG.
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Protocol 4 πCKD: 2-party child key derivation
Input: a security parameter k, a parent share xpar,i, an index j, the chain-code cpar, and

the public parent key Kpar.
output: the offset IL of the private child key, child chain-code c j, and the corresponding

public key K j.
1: Each participant Pi:

• randomly chooses ri ∈ Z×q , mi ∈ Zq, and an odd integer ni ∈ [1,2k).
• computes x̃par,i := xpar,i−mi mod q.
• performs GB in Definition 1 with fckd to obtain (Fckd,i,eckd,i,dckd,i).
• computes Xbi

Fckd,i
= En

(
eckd,i,(bi)

)
and HYFckd,i , where bi is the bit string representing

the inputs x̃par,i, ri, mi, ni, j, cpar.

• performs the OT protocol with P1−i to obtain garbled input-wire labels Xb′i
Fckd,1−i

except

for X1
Fckd,1−i

[ṅckd,i], where ṅckd,i is the index of all input-wire labels corresponding to the
least significant bit of ni and b′i is the bit string representing the inputs x̃par,i, ri, mi, ni.
Send the first message of OT, and X1

Fckd,i
[ṅckd,1−i].

2: Each participant Pi:
• After OT completed, sends ri ·G to P1−i.

3: Each participant Pi:
• interprets the incoming points to be R1−i
• sends the garbled message

(Fckd,i,Xbi
Fckd,i

,HYFckd,i)

to the participant P1−i.
4: Each participant Pi:

• performs Ev to get the output-wire labels YFckd,1−i .
• uses HYFckd,i to learn the bit-string vckd,i, and interpret vckd,i to be IL, the child chain-code

c j, wckd,i, and n.
• verifies wckd,i ·G = Kpar +(n−ni) · ri ·G+ni ·R1−i.
• computes

hckd,i :=

H
(
Yvckd,i

Fckd,i
∥YFckd,1−i

)
, if i = 0,

H
(

YFckd,1−i∥Y
vckd,i
Fckd,i

)
, if i = 1.

• performs the validation test in Protocol 5 with P1−i to compare hckd,i, and hckd,1−i. If
they are equal, then the protocol is complete. Otherwise, abort.

At first, both parties learn I in this protocol, so they can directly verify if parse256 (IL)∈
[0,q) and Kpar+parse256 (IL) ·G is non-trivial. Second, our protocol frequently executes
the derivations from parent private key to child private key, which will cause higher
computational cost. To maintain the efficiency, we decide to assign the same outputs IL
to both parties rather than different outputs like Protocol 4. With this design, the secu-
rity is still guaranteed because as long as the parent private share is secured and then
the child private share remains secured. We also transfer the inputs of the parent secret
share xpar,i for i ∈ {0,1} from both parties into xpar,i−mi mod q to prevent selective
failure attack. For example, the sender can assign the desired value to a certain bit to
steal the secret from the receiver while executing OT.
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In addition, the worst scenario is to leak 1 bit in each execution according to the
security proof. To be more specific, an attacker can manipulate the output, parent private
key (i.e. s0 + s1 +m0 +m1 = xpar,0 + xpar,1 is the input of the circuit function fckd),
of an arbitrary boolean function g to be an assigned bit. Since the parent private key
will not be changed or re-selected, the attacker is able to learn the parent private key
after attacking certain times. To tackle this issue, we embed a verifying criteria to the
garble circuit functions that are given by each party such as number of wires, ADD
gates, EQ gates, INV gates, and XOR gates. These fundamental parameters follow a
topological order, which induce that the attacker can only execute false function attack
by controlling the non-free gates. We anticipate that it is not trivial for the attacker to
manipulate g under such restriction in the real world. The correctness of our theorem is
briefly explained in below and the security proof is given in Appendix B.2.

Correctness. Taking si = xpar,i−mi mod q in fckd, two parties both obtain the same

offset IL, so they set the child private share xchd,i := xpar,i +
parse256 (IL)

2
mod q. Then

xchd,0 + xchd,1 =xpar,0 + xpar,1 +parse256 (IL) mod q

=kpar +parse256 (IL) mod q

=k j mod q.

4 Application: Two party Hierarchical Deterministic Wallet

Our protocol is to demonstrate how two parties can collaborate to generate valid shares
that support HD wallet, but not the signatures. In most of current key generation pro-
tocols, a private key is the linear combination of shares, so we can integrate the shares
generated by our protocols in the current sign protocol to produce signatures when
t = n = 2. Most threshold signature protocols assume that each party’s input includes
private share si and the associated public key P satisfying one of the following two

cases: 1) If t ≤ n, P =
t

∑
i=1

(λisi) ·G, where λi is the corresponding Lagrange coefficient

of participants P1, ...,Pt . 2) If t = n, P =
n

∑
i=1

si ·G. In particular, when t = n = 2, two

cases are identical with letting s̃i = λisi mod q in case 1).
After performing our protocol 3, the participant Pi generates a master key share

xmas,i, the chain-code, and the public key. Each party only needs to memorize its own
master key share. Given a derivation path (m/i1/.../in) with depth n, where m is the
master key and (m/i1/.../in) is the in-th child key of (m/i1/..../in−1). Let ki1/.../in be
the private key of the derivation path (m/i1/.../in) and Ii1/.../in be the offset that satisfies

ki1/.../in = ki1/.../in−1 + Ii1/.../in mod q.

Given a path (m/i1/.../in), the private key ki1/.../in can be written as

xmas,0 + xmas,1 +
(
Ii1 + Ii1/i2 + · · ·+ Ii1/.../in

)
mod q.
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In the hardened key case (i.e. 231 ≤ i j < 232), the offset Ii1/.../i j can be generated it-
eratively from protocol 4. In the non-hardened key case (i.e. 0 ≤ i j < 231), each party
derives the offset using the parent public key, the parent chain-code, and the index i j
through Protocol 2. In conclusion, each party only needs to memorize the master key
share, xmas,i, the set of offsets {Ii1/.../i j : 231 ≤ i1, ..., i j < 232}, the chain-codes, and the
public keys associated to each hardened key in the database. Meanwhile, a canonical
selection of P ′i s share associated with the key ki1/.../in is given by

xmas,i +
1
2
(
Ii1 + Ii1/i2 + · · ·+ Ii1/.../in

)
mod q.

Considering the matter of backups, an appropriate setting for current multi-party
computation wallets is t = 2 and n = 3. Our protocol, even though we let t = 2 and
n = 2, can add a new backup share using two known master key shares through “add
share” [26].

The above discussion integrates our protocols and hot wallet. Moreover, we also can
incorporate cold wallets and hot wallets. We split a private key, that was derived from a
path in HD wallet, into the case t = n = 2 through Shamir’s secret sharing [30]. If a hot
wallet supports Protocol 4, then it can take these shares as parent shares to derive child
private shares. The advantage is that the derived accounts can be used to manage assets
in cold wallets. The assets will not be stolen when the share in mobile wallets was lost,
since the cold wallets can still make transactions and the other share is still secured.
The roles of hot and cold wallets in our proposal are similar to saving and checking
accounts. The integration of hot and cold wallets can ease the backup issues of mobile
wallets.

5 Implementation, Benchmarks, and Evaluation

We illustrate how to implement the Protocol 3 and 412 and evaluate the efficiency in
this section. The garbled scheme were generated using Two Halves Make a Whole [36]
to enhance the efficacy. We employ OT that proposed by Canetti et al.[6] and optimize
the security according to the suggestions in McQuoid et al. [25, Section 3.3]. In the
validation protocol, we let both parties use one-side validation protocol (ref. Protocol
5) to verify that both outputs from garbled circuit are the same. The detailed discussion
can be found in Appendix A. Additionally, we follow the Bristol fashion to generate
three major boolean circuits of fmkg, faux and fckd. To improve the consumption during
circuit execution, we follow the process below:

1. We can focus on SHA-512, since HMAC-SHA512 is iteratively derived by two
SHA-512. SHA-512 first processes through padding the input message to n 1024
bits length messages m0, . . . ,mn−1, then generates the output using compression
function(abbrev. CF) iteratively. More precisely, a compression function has a 1024
bit-length and a 512 bit-length inputs and then produces a 512 bit-length output.
Given an initial 512 bit-length message m′(0), let

m′(i) := CF
(

mi−1,m′(i−1)
)
, i = 1, . . . ,n.

12https://github.com/getamis/alice/tree/AddMoreCircuit
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Table 1: Basic information of our circuits
including number of gates and wires of fmkg,
faux, and fckd.

fmkg faux fckd

Total number of gates 847,420 796,827 507,581

Total number of wires 850,558 799,676 510,463

Total number of ADD Gates 162,054 145,784 107,442

Table 2: Time consuming for
running 20 samples.

2P-MKG 2P-CKD

Fast time 7.181s 2.688s

Slow time 7.748s 2.839s

Avg time 7.374s ± 0.14s 2.739s ± 0.04s

The bit-length of seed = 512; The bit-length of n = 33; The bit-length of Paillier public key = 2048; The number of base OT

= 128; The half-gates scheme uses the Hash function M̂MO
E

(ref. [13, Section 7.3]) with the ideal cipher AES-128.

m′(n) is the digest. In our scenario, we consider the padding messages of SHA-512
are 2048 bits and the first 1024 bits are all the same excluding seeds and shares.
To lessen the iterations of compression function, we pre-calculate the first state and
use it as our circuit input to improve the efficiency of SHA-512.

2. In CKD, we only need to compute compression function once to mask both parties’
inputs and then get the output of HMAC-SHA512, since both sides will obtain I.

3. We reduce the number of gates for the boolean circuit of multiplication and provide
some useful boolean circuits such as evaluating the inequality and mod q.

All benchmarks without downloading boolean circuits were run in a single-threaded
on an Intel i5 CPU 2.3GHz and 16GB 2133MHz LPDDR3 of RAM in the 13-inch
(2018) macbook pro, because each execution uses the same boolean circuits.

6 Future work

Theoretically, there will be risk in leaking bits while using DualEx protocol since we
considered the worst scenario without any restrictions on g in the security proof. We
conjecture that, practically, the input of the honest party will not leak one bit while
executing the proposed protocol. To overcome the risk of leaking bits, we can poten-
tially utilize garbled circuit schemes against malicious adversaries such as authenticated
Garbling method. Because our proof was given in the hybrid world, it is needed to in-
vestigate secure instances of the functionality fVT. Lastly, the other direction of future
work is to enhance the efficiency and improve the cost of memory through reducing the
number of boolean circuits, gates, wires, and to achieve optimal rounds of the proposed
protocols.
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Appendix A Validation Protocol

We focus on two commonly used additive homomorphic encryptions, Paillier cryp-
tosystem[28] and CL homomorphic encryption[8] in this section. Let ski be the private
key of participant Pi, and pki be the public key corresponding to ski,

⊕
be the ho-

momorphic addition, and
⊗

be the scalar multiplication. We first recall the one side
validation protocol in [15, Figure 5].

Protocol 5 One-side validation protocol
Input: a secret value hi, a private key ski and public keys pk0 and pk1 from both partici-

pants.
Output: Pi: if hi = h1−i then return true; otherwise return false; P1−i: ⊥.

1: The participant Pi:
– computes a ciphertext Ci := Eni(−hi). Here Eni is the encryption function of the public

key pki.
– sends Ci to P1−i.

2: The participant P1−i:
– randomly chooses r1−i,s1−i and computes C1−i := Eni (r1−i(h1−i−hi)+ s1−i) =

(r1−i
⊗

Ci)
⊕

Eni (r1−ih1−i + s1−i) and h := H(s1−i,h1−i).
– sends C1−i, and h, to Pi.

3: The participant Pi:
– computes si := Dei(C1−i). Here Dei is the decryption function of the private key ski.
– verifies h = H(si,hi). If the equality holds, then output true; otherwise, output false.

As stated in the paper [15, Section 3-C] applying above protocol twice sequentially
with the parties swapping roles does not achieve the simulation-based security against
malicious adversaries. Even if the one-side validation protocol is resistant to malicious
attackers, it is still not an instance of the functionality fVT. It is because that the mali-
cious can insert the different inputs hi in twice executions, which produces the outputs
of two parties are divergent. However, this protocol satisfies that 1) no information leaks
from the honest party; 2) and the probability is negligible that the honest party receives
the output true when the malicious party is cheating. An instance of the functionality
fVT is needed for future work.

Appendix B Security Proofs

In this section, we prove Theorem 1 and Theorem 2.

B.1 A Security Proof for Theorem 1

First, we ignore the event parse256(IL) ̸∈ (0,q) since this event occurs with probability
lower than 2−127. That is, we will skip the checks, which are the non-trivial public key
and the non-zero of indicator function 1[0,q) in the Protocol 3. Without loss of generality,
we assume that P1 is the adversary since the behaviors of P0 and P1 are symmetrical.
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Let A be a hybrid-world adversary, which controls the corrupted party P1. We show that
we can construct an adversary S , executing in our ideal world where the parties have
access to a trusted entity computing fπMKG , that has the same effect as A in the hybrid
world. Note that we consider if S receives any invalided messages in the simulation,
then records an “error”. The simulation details are as follows:

Step 1: The adversary S :
• uses its inputs s1 and auxiliary input aux running A on the same inputs.
• randomly sample an odd number n0 ∈ [1,2k) and generates (F̃aux,0, X̃Faux,0)

and (F̃mkg,0, X̃Fmkg,0). Here X̃Faux,0 = Xv
Faux,0

and X̃Fmkg,0 = Xv′
Fmkg,0

for some
v,v′ ∈ {0,1}∗.

• sends garbled input-wire labels X̃Fmkg,0 [ṅmkg,1] and X̃Faux,0 [ṅaux,1] to A where

ṅmkg,1 (resp ṅaux,1) is the index of all input-wire labels of X̃Fmkg,0 (resp.

X̃Faux,0 ) corresponding to the least significant bit of n1.
• receives the input-wire labels XFaux,1 [ṅaux,0] and XFmkg,1 [ṅmkg,0] from A .
• simulates OT functionality on the inputs (ŝ1, n′1, r1)∈ {0,1}k′×{0,1}k−1×
Zq of A . Let n1 := 2n′1+1∈{0,1}k. Send garbled input-wire labels X̃Fmkg,0(1),

X̃Faux,0(1) to A , (except X̃Faux,0 [ṅaux,1] and X̃Fmkg,0 [ṅmkg,1]). Here X(i) is the
P ′i s input-wire labels and X is the all input-wire labels.
• simulates OT functionality to obtain the input-wire labels excluding the

ṅaux,0-th input-wire label and the ṅmkg,0-th input-wire label respectively of
A , denoted by X′Faux,1

and X′Fmkg,1
.

Step 2: If S has recorded the “error” then S randomly samples s′1 ∈ {0,1}k′ . Otherwise,
S sets s′1 := ŝ1. The next step, S provides s′1 to the trust party, and apply the
functionality fπMKG to obtain the output

((parse256(IL)− r)/2 mod q, IR,parse256(IL) ·G) .

Let

vmkg,1 := ser256(parse256(IL)− r+2n0r1 mod q)∥IR∥ser256(n0 +n1),

and
vaux,1 := ser256(parse256(IL)− r+n0r1 mod q).

Step 3: S lets r0 ·G to be

n−1
1

(
(parse256(IL)−r)·G−parse256(IL)·G+n0 ·r1 ·G

)
= n−1

1 ((−r) ·G+n0 · r1 ·G) .

Generate d̃aux,0 such that

De(d̃aux,0,Ev(F̃aux,0, X̃Faux,0)) = vaux,1.

Send the point r0 ·G and (F̃aux,0, X̃Faux,0(0), d̃aux,0) to A . Receive a point R1, and
a tuple (Faux,1,XFaux,1(1),daux,1).
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Step 4: A submits some input q1 for the validation test. S then defines g0 : {0,1}k′ →
{0,1} as following:
• On input x ∈ {0,1}k′ , use the bits of x as selector bits to define the input-

wire labels X′xFaux,1
. Let n′0 := n0>>1 be the right shift 1 of n0 and set the labels

X′xFaux,1
combining the other input-wire labels XFaux,1 [ṅaux,0], X

′serk−1(n′0)
Faux,1

and
XFaux,1(1) corresponding the inputs n0,s1,r1 be X . Perform Ev on X , Faux,1,
and De on daux,1 to obtain a plain output vaux,0, sets waux,0 := parse256(vaux,0)
and let q0 := waux,0 ·G−n0 ·R1. If S has recorded “error”, then let q0 to be
an arbitrary value.

• The output of g0 = 1 if q1 = q0. Otherwise g0 = 0.
S sends g0 to the trusted party, receives a return g0(s0) ∈ {0,1}, and passes
g0(s0) to A .

Step 5: If g0(s0) = 0, then S records “error”. Let ỸFmkg,0 := Ev
(

F̃mkg,0, X̃Fmkg,0

)
. Gener-

ate the output-wire label table

YFmkg,0 :=
(

Y00 Y01 ... Y0n−1
Y10 Y11 ... Y1n−1

)
,

where Yi j = ỸFmkg,0 [ j] for j ∈ {0, . . . ,n−1}. If j-th bit of vmkg,1 is i, then the other
entry of column j is a random bit-string with the equal bit-length. One can learn
vmkg,1 by comparing the hash output matrix HYFmkg,0 . Send (F̃mkg,0, X̃Fmkg,0(0),HYFmkg,0)
to A . Receive a tuple (Fmkg,1,XFmkg,1(1),HYFmkg,1) and the second input hmkg,1
of the validation test.

Step 6: S defines the function g1 := {0,1}k′ →{0,1} as follows:
• If there exists “error”, then errorflag = 1. Otherwise, errorflag = 0. Moreover,

if any errors occur in any of the steps below, then errorflag = 1.
• On input x∈{0,1}k′ , let r0 := n−1

1 (n0r1−r′) mod q where r′ := parse256(I
′
L)−

(parse256(IL)− r) mod q and HMAC-SHA512
(
“Bitcoin seed”, x⊕ s′1

)
=

I′L∥I′R.
• Use the bits of x as selector bits to define the input-wire labels X′xFmkg,1

. Let

these labels combining the input-wire labels XFmkg,1 [ṅmkg,0],X
′ser256(r0)∥serk−1(n′0)
Fmkg,1

and XFmkg,1(1) corresponding the inputs n0,r0,s1,n1,r1 be X . Perform Ev on
X , Fmkg,1 to obtain YFmkg,1 and compare YFmkg,1 with the hash table HYFmkg,1
to obtain a plain output vmkg,0. If errorflag = 1, set vmkg,0 to be a randomly
reasonable bit-string.

• Recompute waux,0 by applying the same progress in Step 4. If errorflag = 1,
set waux,0 to be a randomly integer in Zq.

• Interpret vmkg,0 to be wmkg,0, the chain-code, n and verify if wmkg,0 =waux,0+

(n−n0)r0 mod q. If the verification successes, then let hmkg,0 :=H
(
Yvmkg,0

Fmkg,0
∥YFmkg,1

)
.

Otherwise, let hmkg,0 be a randomly reasonable bit-string.
• If errorflag = 0 and hmkg,0 = hmkg,1, then the output is 1. Otherwise, return 0.

S sends g1 to the trusted party, receives a return g1(s0) ∈ {0,1}, and passes
g1(s0) to A .
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Step 7: If there exists “error” or g1(s0) = 0, then S sends abort to the trust party and
returns the output of A . If r1 ·G ̸= R1, then S outputs “fail”. Otherwise, S sends
continuous to the trust party and returns the output of A .

To prove that the hybrid world output and the ideal world output are indistinguish-
able, we consider four simulators S1, S2, S3, and S4.

1. Let S1 work in the same way as S except that S1 chooses r by itself and has the
input s0 of P0 as its aux instead of receiving r externally from the trusted party.

2. S2 runs in the same way as S1 except that S2 let r := n0r1− n1r0 where r0 is ran-
domly chosen from Zq in the step 1 of the above simulation.

3. S3 executes in the same way as S2 except that S3 follows the strategy of the honest
party to generate garbled circuits of the function faux with the input s0,r0.

4. All behaviours of S4 and S3 are the same except S4 follows the strategy of the honest
party to generate garbled circuits of the function fmkg with the input s0,r0,n0.

Firstly, it is clear that the distribution ensembles of the ideal world and S1 are
identical, since S1 and the trust party both randomly choose r. Second, recall that
r0 = n−1

1 (n0r1− r′) = n−1
1 (n0r1− r) mod q and n1 ̸= 0 mod q. Note that the input of

g1 is s0, which implies r′ = r. Thus, the distribution of r0 is the uniform distribution on
[0,q−1] if and only if the distribution of r is the uniform distribution on [0,q−1], which
leads to that the joint distributions of (r0,r) generated by S1 and S2 are identical. Next,
the property Obliviousness of garbled circuit scheme implies that (F̃aux,0, X̃Faux,0) and
the standard construction (Faux,0,XFaux,0) are indistinguishable. Furthermore, they both
give the same output, so the outputs of S2 and S3 are computationally indistinguishable.
Similarly, the above argument also gives the outputs of S3 and S4 are computationally
indistinguishable.

In order to prove that S4 generates a transcript that is indistinguishable from a tran-
script in the hybrid world, we need the following three lemmas.

Lemma 1. In the transcripts generated by S4, the probability of g1(s0) = 1 and the two
bit-strings are different

vmkg,0 ̸=ser256(parse256(IL)+n0r1 +n1r0 mod q)

∥IR∥ser256(n0 +n1)

is negligible. Here vmkg,0 is the decoding result in the step 6.

Lemma 2. The probability of the output “fail” in the simulator S4 is negligible.

Lemma 3. If the output generated by S4 is neither “fail” nor abort, then the output of
P0 is (wmkg,0

2
− (n−n0)r0,chain-code,waux,0 ·G−n0 ·R1

)
which is also the output of P0 in the protocol πMKG without abort.

Note that the joint output distribution of S ′4s output and the hybrid world output are
identical before the step 6. Combining this fact, Lemma 1, Lemma 2, and Lemma 3,
one has the outputs of S4 and πMKG executing in the hybrid world are computational
indistinguishable.
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B.2 A Security Proof for Theorem 2

Similarly, we assume that P1 is the adversary. The same setting as Appendix B.1. The
details are as follows:

Step 1: The adversary S :
• uses its inputs xpar,1, Kpar and auxiliary input aux running A on the same

inputs.
• randomly samples an odd number n0 ∈ [1,2k) and generates X̃Fckd,0 where

X̃Fckd,0 = Xv
Fckd,0

for some v ∈ {0,1}∗.

• sends garbled input-wire labels X̃Fckd,0 [ṅckd,1] to A . Here ṅckd,1 is the index

of all input-wire labels of X̃Fckd,0 corresponding to the least significant bit
of n1.
• receives the input-wire label XFckd,1 [ṅckd,0] from A .
• simulates OT functionality on the input (x̂par,1, m1, n′1, r1) ∈ Zq×Zq×
{0,1}k−1×Zq of A . Let n1 := 2n′1 +1 ∈ {0,1}k. Send garbled input-wire
labels X̃Fckd,0(1) (except X̃Fckd,0 [ṅckd,1]) to A .
• simulates OT functionality to obtain the input-wire labels excluding the

ṅckd,0-th input-wire label of A , denoted by X′Fckd,1
.

Step 2: S sets x′par,1 := x̂par,1 +m1 mod q. If S has recorded the “error” then S ran-
domly samples x′′par,1 ∈ Zq. Otherwise, S sets x′′par,1 := x′par,1. The next step, S
provides (x′′par,1,Kpar) to the trust party, and then obtains the output I.

Step 3: S uniformly samples r∈Zq and sends R0 := n−1
1

(
(r−n0r1− x′par,1) ·G−Kpar + xpar,1 ·G

)
to A . Receive R1 from A .

Step 4: Let ỸFckd,0 := Ev
(

F̃ckd,0, X̃Fckd,0

)
. S generates the output-wire label table

YFckd,0 :=
(

Y00 Y01 ... Y0n
Y10 Y11 ... Y1n

)
,

where Yi j = ỸFckd,0 [ j] for j∈{0, . . . ,n−1}. If j-th bit of vckd,1 := I∥ser256(r)∥ser256(n0+
n1) is i, then the other entry of column j is a random bit-string with equal bit-
length. One can learn vckd,1 by comparing HYFckd,0 . Send (F̃ckd,0, X̃Fckd,0(0),HYFckd,0)
to A . Receive tuple (Fckd,1,XFckd,1(1),HYFckd,1) and the input hckd,1 of the vali-
dation test.

Step 5: S randomly chooses m0 ∈ Zq and defines the function g := Zq → {0,1} as
following:
• If there exists “error”, then S sets errorflag = 1. Otherwise, errorflag = 0.

Moreover, if any errors occur in any of the steps below, then errorflag = 1.

• On input x∈Zq, let r0 := n−1
1

(
r−n0r1− x+ x′par,1

)
. Next, uses the bits of

s := ser256(x−m0 mod q) as selector bits to define the input-wire labels
X′sFckd,1

. Let n′0 = n0>>1 be the right 1 of n0 and the input-wire labels X′sFckd,1

combining the input-wire labels X′ser256(r0)∥ser256(m0)∥serk−1(n′0)
Fckd,1

,XFckd,1 [ṅckd,0]
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and XFckd,1(1) be X . Perform Ev on X , Fckd,1 to obatin YFckd,1 and compare
the hash table HYFckd,1 to obtain a bit-string vckd,0. If errorflag = 1, set vckd,0
to be a randomly reasonable bit-string.
• Interpret vckd,0 to be IL, the child chain-code c j, wckd,0,n, and verifies

wckd,0 ·G = Kpar + (n− n0)r0 ·G + n0 · R1. If the verification fails, then
set errorflag = 1.
• If errorflag = 1, then set hckd,0 := H

(
Yvckd,0

Fckd,0
∥YFckd,1

)
. Otherwise, let hckd,0

to be a randomly reasonable bit-string.
• If errorflag = 0 and hckd,0 = hckd,1, then the output is 1. Otherwise, return 0.

Step 6: If there exists “error” or g
(
xpar,0

)
= 0, then S sends abort to the trust party

and returns the output of A . If r1 ·G ̸= R1, then S outputs “fail”. Otherwise, S
sends continuous to the trust party and returns the output of A .

We now consider two simulators S1 and S2.

1. All actions of S1 and S are the same except that S1 has the input xpar,0 of P0 as its
aux. In addition, S1 randomly chooses r0 ∈Zq in the Step 1 of the above simulation
and let r := xpar,0 + x′par,1 +n0r1 +n1r0.

2. All actions of S2 and S1 are the same except that S2 follows the strategy of the
honest party to generate garbled circuits of the function fckd.

The indistinguishability for the ideal world output, S ′1s output, and S ′2s output are
similar to Theorem 1. We only show that the outputs of S2 and Protocol 4 executing
in the hybrid world are indistinguishable. First, we need the following lemma. We will
skip the proof, since it is similar to the Lemma 1.

Lemma 4. In the execution of S2, the probability of g(xpar,0) = 1 and the two bit-strings
are different

vckd,0 ̸= I∥ser256(xpar,0 + x′par,1 +n0r1 +n1r0 mod q)∥ser256(n0 +n1)

is negligible.

If S2 does not abort in the step 6, then Lemma 4 and the equality

wckd,0 ·G = Kpar +(n−n0)r0 ·G+n0R1

imply that
(

x′par,1− xpar,1

)
·G = n0(R1−r1 ·G). Note that x′par,1 = x̂par,1+m1. Although

the adversary A knows one bit of n0 (i.e. the least significant bit), A still hardly deter-
mines r1, x̂par,1,m1, and R1 satisfying the equality

(
x′par,1− xpar,1

)
·G = n0(R1− r1 ·G)

with r1 ·G ̸= R1. Thus, the probability that S2 outputs “fail” is negligible.
If the output is neither “fail” nor abort, the proof is completed by the following:

1. S2 has to check an additional condition
(

xpar,0 + x′par,1

)
·G = Kpar by the defini-

tion of fckd. If this equation does not hold, then x′par,1 ̸= xpar,1. Combining this fact

and
(

x′par,1− xpar,1

)
·G = n0(R1− r1 ·G), we have R1 ̸= r1 ·G, which implies that

S2 should output “fail”. Therefore, the probability of
(

xpar,0 + x′par,1

)
·G ̸= Kpar is

negligible.
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2. Although the outputs of P0 are different in these two worlds (i.e. the hybrid world
gives IL∥c j and S2 gives I), we have IL∥c j = I with overwhelming probability by
Lemma 4.

Proof (Proof of Lemma 1).
For the circuit Fmkg,0, A only knows the output-wire labels Yvmkg,1

Fmkg,0
corresponding to

the bit-string

vmkg,1 = ser256(parse256(IL)+n0r1 +n1r0 mod q)∥IR∥ser256(n0 +n1).

If A sets vmkg,0 to be another value, A has to guess the output-wire labels Yvmkg,0
Fmkg,0

̸=

Yvmkg,1
Fmkg,0

to pass the validation test hmkg,0 = H
(
Yvmkg,0

Fmkg,0
∥YFmkg,1

)
= hmkg,1. Hence, if

vmkg,0 ̸= ser256(parse256(IL)+n0r1 +n1r0 mod q)∥IR∥ser256(n0 +n1),

then g1(s0) = 0 with overwhelming probability.

Proof (Proof of Lemma 2). If S4 does not abort at Step 7 in Appendix B.1, then g1(s0) =
1. Therefore, we have Lemma 1:

vmkg,0 = ser256(parse256(IL)+n0r1 +n1r0 mod q)∥IR∥ser256(n0 +n1).

The equality wmkg,0 = waux,0 +(n−n0)r0 mod q and Lemma 1 imply that

q0 = waux,0 ·G−n0 ·R1 = parse256(IL) ·G+n0 · (r1 ·G−R1).

For any r1,R1 with r1 ·G ̸= R1, A hardly finds q1 = q0 since A only knows one bit of
n0.

Proof (Proof of Lemma 3). First, if S4 does not output abort, then g1(s0) = 1. By
Lemma 1 and the equality waux,0 = wmkg,0−n1r0 mod q, we have

vmkg,0 = ser256(parse256(IL)+n0r1 +n1r0 mod q)∥IR∥ser256(n0 +n1)

and
waux,0 = parse256(IL)+n0r1 mod q.

Second, the equality R1 = r1 ·G holds since S does not output “fail”. We conclude that
the output of P0 generated by S4 is(

parse256(IL)+ r
2

mod q, IR,parse256(IL) ·G
)
.

Moreover, one has

parse256(IL)+ r
2

=
wmkg,0

2
− (n−n0)r0 mod q,

and
parse256(IL) ·G = waux,0 ·G−n0 ·R1.

The proof is complete.


