
PriFHEte: Achieving Full-Privacy in Account-based
Cryptocurrencies is Possible

Varun Madathil Alessandra Scafuro *

North Carolina State University
May 20, 2024

Abstract

In cryptocurrencies, all transactions are public. For their adoption, it is important that
these transactions, while publicly verifiable, do not leak information about the identity
and the balances of the transactors.

For UTXO-based cryptocurrencies, there are well-established approaches (e.g., ZCash)
that guarantee full privacy to the transactors. Full privacy in UTXO means that each
transaction is anonymous within the set of all private transactions ever posted on the
blockchain.

In contrast, for account-based cryptocurrencies (e.g., Ethereum) full privacy, that
is, privacy within the set of all accounts, seems to be impossible to achieve within the
constraints of blockchain transactions (e.g., they have to fit in a block). Indeed, every
approach proposed in the literature achieves only a much weaker privacy guarantee
called k�anonymity where a transactor is private within a set of k account holders.
k�anonymity is achieved by adding k accounts to the transaction, which concretely lim-
its the anonymity guarantee to a very small constant (e.g., 64 for QuisQuis and 256 for
anonymous Zether), compared to the set of all possible accounts.

In this paper, we propose a completely new approach that does not achieve anonymity
by including more accounts in the transaction, but instead makes the transaction itself
“smarter”. Our key contribution is to provide a mechanism whereby a compact trans-
action can be used to correctly update all accounts. Intuitively, this guarantees that all ac-
counts are equally likely to be the recipients/sender of such a transaction. We, therefore,
provide the first protocol that guarantees full privacy in account-based cryptocurrencies
PriFHEte 1.

The contribution of this paper is theoretical. Our main objective is to demonstrate
that achieving full privacy in account-based cryptocurrency is actually possible. We see
our work as opening a door to new possibilities for anonymous account-based cryp-
tocurrencies.

Nonetheless, in this paper, we also discuss PriFHEte’s potential to be developed in
practice by leveraging the power of off-chain scalability solutions such as zk rollups.

*Varun Madathil and Alessandra Scafuro are supported by Protocol Labs
1Pronounced like “private” but with an f in place of the v. That is, prifate.

1

1 Introduction

Account-based cryptocurrencies (e.g., Ethereum[eth], Filecoin[fil], Ripple[rip] etc.) follow
the traditional bank model of keeping balances for accounts. In these cryptocurrencies, each
public key (account) is associated with a balance, and a payment from public PKA to PKB of
x coins, results in simply updating the balances of PKA and PKB by�x and +x respectively.
In contrast, the Unspent Transaction Outputs (UTXO) Model, used in Bitcoin, is organized
around transactions, and a payment is created by referencing a public key from the out-
put of an unspent transaction. Account-based cryptocurrencies offer several advantages
over UTXO for transactions. For example, the account model has better memory usage.
Users only need to store a single account balance as opposed to several UTXOs that to-
gether make up the balance. Similarly regarding, miner storage, miners need to maintain an
ever-increasing set of UTXOs to verify transactions. On the other hand, the size of the state
in account-based cryptocurrencies increases only when new accounts are added.

Privacy in Cryptocurrencies. Privacy in financial transactions has always been deemed
important, as people tend to prefer that the amount of money they have and how they
use it, remains private. Traditional banking systems inherently provide privacy by keep-
ing account balances confidential, known only to the bank and the account holder. How-
ever, in the case of cryptocurrencies, public verifiability is necessary as transactions are
only added to the blockchain if they can be verified by the public. As a result, privacy
must be added to cryptocurrencies carefully, without compromising public verifiability.
De-anonymization attacks on Bitcoin [MPJ+13, RH13] have demonstrated that using ran-
domly generated public keys provides limited privacy, as payments can be traced and, in
combination with other metadata, can be used to associate real identities with public keys.
This has led to a significant amount of research aimed at adding privacy to cryptocurren-
cies [MGGR13, SCG+14, NM+16, FMMO19, BAZB20, Dia21], with various trade-offs be-
tween privacy and efficiency (as discussed in Section 2).

For the UTXO model, it is possible to achieve full privacy while still maintaining ef-
ficiency and public verifiability. For example, ZCash [HBHW] is a fully private, publicly
verifiable and practical UTXO payment system. The main idea of such systems is to asso-
ciate a transaction to a serial number and commit to the serial number and the value of the
transaction. This commitment is added to a public pool (also referred to as state), succinctly
represented by a Merkle Tree. To spend an unspent transaction, the unique serial number
is revealed and a succinct zero-knowledge proof is provided to demonstrate that this serial
number represents one of the transactions committed to the pool. Then, a new serial num-
ber representing the new unspent transaction is committed to the pool. However, the main
disadvantage of this approach is that the pool of private transactions grows infinitely. Ad-
ditionally, the miners must keep track of all the serial numbers that have been revealed over
time.

Privacy in Account-based Cryptocurrencies. In account-based cryptocurrencies, the state is
a list of accounts with their respective balances (e.g., PKA, vA) and payment is an update of
two account balances in this state. The sender’s balance is decreased by x and the receiver’s
balance is increased by x (for simplicity, miner fees are ignored). As a result, the state of the
blockchain can be viewed as a large table with one row per account, and payments require
updating two rows in the table. It can be seen that the serial number-based approach used
in Zcash would not work in this model, as payments require updating account balances,

2

rather than just burning an unspent transaction.
To add privacy to account-based cryptocurrencies, current solutions, such as QuisQuis [FMMO19],

Zether[BAZB20] and anonymous Zether [Dia21] hide the balance of the users by encrypting
or committing to balances using a homomorphic scheme. This achieves confidentiality. To
add anonymity they [Dia21, FMMO19] rely on the concept of adding multiple accounts to a
payment transaction. This way, an external observer cannot determine the pair of accounts
executing the transaction. Instead of creating a transaction with only the public keys of the
sender and receiver, the sender will select a set of k� 2 other public keys to form a “ring”.
A multi-account transaction is then created, containing k ciphertexts and a zero-knowledge
proof that two out of the k ciphertexts correctly encrypt a balance transfer between two ac-
count holders, while the remaining ciphertexts are encryptions of 0. The miner processing
this transaction, updates the k rows in the state, by homomorphically adding each ciphertext
to the correct row. This approach provides k-anonymity to the sender and receiver.

QuisQuis and anonymous Zether suggest using an anonymity set of size 16, while Mon-
ero [NM+16, LRR+19] 2 suggests a ring size of 11. These values of k are a very small fraction
of the total number of account holders, and provide very fragile guarantees, as shown by
the attacks proposed in [MSH+17, KFTS17] on the traceability of the sender of transactions
in Monero. Furthermore, the limitation on the anonymity set is inherent with this tech-
nique, since the choice of k must be upper-bounded by the maximum size of the transactions
that can fit in a block. If we consider the typical size of a blockchain block, the maximum
anonymity set that an account holder can obtain is around 64 for QuisQuis and 256 for
anonymous Zether 3. Another significant drawback of this approach is that the choice of the
accounts that are included in the anonymity set must be done carefully, since a bad choice
of accounts (e.g., accounts that rarely appear in any transaction) can reduce even further the
actual anonymity guarantees.

There seems to be a major obstacle to achieving full anonymity in account-based cryp-
tocurrencies. Since anonymity depends on the number of accounts involved in the transac-
tion, full anonymity would require the transaction to be at least as large as the entire table
of accounts, which is infeasible to implement.

In this paper we ask the following feasibility question:

Is it possible to achieve full anonymity in account-based blockchains with transactions
that are independent of the anonymity set?

1.1 Our contribution

In this paper, we answer the above question positively. We provide a novel approach for
creating privacy-preserving transactions that are compact and provide privacy within the set
of all account holders 4. Our work provides the strongest anonymity degree with the shortest
transaction size, and is asymptotically most efficient for account holders. We prove security

2Monero is a UTXO-based cryptocurrency that however uses the ring approach to achieve anonymity.
3We extrapolated these values from the following data from [Dia21]: for an anonymity set of 16, the size

of the transaction for QuisQuis is 26KB, and for anonymous Zether is 6KB, and we consider the maximum
blocksize to be 100KB (https://bitinfocharts.com/comparison/size-eth.html)

4“All account holders” means all account holders that have a private account. If a blockchain does not have
privacy by design, then some people could choose to have a public account only. Such accounts, naturally,
would not count in the anonymity set.

3

https://bitinfocharts.com/comparison/size-eth.html

in the Universally Composable (UC) [Can01] model, using the private-ledger functionality
introduced by Kerber et al. [KKKZ19]. To the best of our knowledge, this is also the first
account-based privacy-preserving payment protocol that is UC-secure (regardless of the ef-
ficiency).

1.2 Our Techniques

Recall that our goal is to create payment transactions that have full anonymity w.r.t. all
existing account holders, and confidentiality of the amount transferred. To achieve confi-
dentiality, we first encrypt the balances of each account holder under their public key. The
transfer transaction includes ciphertexts that are added to the corresponding encrypted bal-
ance. However, for a transaction to have full anonymity, it is essential that every account’s
ciphertext is updated during the payment transaction processing. If even a single account is
not updated, the anonymity set is reduced by one. To solve this challenge, we need to craft
two ciphertexts, cS and cR, that can be homomorphically evaluated with each ciphertext
c1, c2, . . . , cN in such a way that all ciphertexts are correctly updated with the re-encryption
of their current balances, while only the ciphertexts of the sender and receiver’s accounts
are updated with the new balance.

The main challenge to achieving this is that each every ciphertext is computed under a
different key. How can two ciphertexts be used to homomorphically update N ciphertexts
computed under N different keys?

We solve this conundrum by taking inspiration from the recent elegant work by Liu and
Tromer [LT22] that faces a similar challenge for a very different problem (see Section 2).
Their work leverages a special property that exists in some LWE-based encryption schemes
for plaintexts in {0, 1}, called wrong key decryption (see Def 3). This property states that,
even when a ciphertext is decrypted with the wrong key, the decryption function always returns a bit
(Regev’s encryption scheme [Reg10] and the LWE scheme from PVW [PVW08] satisfy this
property).

With this property in hand, our main idea is to use two encryption schemes, a fully ho-
momorphic encryption (FHE) scheme to encrypt the balance and an encryption scheme with
the property of wrong-key decryption (denoted WKEnc). The encryption scheme WKEnc is
used to hide the identities of the sender and receiver. With the wrong-key decryption prop-
erty, we can (using FHE) homomorphically decrypt 5 a ciphertext, using the encryption of
different secret keys. This results in ciphertexts such that only the encryption of the desired
secret key (of the sender or the receiver) will decrypt the desired result.

This property allows for oblivious selection! When we obliviously decrypt (via FHE
evaluations) using the correct keys, i.e., the keys of the sender and the receiver, the oblivi-
ous decryption will return encryption of the correct bits; whereas when we attempt to obliv-
iously decrypt using the other keys, the ciphertext resulting from the computation will have
at least one wrong bit. We use this observation to compute a flag that can be used to selec-
tively and obliviously update the balance only of the sender and the receiver.

With this intuition in mind, we proceed with a more detailed description of our payment
system PriFHEte. We will describe how a user can (1) create a private account, (2) create a
private payment, and (3) how the blockchain nodes process a private payment. A visual of

5This is reminiscent of Gentry’s [Gen09] Recrypt operation associated with FHE schemes for bootstrapping.

4

our protocol can be found in Fig. 1

…….
…….
…….

…….
…….

!"
st

st

Broadcast
!" = (%!, %", ')

!! = #$%(+()
!" = #$%(−()
!# = #$%(+)
!$ = #$%(+)

…

st’

Broadcast1

2

4

,-% !%
,-& !&
,-' !'
,-(!(

… …

!" = (%!, %", ')
3.1

3.2

,-% !%′
,-& !&′
,-' !'′
,-(!(′

… …

NETWORK

st st’

Figure 1: Overview: 1 A user with address PKB retrieves the latest state commitment -
denoted st. 2 She computes a transaction C1, C2, p, where p is proof that proves that the
transaction is valid with respect to the current state. This transaction is broadcast to the
network. 3.1 A miner processes this transaction and computes N ciphertexts such that the
balance of the sender is decremented by v, the balance of the receiver is incremented by v
and an encryption of 0 is added to all the other balances thus re-randomizing them. 3.2 The

miner then computes the updated state denoted st0 4 The miner then broadcasts a block
with the updated commitment to the state and the transactions.

Creating a Private Account: To create a private account, a user Pi creates two types of keys,
a key-pair for an encryption scheme with the wrong-key decryption property (WKEnc):
(WKEnc.pki,WKEnc.ski), and a key-pair for a fully homomorphic encryption scheme (FHE.pki,FHE.ski).
Furthermore, Pi computes a bit-wise FHE encryption of its WKEnc secret key WKEnc.ski to
obtain a vector of |WKEnc.sk| FHE ciphertexts, that we denote by k-cti. Looking ahead, the
FHE encryption of its secret key will be used by the miners to obliviously decrypt WKEnc
ciphertexts, inside the FHE, in order to decide if this public key is the sender or receiver
of the payment. Pi publishes PKi = (WKEnc.pki, FHE.pki,k-cti). The private balance v as-
sociated to a public key PKi is represented as a bit-wise encryption of v, using FHE public
key FHE.pki. Namely, if v = (v1, . . . , vµ), the private version is Ci = [FHE.Enc(FHE.pki, v1),
. . ., FHE.Enc(FHE.pki, vµ)]. We refer the reader to Figure 2 for the full details of creating an
account and registering with the system.

5

The list of accounts: The table of all accounts consists of N rows, one for each account
holder, where N can increase dynamically over time as more accounts are created. Each row
consists in the tuple: [PKi: Ci]

Private Payment. Now, suppose that account holder PKS (the sender) wants to send the
amount x to a receiver PKR. First PKS will commit to the public keys of the sender PKS
and the receiver PKR using a statistically binding commitment scheme. We denote these
commitments as CS and CR. This cryptographic primitive gives the guarantee that even
an unbounded adversary cannot open this commitment to a different public key. Further-
more, PKS will encrypt the randomness used in the above two commitments with a bit-wise
WKEnc encryption, obtaining vectors of ciphertexts CrS , CrR . Committing the public-keys
involved in the transaction is necessary to bind the transaction to a unique sender and a
unique receiver. This rules out the possibility of crafting ciphertexts that can be correctly
decrypted with two secret keys (i.e., two wallets) 6. Next, the sender PKS creates an WKEnc
encryption of the bit-wise representation of the amount x it wishes to transfer to PKR’s ac-
count, and another WKEnc encryption of the bit-wise representation of the value �x that
should be deducted from PKS’s account. We denote by CC (credit) and CD (debit) the two
vectors of ciphertexts. Finally, the sender computes a succinct zero-knowledge proof of
knowledge of the secret key associated with the public key PKS used to encrypt the debit
CD, that the balance for the account was greater than x before this transaction, and that all
ciphertexts were computed correctly. For the exact relation, we refer the reader to Figure 6.
A private payment thus consists of the tuple: (CS,CR, CrS , CrR , CD, CC, p).

It is important to note at this point that the proof of correctness p must hold with respect
to the latest version of the “table of private accounts” (e.g., the most updated version of
the blockchain), which is succinctly represented by the root of a Merkle tree. Using the
latest version can raise subtle concurrency issues like front-running transactions and double-
spending7. We will discuss those issues, and what needs to be added to fix them, after we
present an overview of how a miner processes transactions.

Processing a Private Payment. Upon receiving the payment transaction (CS,CR, CrS , CrR , CD, CC, p)
a miner will obliviously update the ciphertext of all account holders as follows. First, recall
that each account-holder publishes the FHE encryption of its WKEnc secret key k-cti. For
each account holder PKi= (FHE.pki,WKEnc.pki) the miner will perform the following five
steps. For details we refer the reader to Figure 7 and Figure 8 to see how the state is updated
by the miner.
1. First, it tries to obliviously decrypt the randomness encrypted in CrS , using the secret key

encrypted in k-cti. This is done via FHE, namely by evaluating the circuit of the WKEnc
decryption function. The result of this operation is FHE ciphertexts of a sequence of l
bits, which is either rS or is a sequence of l random bits, let us call it r⇤ that differs from
rS for at least one bit 8. We call this ciphertext Cr

i , to denote that this ciphertext could
potentially be the randomness used in the commitment CS.

6This attack (and its remedy) was noticed by Biçer and Tschudin in[BT23].
7These issues were already outlined Zether [BAZB20].
8If it was not the case, this means that we can correctly decrypt using the wrong key, which would break the

CPA-security of the encryption scheme.

6

2. Next, the miner will obliviously compute a commitment to PKi using the same random-
ness by evaluating the Com circuit on the PKi and the above computed Cr

i . We call this
ciphertext Ci

com. To see why we do this, notice that if the randomness encrypted in Cr
i

matches the randomness used in the commitment of CS, then Ci
com encrypts CS.

3. Next, we obliviously xor the bit-string encrypted in Ci
com with the negation of the com-

mitment CS. To see why we do this, notice that if the string from Ci
com matches the CS,

then the xor with the negation CS will result in a string of l 1s. On the other hand, if the
strings don’t match (for all remaining public keys performing this xor) the result will be
a string that has both zeros and ones. This vector of ciphertexts is denoted Ci

pre f lag.
4. To nullify the noise, and make sure that even one zero disqualifies this public key, we

multiply all the ciphertexts in Ci
pre f lag together. This gives us a flag ciphertext, which we

call Cflag

i , which is an FHE encryption of the bit 1 if PKi is the sender of the payment, and
of 0 otherwise.

5. Before the miner can use the flag ciphertext Cflag

i to update the balance of PKi, i.e., to
update the FHE ciphertext Ci, the miner must transform the WKEnc ciphertext of the
amount �x, CD, into an FHE ciphertext encrypted under the same key. This is easily
done as above where the circuit of WKEnc decryption function is evaluated on CD to get
a new ciphertext Cx

i .
6. Now we can finally leverage our flag ciphertext Cflag

i and perform a bit-wise multiplica-
tion with Cx

i to obtain an encryption of the value we need to add to the balance Ci or
simply an encryption of 0.

7. The final step is to add Cx
i to the current balance ciphertext for Pi, and this will complete

the update for the debit ciphertext. The same process is then repeated for the credit
ciphertext CC.
For the convenience of the reader, in Appendix B we additionally provide a pictorial

representation of all the operations involved in updating the state.

Dealing with Concurrency Issues. As explained above, a payment consists of the tuple
(CS,CR, CrS , CrR , CD, CC, p), where the proof p asserts that the payer is the owner of the
sender’s account, and the encrypted balance associated to their account has enough funds
to perform the transfer and that the ciphertexts were computed correctly. This proof is com-
puted over the newest version of the table of accounts T succinctly described by the Merkle
Root rtT . Now, say that rtT is the most updated version of the table at time t. All payments
that are crafted from time t to t + 1 will have rtT , as a reference of the table of accounts,
and as a theorem for the proof p. We will now describe the two concurrency-related issues
- double spending and front-running and the mechanisms we use to fix them.

Avoiding Double spending : A malicious account holder could craft multiple payments
from its account in the interval [t, t + 1] referring to the same root rtT . In other words, say
that an account holder holds a public key pki which has a balance of 5 Eth in rtT . In the
interval [t, t + 1], pki can create multiple payments for up to 5 Eth and correctly compute
the ZK proof p since it is connected to a state rtT where pki still owns 5 Eth. All these
transactions will be considered valid, and since our transactions are fully anonymous, a
miner cannot determine if two transactions originated from the same sender. To address
this issue of double-spending, we enforce that each account holder can speak at most once
per epoch (h consecutive slots) We achieve this by employing a pseudorandom function
(PRF) (a similar approach is used in the anonymous version of Zether [BAZB20], where

7

each transaction includes gsk, where g is a public random nonce that is announced at the
beginning of each epoch). In our construction, the account holder commits to the PRF key
during setup. The account holder then must attach the deterministic output of the PRF
evaluated on the epoch number to each transaction, we denote this value by PRFOut. Since
the output of the PRF is deterministic, this prevents the account holder to generate two
distinct payments for the same epoch. In the proof, we use the zk property of the NIZK
to prove that it knows the opening to a commitment of the PRF key and thus maintains
anonymity.

Defenses Against Front-running: Suppose Alice creates an honest transaction in the inter-
val [t, t + 1], but the transaction is picked up by a miner at time t + 2, by which time the
state of the blockchain, and thus Alice’s ciphertext and the root would have been updated.
This would trivially invalidate Alice’s proof without any malicious behavior from other
parties. We mitigate this front-running problem by allowing an account holder to create a
transaction with respect to any of the states in an epoch. This ensures that even if the state
has changed, the transaction would be considered valid with respect to one of the previous
states in the epoch.

Compactness of our transactions. In our private transactions tx = (CS,CR, CrS , CrR , CD, CC, p).
The number of ciphertexts in CrS , CrR is l each, and the number of ciphertexts in CD, CC is
µ, where µ is the number of bits in the maximum possible value that can be transferred.
Thus a transaction consists of 2l + 2µ ciphertexts and two commitments, which are inde-
pendent of the number of users, and a proof p. One can instantiate p, with constant size
SNARKs [Gro16, GWC19]. Since we use the Universal Composability framework to prove
security, we require that the SNARKs be UC-secure. Work by Kosba et. al. [KZM+] describes
how to construct SNARKs with proof size proportional to the size of the witness. This would
make our proof size O(log N) since the witness includes a Merkle path. More recently,
succinct UC-secure NIZKs were proposed in the Global Random Oracle Model[GKO+22],
where the proof size is constant.

Security of Our Protocol. We prove the security of our protocol in the UC model. There
exist multiple definitions of a private ledger functionality [KKKZ19, GRR+21]. We prove
security by instantiating the Private Ledger functionality introduced in [KKKZ19]. Note
that the Private Ledger functionality captures both the ledger properties (i.e., the underlying
consensus protocol) as well as the privacy properties required of the transactions. Since, in
this paper, we are providing an account-based payment system on top of any existing ledger,
our proof of security will cover only part of the functionality concerning the submission and
handling of private transactions.

Furthermore, since the UC specification is often more complex (as it has additional lan-
guage that is part of the model), for ease of reading, we have provided two descriptions of
our protocol. In Section 4, we provide a bare-bones description of the procedures of our pro-
tocol (e.g., key registration, mint, transfer, etc), and their implementation. Then in Section 5
we show how the procedures described in Section 4 can be used to instantiate the Private
Ledger functionality.

8

1.3 The significance of this work

The goal of this work is to demonstrate feasibility of achieving full anonymity in account-
based cryptocurrency. Our key idea has been to enable a global state update (i.e., the entire
state is updated per transaction) with a constant number of ciphertexts, by leveraging the
power of Fully Homomorphic Encryption.

Our reliance on FHE, however, makes our protocol unlikely to be deployable in prac-
tice soon. This naturally raises the question: is a heavy tool such as FHE necessary for
the account-based setting and if so, what is the significance of this work for account-based
cryptocurrencies?

We do not have a definite answer to this question, but in this paragraph, we will discuss
several ideas to contribute to the answer from different angles.

We start with observing that the problem of achieving full privacy in account-based cryp-
tocurrencies in a blockchain environment where a miner works independently, can be ab-
stracted as the problem of anonymously updating an encrypted database containing data
from multiple clients (accounts) that is stored on an untrusted server. The miner is the un-
trusted server, the account-balance table is the database, and the transaction is the message
that a party must send to the server in order to anonymously update their entry. Under the
assumption that clients do not talk to each other, and there is a single, untrusted server, this
problem resembles the problem of server-aided MPC with a single server. For such a prob-
lem, the only known solutions are based on Multi-key FHE[LATV12, AJJM20] (such works
actually require that clients (account holders) interact with each other even if FHE is used).

Hence, if we stick with the standard blockchain setting where miners work indepen-
dently and are mutually distrustful it seems that using a powerful tool such as FHE is nec-
essary.

On the other hand, if we allow interactions between miners, or participating of exter-
nal servers or clients, we could hope for more efficient solutions based on garbled cir-
cuits [BHR12]. This direction however does not seem too promising in the blockchain world,
where public verifiability is a necessary requirement.

However, we would like to conclude on a positive note, suggesting a completely differ-
ent approach that could solve the problem at the root – by reducing the state. Indeed, in our
previous argument, we were making the assumption that the miners keep the entire state
and each party only holds their own secret.

However, in recent years, a different approach has been developed that shifts the work
from the miner to the clients, called stateless cryptocurrencies (Agrawal et al. [AR20] and
Tomescu et al. [TAB+20].) Instead of having the miner update the state upon each trans-
action, it has the clients update their secrets upon each transaction that is uploaded on the
blockchain (that is, even transactions that do not involve the client’s balances). The key ad-
vantage of such a shift is that it allows a miner to correctly verify the soundness of a state
update without having to know the entire state, making the miners’ computation very fast
and the storage minimal, at the price of having clients making continuous updates to their
local state. This is an interesting approach that can potentially allow anonymous updates
without heavy machinery. We leave exploring this direction to future work.

9

1.4 Potential for Deployment

While we acknowledge that PriFHEte requires miners to perform heavy computation and is
unlikely to be practical soon, we also would like to discuss avenues for practical deployment
that stem from leveraging the power of smart contracts.

Generality of our PriFHEte. An important feature of our protocol is that it is not tied to any
blockchain. Our functions can be executed as a smart contract on top of any account-based
blockchain that supports smart contracts and does not require any change to the underlying
rules of the blockchain. Users create and submit transactions as described above and miners
simply execute the smart contract which runs the function to process transactions and up-
date an internally maintained state. We discuss this in more detail in Appendix H. (This is in
contrast with solutions for UTXO-based cryptocurrencies that require a significant change
in design and resulted in the creation of separate cryptocurrencies, such as Zcash [SCG+14],
Monero).

Delegating Miner’s Computation. Since PriFHEte can be described as smart contracts that
run on the blockchain, the The heavy computations that miners must do when dealing with
a PriFHEte’s smart contract could be delegated to external servers, by leveraging an emerg-
ing technology called zk-rollups [Fou21] (currently available in the Ethereum ecosystem).
A zk-rollup is an external server, called rollup operator that maintains the state and executes
smart contracts on behalf of the miners. Miners only maintain a succinct representation of
this state, typically a Merkle tree root. This aids the storage costs borne by the miner. Users
submit their transactions to the rollup operator instead of the blockchain miners. The op-
erator updates the state and broadcasts an updated succinct state, the transactions, and a
validity proof proving that the state was updated correctly. A miner now only has to verify
this proof and accepts the new succinct state. This aids the heavy computation that needs
to be undertaken by the miner. We discuss deployment with rollups in more detail in Ap-
pendix H.

Finally, we conclude with a discussion about user’s efficiency. Recall that, to craft a pay-
ment transaction, the account holder must hold the newest version of her own ciphertext,
as well as the most updated version of the Merkle Tree of the entire table of accounts. Since
all payments are made public, any user can perform the same computation of the miners
for staying updated with the latest state. All previous work [FMMO19, BAZB20] implicitly
make the assumption that users will stay updated. In practice, however, it is important to
reduce the burden of the computation on the client. Light clients [CBC21] can be used to
have the account holder to reliably obtain the information it needs from a blockchain node
instead. The question on how/when to ask for this information is as important for guaran-
teeing anonymity w.r.t. the miners, since asking for the root only when preparing a payment
can reveal the network identity of the asker. This question is orthogonal to our work and
several existing approaches can be used to address it [XZW+19, WMS+19] hence we do not
discuss it further.

1.5 Roadmap

The rest of the paper is organized as follows. Section 2 presents other works that achieve
privacy-preserving payments on public ledgers. We present our main cryptographic build-
ing blocks in Section 3. We then present our main algorithms that are run by the parties

10

in Section 4. Section 5 presents a UC specification of the protocol PPriFHEte that makes use
of the algorithms presented in Section 4. We sketch a proof overview in Section 6 that re-
alize the GPL functionality (presented in Appendix C) and the full proofs are presented in
Appendix E.

2 Related Work

Privacy-preserving payments in the account-based model. Fauzi et al. [FMMO19] present
QuisQuis where the account is represented as a tuple of public key and a commitment to the
balance. To create a transaction, the sender selects a list of valid accounts (that contribute to
the anonymity set) and updates these decoy accounts (by re-randomizing them) and the ac-
counts involved in the transaction (by transferring value). Since an adversary cannot learn
which accounts were updated with some value, their protocol achieves k-anonymity. Note
that the size of the transaction increases with the anonymity guarantee provided. Also,
each transaction updates the accounts of the users, and these users are expected to post
DestroyAcct to keep the size of the state constant. As observed in [Dia21], since the parties
are not incentivized to destroy their old accounts it is unclear if the state of the system is con-
stant. Bünz et al. [BAZB20] present Zether that builds on the same idea as above, except that
the balances are stored using ElGamal encryptions. They only achieve confidentiality and
not anonymity, therefore each transaction only includes two ciphertexts. In their appendix,
they sketch an approach to achieve k-anonymity and this idea was formally analyzed and
made more efficient by Diamond [Dia21]. More recently, Guo et. al.[GKP23] present PriDe
CT which presents a simplified version of anonymous Zether and enables batching of trans-
actions. But all these approaches still only achieve k-anonymity. In contrast, in our work,
we can achieve full privacy in the same setting with transaction size independent of the
anonymity set.

Privacy-preserving payments in UTXO-model. Techniques for privacy-enhancing pay-
ments in the UTXO require miners to maintain commitments of values as well as the serial
numbers of spent coins. Since every transaction in the UTXO model leads to the creation of
new coins, the state of the system (consisting of the commitments and the serial numbers)
is always increasing. There are mainly two approaches: 1) ones that achieve full privacy -
Zerocoin[MGGR13], Zerocash[SCG+14], [Net21] which use zk-snarks[GWC19] and 2) ones
that achieve a weaker form of anonymity (k-anonymity) - Monero [NM+16] which use ring
signatures.

Our solution does not increase the state of the system with every transaction. The state
increases only when a new account joins the system.

Privacy-preserving payments in the account-based model that use UTXOs. Another
popular approach to achieve anonymity in the account-based setting is by having users
convert funds in their account to private coins and spend these coins in a privacy-preserving
way similar to the UTXO setting. This may be deployed as a smart contract as is the case in
Zeth [RZ19], AZTEC [Wil18] or standalone - Veksel [CHA22], BlockMaze [GWY+20]. These
protocols provide varying guarantees of anonymity. Zeth [RZ19] achieves only receiver
anonymity. The sender is not anonymous, since they need to pay gas fees from a public
account to execute the smart contract. In Section 4.3 we show how we get around this issue

11

by converting private funds to public gas fees. BlockMaze [GWY+20] and Veksel [CHA22],
do not achieve any anonymity. They only guarantee that a sender of a transaction cannot be
linked to the recipient of the transaction. In Aztec [Wil18], only the recipient of a transaction
is anonymous. Finally, Espresso systems [Tec09] achieve anonymity for the sender (except
to a trusted relayer) and the receiver. Our work on the other hand achieves full anonymity
for the recipient and sender.

Besides these weaker anonymity guarantees, as noted in Zether [BAZB20], this hybrid
approach has several disadvantages based on committed coins. First, storage costs are very
expensive in account-based blockchains such as Ethereum, and since the state is always in-
creasing the coin-based solution will be very expensive. Second, using coins creates friction
when trying to operate with smart contracts. Finally, in this hybrid approach users now
need to keep track of all their unspent coins, instead of maintaining just the secret key of
their account. Our work achieves full anonymity and retains many of the benefits of the
account-based approach (e.g., the state does not grow, the user does not need to remember
all the private coins she possesses, but only needs to remember her secret key).

In Table 1 we compare our work with existing efforts to achieve anonymity in cryptocur-
rencies.

System Anonymity Transaction size Client Overhead Miner Overhead
QuisQuis [FMMO19] k-anonymity O(k) O(k) O(k)

Basic Zether [BAZB20] None O(1) O(1) O(1)
Anonymous Zether [Dia21] k-anonymity O(k) O(k) O(k)

PriDE CT [GKP23] k-anonymity O(k) O(k) O(k)
Our Work Full O(1) O(1) O(N)

Table 1: Comparison of anonymous account-based cryptocurrency designs with our work.

3 Preliminaries

Fully Homomorphic Encryption. We follow the definition of FHE presented in [BV14]. We
use l as the security parameter and all schemes in this paper encrypt bit-by-bit. A fully ho-
momorphic encryption scheme is a triple of PPT algorithms FHE = (FHE.KeyGen,FHE.Enc,FHE.Eval)
which provides CPA security. We present a more formal definition in Appendix A.

Key-Private Public Key encryption with wrong-key decryption. Our constructions use a
CPA secure encryption scheme with certain special properties namely that of key-privacy
(Def 2) and wrong-key decryption (Def 3). We denote this encryption scheme in the de-
scription of our protocols as (WKEnc.KeyGen,WKEnc.Enc,WKEnc.Dec). Wrong-key decryp-
tion informally states that a ciphertext decrypted with the wrong secret key will always
return a valid plaintext and return the correct plaintext only with some negligible advan-
tage (1

2 + negl). As noted in [LT22] all the above properties are satisfied by LWE encryption
scheme of Regev [Reg10] and Peikert et al[PVW08]. We present notions of key-privacy un-
der chosen plain text attack and the wrong key decryption property in Appendix A. We also
present Regev’s scheme and a sketch of why Regev’s scheme gives a wrong-key decryption
property in Appendix F.

12

Pseudorandom functions with unpredictability under malicious key generation. In our
construction, we use a psuedorandom function PRF with an additional property of unpre-
dictability under malicious key generation. The definition for a PRF is that for all PPT
distinguishers D, there exists a negligible function negl such that Pr[DPRF(k,·)(1l) = 1] �
Pr[D f (·)(1l) = 1]  negl(l), where f is a truly random function. We present more details in
Appendix A

Non-interactive zero knowledge. We use the Fnizk functionality to compute and verify
zero-knowledge proofs. We present the ideal functionality in Appendix D (Fig 25). The
functionality provides an interface for parties to create proofs p that a statement x is in a
given NP language L with a witness w. Moreover, as proven in [KKKZ19] the Fnizk func-
tionality can be realized by the SNARK proving system described in [KZM+].

Blockchain A blockchain is an ever-growing hashchain of blocks. We use the following
notations in the context of blockchains. Each party Pi may have different version of the
blockchain and we use C i

loc
for user Pi.

There are kinds of parties miners and users in a system that uses blockchains. The users
compute and submit transactions to the network. The miners collect these transactions,
validate them and create a block including the valid transactions. A miner then broadcasts
the newly created block, thus extending the blockchain. To set some notation, each block
is associated with a slot number slj, where a slot is unit of time. A set of adjacent h slots is
called an epoch ep.

In account-based cryptocurrencies (the setting we consider in this work), a transaction
consists of three values: the sender’s identity, the receiver’s identity and the value to be
spent. The miners maintain a list (referred to as the state) of (account, balance) pairs. To
validate the transaction, the miner checks that the sender of the transaction is not trying to
spend more than their balance. If the transaction is valid, the miner then updates the state by
deducting the value of the transaction from the sender’s balance and adding the same value
to the receiver’s balance. We denote the state of the cryptocurrency as T . The miners com-
pute a Merkle tree with the elements of T as the leaves. The root of this Merkle tree(denoted
as rtT) is also added to every block along with the valid transactions that caused the update
to the state. In a privacy-preserving cryptocurrency, we aim to hide the following infor-
mation included in a payment: the sender’s and receiver’s identities and the value to be
transferred.

The universal composable (UC) framework [Can01] is a model used to define the se-
curity properties of complex protocols in a modular way. A definition for an ideal ledger
functionality was presented by Badertscher et. al. [BMTZ17] denoted GLEDGER. Kerber et.
al. [KKKZ19] presented a private version of the ledger functionality denoted GPL (PL stands
for private ledger). We give an overview of this functionality in Section 5 and present the
complete functionality in Figure 16.

To ease the presentation, we will denote the state of the blockchain T as TprivAccountskTpubAccounts
and rtT = H(rtTprivAccountskrtTpubAccounts). Row i in TpubAccounts is of the form (PKpub

i , vi), where
PKpub

i is the account-holder’s public key that is associated with their non-anonymous bal-
ance. The account-holder uses the corresponding secret key SKpub

i to spend their public bal-
ance. Moreover TprivAccounts includes elements of the form (PKi, Ci) where Ci is the encrypted
balance and PKi is the public key associated with the account. As above, the account-holder

13

uses the corresponding SKi to spend an their private balance.

4 The PriFHEte payment system

In this section we present algorithms for the PriFHEte payment system. We first present the
interface in Section 4.1 and then instantiate the algorithms in Section 4.2. In Section 5 we
will describe how these algorithms will be used to construct an anonymous account-based
cryptocurrency protocol.

4.1 Interface for the PriFHEte payment system

Notation: We denote by Pi an account holder. We denote the total number of accounts in the
system by NumAccounts. Miners (denoted Qj) are account holders that additionally update
the state. The state maintained by Qj will be denoted as T j = (T j

privAccounts
kT j

pubAccounts
). We

assume that the parties already have public accounts in the system. Our privacy-preserving
payment scheme PPriFHEte is a tuple of polynomial-time algorithms: (KEYGENERATION,
REGISTRATION, MINT, TRANSFER, PROCESSTRANSACTION).
Key Generation. The algorithm KEYGENERATION creates public key and secret key pairs
for an account holder.
KEYGENERATION(l)! (PK, SK): A user Pi runs KEYGENERATION and publishes the pub-
lic key PKi, while the SKi is used to spend the funds that are sent to the account represented
by PKi.

Account registration. The algorithm REGISTRATION is run by the miner to register the pub-
lic key for an account. This algorithm updates the state of the blockchain after initializing
the account.
REGISTRATION(PK, TprivAccounts) ! T 0

privAccounts
: A miner Q runs REGISTRATION by adding

an entry for user with public key PK to the state TprivAccounts.

Minting private funds. The algorithm MINT lets an account-holder transfer funds from a
public account to a private account.

MINT(PKi,PK
pub

i , SKpub

i , x, rtTpubAccounts)! (txMINT, s): A user Pi executes the MINT algorithm
to produce a transaction that transfers a value x from the public state to the private state.
This algorithm takes as inputs the public key associated to the private account PKi, the
public and secret keys associated to the public account PKpub

i , SKpub

i , the public value x to be
transferred to the private account and the root of the public state of the blockchain rtTpubAccounts .
The algorithm outputs a transaction txMINT and a signature s on this transaction.

Transferring private funds. The algorithm TRANSFER allows an account-holder PKS to
transfer private funds to an account associated with PKR.
TRANSFER(PKS, SKS,PKR, x, ep, R, CS

loc
, pathi, Ci)! txTRANSFER: The TRANSFER algorithm takes

as input the sender’s account PKS, the secret key SKS, the receiver’s account PKR and the
value to be transferred x. The algorithm also takes as input the sender’s local version of the
blockchain CS

loc
, the current epoch number ep, the epoch size h and the entry associated with

14

PKS in TprivAccounts, denoted Ci and the Merkle path from Ci to rtTprivAccounts - denoted pathi.
The algorithm outputs a transfer transaction txTRANSFER

Verifying transactions and updating state. The algorithm PROCESSTRANSACTION run by
a miner Qj first verifies transactions and then updates the state of the blockchain with valid
transactions.
PROCESSTRANSACTION(tx, T j)! (T j): A miner Qj updates the state T j = T j

pubAccounts
kT j

privAccounts

of the blockchain, by taking as input the current state T j and a transaction tx.

4.2 Instantiating PriFHEte

We use the following cryptographic building blocks to implement the above-described al-
gorithms: A fully homomorphic encryption scheme - (FHE.Enc,FHE.Dec,FHE.Eval). This
may be implemented by existing FHE schemes such as the BGV scheme [BGV14]. A key-
private encryption scheme for bits with the additional property of wrong key decryption
(see Def. 3) which means that even when the ciphertext is decrypted with a wrong key the
resultant plaintext is a random valid bit. Such an encryption scheme can be instantiated
with PVW LWE-based encryption scheme [PVW08]. A pseudorandom function PRF that is
unpredictable under malicious key generation [KKKZ19] with key k. A perfectly binding
commitment scheme (Com,Verify). An ideal functionality Fnizk that allows users to prove
statements. A digital signature scheme (KeyGen, Sign,Verify) and collision-resistant hash
function H.

Public Parameters. A list of public parameters is available to all users in the system. These
are generated at the “start of time”. The parameters are: h which denotes the size of each
epoch ep, a trusted set up (such as CRS) for the non-interactive zero knowledge proofs. Each
block corresponds to a slot number denoted sl. After every h number of slots, the epoch
number is incremented. We now give an overview of the algorithms that we described
earlier.

Joining the system (Fig 2) To join the system a party Pi first runs the KEYGENERATION
algorithm which generates keys for the fully homomorphic scheme FHE, the encryption
scheme WKEnc, a signature scheme and a pseudorandom function. Pi then encrypts each
bit of the WKEnc.ski using the FHE public key FHE.pki to obtain a vector of ciphertexts k-cti
and computes a commitment to this key denoted as CPRF.

Pi then announces its public keys : (FHE.pki,WKEnc.pki, k-cti,CPRF) and a zero-knowledge
proof that the keys were generated correctly: pKEYGEN. A miner Qj registers the party by run-
ning the REGISTRATION algorithm where they create an entry for Pi in table T j

privAccounts
. The

entry is indexed by the public key PKi and is initialized with a vector of ciphertexts - that
encrypts to 0 under FHE.pki. These ciphertexts represent the binary decomposition of the
private balance of Pi.

15

KEYGENERATION(l): User Pi does:
1. Generating keys:

• (FHE.pki,FHE.ski) FHE.KeyGen(1l)
• (WKEnc.pki,WKEnc.ski) WKEnc.KeyGen(1l)
• (ski, vki) Sign.KeyGen(1l)
• k PRF.KeyGen(1l)

2. Encrypting WKEnc keys:
• k-cti {FHE.Enc(FHE.pki,WKEnc.ski[j])}|WKEnc.ski |

j=1
3. Committing to the PRF key:

• CPRF Com(k; r) where r {0, 1}l

4. Compute a zero knowledge proof that the keys were generated correctly:
• Let x := FHE.pki,WKEnc.pki, k-cti
• Let w := FHE.ski,WKEnc.ski
• Send (Prove, sid, x, w) to Fnizk to prove that (x, w) satisfies relation RTRANSFER

(Fig 3) and receive pKEYGEN.
5. Return PKi := (k-cti,FHE.pki,WKEnc.pki, vki,CPRF), SKi =

(FHE.ski,WKEnc.ski, ski, k) and pKEYGEN

REGISTRATION(PKi, T j
privAccounts

) The miner Qj upon receiving PKi:
1. Parse PKi as (k-cti,FHE.pki, vki,WKEnc.pki,CPRF)
2. For j 2 [l] compute Ci,j FHE.Enc(FHE.pki, 0).
3. Set Ci := (Ci,1, . . . , Ci,l)

4. Update T j
privAccounts

:= T j
privAccounts

[{(PKi, Ci)}
5. Output T j

privAccounts
.

Figure 2: Joining the system

Statement: x := FHE.pki,WKEnc.pki, k-cti, Witness: w := FHE.ski,WKEnc.ski, Relation
RKEYGEN:
1. k-cti is the encryption of the bit-representation of the secret key WKEnc.ski un-

der the FHE public key. k-cti = {FHE.Enc(FHE.pki, bj)} such that Âl
j=0 bj ⇥ 2j =

WKEnc.ski
2. WKEnc.ski is the secret key that corresponds to WKEnc.pki

(WKEnc.ski,WKEnc, pki) 2 SUPP(KeyGen(1l))

Figure 3: The relation RKEYGEN

Public transfers (Fig 4) To add funds (say an amount x) to their private balance, a party
Pi runs the MINT algorithm, which transfers funds from the public account to the private
account. A miner Qj upon receiving this transaction verifies that the transaction is valid (by
running ValidTx) and that the public account PKpub

i indeed has public funds greater than
the minted value x by running the PROCESSTRANSACTION algorithm. (See Fig 7). If the

16

transaction is valid, Qj computes encryptions of a binary decomposition of x using FHE.pki
and homomorphically adds these ciphertexts to TprivAccounts[PKi].

MINT(x,PKi,PK
pub

i , SKpub

i , rtTpubAccounts) User Pi does:

1. Set txMINT = (x,PKpub

i , rtTpubAccounts)
2. Compute s = Sign(ski, txMINT) and broadcast (txMINT, s)

Figure 4: Transferring funds from public to private account

Private Transfers (Fig 5) User PS executes the TRANSFER algorithm to privately trans-
fer funds to PR. PS first receives the latest blockchain C and TprivAccounts[PKS] = CS and a
pathS (from the root rtTprivAccounts to the leaf CS) from a full node. We note that there exist
works[XZW+19, WMS+19] that use PIR/ORAM-like techniques to retrieve account state in
a privacy-preserving way. PS transfers funds to PR as follows:

PS first commits to the sender’s public key (pkS) and receiver’s public key (pkR) using
randomness rS and rR respectively. PS then encrypts rS and rR (binary decomposed) under
WKEnc.pkS and WKEnc.pkR respectively. PS then encrypts the value to be credited (denoted
x) under the receiver’s public key and the value to be debited under the sender’s public key.
The value x is upper-bounded by MAX (the maximum possible value that can be transferred)
which is µ bits long. The user PS then proves that the transaction is computed correctly using
a zero-knowledge proof, which we describe in more detail below.

17

TRANSFER(PKS, SKS,PKR, x, ep, R, Cloc, pathi, Ci) User Pi does:
1. Let rt = rtTpubAccountskrtTprivAccounts be the root at current slot sl in Cloc
2. Let locally stored Ci = TprivAccounts[PKS] at slot number sl
3. Commit sender’s identity: compute CS = Com(pkS, rS)
4. Commit receiver’s identity: compute CR = Com(pkR, rR)
5. Encrypt receiver randomness: for i 2 [l], compute CrR,i = WKEnc.Enc(rR[i]). Let

CrR := (CrR,1, . . . , CrR,l)
6. Encrypt sender randomness: for i 2 [l], compute CrS,i = WKEnc.Enc(rS[i]). Let

CrS := (CrS,1, . . . , CrS,l)
7. Encrypt debited value

For i 2 [µ], compute CD,i = WKEnc.Enc(WKEnc.pkS, bi), where bi = x[i]. Let
CD := (CD,1, . . . , CD,µ)

8. Encrypt credited value
For i 2 [µ], compute CC,i = WKEnc.Enc(WKEnc.pkR, bi), where bi = x[i]. Let
CC := (CC,1, . . . , CC,µ)

9. Compute PRF output: Compute PRFOut = PRF(k, ep)
10. Compute a zero-knowledge proof for transaction validity:

Let x = {CS,CR, CrS , CrR , CD, CC,PRFOut, rt, ep}. Let w =
{PKS, SKS,PKR, rR, sR, x, k,CPRF, vS, Ci, path} . Send (Prove, sid, x, w) to Fnizk

to prove that (x, w) satisfies relation RTRANSFER (Fig 6) and receive p.
11. Return tx = (CS,CR, CrS , CrR , CD, CC,PRFOut, p)

Figure 5: Transfer algorithm

As discussed in the introduction (c.f. Concurrency Issues), we must ensure that a mali-
cious sender cannot double-spend from their account. We resolve this issue by ensuring
that a party can submit only up to one transaction per epoch. We achieve this by including
the output of a pseudorandom function PRF with every transaction.

The PRF takes as input the current epoch ep and therefore if a user attempts to speak
twice within the same epoch, a miner would see the same PRF output (since PRFs are deter-
ministic) and rejects the second transaction. We prevent denial-of-service attacks where an
adversary front-runs a user’s transaction by submitting an adversarial transaction with the
same PRFOut as the target by using PRFs that are secure under malicious key generation.

Zero Knowledge Proofs for Transfer Transactions Our construction invokes the Fnizk func-
tionality for a specific relation (see Fig. 6). A transfer transaction is of the form: (CS,CR, CrS , CrR ,
CD, CC,PRFOut, p). In this transaction, the proof p needs to prove that certain conditions
are satisfied by the transfer transaction. The conditions are: (a) The sender has a balance
greater than the value to be transferred at epoch ep (b) the value debited is equal to the
value credited (c) the sender speaks only once in the current epoch (d) the credited value is
positive.
The relation
• Statement: x = (CS,CR, CrS , CrR , CC, CD,PRFOut, rtTprivAccounts , ep). The statement specifies

the commitments of the sender and receiver identities – CS,CR and encryption to the
randomness of the commitments – CrS , CrR , encryptions of the values to be credited and

18

debited – CD, CC, the output of the PRF – (PRFOut), the root of a Merkle tree over private
state – (TprivAccounts) in the epoch ep denoted rtTprivAccounts .

• Witness: w = (PKS, SKS,PKR, rS, rR, x, vS, C, path, rPRF) where PKS = (k-ctS,FHE.pkS,
WKEnc.pkS, vkS,CPRF). The witness specifies the public keys of the sender and the re-
ceiver, the value to be transferred, the balance and the entry in the private state corre-
sponding to PKS and an authentication path from the sender’s entry in TprivAccounts to the
root of the Merkle tree on TprivAccounts.

Given an instance x, a witness w is valid for x if the relation specified in Figure 6 holds.

Relation RTRANSFER:
• CS is the commitment to pkS with randomness rS , i.e. CS = Com(pkS, rS)
• CR is the commitment to pkR with randomness rR , i.e CR = Com(pkR, rR)
• CrR is the encryption of the bit-representation of the randomness used for

the receiver (rR) encrypted under the public key WKEnc.pkR. i.e. CrR =
{WKEnc.Enc(WKEnc.pkR, bj)} such that Âl

j=0 bj ⇥ 2j = rR
• CrS is the encryption of the bit-representation of the randomness used for

the receiver (rS) encrypted under the public key WKEnc.pkS. i.e. CrS =
{WKEnc.Enc(WKEnc.pkS, bj)} such that Âl

j=0 bj ⇥ 2j = rS
• CC is the encryption of the bit-representation of the credited value x to the re-

ceiver’s account, encrypted under the public key of the receiver WKEnc.pkR i.e.
CC = {WKEnc.Enc(WKEnc.pkR, bj)} such that Âµ

j=0 bj ⇥ 2j = x
• CD is the encryption of the bit-representation of the debited value x from the

sender’s account, encrypted under the public key of the sender WKEnc.pkS. i.e.
CD = {WKEnc.Enc(WKEnc.pkS, bj)} such that Âµ

j=0 bj ⇥ 2j = x
• The value x is not negative and is less than the max possible value MAX. x 2

[0,MAX]
• The sender knows the secret key associated with the account from which the

funds are to be debited. ValidPath((PKS, C), path, rtTprivAccounts) = 1 ^ PKS =
(FHE.pkS,WKEnc.pkS, k-ctS,CPRF)

• The balance associated with the sender’s account is greater than the value x i.e.
FHE.Dec(FHE.skS, C) = v ^ v� x 2 [0,MAX]

• The PRF output was computed correctly : PRFOut = PRF(k, ep) ^ CS
PRF

=
Com(k; rPRF)

Figure 6: The relation RTRANSFER

Private to Public transfer A user PS can transfer funds of value x from their private
account PKS to a public account vk⇤, by referencing their private account and the public ac-
count in the following way: PS will first compute a PRF on the current epoch and will com-
pute a zero-knowledge proof proving that the balance in CS is greater than x, that the eval-
uated the PRF on the current epoch and that they know the secret keys corresponding to the
public key associated with their account. The transaction is tx = (PUB-TRANSFER,PKS, vk⇤, x,PRFOut,
ppub).

19

PROCESSTRANSACTION(tx, T j) Upon receipt of a tx, a miner Qj does the follow-
ing:
1. Parse T j as T j

pubAccounts
kT j

privAccounts

2. If tx is of type MINT:
(a) Parse tx as ((x,PKi, rtTpubAccounts), s)
(b) Check that Verify(vki, (x,PKi, rtTpubAccounts), s) = 1
(c) Check that rtTpubAccounts = MerkleCRH(T j

pubAccounts
)

(d) Check that T j
pubAccounts

[PKi] > x
(e) Let x1, . . . , xµ be the bit-decomposition of x. Let T j

privAccounts
[PKi] = Ci.

(f) For j 2 [µ]:
i. Compute C0i,j = FHE.Enc(FHE.pki, xj)

ii. Update Ci[j] = Ci[j] + C0i,j
(g) Output T j = T j

pubAccounts
kT j

privAccounts

(h) Update T j
pubAccounts

[PKi] = T j
pubAccounts

[PKi]� x
3. If tx is of type TRANSFER:

(a) Run ValidTx(txi, T j)

(b) For i 2 [NumAccounts]: compute T j
privAccounts

[i] =

UpdateCiphertext(T j
privAccounts

[i], tx,PKi)

(c) Output T j = T j
pubAccounts

kT j
privAccounts

4. If tx is of type PUB-TRANSFER:
(a) Parse tx as (PKi, vk⇤, x,PRFOut, ppub). Check that ppub is valid.
(b) Let x1, . . . , xµ be the bit-decomposition of x. Let T j

privAccounts
[PKi] = Ci.

(c) For j 2 [µ]:
i. Compute C0i,j = FHE.Enc(FHE.pki, xj)

ii. Update Ci[j] = Ci[j]� C0i,j
(d) Output T j = T j

pubAccounts
kT j

privAccounts

(e) Update T j
pubAccounts

[PK⇤] = T j
pubAccounts

[PK⇤] + x

Figure 7: Verification of transactions and updating the state

Updating the state. A miner Qj upon receiving a transaction (txMINT or txTRANSFER) up-
dates the state by running the PROCESSTRANSACTION algorithm. As the identities and the
values are encrypted using a key-private encryption scheme, Qj does not know which en-
tries to update in table TprivAccounts. Therefore the Qj must update all the entries in TprivAccounts
as in Figure 8. We present the proof of correctness of this update in Appendix B and also
present a simple example in Fig 15 and Fig 14 that may aid the reader in understanding the
UpdateCiphertext function.

20

UpdateCiphertext(Ci, tx,PKi)
1. Parse tx as (CS,CR, CsS , CrR , CD, CC,PRFOut, p)
2. Parse PKi as (k-cti,FHE.pki,WKEnc.pki, vki,CPRF)
3. Obliviously decrypt randomness (CrS) ciphertext with k-cti (encryption of WKEnc.ski) to

get an encryption of some r⇤ under FHE.pki
• For j 2 [l], compute Cr

i,j = FHE.Eval(FHE.pki,WKEnc.Dec, (k-cti, CrS [j]))
• Compute Cr

i = (Cr
i,1, . . . , Cr

i,l)

// if i corresponds to PS, then Cid
i is an encryption of the sender’s

randomness, i.e r⇤ = rS
4. Obliviously compute a commitment to the pki using encryptions of rS denoted Ci

r:
Compute Ccom

i = FHE.Eval(FHE.pki,Com, (pki, (Cr
i,1, . . . , Cr

i,l)). Let Ci denote the
plaintext corresponding to Ccom

i
5. Obliviously compute CS�Ci bitwise (where CS is the negated bitwise decomposition of CS

) as follows:
• For j 2 [l], compute Cpre f lag

i,j = FHE.Eval(FHE.pki,�, (CS[j], Ccom
i,j))

• Let Cpreflag
i = (Cpre f lag

i,1 , . . . , Cpre f lag
i,l)

// if i corresponds to PS, Cpreflag
i is an encryption of all ones

6. Obliviously multiply the bits of pre f lag to get a flag bit
• Compute Cflag

i = FHE.Eval(FHE.pki,⇥, (Cpre f lag
i,1 , . . . , Cpre f lag

i,l))

// if i corresponds to PS, Cflag

i is an encryption of 1, else encryption
of 0

7. Obliviously decrypt value to be debited (CD) with k-cti to get an encryption of some x⇤
under FHE.pki
• For j 2 [µ], compute Cx

i,j = FHE.Eval(FHE.pki,WKEnc.Dec, (k-cti, CD[j]))
• Set Cx

i = (Cx
i,1, . . . , Cx

i,µ)
// if i corresponds to PS, Cx

i is an encryption of the value x, i.e.
x⇤ = x, else x⇤ is random

8. Obliviously multiply the flag bit with x⇤

• For j 2 [µ], compute Cupd
i,j = FHE.Eval(FHE.pki,⇥, (Cx

i,j, Cflag))

• Set Cupd
i = (Cupd

i,1 , . . . , Cupd
i,µ)

// if i corresponds to PS, Cupd
i is an encryption of the value x, else

0
9. Obliviously subtract x⇤ from the balance of Pi

• For j 2 [µ], compute FHE.Eval(FHE.pki,FullSubtractera, (Ci,j, Cupd
i,j))

• Set Ci = (Ci,1, . . . , Ci,µ)
// if i corresponds to PS, the balance of Pi is subtracted by x, else
the balance of Pi stays the same (0 is subtracted from the balance)
Do the same computations as above with (CR, CrR , CC) instead of (CS, CsS , CD),
except that in Step 8, obliviously add (x⇤ ⇥ flag) to the balance of Pi, i.e. compute
FHE.Eval(FHE.pki,FullAdder, (Ci,j, Cupd

i,j))

afor completeness, we present the logic for full adder and full subtracter in Appendix G

Figure 8: Updating the private state entry TprivAccounts[PKi] with a transaction tx21

4.3 Practical Considerations

Transaction size and processing time. We present an estimate on the size of our trans-
actions and the time taken to process a transaction. A transfer transaction is of the form
tx = (CS,CR, CrS , CrR , CD, CC,PRFOut, p). The commitments CS and CR are two group ele-
ments each of size l = 128 bits. Thus the commitments are of size 512 bits. The ciphertexts
CrS and CrR encrypt vectors of size l = 128 and CD, CC encrypt vectors of size µ = 20.
PVW [PVW08] ciphertexts (2 (Zl

q , Z`
q)) present an encryption scheme where we can effi-

ciently pack these ciphertexts into one ciphertext. Therefore |CrS + CD| : (l + µ)⇥ l + (l⇥
l) bits = (128+ 20)⇥ 128+ 128⇥ 128 = 8832 bytes and |CrR +CD| = 8832 bytes. Assuming
Groth16[Gro16] proofs and SHA for the PRF, the transaction size is approximately 18KB.

Paying gas fees. In the presentation of our protocol, we don’t specify how parties can pay
gas fees to the miner as part of the transaction. We can add a public component to the
transaction as follows: The sender adds the gas value in the clear, and encrypts gas + x as
the debited value. The zero-knowledge proof now proves that sum of the x and the public
gas fee is equal to the debited value and that x + gas is less than the balance of the sender.

Processing time: As for the time taken to process a transaction we present a back of an
envelope computation. The biggest factor is the oblivious detection step which is the same
as in OMR[LT22]. Using their measurements we observe that it takes 0.0099s per message
to detect correctly when there are 50 messages pertinent to a receiver from a pool of 500,000
messages and the number of ciphertexts per clue is 4. Thus the time taken to do an oblivious
detection per message is approximately 0.0099⇥ 50⇥ 148/4s = 18.4s when the set size is
500,000. Since we need 4 re-encryptions per transaction, we roughly estimate that it will
take 75s to process each transaction, when N = 500, 000. Since this is per-recipient, it take
75 ⇤M seconds, where M is the number of parties availing this service.

5 UC-secure privacy-preserving payments

In the previous section we presented algorithms for PriFHEte payment system. To show
that our algorithms can be used to instantiate a privacy-preserving account-based cryp-
tocurrency, we present a UC protocol that makes use of the algorithms to realize the GPL
ideal functionality. In this section we first describe the GPL ideal functionality, and then de-
scribe how the PriFHEte algorithms will be used to construct a protocol that will realize the
GPL functionality.

5.1 The GPL functionality [KKKZ19]

The GPL functionality (Figure 16 and 17) captures an ideal private ledger functionality. We
describe the different interfaces of the functionality by separately considering the transac-
tion layer and the consensus layer. Before we explain the interface, we describe the variables
associated with the functionality: the state is the state of the ledger that includes blocks of
transactions and the bu↵er is a list of unconfirmed transactions that have not yet been added
to the state.

In the transaction layer, a party should be able to submit a transaction. The GPL func-
tionality therefore includes a SUBMIT command in its interface that allows parties to submit

22

their transactions. The GPL functionality on receiving the SUBMIT command, creates a trans-
action ID, checks if the transaction is valid using the ValidTx predicate. We note that ValidTx
is specific to the protocol that realizes the functionality. In our setting this predicate is in-
stantiated as in Figure 18. The predicate returns true only if the value of the transaction is
less than the balance of the sending account and that there is no other transaction from this
sender in the current epoch. The adversary is informed that a transaction was received and
a blinded version of the transaction is sent to the adversary. Parties should also be able to
join the system at any point in time. Parties join the system by simply registering with the
GPL functionality.

In the consensus layer, the functionality guarantees that the parties agree on a common
state. But this is not possible in the real-world due to network delays or an adversarial
influence. Therefore, the functionality guarantees that there is a prefix of the state that is
common to all parties. Since different parties may have different local chains, a pointer pti
denotes length of the local chain of Pi. To read the state of the ledger, the party issues a
READ command and is returned a blinded version of the state upto either block number pti
or |state| (whichever is smaller). The adversary is given the power to determine the view
of all parties as long as they have a common prefix. The adversary uses the SET-SLACK and
DESYNC-STATE interfaces to achieve this.

In this description, we have not yet discussed how the ideal functionality extends the
state with new blocks of transactions. In the real-world a party may be selected to propose
the next block on the chain depending on some lottery protocol that is defined with respect
to the consensus protocol. Similarly, in the ideal world a party sends the MAINTAIN-LEDGER
command to the GPL functionality. The functionality records this command, and informs the
ideal-world adversary of this command. A new block is then proposed by the ideal-world
adversary using the NEXT-BLOCK command. This new block is a list of transactions along
with a flag called hFlag that indicates if the block is proposed on behalf of an honest party or
malicious party. The ideal functionality records this block. When the ideal functionality is
queried with any command, the functionality updates the state with these blocks. Note that
an adversary can of course propose bad blocks that have illegal transactions or transactions
that are inconsistent with the state. The GPL functionality therefore evaluates an ExtendPolicy
function on the block. This function checks if the block is valid and if not, proposes a default
block that is used to extend the state of the system.

5.2 Protocol PPriFHEte

Now that we have explained the GPL functionality, we are ready to present our main pro-
tocol. More specifically, we will present how we integrate the PriFHEte algorithms from
Section 4 in the main protocol. We will then prove that this protocol realizes the GPL ideal
functionality.

23

Registration/Deregistration: Upon receiving (REGISTER,R) where R 2 {Gclock,GPL}
from the environment Z , a party Pi does:
• if R = Gclock, register with the Gclock functionality.
• if R = GPL and Pi has not registered with Gclock ignore the command, else register

with the FN-MC,Fnizk,Fanon-selection functionalities
(The full specification is presented in Ouroboros Genesis [BGK+18])
Pi then calls Initialization-PrivProtocol returning (PKi, SKi, pKeyGen).
// Transaction layer
Submitting a transaction: Upon receiving I = (SUBMIT, sid, tx) from Z ,
• Pi calls SubmitXfer(tx, C i

loc
), where C i

loc
is local chain maintained by Pi.

// Consensus layer
Maintaining the ledger: Upon receiving I = (MAINTAIN-LEDGER, sid) from Z ,
• the party Pi invokes LedgerMaintenance(C i

loc
, Pi)

Reading the state: Upon receiving I = (READ) from Z ,
• the party Pi invoke the protocol ReadState(sid, C i

loc
, Pi).

Handling external (protocol-unrelated calls) to the clock: as in Ouroboros Genesis
[BGK+18].

Figure 9: The protocol PPriFHEte

Protocol Initialization-PrivProtocol(Pi, sid)! (PKi, SKi, pKeyGen):
These steps are executed in a (MAINTAIN-LEDGER, sid)-interruptible manner:
1. Compute (PKi, SKi, pKeyGen) KEYGENERATION(l)
2. Use the clock to update t, ep dt/Re and sl t
3. If t = 0 then execute the following steps in a (MAINTAIN-LEDGER, sid)-interruptible

manner:
(a) Send (claim, sid, Pi,PKi) to Finit.
(b) Send (CLOCK-UPDATE, sidC) to Gclock

(c) Use clock to update t, ep dt/Re and sl t; give up the activation.
4. Else

(a) Send (gen-block, sid, Pi) to Finit. If Finit signals an error then halt. Otherwise,
receive from Finit the response (gen-block, sid, G = (C1, h1))

(b) Set Cloc (G)
(c) Send (NEW-PARTY, sid, Pi,PKi, pKeyGen) to FN-MC

5. Return (PKi, SKi, pKeyGen)

Figure 10: Protocol Initialization-PrivProtocol

Recall, from Section 4 that the MINT and TRANSFER invoked the Fnizk ideal functionality.
Apart from the Fnizk functionality, our main protocol will make calls to other functionalities.
We give an overview of these functionalities below:
1. Gclock: In both the real world and the ideal world, our protocols require a notion of time.

24

This is achieved using the Gclock functionality (see Figure 24). The clock maintains a vari-
able t that denotes the current time. When all registered honest parties (at a given time
t) signal the functionality that they are done with the current round, the functionality
advances the time counter t. Parties can also query the functionality to read the current
time.

2. FN-MC: Parties in the real-world multicast transactions and blocks to their peers. FN-MC

models a network functionality (see App. A2 of [BGK+19]) that captures a multicast net-
work. We stress that this network functionality does not give any anonymity properties.

3. Fanon-selection: As described above, parties run a lottery to check if they are elected to
propose blocks and if elected they broadcast the block with an anonymous proof. The
anonymous selection functionality (Figure 26 and defined in [BMSZ20]) allows parties to
check if they are eligible to win a lottery. The functionality also provides an interface for
parties to receive a proof of winning the lottery and an interface to verify the proofs.

4. Fnizk: As discussed in Section 4 parties are required to attach a zero-knowledge proof that
proves that the submitted transactions are well-formed. The parties therefore query a
non-interactive zero-knowledge functionality (Figure 25 and defined in [KKKZ19]). This
functionality allows generating proofs that a statement x is in a given NP language L,
with a witness w.
In Figure 9 we present the overall protocol that realizes the GPL ideal functionality. In

our protocol, a block is proposed in a slot. Every h slots constitute an epoch ep. We now
present an overview of the protocol.

Joining the system Upon receiving a ledger-registration request from the environment,
the party registers with each of the functionalities. Once registered with the functionali-
ties, the party is considered online. The party then becomes operational by invoking the
Initialization-PrivProtocol protocol.

Upon execution of the Initialization-PrivProtocol protocol, the party Pi first generates keys
by running the KEYGENERATION(l) algorithm (as presented in Section 4). The Initialization-PrivProtocol
protocol works in two modes depending on the whether or not the current round is the gen-
esis round. In the genesis mode, which is executed when t = 0, the party interacts with
Finit to register its keys. The Finit functionality calls the REGISTRATION function here to
add the party’s entry to TprivAccounts. In the non-genesis mode, as in [BGK+18], the protocol
Initialization-PrivProtocol queries Finit to receive the genesis block. If the underlying proto-
col is a Proof-of-Stake protocol, the parties need to claim stake in the genesis mode, and in
the non-genesis mode the Finit functionality determines the lottery difficulty for the newly
joined Pi. We refer to [BGK+18] for details. Finally, the party announces to the network that
it is a new party by broadcasting (NEW-PARTY, sid, Pi,PKi). This interaction is presented in
more details in Figure 10.

Submitting a transaction. A party PS receives a SUBMIT command from the environment.
Recall that the transaction could be either a TRANSFER transaction or a MINT transaction. If
the transaction is of type TRANSFER, then parse the command as TRANSFERk(PKS,PKR, v)
where PKS is the public key associated with the account of the sender and PKR is the public
key associated with the account of the receiver and x is the value to be transferred.

The transaction is computed using the TRANSFER algorithm defined in Figure 5. The
transaction is then broadcast to the network by submitting (MULTICAST, tx) to the network
functionality (FN-MC). Similarly, if the command is of type MINT, then parse the command

25

as MINTk(PKS, v). The real-world transaction is computed using MINT algorithm defined in
Figure 4 and is broadcast using the FN-MC functionality.

Protocol SubmitXfer(tx, Cloc)
1. Execute FetchInformation (as in Ouroboros Genesis (full version) [BGK+19])

to receive the newest messages of the round; denote the output by
(C1, . . . , CM), (tx1, . . . , txk).

2. Set N {C1, . . . CM}
3. Invoke protocol SelectChain(N , Cloc, . . .) (as defined in Ouroboros Genesis

[BGK+18]) and receive an updated chain Cloc.
4. If tx = (TRANSFER, tx0):

(a) Let (PKS,PKR, x) tx0

(b) Use the clock to update t, ep dt/Re and sl t
(c) Let tx⇤ := TRANSFER(PKS,PKR, x, ep, R, Cloc, Ci)
(d) Submit (MULTICAST, tx⇤) to FN-MC

5. Else if tx = (MINT, tx0)
(a) Let (PKS, x) tx0

(b) Use the clock to update t, ep dt/Re and sl t
(c) Let tx⇤ := MINT(x,PKS, SKS, rtTpubAccounts)
(d) Submit (MULTICAST, tx⇤) to FN-MC

Figure 11: Protocol SubmitXfer

Maintaining the ledger. Upon receiving a MAINTAIN-LEDGER command from the en-
vironment, a miner Qj invokes the LedgerMaintenance algorithm. The algorithm invokes
the FetchInformation command as defined in [BGK+19]. This algorithm fetches the re-
cent messages in the round - this includes both the local chains broadcast by other parties
C1, . . . , CM and the transactions broadcast by other parties tx1, . . . , txk. The miner then up-
dates the bu↵er with these transactions and then selects the longest valid chain using the
SelectChain algorithm defined in [BGK+18] to update its local chain C loc

j . Qj then invokes
the LotteryProcedure algorithm to check if it is selected as a leader to propose the next block
on the chain.

26

Protocol LedgerMaintenance(Cloc, Qj)

The following steps are executed in a (MAINTAIN-LEDGER, sid)-interruptible manner:
1. Execute FetchInformation (as in Ouroboros Genesis [BGK+19]) to receive the

newest messages of the round; denote the output by (C1, . . . , CM), (tx1, . . . , txk).
2. Use the clock to update t, ep dt/Re and sl t
3. Set bu↵er bu↵erk(tx1, . . . , txk), ton t,N {C1, . . . CM}
4. Invoke protocol SelectChain(. . .) (as defined in Ouroboros Genesis [BGK+18]) and

receive an updated C j
loc

. Let C⇤
loc

be the original local chain.
5. Let U be the set of transactions that are in C j

loc
but not in C⇤

loc
.

6. Invoke protocol LotteryProcedure(Qj, ep, sl, bu↵er, C j
loc

,U) (in a
(MAINTAIN-LEDGER, sid)-interruptible manner)

7. Send (CLOCK-UPDATE, sidC) to Gclock.

Figure 12: Protocol LedgerMaintenance

The LotteryProcedure (see Figure 13) first sends the ELIGIBILITY-CHECK command to the
Fanon-selection functionality to check if the miner Qj is eligible to propose the next block on
the chain. If eligible, the miner first computes a local state based on the recently updated
local chain C j

loc
. Now to create the next block on the chain, the miner iterates through the

buffer and checks if each transaction is valid (using the ValidTx predicate, defined in Fig-
ure 22). If the transaction is valid, the miner updates the state with this transaction by
running PROCESSTRANSACTION(txi, T j). The miner then adds this transaction to a block.
The miner also adds the root of a Merkle tree computed over the updated state T j and
broadcasts the block using the FN-MC functionality.

To join the system, a new party must first register with the hybrid functionalities - Gclock,
Finit, Fnizk, FN-MC and Fanon-selection. The party then runs the Initialization-PrivProtocol proto-
col, which internally runs the algorithm KEYGENERATION to return (PKi, SKi, pKeyGen). The
party then broadcasts to the network the message (NEW-PARTY, sid, Pi,PKi, pKeyGen). A miner
upon receiving this message and tasked with maintaining the ledger updates the state by
running the REGISTRATION algorithm.

27

Protocol LotteryProcedure(k, Qj, ep, sl, bu↵er, C j
loc

,U) The following steps are executed
in a (MAINTAIN-LEDGER, sid)-interruptible manner:
1. Let T j = (T j

pubAccounts
kT j

privAccounts
) be the state associated with C j

loc
maintained by

Qj
2. Send (ELIGIBILITY-CHECK, sid, (sl, ep)) to Fanon-selection and receive

(ELIGIBILITY-CHECK, b). If b = 0, exit the protocol.
3. Else update T j PROCESSTRANSACTION(tx, T j) for each tx 2 U , initialize N =

∆ and for each txi 2 bu↵er do (or until N can not increase any more):
(a) if ValidTx(txi, T), C j

loc
then N Nktxi

(b) Remove txi from bu↵er
(c) If txi = (NEW-PARTY,PKi), then run REGISTRATION(PKi, T j)
(d) Set B0 blockify(N) and update T j PROCESSTRANSACTION(txi, T j)

4. Set ptr H(Cloc)
5. Compute rtprivAccounts = MerkleCRH(TprivAccounts) and rtpubAccounts =

MerkleCRH(TpubAccounts) and set rt = (rtTprivAccountskrtTpubAccounts).
6. Send (CREATE-PROOF, sid, (ep, sl), T) to Fanon-selection and receive p. Set txlead =

((ep, sl), ptr, rt, p)
7. Set B (txlead, B0) and Cloc = ClockB
8. Send (MULTICAST, (sid, txlead)) to F tx

N-MC
and (MULTICAST, sid, Cloc) to Fbc

N-MC
and

proceed from here upon next activation of this procedure.
9. While a (CLOCK-UPDATE, sidC) has not been received during the current round: give

up activation, and upon next activation of this procedure, proceed from here.

Figure 13: Proposing a new block if miner wins the lottery

6 Security Analysis

In this section we informally argue security of our scheme. We present the full security
proofs in Appendix E.

Theorem 1. The protocol PPriFHEte UC realizes the GPL functionality in the (Gclock, Fanon-selection,
Finit,Fnizk,FN-MC)-hybrid world, assuming key-private CPA secure encryption, CPA secure fully
homomorphic encryption, secure pseudorandom functions, perfectly binding commitment schemes
and unforgeable signature scheme.

Proof. (Sketch) To prove UC-security, we must show that there exists a PPT simulator in-
teracting with GPL that generates a transcript that is indistinguishable from the transcript
generated by the real world protocol. We first give a high-level overview of the simulator
(described in Fig 27, Fig 28 and Fig 29). Our simulator internally simulates the ideal func-
tionalities Finit, Fanon-selection, Fnizk, FN-MC towards the adversary and relays any communi-
cation between the adversary and the emulated functionality. Since the general framework
of the protocol and functionalities are the same as in Ouroboros Crypsinous [KKKZ19] and
Genesis [BGK+18], we only focus on the simulation that concerns algorithms that we mod-
ify or add to. Upon receiving claim command from a party, on behalf of the simulated Finit

28

functionality, the simulator first sends a REGISTER command on behalf of the party to the
GPL functionality. Upon receiving Prove requests on behalf of the simulated Fnizk function-
ality, the simulator records any witnesses provided by the adversary. Finally, to simulate
Fanon-selection the simulator executes the commands as the ideal functionality would. The
simulation of FN-MC is indeed more interesting than the other functionalities since the sim-
ulator needs to create ideal-world transactions and blocks on behalf of the adversary us-
ing these transactions. The main idea to retrieve the private information associated with a
transaction is to extract the witness that was recorded by the Fnizk functionality for the cor-
responding transaction. Specifically, the simulator retrieves the witness w from the recorded
witnesses in P and extracts PKS,PKR, v and submits an ideal world transaction to GPL. Note
that if such a witness does not exist, then the simulator aborts with ZKSoundnessFailure.
Since we use the Fnizk functionality, this event occurs with negligible probability. More-
over, if the transaction is of type MINT and the submitted transaction corresponds to that of
an honest party, then the simulator aborts with sigFailure. Since we use unforgeable signa-
tures the probability of this event occurring is negligible. The adversary may also send new
blocks over the FN-MC functionality, the simulator first simulates the transactions in these
blocks as described above in the case that ideal transactions for these transactions do not
exist. Then the simulator runs EXTENDLEDGERSTATE function as defined in Ouroboros
Genesis[BGK+18], which essentially creates new blocks and submits them to the GPL func-
tionality. To simulate honest transactions, the simulator does the following: upon receiving
a registration command, the simulator generates FHE, WKEnc and PRF keys as an honest
party would. But instead of encrypting the WKEnc.sk the simulator encrypts all 0s. By the
CPA security of the underlying FHE scheme, this is indistinguishable from the real world
to an adversary. Similarly, the commitment to PRF key is replaced by a commitment to
0. Here we leverage the hiding property of the commitment scheme to argue that the two
worlds are indistinguishable. To simulate honest transactions, the simulator generates a
new PK, SK and computes a transfer transaction that sends from PK to PK a value of 0. By
the key-privacy and CPA security of the underlying WKEnc scheme, the ideal and the real
worlds are indistinguishable to a PPT adversary. The output of the PRF is replaced with a
random string, and we leverage the pseudorandomness property of the PRF to argue indis-
tinguishability. We argue in Appendix E through a sequence of hybrids that the real world
and the ideal world are indistinguishable.

References
[AJJM20] Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta. Multi-key fully-

homomorphic encryption in the plain model. In Theory of Cryptography: 18th International Conference,
TCC 2020, Durham, NC, USA, November 16–19, 2020, Proceedings, Part I 18, pages 28–57. Springer,
2020.

[AR20] Shashank Agrawal and Srinivasan Raghuraman. Kvac: Key-value commitments for blockchains
and beyond. In International Conference on the Theory and Application of Cryptology and Information
Security, pages 839–869. Springer, 2020.

[BAZB20] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. Zether: Towards privacy in a
smart contract world. In International Conference on Financial Cryptography and Data Security, pages
423–443. Springer, 2020.

29

[BBDP01] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in public-
key encryption. In International Conference on the Theory and Application of Cryptology and Information
Security, pages 566–582. Springer, 2001.

[BGK+18] Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas.
Ouroboros genesis: Composable proof-of-stake blockchains with dynamic availability. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pages 913–930,
2018.

[BGK+19] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas.
Ouroboros genesis: Composable proof-of-stake blockchains with dynamic availability. 2019.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption
without bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):1–36, 2014.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Proceed-
ings of the 2012 ACM conference on Computer and communications security, pages 784–796, 2012.

[BMSZ20] Foteini Baldimtsi, Varun Madathil, Alessandra Scafuro, and Linfeng Zhou. Anonymous lottery in
the proof-of-stake setting. In 2020 IEEE 33rd Computer Security Foundations Symposium (CSF), pages
318–333. IEEE, 2020.

[BMTZ17] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as a transaction
ledger: A composable treatment. In Annual international cryptology conference, pages 324–356.
Springer, 2017.

[BT23] Osman Biçer and Christian Tschudin. Oblivious homomorphic encryption. Cryptology ePrint
Archive, 2023.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (stan-
dard) lwe. SIAM Journal on computing, 43(2):831–871, 2014.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pages 136–145. IEEE, 2001.

[CBC21] Panagiotis Chatzigiannis, Foteini Baldimtsi, and Konstantinos Chalkias. Sok: Blockchain light
clients. Cryptology ePrint Archive, 2021.

[CHA22] Matteo Campanelli and Mathias Hall-Andersen. Veksel: simple, efficient, anonymous payments
with large anonymity sets from well-studied assumptions. In Proceedings of the 2022 ACM on Asia
Conference on Computer and Communications Security, pages 652–666, 2022.

[DGKR18] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 66–98. Springer, 2018.

[Dia21] Benjamin E Diamond. Many-out-of-many proofs and applications to anonymous zether. In 2021
IEEE Symposium on Security and Privacy (SP), pages 1800–1817. IEEE, 2021.

[eth] Ethereum.

[fil] Filecoin.

[FMMO19] Prastudy Fauzi, Sarah Meiklejohn, Rebekah Mercer, and Claudio Orlandi. Quisquis: A new design
for anonymous cryptocurrencies. In International conference on the theory and application of cryptology
and information security, pages 649–678. Springer, 2019.

[Fou21] Ethereum Foundation. Ethereum zk-rollups, 2021. Accessed on: 2023-02-12.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. Stanford university, 2009.

[GKO+22] Chaya Ganesh, Yashvanth Kondi, Claudio Orlandi, Mahak Pancholi, Akira Takahashi, and Daniel
Tschudi. Witness-succinct universally-composable snarks. Cryptology ePrint Archive, 2022.

[GKP23] Yue Guo, Harish Karthikeyan, and Antigoni Polychroniadou. Pride ct: Towards public consensus,
private transactions, and forward secrecy in decentralized payments. Cryptology ePrint Archive,
2023.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Annual international confer-
ence on the theory and applications of cryptographic techniques, pages 305–326. Springer, 2016.

30

[GRR+21] Mike Graf, Daniel Rausch, Viktoria Ronge, Christoph Egger, Ralf Küsters, and Dominique Schröder.
A security framework for distributed ledgers. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, pages 1043–1064, 2021.

[GWC19] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. Plonk: Permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, 2019.

[GWY+20] Zhangshuang Guan, Zhiguo Wan, Yang Yang, Yan Zhou, and Butian Huang. Blockmaze: An ef-
ficient privacy-preserving account-model blockchain based on zk-snarks. IEEE Transactions on De-
pendable and Secure Computing, 2020.

[HBHW] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash protocol specification -
zips.z.cash.

[KFTS17] Amrit Kumar, Clément Fischer, Shruti Tople, and Prateek Saxena. A traceability analysis of mon-
ero’s blockchain. In European Symposium on Research in Computer Security, pages 153–173. Springer,
2017.

[KKKZ19] Thomas Kerber, Aggelos Kiayias, Markulf Kohlweiss, and Vassilis Zikas. Ouroboros crypsinous:
Privacy-preserving proof-of-stake. In 2019 IEEE Symposium on Security and Privacy (SP), pages 157–
174. IEEE, 2019.

[KL20] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. CRC press, 2020.

[KZM+] Ahmed E Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, and T-H Hubert Chan. How to use snarks
in universally composable protocols.

[LATV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In Proceedings of the forty-fourth annual
ACM symposium on Theory of computing, pages 1219–1234, 2012.

[LRR+19] Russell WF Lai, Viktoria Ronge, Tim Ruffing, Dominique Schröder, Sri Aravinda Krishnan Thya-
garajan, and Jiafan Wang. Omniring: Scaling private payments without trusted setup. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pages 31–48, 2019.

[LT22] Zeyu Liu and Eran Tromer. Oblivious message retrieval. 2022.

[MGGR13] Ian Miers, Christina Garman, Matthew Green, and Aviel D Rubin. Zerocoin: Anonymous dis-
tributed e-cash from bitcoin. In 2013 IEEE Symposium on Security and Privacy, pages 397–411. IEEE,
2013.

[MPJ+13] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon McCoy, Geoffrey M
Voelker, and Stefan Savage. A fistful of bitcoins: characterizing payments among men with no
names. In Proceedings of the 2013 conference on Internet measurement conference, pages 127–140, 2013.

[MSH+17] Malte Möser, Kyle Soska, Ethan Heilman, Kevin Lee, Henry Heffan, Shashvat Srivastava, Kyle
Hogan, Jason Hennessey, Andrew Miller, Arvind Narayanan, et al. An empirical analysis of trace-
ability in the monero blockchain. arXiv preprint arXiv:1704.04299, 2017.

[Net21] Anoma Network. Taiga. https://github.com/anoma/taiga, January 21 2021.

[NM+16] Shen Noether, Adam Mackenzie, et al. Ring confidential transactions. Ledger, 1:1–18, 2016.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable
oblivious transfer. In Annual international cryptology conference, pages 554–571. Springer, 2008.

[Reg10] Oded Regev. The learning with errors problem. Invited survey in CCC, 7(30):11, 2010.

[RH13] Fergal Reid and Martin Harrigan. An analysis of anonymity in the bitcoin system. In Security and
privacy in social networks, pages 197–223. Springer, 2013.

[rip] Ripple.

[RZ19] Antoine Rondelet and Michal Zajac. Zeth: On integrating zerocash on ethereum. arXiv preprint
arXiv:1904.00905, 2019.

[SCG+14] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and
Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE symposium
on security and privacy, pages 459–474. IEEE, 2014.

31

https://github.com/anoma/taiga

[TAB+20] Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin Drake, Dankrad Feist, and Dmitry Khovra-
tovich. Aggregatable subvector commitments for stateless cryptocurrencies. In Security and Cryp-
tography for Networks: 12th International Conference, SCN 2020, Amalfi, Italy, September 14–16, 2020,
Proceedings 12, pages 45–64. Springer, 2020.

[Tec09] CAPE Technologies. Espresso systems documentation. https://docs.cape.tech/espresso-systems/,
accessed 2023-03-09.

[Wil18] Zachary J Williamson. The aztec protocol. 2018.

[WMS+19] Karl Wüst, Sinisa Matetic, Moritz Schneider, Ian Miers, Kari Kostiainen, and Srdjan Čapkun. Zlite:
Lightweight clients for shielded zcash transactions using trusted execution. In International Confer-
ence on Financial Cryptography and Data Security, pages 179–198. Springer, 2019.

[XZW+19] Yankai Xie, Chi Zhang, Lingbo Wei, Yukun Niu, Faxing Wang, and Jianqing Liu. A privacy-
preserving ethereum lightweight client using pir. In 2019 IEEE/CIC International Conference on Com-
munications in China (ICCC), pages 1006–1011. IEEE, 2019.

A Extended Preliminaries

A.1 Fully Homomorphic Encryption

We follow the definition of FHE presented in [BV14]. We use l as the security parameter
and all schemes in this paper encrypt bit-by-bit. A fully homomorphic encryption scheme
FHE = (FHE.KeyGen,FHE.Enc,FHE.Eval) is a quadruple of PPT algorithms as follows.
• Key Generation. The algorithm (pk, sk) FHE.KeyGen(1l) takes as input the security

parameter and outputs a public encryption key pk, and a secret decryption key sk. Unlike
[BV14] we treat the evaluation key evk as part of the public key pk.

• Encryption. The algorithm c FHE.Enc(pk, m) takes the public key pk and a single bit
message m 2 {0, 1} and a secret decryption key sk.

• Decryption. The algorithm m FHE.Dec(sk, c) takes the secret key sk and a ciphertext c
and outputs a message m 2 {0, 1}

• Homomorphic evaluation. The algorithm c f FHE.Eval(pk, f , (c1, . . . , c`)) takes the
public key pk, a function f : {0, 1}` ! {0, 1} and a set of ` ciphertexts c1, . . . , c` and
outputs a ciphertext c f .
The security notion we consider is IND-CPA security defined as follows.

Definition 1. (CPA security). A scheme FHE is IND-CPA secure if for any polynomial time adver-
sary A it holds that

AdvCPA[A] = |Pr[A(pk,FHE.Enc(pk, 0)) = 1]� Pr[A(pk,FHE.Enc(pk, 1)) = 1]| = negl(l)

A.2 Key-Private Public Key encryption with wrong-key decryption

We denote this encryption scheme in the description of our protocols as (WKEnc.KeyGen,
WKEnc.Enc,WKEnc.Dec). Wrong-key decryption informally states that a ciphertext decrypted
with the wrong secret key will always return a valid plaintext and return the correct plain-
text only with some negligible advantage (1

2 + negl).
We present the notion of key-privacy under chosen plaintext attacks as defined in [BBDP01]
and the wrong key decryption defined in [LT22]:

32

https://docs.cape.tech/espresso-systems/

Definition 2. (Key privacy) A scheme WKEnc is IK-CPA secure if for any polynomial time adver-
sary A it holds that

AdvIK-CPA[A] = |Pr[A(pk0, pk1, x,WKEnc.Enc(pk0, x)) = 1]

�Pr[A(pk0, pk1,WKEnc.Enc(pk1, x)) = 1]| = negl(l)

Definition 3. (Wrong-key Decryption) For an encryption scheme with plaintext space Z2 letting
(sk, pk) WKEnc.KeyGen(1l) and (sk0, pk0) WKEnc.KeyGen(1l), ct WKEnc.Enc(pk, 1),
and m0 WKEnc.Dec(sk0, ct), it holds that

Pr[m0 = 1]  1/2 + negl(l)

A.3 Pseudorandom functions with unpredictability under malicious key gener-
ation

Informally, unpredictability under malicious key generation (introduced in [DGKR18]) re-
quires that the function PRF does not have any “bad" keys that an adversary can use to
manipulate the output of the PRF.

In the random oracle model, the property can be expressed as follows: For any PPT
adversary A and x 2 X, T 2 N, the probability of the event Pr[PRF(k, x) = T|x /2 QH] =

1
2l ,

where the adversary outputs k and QH is the set of queries of A to the hash function H. The
construction presented in Crypsinous[KKKZ19] is H(m)k. By the DDH assumption, this is
a secure PRF. Regarding unpredictability, observe that Pr[H(x)k = T] = Pr[H(x) = T1/k =
1/2l] in the conditional space that x /2 QH.

A.4 Non-interactive zero knowledge

We use the Fnizk functionality to compute and verify zero-knowledge proofs. We present
the ideal functionality in Appendix D (Fig 25). The functionality provides an interface for
parties to create proofs p that a statement x is in a given NP language L with a witness
w. Moreover, as proven in [KKKZ19] the Fnizk functionality can be realized by the SNARK
proving system described in [KZM+].

A.5 Blockchain

A blockchain is an ever-growing hashchain of blocks. Each block consists of transactions
and this hashchain is agreed upon by a dynamic set of nodes, often referred to as miners.
Each user in the network may have a different version of the blockchain (denoted C i

loc
for

user Pi), constrained by the fact that each C i
loc

has a common prefix.
Blockchains generally consist of two kinds of parties miners and users. The users compute

and submit transactions to the network. The miners collect these transactions, validate them
and create a block including the valid transactions. A miner then broadcasts the newly
created block, thus extending the blockchain. The algorithms used to create and submit
transactions are referred to as transaction layer algorithms and the ones used to create and
broadcast blocks are referred to as consensus layer algorithms. To set some notation, each
block is associated with a slot number slj, where a slot is unit of time. A set of adjacent h
slots is called an epoch ep.

33

In account-based cryptocurrencies (the setting we consider in this work), a transaction
consists of three values: the sender’s identity, the receiver’s identity and the value to be
spent. The miners maintain a list of accounts where each element in the list is a (public key,
balance) pair. This list is referred to as the state of the blockchain. To validate the transaction,
the miner checks that the sender of the transaction is not trying to spend more than their
balance. If the transaction is valid, the miner then updates the state by deducting the value of
the transaction from the sender’s balance and adds the same value to the receiver’s balance.
We denote the state of the cryptocurrency as T . The miners compute a Merkle tree with the
elements of T as the leaf. The root of this Merkle tree(denoted as rtT) is also added to every
block along with the valid transactions that caused the update to the state.

In a privacy-preserving cryptocurrency, we aim to hide the following information in-
cluded in a payment: the sender’s and receiver’s identities and the value to be transferred.
The universal composable (UC) framework [Can01] is a model used to define security prop-
erties of complex protocols in a modular way. A definition for an ideal ledger functionality
was presented by Badertscher et. al. [BMTZ17] denoted GLEDGER. Kerber et. al. [KKKZ19]
presented a private version of the ledger functionality denoted GPL (PL stands for private
ledger). The properties of hiding the information in a payment transaction as well as other
security properties required of a blockchain is captured by the GPL functionality. We give
an overview of this functionality in Section 5 and present the complete functionality in Fig-
ure 16.

To ease the presentation, we will denote the state of the blockchain T as TprivAccountskTpubAccounts
and rtT = H(rtTprivAccountskrtTpubAccounts). Row i in TpubAccounts is of the form (PKpub

i , vi), where
PKpub

i is the account-holder’s public key that is associated with their non-anonymous bal-
ance. The account-holder uses the corresponding secret key SKpub

i to spend their public bal-
ance. Moreover TprivAccounts includes elements of the form (PKi, Ci) where Ci is the encrypted
balance and PKi is the public key associated with the account. As above, the account-holder
uses the corresponding SKi to spend an their private balance.

B Proof of correctness and Example

Proof of correctness To prove the correctness of PROCESSTRANSACTION we need to show
that the state of the blockchain is updated correctly, i.e. when the entry in TprivAccounts does
not correspond to that of PS (or PR w.l.o.g.) the balance remains the same and when the
entry does correspond to that of PS, the balance is updated with the value in the transaction.

Case 1: UpdateCiphertext(TprivAccounts[PKi], (CS,CR, CrS , CrR , CD, CC,PRFOut, p),PKi) is
executed when CS does not correspond to an commitment of WKEnc.pki. Let CS = Com(WKEnc.pkS, rS)
and CrR [j] = WKEnc.Enc(WKEnc.pkS, bj) where bj = WKEnc.pkS[j] for j 2 [l].

UpdateCiphertext works as follows:
1. Compute Cr

i = (Cr
i,1, . . . , Cr

i,l), where Cr
i,j = FHE.Eval(FHE.pki,WKEnc.Dec, (k-cti, CrS [j])).

2. Compute Ccom
i as an FHE encryption of commitment to pki using the randomness en-

crypted in Cr
i . By the wrong-key decryption (Def 3) and the binding property of the

commitment scheme, Ccom
i,j encrypts a random bit 2 {0, 1} and therefore Ccom

i is an en-
cryption of a random bit vector.

3. Compute Cpreflag
i = (Cpre f lag

i,1 , . . . , Cpre f lag
i,l) where Cpre f lag

i,j = FHE.Eval(FHE.pki,�, (CS[j], Ccom
i,j))

34

for j 2 [l]. Since Ccom
i,j encrypts a random bit b, with high probability the bit encrypted

in Ccom
i,j 6= CS[j] for all j 2 [l]. Therefore Cpreflag

i is an encryption of a random bit vector,
except with negligible probability.

4. Compute Cflag

i = FHE.Eval(FHE.pki,⇥, (Cpre f lag
i,1 , . . . , Cpre f lag

i,l)). Since Cpreflag
i is a random

vector, with high probability there is atleast j s.t. Cpre f lag
i,j encrypts 0. Therefore, Cflag

i is an
encryption of 0 except with negligible probability.

5. Compute Cx
i = (Cx

i,1, . . . , Cx
i,µ) where Cx

i,j = FHE.Eval(FHE.pki,WKEnc.Dec, (k-cti, CD[j])).
Since the k-cti encrypts WKEnc.ski 6= WKEnc.skS, by the wrong-key decryption (Def 3),
Cx

i,j encrypts a random bit 2 {0, 1} and therefore Cx
i is an encryption of a random bit

vector.
6. Compute Cupd

i = (Cupd
i,1 , . . . , Cupd

i,µ), where Cupd
i,j = FHE.Eval(FHE.pki,⇥, (Cx

i,j, Cflag)). Since

Cflag is an encryption of 0, Cupd
i,j is an encryption of 0.

7. Update Ci = (Ci,1, . . . , Ci,µ as FHE.Eval(FHE.pki,�, (Ci,j, Cupd
i,j)) for j 2 [µ]. Since Cupd

i,j is
an encryption of 0, the value encrypted in Ci,j does not change.

35

!(1) !(0) !(1)&&!: !(0) !(0) !(1)&":'!(0) '!(0) '!(1)&#:

1. Decrypt &&! with k)*# '!(1) '!(2) '!(1)&#&:

2. XOR with
complement of &34!
(where &34! = 110)

'!(1) '!(5) '!(5)

'!(5) '!(5) '!(2)
⊕

'!(2) '!(5) '!(2)&%&'()*+:

&()*+: '!(2) '!(5) '!(1)

'!(5)

4.Decrypt	&" 	with
	-)*!

'!(0) '!(2) '!(1)&,:

5. Multiply
&,	with &()*+

'!(0) '!(0) '!(5)

'!(0) '!(0) '!(1)

'!(0) '!(0) '!(5)

'!(0) '!(5) '!(2)&# :

&#./0:

'!(&34!)

3. Multiply the
&%&'()*+ ciphertexts

'!(0) '!(2) '!(1)&,:

'!(5) '!(5) '!(5)&()*+:

6. Add &#-%$ to &#

&#-%$:

Encrypted balance of 0#
Encrypted randomness of

commitment to receiver identity Encrypted value in *1

&34!

Commitment to
R’s public key

2. Compute &34# 	with
&#& and ,-#

2 2 5

'!(1) '!(5) '!(5)&#./0:

Figure 14: Case 2: When the receiver of the payment does not correspond to the entry up-
dated in the state. Let the randomness used in committing to receiver’s public key rR = 101,
the value of the transaction be x = 001 and the balance of the receiver be v = 001. (1) The
first step is to decrypt Enc(101) with k-cti, and since i 6= R, Cr

i encrypts a random bit string
FHE.Enc(111). (2) Next Ccom

i computes the encryption of the commitment of pki using the
randomness encrypted in Cr

i (3) Next, Ccom
i is homomorphically XORed with the comple-

ment of ComR,which is 001,and this gives an encryption of 101. (3) These ciphertexts are
then multiplied together to give a single encryption of 0 (4) Next we homomorphically de-
crypt the value CC with k-cti to get an encryption of x under the FHE key, denoted Cv, which
is FHE.Enc(011) in our example. (5) Each of these ciphertexts are then multiplied with the
Cflag ciphertext. Since the flag is 0, the value encrypted Cv now encrypts 0. (6) Finally these
ciphertexts are added to the encryption of the balance in the state which does not change
the value encrypted.

Case 2: UpdateCiphertext(TprivAccounts[PKi], (CS, CR, CD, CC,PRFOut, p),PKi) is executed
when CS corresponds to an encryption of WKEnc.pki. Let CS = WKEnc.Enc(WKEnc.pkS, bj)
where bj = WKEnc.pkS[j] for j 2 [l]. UpdateCiphertext works as follows:
1. Compute Cr

i = (Cr
i,1, . . . , Cr

i,l), where Cr
i,j = FHE.Eval(FHE.pki,WKEnc.Dec, (k-cti, CrS [j])).

2. Compute Ccom
i as an FHE encryption of commitment to pki using the randomness en-

crypted in Cr
i . Since the randomness and the pki are the same as in CS, this ciphertext

encrypts CS

3. Compute Cpreflag
i = (Cpre f lag

i,1 , . . . , Cpre f lag
i,l) where Cpre f lag

i,j = FHE.Eval(FHE.pki,�, (CS[j], Ccom
i,j))

for j 2 [l]. The Cpreflag
i is an encryption of all 1s vector.

4. Compute Cflag

i = FHE.Eval(FHE.pki,⇥, (Cpre f lag
i,1 , . . . , Cpre f lag

i,l)). Since Cpreflag
i is a vector of

all 1s, Cflag

i is an encryption of 1

36

5. Compute Cx
i = (Cx

i,1, . . . , Cx
i,µ) where Cx

i,j = FHE.Eval(FHE.pki,WKEnc.Dec, (k-cti, CD[j])).
Since the k-cti encrypts WKEnc.ski = WKEnc.skS, Cx

i,j encrypts a bit bj 2 {0, 1} such that
Âµ

j=1 bj ⇥ 2j = x.

6. Compute Cupd
i = (Cupd

i,1 , . . . , Cupd
i,µ), where Cupd

i,j = FHE.Eval(FHE.pki,⇥, (Cx
i,j, Cflag)). Since

Cflag is an encryption of 1, Cupd
i,j is an encryption of a bit bj 2 {0, 1} such that Âµ

j=1 bj⇥ 2j =
x.

7. Update Ci = (Ci,1, . . . , Ci,µ as FHE.Eval(FHE.pki,�, (Ci,j, Cupd
i,j)) for j 2 [µ]. Since Cupd

i,j is
an encryption of bj 2 {0, 1} such that Âµ

j=1 bj ⇥ 2j = x, the Ci,1 is updated with x added
to the balance.

!(1) !(0) !(1)&&!: !(0) !(0) !(1)&":'!(0) '!(0) '!(1)&#:

1. Decrypt &&! with k)*# '!(1) '!(5) '!(1)&#&:

2. XOR with
complement of &34!
(where &34! = 110)

'!(1) '!(2) '!(5)

'!(5) '!(5) '!(2)
⊕

'!(2) '!(2) '!(2)&%&'()*+:

&()*+: '!(2) '!(2) '!(1)

'!(5)

4.Decrypt	&" 	with
	-)*!

'!(0) '!(5) '!(1)&,:

5. Multiply
&,	with &()*+

'!(0) '!(0) '!(2)

'!(0) '!(0) '!(1)

'!(0) '!(0) '!(2)

'!(0) '!(2) '!(5)&# :

&#./0:

'!(&34!)

3. Multiply the
&%&'()*+ ciphertexts

'!(0) '!(5) '!(1)&,:

'!(2) '!(2) '!(2)&()*+:

6. Add &#-%$ to &#

&#-%$:

Encrypted balance of 0#
Encrypted randomness of

commitment to receiver identity Encrypted value in *1

&34!

Commitment to
R’s public key

2. Compute &34# 	with
&#& and ,-#

2 2 5

'!(1) '!(2) '!(5)&#./0:

Figure 15: Case 1: When the receiver of the payment corresponds to the entry updated in
the state. Let the randomness used in committing to receiver’s public key rR = 101, the
commitment be the bit string 110 the value of the transaction be x = 001 and the balance
of the receiver be v = 001. (1) The first step is to decrypt Enc(101) with k-cti, and since
i = R, Cr

i = FHE.Enc(101). (2) Next Ccom
i is computed using Cr

i . Since the randomness and
the public key are the same, the commitment that is encrypted Ccom

i is the same as ComR.
(3) Next, Ccom

i is homomorphically XORed with the complement of ComR, which is 001,and
this gives an encryption of 111. (4) These ciphertexts are then multiplied together to give a
single encryption of 1, this encryption is called Cflag. (5) Next we homomorphically decrypt
the value CC with k-cti to get an encryption of x under the FHE key, denoted Cv. (6) Each of
these ciphertexts are then multiplied with the Cflag ciphertext. Since the flag is 1, the value
encrypted Cv does not change. (7) Finally these ciphertexts are added to the encryption of
the balance in the state

37

C The private ledger functionality - GPL

GPL is parameterized by seven algorithms, Validate, ExtendPolicy, blockify, Lkg,
BlindTx, Blind and predict-time, along with three parameters: windowSize, Delay 2 N

and T1 = {(P1, v1), . . . , (Pn, vn)}. These parameters are publicly known. The function-
ality manages variables state, NxtBC, bu↵er, tL and østate. The variables are initialized
as follows: state := østate := NxtBC := ids := #, bu↵er := ∆, tL = 0.
The functionality maintains the set of registered parties P , the (sub-)set of honest
parties H ✓ P , and the subset of de-synchronized honest parties PDS ⇢ H. The sets
P ,H,PDS are all initially set to ∆. When a new honest party is registered at the ledger,
if it is registered with the clock and the global RO already, then it is added to the party
sets H and P and the current time of the registration is also recorded; if the current
time is tL > 0 it is also added to PDS. Similarly, when a party is de-registered, it is
removed from P . The ledger maintains the invariant that it is registered (as a func-
tionality) to the clock whenever H 6= ∆. Finally, during registration, the adversary is
informed that a registration has occurred. The adversary responds with an ID and Pi
is replaced with the resulting ID in T1. Further, the registration procedure returns ID.
For each party Pi 2 P the functionality maintains a pointer ptp (initially set to 1) and a
current-state view statep := # (initially set to empty). We refer to the vector pt1, . . . , ptn
as pt.

Handling initial parties: If during the round t = 0, the ledger did not receive a
registration from each initial party, (Pi, vi) 2 T1, the functionality halts.

Upon receiving any input I from any party or from the adversary, send
(CLOCK-READ, sidC) to Gclock; upon receiving response (CLOCK-READ, sidC, t) set tL := t
and do the following if t > 0 (otherwise, ignore input):
1. Let P̂ ✓ PDS denote the set of de-synchronized honest parties that have been

registered (continuously) since time t0 < tL � Delay. Set PDS := PDS \ P̂ .
2. If I was received from an honest party Pi 2 P :

(a) If I = (SUBMIT, sid, tx), set IT
H := IT

Hk((SUBMIT, sid,BlindTxA(state,P \
H, ids, tx)), Pi, tL); else set IT

H := IT
Hk(I, Pi, tL)

3. Compute N = (N1, . . . , N`) := ExtendPolicy(IT
H, state,NxtBC, bu↵er, østate) and if

N 6= # set state := statekblockify(N1)k . . . blockify(N`) and østate := østatekt`
L where

t`
L := tLk . . . ktL.

4. For each BTX 2 bu↵er: if Validate(BTX, state, bu↵er, pt,H, ids) = 0 then delete tx
from bu↵er. Also reset NxtBC := #.

5. If there exists Pi 2 H \ PDS such that |state|� ptj > windowSize or ptj < |statej|,
then set ptk := |state| for all Pk 2 H \ PDS.

Figure 16: The GPL functionality - Part 1

38

3. If the calling party Pi is stalled (according to the definition above), then no further
actions are taken. Otherwise, depending on the above input I and its sender’s ID,
GPL executes the corresponding code from the following list:
• Submitting a transaction:

If I = (SUBMIT, sid, tx) and is received from a party Pi 2 P or from A (on behalf
of a corrupted party Pi) do the following
(a) Choose a unique transaction ID txid and set BTX := (tx, txid, tL, Pi)
(b) If Validate(BTX, state, bu↵er, pt,H, ids) = 1, then bu↵er := bu↵er [BTX
(c) Send (SUBMIT,BlindTxA(state,P \H, ids,BTX)) to A

• Generating IDs
• Reading the state

If I = (READ, sid) is received from a party Pi 2 P , then set statei :=
statei|min{pti ,|state|} and return (READ, sid,Blind({Pi}, ids, statei)) to the requestor.
If the requestor is A then send (BlindA(P \H, ids, state),map(BlindTxA(state,P \
H), ids, bu↵er), Lkg(state, bu↵er, tL), IT

H) to A
• Maintiaining the ledger state:

If I = (MAINTAIN-LEDGER, sid) is received by an honest party Pi 2 P and (after
updating IT

H as above) predict-time(IT
H) = t̂ > tL then send CLOCK-UPDATE, sidC)

to Gclock. Else send I to A.
• The adversary proposing the next block:

If I = (NEXT-BLOCK, hFlag, (txid1, . . . , txid`)) is sent from the adversary update
NxtBC as follows:
(a) Set listOfTxid #
(b) For i = 1, . . . , ` do: if there exists BTX := (x, txid, tL, Pi) 2 bu↵er with ID

txid = txidi then set listOfTxid := listOfTxidktxidi.
(c) Finally set NxtBC := NxtBCk(hFlag, listOfTxid) and output

(NEXT-BLOCK, ok) to A
• The adversary setting state-slackness:

If I = (SET-SLACK, (Pi, p̂ti), . . . , (P`, ˆpt`)) with {Pi, . . .P`} ✓ H \ PDS is received
from the adversary A do the following:
(a) If for all j 2 [`] : |state|� p̂tj  windowSize and p̂tj � |statej|, set pti = p̂ti

for every j 2 [i, `] and return (SET-SLACK, ok) to A.
(b) Otherwise set ptj := |state| for all j 2 [i, `].

• The adversary setting the state for desynchronized parties:
If I = (DESYNC-STATE, (Pi, state0i), . . . , (P`, state0`)) with (Pi, . . . , P`) ✓ PDS is re-
ceived from the adversary A, set statej := state0j for each j 2 [i, `] and return
(DESYNC-STATE, ok) to A.

Figure 17: The GPL functionality - Part 2

39

Function Validate(BTX, state, bu↵er,H, ids):
1. Parse BTX as (tx, txid, tL, Pi)
2. Let ep⇤ be the epoch corresponding to tL, and the current epoch be ep. Check that

ep⇤ = ep
3. Parse tx as (Pi, Pj, v) where Pi, Pj 2 ids
4. Check that vi > v
5. Let tep be the time when the current epoch starts.
6. Check that there exists no BTX0 2 {state, bu↵er} after time tep from party Pi.
7. If any of the above checks return false, return 0, else return 1.

Figure 18: Ideal Validation Predicate

Let tx = (stx1, . . . , stx`), where stx = (pkr, x)
Function BlindSTx(state,P , ids, (pk, stx))
1. Let b 0
2. If stx = (pkr, x) and pkr 2 P \H, set b 1
3. If pk 6= MINT _ pk not owned by Pi 2 P , set b 0
4. If b, return (pk, stx), else return (?, |stx|)
Now,
BlindTx(state,P , ids, (tx, txid, ·, ·)) = (map(BlindSTx(state,P , ids), tx), txid)
BlindTxA(state,P , ids, (tx, txid, tL, Ps)) = (map(BlindSTx(state,P , ids), tx), txid, tL, Ps)

Figure 19: Blinding function

This function is the same as the one defined in Ouroboros Genesis [BGK+18]. We
present an overview below:
1. Create an honest client block as an alternative Ndf .
2. Parse the block proposed by the adversary:

• Check if upon adding a transaction from the block invalidates the rest of the
transactions in the block.

• If yes, return Ndf .
• If the proposed block is proposed on behalf of an honest party and there exist

old enough valid transactions in the buffer of any other honest party set a flag
oldValidTxMissing true and return Ndf

• If there are too many adversarially generated blocks return Ndf

• If a sequence of blocks takes too much time to be proposed, return Ndf

• Else update the state with the newly proposed block.

Figure 20: Extend Policy function

40

C.1 Additional UC protocols

Protocol ReadState(sid, Cloc, Pi)
1. Execute FetchInformation to receive the newest messages for this round; denote

the output chains by C1, . . . CM
2. Use the clock to update t, ep dt/Re and sl t
3. Let N {C1, . . . , CM}
4. Invoke protocol SelectChain(N , . . .) (as defined in Ouroboros Genesis [BGK+18])

and receive an updated Cloc
5. Extract the list of transactions st from the current local chain Cloc.
6. Set stideal = ∆
7. For each tx in stdk

• If tx = TRANSFER and Dec(WKEnc.ski, CR) = WKEnc.pki then decrypt CR = v
and record (TRANSFER, v) as stideal = stidealk(TRANSFER, v)

• If tx = MINT and is equal to (PKi, v, rt, s), record (MINT, v) as stideal =
stidealk(MINT, v)

8. Return stideal

Figure 21: Read State

Function ValidTx(txi, {T }ep, Cloc)
If tx = TRANSFER

1. Let ep be the current epoch and {T }ep be the set of states in the current epoch.
2. Parse tx as (CS,CR, CrS , CrR , CD, CC,PRFOut, p)
3. Verify that rtT = MerkleCRH(T) for atleast one of T in {T }ep. Else abort.
4. Run Verify(zk.vk, x,Proof) where x = (rtT , (CS,CR, CrS , CrR , CD, CC,PRFOut) and

Proof = p
5. Verify that PRFOut does not already appear in the bu↵er and Cloc after slot ep ⇤ R.
6. If any of the checks above fail return 0, else return 1.
If tx = MINT

1. Parse tx as (PKi, x, rtTpubAccounts , s)
2. Check that TpubAccounts[PKi] > x
3. Check that Verify(vki, (PKi, x, rtTpubAccounts), s) = 1
4. If any of these checks fail, output 0, else output 1.
If tx = PUB-TRANSFER:
1. Parse tx as (PKS, vk⇤, x,PRFOut, ppub)
2. Run Verify(zk.vk, x,Proof) where x = (rtT ,PKS, vk⇤, x,PRFOut,) and Proof = p
3. Verify that PRFOut does not already appear in the bu↵er and Cloc after slot ep ⇤ R.
4. If any of the checks above fail return 0, else return 1.

Figure 22: Real world validation

41

D Hybrid functionalities

The functionality Finit is parameterized by the number of initial account-holders n
and their respective balances b1, . . . , bn. Finit interacts with Pi, . . . , Pn as follows:
• In the first round, upon a request from some account-holder Pi of the form

(claim, sid, Pi,PKi), the functionality computes REGISTRATION(PKi).
• Once all parties have registered, it samples and stores a random value

h1 $ {0, 1}l. it then constructs a genesis block (C, h1), where C =
(C1,PKn), . . . , (Cn,PKn)

If this is not the first round then do the following:
• If any of the account-holders did not send a request of the above form in the genesis

round, then Finit outputs an error and halts.
• Otherwise, if the currently received input is a request of the form (gen-req, sid, Pi)

from any account-holder Pi, then Finit sends (gen-block, sid, (C, h1)) to Pi.

Figure 23: Finit functionality

42

The functionality maintains the set P of registered identities that is parties Pi =
(sid, pid). It also manages the set F of functionalities. Initially P = ∆ and F = ∆.
For each session sid the clock maintains a variable tsid. For each identity Pi =
(pid, sid) 2 P it manages variable dPi . For each pair (F , sid) 2 F it manages a variable
d(F ,sid) all initialized to 0.

Synchronization :
• Upon receiving (CLOCK-UPDATE, sidC) from some party Pi 2 P set dPi := 1; execute

Round-Update and forward (CLOCK-UPDATE, sid, Pi) to A
• Upon receiving (CLOCK-UPDATE, sidC) from some functionality F 2 P set d(F ,sid) :=

1; execute Round-Update and forward (CLOCK-UPDATE, sid,F) to this instance of F .
• Upon receiving (CLOCK-READ, sidC) from any participant return

(CLOCK-READ, sidC, t) to the requester.

Procedure Round-Update : For each session sid do: If d(F ,sid) := 1 for all F 2 F
and dPi = 1 for all honest parties Pi = (·, sid) 2 P then set tsid := tsid + 1 and reset
d(F ,sid) := 0 and dPi := 0 for all parties Pi = (·, sid) 2 P .

Figure 24: Gclock functionality

The non-interactive zero-knowledge functionality FL
nizk

allows proving of statements
in an NP language L. It maintains a set of statement/proof pairs P, initialized to ∆.

Proving Upon receiving a message (Prove, sid, x, w):
1. If (x, w) /2 L then return (proof, sid, x,?)
2. Else send (Prove, sid, x) to A and receive the reply (proof, sid, x, p). Do P = P [

{(x, p)} and return (proof, sid, x, p)

Proof Verification When receiving a message (verify, sid, x, p) :
1. If (x, p) /2 P then send (verify, sid, x, p) to A and then receive the reply R.
2. If R = (witness, sid, x, p, w) ^ (x, w) 2 L then let P = P [(x, p).
3. Return (verify, sid, x, p, (x, p) 2 P)

Figure 25: Fnizk functionality

43

The ideal functionality is parameterized by an Eligible predicate and maintains the
following elements: (1) a global set of participants P = (P1, b1), . . . (Pn, bn) (2) A table
T which has one row per party and column for each tag 2 [N] given by parties when
checking eligibility. The table stores the eligibility information of each party in each
tag. (3) A list L to store a proof p corresponding to a message msg in some tag

Check Eligibility Upon receiving (ELIGIBILITY-CHECK, sid, tag) from a party Pi do
the following:
1. If Pi 2 P and T(Pi, tag) is undefined, sample r 2 {0, 1}`, run Eligible(Pi, r, tag) to

get b 2 {0, 1}. Set T(Pi, tag) = b
2. Output (ELIGIBILITY-CHECK, sid, T(Pi, tag)) to Pi.

Proof of eligibility Upon receiving (CREATE-PROOF, sid, tag, msg) from some party
Pi:
1. If T(Pi, tag) = 1, send (PROVE, tag, msg) to A. Else send (DECLINED, tag, msg) to Pi.
2. Upon receiving (DONE, y, tag, msg) from A, set p := y and record (p, tag, msg) in

L. Send (CREATE-PROOF, p, tag, msg) to Pi.

Verifying proofs Upon receiving (VERIFY, sid, p, tag, msg) from some party P0:
1. If (p, tag, msg) 2 L output (VERIFIED, sid, (p, tag, msg), 1) to P0
2. If (p, tag, msg) /2 L send (VERIFY, sid, (p, tag, msg)) to A and wait for a witness w

from the adversary A. Check if w is valid as follows:
• Parse w = (Pi, tag, msg) and check that T(Pi, tag) = 1
• If yes, store (p, tag, msg) in the list L and send (VERIFIED, sid, (p, tag, msg), 1) to

P0
If either of these checks are false, output (VERIFIED, sid, (p, tag, msg), 0) to P0.

Figure 26: Fanon-selection functionality of [BMSZ20]

44

E Security Proof

The simulator internally emulates the hybrid functionalities Finit,Fnizk,Fanon-selection
and relays any communication between A (on behalf of corrupted party) and the
emulated functionality.

Simulation of Finit towards A
1. Upon receiving (claim, sid, Pi,PKi) from A, send (REGISTER, sid) on behalf of Pi to

GPL.
2. The functionality updates the state of the blockchain by running

REGISTRATION(T kPKi).

Simulation of Fnizk towards A
1. The simulator maintains a set of statement, witness and proof pairs for the relation

RTRANSFER in PTRANSFER and for the relation RKEYGEN in PKEYGEN.
2. Upon receiving a message (Prove, sid, x, w) from some corrupted Pi, check if

(x, w) 2 L. If not respond with ?, else send (Prove, sid, x) to A and re-
ceive back (proof, sid, x, p). Record (p, x, w) 2 PTRANSFER (or PKEYGEN) and return
(proof, sid, x, p) to the corrupted party.

3. Upon receiving a message (verify, sid, x, p) from a corrupt party, check if (x, ⇤, p) 2
PTRANSFER (or PKEYGEN). If yes, return (verify, sid, x, p, 1) to the corrupted party. If
(x, ⇤, p) /2 PTRANSFER or PKEYGEN, send (verify, sid, x, p) to A and receive back a reply
R. If R = (witness, sid, x, p, w) and (x, w) 2 L, then update PTRANSFER = PTRANSFER [
(x, w, p) or PKEYGEN = PKEYGEN [(x, w, p) depending on the relation of the proof,
and return (verify, sid, x, p, 1), else respond with (verify, sid, x, p, 0) to the corrupted
party.

Simulation of Fanon-selection towards A
1. Upon receiving (ELIGIBILITY-CHECK, (sl, ep)) from a corrupt party, sample a

random r 2 {0, 1}` and run Eligible(Pi, r, (sl, ep)) to get b 2 {0, 1}. Return
(ELIGIBILITY-CHECK, (sl, ep), b) to the corrupt party. And store T(Pi, (sl, ep)) = 1

2. Upon receiving (CREATE-PROOF, sid, (sl, ep), msg), from a corrupt party Pi, check
that T(Pi, (sl, ep)) = 1 and if yes, forward the request to the adversary and re-
ceive Y. Record (Y, (ep, sl), msg) and return (CREATE-PROOF, p, (ep, sl), msg) to the
corrupt party.

3. Upon receiving (VERIFY, sid, p, (ep, sl), msg) from a corrupt party Pi, check if
(p, (ep, sl), msg) has been recorded, if yes return (VERIFIED, sid, (p, tag, msg), 1) to
the party. Else send (VERIFY, sid, p, (ep, sl), msg) to the adversary and receive back
a witness w. Parse w = (Pi, (sl, ep), msg) and check if T(Pi, (sl, ep)) = 1, If yes,
record (p, (ep, sl), msg) and send (VERIFIED, sid, (p, tag, msg), 1) to Pi, else send
(VERIFIED, sid, (p, tag, msg), 0) to Pi.

Figure 27: Simulation of hybrid functionalities towards the adversary

46

Simulation of FN-MC The simulation is similar to that of Ouroboros Genesis
[BGK+18]. We present below the additional changes to the simulation.
1. Upon receiving (MULTICAST, (txi1 , Pi1), . . . , (txi` , Pi`)) with list of transactions from

A on behalf of some corrupted Pi do the following:
SimulateAdvTransaction(tx)
If tx is a TRANSFER transaction:
(a) Parse tx as (CS,CR, CrS , CrR , CD, CC,PRFOut, p)
(b) Check that (CS,CR, CrS , CrR , CD, CC,PRFOut, rtTprivAccounts , ep), w) exists in

PTRANSFER as was recorded by the simulation of Fnizk towards the adversary. If
such an entry does not exist, abort with ZKSoundnessFailure

(c) If there exists an honestly simulated transaction with PRFOut equal to the one
parsed from tx, abort with error PRFFailure

(d) Else parse w as (PKS, SKS,PKR, v, vS, C, rS, rRpath). If (PKS, C) /2 TprivAccounts
but VerifyPath(rtTprivAccounts , path) = 1, abort with CRHFailure.

(e) Let SKS = (FHE.skS,WKEnc.skS, skS, kS) and from PKEYGEN, find the record
(p,PKS, w⇤) and let w = (FHE.skS,WKEnc.skS, skS, k⇤S). If k⇤S 6= kS, abort with
error CommFailure.

(f) Set tx = (TRANSFER, (PKS,PKR, x)) and send (SUBMIT, sid, tx) to GPL and re-
ceive back (SUBMIT, (tx, txid, tL, PS)) from GPL. Record txid.

If tx is a MINT transaction:
(a) Parse tx as (tx0, s) where tx0 = (v,PKi, rtTpubAccounts)
(b) If s corresponds to that of an honest party abort with sigFailure.
(c) Else send (SUBMIT, sid, tx = (MINT, (PKi, x))) to GPL and receive back

(SUBMIT, (tx, txid, tL, PS)) from GPL. Record txid.
2. Upon receiving (MULTICAST, sid, (Ci1 , Pi1), . . . , (Ci` , Pi`))

(a) Let Cl be the longest chain out of Ci1 , . . . , Ci`
(b) Let tx1, . . . , txn be transactions /2 Cdl k.
(c) For each txi 2 {tx1, . . . , txn}

i. Find recorded txid that corresponds to txi.
ii. If txid does not exist, run SimulateAdvTransaction(tx)

(d) Run EXTENDLEDGERSTATE(t) as defined in [BGK+19]: which sends
(NEXT-BLOCK, hFlagj, listj) to GPL and receive (NEXT-BLOCK, ok) as an immedi-

ate response. Here listj is a list of txids that are not in the state but in Cdkl and
hFlagj denotes if the corresponding blocks were proposed by honest parties.

3. Upon receiving (NEW-PARTY, sid, Pi,PKi, pKEYGEN) from a corrupt party,
(a) Check if (p,PKi, w) exists in PKEYGEN as was recorded by the simulation of

Fnizk towards the adversary. If such an entry does not exist, abort with
ZKSoundnessFailure.

(b) Else register with GPL on behalf of Pi and upon receiving a notification that a
new party has registered, send PKi.

Figure 28: Simulation of network functionality towards A

47

Generating keys : Upon receiving registration request from the environment:
1. Generating keys:

• (FHE.pki,FHE.ski) FHE.KeyGen(1l)
• (WKEnc.pki,WKEnc.ski) FHE.KeyGen(1l)
• (ski, vki) Sign.KeyGen(1l)
• k PRF.KeyGen(1l)

2. Encrypting WKEnc keys:
• k-cti {FHE.Enc(FHE.pki, 0)}l

i=1
3. Committing to the PRF key:

• CPRF Com(0; r) where r {0, 1}l

4. Return PKi := (k-cti,FHE.pki,WKEnc.pki, vki,CPRF) and SKi =
(FHE.ski,WKEnc.ski, ski, k)

Submitting honest transactions : Upon receiving (SUBMIT, tx) from the environ-
ment for honest transactions:
1. If tx is of the form (TRANSFERktx0)

(a) Let (PK⇤, SK⇤) KEYGENERATION(l)
(b) Set x = 0
(c) Use the clock to update t, ep dt/Re and sl t
(d) Let Cloc be the chain upto the beginning of the epoch ep.
(e) Let (CS,CR, CrS , CrR , CD, CC, p,PRFOut) := TRANSFER(PK⇤,PK⇤, x, ep, R, Cloc)
(f) Sample y {0, 1}l and replace PRFOut with y.
(g) Replace CS and CR with Com(0; rS) and Com(0; rR)
(h) Replace CrS and CrR with encryptions of 0.
(i) Replace p with simulated proofs.
(j) Submit (MULTICAST, tx) to FN-MC

2. Else if tx is of the form (MINT, tx0)
(a) Parse tx0 as (pkS, x)
(b) Compute tx = MINT(v,PKi, SKi, rtTpubAccounts)
(c) Submit (MULTICAST, tx) to simulated FN-MC.

Simulating leader election : Upon receiving (MAINTAIN-LEDGER, sid), extract from
IT

H, the party Pi that issued this query. If Pi has already completed the round task
then ignore the request. Otherwise:
1. Let (ep, sl, ptr, h, B0) be as defined in LotteryProcedure executed by Pi.
2. Send (CREATE-PROOF, (ep, sl), B) to A and receive back p.
3. Set txlead = ((ep, sl), pt, h, p) and broadcast (txlead, B0) to Fbc

N-MC
.

Figure 29: Simulating honest parties

Theorem 1.(restated)The protocol PPriFHEte UC realizes the GPL functionality in the (Gclock,
Fanon-selection,Finit,Fnizk,FN-MC)-hybrid world, assuming key-private CPA secure encryption, CPA
secure fully homomorphic encryption, secure pseudorandom functions, secure commitment schemes
and unforgeable signature scheme.

48

Proof. Proof by hybrids We prove security via a sequence of hybrids where we start from real
world and move to the ideal world. The properties of the blockchain such as consistency,
chain quality, liveness are handled by the ExtendPolicy algorithm. Since we do not modify
this algorithm from the one defined in Ouroboros Genesis [BGK+18], these properties are
achieved by our protocols as well. We therefore only consider the hybrids that correspond
to the protocols on the transactional layer below:
• Hybrid0: The real world protocol.
• Hybrid1: This hybrid is the same as Hybrid0, except upon receiving a SUBMIT command,

the zero knowledge proofs p by simulated zero knowledge proofs in the TRANSFER algo-
rithm. By the zero knowledge property of the underlying NIZK scheme we have that the
two hybrids are indistinguishable.

TRANSFER(PKS, SKS,PKR, x, ep, R, Cloc) User Pi does:
1. . . .
9. Let x = {(CS,CR, CrS , CrR , CD, CC,PRFOut, rtT }. Send (Prove, sid, x) to the A and re-

ceive p (just as in Fnizk functionality).
10. Return tx = (CS,CR, CrS , CrR , CD, CC,PRFOut, p)
3

• Hybrid2: This hybrid is the same as Hybrid1, except that upon receiving a SUBMIT com-
mand and PKR is honest, the ciphertexts CrS , CrR , CD, CC are replaced by encryptions to
0. By the CPA security of the underlying encryption scheme, the two hybrids are indis-
tinguishable.

TRANSFER(PKS,PKR, x, ep, R, Cloc) User Pi does:
1. . . .
4. Encrypt sender’s randomness

– For i 2 [l], compute CrS,i = WKEnc.Enc(WKEnc.pkS, bi), where bi = 0
– CrS := (CrS,1, . . . , CrS,l)

5. Encrypt receiver’s randomness
– For i 2 [l], compute CrR,i = WKEnc.Enc(WKEnc.pkR, bi), where bi = 0
– CrR := (CrR,1, . . . , CrR,l)

6. Encrypt credited value
– For i 2 [l], compute CD,i = WKEnc.Enc(WKEnc.pkR, bi), where bi = 0
– CD := (CD,1, . . . , CD,l)

7. Encrypt debited value
– For i 2 [l], compute CC,i = WKEnc.Enc(WKEnc.pkS, bi), where bi = 0
– CC := (CC,1, . . . , CC,l)

8. Compute PRF output:
– Compute (PRFOut) PRF(k, ep)

9. Let x = {CS,CR, CrS , CrR , CD, CC,PRFOut, rtT }. Send (Prove, sid, x) to the A and re-
ceive p (just as in Fnizk functionality).

10. Return tx = (CS,CR, CrS , CrR , CD, CC,PRFOut, p)
We prove in Lemma 1 that the two hybrids are indistinguishable.

• Hybrid3: This hybrid is the same as Hybrid2, except that upon receiving a SUBMIT com-
mand, run (WKEnc.pk⇤,WKEnc.sk⇤) WKEnc.KeyGen(1l) and replace ciphertexts CrS , CrR , CD, CC

49

with encryptions under pk⇤. By the key-privacy property of the underlying encryption
scheme the two hybrids are indistinguishable.

TRANSFER(PKS,PKR, x, ep, R, Cloc) User Pi does:
1. Run (PK⇤, SK⇤) KEYGENERATION(l)
2. Let PK⇤ = (k-ct⇤,FHE.pk⇤,WKEnc.pk⇤, vk⇤,C⇤

PRF
)

3. Set WKEnc.pkS = WKEnc.pk⇤ and WKEnc.pkR = WKEnc.pk⇤

4. . . .
10. Return tx = (CS,CR, CrS , CrR , CD, CC,PRFOut, p)
We prove in Lemma 2 that the two hybrids are indistinguishable.

• Hybrid3: This hybrid is the same as the previous hybrid except that the commitments
to identities of the sender and the receiver are replaced by commitments to 0. By the
computational hiding property of the underlying commitment scheme, these two hybrids
are indistinguishable.

• Hybrid4: This hybrid is the same as Hybrid3, except that commitment to the PRF key k
is replaced by a commitment to 0. By the commitment property of the underlying com-
mitment scheme, the two hybrids are indistinguishable.
KEYGENERATION(l): User Pi does:
1. Key Generation: . . .

– (FHE.pki,FHE.ski) FHE.KeyGen(1l)
– (WKEnc.pki,WKEnc.ski) FHE.KeyGen(1l)
– (ski, vki) Sign.KeyGen(1l)
– k PRF.KeyGen(1l)

2. Encrypting WKEnc keys:
– k-cti FHE.Enc(FHE.pki,WKEnc, ski[1]), . . . ,FHE.Enc(FHE.pki,WKEnc, ski[l])

3. Commiting to the PRF key:
– CPRF Com(0; r) where r {0, 1}l.

4. Return PKi := (k-cti,FHE.pki,WKEnc.pki, vki,CPRF) and SKi = (FHE.ski,WKEnc.ski, ski, k)
We prove in Lemma 3 that the two hybrids are indistinguishable.

• Hybrid5: This hybrid is the same as Hybrid4, except that the upon receiving a SUBMIT

command, the PRFOut is replaced by a random value. By the psuedorandomness prop-
erty of the underlying PRF scheme, the two hybrids are indistinguishable.
Protocol SubmitXfer(tx, Cloc)
1. If tx = (TRANSFER, tx0)

(a) Let (PK⇤, SK⇤) KEYGENERATION(l)
(b) Set x = 0
(c) Use the clock to update t, ep dt/Re and sl t
(d) Let Cloc be the chain upto the beginning of the epoch ep.
(e) Let (CS,CR, CrS , CrR , CD, CC,PRFOut, p) := TRANSFER(PK⇤,PK⇤, x, ep, R, Cloc)
(f) Sample y {0, 1}l and replace PRFOut with y.
(g) Submit (MULTICAST, tx) to FN-MC

2. Else if tx = (MINT, tx0) . . .
We prove in Lemma 4 that the two hybrids are indistinguishable.

• Hybrid6: This hybrid is the same as Hybrid5 except that the upon receiving a registration
request, replace k-cti with FHE.Enc(FHE.pki, 0) instead of encrypting WKEnc.ski. By the

50

CPA security of the underlying FHE scheme, the two hybrids are indistinguishable.
KEYGENERATION(l): User Pi does:
1. Key Generation: . . .
2. Encrypting WKEnc keys:

– k-cti FHE.Enc(FHE.pki, 0), . . . ,FHE.Enc(FHE.pki, 0)
3. Committing to PRF key: . . .
4. Return PKi := (k-cti,FHE.pki,WKEnc.pki, vki,CPRF) and SKi = (FHE.ski,WKEnc.ski, ski, k)
We prove in Lemma 5 that the two hybrids are indistinguishable.

• Hybrid7: This hybrid is the same as Hybrid6 except that the simulator may now abort
with sigFailure. Since we use unforgeable signatures the simulator aborts with negligible
probability and therefore the two hybrids are indistinguishable.
If tx is a MINT transaction:
1. Parse tx as (tx0, s) where tx0 = (v,PKi, rtTpubAccounts)
2. If s corresponds to that of an honest party abort with sigFailure.
3. . . .
We prove in Lemma 6 that the two hybrids are indistinguishable.

• Hybrid8: This hybrid is the same as Hybrid7 except that the simulator may now abort
with ZKSoundnessFailure. By the soundness property of the underlying zero knowledge
scheme, this occurs with negligible probability.
If tx is a TRANSFER transaction:
1. Parse tx = (CS,CR, CrS , CrR , CD, CC,PRFOut, p)
2. Check that (p, (CS, CR, CC, CD,CPRF, rtTprivAccounts , ep), w) exists in P as was recorded by

the simulation of Fnizk towards the adversary. If such an entry does not exist, abort
with ZKSoundnessFailure

3. . . .
This event occurs with negligible probability since we use the Fnizk ideal functionality to
compute zero knowledge proofs.

• Hybrid9: This hybrid is the same as Hybrid8 except that the simulator may now abort
with CRHFailure. Since we use collision-resistant hash functions, this event occurs with
negligible probability.
If tx is a TRANSFER transaction:
1. Parse tx = (CS,CR, CrS , CrR , CD, CC,PRFOut, p)
2. . . .
3. Else parse w as (PKS, SKS,PKR, v, vS, C, path). If (PKS, C) /2 TprivAccounts but VerifyPath

(rtTprivAccounts , path) = 1, abort with CRHFailure.
We prove in Lemma 7 that the two hybrids are indistinguishable.

• Hybrid10: This hybrid is the same as Hybrid9, except that the simulator may now abort
with CommFailure. Since we use statistically-binding commitments, this event occurs with
negligible probability.
If tx is a TRANSFER transaction:
1. Parse tx as tx = (CS,CR, CrS , CrR , CD, CC,PRFOut, p)
2. . . .
3. Let SKS = (FHE.skS,WKEnc.skS, skS, kS) and from PKEYGEN, find the record (p,PKS, w⇤)

and let w = (FHE.skS,WKEnc.skS, skS, k⇤S). If k⇤S 6= kS, abort with error CommFailure.
We prove in Lemma 8 that the two hybrids are indistinguishable.

51

• Hybrid11: This hybrid is the same as Hybrid10 except that the simulator may now abort
with PRFFailure. Since we use PRF with the property of unpredictability malicious key
generation, this occurs with negligible probability.

• Hybrid12: This hybrid is the same as Hybrid11 except that the commitments to pkS and
pkR are replaced by commitments to 0. By the computational hiding property of the com-
mitment scheme these two hybrids are indistinguishable.
Finally this hybrid is the same as the ideal world, and therefore the real world and the

ideal world are indistinguishable.

Lemma 1. By the CPA security over multiple encryptions[KL20] of the underlying encryption
scheme WKEnc, Hybrid1 and Hybrid2 are indistinguishable to a PPT adversary.

Proof. The difference between Hybrid1 and Hybrid2 is that the simulator replaces the en-
cryptions CrS , CrR , CD, CC with encryptions of 0.

Assume a distinguisher D can distinguish between Hybrid1 and Hybrid2, i,e. Pr[D(Hybrid1) =
1]� Pr[D(Hybrid2) = 1] > negl

Using this distinguisher D we construct a reduction B that can break the CPA security of
encryption scheme.
Reduction B:
1. Activate the distinguisher D
2. The reduction simulates the protocol PPriFHEte as in Hybrid1.
3. Send m0 = (PK1,PK2, x, x) and m1 = (0, 0, 0, 0) to the challenger and receive C1, C2, C3, C4
4. Instruct the environment to submit a transaction (PK1,PK2, x), and replace the cipher-

texts in the transfer transaction with C1, C2, C3, C4.
5. Submit tx to FN-MC.
6. Output whatever D outputs.

Note that in the case CrS , CrR , CD, CC was the encryption of m0 the distinguisher sees
the hybrid world - Hybrid1 and on the other hand when encryption of m1 is returned the
distinguisher sees the hybrid world Hybrid2.

Now since Pr[D(Hybrid1) = 1]� Pr[D(Hybrid2) = 1] > negl, we have that AdvCPA >
negl which is a contradiction since we assume CPA secure encryption over multiple encryp-
tions. This implies Pr[D(Hybrid1) = 1]� Pr[D(Hybrid2) = 1] = negl.

Lemma 2. By the key-privacy property (Def 2) of the underlying encryption scheme, the hybrids
Hybrid2 and Hybrid3 are indistinguishable.

Proof. The difference between Hybrid2 and Hybrid3 is that the simulator replaces the en-
cryptions CrS , CrR , CD, CC with encryptions under a freshly generated key WKEnc.pk⇤where
(WKEnc.pk⇤,WKEnc.sk⇤) = WKEnc.KeyGen(l).

Assume a distinguisher D can distinguish between Hybrid2 and Hybrid3, i,e. Pr[D(Hybrid2) =
1]� Pr[D(Hybrid3) = 1] > negl

Using this distinguisher D we construct a reduction B that can break the IK-CPA security
of encryption scheme.
Reduction B:
1. Activate the distinguisher D
2. Receive two public keys pk0, pk1 from the challenger.

52

3. The reduction simulates the protocol PPriFHEte as in Hybrid2, such that WKEnc.pki of a
party Pi is replaced with pk0

4. Send WKEnc.pkR,WKEnc.pkS, v, v to the challenger and receive C1, C2, C3, C4.
5. Instruct the environment to submit a transaction (PK1,PK2, x), and replace the cipher-

texts in the transfer transaction with C1, C2, C3, C4.
6. Submit tx to FN-MC.
7. Output whatever D outputs.

Note that in the case CS, CR, CD, CC was encrypted under pk0 the distinguisher sees
the hybrid world - Hybrid2 and on the other hand when encryptions are under pk0 the
distinguisher sees the hybrid world Hybrid3.

Now since Pr[D(Hybrid2) = 1]� Pr[D(Hybrid3) = 1] > negl, we have that AdvIK-CPA >
negl which is a contradiction since we assume IK-CPA secure encryption over multiple en-
cryptions. This implies Pr[D(Hybrid2) = 1]� Pr[D(Hybrid3) = 1] = negl.

Lemma 3. By the hiding property of the underlying commitment scheme, Hybrid3 and Hybrid4
are indistinguishable to a PPT adversary.

Proof. The difference between Hybrid3 and Hybrid4 is that the simulator replaces the com-
mitment to the PRF key with a commitment to 0.

Assume a distinguisher D can distinguish between Hybrid3 and Hybrid4, i,e. Pr[D(Hybrid3) =
1]� Pr[D(Hybrid4) = 1] > negl

Using this distinguisher D we construct a reduction B that can break the hiding property
of the commitment scheme.
Reduction B:
1. Activate the distinguisher D
2. The reduction simulates the protocol PPriFHEte as in Hybrid3.
3. Let PKi be the public key of an honest party Pi
4. Send m0 = k and m1 = 0 to the challenger and receive C
5. Replace the CPRF in PKi with C for party Pi
6. Instruct the environment to submit a transaction (NEW-PARTY,PKi)
7. Submit tx to FN-MC.
8. Output whatever D outputs.

Note that in the case C was the encryption of m0 the distinguisher sees the hybrid world
- Hybrid3 and on the other hand when encryption of m1 is returned the distinguisher sees
the hybrid world Hybrid4.

Now since Pr[D(Hybrid3) = 1]� Pr[D(Hybrid4) = 1] > negl, we have that AdvCommHiding >
negl which is a contradiction since we assume a secure commitment scheme. This implies
Pr[D(Hybrid3) = 1]� Pr[D(Hybrid4) = 1] = negl.

Lemma 4. By the pseudorandomness property of the underying PRF scheme, the hybrids Hybrid4
and Hybrid5 are indistinguishable.

Proof. The difference between Hybrid4 and Hybrid5 is that the simulator replaces the PRFOut
with a randomly sampled y {0, 1}`

53

Assume a distinguisher D can distinguish between Hybrid4 and Hybrid5, i,e. Pr[D(Hybrid4) =
1]� Pr[D(Hybrid5) = 1] > negl

Using this distinguisher D we construct a reduction B that can break the pseudorandom-
ness property of the underlying PRF scheme.
Reduction B:
1. Activate the distinguisher D
2. The reduction simulates the protocol PPriFHEte as in Hybrid4
3. Send ep the current epoch number to the challenger and receive y.
4. Instruct the environment to submit a transaction (PK1,PK2, x), and replace the PRFOut

in the transfer transaction with y.
5. Submit tx to FN-MC.
6. Output whatever D outputs.

Note that in the case PRFOut was computed using PRF(k, ·) the distinguisher sees the
hybrid world - Hybrid4 and on the other hand when PRF output is a random y {0, 1}`
the distinguisher sees the hybrid world Hybrid5.

Now since Pr[D(Hybrid4) = 1]� Pr[D(Hybrid5) = 1] > negl, we have that advantage
of the adversary winning the PRF pseudorandomness game which is a contradiction since
we assume secure PRFs. This implies Pr[D(Hybrid4) = 1]� Pr[D(Hybrid5) = 1] = negl.

Lemma 5. By the CPA security over multiple encryptions[KL20] of the underlying encryption
scheme FHE, Hybrid5 and Hybrid6 are indistinguishable to a PPT adversary.

Proof. The difference between Hybrid5 and Hybrid6 is that the simulator replaces the en-
cryptions k-ct with encryptions of 0.

Assume a distinguisher D can distinguish between Hybrid5 and Hybrid6, i,e. Pr[D(Hybrid5) =
1]� Pr[D(Hybrid6) = 1] > negl

Using this distinguisher D we construct a reduction B that can break the CPA security of
encryption scheme.
Reduction B:
1. Activate the distinguisher D
2. The reduction simulates the protocol PPriFHEte as in Hybrid5.
3. Let PKi be the public key of an honest party Pi
4. Send m0 = WKEnc.ski and m1 = 0 to the challenger and receive c
5. Replace the k-cti with c for party Pi
6. Instruct the environment to submit a transaction (PKi,PKj, x) where Pj is another party.
7. Submit tx to FN-MC.
8. Output whatever D outputs.

Note that in the case k-cti was the encryption of m0 the distinguisher sees the hybrid
world - Hybrid5 and on the other hand when encryption of m1 is returned the distinguisher
sees the hybrid world Hybrid6.

Now since Pr[D(Hybrid5) = 1]� Pr[D(Hybrid6) = 1] > negl, we have that AdvCPA >
negl which is a contradiction since we assume CPA secure encryption over multiple encryp-
tions. This implies Pr[D(Hybrid5) = 1]� Pr[D(Hybrid6) = 1] = negl.

54

Lemma 6. Assuming existential unforgeable signatures that are secure against chosen message at-
tacks, Hybrid6 and Hybrid7 are indistinguishable.

Proof. Note that the difference between Hybrid6 and Hybrid7 is that in Hybrid6 the event
sigFailure1 can occur. We prove in this section that the probability of this event occurring is
negligible.

First we observe that sigFailure occurs when the simulator receives a MINT transaction
from the adversary that contains a signature that corresponds to that of an honest party.

Assume a distinguisher D can distinguish between Hybrid6 and Hybrid7, i,e. Pr[D(Hybrid6) =
1]� Pr[D(Hybrid7) = 1] > negl

This implies that Pr[sigFailure] > negl.
Using this adversary we present a reduction B that breaks the EUF-CMA property of

signature schemes.
Reduction B

1. Receive vk from the challenger. Update PKi of an honest party Pi with vk.
2. Simulate the world as in Hybrid6.
3. Upon receiving a MINT transaction via the FN-MC functionality, check if the signature s0

corresponds to that of vk. If not, ignore.
4. If yes, output m = (PKi, x, rtTpubAccounts) and s = s0

Observe that

Adveuf�cma

S,A = Pr[Expeuf�cma

S,A (l) = 1]

= Pr[S.Verify(vk, ms) = 1] > negl

But this is a contradiction since we assume EUF-CMA signatures and therefore Adveuf�cma

S,A <
negl

Hence Pr[sigFailure] < negl and therefore Pr[D(Hybrid6) = 1]� Pr[D(Hybrid7) = 1] <
negl

Lemma 7. Assuming collision-resistant hash functions, Hybrid8 and Hybrid9 are indistinguish-
able to a PPT adversary

Proof. Note that the difference between Hybrid8 and Hybrid9 is that in Hybrid8 the event
CRHFailure1 can occur. We prove in this section that the probability of this event occurring
is negligible.

First we observe that CRHFailure occurs when the simulator receives a TRANSFER trans-
action from the adversary that contains a path that does not correspond to a path from an
account and balance in TprivAccounts owned by the sender to the root of the Merkle tree com-
puted over TprivAccounts

Assume a distinguisher D can distinguish between Hybrid8 and Hybrid9, i,e. Pr[D(Hybrid8) =
1]� Pr[D(Hybrid9) = 1] > negl

This implies that Pr[CRHFailure] > negl.
Using this adversary we present a reduction B that breaks the collision resistance prop-

erty of the underlying hash scheme.
Reduction B

1. Simulate the world as in Hybrid8.

55

2. Upon receiving a TRANSFER transaction via the FN-MC functionality, get the witness w that
corresponds to the proof p in the transaction.

3. Let path⇤ be the path in the Merkle tree (computed over TprivAccounts) from (PKA, vA) to
the root of the Merkle root rtprivAccounts.

4. Let w = PKS, SKS,PKR, v, vS, C, path) and VerifyPath(rtTprivAccounts , path) = 1
5. If (PKS, vS) does not correspond to the adversary’s entry in TprivAccounts, output (m0 =

path, m1 = path⇤)
Observe that

AdvCRHF

H,A = Pr[9m0, m1 s.t. H(m0) = H(m)1))] > negl

But this is a contradiction since we assume collision-resistant hash functions and there-
fore AdvCRHF

H,A < negl
Hence Pr[CRHFailure] < negl and therefore Pr[D(Hybrid8) = 1] � Pr[D(Hybrid9) =

1] < negl

Lemma 8. Assuming statistically binding commitments, the hybrids Hybrid9 and Hybrid10 are
indistinguishable.

Proof. Note that the difference between Hybrid9 and Hybrid10 is that in Hybrid9 the event
CommFailure can occur. We prove in this section that the probability of this event occurring
is negligible.

First we observe that CommFailure occurs when the simulator receives a TRANSFER trans-
action from the adversary and the PRF key in the extracted witness from this transaction is
not the same as the PRF key that was committed to.

Assume a distinguisher D can distinguish between Hybrid9 and Hybrid10, i,e. Pr[D(Hybrid9) =
1]� Pr[D(Hybrid10) = 1] > negl

This implies that Pr[CommFailure] > negl.
Using this adversary we present a reduction B that breaks the binding property of the

underlying commitment scheme.
Reduction B

1. Simulate the world as in Hybrid9.
2. Upon receiving a TRANSFER transaction via the FN-MC functionality, get the witness w that

corresponds to the proof p in the transaction.
3. Retrieve kS from w.
4. From PKeyGen, retrieve the record for skS read kS⇤
5. If kS 6= k⇤S output (m0 = path, m1 = path⇤) and CPRF.

Observe that

AdvCom

A = Pr[9m0, m1 s.t. Open(CPRF) = kS = k⇤S] > negl

But this is a contradiction since we assume collision-resistant hash functions and there-
fore AdvCom

A < negl
Hence Pr[CommFailure] < negl and therefore Pr[D(Hybrid9) = 1]� Pr[D(Hybrid10) =

1] < negl

56

F Regev Cryptosystem and Wrong-Key Decryption

The Regev cryptosystem is parameterized by integers n (the security parameter), m (number
of equations), and a real a > 0 (noise parameter). All operations are done modulo q (a prime)
• Setup: Choose a prime q $ [n2, 2n2], m = 1.1 · n log q and a = 1/(

p
n log2 n)

• Key Generation: Private key is a vector s Zn
q and the public key consists of m samples

(ai, bi)m
i=1 from the LWE distribution with secret s, modulus q and error parameter a. That

is, ai $ Zn
q and bi = sTai + ei where ei is error sampled from error distribution c for

i 2 [m]
• Encryption: For each bit of the message do the following. Choose a random set S uni-

formly among all 2m subsets of [m]. The encryption is (Âi2S ai, Âi2S bi) if the bit is 0 and
(Âi2S ai, b q

2c+ Âi2S bi) if the bit is 1.
• Decryption: The decryption of a pair (a, b) is 0 if b � ha, si is closer to 0 than to b q

2c
mod q, and 1 otherwise.

Lemma 9. Regev’s encryption scheme described above satisfies the property of wrong-key decryption
(Def 3).

Proof. Let (sk, pk) be (s⇤, (a⇤i , b⇤i)
m
i=1) and let (sk0, pk0) be (s†, (a†

i , b†
i)

m
i=1)

Now,
ct WKEnc.Enc(pk, 1)

=) ct = (Â
i2S

a⇤i ,
j q

2

k
+ Â

i2S
b⇤i)

Furthermore let ct = (a, b) then,

m0 = WKEnc.Dec(sk0, ct)

=) m0 = b� ha, s†i mod q

=) m0 =
⇣j q

2

k
+ Â

i2S
b⇤i
⌘
�

⇣
Â
i2S

a⇤i,1s†
1 + . . . + Â

i2S
a⇤i,ns†

n

⌘
mod q

=) m0 =
⇣j q

2

k
+ Â

i2S
a⇤i,1s⇤1 + e1 . . . + Â

i2S
a⇤i,ns⇤n + en �Â

i2S
a⇤i,1s†

1 + . . . + Â
i2S

a⇤i,ns†
n

⌘
mod q

=) m0 =
⇣j q

2

k
+ (s⇤1 � s†

1) Â
i2S

a⇤i,1 . . . + (s⇤n � s†
n) Â

i2S
a⇤i,n + (e1 + . . . + en)

⌘
mod q

Since a⇤i , ei and s are all sampled randomly:

m0 = uniformly random element in Zq

Thus,

m0 >
q
2

with probability
1
2

Therefore

Pr[m0 = 1]  1/2 + negl(l)

57

G Full adder and subtracter

Let a = {a1, . . . , aµ} and b = {b1, . . . , bµ} be two vectors where each ai, bi 2 {0, 1}. We
present a full adder below that computes c = a + b.

FullAdder(a, b)
1. Set cin = 0
2. For i 2 [µ] :

(a) Compute ci = cin� ai � bi
(b) Compute cin = aibi � bicin� aicin

3. Return (cin, c1, . . . , cµ)

Figure 30: Full Adder

Below we describe a full subtracter that computes c = a� b

FullSubtracter(a, b)
1. Set cin = 0
2. For i 2 [µ] :

(a) Compute ci = cin� ai � bi
(b) Compute cin = (¬ai)bi � bicin� (¬ai)cin

3. Return (cin, c1, . . . , cµ)

Figure 31: Full Adder

H Potential for Deployment

As discussed in the introduction, the PriFHEte algorithms can be deployed as smart con-
tracts. In this section, we discuss how our algorithms can be deployed on Ethereum. Next
we discuss how we can alleviate the computation of miners by deploying PriFHEte as zk-
rollups[Fou21] which are a new scalability solution for Ethereum.

H.1 Background on Ethereum and Smart Contracts

Accounts. Ethereum is an account-based cryptocurrency. There are two types of accounts in
Ethereum - Externally Owned Accounts (EOA) and Contract Accounts. An EOA is associ-
ated with signature public key/private key pair and anyone who knows the private key can
control the account. On the other hand, a Contract Account is controlled by the code of the
smart contract. Now what is a smart contract? It’s a collection of code (its functions) and
data (its state) that resides at a specific address on the Ethereum blockchain. This address is
simply the hash of the public key of the creator of the smart contract.

58

State of the blockchain. In Ethereum the state is a data structure called a modified Merkle
Patricia tree, where the leaves of this tree are the accounts (both EOA and contract accounts).
Each leaf is an address, data pair. The data for EOA accounts includes the balance associated
to the address, and the data field of contract accounts include the code and the state of the
contract.

Transactions. In Ethereum, there are three types of transactions.
1. A regular transaction, that transfers funds from one EOA to another EOA.
2. A contract deployment transaction, which deploys a smart contract on Ethereum. This trans-

action includes the code of the smart contract, and the address of the smart contract.
3. A contract execution transaction, which is addressed to one of the deployed smart contracts.

This transaction may include inputs to the functions of the smart contract that are to
be executed. Upon receiving this transaction, a miner executes the smart contract and
updates the state of the smart contract and therefore the state of Ethereum.

H.2 PriFHEte as a smart contract

To describe the deployment of PriFHEte, we need to specify three different aspects: the
setup, description of the smart contract, and the user algorithms. We will show how the al-
gorithms described in Section 4 can be cast as smart contract functions and user algorithms.
The setup In the setup phase, public parameters such as the CRS are generated. Some entity,
will also submit a Contract Deployment Transaction with the code for the PriFHEte smart
contract. A miner updates the state by adding a smart contract account. The state of this
account includes an empty table that will maintain account/encrypted balance pairs.
The smart contract. The smart contract has two functions: REGISTRATION(PK, T) ! T 0
and PROCESSTRANSACTION(tx, T)! T 0

Observe that the two functions take as input the state T and output an updated state T 0.
This is the internal state of the smart contract which is simply a table of account-encrypted
balance pairs. The REGISTRATION function appends a new row with PK and an encryption
to 0 under FHE.pk to the T . Similarly PROCESSTRANSACTION processes a transaction as
discussed in Figure 7 and updates all rows of the state.
User Algorithms A user runs one of the following algorithms to interact with PriFHEte
smart contract.

The output of these algorithms are contract execution transactions, which are addressed
to the PriFHEte smart contract.
1. KEYGENERATION(l)! (PK, SK). With this transaction the user registers with the smart

contract and joins the PriFHEte system. This transaction invokes the REGISTRATION
function of the smart contract.

2. MINT(PKi,PK
pub

i , SKpub

i , x, rtTpubAccounts) ! (txMINT, s). With this transaction the user in-
vokes a function that transfers funds from the main chain to the the PriFHEte smart
contract. This transaction invokes the PROCESSTRANSACTION function of the smart con-
tract.

3. TRANSFER(PKS, SKS,PKR, x, ep, R, CS
loc

, pathi, Ci) ! txTRANSFER. With this transaction the
user invokes a function that transfers funds from one account to another maintained
by the PriFHEte smart contract. This transaction invokes the PROCESSTRANSACTION
function of the smart contract.

59

H.3 Alleviating storage and computation costs for the miners

As discussed in the introduction, we envision zk-rollups[Fou21] to aid the storage and com-
putation costs of the miners. Below we first describe how rollups work and then briefly
describe how the PriFHEte algorithms could be deployed as a rollup. We observe that this
is the same approach taken by AZTEC[Wil18] to achieve privacy. The main difference be-
tween their work and ours is that they do a UTXO-style transactions on top of Ethereum,
whereas we dont depart from the account-based paradigm. They use stealth address to
achieve anonymity. This doesnt give full anonymity, since the sender of a transaction can
always trace how the receiver is going to spend the coin.

Zero Knowledge (ZK) Rollups: There are three entities in a rollup protocol. The users,
the miners and rollup operators. Rollup operators execute transactions off-chain. This re-
duces the amount of computation and the storage that miners need to do. These operators
submit a summary of changes as well as validity proofs to prove correctness of the summary
of changes. A miner can verify this validity proof to be convinced that the received state is
a result of the execution of all the transactions in a batch.

The rollup architecture is comprised of two components:
• On-chain contract: this contract includes code to keep track of the updated state (which

is a succinct representaion of the total state) and also code to verify validity proofs
• Off-chain computation: this is done by rollup operators that maintain the entire state,

execute the transactions, compute validity proofs and compute succinct representations
of the updated state.
PriFHEte as a rollup Users submit their transactions to the rollup operators. The rollups

execute these transactions in batches and update the maintained state. The operators then
submit a succinct representation of the state, along with validity proofs and the transactions
to the main chain network. A miner verifies the validity proofs by executing the verifier
function of the rollup smart contract. They then update the smart contract state with the
received succinct representation of state.

We note that while we do not need to trust a rollup operator for privacy, we trust that
they will include transactions of users.

Finally, we note using rollups help with gas fees because there is a fixed cost to writing
to Ethereum’s state. Without rollups each transaction would update O(N) data entries of
the state whereas with rollups one needs to update only a single data entry for multiple
transactions. Therefore a rollup reduces this fixed cost by spreading the it across many
users.

60

	Introduction
	Our contribution
	Our Techniques
	The significance of this work
	Potential for Deployment
	Roadmap

	Related Work
	Preliminaries
	The PriFHEte payment system
	Interface for the PriFHEte payment system
	Instantiating PriFHEte
	Practical Considerations

	UC-secure privacy-preserving payments
	The GPL functionality kerber2019ouroboros
	Protocol PriFHEte

	Security Analysis
	Extended Preliminaries
	Fully Homomorphic Encryption
	Key-Private Public Key encryption with wrong-key decryption
	Pseudorandom functions with unpredictability under malicious key generation
	Non-interactive zero knowledge
	Blockchain

	Proof of correctness and Example
	The private ledger functionality - GPL
	Additional UC protocols

	Hybrid functionalities
	Security Proof
	Regev Cryptosystem and Wrong-Key Decryption
	Full adder and subtracter
	Potential for Deployment
	Background on Ethereum and Smart Contracts
	PriFHEte as a smart contract
	Alleviating storage and computation costs for the miners

