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Abstract. A large part of current research in homomorphic encryption
(HE) aims towards making HE practical for real-world applications. In
any practical HE, an important issue is to convert the application data
(type) to the data type suitable for the HE.

The main purpose of this work is to investigate an efficient HE-compatible
encoding method that is generic, and can be easily adapted to apply to
the HE schemes over integers or polynomials.

p-adic number theory provides a way to transform rationals to integers,
which makes it a natural candidate for encoding rationals. Although
one may use naive number-theoretic techniques to perform rational-to-
integer transformations without reference to p-adic numbers, we contend
that the theory of p-adic numbers is the proper lens to view such trans-
formations.
In this work we identify mathematical techniques (supported by p-adic
number theory) as appropriate tools to construct a generic rational en-
coder which is compatible with HE. Based on these techniques, we pro-
pose a new encoding scheme PIE that can be easily combined with both
AGCD-based and RLWE-based HE to perform high precision arithmetic.
After presenting an abstract version of PIE, we show how it can be at-
tached to two well-known HE schemes: the AGCD-based IDGHV scheme
and the RLWE-based (modified) Fan-Vercauteren scheme. We also dis-
cuss the advantages of our encoding scheme in comparison with previous
works.

1 Introduction

A large part of current research and development in HE is focused on efficient
implementation with suitable software and/or hardware support and developing
practically usable libraries for HE that can be used for various machine learning
and data analysis applications. These works clearly aim towards making HE
practical for real-world applications.

The state-of-the-art HE schemes are defined to process (modulo) integer in-
puts or polynomial inputs (with modulo integer coefficients). For a significantly
large number of practical applications, an HE scheme should be able to op-
erate on real/rational numbers. In any practical HE an important issue is to
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convert the application data (type) to the data type suitable for the HE. This
is usually achieved by encoding real-valued data to convert it into a “suitable”
form compatible with homomorphic encryption. Any encoding must come with a
matching decoding. Additionally, such an encoding must be homomorphic w.r.t
addition and multiplication, and injective. Most importantly, any such encoding
technique must be efficient and not hinder the efficiency of the underlying HE
scheme.

The interest in HE-compatible encoding to process real/rational inputs effi-
ciently is evident from a number of previous works e.g. [1,2,7,13,17]. In most of
the RLWE (Ring Learning with Error) hardness-based homomorphic encryption
schemes a plaintext is viewed as an element of the ring Rt = Zt[x]/Φm(x) where
Φm(x) is the m-th cyclotomic polynomial and Zt is the ring of integers modulo
t. Encoding integer input to a polynomial in Rt is relatively straightforward,
namely one can consider the base t representation of the integer. For allowing
integer and rational inputs one must define an encoding converting elements of Z
or Q (typically represented as fixed-point decimal numbers in applications) into
elements of Rt. Previous works [3,4,6,10,11,21,27] have proposed several encod-
ing methods for integers and rationals. One previously taken approach is to scale
the fixed-point numbers to integers and then encode them as polynomials (using
a suitable base). Another approach is to consider them as fractional numbers.
In [10] it was shown that these two representations are isomorphic. As pointed
out in [10] the latter approach, although avoids the overhead of bookkeeping
homomorphic ciphertext, is difficult to analyse.

All of the aforementioned encodings share a problem (discussed in [4, 10]);
namely, t must have sufficiently large value for the encoding to work correctly.
This large value of t means one may need to choose large parameters for the over-
all homomorphic encryption scheme hindering the efficiency. A clever solution
to this problem was proposed by Chen, Len, Player and Xia [4], which borrows a
mathematical technique from Hoffstein and Silverman [16] and combines it with
the homomorphic encryption scheme proposed by Fan and Vercauteren [14]. The
main idea of the so-called CLPX encoding [4] is to replace the modulus t with the
polynomial x− b for some positive integer b and turning the plaintext space into
the quotient ring Z/(bn + 1)Z. Note that CLPX encoding converts fractional or
fixed-point numbers and the scheme combines it with a modified version (which
we will call ModFV) of the original FV scheme.

In the CLPX encoding, the rational (input) domain is a finite subset of Q
and, therefore, is not closed under the usual compositions (addition and multi-
plication) which can potentially lead to overflow problems. That is, if the com-
position of two rational inputs lies outside the domain then its decoding (after
homomorphic computation) will be incorrect. However, they do not provide any
analytical discussion or solution towards solving this problem. The theory be-
hind our encoding, which also transforms fixed-point (decimal) numbers, allows
us to provide an analytical solution to this problem.
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1.1 Our Results

The main aim of our work is to investigate an efficient HE-compatible encoding
method that is generic (not necessarily targeted for a specific HE scheme) and
can be easily adapted to apply to the HE schemes over integers or polynomials.
The results of this work are as follows:

- We construct an efficient and generic encoding (and decoding) scheme based
on a transformation that stems from p-adic number theory. First, we iden-
tify the tools and techniques provided by p-adic number theory to derive
the foundational injective transformation that maps rationals to (modulo)
integers, and is additively and multiplicatively homomorphic. The encoding
scheme follows naturally from this injective transformation. We call this new
encoding PIE (p-adic encoding).

– We use the structural properties of the rational domain (of the above-
mentioned transformation) to provide a bound on the domain size ensur-
ing that there is no overflow from (additive or multiplicative) composition
thus causing incorrect decoding. The previous work [4], did not address this
overflow problem.

– Finally, we demonstrate that our encoding map can be easily applied to
both Approximate Greatest Common Divisor(AGCD)-based and RLWE-
based (over polynomial rings) HEs using the Batch FHE [5] and the modified
Fan-Vercauteren(ModFV) [4] schemes respectively. We also discuss how the
(public) parameters of these HEs can be used to setup the parameters of
PIE.

We show our encoding scheme allows for a much larger input space compared
to the previous encoding scheme [4] for an RLWE-based HE without severely
compromising the circuit depth that can be evaluated using the HE. To the
best of our knowledge this is the first work discussing an encoding scheme for
AGCD-based schemes.

We implemented PIE using C++ (together with proof-of-concept implemen-
tations of IDGHV (Batch FHE) [5] and ModFV schemes1) to estimate the ef-
ficiencies of the encoding and decoding. Our implementation can be found at
https://github.com/Algemetric/pie-cpp. The results of our experiment are
given in Section 6.

2 Notations and Foundations

In this section we introduce the basic ideas and techniques from p-adic number
theory that are necessary for developing our encoding scheme. We emphasize
that the ideas described in this section are self-contained and do not assume
prior knowledge of p-adic number theory.

1 FHE part of our implementation is not optimized

https://github.com/Algemetric/pie-cpp
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2.1 Notations

For a real number r, the functions ⌊r⌋, ⌈r⌉, ⌊r⌉ denote the usual “floor”, “ceiling”,
and “round-to-nearest-integer” functions. For an integer a, |a|bits denotes the bit
length of a. The ring of integers is denoted by Z, and the field of rationals by
Q. For a positive integer n, Z/nZ denotes the ring of integers modulo n. In
case n is prime, we sometimes write Fn. To distinguish this ring (field) from
sets of integer representatives, we denote by Zn the set

[
− ⌈(n − 1)/2⌉, ⌊(n −

1)/2⌋
]
∩ Z. For integers a, n we denote by a mod n the unique integer a ∈ Zn

such that n | (a − a). Similarly, we use the elements of Zn as representatives
of the cosets of Z/nZ, and sometimes use Zn in place of Z/nZ, though in this
case we are careful to put “ mod n” where appropriate. For a polynomial p, ⌊p⌉
and [p]n denote the rounding of each coefficient to the nearest integer, and the
reduction of each coefficient modulo n. We use everywhere log(·) in place of
log2(·). “Input space” will always mean the set of fractions for which encoding
correctness holds, and “message space” always means a subset of the input space
for which homomorphic correctness (for arithmetic circuits up to a certain depth)
holds.

2.2 Results and Techniques from p-adic Arithmetic

Roughly speaking, p-adic number theory allows us to represent a rational x
y ∈ Q

using integers. If x
y ∈ Q and p is a prime then we have

x

y
=

∞∑
j=n

ajp
j = anp

n + an+1p
n+1 + . . . , (1)

where 0 ≤ aj < p and n ∈ Z. When n ∈ Z+ ∪ {0} the sum in 1 is called a p-adic
integer. Equivalently, observe that any rational x

/
y can be rewritten in the form

x

y
=

x′

y′
pv, where gcd(x′, p) = gcd(y′, p) = 1

The number v is called the p-adic valuation of x
/
y. In case v ≥ 0, x

/
y is a p-adic

integer. The ring of p-adic integers is denoted by Zp.
An r-segment p-adic representation, a.k.a. Hensel code, simply truncates the

above sum after j = r − 1. In this case, the power series in eq. (1) becomes

r−1∑
j=n

ajp
j +O(pr).

A natural consequence of this truncated representation is a mapping (dis-
cussed in detail in Definition 3) from a set of rationals to Z/prZ. This mapping
is the main component of our encoding scheme.

A specific set of rational numbers (p-adic numbers) called the Farey rationals
are defined as follows.
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Definition 1 (Farey rationals [15]). Given a prime p and an integer r ≥ 1,

let N =

⌊√
pr−1

2

⌋
. The Farey rationals are defined as

FN =

{
x

y
: 0 ≤ |x| ≤ N, 1 ≤ y ≤ N

}
(2)

where gcd(x, y) = gcd(y, p) = 1.

We note that every rational in FN has p-adic valuation v ≥ 0, and therefore
FN ⊂ Zp; i.e. every Farey rational is a p-adic integer.

For describing the mapping on which our encoder is based, we need to intro-
duce the modified extended Euclidean algorithm MEEA [18–20, 22, 23, 26]. The
MEEA is simply a truncated version of the extended Euclidean algorithm (EEA)
and is similarly efficient. We pause briefly to describe the EEA. Recall that the
EEA calculates the greatest common divisor of two integers x0, x1 along with
the associated Bézout coefficients y, z ∈ Z such that x0 · y+ x1 · z = gcd(x0, x1).
The computation generates the tuples (x2, . . . , xn), (y2, . . . , yn), (z2, . . . , zn), and
qi = ⌊xi−1

/
xi⌋ such that:

xi+1 = xi−1 − qixi, where x0, x1 are the input,

yi+1 = yi−1 − qiyi, with y0 = 0, y1 = 1,

zi+1 = zi−1 − qizi, with z0 = 1, z1 = 0.

Moreover, for each i ≤ n, we have yix1+ zix0 = xi. The computation stops with
xn = 0, at which point xn−1 = gcd(x0, x1).

Definition 2 (MEEA, [18]). Given x0, x1 ∈ Z, MEEA(x0, x1) is defined as the
output (x, y) =

(
(−1)i+1xi, (−1)i+1yi

)
of the extended Euclidean algorithm (as

described above) once |xi| ≤ N .

Now we are ready to define the necessary mapping from FN to Zpr .

Definition 3 ( [28]). The mapping Hpr : FN → Zpr and its inverse are defined
as

Hpr

(
x

y

)
= xy−1 mod pr, (3)

H−1
pr (h) = MEEA(pr, h) (4)

The H-mapping is injective and, therefore, gives a unique representation [28]
of each element of FN in Zpr . The inverse of Hpr is well-defined.

Proposition 1. For all x/y ∈ FN and h ∈ Hpr (FN ) ⊆ Zpr ,

(i) H−1
pr (Hpr (x/y)) = x/y, and

(ii) Hpr

(
H−1

pr (h)
)
= h.

(iii) If a, a′ ∈ Z and a′ = a (mod pr), then H−1
pr (a) = H−1

pr (a′).
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Proof. (i) Let x
/
y ∈ FN , Hpr

(
x
/
y
)
= h, and suppose H−1

pr (h) = a
/
b. By def-

inition of the MEEA and H−1
pr , there is an integer c such that bh + cpr = a.

But then b(xy−1) ≡ a (mod pr), which implies xy−1 ≡ ab−1 (mod pr). That is,
Hpr

(
a
/
b
)
= Hpr

(
x
/
y
)
. That a

/
b = x

/
y then follows from injectivity of Hpr .

(ii) Let h ∈ Hpr

(
FN

)
⊊ Zpr , and suppose H−1

pr (h) = x
/
y. By definition of the

MEEA, there is an integer z such that yh+zpr = x. Clearly xy−1 ≡ h (mod pr),
proving the result.

(iii) Let h′ = h+ kpr, the MEEA(pr, h′) generates tuples
(x′

0, x
′
1, x

′
2, x

′
3, . . .) = (pr, h′, pr, h, . . .) and

(y′0, y
′
1, y

′
2, y

′
3, . . .) = (0, 1, 0, 1, . . .). Whereas running MEEA with pr and h gen-

erates tuples (x0, x1, . . .) = (pr, h, . . .) and (y0, y1, . . .) = (0, 1, . . .). Notice that
x′
2 = x0 and y′2 = y0. An easy induction shows that x′

i = xi−2 and y′i = yi−2, for
i = 2, 3, . . ., whence MEEA(pr, h′) = MEEA(pr, h). This completes the proof.

Proposition 2. The mappings Hpr and H−1
pr are homomorphic w.r.t. addition

and multiplication in the following sense.

(i) For all u, u′ ∈ FN , Hpr (u) ·Hpr (u′) = Hpr (u · u′) mod pr and
Hpr (u) +Hpr (u′) = Hpr (u+ u′) mod pr.

(ii) If h, h′ ∈ Zpr and H−1
pr (h) ·H−1

pr (h′), H−1
pr (h) +H−1

pr (h′) ∈ FN , then

H−1
pr (h · h′) = H−1

pr (h) ·H−1
pr (h′) and H−1

pr (h+ h′) = H−1
pr (h) +H−1

pr (h′).

Proof. (i) Let a
/
b, c
/
d ∈ FN . By definition of the Farey rationals, a, b, c, d are

co-prime with p. That Hpr is homomorphic with respect to addition and multi-
plication follows from the properties of congruences:

ac(bd)−1 = (ab−1)(cd−1) mod pr

and (ad+ bc)(bd)−1 = (ab−1 + cd−1) mod pr.

(ii) Invoking the homomorphic property ofHpr , fromH−1
pr (h)·H−1

pr (h′), H−1
pr (h)+

H−1
pr (h′) ∈ FN we obtain h·h′, h+h′ ∈ Hpr (FN ). By proposition 1(ii),Hpr

(
H−1

pr (h·
h′)
)
= h·h′ andHpr

(
H−1

pr (h+h′)
)
= h+h′. The result follows from the injectivity

of Hpr .

Example 1. Given rationals a = 12.37 and b = 8.3, we choose the p = 3, r = 10.

Here N =
⌊√

(pr − 1)
/
2
⌋
= 125261. We compute the encodings of a and b as

h1 and h2:

h1 = Hpr

(
1237
100

)
= 2196674185

h2 = Hpr

(
83
10

)
= 9414317891
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We can now compose the rationals with addition, subtraction, and multiplica-
tion, and decode to check correctness:

r1 = h1 + h2 mod pr = 11610992076, H−1
pr (r1) =

2067
100 = 20.67

r2 = h1 − h2 mod pr = 24163415903, H−1
pr (r2) =

407
100 = 4.07

r3 = h1h2 mod pr = 2541865931, H−1
pr (r3) =

102671
1000 = 102.671

Choice of p and r At this point it is clear that the H-mapping (in definition 3)
can be used to map a set of Farey rationals into Zpr . Thus, it can be used for
encoding rational data that are contained in the set of Farey rationals which is
the domain of the mapping. A natural question is: given a set of rationals how
to choose pr (and, therefore, N) so that FN contains the rationals one wishes
to encode? We point out that for a finite set of rationals S, one can choose
pr ≥ maxa,b:a/b∈S(2a

2 + 1, 2b2 + 1). Choosing a small p and a very large r is
possible, though this could restrict the number of rationals that can be mapped
due to the gcd condition (in definition 1). We illustrate this with examples
in Appendix A.
Replacing the prime power with a composite. The above results can be
extended when pr is replaced by an arbitrary positive integer g. Let p1, . . . , pk

be distinct primes, g = pr11 · · · p
rk
k , and N =

⌊√
(g − 1)

/
2
⌋
. The Farey rationals

defined by g are simply the set of reduced fractions

FN =

{
x

y

∣∣∣ 0 ≤ |x| ≤ N, 1 ≤ y ≤ N, gcd(y, g) = 1, gcd(x, y) = 1

}
.

We briefly recall (the integer version of) the Chinese Remainder Theorem
(CRT), as it is necessary for our encoding scheme.

Definition 4 (Chinese Remainder Theorem). Let n1, . . . , nk be k co-prime

integers, and n =
∏k

i=1 ni. The CRT describes the isomorphism Z/nZ ∼= Z/n1Z×
· · · × Z/nkZ given by

x 7→ (x mod n1, . . . , x mod nk).

We denote the x such that x = hi mod ni and (h1, . . . , hk) ∈ Z/n1Z× · · · ×
Z/nkZ by CRTn1,...,nk

(h1, . . . , hk).

Remark 1. In the following definition, we abuse notation slightly and identify
CRT...(. . .) not with actual ring elements in Z/nZ, but with integer representa-
tives in Zn.

Definition 5 ( [24,25]). The injective mapping Hg : FN → Zg and its inverse
are defined as

Hg(x/y) = CRTp
r1
1 ,...,p

rk
k

(
Hp

r1
1
(x/y), . . . ,Hp

rk
k
(x/y)

)
(5)

H−1
g (h) = MEEA(g, h) (6)
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The following proposition is an extension of proposition 1 for composite g
and its proof proceeds similar to the proof of proposition 1.

Proposition 3. Let N =
⌊√

(g − 1)
/
2
⌋
. For all x/y ∈ FN and h ∈ Hg (FN ) ⊊

Zg,

(i) H−1
g (Hg(x/y)) = x/y, and

(ii) Hg

(
H−1

g (h)
)
= h.

(iii) If h, h′ ∈ Z and h′ = h (mod g), then H−1
g (h) = H−1

g (h′).

Proposition 4. The mapping Hg is homomorphic w.r.t. addition and multipli-
cation, and H−1

g is homomorphic as in proposition 2.

Proof. Let N =
⌊√

(g − 1)
/
2
⌋
, and u, u′ ∈ FN . Using the homomorphic prop-

erties of the CRT where necessary, we have

Hg(u+ u′) = CRTp
r1
1 ,...,p

rk
k

(
Hp

r1
1
(u+ u′), . . . ,Hp

rk
k
(u+ u′)

)
,

and

Hg(u) +Hg(u
′)

= CRTp
r1
1 ,...,p

rk
k

(
Hp

r1
1
(u) +Hp

r1
1
(u′), . . . ,Hp

rk
k
(u) +Hp

rk
k
(u′)

)
.

By proposition 2(i), each Hp
ri
i
(u) + Hp

ri
i
(u′) = Hp

ri
i
(u + u′) mod prii . Whence

Hg(u + u′) = Hg(u) + Hg(u
′). The proof that Hg(u · u′) = Hg(u) · Hg(u

′) is
analogous.

To establish the homomorphic properties of H−1
g simply replace pr by g

everywhere in the proof of proposition 2(ii). ⊓⊔

Example 2. Suppose we have the same rationals of Example 1: a = 12.37 and
b = 8.3. We now choose the p = 6, r = 17 and g = pr + 1 = 16926659444737,

which yields N =
⌊√

(g − 1)
/
2
⌋
= 2909180. The encodings of a and b are

h1 = Hg

(
1237
100

)
= 16757392850302

h2 = Hg

(
83
10

)
= 1692665944482.

Again, we compose the encodings, and verify the correctness of the results:

r1 = h1 + h2 mod g = 1523399350047, H−1
g (r1) =

2067
100 = 20.67

r2 = h1 − h2 mod g = 15064726905820, H−1
g (r2) =

407
100 = 4.07

r3 = h1h2 mod g = 7058416988558, H−1
g (r3) =

102671
1000 = 102.671

Remark 2. Definitions 3 and 5 coincide when g = pr (a prime power), so one
should take the latter as the general definition of H and H−1, picking g to be a
prime power when necessary.
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Size of the set. The cardinality of FN for N =
⌊√

(g − 1)/2
⌋
depends heavily

on the choice of g. This is because the number of fractions x
/
y with |x|, |y| ≤ N

that fail the condition gcd(y, g) = 1 depends on the prime factorization of g –
the more “small” prime factors g has, the more fractions fail the gcd condition.

Proposition 5. The cardinality of FN for N = ⌊
√

(g − 1)/2⌋ is given by

4 · Φ(N) + 1−
(
# of x/y with gcd(y, g) ̸= 1

)
where Φ(k) =

∑k
i=1 ϕ(i), and ϕ is the Euler’s totient function.

Proof. Use the fact that the kth Farey sequence2 has length 1 + Φ(k), and then
enforce the gcd condition on the Farey rationals.

Simulations show that when g is an odd prime,

|FN | = 4 · Φ(N) + 1 ≈ 0.6g. (7)

This fact will be used for comparison with existing work in section 5.2.

3 PIE: A Rational Encoder

Let g be a positive integer, N =
⌊√

(g − 1)
/
2
⌋
, and make FN the input space.

We define encoding and decoding as follows:

PIE.Encode(x/y). For x/y ∈ FN output Hg(x/y).

PIE.Decode(z). For z ∈ Zg, output H
−1
g (z).

Proposition 6. For all m,m′ ∈ FN such that m ·m′ ∈ FN ,

PIE.Decode ([PIE.Encode(m) · PIE.Encode(m′) mod g]) = m ·m′

and ∀m,m′ ∈ FN s.t. m+m′ ∈ FN

PIE.Decode ([PIE.Encode(m) + PIE.Encode(m′) mod g]) = m+m′

Proof. Use proposition 3(i), proposition 3(iii), and proposition 4.

Corollary 1. Let p be a multivariate polynomial with coefficients in Q. For all
m0, . . . ,mk ∈ FN such that p(m0, . . . ,mk) ∈ FN ,

PIE.Decode
(
g, p
(
PIE.Encode(g,m0), . . . ,PIE.Encode(g,mk)

)
mod g

)
= p(m0, . . . ,mk).

2 The kth Farey sequence is the set of reduced fractions in the interval [0, 1) with
numerator and denominator each at most k.
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As indicated in the preceding results, for the encoding (and decoding) to yield
the correct result when used in an HE scheme, one must ensure that if two or
more elements from FN are combined using additions and/or multiplications
then any intermediates and the final output must not lie outside the set FN . For
this reason we will define the (rational) message space to be the following subset
of FN :

GM = {x/y ∈ FN : 0 ≤ |x| ≤M, 1 ≤ y ≤M} (8)

The main idea behind choosing a subset of FN as the set of messages is
that when elements from GM are combined, the resulting element can be in FN .
Ensuring the output lands in FN induces a bound on the number of computations
that can be performed, and determines the choice of parameters involved therein.
At this point, one might wonder whether we need to do something similar with
the range Zg of the encoder to make sure that overflow modulo g does not occur
during computations. The answer is “no”. This is because proposition 3(iii) along
with the above message space restriction imply that overflow modulo g does not
affect decoding.

The choice of M depends jointly on the rational data one must encode, and
the circuits one must evaluate over those data. We elaborate this in the following
section.

3.1 Choosing the Message Space GM .

We will follow closely the analysis of van Dijk et al. in section 3.2 of [12], and
describe an arithmetic circuit in terms of the multivariate polynomial it com-
putes. To this end, recall that the ℓ1-norm of a polynomial is simply the sum of
the absolute values of its coefficients.

Polynomials with which PIE is compatible. Let Pd,t denote the set of polynomials
in Q[x1, x2, . . .] with total degree at most d and ℓ1-norm at most t, whose coeffi-
cients have absolute value at least 1. For example, Pd,t contains polynomials of
the form

p(x1, . . . , xk) =
∑

d1+···+dk≤d

I∑
α=1

cαx
d1
1 xd2

1 · · ·x
dk

k ,

where each |cα| ≥ 1, and
∑

α |cα| ≤ t.

The following proposition establishes an upper bound on the output of a poly-
nomial in Pd,t when all inputs are from GM .

Proposition 7. If x1

/
y1, . . . , xk

/
yk ∈ GM , p ∈ Pd,t is k-variate, and

p
(
x1

/
y1, . . . , xk

/
yk
)
= x

/
y, then

|x| ≤ t ·Mdt and |y| ≤Mdt
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Proof. Note that p ∈ Pd,t can be written as p =
∑

i cipi, where
∑

i |ci| ≤ t, each
|ci| ≥ 1, and each pi is a monomial of degree at most d.

Let p =
∑I

i=1 cipi.
Since deg(pi) ≤ d, the evaluation pi

(
x1

/
y1, . . . , xk

/
yk
)
is a fraction of the form

ai
bi

=
xi1xi2 · · ·xiℓ

yi1yi2 · · · yiℓ
, for some ℓ ≤ d and {i1, . . . , iℓ} ⊆ {1, . . . , k}.

As each xi

/
yi ∈ GM , we have |ai|, |bi| ≤M ℓ ≤Md.

Since x
/
y =

∑I
i=1 ci · ai

/
bi, there are nonzero integers α and β such that

αx = (c1a1)b2b3 · · · bI + b1(c2a2)b3 · · · bI + b1b2 · · · bI−1(cIaI)

and βy = b1b2 · · · bI .

It follows from
∑
|ci| ≤ t and the above bound on |ai|, |bi| that

|x| ≤
I∑

i=1

|ci|(Md)I ≤ t ·MdI and |y| ≤MdI .

The proof is completed by observing that |ci| ≥ 1, for all i, implies I ≤ t.

Proposition 8. A sufficient condition for compatibility of PIE with polynomials
in Pd,t as in Corollary 1:

PIE.Decode
(
g, p
(
PIE.Encode(g,m0), . . . ,PIE.Encode(g,mk)

)
mod g

)
= p(m0, . . . ,mk)

is

M ≤
(
N

t

) 1
dt

, equivalently d ≤ log(N)− log(t)

t log(M)
. (9)

Proof. Suppose M is chosen according to equation 9, and let p ∈ Pd,t be k-
variate. According to proposition 7, if m ∈ GkM and p(m) = x

/
y, then

|x| ≤ t ·Mdt ≤ t ·
( (

N
/
t
) 1

dt

)dt
= N, and (10)

|y| ≤Mdt ≤
( (

N
/
t
) 1

dt

)
= N

/
t ≤ N. (11)

Clearly gcd(g, y) = 1, since y is a factor of the product of the denominators in
m. Thus p(m) ∈ FN , and the proof is completed.

4 PIE with a Batch FHE over Integers

Batch FHE [5] We briefly recall the scheme introduced by Cheon, Coron, Kim,
Lee, Lepoint, Tibuchi and Yun [5], following their notations. Let λ be the security
parameter, γ and η be the bit-length of the public and secret key respectively,
and ρ be the bit-length of noise. Further, choose ℓQ-bit integers Q1, . . . , Qℓ. The
IDGHV scheme is defined as follows.
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IDGHV.KGen(1λ, (Qj)1≤j≤ℓ). Choose distinct η-bit primes p1, . . . , pℓ, and let

π be their product. Choose a uniform 2λ
2

-rough3 integer q0 < 2γ/π, and
let the public key be x0 = q0 · π. It is required that gcd(

∏
j Qj , x0) = 1.

Choose integers xi, and x′
i with a quotient by π uniformly and independently

distributed in Z∩[0, q0), and with the distribution of modulo pj for 1 ≤ j ≤ ℓ
as follows

1 ≤ i ≤ τ, xi mod pj = Qjri,j , ri,j ← Z ∩ (−2ρ, 2ρ)
1 ≤ i ≤ ℓ, x′

i mod pj = Qjr
′
i,j + δi,j , r′i,j ← Z ∩ (−2ρ, 2ρ)

Let pk = {x0, (Qi)1≤i≤ℓ, (xi)1≤i≤τ , (x
′
i)1≤i≤ℓ} and

sk = (pj)1≤j≤ℓ

IDGHV.Enc(pk,m). For m = (m1, . . . ,mℓ) ∈ Z/Q1Z × . . . × Z/QℓZ, choose
a random binary vector b = (b1, . . . , bτ ) and output the ciphertext

c =

(
ℓ∑

i=1

mi · x′
i +

τ∑
i=1

bi · xi

)
(mod x0)

IDGHV.Dec(sk, c). m = (m1, . . . ,mℓ) where mj ← c mod pj (mod Qj)

IDGHV.Add(pk, c1, c2). Output c1 + c2 mod x0

IDGHV.Mult(pk, c1, c2). Output c1 · c2 mod x0

The security of the IDGHV scheme is based on the decisional approximate
GCD problem (DACD) [5].

4.1 PIE with IDGHV

Permitted circuits and Parameters for IDGHV.

Definition 6 ( [8]). Let C be an arithmetic circuit and ρ′ = max{ρ+ log(ℓ) +
ℓQ, 2ρ+log(τ)}. C is a permitted circuit if every input being bounded in absolute

value by 2ρ
′+ℓQ implies the output is bounded in absolute value by 2η−4.

Describing circuits in terms of the multivariate polynomial they compute yields
a sufficient condition for determining whether a given circuit is permitted.

Lemma 1 ( [8]). Let C be an arithmetic circuit over the rationals comprised of
addition/subtraction and multiplication gates, f be the multivariate polynomial
that C computes, and |f |1 be the ℓ1 norm of f . If

deg(f) <
η − 4− log

(
|f |1

)
ρ′ + ℓQ

,

then C is a permitted circuit.

3 An integer is b-rough provided it has no prime factors smaller than b.
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One can show that for a circuit with multiplicative depth D, the total degree of
the polynomial f computed by the circuit is at most 2D−1 +1 ≈ 2D−1. Further,
we note that maximum value of deg(f) is (roughly) inversely proportional to
|Qi|bits = ℓQ, so the multiplicative depth of permitted circuits decreases as the
bit size of the Qi increases.

As in [8], we assume here that log(|f |1)≪ η, ρ′, so it suffices to choose ℓ, ℓQ
such that η

/
(ρ′ + ℓQ) is not too small. To this end, suppose we want to support

circuits computing a polynomial of degree at most δ. Then we choose ℓ < 2ρ,
ℓQ = O(ρ), and η ≥ ρ′Θ(δ). In particular, we recommend:

ℓ≪ 2ρ, ℓQ ≈ ρ, and η = 3ρ′δ.

Parameters for PIE with IDGHV. The maximum depth of circuits with
which PIE is compatible depends on the size of the message space GM relative to
the size of the input space FN (i.e. how small M is relative to N). This means
that fixing M determines the circuits one can evaluate, and fixing the circuits
to be evaluated determines M . We give an analytical discussion of the two cases
below.
First, we pause to remind the reader of the relevant parameter sizes for IDGHV.
For ciphertexts of the form c = CRTq0,p1,...,pℓ

(q,Q1r1 +m1, . . . , Qℓrℓ +mℓ), we
have |pi|bits = η, |Qi|bits = ℓQ, and ρ′ = max{ρ+ log(ℓ) + ℓQ, 2ρ+ log(τ)}.

In the following discussion, g =
∏

Qi, N =
⌊√

(g − 1)/2
⌋
, and GM is the

message space, where M ≤ N .

Choosing circuits first. Given a set of circuits, we must choose d and t so that
Pd,t contains the polynomials which the circuits in the set compute. To this end,
choose d, t to satisfy lemma 1. That is,

d <
η − 4− log(t)

ρ′ + ℓQ
.

We put t = 1 for convenience and to maximize the multiplicative depth of
permitted circuits, whence the permitted circuits are given by Pd,1 for d ≈
(η− 4)

/
(ρ′ + ℓQ)− 1. Rewriting eq. (9) to get a bound on |M |bits and using the

above values of d, t we obtain

|M |bits ≈
ℓℓQρ

′ + ℓ2Q
2(η − ρ′ − ℓQ − 4)

(12)

Note that t may be chosen much larger, though too large a value may force M
to be unreasonably small in order to satisfy eq. (9).

Choosing messages first. M must satisfy equation 9. Thus circuits which com-
pute polynomials in Pd,t are permitted as long as

log(t)

log(M)
+ dt ≤ log(N)

log(M)
.
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This inequality is satisfied by choosing

t < M and d ≤ log(N)− log(M)

M log(M)
.

Thus we may choose

t = M − 1 and d ≈ ℓℓQ − 2 log(M)

2M log(M)

Note that this will require the values of ℓ and ℓQ to be quite large.
E.g. M log(M) ≲ ℓℓQ.

Two Encoding Options. There are two ways to combine PIE with IDGHV: us-
ing the Chinese Remainder Theorem, and component-wise. The former encodes
single rationals, while the latter encodes vectors of rationals. Depending on the
application an user can choose one of these two. We elaborate them below.

Encoding with the Chinese Remainder Theorem Choose the public pa-

rametersQ1, . . . , Qℓ to be distinct odd primes. Let g =
∏ℓ

i=1 Qi,N =
⌊√

(g − 1)
/
2
⌋
,

and M ≪ N .
We use the Chinese Remainder Theorem (CRT) to convert the integer output

of PIE.Encode to a vector of integers which is the input to IDGHV. We encode
and decode with IDGHV as the underlying encryption scheme as follows:

IDGHV.Encode. For m ∈ GM , output(
PIE.Encode(m) mod Q1, . . . ,PIE.Encode(m) mod Qℓ

)
IDGHV.Decode. For (h1, . . . , hℓ) ∈ Z/Q1Z× · · · × Z/QℓZ, compute
h = CRTQ1,...,Qℓ

(h1, . . . , hℓ), then output PIE.Decode(h).

Encoding and decoding above are computed with Hg and its inverse.

Choosing M for CRT Encoding. M must be chosen according to eq. (12). That
is,

|M |bits ≈
ℓℓQρ

′ + ℓ2Q
2(η − ρ′ − ℓQ − 4)

Encoding Component-wise Choose the public parameters Q1, . . . , Qℓ to be

not-necessarily-distinct primes, and put Mi ≪ Ni =
⌊√

(Qi − 1)
/
2
⌋
. Using

equation (9), we obtain Mi ≤
(
Ni

/
t
)1/dt

, where d, t are chosen according to
lemma 1. The encoding is as follows:

IDGHV.Encode. For (m1, · · · ,mℓ) ∈ GM1
× · · · × GMℓ

,

output
(
PIE.Encode(m1), . . . ,PIE.Encode(mℓ)

)
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IDGHV.Decode. For (h1, . . . , hℓ) ∈ Z/Q1Z× · · · × Z/QℓZ,
output

(
PIE.Decode(h1), . . . ,PIE.Decode(hℓ)

)
In the component-wise encoding, for each i, PIE.Encode(hi) and PIE.Decode(hi)
are computed with Qi as the modulus, i.e., the encoding and decoding functions
are HQi

and the corresponding inverses.

Choosing the Mi for Component-wise Encoding. Since we are encoding with
primes Qi instead of their product, it suffices here to make a minor change to
eq. (12). Namely, we put ℓ = 1. This yields

|Mi|bits ≈
ℓQρ

′ + ℓ2Q
2(η − ρ′ − ℓQ − 4)

.

4.2 IDGHV-Compatible Encoding Parameters and Message Space

Parameters for (the CRT version of) PIE+ IDGHV

λ ℓ ℓQ max d |M |bits γ η ρ

50 6 60 15 10 ≈ 5.3 · 108 4248 100

60 8 80 19 13 ≈ 1.3 · 109 6402 120

70 10 100 18 23 ≈ 3 · 109 9041 140

Table 1: Size of the elements of the rational message space GM along with max-
imum degree d of compatible polynomials. Parameters chosen according to the
recommendations in Section 3.2 of [5].

Remark 3. |M |bits = 23 simply means that the message space is comprised by
fractions whose numerators and denominators are up to 23 bits. Note that the
co-primality restriction will not apply if M is smaller than every prime factor of
g =

∏
Qi.

Choosing the Qi appropriately We emphasize that PIE may be attached to
IDGHV regardless of the choice of the Qi. However, the input space FN (of
PIE) may be too small to be useful if the number and size of the Qi are too
small. In contrast, note that the Qi can be small as long as there are “enough”
of them. Similarly, if the number of Qi is small, then their product should be
quite large. As an example of the former, if Qi = 3 for i = 1, . . . , 5, then the
message space of IDGHV is (isomorphic to) Z/35Z. The encoding modulus for
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PIE is 35 = 243 which is co-prime with 10, so we can encode certain decimal
numbers up to precision 2 such as 1.37 = 137

100 .

We can use the parameters given in [5] to determine the size of each element in
the corresponding message space by coupling PIE with IDGHV. Let Q1, . . . , Qℓ be
distinct primes - public key elements in IDGHV. For encoding a single message,
we take the product of all Qi’s as g and encode the rational message using
g. In [5], four different configurations are provided: Toy, Small, Medium, and
Large. In the Medium configuration, we have 138 56-bit Qi’s. This gives us a g
of roughly 7728 bits with an N of roughly 3864 bits. In the Large configuration,
we have 531 71-bit Qi’s. This gives us a g of length roughly 37701 bits with an
N of roughly 18850 bits.

A large N resulting from (secure) HE parameters, is very advantageous. For
example, if we take N ≈ 218850 and M = 264 − 1 (that allows fractions with
numerators and denominators of up to 64 bits to be encoded), then we can use
eq. (9) to find sets of polynomials Pd,t with which PIE is compatible. In this
case, we get compatibility with polynomials in P24,24 (total degree and ℓ1-norm
at most 24) or with polynomials in P10,29 (total degree at most 10 and ℓ1-
norm at most 29). These sets of polynomials correspond to arithmetic circuits of
(approximate) multiplicative depth 4 and 3, respectively. Of course if one chooses
a smaller M , then the multiplicative depth of compatible circuits increases.

5 PIE with Modified Fan-Vercauteren HE

The modified FV scheme We give a brief description of a modification of
the FV HE scheme [4] that is based on the decisional ring learning with errors
(RLWE) problem. We refer the readers to [27], [14] for more details on RLWE.
The main difference between the modified FV (ModFV) and FV is that the former
encrypts integers while the latter encrypts polynomials. In particular, ModFV is
obtained from FV by attaching the Hat Encoder as defined in [4]. We recall the
encoder here.

Definition 7 (Hat Encoder, [4]). Let ∥ · ∥∞ denote the polynomial infinity
norm. For m ∈ Z

/
(bn + 1)Z, b ≥ 2 and n ≥ 1, let m̂ be the polynomial with

lowest degree such that ∥m̂∥∞ ≤ (b + 1)
/
2 and m̂(b) = m mod bn + 1. Such a

polynomial always exists and has degree at most n− 1.

Roughly speaking, the Hat encoder takes the base-b expansion of m with coeffi-
cients in Zbn+1, and then replaces everywhere b by an unknown x to obtain the
polynomial m̂(x).

We are now ready to define ModFV. For n a power of 2 (typically at least
1024), denote the 2nth cyclotomic ring of integers by R = Z[x]

/
(xn + 1), and

let Ra denote the ring obtained by reducing the coefficients of R modulo a. The
plaintext space is the ring M = Zbn+1, for b ≥ 2, and the ciphertext space is
product ring Rq × Rq for q ≫ b. Let λ be the security parameter and χ be a
discrete Gaussian distribution with standard deviation σ (typically σ ≈ 3.19).
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ModFV.SecretKeyGen. Sample s ∈ R with coefficients uniform in {−1, 0, 1}.
Output sk = s.

ModFV.PublicKeyGen(sk). Let s = sk. Sample a← Rq, and e← χ.
Output pk =

(
[−(as+ e)]q, a

)
∈ Rq ×Rq.

ModFV.EvalKeyGen(sk). For i = 0, . . . , ℓ, where w ≥ 2 and ℓ = ⌊logw q⌋,
sample ai ← Rq, and ei ← χ. Put evk[i] =

(
[−(ais + ei) + wis2]q, ai

)
∈

Rq ×Rq.
Output the vector of pairs evk =

(
evk[0], . . . , evk[ℓ]

)
.

ModFV.Enc(pk,m ∈ M). Let ∆b = ⌊− q
bn+1

(
xn−1 + bxn−2 + . . .+ bn−1

)
⌉

and pk = (p0, p1). Sample u ∈ R with coefficients uniform in {−1, 0, 1}, and
e0, e1 ← χ. Let m̂ be a hat encoding of m.
Output ct =

(
[∆bm̂+ p0u+ e0]q, [p1u+ e1]q

)
∈ Rq ×Rq.

ModFV.Dec(sk, ct ∈ Rq ×Rq). Let s = sk and ct = (c0, c1).

Let M̂ =
⌊
x−b
q [c0 + c1s]q

⌉
.

Output m′ = M̂(b) ∈M.

5.1 PIE with ModFV

Since the CLPX encoding uses the same function Hg that defines our encoder,
we follow closely the analysis presented by Chen et al. in Section 6.1 of [4]. We
stress that although CLPX uses a function having the same definition as our “H-
function”, their approach is not based on techniques from p-adic number theory.
Consequently, the decode functions and input spaces differ dramatically between
CLPX and PIE. A comparison of the input spaces in provided in section 5.2

In pairing PIE with ModFV, we distinguish two cases: bn+1 prime and bn+1
composite. We note, however, that the definitions of encoding and decoding are
identical for both cases. The differences lie in how b and n are chosen, and the
resulting input spaces.

Put N =
⌊√(

(bn + 1)− 1
)/

2
⌋
=
⌊√

bn
/
2
⌋
and let GM be as in Equation 8.

That is, GM is the set of reduced fractions x
/
y satisfying: |x| ≤M , 1 ≤ |y| ≤M ,

and gcd(bn + 1, y) = 1. M is chosen to be much smaller than N according to
eq. (9) and eq. (14). We define encoding as follows:

ModFV.Encode. For x
/
y ∈ GM ⊆ FN ,

output h = PIE.Encode
(
x
/
y
)
∈ Z/(bn + 1)Z.

ModFV.Decode. For h ∈ Z/(bn + 1)Z,
output x

/
y = PIE.Decode(h) ∈ FN .

bn +1 prime Note that since bn +1 is prime, the function Hbn+1 maps x/y to
xy−1 mod bn+1 (definition 5). Further, since gcd(y, bn+1) = 1 for all 0 < y ≤ N ,
no fractions are discarded because of the gcd condition in definition 1 - i.e. all
x/y with |x|, |y| ≤ N can be encoded.
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Choosing b and n for bn +1 a prime As one might suspect, there are rather few
choices for b and n which make bn+1 prime. The known Fermat primes4 are too
small for the parameter requirements ofModFV. In our search for suitable primes,
we found OEIS sequence A056993 which lists primes of the form k2

n

+1. While
this sequence does not provide many candidates, this is not a problem since b and
n are public parameters. In particular, one can reuse an appropriately-chosen
prime bn + 1 as needed without compromising security.

bn+1 composite For a composite bn+1, the mapping Hbn+1 is defined by the
CRT, which requires (non-trivial) co-prime factors of bn + 1 to be known. This
could be problematic, as n ≥ 1024 will make bn + 1 very large even for small b.
The following lemma addresses this difficulty.

Proposition 9. If g is a positive integer and x
/
y ∈ FN , then Hg

(
x
/
y
)

=
xy−1 mod g.

Proof. This is immediate if g is prime, so suppose g is composite with prime
factorization g = pr11 · · · p

rk
k . Let x

/
y ∈ FN , hi = Hp

ri
i

(
x
/
y
)
, and h = Hg

(
x
/
y
)
.

By definition 5,
h = CRTp

r1
1 ,...,p

rk
k

(h1, . . . , hk) .

By the definition of the CRT, h is the unique integer in Zg such that h =
hi mod prii . Put h′ = xy−1 mod g, so yh′ = x mod g. Since each prii divides g,
yh′ = x mod prii . Multiply both sides of the preceding equation by the inverse
of y modulo prii to get h′ = xy−1 mod prii . But this means that h′ = hi mod prii ,
whence h′ = h. This completes the proof.

Choosing b and n for bn + 1 composite Since we encode with Hbn+1, b must be
chosen carefully to ensure the message space GM contains the desired fractions.
For example, if we want to encode 1

/
2, then we choose b a multiple of 2, whence

gcd(2, bn + 1) = 1 and Hbn+1

(
1
/
2
)
is defined. n may be chosen independently

of b according to requirments for ModFV.
As noted above, bn + 1 may be large enough to make factoring infeasible. In

this case, determining the entire input space is also infeasible, because one must
enforce the condition: gcd(y, bn + 1) ̸= 1 =⇒ x

/
y /∈ FN . This is not a problem

however, as we only need a suitable subset of FN ; namely GM . We note that if
y and b have the same prime factors, then gcd(y, bn + 1) = 1, whence we can
encode x

/
y as long as every prime factor of y is a factor of b. For example, we

may choose b = p1p2 · · · pk, the product of the first k primes for some k ≥ 1,
meaning we can encode all x

/
y ∈ GM such that any prime factor of y is one of

p1, . . . , pk. This approach can certainly give us a sufficiently large set of fractions
as the message space of PIE, though this set may not be the entirety of GM .

We further distinguish the case where b = p is prime, for this allows us to
encode certain p-adic non-integers (p-adic numbers with negative valuation). In
particular, since p and pn + 1 are always co-prime, we can encode rationals of
the form x

/
pk (k > 0) that are contained in FN .

4 Primes of the form 22
n

+ 1
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Compatible Circuits In [4] the performance of ModFV is assessed by evalu-
ating so-called regular (arithmetic) circuits. We directly apply the bounds from
their analysis on such circuits to our encoder to FV. A regular circuit is param-
eterized by non-negative integers A,D,L, and consists of evaluating A levels of
additions followed by one level of multiplication, iterated D times, where inputs
are integers from [−L,L]. Note that such a circuit has multiplicative depth D.
It was shown in [10] that the output c of a regular circuit C satisfies:

|c| ≤ V (A,D,L) = L2D22A(2D−1) (13)

We define permitted circuits in essentially the same way as Section 4.1.

Definition 8. For fixed A,D,L, an arithmetic circuit C is a (A,D,L)-permitted
circuit if every input being bounded in absolute value by L implies the output is
bounded in absolute value by V (A,D,L).

Equation 13 implies every regular circuit parameterized by A,D,L is an
(A,D,L)-permitted circuit. When the context is clear, we will omit “(A,D,L)”
simply write “permitted circuit”.

Lemma 2. Fix non-negative integers A,D,L. Let C be an arithmetic circuit, f
be the multivariate polynomial that C computes, |f |1 be the ℓ1 norm of f , and
V = V (A,D,L). If |f |1Ldeg(f) < V or equivalently,

deg(f) < 2D +
2A(2D − 1)− log(|f |1)

log(L)
(14)

then C is a permitted circuit.

Proof. Let C be an arithmetic circuit, and f be the k-variate polynomial which
C computes. We can express f in the form

∑I
i=1 cifi, where the fi are monomials

and the ci are the coefficients.
For x ∈ [−L,L]k and L = (L,L, . . . , L) ∈ {L}k, we use the triangle inequality

and deg(fi) ≤ deg(f) to obtain

|f(x)| =

∣∣∣∣∣
I∑

i=1

cifi(x)

∣∣∣∣∣ ≤
∣∣∣∣∣

I∑
i=1

cifi(L)

∣∣∣∣∣ ≤
∣∣∣∣∣

I∑
i=1

ciL
deg(f)

∣∣∣∣∣ ≤ |f |1Ldeg(f)

The above inequalities yield |f(x)| ≤ V , completing the proof.

To guarantee that PIE works seamlessly with ModFV, we must ensure that
the maximum degree of polynomials compatible with ModFV does not exceed
the maximum degree of polynomials compatible with PIE. Thus, according to
lemma 2 and equation 9, we require

log(V )− log(|f |1)
log(L)

<
log(N)− log(t)

t log(M)
,

where f computes an (A,D,L)-permitted circuit, and Pd,t is the set of polyno-
mials with which PIE is compatible. In practice, this inequality is easily satisfied
because log(N)

/
log(M) is quite large and t is chosen to be small.
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5.2 PIE vs. CLPX: Input Space Advantage

Chen et al. ( [4]) adapt the polynomial encoding idea from previous works while
addressing the problem of plaintext polynomial coefficient growth. As explained
above, to obtain the maximum circuit depth (corresponding to homomorphic
computation) for PIE with ModFV we can directly use their analysis. Table 2
shows that when used with PIE scheme, the multiplicative depths of circuits
compatible with ModFV are almost same as when used with CLPX encoding.

Number of additions A = 0

L = 28 L = 216 L = 232 L = 264

n log2 q b maxD b maxD b maxD b maxD

214 435 257 14 257 13 257 12 257 11
[4]

215 890 216 16 216 15 232 15 232 14

214 435 216 11 216 11 232 11 232 11
Our work

215 890 216 15 216 14 232 14 232 13

Number of additions A = 3

214 435 128 13 211 13 724 12 431 11
[4]

215 890 228 16 222 15 219 14 235 14

214 435 216 10 216 10 216 10 216 10
Our work

215 890 216 15 216 14 232 14 232 13

Table 2: Comparison of maximum circuit depthD withModFV and PIE+ModFV.

The definition of the CLPX input space P depends on whether b ≥ 2 is
even or odd. If b is odd, then bn + 1 is even, which means no fractions with
even denominators can be encoded, and, moreover, bn + 1 will not be prime.
We consider the odd case to be too restrictive, and, therefore, only compare the
input space of PIE with the input space of CLPX when b is even.

Proposition 10. For b even, the cardinality of the input space P is bn−1
b−1 .

By proposition 5 and eq. (7), when bn + 1 is prime5, the cardinality of FN

is approximately 0.6(bn + 1). Consequently, using proposition 10, we see the
cardinality of FN is roughly 0.6(b − 1)-times6 the size of P. Thus our input
space is larger when b ≥ 3, and our size advantage is directly proportional to
the size of b, as shown in table 3.

5 Primes of the form “bn + 1” chosen from https://oeis.org/A056993.
6 Since bn is quite large, |Fn|

|P| ≈ 0.6(bn+1)(b−1)
bn−1

≈ 0.6(b− 1)
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b 150 824 1534

n 211 210 212

PIE ( |FN | ) 0.6(1502
11

+ 1) 0.6(8242
10

+ 1) 0.6(15342
12

+ 1)

CLPX ( |P| ) 1502
11

−1
149

8242
10

−1
823

15342
12

−1
1533

PIE
CLPX

86 600 857

Table 3: Comparison of input space sizes for PIE and CLPX when bn+1 is prime.
The values of n are chosen according to the security recommendations for FV.

b 3 5 7 6 30 30 210 210

n 12 8 8 16 4 8 4 6

PIE 442765 324646 4787969 ≈ 1.7× 1012 ≈ 487992 ≈ 4× 1011 ≈ 1.2× 109 ≈ 4.4× 1013

CLPX 265720 97656 960800 ≈ 5.6× 1011 27931 ≈ 2.2× 1010 ≈ 9× 106 ≈ 4.1× 1011

PIE
CLPX

1.7 3.3 5 3 16.7 16.7 125 111.1

Table 4: Comparison of input space sizes FN (for PIE) and P (for CLPX) when
bn + 1 is composite.

For bn + 1 composite, our size advantage seems to remain, though it is less
clear-cut than the prime case, since our examples use quite small b and n.
In table 4, we estimate the size of FN by using proposition 5 and the approxi-
mation Φ(n) ≈ 3n2/π2. Note that, in practice, the size of b and n will be much
larger than the numbers provided in the table, and we cannot speculate to how
the relationship between |FN | and |P| varies as b and n become large enough
for practical applications.

6 Experimental Results

We implemented PIE (in C++) together with proof-of-concept implementations
of IDGHV and ModFV schemes7 using NTL [?].

Since our encoding does not affect the run time of the underlying HE scheme
we provide benchmark times taken for encoding and decoding only. We esti-
mated the runtime of encoding and decoding using two sets, each containing
10, 000 rational numbers. The first set contains rationals with numerator and
denominator up to 32 bits and the second set contains rationals with numer-
ator and denominator up to 64 bits. These sets are simply the message space

7 FHE part of our implementation is not optimized
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GM =
{
x/y

∣∣ |x| ≤M, 0 < y ≤M
}
for M = 232 − 1 and M = 264 − 1, respec-

tively. Runtimes are obtained as the average runtime over all the elements in
each set. The results are shown in table 5. All experiments are done on a Mac-
Book Pro with Apple M1 Max, 32 GB RAM, 1TB SSD. Our implementation
can be found at https://github.com/Algemetric/pie-cpp.

|p|bits 650 650 1250 1250 3200 3200

|M |bits 32 64 32 64 32 64

Encode time 0.023833 ms 0.001958 ms 0.006584 ms 0.001708 ms 0.003916 ms 0.002375 ms

Decode time 0.047792 ms 0.054791 ms 0.028625 ms 0.0475 ms 0.046625 ms 0.06175 ms

Table 5: Average encoding and decoding times for various parameters. Here p is
the prime used for encoding and decoding.

Our implementation of encoding and decoding is not optmized for perfor-
mance. We have used NTL for computing inverse in the encoding function. For
the MEEA in decoding, we implemented the (truncated) extended Euclidean
algorithm.
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17. Jäschke, A., Armknecht, F.: Accelerating homomorphic computations on
rational numbers. In: Manulis, M., Sadeghi, A.R., Schneider, S. (eds.)
ACNS 16. LNCS, vol. 9696, pp. 405–423. Springer, Heidelberg (Jun 2016).
https://doi.org/10.1007/978-3-319-39555-5˙22

18. Knuth, D.E.: Art of computer programming, volume 2: Seminumerical algorithms.
Addison-Wesley Professional (2014)
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A Appendix: Encodings with Primes and Prime Powers

Assume we want to encode the following fractions:

m1 = −2

3
,m2 = −1

2
,m3 =

1

3
. (15)

Let p = 11 and r = 3, so pr = 1331 and N = ⌊
√

(pr − 1)/2⌋ = 25 . Since the
above fractions lie in F25, we can encode them as follows:

m1 = H1331

(
− 2

3

)
= 443,

m2 = H1331

(
− 1

2

)
= 665,

m3 = H1331

(
1
3

)
= 444.

Due to the restriction gcd(denominator, pr) = 1, many fractions x
/
y which

satisfy |x|, |y| ≤ N cannot be encoded. E.g., when pr = 113, 23/22 cannot be
encoded. Of course, this is because the mapping Hpr requires the inverse of the
denominator modulo pr, which does not exist when gcd(denominator, pr) ̸= 1.

A.1 Choosing the Encoding Parameters p and r

Let S be a set of fractions such that

S =

{
−13

25
,
23

19
,
31

5
,
17

61
,
48

23

}
.
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One can choose a prime that is sufficient for encoding and decoding all fractions
by simply checking the largest numerator or denominator in absolute value and
set it as the value of b and then find the right prime p such that

p ≥ 2b2 + 1.

The largest quantity in S is 61, so we set b = 61 which means we need a prime
p that satisfies

p ≥ 7443.

The smallest prime to satisfy the above inequality is 7451 which gives N =⌊√
(7451− 1)

/
2
⌋
= 61. That allows us to encode all fractions in S. We empha-

size that this process works for any finite set of rationals.
Equivalently, one could choose a small prime which is co-prime with all of the
denominators, and then choose an exponent r large enough to allow the fractions
to be encoded. For example, p = 3 is co-prime with all denominators in S, which
means we must choose r large enough so that 3r ≥ 2(61)2 + 1 = 7443. That is,

r ≥ log(7443)

log(3)
≈ 8.1.

So pr = 39 also suffices to encode the members of S.
However, can we actually do something with it? If we hope to compute over

the image of S, we need to choose a prime (power) that allows “room” for
including the outputs of the operations we expect to work with. Instead of
choosing a prime from strict parameters, a more conservative approach could
be to consider the bit length of the largest numerator or denominator and
the function one wishes to compute. If this time we let b be the bit-length
of the largest numerator or denominator in absolute value and the function be
f(x1, x2, . . . , xn) = x1x2 · · ·xn, then we need a prime that satisfies the following
inequality:

|p|bits > 2bn+ 1.

Say that we have n = 5. Since 61 is a 6-bit number, we set b = 6. We now need
a prime such that

|p|bits > 61.

We choose p = 3693628617552068003, a 62-bit prime which give us the following
encodings of the members of S:

h1 = Hp

(
− 13

25

)
= 3102648038743737122,

h2 = Hp

(
23
19

)
= 2138416568056460424,

h3 = Hp

(
31
5

)
= 2216177170531240808,

h4 = Hp

(
17
61

)
= 3390872173490423085,

h5 = Hp

(
48
23

)
= 321185097178440698,
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and we can check that

5∏
i=1

hi mod p = 2444130464540096986

which decodes to

H−1
p (2444130464540096986) =

−328848
144875

and matches

−13

25
· 23
19
· 31
5
· 17
61
· 48
23

=
−328848
144875

.

This example shows the intuition behind Proposition 7 and Theorem 8.

B Appendix: Extending Farey Rationals for Larger Input
Space

Extending the set FN. While the Farey rationals FN have a very simple
description and are easy to work with, they have a downside: their size. For
example, if p = 907, then N = 21 and the cardinality of FN is 559. This means
that 907− 559 = 348 integers in Z907 do not have a pre-image (under H−1

907) in
FN . We address this by extending FN to a set FN,g

Definition 9 (Extended Farey Rationals). For a positive integer g, the
extended Farey rationals are defined as the set of reduced fractions:

FN,g =

{
x

y

∣∣∣∣∣∃h ∈ Zg s.t. MEEA(g, h) = (x, y), gcd(g, y) = 1

}
.

Clearly FN ⊆ FN,g. We also note that for all m ∈ FN,g, H
−1
g

(
Hg(m)

)
= m(

generalize proof of Proposition 1(i)
)
. The following lemma provides a necessary,

though not sufficient, condition for a rational number to be in FN,g.

Proposition 11. Let g be a positive integer, and N =
⌊√

(g − 1)
/
2
⌋
. If x

/
y ∈

FN,g, then |x| ≤ N and |y| ≤ 2N + 1.

Proof. Let h ∈ Zg, and suppose H−1
g (h) = x

/
y. By definition of MEEA, x

/
y =

xi

/
yi for some xi, yi computed by the EEA. That |x| ≤ N is immediate from

the definition of H−1
g (i.e. the stopping condition in MEEA). The outputs of the

EEA satisfy [29, Theorem 4.3(v)]

|yk| ≤
x0

xk−1
, for all k.

By definition, xi−1 > N . Whence, for N ′ =
√
(g − 1)

/
2,

|yi| ≤
g

xi−1
<

g

N ′ <
2(N ′)2 + 1

N ′ = 2N ′ +
1

N ′

It follows that |yi| ≤
⌊
2N ′ + 1

/
N ′⌋ ≤ 2N + 1, completing the proof.
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This proposition simplifies the process of deciding whether a given reduced ra-
tional number x

/
y is in FN,g:

(i) If |x| ≤ N , |y| ≤ N , and gcd(g, y) = 1, then x
/
y ∈ FN ⊂ FN,g.

(ii) If |x| > N or |y| > 2N + 1 or gcd(g, y) > 1, then x
/
y /∈ FN,g.

(iii) If |x| ≤ N , N < |y| ≤ 2N + 1, and gcd(g, y) = 1, then
x
/
y ∈ FN,g if and only if H−1

g

(
Hg

(
x
/
y
))

= x
/
y.

Two Options for the Message Space. For a fixed positive integer g, we now
have two sets of rationals which can serve as the domain of the encoder:

- the Farey rationals FN , and
- the extended Farey rationals FN,g.

The advantage of FN is its simplicity. FN,g, on the other hand, is larger than
FN and, when g is prime, has exactly g elements.
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